WO2012148181A2 - 약물 방출제어용 조성물 - Google Patents

약물 방출제어용 조성물 Download PDF

Info

Publication number
WO2012148181A2
WO2012148181A2 PCT/KR2012/003223 KR2012003223W WO2012148181A2 WO 2012148181 A2 WO2012148181 A2 WO 2012148181A2 KR 2012003223 W KR2012003223 W KR 2012003223W WO 2012148181 A2 WO2012148181 A2 WO 2012148181A2
Authority
WO
WIPO (PCT)
Prior art keywords
release
drug
weight
composition
parts
Prior art date
Application number
PCT/KR2012/003223
Other languages
English (en)
French (fr)
Other versions
WO2012148181A3 (ko
Inventor
최연웅
조상민
민병구
박진하
김보경
Original Assignee
한국유나이티드제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국유나이티드제약 주식회사 filed Critical 한국유나이티드제약 주식회사
Publication of WO2012148181A2 publication Critical patent/WO2012148181A2/ko
Publication of WO2012148181A3 publication Critical patent/WO2012148181A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates

Definitions

  • the present invention relates to a composition for controlling drug release.
  • the drug release control composition of the present invention forms a basic skeleton of the sustained release polymer of the matrix type, and expands the release control ability of the sustained release polymer as a carbomer occurs sol-gel conversion according to pH.
  • the present invention is characterized in that it further contains a solubilizer to be suitable, especially when the drug to be released is highly poorly soluble and a disintegrant for sufficient initial release.
  • controlled release preparations can release the drug continuously for a certain time in the body, thereby maintaining the effective blood concentration of the drug for a long time. Therefore, it is possible to reduce the amplitude of the blood concentration caused by the frequent administration of conventional formulations, thereby reducing side effects, and furthermore, there is an advantage of improving patient compliance by reducing the frequency of administration.
  • sustained-release matrix tablets are mainly used in the pharmaceutical industry because they can be produced by conventional manufacturing techniques and equipment, and the drug is also eluted while the base is gradually dissolved from the outside in the gastrointestinal fluid.
  • base materials include sustained-release polymers such as hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), Carbopol, polyethylene oxide (PEO), and the like.
  • the sustained-release matrix formulation has a problem that once the matrix structure is collapsed, the drug is rapidly released and the blood concentration is temporarily increased.
  • the present invention has been made to solve the above problems, while retaining the advantages of the conventional matrix structure, it is possible to suppress the rapid release of the drug even after the collapse of the matrix structure, fully solubilizing high-soluble drugs, the initial release rate It is an object of the present invention to provide an improved new drug release control composition.
  • the present invention is to provide a cilostazol sustained-release tablet that can be properly controlled by the drug release control composition to prevent side effects due to rapid release.
  • composition for controlling drug release of the present invention is provided.
  • the sustained-release polymer is hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), Carbopol (Carbopol), polyethylene oxide (PEO) and copolymers or mixtures thereof, preferably Preferably hydroxypropylmethylcellulose (HPMC).
  • HPMC hydroxypropyl cellulose
  • HPMC hydroxypropyl methyl cellulose
  • PVA polyvinyl alcohol
  • Carbopol Carbopol
  • PEO polyethylene oxide
  • HPMC Preferably hydroxypropylmethylcellulose
  • the viscosity of the sustained-release polymer may be 50,000 to 150,000 cps, preferably 80,000 to 120,000 cps.
  • solubilizer may be sodium lauryl sulphate, Labrafil, Labrasol, Tween 60 or mixtures thereof, preferably sodium lauryl sulphate.
  • the disintegrant may be crosscamellose-Na, sodium starch glycolate, pregelatinized starch, microcrystalline cellulose, crospovidone. , cross-linked povidone and other commercially available polyvinylpyrrolidone (PVP), low-substituted hydroxypropylcellulose (low substituted), alginic acid, carboxymethylcellulose, calcium salt And sodium salts, colloidal silica dioxide, guar gum, magnesium alumimum silicate, methylcellulose, powdered cellulose, starch, sodium alginate alginate) and mixtures thereof.
  • PVP polyvinylpyrrolidone
  • the drug may be cilostazol, levamipid, aripiprazole, irbesartan, atazanavir or labuconazole.
  • the content of the drug may be 10 to 2000 parts by weight, preferably 20 to 1900 parts by weight per 100 parts by weight of the sustained release polymer.
  • the drug release control composition of the present invention can prevent the rapid release of the drug due to the dissolution of the late matrix structure by introducing a carbomer having a sol-gel conversion property while retaining the sustained release of the conventional matrix structure of the sustained release polymer. have.
  • the solubilizer solved the problem that the highly insoluble drug does not dissolve even after release, the disintegrating agent was introduced to improve the initial release rate which is the limit of the sustained release formulation.
  • 1 is a graph showing the dissolution rate test results in the absence of a solubilizer and a disintegrant.
  • Figure 2 is a graph showing the dissolution rate test results in the state containing a solubilizer.
  • 3 is a graph showing the dissolution rate test results of the solubilizer and the disintegrant.
  • FIG. 4 is a graph showing a nonclinical test result of the present invention containing a solubilizer and a disintegrant.
  • FIG. 5 is a graph showing the results of a single clinical test of the present invention containing a solubilizer and a disintegrant.
  • Figure 6 is a graph showing the dissolution rate test results of another drug containing a solubilizer and a disintegrant.
  • composition for controlling drug release of the present invention is a composition for controlling drug release of the present invention.
  • sustained-release polymers Preparations for delaying the dissolution of pharmacologically active ingredients are prepared by mixing sustained-release polymers.
  • the sustained-release polymers may be used as long as they are pharmaceutically acceptable polymers, and methyl cellulose, ethyl cellulose, and hydropropylmethyl.
  • Cellulose derivatives such as cellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, propylene oxide and its derivatives, polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, polyvinylacetate, polyvinylacetate phthalate , Polymethacrylate and derivatives thereof, Carbopol, polyethylene oxide, glycerol monostearate, poloxamer and copolymers or mixtures thereof, preferably hydroxypropylmethylcellulose.
  • hydroxypropyl methyl cellulose Preferably hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol and copolymers or mixtures thereof, more preferably hydroxypropyl cellulose can be used.
  • the present inventors found that, when a slow release is required, when a carbomer is mixed with a general sustained-release polymer, a long dissolution time and a constant drug dissolution pattern are shown compared with a single-release sustained-release polymer. In addition, it was found that the elution pattern can be controlled by controlling the weight ratio of the sustained-release polymer and the carbomer.
  • sustained-release preparations Rapid dissolution of the drug can cause tachycardia, headache, or headache, so maintaining and controlling a constant dissolution rate is an important factor in sustained-release preparations.
  • Sustained release polymers such as hydroxypropylmethylcellulose, can form a matrix to prevent rapid dissolution of pharmacologically active ingredients in tablets to ensure a long dissolution time. In addition, it shows a uniform dissolution pattern compared to other sustained-release polymers.
  • the tablets expand during dissolution.
  • the matrix of the sustained-release polymer is not strong, the matrix may be partially damaged and the tablets may disintegrate, which may lead to rapid drug release, causing headache or flushing in the patient.
  • the present invention used a mixture of slow-release polymer and carbomer.
  • Carbomer may be used alone as a sustained-release polymer, but causes sol-gel conversion according to pH, and used in combination with other sustained-release polymer in the present invention.
  • the carbomer is present in a sol state in the stomach, which is an acidic condition, and drug release is maintained by the sustained release polymer.
  • the sustained release polymer In the small intestine, which is an alkaline condition, the carbomer is present in a hydrogel state to control the release of the drug.
  • sustained-release polymer it has the effect of strengthening the matrix in the drug, and the expansion of the tablet to maintain the form, by maintaining the matrix of the tablet to prevent the tablet from falling off to maintain a constant dissolution rate.
  • the sustained release polymer used in the present invention has a viscosity of 50,000 to 150,000 cps, preferably a sustained release polymer having a viscosity of 80,000 to 120,000 cps. If the viscosity is less than 50,000 cps, a large amount of sustained-release polymer is required, and the size of the tablet becomes large. If the viscosity exceeds 150,000 cps, uniform mixing with the pharmacological components becomes difficult. Even if the viscosity is the same, the particle crushing degree is more uniform, and the physical shape of the product having excellent dispersion is used.
  • the weight ratio of the sustained release polymer to the carbomer in the drug release control composition according to the present invention is preferably in the ratio of 5 to 100 parts by weight of carbomer per 100 parts by weight of the sustained release polymer. If the amount of carbomer is less than the above range, it is difficult to ensure sustained release under alkaline conditions, and if it exceeds the above range, the dissolution rate of the drug is excessively lowered under alkaline conditions, and uniform mixing between the drug and the sustained release polymer is difficult.
  • the preparation including the drug release control composition according to the present invention shows a constant dissolution rate according to the change in pH.
  • the formulation containing the composition for controlling drug release according to the present invention maintains a uniform dissolution rate at pH 1.2 (artificial gastric fluid) and pH 6.8 (industrial fluid).
  • the drug to which the drug release control composition, such as the present invention is applied may include substances having a very low solubility, in which case the solubility of the drug is further worsened by adding to the sustained release system of the present invention. This results in a rapid release of the drug after taking it, making the initial pharmacological effect difficult to expect.
  • the present invention is characterized by the addition of a solubilizer to assist in the dissolution of poorly soluble drugs to solve this problem.
  • Solubilizers that can be used in the present invention can be used as long as it is a pharmaceutically acceptable solubilizer, specifically sodium lauryl sulphate, Labrafil (Labrafil), Labrasol (Labrasol), Tween 60 ) Or mixtures thereof, preferably sodium lauryl sulphate.
  • the content of the solubilizer is preferably 10 to 200 parts by weight per 100 parts by weight of the sustained-release polymer, but below the above range, the drug does not reach the critical micelle concentration below the above range, thereby reducing the dissolution rate to provide sufficient pharmacological effect. On the contrary, if it exceeds the above range, there is a fear that the concentration of the free drug decreases and the absorption of the drug decreases.
