WO2012142744A1 - 用于控制柴油发动机的高压共轨系统的设备和方法 - Google Patents

用于控制柴油发动机的高压共轨系统的设备和方法 Download PDF

Info

Publication number
WO2012142744A1
WO2012142744A1 PCT/CN2011/073003 CN2011073003W WO2012142744A1 WO 2012142744 A1 WO2012142744 A1 WO 2012142744A1 CN 2011073003 W CN2011073003 W CN 2011073003W WO 2012142744 A1 WO2012142744 A1 WO 2012142744A1
Authority
WO
WIPO (PCT)
Prior art keywords
high pressure
control
common rail
fuel
pressure common
Prior art date
Application number
PCT/CN2011/073003
Other languages
English (en)
French (fr)
Inventor
胡广地
孙少军
佟德辉
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to PCT/CN2011/073003 priority Critical patent/WO2012142744A1/zh
Priority to US14/112,919 priority patent/US9664157B2/en
Publication of WO2012142744A1 publication Critical patent/WO2012142744A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • This invention relates generally to the technical field of diesel engines, and more particularly to an apparatus and method for controlling a high pressure common rail system of a diesel engine. Background technique
  • diesel engines are receiving increasing attention.
  • diesel engines have many advantages: reduced exhaust emissions, more advantageous acceleration performance at lower vehicle speeds, lower average fuel consumption, and more driving pleasure.
  • diesel engine emissions control is a difficult point compared to gasoline engines.
  • high pressure common rail technology has become a hot concern in the industry.
  • the PID type control strategy is adopted for the fuel pressure (ie, rail pressure) control in the common rail cavity. This requires a lot of calibration work.
  • the existing PID control strategy under certain operating conditions of the engine, there is a large deviation between the actual value of the rail pressure and the target value of the rail pressure, which leads to the actual injection of fuel in the fuel injection system. A large error occurs between the amount and the fuel target injection amount, thus directly affecting the power of the engine and the consistency of the injection of each cylinder.
  • the present invention discloses an apparatus and method for controlling a high pressure common rail system of a diesel engine to overcome or at least partially eliminate at least some of the deficiencies found in the prior art. According to one aspect of the invention, an apparatus for controlling a high pressure common rail system of a diesel engine is provided.
  • the device may include a condition parameter obtaining device configured to acquire a working condition parameter related to the high pressure common rail system; a control amount determining device coupled to the working condition parameter obtaining device, configured to be configured according to the working condition parameter a target value of fuel pressure in the high pressure common rail cavity and a control model designed based on a physical model characterizing the high pressure common rail system to determine a control amount for controlling the high pressure common rail system, the control amount being flow An equivalent cross-sectional area of the metering unit solenoid valve; and a drive signal determining device coupled to the control amount determining device > configured to determine a drive signal for driving the flow metering unit based on the determined control amount.
  • the apparatus may further include: an observation value determining device coupled to the operating condition parameter obtaining device and the control amount determining device, configured to be configured according to the operating condition parameter and An observer model designed based on the physical model determines an observed value of fuel pressure in a plunger chamber of the high pressure oil pump for the control amount determining device to determine the control amount.
  • the observer model may be separately added by adjusting the fuel pressure expression in the plunger pump chamber and the fuel pressure expression in the high pressure common rail cavity in the physical model, and selecting The adjusted two expressions are designed with stability and convergence adjustment factors.
  • the observation value determining device may be further configured to: determine an observation value of the fuel pressure in the high pressure common rail cavity according to the operating condition parameter and the observer model, for the control amount The device is determined to determine the amount of control.
  • the operating condition parameters may include: a high pressure oil pump plunger stroke, a high pressure oil pump plunger moving line speed, a piston pump chamber fuel pressure, and a high pressure common rail chamber fuel pressure.
  • the physical model can be characterized by: flow metering unit fuel outflow flow expression; piston pump chamber fuel pressure expression; plunger pump chamber fuel outflow flow expression ; expression of fuel pressure in the high pressure common rail cavity; and expression of fuel injection flow rate of the injector.
  • control model may include feedforward
  • control amount may include a feedforward control component
  • control model may include a feedback controller, and the control amount may include a feedback control component.
  • a method for controlling a high pressure common rail system of a diesel engine may include: obtaining a working condition parameter related to the high pressure common rail system; according to a working condition parameter, a target value of the fuel pressure in the high pressure common rail cavity, and a control model designed based on a physical model characterizing the high pressure common rail system, Determining a control amount for controlling the high pressure common rail system, the control amount being an equivalent cross sectional area of the flow metering unit solenoid valve; and determining a driving signal for driving the flow metering unit based on the determined control amount.