  • the low initial release rate described above may be attributable to the matrix structure formed by the sustained release polymer, and in order to prevent this, the release of the sustained release polymer itself may be controlled at the end of the dissolution due to the collapse of the formulation itself. It causes a number of problems. In order to solve this problem, the present invention was able to achieve the overall release control while maintaining the initial release rate over a certain level by introducing a suitable ratio of disintegrant.
  • any disintegrant that can be used in the present invention can be used as long as it is a pharmaceutically acceptable solubilizer, and specifically, crosscamellose-Na, sodium starch glycolate, pregelatinized Pregelatinized Starch, microcrystalline cellulose, crospovidone, cross-linked povidone and other commercially available polyvinylpyrrolidone (PVP), low-substituted hydroxypropylcellulose (Hydroxypropylcellulose) low substituted, alginic acid, Carboxymethylcellulose, calcium and sodium salts, colloidal silica collidal silica, guar gum, magnesium aluminum silicate, Methylcellulose, powdered cellulose, starch, sodium alginate alginate) and mixtures thereof.
  • a pharmaceutically acceptable solubilizer and specifically, crosscamellose-Na, sodium starch glycolate, pregelatinized Pregelatinized Starch, microcrystalline cellulose, crospovidone, cross-linked povidone and other commercially available polyviny
  • the content of the disintegrant is preferably 30 to 70 parts by weight per 100 parts by weight of the sustained-release polymer, but below the above range, water does not penetrate into the tablet and cause sufficient wetting action indicated through maternal action to delay dissolution of the drug. On the contrary, if the above range is exceeded, drug release is promoted simultaneously with rapid expansion of the tablet, so that the initial drug dissolution is increased and absorption is promoted, which may cause side effects.
  • the drug to be delivered through the drug release control composition of the present invention can be used without limitation as long as it is a drug that requires sustained release, and in particular, low solubility cilostazol, levamipid, aripiprazole, irbesartan, atazanavir or In the case of labuconazole, the advantages of the present invention are markedly expressed.
  • the content of the drug may be 10 to 2000 parts by weight, preferably 20 to 1900 parts by weight per 100 parts by weight of the sustained release polymer.
  • Drugs less than the above range may not be expected to have sufficient drug release due to a longer release time and less amount of drug released per unit time. Conversely, if the amount exceeds the above range, drug release time may be shortened and the amount of drug released per unit time may increase, causing side effects.
  • the dissolution test was conducted according to the 7th Amendment Dissolution Test Method.
  • PH 7.8 phosphate buffer was used as the eluent.
  • the elution was performed using the paddle method, the eluent was 900 ml, the stirring speed was 100 rpm, and the elution temperature was 37 ⁇ 0.5 °C. 5 ml of the sample was taken at 0, 5, 10, 15, 30, 45, and 60 minutes, and the same amount of eluate was added.
  • the binding solution was prepared by dispersing and dissolving povidone K-30 and carbomer (50%) in ethanol.
  • cilostazol using a speed mixer, cilostazol, microcrystalline cellulose, carbomer (50%), and hydroxypropylmethylcellulose were mixed well, and wet granulation was performed in a cylindrical granulator using a binding solution.
  • the granules thus prepared were dried at least 12 hr in a dry oven (40 ° C.), sieved through a sieve of 40 mesh, and further mixed with hard silicic anhydride and magnesium stearate in the sintered semi-finished product, followed by tableting according to the weight as described below.
  • a certain amount of cilostazol sustained-release tablet prepared in the following example was eluted by the test example.
  • a 0.5 W / W% sodium lauryl sulfate aqueous solution was used as the eluent.
  • the elution method was paddle method, the eluent 900 ml, the stirring speed was 75 rpm, and the elution temperature was performed at 37 ⁇ 0.5 ° C.
  • Cilostazol 200 40 200 38.46 200 42.55 200 33.33 Western Polymers Carbomer 50 10 70 13.46 10 4.25 50 8.33 Hydroxypropylmethylcellulose (100,000 cps) 100 20 100 19.23 100 21.27 200 33.33 Binder Povidone K-30 25 5 25 4.8 25 5.31 25 4.16 Filler Microcrystalline cellulose 100 20 100 19.23 100 21.27 100 16.66 Hard silicic anhydride 10 2 10 1.92 10 2.12 10 1.66 Lubricant Magnesium stearate 15 3 15 2.88 15 3.19 15 2.5 1 tablet gross weight 500 100 520 100 470 100 600 100
  • the dissolution test was performed by the 7th Amendment Dissolution Test Method of the Korean Pharmacopoeia, and the test solution was used at 900 ml of sodium lauryl sulfate (0.5%) solution for 50 revolutions per minute according to the Dissolution Test Method No. 2 of the Pharmacopoeia Test Method. Tested at 37 ⁇ 0.5 ° C. Eluate 5 from each vessel at 0, 15, 30, 60, 90, 120, 180, 300, 360, 480, 600, 720, 840, 960, 1080, 1220, 1440 min. ML was taken and filtered with a 0.45 ⁇ m membrane filter, and the solution was used as a sample solution. The samples and standard solutions were measured for absorbance At and As at wavelength 257 nm using UV (spectrophotometer, Shimadzu, Japan). The dissolution results are shown in FIG.
  • the prepared tablets were measured for the degree of fluidity through the angle of repose, and the hardness was measured to determine their suitability. Then, dissolution test was performed as in Test Example and Example 1, and the results are shown in FIG.
  • Cilostazol 200 Carbomer 5 Hydroxypropylmethylcellulose 15 Sodium lauryl sulfate 20 Croscarmellose sodium 5 Povidone K-30 6 Microcrystalline cellulose 115 Hard silicic anhydride 10 Magnesium Stearate 8
  • Example 2 and the control material were orally administered to beagle dogs and then nonclinical tests were performed to determine the in vivo kinetics of the drug.
  • Example 2 and one tablet of the control material were orally administered to the beagle dog, and blood samples were collected at a predetermined time, and then plasma was separated, and then the concentration of cilostazol in the beagle dog plasma was measured.
  • the pharmacokinetic parameters were calculated using the BA Calc 2007 program: AUCt (Blood-Time Curve Area from Dosing Time to Final Blood Level Time t), AUCi (Blood-Time Curve Area from Dose Time to Infinite Time) , Cmax (highest blood concentration), Tmax (highest blood concentration attainment time) and t1 / 2 (blood loss half-life) were calculated.
  • AUCi / dose and Cmax / dose were expressed by calculating AUCi and Cmax divided by the dose, respectively, and the ratio of AUCt and AUCi was expressed as AUCt / AUCi.
  • SPSS Student t-test
  • Cilostazol in Beagle shoulder plasma after test and control was detected from 1 hour after the first blood collection and 5 of 6 test groups were detected by 36 hours, and 1 of 6 control groups. Up to 36 hours, two were detected up to 24 hours, the other three were detected only up to 12 hours.
  • the AUCt / AUCi of the Example 2 administration group and the control group administration group was 0.949 and 0.924, respectively, and it was found that cilostazol in plasma lost 94.9 and 92.4% in 36 hours after drug administration, respectively.
  • Example 2 AUCi / dose was 3.60 and 3.34 hr * ng / mL, Cmax / dose was 0.62 and 0.87 ng / mL, Tmax was 4.17 and 2.75 hr, and t1 / 2 was 8.34 and 7.25 hr, respectively. .
  • Example 2 The AUCi / dose ratio was 108.0% and the Cmax / dose ratio was 71.7% between the administration group and the control group.
  • P-values of pharmacokinetic parameters were 0.530 (AUCi / dose), 0.071 (Cmax / dose), 0.001 (Tmax) and 0.690 (t1 / 2).
  • Example 2 and the control did not find significant differences in AUCi / dose, Cmax / dose and t1 / 2, but showed a significant difference in Tmax. Therefore, Example 2 is considered to have a pharmacokinetic difference from the control, and cilostazol in plasma showed a similar tendency up to 3 hours after administration when comparing the average concentration of Example 2 with the control group. After that, it could be confirmed that the Example 2 administration group was maintained at a higher concentration than the control substance administration group.
  • Test Example 3 Single clinical test
  • Test drug fasting: before each dose (0h), 1, 2, 3, 4, 5, 6, 8, 12, 24, 36, 48, 60, 72hr (14 times in total)
  • the pattern of adverse events was compared using Fisher's exact test and non-parametric comparison method (Mann-Whitney U test) by order group, treatment group and time of administration. Other safety assessment items were reviewed for individual values.
  • Adverse reaction Observe the subjective symptoms or the subjective symptoms.
  • Hematology Hemoglobin, Hematocrit, RBC, WBC (Leucocytes), Neutrophils, Eosinophils, Basophils, Lymphocytes, Monocytes, Platelet
  • Blood chemistry Creatinine, Total protein, Albumin, sGOT (AST), sGPT (ALT), Total bilirubin, Glucose (fast), Total cholesterol, Alkaline phophatase (ALP), BUN, Ca, P, Gamma GT, Triglyceride, HDL-Cholesterol, LDL-Cholesterol, Uric acid, LDH
  • Urine test Specific gravity, Color, pH, Glucose, Albumin,
  • Pharmacokinetic parameters are calculated after drug concentration analysis, and the primary endpoints of the reference drug (fasting) and the test drug (fasting) for Cmax and AUC72h, which are the primary endpoints.
  • Cilostazol immediate release and two types of cilostazol and active metabolites in blood over 72 hours after administration (OPC-13015; 3,4-dehydro-cilostazol, OPC-13213; 4'-trans-hydroxy-cilostazol) Measure the concentration of Treatment and analysis of clinical samples is performed using LC-MS / MS according to the analysis conditions established by the laboratory of Hopkins Bio Research Center, Inc. The established analytical methods are applied to sample analysis after validation for specificity, linearity, accuracy, precision and sensitivity, and the following pharmacokinetic items are evaluated.
  • a therapy was administered as a control regimen with a single tablet of pretal tablet (Cilostazol 100 mg) twice a day after a meal, and in B therapy, Example 2
  • the cilostazol sustained-release tablet (Cilostazol 200 mg) was administered once a day after a meal, but set a 7 day washout period.
  • AUC ⁇ was 8956 ⁇ 2440 ⁇ g / L * hr and Cmax was 625.01 ⁇ 168.
  • ⁇ g / L and the coefficients of variation were 27.2% and 26.9%, respectively, and the total number of subjects that can be confirmed with 80% power when the difference between the Example and the control material differed by more than 20% at the significance level of 0.05 was 13 per group. Total 26 people. In this study, 3 patients were added to each group considering the number of dropouts, and a total of 32 subjects were tested.
  • Cmax and AUC are 1414.55 ng / mL for cilostazol, 24738.45 hr-ng / mL, 259.463 ng / mL for OPC-13015, 7107.002 hr-ng / mL, 120.872 ng / mL for OPC-13213, 2363.514, respectively.
  • Example 3 Formulations Added Solubilizer and Disintegrant (2, 3)
  • the excipients were sufficiently mixed with levamipid and ariferrazole in the mixing ratios of Table 7, and in addition to the polymer base, HPMC And then mixed in a powder mixer to uniformly prepare a wet granules with ethanol. Typically 10 ml of ethanol was used to prepare 100 tablets. If necessary, a small amount of the polymer base in the formulation can be dissolved in a mixed solvent of water or alcohol and used to granulate the powder. The granules prepared are sufficiently dried in an oven at 60 ° C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 약물 방출제어용 조성물에 관한 것이다. 구체적으로, 본 발명의 약물 방출제어용 조성물은 매트릭스 유형의 서방용 고분자가 기본 골격을 이루고, pH에 따라 졸-겔 변환이 일어나는 카보머로 상기 서방용 고분자의 방출제어능을 확충한다. 본 발명은 특히 방출 대상인 약물이 고난용성인 경우에 적합하도록 가용화제를, 그리고 충분한 초기 방출을 위해 붕해제를 추가로 함유함을 특징으로 한다. 본 발명의 약물 방출제어용 조성물은 서방용 고분자가 갖는 종래 매트릭스 구조의 서방성을 보유하면서, 졸-겔 변환성질을 가진 카보머를 도입하여 용출 후기 매트릭스 구조의 붕괴로 인한 약물의 급격한 방출을 예방할 수 있다. 아울러, 가용화제의 도입으로 인해 고난용성의 약물이 방출 이후에도 용해되지 않는 문제점을 해결하였으며, 붕해제를 도입하여 서방성 제제의 한계인 초기 방출속도를 향상시켰다.

Description

약물 방출제어용 조성물
본 발명은 약물 방출제어용 조성물에 관한 것이다. 구체적으로, 본 발명의 약물 방출제어용 조성물은 매트릭스 유형의 서방용 고분자가 기본 골격을 이루고, pH에 따라 졸-겔 변환이 일어나는 카보머로 상기 서방용 고분자의 방출제어능을 확충한다. 본 발명은 특히 방출 대상인 약물이 고난용성인 경우에 적합하도록 가용화제를, 그리고 충분한 초기 방출을 위해 붕해제를 추가로 함유함을 특징으로 한다.
통상의 속방성 (rapid release) 제제에 비해 서방성(controlled release) 제제는 체내에서 일정한 시간 동안 약물을 지속적으로 방출하기 때문에, 약물의 유효혈중농도를 장기간 유지시킬 수 있다. 따라서, 통상의 제제를 자주 투여하여 발생하는 혈중농도의 진폭을 감소시키고 그로 인해 부작용도 줄일 수 있으며, 나아가 투여빈도를 줄임으로써 환자의 복약순응도(compliance)를 향상시키는 장점이 있다.
유효성 및 안정성이 높은 서방성 제제를 제조하기 위하여 이미 많은 방법이 사용되어 왔으며, 그 중에서 가장 간편하게 제조될 수 있는 제형으로 알려진 것은 서방성 매트릭스 정제이다. 서방성 매트릭스 정제는 통상의 제조 기술 및 장비로 제조할 수 있기 때문에 제약 산업에서 주로 사용되고 있으며, 위장 액에서 기제가 바깥부터 서서히 용해되면서 약물도 따라서 용출되는 형태를 말한다. 이러한 기제로는 서방용 고분자, 예를 들면, 히드록시프로필셀룰로오스(HPC), 히드록시프로필메틸셀룰로오스(HPMC), 폴리비닐알코올(PVA), 카보폴(Carbopol), 폴리에틸렌옥사이드(PEO) 등이 있다.
그런데, 상기 서방성 매트릭스 제제는 일단 매트릭스 구조가 붕괴된 후에는 약물이 급격히 방출되어 혈중 농도가 일시적으로 높아지는 문제점이 있다.
아울러, 약물 자체가 고난용성인 경우에는 매트릭스 구조가 붕괴된 후에도 약물 중 일부가 용해되지 않은 상태로 존재할 수 있어 비경제적이다.
뿐만 아니라, 매트릭스 구조의 특성상 초기 방출속도가 낮은 측면이 있는데, 이는 신속한 발현이 요구되는 상황에서는 오히려 단점으로 작용할 수도 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 종래 매트릭스 구조의 장점을 보유하면서도 매트릭스 구조의 붕괴 이후에도 약물의 급격한 방출을 억제할 수 있고, 고난용성의 약물을 완전히 가용화시키며, 초기 방출속도가 향상된 새로운 약물 방출제어용 조성물을 제공하는 것을 그 목적으로 한다.
또한 본 발명은 상기 약물 방출제어용 조성물에 의해 방출이 적절히 제어되어 급격한 방출로 인한 부작용을 예방할 수 있는 실로스타졸 서방정을 제공하는 것을 또 다른 목적으로 한다.
또한 본 발명은 상기 약물 방출제어용 조성물에 의해 방출이 적절히 제어되어 급격한 방출로 인한 부작용을 예방할 수 있는 레바미피드 서방정을 제공하는 것을 또 다른 목적으로 한다.
또한 본 발명은 상기 약물 방출제어용 조성물에 의해 방출이 적절히 제어되어 급격한 방출로 인한 부작용을 예방할 수 있는 아리피페라졸 서방정을 제공하는 것을 또 다른 목적으로 한다.
본 발명의 약물 방출제어용 조성물은 상술한 바와 같은 목적을 달성하기 위하여,
서방용 고분자 100 중량부,
카보머(Carbomer) 5 내지 100 중량부,
가용화제 10 내지 200 중량부, 및
붕해제 30 내지 70 중량부
를 포함하는 것을 특징으로 한다.
또한, 상기 서방용 고분자는 히드록시프로필셀룰로오스(HPC), 히드록시프로필메틸셀룰로오스(HPMC), 폴리비닐알코올(PVA), 카보폴(Carbopol), 폴리에틸렌옥사이드(PEO) 및 그 공중합체나 혼합물, 바람직하게는 히드록시프로필메틸셀룰로오스(HPMC)일 수 있다.
또한, 상기 서방용 고분자의 점도는 50,000 내지 150,000 cps, 바람직하게는 80,000 내지 120,000 cps일 수 있다.
또한, 상기 가용화제는 소듐 라우릴 셀페이트, 라브라필(Labrafil), 라브라졸(Labrasol), 트윈 60 (Tween 60) 또는 그 혼합물, 바람직하게는 소듐 라우릴 셀페이트일 수 있다.
또한, 상기 붕해제는 크로스카멜로스-소듐 (Crosscamellose-Na), 소듐 스타치 글리콜레이트 (Sodium starch glycolate), 프리젤라틴화 스타치 (Pregelatinized Starch), 미세결정 셀룰로오즈 (microcrystalline cellulose), 크로스포비돈 (Crospovidone, cross-linked povidone)과 기타 상업적으로 유용한 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 저치환 히드록시프로필셀룰로오스 (Hydroxypropylcellulose, low substituted), 알긴산 (alginic acid), 카르복시메틸셀룰로오즈 (Carboxymethylcellulose), 칼슘염 및 소듐염, 콜로이드성 이산화규소 (Fumed silica collidal silica), 구아검 (guar gum), 마그네슘 알루미늄 실리케이트 (Magnesium alumimum silicate), 메틸셀룰로오즈 (methylcellulose), 분말성 셀룰로오즈, 전분(starch), 소듐 알지네이트 (sodium alginate) 및 그 혼합물로 구성된 군에서 선택될 수 있다.
또한, 상기 약물은 실로스타졸, 레바미피드, 아리피페라졸, 이르베사르탄, 아타자나비어 또는 라부코나졸일 수 있다.
또한, 상기 약물의 함량은 서방용 고분자 100 중량부 당 10 내지 2000 중량부, 바람직하게는 20 내지 1900 중량부일 수 있다.
한편 본 발명의 실로스타졸 서방정은
서방용 고분자 100 중량부,
카보머(Carbomer) 5 내지 100 중량부,
가용화제 10 내지 200 중량부,
붕해제 30 내지 70 중량부, 및
실로스타졸 1000 내지 1900 중량부
를 포함하는 것을 특징으로 한다.
한편 본 발명의 레바미피드 서방정은
서방용 고분자 100 중량부,
카보머(Carbomer) 5 내지 100 중량부,
가용화제 10 내지 200 중량부,
붕해제 30 내지 70 중량부, 및
레바미피드 750 내지 1500 중량부
를 포함하는 것을 특징으로 한다.
한편 본 발명의 아리피페라졸 서방정은
서방용 고분자 100 중량부,
카보머(Carbomer) 5 내지 100 중량부,
가용화제 10 내지 200 중량부,
붕해제 30 내지 70 중량부, 및
아리피페라졸 20 내지 100 중량부
를 포함하는 것을 특징으로 한다.
본 발명의 약물 방출제어용 조성물은 서방용 고분자가 갖는 종래 매트릭스 구조의 서방성을 보유하면서, 졸-겔 변환성질을 가진 카보머를 도입하여 용출 후기 매트릭스 구조의 붕괴로 인한 약물의 급격한 방출을 예방할 수 있다. 아울러, 가용화제의 도입으로 인해 고난용성의 약물이 방출 이후에도 용해되지 않는 문제점을 해결하였으며, 붕해제를 도입하여 서방성 제제의 한계인 초기 방출속도를 향상시켰다.
도 1은 가용화제와 붕해제가 함유되지 않은 상태의 용출률 시험결과를 나타낸 그래프이다.
도 2는 가용화제가 함유된 상태의 용출률 시험결과를 나타낸 그래프이다.
도 3은 가용화제와 붕해제가 함유된 상태의 용출률 시험결과를 나타낸 그래프이다.
도 4는 가용화제와 붕해제가 함유된 본 발명의 비임상 시험결과를 나타낸 그래프이다.
도 5는 가용화제와 붕해제가 함유된 본 발명의 단회임상 시험결과를 나타낸 그래프이다.
도 6은 가용화제와 붕해제가 함유된 또 다른 약물의 용출률 시험결과를 나타낸 그래프이다.
이하, 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 또한, 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정사항들이 설명되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명의 약물 방출제어용 조성물은,
서방용 고분자 100 중량부,
카보머(Carbomer) 5 내지 100 중량부,
가용화제 10 내지 200 중량부, 및
붕해제 30 내지 70 중량부
를 포함하는 것을 특징으로 한다.
약리학적 유효성분의 용출을 지연시키는 제제는 서방용 고분자를 혼합하여 제조되는데, 본 발명에서 상기 서방용 고분자는 약제학적으로 허용이 가능한 고분자라면 모두 사용할 수 있으며, 메틸셀룰로스, 에틸셀룰로스, 히드로프로필메틸셀룰로스, 히드록시프로필셀룰로스, 히드록시프로필메틸셀룰로스, 소듐 카르복시메틸셀룰로스와 같은 셀룰로스 유도체, 프로필렌 옥시드 및 그 유도체, 폴리비닐피롤리돈, 폴리에틸렌글리콜, 폴리비닐알코올, 폴리비닐아세테이트, 폴리비닐아세테이트 프탈레이트, 폴리메타크릴레이트 및 그 유도체, 카보폴(Carbopol), 폴리에틸렌옥시드, 글리세롤모노스테아레이트, 폴록사머 및 그 공중합체나 혼합물, 바람직하게는 히드록시프로필메틸셀룰로스일 수 있다.
바람직하게는 히드록시프로필메틸셀룰로스, 히드록시프로필셀룰로스, 메틸셀룰로스, 폴리비닐피롤리돈, 폴리비닐알콜 및 그 공중합체나 혼합물일 수 있고, 더욱 바람직하게는 히드록시프로필셀룰로스를 사용할 수 있다.