  • control of the high pressure common rail system is based on characterizing the physical model of the high pressure common rail system of the diesel engine. Since the physical model of the high pressure common rail system of the diesel engine is suitable for the working process of the system under any working condition, the technical scheme based on the physical model of the invention can achieve a more accurate injection pressure and achieve a rapid system response, and thus can be reduced. The deviation between the actual value of the rail pressure and its target pressure, and in a preferred embodiment, can be minimized.
  • the control model based on the physical model of the high pressure common rail fuel system can be quantified, thus greatly reducing the calibration workload for the control model and improving the efficiency and functionality of the engine high pressure common rail fuel injection system.
  • Fig. 1 is a schematic block diagram showing the structure of a high pressure common rail system of a diesel engine.
  • Fig. 2 is a block diagram schematically showing an apparatus for controlling a high pressure common rail system of a diesel engine according to an embodiment of the present invention.
  • Fig. 3 schematically shows a schematic block diagram of closed loop feedback control of a high pressure common rail system of a diesel engine according to the present invention.
  • Fig. 4 schematically shows a flow chart of a method for controlling a high pressure common rail system of a diesel engine in accordance with one embodiment of the present invention. detailed description
  • condition parameter means any value that is indicative of the physical quantity of the engine's (target or actual) physical state or operating condition.
  • “parameters” are used interchangeably with the physical quantities they represent. For example, “parameter indicating the speed of the camshaft” and “camshaft speed” have the same meaning herein.
  • the term "acquisition” is used to include various means currently known or developed in the future, such as acquisition, measurement, reading, estimation, estimation, observation, etc.; the term “measurement” as used herein includes Various means known or developed in the future, such as direct Measurement, reading, calculation, estimation, etc.
  • a schematic structural view of a high pressure common rail system of a diesel engine will be described first with reference to Fig. 1. It should be understood that only the portion of the high pressure common rail system of a diesel engine that is relevant to the present invention is shown in Fig. 1, and in fact the high pressure common rail system 100 may also include any number of other components.
  • the high pressure common rail system 100 includes: a skimming tank 101, a fuel filter 102, a pressure oil pump 103, a check valve 114, a flow metering unit 116, a check valve 105, a high pressure oil pump 113, a check valve. 107.
  • Liquid fuel that is to be supplied to the injector 111 through the high pressure common rail system 100 is housed in the fuel tank 101. The fuel is filtered through the fuel filter 102 to filter out impurities therein.
  • the filtered fuel is initially pressurized via a pressure pump 103 to pre-pressurize the fuel at atmospheric pressure to about 8 to 9 atmospheres.
  • a fuel flow metering unit 116 such as a flow metering valve, may take the form of a solenoid valve configured to control the flow signal 104 from the ECU to control the flow of the high pressure oil pump therethrough by varying the equivalent cross-sectional area of the solenoid valve
  • the fuel overcomes the preload force provided by the spring member of the check valve 105 to open the check valve 105, thereby fueling Flowing into the plunger pump chamber 106 of the high pressure oil pump 113, and in the case where the pressure of the fuel flowing out of the flow metering unit 116 is less than the pressure in the plunger pump chamber 106, the check valve 105 is closed, thereby preventing the fuel from flowing into the column.
  • the plug pump chamber 106 is solid, and in fact the one-way valve 105 provides a one-way fuel path from the flow metering unit 116 to the plunger pump chamber 106.
  • the high pressure oil pump 113 includes a high pressure oil pump plunger 115 and a plunger pump chamber 106. Under the driving of the cam shaft of the fuel injection pump, the high pressure oil pump plunger 115 reciprocates in the plunger pump chamber 106. On the one hand, when the high pressure oil pump plunger 115 moves downward, the pressure in the plunger pump chamber 106 gradually decreases and a vacuum is formed, thereby causing the pressure of the fuel flowing out of the flow metering unit 116 to be greater than the pressure in the plunger pump chamber 106. In turn, the one-way valve 105 is opened and the sputum oil enters the plunger pump chamber 106.
  • the one-way valve 107 opens, thereby damaging the oil into the high pressure common rail cavity 117.
  • the one-way threshold 107 provides a unidirectional passage of high pressure fuel from the plunger pump chamber 106 into the high pressure common rail lumen 117.
  • the high pressure common rail cavity 1 17 acts as an accumulator for storing high pressure oil.
  • the pressure of high pressure oil can usually reach 120Mpa to 200Mpa.
  • the pressure can be slightly different for different high pressure common rail systems.
  • the injector 1 1 1 is a key component in the high pressure common rail system, and its function is to control the high pressure common rail cavity 1 by controlling the opening and closing of the injector driving solenoid valve 10 according to the driving signal 108 from the ECU.
  • the high-pressure fuel in 17 is injected into each cylinder of the diesel engine at the optimum injection timing, fuel injection rate and fuel injection rate.
  • a pressure sensor is typically mounted on the high pressure common rail lumen that provides the rail pressure signal 109 of the high pressure rail to the ECU 1 18, i.e., the measured value of the fuel pressure in the high pressure common lumen.
  • ECU 1 18 is the core of the high pressure common rail system and is configured to provide various control signals (or sway signals) based on various operating condition parameters of the fuel system (eg, rail pressure signal 109, etc.), such as driving A drive signal 104 of the flow rate measuring unit (controlling the opening degree thereof), a drive signal 108 for driving the injector solenoid valve 1 10 (controlling its opening and closing), and the like.
  • the excess oil pre-pressurized by the low pressure oil pump 103 is returned to the fuel tank 101 through the check valve 14 and the excess fuel in the injector passes through the injector.
  • the low pressure circuit 1 12 is returned to the fuel tank.
  • the high pressure common rail system 100 includes a large number of components, and the working conditions are very complicated, so it is desirable to accurately control the high pressure common rail cavity by controlling the oil metering unit.
  • the rail pressure in the middle is very difficult.
  • the inventors have devised a technical solution for controlling a high pressure common rail system in order to obtain a desired rail pressure.
  • the inventor applies the knowledge of the model of the high pressure common rail system to the system control, based on the application of the relevant model knowledge of the oil quantity metering valve, the high pressure oil pump, the high pressure common rail cavity, and the fuel injector to realize that the prior art cannot be realized. Effective control.
  • reference will be made to the present invention with reference to specific embodiments. The technical solutions provided by the present invention are described in detail so that those skilled in the art can easily understand and implement the present invention in light of the disclosure herein.
  • FIG. Fig. 2 schematically shows an example block diagram of an apparatus for controlling a high pressure common rail system in accordance with an embodiment of the present invention.
  • the reading device 200 can be embodied as, for example, the electronic control unit 1 18 shown in Fig. 1.
  • the present invention is not limited thereto and can be implemented as a separate control device.
  • the control device 200 may include a condition parameter obtaining means 201, a control amount determining means 202, a signal generating means 203, and preferably further includes an observation value determining means 204.
  • the condition parameter obtaining means 201 is coupled to the control amount determining means 202 and configured to acquire operating condition parameters associated with reading the high pressure common rail system for supply to the control amount determining means 202.
  • the control amount determining means 202 is coupled to the signal generating means based on the operating condition parameters from the operating condition parameter obtaining means 201, the target value of the oil pressure (ie, rail pressure) in the high pressure common rail cavity, and the high pressure common rail system based on The control model designed by the physical model determines the amount of control.
  • the physical model characterizing the high pressure common rail system may be established in any suitable manner and is not limited to the exemplary embodiments presented herein.
  • the physical mode of the high pressure common rail system can be characterized by the following: Flow metering unit fuel outflow flow expression; Piston pump chamber fuel pressure expression; Piston pump chamber oil Outflow flow expression; expression of fuel pressure in the high pressure common rail cavity; and expression of fuel injection flow rate of the injector.
  • the flow metering unit is driven by a proportional solenoid valve
  • Qu fuel flow into the plunger pump chamber (ie flow out of the flow metering unit);
  • C u flow coefficient of the flow metering unit (constant);
  • u equivalent cross-sectional area of the flow metering valve of the flow metering unit, for system control , fuel density (constant);
  • P P fuel pressure in the plunger pump chamber
  • C r flow coefficient (constant) of the plunger pump chamber to the high pressure common rail cavity check valve
  • ⁇ ⁇ equivalent cross-sectional area (constant) of the plunger pump chamber to the high pressure common rail cavity check valve
  • ⁇ ⁇ piston chamber fuel pressure
  • ⁇ ⁇ high pressure for a total of 49 lumens of fuel pressure; p: fuel density (constant).
  • Q inj The flow rate of the injector to the cylinder.
  • Equation 5 The following expression can be determined: Equation 5)
  • Qinj the flow rate of the injector to the cylinder
  • a inj injector equivalent cross-sectional area (constant);
  • P r the pressure of the oil in the high pressure common rail cavity
  • control model design is to achieve closed-loop control of the fuel pressure in the high-pressure fuel rail under various operating conditions of the engine, so that the actual measured value of the rail pressure is close.
  • Equation 14 Equation 14
  • ⁇ ⁇ is a polynomial of ⁇ ⁇
  • V p is a function of h( )
  • fc ⁇ can be plugged
  • the pump cavity internal fuel pressure value P P , the high pressure common rail cavity fuel pressure value P r , the oil pump plunger stroke h ( ) (used to determine V p ) and the constant parameters of the relevant physical model are determined, these constants include in-cylinder compression Air pressure P cyl , injector flow coefficient C inj , injector equivalent cross section ⁇ A inj , fuel density, plunger pump chamber to high pressure common rail chamber check valve flow coefficient C r , plunger pump chamber The equivalent cross-sectional area A r of the high pressure common rail cavity check valve and the high pressure common rail cavity volume ⁇ , etc.