본 발명자는 서방성이 요구되는 제제의 경우 일반적인 서방용 고분자에 카보머를 혼합하여 사용하면 단일 성분의 서방용 고분자를 사용하는 것과 비교하여 긴 용출 시간과 일정한 약물 용출 패턴을 보이는 것을 발견하였다. 또한 서방용 고분자와 카보머의 중량비를 조절함으로써 용출 패턴을 조절할 수 있다는 사실도 발견하였다.
약물의 급속한 용출은 빈맥, 두중감이나 두통을 야기할 수 있으므로, 일정한 용출률을 유지, 제어하는 것도 서방제제에 있어서 중요한 요소이다. 히드록시프로필메틸셀룰로스와 같은 서방용 고분자는 정제 내에 약리학적 유효성분의 급속한 용출을 방지하는 매트릭스(matrix)를 형성하여 긴 용출 시간을 확보할 수 있다. 또한 다른 서방용 고분자에 비해 일정한 용출 패턴을 보인다.
그런데, 약리학적 유효성분을 함유한 서방정의 경우 용출시 정제의 팽창현상을 보인다. 이 경우 서방용 고분자의 매트릭스가 견고하지 않다면 매트릭스가 일부 손상되어 정제가 붕해되는 현상이 발생할 수 있으며, 이는 급속한 약물 방출로 이어져 환자에게 두통이나 홍조를 유발시킬 수 있다. 이런 문제점을 해결하기 위하여, 본 발명에서는 서방용 고분자와 카보머를 혼합 사용하였다.
카보머는 서방용 고분자로서 단독으로 사용되기도 하나, pH에 따라 졸-겔 변환을 일으켜 본 발명에서는 다른 서방용 고분자와 혼합 사용하였다. 구체적으로 카보머는 산성 조건인 위에서는 졸 상태로 존재하여 약물방출이 서방용 고분자에 의해 유지되며, 알칼리 조건인 소장에서는 하이드로겔 상태로 존재하여 약물의 방출을 제어한다. 또한 서방용 고분자와 함께 사용 시 약제 내의 매트릭스를 견고하게 하는 효과가 있으며 정제 팽창이 형태를 유지하고, 정제의 매트릭스를 유지함으로써 정제가 떨어져 나가는 것을 방지하여 일정한 용출률을 유지하게 해준다.
본 발명에 사용된 서방용 고분자는 점도가 50,000 내지 150,000 cps이며, 바람직하게는 80,000 내지 120,000 cps의 점도를 가진 서방용 고분자가 바람직하다. 점도가 50,000 cps 미만이면 많은 양의 서방용 고분자가 필요해 정제의 크기가 커지며, 점도가 150,000 cps를 초과하면 약리성분과의 균일한 혼합이 어려워진다. 같은 점도라도 입자의 분쇄도가 더욱 일정하며 분산이 우수한 물리적인 형태가 좋은 제품을 사용한다.
본 발명에 따른 약물 방출제어용 조성물 중 서방용 고분자와 카보머의 중량비는 서방용 고분자 100 중량부 당 카보머 5 내지 100 중량부의 비율인 것이 바람직하다. 카보머의 양이 상기 범위보다 적으면 알칼리 조건에서의 서방성을 보장받기 어렵고, 상기 범위를 초과하면 알칼리 조건에서 약물의 용출률이 지나치게 저하되며 약물과 서방용 고분자 간의 균일한 혼합이 어렵다.
본 발명에 따른 약물 방출제어용 조성물을 포함한 제제는 pH의 변화에 따라 일정한 용출율을 보인다. 경구 투여된 서방제제는 8 시간 이상 인체 내에 머물게 되며, 특히 장시간 머물게 되는 위, 소장은 pH 변화가 매우 크므로, 서방제제는 pH에 따라 일정한 용출률을 유지할 수 있어야 한다. 본 발명에 따른 약물 방출제어용 조성물을 포함한 제제는 pH 1.2 (인공위액)와 pH 6.8 (인공장액)에서 균일한 용출률을 유지한다.
한편, 본 발명과 같은 약물 방출제어용 조성물이 적용되는 약물 중에는 용해도가 아주 낮은 물질들이 포함될 수 있는데, 이 경우 본 발명의 서방성 시스템까지 더해져 약물의 용해성이 더욱 나빠지는 경우가 있다. 이는 복용 후 약물의 방출이 신속히 나타나지 않아 초기 약리효과를 기대하기 어렵게 만드는 결과를 초래한다.
본 발명은 이러한 문제점의 해결을 위해 난용성 약물의 용해를 보조하는 가용화제를 추가한 것을 가장 큰 특징으로 한다. 본 발명에 사용할 수 있는 가용화제는 약제학적으로 허용이 가능한 가용화제라면 모두 사용할 수 있으며, 구체적으로 소듐 라우릴 셀페이트, 라브라필(Labrafil), 라브라졸(Labrasol), 트윈 60 (Tween 60) 또는 그 혼합물, 바람직하게는 소듐 라우릴 셀페이트일 수 있다.
그리고, 상기 가용화제의 함량은 상기 서방성 고분자 100 중량부 당 10 내지 200 중량부인 것이 바람직한데, 상기 범위 미만에서는 상기 범위 미만에서는 약물이 임계미셀농도에 도달하지 못해 용출율을 감소시켜 충분한 약리 효과를 나타내 어려워지며, 반대로 상기 범위를 초과할 경우, 유리약물의 농도가 감소하여 약물의 흡수가 감소할 우려가 있다.
한편, 전술한 낮은 초기 방출률은 서방성 고분자가 형성하는 매트릭스 구조 자체에 기인할 수 있는데, 이를 방지하기 위해 서방성 고분자 자체를 적게 함유하는 경우 용출 후기에 제제 자체의 붕괴로 방출의 제어가 전혀 이루어질 수 없는 문제점을 초래한다. 이러한 문제점을 해결하기 위해 본 발명은 적절한 비율의 붕해제를 도입함으로써 초기 방출속도도 일정 수준 이상 유지하면서, 전체적인 방출 제어를 달성할 수 있었다. 본 발명에 사용될 수 있는 붕해제는 약제학적으로 허용이 가능한 가용화제라면 모두 사용할 수 있으며, 구체적으로 크로스카멜로스-소듐 (Crosscamellose-Na), 소듐 스타치 글리콜레이트 (Sodium starch glycolate), 프리젤라틴화 스타치 (Pregelatinized Starch), 미세결정 셀룰로오즈 (microcrystalline cellulose), 크로스포비돈 (Crospovidone, cross-linked povidone)과 기타 상업적으로 유용한 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 저치환 히드록시프로필셀룰로오스 (Hydroxypropylcellulose, low substituted), 알긴산 (alginic acid), 카르복시메틸셀룰로오즈 (Carboxymethylcellulose), 칼슘염 및 소듐염, 콜로이드성 이산화규소 (Fumed silica collidal silica), 구아검 (guar gum), 마그네슘 알루미늄 실리케이트 (Magnesium alumimum silicate), 메틸셀룰로오즈 (methylcellulose), 분말성 셀룰로오즈, 전분(starch), 소듐 알지네이트 (sodium alginate) 및 그 혼합물로 구성된 군에서 선택될 수 있다.
상기 붕해제의 함량은 상기 서방성 고분자 100 중량부 당 30 내지 70 중량부인 것이 바람직한데, 상기 범위 미만에서는 물이 정제내부에 침입하여 모관작용을 통해 나타내는 충분한 습윤작용을 일으키지 못해 약물의 용해를 지연시키며, 반대로 상기 범위를 초과하면 정제의 급격한 팽창과 동시에 약물 방출이 촉진되어 초기 약물의 용출이 증가, 흡수가 촉진되어 부작용의 우려가 있다.
본 발명의 약물 방출제어용 조성물을 통해 전달할 약물은 서방성이 필요한 약물이면 제한 없이 사용할 수 있으며, 특히 용해도가 낮은 실로스타졸, 레바미피드, 아리피페라졸, 이르베사르탄, 아타자나비어 또는 라부코나졸의 경우 본 발명의 장점이 두드러지게 발현된다.
또한, 상기 약물의 함량은 서방용 고분자 100 중량부 당 10 내지 2000 중량부, 바람직하게는 20 내지 1900 중량부일 수 있다. 상기 범위 미만의 약물은 방출 시간이 길어지고 단위 시간당 약물의 용출량이 적어서 충분한 약효를 기대할 수 없고, 반대로 상기 범위를 초과하면 약물의 방출 시간이 짧아지고 단위 시간당 용출량이 많아져 부작용을 일으킬 수 있다.
한편 본 발명의 실로스타졸 서방정은
서방용 고분자 100 중량부,
카보머 5 내지 100 중량부,
가용화제 10 내지 200 중량부,
붕해제 30 내지 70 중량부, 및
실로스타졸 1000 내지 1900 중량부
를 포함하는 것을 특징으로 한다.
한편 본 발명의 레바미피드 서방정은
서방용 고분자 100 중량부,
카보머 5 내지 100 중량부,
가용화제 10 내지 200 중량부,
붕해제 30 내지 70 중량부, 및
레바미피드 750 내지 1500 중량부
를 포함하는 것을 특징으로 한다.
한편 본 발명의 아리피페라졸 서방정은
서방용 고분자 100 중량부,
카보머 5 내지 100 중량부,
가용화제 10 내지 200 중량부,
붕해제 30 내지 70 중량부, 및
아리피페라졸 20 내지 100 중량부
를 포함하는 것을 특징으로 한다.
이하, 본 발명의 실시예에 대하여 설명한다.
실시예
시험예 1 : 용출률 실험
대한약전 제 7 개정 용출시험법에 의하여 용출 시험하였다. 용출액으로는 pH 7.8 인산염완충액을 사용하였으며 용출법은 패들법을 사용하고 용출액은 900 ml, 교반속도는 100 rpm, 용출온도는 37±0.5 ℃에서 수행하였다. 0, 5, 10, 15, 30, 45, 60 분에 시료 5 ml을 취하고 동량의 용출액을 가했다. 분석조건은 위의 용출시험에서 얻은 액을 0.45 ㎛ 멤브레인필터로 여과한 액을 HPLC를 이용하여 아세클로페낙을 정량하였다. 분석파장은 277 nm, 이동상은 아세토니트릴 : pH 7.4 인산염완충액 = 68:32 용액이고 유속은 1.0 ml/min, 컬럼은 C18 ODS를 사용하였다.
비교예 : 가용화제와 붕해제가 없는 제제