  • b the fuel pressure value P P from the plunger pump chamber, the high pressure common rail cavity fuel pressure value P r, the pump plunger stroke hO) (for determining V p) and the associated constants determined physical model
  • These constants include a high pressure common rail lumen volume V r, the cross sectional area piston chamber p, piston pump chamber to the common rail width lumen unidirectional flow coefficient C r, the common rail to the high pressure piston pump chamber lumen
  • 3 can be determined by the piston pump chamber fuel pressure value P P , the high pressure common rail cavity fuel pressure value P r , the oil pump plunger stroke h ) (for determining V p ), and the constant parameters of the physical model.
  • Parameters include low pressure oil supply pressure P u , fuel density, flow rate unit flow coefficient ⁇ plunger pump chamber to high pressure common rail lumen check valve flow coefficient., plunger pump chamber to high pressure common rail chamber check valve, etc.
  • the effective cross-sectional area A r and the high pressure common rail lumen volume V r are determined.
  • control model includes two parts. One of the parts is the feedforward control term: u FF II - Cbi + b 2 0) (Equation 16)
  • b, and 1) 3 are control coefficients, as described above, which may be determined based on the obtained operating condition parameters and the constant parameters related to the physical model; the linear velocity of the plunger of the high pressure oil pump.
  • the other part is the PID feedback control item:
  • b 3 is a control coefficient, similarly as previously described, which may be determined based on the obtained operating condition parameter and the constant parameter associated with the physical model
  • k p , 1 ⁇ and 13 ⁇ 4 are respectively for proportional control, Control factor for integral control and differential control.
  • control model may include only feedforward control items, feedback control items, or a combination of both.
  • feedback control is not limited to PID control, and PI control is also feasible in practical applications. Therefore, the invention is not limited to the exemplary embodiments presented herein.
  • the operation parameters to be measured may include a high pressure pump plunger stroke H, the high pressure pump plunger motion linear velocity "9, the fuel pressure P p piston chamber and the high pressure common rail Intraluminal fuel pressure P r . These parameters are based on The control model is used to determine the parameters required for the amount of control. However, the invention is not limited thereto, but more parameters or other alternative parameters can also be measured to calculate or determine these operating condition parameters from these parameters.
  • the camshaft rotation angle can be obtained, and the high pressure oil pump plunger stroke is calculated based on the physical relationship of the camshaft rotation angle and the high pressure oil pump plunger stroke.
  • control model given above is merely an exemplary embodiment.
  • Various variations for this control model are possible.
  • one or more parameters or aspects of the above expressions may be disregarded in the physical model, and/or new parameters or aspects associated with the engine high pressure fuel system may be increased.
  • those skilled in the art can design and implement any suitable control model in combination with their specific needs and conditions.
  • control model is preferably determined based on a physical model in advance, so that the value of the control amount can be directly determined based on various operating condition parameters and system target values during engine operation, thereby accelerating the response speed of the system and improving control. effectiveness.
  • a measuring device such as a sensor according to the prior art, such as an oil pressure in a high pressure common rail cavity.
  • high pressure oil pump plunger stroke h
  • high pressure oil pump plunger motion line speed can be measured by other parameters (eg, camshaft angle, oil pump camshaft speed) and based on the physical between them The relationship is calculated.
  • some parameters are not available or difficult to obtain by measurement according to the prior art, or the cost of implementation is high. For such parameters, it can be estimated by the state of other related parameters, or obtained by other empirical methods.
  • a parameter is a high pressure piston pump chamber fuel pressure P p.
  • an observation value determining means 204 is also included for determining an observation of a parameter such as fuel pressure within the plunger pump chamber.
  • the observation determining device 204 is coupled to the operating condition parameter obtaining device 201 and the control amount determining device 202, and configured to be configured according to the operating condition parameter and the observer model based on the physical model. And determining an observation value of the fuel pressure P p in the plunger chamber of the high pressure oil pump for the control amount determining device to determine the control amount.
  • the state of the fuel pressure P p in the plunger pump chamber is the measured value of the oil pressure in the high pressure common rail lumen
  • the state observation value of the fuel pressure in the high pressure common rail lumen is based on the expression. 2 and 4
  • the observer is designed by adding adjustments to the expression of the fuel pressure in the piston pump chamber and the expression of the pressure in the high pressure common rail cavity, and substituting Expressions 3 and 5 into Equations 2 and 4 above.
  • Equation 20 the adjustment factors and ⁇ in the expressions 19 and 20 related to the adjustment term can be selected as An appropriate value that makes both of the above expressions 19 and 20 stable and converge. This can be determined based on actual application requirements.