하기 표 1에 기재된 각각의 처방들은 다음과 같은 제조방법을 이용하여 서방정을 제조하였다. 먼저 포비돈 K-30과 카보머(50%)를 에탄올에 분산, 용해시켜 결합액을 조제하였다. 다음으로 스피드믹서를 사용하여 실로스타졸, 미결정셀룰로오스, 카보머(50%), 히드록시프로필메틸셀룰로오스를 잘 혼합한 후 결합액을 이용하여 원통형 과립기에서 습식과립을 하였다. 제조된 상기 과립물을 건조오븐 (40 ℃) 에서 12 hr 이상 건조하고 40 mesh의 체로 정립한 후 정립한 반제품에 경질무수규산과 스테아린산마그네슘을 추가 혼합하여 하기 기재된 1 정당 무게에 맞추어 타정하였다. 하기의 실시예에서 제조된 일정 함량의 실로스타졸 서방정을 상기 시험예에 의하여 용출 시험하였다. 용출액으로는 0.5 W/W% 소듐 라우릴설페이트 수용액을 사용하였으며 용출법은 패들법, 용출액은 900 ml, 교반속도는 75 rpm, 용출온도는 37±0.5 ℃에서 수행하였다. 15, 30, 60, 90, 120, 240, 360, 480, 600, 720 분에 시료 5 ml을 취하고 동량의 용출액을 가했다. 분석조건은 위의 용출시험에서 얻은 액을 0.45 ㎛ 멤브레인필터로 여과한 액을 HPLC를 이용하여 실로스타졸을 정량하였다. 분석파장은 257 nm 이동상은 아세토니트릴 : 물 = 40:60 혼합액이며 옥타데실실릴화한 컬럼을 사용하였다.
표 1
분류 성분 처방 1 처방 2 처방 3 처방 4
함량(mg) 함량비(%) 함량(mg) 함량비(%) 함량(mg) 함량비(%) 함량(mg) 함량비(%)
약리학적유효성분 실로스타졸 200 40 200 38.46 200 42.55 200 33.33
서방용고분자 카보머 50 10 70 13.46 10 4.25 50 8.33
히드록시프로필메틸셀룰로스(100,000 cps) 100 20 100 19.23 100 21.27 200 33.33
결합제 포비돈 K-30 25 5 25 4.8 25 5.31 25 4.16
충진제 미결정 셀룰로스 100 20 100 19.23 100 21.27 100 16.66
경질 무수규산 10 2 10 1.92 10 2.12 10 1.66
활택제 스테아린산마그네슘 15 3 15 2.88 15 3.19 15 2.5
1정 총중량 500 100 520 100 470 100 600 100
상기 비교예의 처방들에 대한 용출률 결과는 도 1에 도시하였으며, 상기 도 1 및 약물 동력학 자료로부터 충분한 용출이 이루어지지 않음을 확인하였다.
실시예 1 : 가용화제를 첨가한 제제
가용화제의 첨가 효과를 확인하기 위해 표 2와 같은 혼합비를 가진 정제를 이용하여 용출시험을 실시하였다.
표 2
성분 함량(mg) 함량비(%)
실로스타졸 200 52.77
카보머 3 0.79
히드록시프로필메틸셀룰로스 13 3.43
소듐 라우릴설페이트 20 5.28
크로스카멜로스 소듐 4 1.06
포비돈 K-30 6 1.58
미결정 셀룰로스 115 30.34
경질 무수규산 10 2.64
스테아린산 마그네슘 8 2.11
1정 총중량 379 100
약물인 실로스타졸 200.0 mg과 각각의 부형제를 충분히 혼합한 후 상기에 더하여 고분자 기제로, HPMC 및 가용화제로서 소듐 라우릴셀페이트를 분말 혼합기에 넣어 균일하게 혼합한 후 에탄올로 습식과립을 제조하였다. 통상 정제 100 정을 제조하기 위해 에탄올 10 ml를 사용하였다. 필요에 따라 처방 중 소량의 고분자 기제를 물 또는 알코올의 혼합 용매에 녹여 분말을 과립화하는데 사용할 수 있다. 제조된 과립은 60 ℃ 온도의 오븐에서 충분히 건조시킨 후 고르게 밀링하고, 후 혼합으로 제제의 성형을 위해 스테아린산 마그네슘을 추가로 혼합하고, 로타리 정제기를 사용하여 실로스타졸을 함유하는 정제를 타정하여 제조하였다.
용출시험은 대한약전 제 7 개정 용출시험법에 의하여 수행되었고 시험액은 900 ㎖ 소디움 라우릴설페이트 (0.5 %) 액을 사용하여 약전 시험법 중 용출시험법 제2 법에 따라 매분 50 회전, 용출온도는 37±0.5 ℃으로 시험했다. 용출시험 개시 후 시험기준에 정해진 시간 0, 15, 30, 60, 90, 120, 180, 300, 360, 480, 600, 720, 840, 960, 1080, 1220, 1440 min에 각각의 용기로부터 용출액 5 ㎖를 취하여 0.45 ㎛ 멤브레인필터로 여과한 다음 이 액을 검액으로 하였으며, 검액 및 표준액은 UV(spectrophotometer, Shimadzu, Japan)를 사용하여 파장 257 nm에서 흡광도 At 및 As를 측정했다. 용출결과는 도 2에 도시하였다.
도 1과 비교시 도 2에서는 약물의 초기 용출이 더 잘 이루어져 초기 약리효과 달성에 보다 유리함을 확인할 수 있다.
실시예 2 : 가용화제 및 붕해제를 첨가한 제제 (1)
가용화제 및 붕해제의 첨가 효과를 확인하기 위해 표 3과 같은 혼합비를 가진 정제를 이용하여 용출시험을 실시하였다.
표 3의 혼합비에 따라 약물인 실로스타졸 200.0 mg과 각각의 부형제를 충분히 혼합한 후 상기에 더하여 고분자 기제로, HPMC을 분말 혼합기에 넣어 균일하게 혼합한 후 에탄올로 습식과립을 제조하였다. 통상 정제 100 정을 제조하기 위해 에탄올 10 ml를 사용하였다. 필요에 따라 처방 중 소량의 고분자 기제를 물 또는 알코올의 혼합 용매에 녹여 분말을 과립화하는데 사용할 수 있다. 제조된 과립은 60 ℃ 온도의 오븐에서 충분히 건조시킨 후 고르게 밀링하고, 후 혼합으로 제제의 성형을 위해 스테아린산 마그네슘을 추가로 혼합하고, 로타리 정제기를 사용하여 실로스타졸을 함유하는 정제를 타정하여 제조하였다.
제조된 정제는 안식각 측정을 통하여 유동성의 정도를 측정해 보았으며, 경도를 측정하여 그 적합성 여부를 타진하여 보았다. 그리고, 시험예 및 실시예 1과 같이 용출시험을 수행하였으며, 그 결과를 도 3에 나타내었다.
표 3
성분 함량(mg)
실로스타졸 200
카보머 5
히드록시프로필메틸셀룰로스 15
소듐 라우릴설페이트 20
크로스카멜로스 소듐 5
포비돈 K-30 6
미결정 셀룰로스 115
경질 무수규산 10
스테아린산 마그네슘 8
도 2와 비교시 도 3에서는 약물의 초기 용출이 잘 이루어질 뿐만 아니라 용출률이 매끄러운 곡선을 보여 용출이 용해 전 과정에 걸쳐 고르게 이루어짐을 확인할 수 있다.
시험예 2 : 비임상 시험
실시예 2와 대조물질 (프레탈®정)을 비글 견에 경구로 투여한 후 약물의 체내동태를 알아보기 위하여 비임상 시험을 수행하였다.
비글 견에 실시예 2 및 대조물질 각 1 정을 경구로 투여하고, 정해진 시간에 채혈한 후 혈장을 분리한 다음 비글 견 혈장 중 실로스타졸의 농도를 측정하였다. 약물동태 파라미터는 BA Calc 2007 프로그램을 사용하여 AUCt (투약시간부터 최종혈중농도 정량시간 t까지의 혈중농도-시간곡선하 면적), AUCi (투약시간부터 무한시간까지의 혈중농도-시간 곡선하 면적), Cmax (최고 혈중농도), Tmax (최고 혈중농도 도달시간) 및 t1/2 (혈중 소실 반감기)을 산출하였다. AUCi/dose와 Cmax/dose는 각각 AUCi와 Cmax를 투여용량으로 나눈 값을 계산하여 표기하였고, AUCt와 AUCi의 비율은 AUCt/AUCi로 나타내었다. 결과는 95 % 신뢰구간에서 Student t-test(SPSS)로 물질간 유의성을 확인하였으며, 그 결과는 표 3 및 도 4와 같다.
표 4
대조물질 실시예 2
Cmax /dose (ng/mL) 0.87 ± 0.28 0.62 ± 0.12
Tmax (h) 2.75 ± 0.61 4.17 ± 0.41
T1/2 (h) 7.25 ± 6.18 8.34 ± 1.56
AUCt (hng/mL) 307.63 ± 86.14 683.77 ± 90.68
AUC∞ (hng/mL) 333.72 ± 88.73 720.93 ± 95.01
AUC(0-t)/AUC(0-inf),% 92.41 ± 7.59 94.88 ± 3.28
F* (%) - 108.0
시험물질과 대조물질 투여 후 비글 견 혈장 중 실로스타졸은 투여 후 첫 번째 채혈시간인 1 시간부터 검출되어 시험물질 투여군 6 마리 중 5 마리는 36 시간까지 검출되었고, 대조물질 투여군 6 마리 중 1 마리는 36 시간까지, 2 마리는 24 시간까지 검출되었으며, 나머지 3 마리는 12 시간 이하까지만 검출되었다.
실시예 2 투여군과 대조물질 투여군의 AUCt/AUCi는 각각 0.949 및 0.924이었으며, 약물 투여 후 혈장 중의 실로스타졸은 36 시간 내에 각각 94.9 및 92.4 %가 소실됨을 알 수 있었다.
실시예 2 투여군과 대조물질 투여군의 AUCi/dose는 각각 3.60 및 3.34 hr*ng/mL, Cmax/dose는 0.62 및 0.87 ng/mL, Tmax는 4.17 및 2.75 hr, t1/2은 8.34 및 7.25 hr 이었다.
실시예 2 투여군과 대조물질 투여군의 AUCi/dose비율은 108.0 %, Cmax/dose 비율은 71.7 % 이었다.
약물동태 파라미터의 P-value는 0.530 (AUCi/dose), 0.071 (Cmax/dose), 0.001 (Tmax)및 0.690 (t1/2)이었다.
정리하면 실시예 2와 대조물질 (프레탈® 정 100 mg)은 AUCi/dose, Cmax/dose및 t1/2에서 유의적인 차이를 발견할 수 없었지만, Tmax에서는 유의적인 차이가 나타났다. 따라서, 실시예 2는 대조물질과 약물동태학적으로 차이가 있는 것으로 판단되며, 혈장 중 실로스타졸은 실시예 2와 대조물질 투여군의 평균 농도를 비교하였을 때 투약 후 3 시간까지는 비슷한 경향을 나타내었지만 그 이후부터는 실시예 2 투여군이 대조물질 투여군보다 높은 농도로 유지되는 것을 확인할 수 있었다.