  • the observation value determining device 204 may determine the oil pressure in the plunger chamber of the high pressure oil pump based on the physical model and the operating condition parameter. Force observations are used to determine the amount of control that will be described below. Preferably, an observation ⁇ 3 ⁇ 4. of the fuel pressure in the high pressure common rail lumen may be further determined for determining the amount of control to be determined hereinafter.
  • determining the amount of control can also use the measurement of the fuel pressure in the high pressure common rail lumen.
  • the observation of the fuel pressure in the high pressure common rail cavity is preferred because the observed value P is actually equivalent to the filtered value of the measured value, so the use of this observation can increase the accuracy of the control model. Sex.
  • FIG. 3 a schematic block diagram of a closed loop feedback control model for a high pressure common rail system of a diesel engine in accordance with a preferred embodiment of the present invention is shown in FIG.
  • the high pressure common rail system is equipped with an observer and a controller, and the controller includes a feedforward control portion and a PID feedback control portion.
  • the error between the actual measured rail pressure value and the target rail pressure value is supplied to the PID feedback control portion as described above, and the feedback control component u FB is provided through the PID feedback control portion in accordance with the acquired operating condition parameter.
  • the oil pressure state observer is based on the control quantity u, the actual measured value of the rail pressure P r and the acquired operating condition parameters of the oil pump plunger stroke h and the plunger moving line speed "observing the fuel pressure and high pressure in the plunger pump chamber" The observed value of the fuel pressure in the common rail lumen.
  • the feedforward control portion provides a feedforward control component u FF based on the observed two observations and the measured operating condition parameters (i.e., the oil pump plunger stroke h and the plunger motion linear velocity "9").
  • the operating parameters required to realize the i-thin control include: high-pressure oil pump plunger stroke h, high-pressure oil pump plunger moving linear speed, piston pump chamber fuel pressure ⁇ and high pressure common rail lumen fuel pressure ⁇ ⁇ .
  • the value of the equivalent cross-sectional area u of the flow rate measuring unit solenoid valve used for observation: ⁇ and ⁇ ⁇ may be the previously calculated control amount u.
  • the observation value determining means 204 can determine the fuel pressure and the high pressure in the plunger pump chamber based on the operating condition parameters measured or calculated by the operating condition parameter obtaining means 201, based on, for example, the observer model of the foregoing design.
  • the observed value of fuel pressure in the rail cavity can be utilized by the control amount determining means 202 to utilize these operating condition parameters (package Including the fuel pressure value observed by the observer, the control model determined based on the physical model and the rail pressure target value to determine the control amount, that is, the equivalent cross-sectional area of the equivalent cross-sectional area of the flow metering unit .
  • the drive signal generating means 203 can further generate a drive signal for driving the oil amount measuring unit based on the magnitude of the control amount.
  • the control device provided is controlled based on the physical model of a high pressure common rail fuel injection system of a diesel engine. Since the physical model of the high pressure common rail fuel injection system of the diesel engine is suitable for the working process of the system under any working condition, the technical solution based on the physical model of the invention can achieve accurate injection pressure and rapid system response, and thus can be reduced. Track! 0 The deviation between the actual pressure of the pressure and the target pressure of the rail pressure, and in a preferred embodiment, can be minimized.
  • the control model based on the physical model of the high pressure common rail oil sling system can be quantified, thus greatly reducing the calibration workload for the control model and improving the efficiency and functionality of the engine high pressure common rail fuel injection system.
  • the present invention also provides a high pressure common rail system for controlling a 3 ⁇ 4 oil engine.
  • Fig. 4 is a flow chart schematically showing a method for controlling a high pressure common rail system of a diesel engine according to an embodiment of the present invention.
  • operating condition parameters associated with the high pressure common rail system are obtained.
  • the operating condition parameters may include: a high pressure oil pump plunger stroke 0, a high pressure oil pump plunger moving line speed, a piston pump chamber fuel pressure, and a high pressure common rail chamber fuel pressure.
  • the observation value of the squeezing pressure in the plunger chamber of the high pressure oil pump may be determined in step 402 according to the operating condition parameter and the observer model designed based on the physical model. It is used to determine the amount of control that will be described below. 5
  • the observer model increases adjustments by respectively expressing a fuel pressure expression in the plunger pump chamber and a fuel pressure expression in the high pressure common rail cavity in the physical model, and The adjustment factor is selected such that the adjusted two expressions are both stable and convergent. More preferably, the observation value of the fuel pressure in the high pressure common rail cavity may be determined according to the operating condition parameter and the observer model, Used to determine the amount of control.
  • step 403 determining, according to the operating condition parameter, a target value of the fuel pressure in the high pressure common rail cavity, and a control model designed based on a physical model characterizing the high pressure common rail system, The control amount of the high pressure common rail system, which is the equivalent cross sectional area of the flow rate measuring unit solenoid valve.