시험예 3 : 단회임상 시험
비임상에서 진행된 제형을 가지고 건강한 남성 피험자를 대상으로 실로스타졸 서방제와 실로스타졸 속방정 경구투여시 약동학적 특성을 비교평가하기 위한 무작위배정, 공개, 단회, 공복, 2군, 2기, 교차 임상시험을 다음과 같이 진행하였다.
- 무작위 배정에 의하여 대조약 (공복), 시험약 (공복) 총 2가지를 무작위로 배정된 순서에 따라 각각 기별로 투여
- 휴약기간: 첫 투약 시작일로부터 7일
- 채혈시간:
· 대조약 (공복): 각 시기별 투약 전 (0h)(채혈 후 첫번째 투약), 1, 2, 3, 4, 5, 8, 12(채혈 후 두번째 투약), 13, 14, 15, 16, 17, 20, 24, 36, 48, 60, 72 (총 19회)
· 시험약 (공복): 각 시기별 투약 전 (0h), 1, 2, 3, 4, 5, 6, 8, 12, 24, 36, 48, 60, 72hr(총 14회)
- 평가 방법
(1) 안전성평가
이상반응 발생에 대해서 그 양상을 순서군, 치료군, 투여 시기별로 Fisher’s exact test와 비모수적 비교 방법 (Mann-Whitney U test)을 적용하여 비교하였다. 기 타 안전성 평가 항목들은 개별 수치에 대하여 검토하였다.
1) 이상반응 : 자각증상 또는 타각증상에 대하여 관찰한다.
2) 활력징후 (vital signs), 신체검사, 심전도, 임상실험실적 검사
① 활력징후 : 혈압 (좌위), 심박수, 체온 (고막)
② 신체검사
③ 심전도 검사 : 12-lead-ECG
④ 임상실험실적 검사
- 혈액학검사: Hemoglobin, Hematocrit, RBC, WBC(Leucocytes), Neutrophils, Eosinophils, Basophils, Lymphocytes, Monocytes, Platelet
- 혈액화학검사: Creatinine, Total protein, Albumin, sGOT (AST), sGPT (ALT), Total bilirubin, Glucose (fast), Total cholesterol, Alkaline phophatase (ALP), BUN, Ca, P, Gamma GT, Triglyceride, HDL-Cholesterol, LDL-Cholesterol, Uric acid, LDH
- 혈액응고검사: PT, aPTT
- 뇨 검사: Specific gravity, Color, pH, Glucose, Albumin,
(2) 약동학적 특성 평가
약물농도분석 후 약동학적 파라미터를 산출하고, 1차 평가항목인 Cmax와 AUC72h에 대해서 대조약 (공복)과 시험약 (공복)의 1차 평가항목값
- 실로스타졸 속방정 및 서방정 투여 후 72 시간에 걸친 혈중 실로스타졸 및 활성대사체 2종 (OPC-13015; 3,4-dehydro-cilostazol, OPC-13213; 4'-trans-hydroxy-cilostazol)의 농도를 측정한다. 임상시료의 처리와 분석은 분석담당기관인 홉킨스바이오연구센터㈜ 시험기관에서 확립한 분석조건에 따라 LC-MS/MS를 이용하여 수행한다. 확립된 분석방법은 특이성, 직선성, 정확성, 정밀성 및 감도 등에 대한 validation을 완료한 후 검체분석에 적용하고 다음의 약동학적 항목들을 평가한다.
- 평가변수:
단회투여: - 1차 평가항목- Cmax, AUCt(t=72)
- 2차 평가항목- tmax, t1/2, AUC∞ 공복 단회 투여는 두 제제의 약동학적 특성을 비교 평가한다.
(3) 통계분석
- 인구학적 정보
임상시험에 참여한 피험자의 연령, 신장, 체중을 비롯하여, 음주와 흡연 여부 등 인구학적 정보에 대해서 투여약제간 무작위배정에 따른 차이가 없음을 확인하기 위하여 통계분석을 시행하였다. 변수의 특성상 연속형 변수인 경우 모수적 비교 (independent Student’s t-test) 또는 비모수적 비교 (Mann-Whitney U test), 범주형 변수인 경우에는 카이제곱 분석이나 Fisher’s exact test를 적용하였다
총 피험자 수 32 명는 하기 표 5와 같이 구분하였고, 하기 표 5에서 A 요법은 대조요법으로서 프레탈정 (Cilostazol 100 mg)을 1정 1일 2회 식사 후 단회투여하는 것이고, B 요법은 실시예 2의 실로스타졸 서방정 (Cilostazol 200 mg)을 1일 1회 식사 후 단회투여하되 7 일간의 휴약기간을 설정하였다. 상기 피험자 수의 설정 근거는 SL Bramer 등 (1999)의 연구결과를 근거로 하여, 실로스타졸 속방정 100 mg을 투여했을 때, AUC∞가 8956 ± 2440 ㎍/L*hr, Cmax는 625.01 ± 168 ㎍/L로 나타났으며, 변이계수가 각각 27.2 %와 26.9% 였으므로, 유의수준 0.05에서 실시예와 대조물질이 20 % 이상 차이를 보일 경우 80 % 검정력으로 확인할 수 있는 총 피험자수는 군당 13명, 총 26명이다. 본 시험에서는 탈락자수를 고려하여 군당 3 명을 추가하여, 각 군당 16 명씩 총 32 명의 피험자를 대상으로 시험을 시행했다.
표 5
순서시험군 피험자수 시험요법
제1기 제2기
16 명 A B
16 명 B A
본 임상시험에서 실시예 2를 경구로 투여했을 때의 각 수치는 표 6에, 시간 경과에 따른 혈장 중 농도 변화는 도 5에 나타내었다.
표 6
약물동력학적변수 실로스타졸 OPC-13015 OPC-13213
대조물질 실시예2 대조물질 실시예2 대조물질 실시예2
Cmax (μg/mL) 1413.052 1414.551 297.159 259.463 145.438 120.872
AUC∞ (hμg/mL) 26482.49 24738.445 7833.247 7107.002 2889 2363.514
Cmax와 AUC는 각각 실로스타졸의 경우 1414.55 ng/mL, 24738.45 hr-ng/mL, OPC-13015의 경우 259.463 ng/mL, 7107.002 hr-ng/mL, OPC-13213의 경우 120.872 ng/mL, 2363.514 hr-ng/mL이었으며, 대조물질을 투여했을 때의 Cilostazol 1413.05 ng/mL, 26482.49 hr-ng/mL, OPC-13213 297.159 ng/mL, 7833.247 hng/mL, OPC-13213 145.438 ng/mL, 2889 hng/mL와 비교하였다. Cmax geometric mean ratio의 점추정치는 1.001, 90 % 신뢰구간은 0.8217~1.2195이었고, AUCt geometric mean ratio의 점추정치는 0.934, 90 % 신뢰구간은 0.8087~1.0791으로 0.8~1.25의 범위에 포함되었다. 본 임상시험에 사용된 시험약을 임상적으로 적용했을 때 그 효과는 total exposure, 즉 AUC와 보다 밀접한 관련이 있고 tmax와는 관련이 적을 것으로 사료된다. 그러므로 두 제형 간에 서로 대체하여 복용하여도 약물의 유효성과 안전성이 다르지 않음을 의미한다. 본 임상시험에 참가한 32 명의 피험자는 많지 않은 숫자이지만 실시예 2와 대조물질을 투여했을 때, 유해사례의 발생건수, 유해사례를 경험한 피험자수는 치료군에 따라 통계적으로 유의한 차이가 없었다. 이외에도 임상실험실검사, 심전도검사, 활력징후, 신체검진에서도 치료군에 따른 통계적인 차이나 임상적으로 중요한 차이를 관찰할 수 없었으며, Cmax, AUCt 들의 값에 대해 유사한 약동학 특성을 나타냈다.
실시예 3 : 가용화제 및 붕해제를 첨가한 제제 (2, 3)
본 발명의 방출제어용 조성물을 이용하여 다른 약물에 대한 기술의 적합성을 확인하기 위해 표 7의 혼합비로 레바미피드 및 아리피페라졸에 각각의 부형제를 충분히 혼합한 후 상기에 더하여 고분자 기제로, HPMC을 분말 혼합기에 넣어 균일하게 혼합한 후 에탄올로 습식과립을 제조하였다. 통상 정제 100 정을 제조하기 위해 에탄올 10 ml를 사용하였다. 필요에 따라 처방 중 소량의 고분자 기제를 물 또는 알코올의 혼합 용매에 녹여 분말을 과립화하는데 사용할 수 있다. 제조된 과립은 60 ℃ 온도의 오븐에서 충분히 건조시킨 후 고르게 밀링하고, 후 혼합으로 제제의 성형을 위해 스테아린산 마그네슘을 추가로 혼합하고, 로타리 정제기를 사용하여 실로스타졸을 함유하는 정제를 타정하여 제조하였다. 각 제제의 용출 시험은 상기 용출시험법과 동일하다.
표 7
성분 함량(mg)
레바미피드 300 -
아리피페라졸 5
카보머 10 3
히드록시프로필메틸셀룰로스 28 10
소듐 라우릴설페이트 5 5
크로스카멜로스 소듐 15 4
포비돈 K-30 10 9
미결정 셀룰로스 100 60
경질 무수규산 - 2
스테아린산 마그네슘 12 2
각 약물은 도 6에 나타낸 것과 같이 24 시간 동안 제어방출을 나타내었고 그 용출의 경향 역시 실로스타졸과 유의성 있는 결과를 나타내었다.
이상에서는 본 발명의 바람직한 실시예에 대해서 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 당해 기술분야에서 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능함은 물론이다. 따라서, 본 발명의 범위는 위의 실시예에 국한해서 해석되어서는 안되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.