  • the physical model of the high pressure common rail system can be characterized by: flow metering unit fuel outflow flow expression; piston pump chamber fuel pressure expression; plunger pump chamber fuel outflow Flow expression; expression of fuel pressure in the high pressure common rail cavity; and expression of fuel injection flow rate of the injector.
  • control model designed based on the physical model may include a feedforward controller, the control amount including a feedforward control component.
  • the feedforward control component u FF can be expressed as:
  • ⁇ , 13 ⁇ 4 and 1) 3 are control coefficients, and are determined based on the obtained operating condition parameters and the constant parameters related to the physical model; and > the high-speed oil pump plunger moving linear velocity.
  • control model includes a feedback controller, such as a PID feedback control, the control amount including a feedback control component.
  • the feedback control component u FB according to one embodiment of the invention may be expressed as:
  • e is the error between the actual value of the fuel pressure in the high pressure common rail cavity and its target value
  • b 3 is the control coefficient, and is determined based on the obtained operating condition parameter and the relevant constant parameter of the physical model
  • k p , k , and k d are control coefficients for proportional control, integral control, and differential control, respectively, and k p , 1 ⁇ and k d are selected to stabilize and set the high pressure common rail system.
  • a drive signal for driving the flow metering unit may be determined based on the determined amount of control.
  • the embodiments of the present invention may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by an appropriate instruction execution system, such as a microprocessor or dedicated design hardware.
  • processor control code such as a carrier medium such as a magnetic disk, CD or DVD-ROM, such as a read-only memory.
  • Such code is provided on a programmable memory (firmware) or on a data carrier such as an optical or electronic signal carrier.
  • the apparatus of the present invention and its modules can be implemented by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, and the like. It can also be implemented by software executed by various types of processors, or by a combination of the above-described hardware circuits and software such as firmware.

Description

用于控制柴油发动机的高压共轨系统的设备和方法 技术领域
本发明一般性地涉及柴油发动机的技术领域, 更特别地涉及用 于控制柴油发动机的高压共轨系统的设备和方法。 背景技术
随着能源危机日趋严重, 各种节能技术已经成为全世界内燃机 行业所关注的焦点问题。 也正是由于这个原因, 柴油发动机越来越 受到关注。 与汽油机相比, 柴油发动机有很多优势: 废气排放降低, 在车速较低时具有更有优势的加速性能, 平均燃油消耗低, 并且能 提供更多的驾驶乐趣。 然 ¾, 与汽油机相比, 柴油发动机的排放控 制又是一个难点。 为满足排放标准, 高压共轨技术已成为业内人士 关注的热 。
在现有柴油发动机的高压共轨燃油喷射系统 (在下文中, 筒称 为高压共轨系统) 中, 对共轨管腔内的燃油压力 (即, 轨压) 控制 采用的是 PID类型的控制策略, 这需要进行大量的标定工作。 此外, 基于现有的 PID控制策略, 在发动机的某些工况条件下, 轨压的实 际值与轨压的目标值之间会产生较大的偏差, 这导致了燃油喷射系 统中燃油实际喷射量与燃油目标喷射量之间出现较大的误差, 因而 直接影响了发动机的功率和各缸喷油的一致性。
正是基于这个原因, 开发先进的高压共轨系统的撚油压力控制 策略对提高发动机性能和减少标定工作而言是至关重要的。 为此, 本领域存在对高压共轨系统的控制技术进行改进的需要 发明内容
有鉴于此, 本发明公开了一种用于控制柴油发动机的高压共轨 系统的设备和方法, 以克服或者至少部分消除现有技术中存在的至 少一些缺陷。 根据本发明的一个方面, 提供了一种用于控制柴油发动机的高 压共轨系统的设备。 该设备可以包括工况参数获取装置, 配置用于 获取与高压共轨系统相关的工况参数; 控制量确定装置, 其与所述 工况参数获取装置耦合, 配置用于依据所述工况参数、 高压共轨管 腔内燃油压力的目标值和基于表征该高压共轨系统的物理模型而设 计的控制模型, 来确定用于控制所述高压共轨系统的控制量, 所述 控制量为流量计量单元电磁阀的等效横截面积; 以及驱动信号确定 装置, 其与所述控制量确定装置耦合> 配置用于根据确定的控制量, 来确定用于驱动所述流量计量单元的驱动信号。
在根据本发明的一个优选实施方式中, 该设备可以进一步包括: 观测值确定装置, 其与所述工况参数获取装置和所述控制量确定装 置耦合, 配置用于依据所述工况参数以及基于所述物理模型而设计 的观测器模型, 来确定高压油泵柱塞腔内燃油压力的观测值, 以供 所述控制量确定装置来确定所述控制量。
在根据本发明的又一优选实施方式中, 观测器模型可以通过为 物理模型中的柱塞泵腔内燃油压力表达式和高压共轨管腔内燃油压 力表达式分别增加调整项, 并选择使得调整后的两个表达式均稳定 和收敛的调整因子来设计。
在根据本发明的再一优选实施方式中, 观測值确定装置可以进 一步配置用于: 依据工况参数以及观测器模型, 来确定高压共轨管 腔内燃油压力的观测值, 以供控制量确定装置来确定控制量。
在根据本发明的另一优选实施方式中, 工况参数可以包括: 高 压油泵柱塞冲程、 高压油泵柱塞运动线速度、 柱塞泵腔内燃油压力 和高压共轨管腔内燃油压力。
在根据本发明的又一优选实施方式中, 物理模型可以通过以下 各项来表征: 流量计量单元燃油流出流量表达式; 柱塞泵腔内燃油 压力表达式; 柱塞泵腔燃油流出流量表达式; 高压共轨管腔内燃油 压力表达式; 以及喷油器燃油喷出流量表达式。
在根据本发明的再一优选实施方式中, 控制模型可以包括前馈 控制器, 所述控制量可以包括前馈控制分量。
在根据本发明的另一优选实施方式中, 所述前馈控制分量 uFF可 以表示为: = - ^C^ + b ), 其中 b b2和 b3为控制系数, 且基于 获取的所述工况参数和所述物理模型相关的常量参数而确定;以及 <9 为高压油泵柱塞运动线速度。
在根据本发明的又一优选实施方式中, 所述控制模型可以包括 反馈控制器, 所述控制量可以包括反馈控制分量。
在根据本发明的再一优选实施方式中, 所述反馈控制分量 UFB可 以表示为: ^ = - (kpe+ ki C + k^, 其中 e为所述高压共轨管腔内燃 油压力与其目标值之间的误差; b3为控制系数, 且基于获取的所述 工况参数和所述物理模型的相关常量参数而确定; 以及 kp, ki和 kd 分别为针对比例控制、 积分控制和微分控制的控制系数, 且 kp, ¾ 和 kd被选择为使高压共轨系统稳定。
根据本发明的另一方面, 还提供了一种用于控制柴油发动机的 高压共轨系统的方法。 该方法可以包括: 获取与高压共轨系统相关 的工况参数; 依据工况参数、 高压共轨管腔内燃油压力的目标值和 基于表征高压共轨系统的物理模型而设计的控制模型, 来确定用于 控制高压共轨系统的控制量, 该控制量为流量计量单元电磁阀的等 效横截面积; 以及根据确定的控制量, 来确定用于驱动所述流量计 量单元的驱动信号。
根据本发明的实施方式, 特别是各个优选实施方式, 对高压共 轨系统的控制是基于表征柴油发动机的高压共轨系统的物理模型而 进行的。 由于柴油发动机的高压共轨系统的物理模型适用于该系统 在任何工况下的工作过程, 所以本发明基于物理模型的技术方案可 以达到较为精确的喷射压力并实现快速的系统响应, 进而可以减小 轨压的实际值同其目标压力之间的偏差, 并且在优选的实施方式中 可以使其最小。 此外, 基于高压共轨燃油系统的物理模型所设计的 控制模型均可以定量化, 因而大大减少了针对控制模型的标定工作 量, 改善了发动机高压共轨燃油喷射系统的效率和功能性。