Claims (7)

  1. 서방용 고분자 100 중량부,
    카보머(Carbomer) 5 내지 100 중량부,
    가용화제 10 내지 200 중량부, 및
    붕해제 30 내지 70 중량부
    를 포함하는 약물 방출제어용 조성물.
  2. 청구항 1에 있어서,
    상기 서방용 고분자는 히드록시프로필셀룰로오스(HPC), 히드록시프로필메틸셀룰로오스(HPMC), 폴리비닐알코올(PVA), 카보폴(Carbopol), 폴리에틸렌옥사이드(PEO) 및 그 공중합체나 혼합물인 것을 특징으로 하는 약물 방출제어용 조성물.
  3. 청구항 2에 있어서,
    상기 서방용 고분자의 점도는 50,000 내지 150,000 cps인 것을 특징으로 하는 약물 방출제어용 조성물.
  4. 청구항 1에 있어서,
    상기 가용화제는 소듐 라우릴 셀페이트, 라브라필(Labrafil), 라브라졸(Labrasol), 트윈 60 (Tween 60) 및 그 혼합물로 이루어진 군에서 선택된 것을 특징으로 하는 약물 방출제어용 조성물.
  5. 청구항 1에 있어서,
    상기 붕해제는 크로스카멜로스-소듐 (Crosscamellose-Na), 소듐 스타치 글리콜레이트 (Sodium starch glycolate), 프리젤라틴화 스타치 (Pregelatinized Starch), 미세결정 셀룰로오즈 (microcrystalline cellulose), 크로스포비돈 (Crospovidone, cross-linked povidone)과 기타 상업적으로 유용한 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 저치환 히드록시프로필셀룰로오스 (Hydroxypropylcellulose, low substituted), 알긴산 (alginic acid), 카르복시메틸셀룰로오즈 (Carboxymethylcellulose), 칼슘염 및 소듐염, 콜로이드성 이산화규소 (Fumed silica collidal silica), 구아검 (guar gum), 마그네슘 알루미늄 실리케이트 (Magnesium alumimum silicate), 메틸셀룰로오즈 (methylcellulose), 분말성 셀룰로오즈, 전분(starch), 소듐 알지네이트 (sodium alginate) 및 그 혼합물로 구성된 군에서 선택된 것을 특징으로 하는 약물 방출제어용 조성물.
  6. 청구항 1에 있어서,
    상기 약물은 실로스타졸, 레바미피드, 아리피페라졸, 이르베사르탄, 아타자나비어 또는 라부코나졸인 것을 특징으로 하는 약물 방출제어용 조성물.
  7. 청구항 1에 있어서,
    상기 약물의 함량은 서방용 고분자 100 중량부 당 10 내지 2000 중량부인 것을 특징으로 하는 약물 방출제어용 조성물.
PCT/KR2012/003223 2011-04-29 2012-04-26 약물 방출제어용 조성물 WO2012148181A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110041150A KR20130106456A (ko) 2011-04-29 2011-04-29 약물 방출제어용 조성물
KR10-2011-0041150 2011-04-29

Publications (2)

Publication Number Publication Date
WO2012148181A2 true WO2012148181A2 (ko) 2012-11-01
WO2012148181A3 WO2012148181A3 (ko) 2012-12-20

Family

ID=47072908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003223 WO2012148181A2 (ko) 2011-04-29 2012-04-26 약물 방출제어용 조성물

Country Status (2)

Country Link
KR (1) KR20130106456A (ko)
WO (1) WO2012148181A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404379A (zh) * 2022-01-29 2022-04-29 杭州沐源生物医药科技有限公司 一种瑞巴派特缓释片及其制备方法
WO2024037982A1 (en) * 2022-08-16 2024-02-22 Boehringer Ingelheim International Gmbh Pharmaceutical formulations of nintedanib for intraocular use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2907508A1 (en) * 2014-02-14 2015-08-19 Shin-Etsu Chemical Co., Ltd. Hydroxyalkylalkyl cellulose for tableting and solid preparation comprising the same
KR101748215B1 (ko) * 2015-05-29 2017-06-20 한국유나이티드제약 주식회사 경구용 서방성 제제
KR20180058644A (ko) * 2016-11-24 2018-06-01 에스케이케미칼 주식회사 바레니클린 서방성 제제 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144585B1 (en) * 1999-03-25 2006-12-05 Otsuka Pharmaceutical Co., Ltd. Cilostazol preparation
KR20070024254A (ko) * 2005-08-26 2007-03-02 한국오츠카제약 주식회사 실로스타졸 함유 서방정
KR20070118444A (ko) * 2006-06-12 2007-12-17 신풍제약주식회사 록소프로펜 또는 잘토프로펜 함유 제어방출성 제제 및 그의제조방법
KR20100027337A (ko) * 2008-09-02 2010-03-11 한국유나이티드제약 주식회사 용출률 향상과 부작용 발현이 최소화된 실로스타졸 서방정
US20110014282A1 (en) * 2008-02-28 2011-01-20 De Vasconcelos Teofilo Cardoso Pharmaceutical composition for poorly soluble drugs
KR20110132170A (ko) * 2010-06-01 2011-12-07 한국유나이티드제약 주식회사 1일 1회 투여로 최적의 약리학적 임상 효과를 제공하는 아세클로페낙 서방성 제제

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144585B1 (en) * 1999-03-25 2006-12-05 Otsuka Pharmaceutical Co., Ltd. Cilostazol preparation
KR20070024254A (ko) * 2005-08-26 2007-03-02 한국오츠카제약 주식회사 실로스타졸 함유 서방정
KR20070118444A (ko) * 2006-06-12 2007-12-17 신풍제약주식회사 록소프로펜 또는 잘토프로펜 함유 제어방출성 제제 및 그의제조방법
US20110014282A1 (en) * 2008-02-28 2011-01-20 De Vasconcelos Teofilo Cardoso Pharmaceutical composition for poorly soluble drugs
KR20100027337A (ko) * 2008-09-02 2010-03-11 한국유나이티드제약 주식회사 용출률 향상과 부작용 발현이 최소화된 실로스타졸 서방정
KR20110132170A (ko) * 2010-06-01 2011-12-07 한국유나이티드제약 주식회사 1일 1회 투여로 최적의 약리학적 임상 효과를 제공하는 아세클로페낙 서방성 제제

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404379A (zh) * 2022-01-29 2022-04-29 杭州沐源生物医药科技有限公司 一种瑞巴派特缓释片及其制备方法
CN114404379B (zh) * 2022-01-29 2024-01-26 杭州沐源生物医药科技有限公司 一种瑞巴派特缓释片及其制备方法
WO2024037982A1 (en) * 2022-08-16 2024-02-22 Boehringer Ingelheim International Gmbh Pharmaceutical formulations of nintedanib for intraocular use

Also Published As

Publication number Publication date
WO2012148181A3 (ko) 2012-12-20
KR20130106456A (ko) 2013-09-30

Similar Documents

Publication Publication Date Title
AU748209B2 (en) Novel suppository form comprising an acid-labile active compound
WO2018070671A1 (ko) 레날리도마이드의 경구용 정제 조성물
EP3120871B1 (en) Solid dispersion
WO2020040438A1 (ko) 에스오메프라졸 및 탄산수소나트륨을 포함하는 우수한 방출특성을 갖는 약제학적 제제
SK286625B6 (sk) Farmaceutický prípravok na báze omeprazolu
KR20100052453A (ko) 타달라필 함유 약제의 제조방법
WO2012148181A2 (ko) 약물 방출제어용 조성물
WO2013058450A1 (ko) 안정화된 에페리손 의약 조성물 및 이를 함유하는 서방성 제제
WO2011152652A2 (ko) 1일 1회 투여로 최적의 약리학적 임상 효과를 제공하는 아세클로페낙 서방성 제제
WO2019004770A9 (ko) 프로톤 펌프 저해제를 포함하는 경구용 고형제제 조성물, 이를 포함하는 경구용 고형제제 및 그 제조방법
WO2022103233A1 (ko) 라베프라졸 및 제산제를 포함하는 약제학적 복합제제 및 이의 제조방법
WO2019199133A1 (ko) 레날리도마이드의 경구용 코팅 정제 조성물
WO2013032206A1 (ko) 이토프라이드 염산염을 함유하는 제어 방출성 경구 제제의 조성물 및 그의 제조방법
WO2020022824A1 (ko) 에독사반을 포함하는 약학적 제제 및 이의 제조방법
WO2013157841A1 (ko) 레보드로프로피진 함유 서방정 및 이의 제조방법
WO2022075760A1 (ko) 아프레밀라스트를 함유하는 약학 조성물
WO2016122226A2 (en) A pharmaceutical composition for treating gastrointestinal diseases
WO2019199132A1 (ko) 다양한 용량의 레날리도마이드의 경구용 정제 조성물
WO2016137266A2 (ko) 에페리손과 펠루비프로펜을 함유하는 약제학적 조성물
WO2019107989A1 (ko) 피마살탄을 포함하는 고체 분산체
WO2020017808A1 (ko) 날푸라핀 함유 구강붕해정
WO2018088830A1 (en) A pharmaceutical composition in a monolithic matrix tablet form comprising chlorthalidone or its salt and amlodipine or its salt and a process for preparing the same
KR20130142094A (ko) 약물 방출제어용 조성물
WO2016195377A2 (ko) 생체이용률이 개선된 프란루카스트 함유 고형 제제의 조성물 및 그 제조방법
WO2018097426A1 (ko) 덱스란소프라졸을 포함하는 경구용 정제 조성물, 이를 포함하는 경구용 정제 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777014

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013027844

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12777014

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112013027844

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131029