3
替换页 (细则第 26条) 附图说明
通过对结合附图所示出的实施方式进行详细说明, 本发明的上 述以及其他特征将更加明显, 本发明附图中相同的标号表示相同或 相似的部件。 在附图中:
图 1示意性地示出了柴油发动机的高压共轨系统的结构示意图》 图 2 示意性地示出了根据本发明的一个实施方式的用于控制柴 油发动机的高压共轨系统的设备的方框图。
图 3 示意性地示出了根据本发明的柴油发动机的高压共轨系统 的闭环反馈控制的示意性方框图。
图 4 示意性地示出了根据本发明的一个实施方式的用于控制柴 油发动机的高压共轨系统的方法的流程图。 具体实施方式
在下文中, 将参考附图通过实施方式对本发明提供的用于控制 高压共轨系统的设备和方法进行详细的描述。 应当理解, 给出这些 实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本 发明, 而并非以任何方式限制本发明的范围。
另外, 在本文中, 所使用的术语 "工况参数"表示任何能够指示发 动机的 ( 目标或实际) 物理状态或运行状况的物理量的值。 而且, 在本文中,. "参数 "与其所表示的物理量可以互换使用。 例如, "指示 凸轮轴转速的参数"与"凸轮轴转速"在本文中具有等同的含义。而且, 在本文中, 假设尸表示某个特定的物理量, 则 表示 P对时间的导数, 即 随时间的变化率; p表示该物理量 p的观测值, 即, 经过滤波的 测量值 (测量值包含噪音) ; 尸=尸 ( )表示参数尸是 X的多项式, 即 是 的函数, P=P χ2 ) 表示参数 P是 χ^。 χ2的多项式。
此外, 在本文中, 所使用的术语 "获取 "包括目前已知或将来开发 的各种手段, 例如采集、 测量、 读取、 估计、 估算、 观测等等; 所 使用的术语 "测量 "包括目前已知或将来开发的各种手段, 例如直接 测量、 读取、 计算、 估算等等手段。
接下来, 将首先参考图 1 来描述柴油发动机的高压共轨系统的 结构示意图。 应当理解, 图 1 中仅示出柴油发动机的高压共轨系统 中与本发明有关的部分, 事实上该高压共轨系统 100还可以包括任 意数目的其他部件。
如图 1所示, 高压共轨系统 100包括: 燋油箱 101、 燃油滤清器 102、 氏压油泵 103、 单向阀 114、 流量计量单元 116、 单向阀 105、 高压油泵 113、 单向阀 107、 高压共轨管腔 117、 喷油器驱动电磁阀 110、 喷油器 111和电控单元 (ECU) 118。 在燃油箱 101 中容纳着 即将通过该高压共轨系统 100被提供至喷油器 111的液体燃油。 燃 油通过燃油滤清器 102而被过滤, 从而滤除其中的杂质。 经过过滤 后的燃油经由 压油泵 103进于初步加压, 以将原本处于大气压下 的燃油预加压至大约 8至 9个大气压。 燃油流量计量单元 116, 例如 流量计量阀,其可以采用电磁阀的形式,其被配置为^应于来自 ECU 的驱动信号 104,通过改变电磁阀的等效横截面积来控制经由其流入 高压油泵 113的燃油喷油泵腔(也称为柱塞泵腔) 106内的燃油流量。 在从流量计量单元 U6流出的燃油的压力比柱塞泵腔 106内的压力 大的情况下, 燃油克服单向阀 105的弹簧部件所提供的预紧力而使 单向阀 105打开, 从而燃油流进高压油泵 113的柱塞泵腔 106中, 而在从流量计量单元 116流出的燃油的压力比柱塞泵腔 106内的压 力小的情况下, 单向阀 105关闭, 从而阻止燃油流入柱塞泵腔 106» 固而, 实际上该单向阀 105提供了从流量计量单元 116到柱塞泵腔 106的单向燃油通路。
如图 1所示, 该高压油泵 113包括高压油泵柱塞 115和柱塞泵 腔 106, 在该喷油泵的凸轮轴的带动下, 高压油泵柱塞 115在柱塞泵 腔 106内做往复运动。 一方面, 当高压油泵柱塞 115向下运动时, 柱塞泵腔 106内压力逐渐减小并形成真空, 由此使得流出流量计量 单元 116的燃油的压力大于柱塞泵腔 106内的压力, 进而使得单向 阀 105打开, 撚油进入该柱塞泵腔 106内。 另一方面, 当高压油泵 柱塞 1 15向上运动时 柱塞泵腔 106内的燃油受压形成高压燃油, 此时单向阀 105关闭, 且在撚油压力大于高压共轨管腔 1 17内的燋 油压力时, 使得单向阀 107打开, 从而燬油进入高压共轨管腔 1 17。 因此, 与前述的单向阀 1 05类似, 单向阈 107提供了高压燃油从柱 塞泵腔 106进入高压共轨管腔 1 17的单向通路。
高压共轨管腔 1 17起到蓄压器的作用, 用于储存高压撚油。 一 般而言, 高压撚油的压力通常可以达到 120Mpa至 200Mpa。 然而, 需要说明的是, 针对不同的高压共轨系统, 谅压力可以略有不同。
喷油器 1 1 1是高压共轨系统中的关键部件, 其作用是根据来自 ECU的驱动信号 108, 通过控制喷油器驱动电磁阀 1 10的打开和关 闭, 来将高压共轨管腔 1. 17中的高压燃油以最佳的喷油定时、 喷油 量和喷油率而喷入柴油发动机的各个气缸中。
此外,在高压共轨管腔上,通常安装有压力传感器,其向 ECU 1 18 提供高压油轨的轨压信号 109 , 即高压公共管腔内燃油压力的测量 值。 ECU 1 1 8是该高压共轨系统的核心, 配置用于基于该燃油系统 的各种工况参数 (例如, 轨压信号 109等)来提供各种控制信号(或 驵动信号), 例如驱动流量计量单元(控制其开度)的驱动信号 104, 驱动喷油器电磁阀 1 10 (控制其开闭 ) 的驱动信号 108等。
此外, 在如图 1所示的系统中, 经过低压油泵 103预加压的多 余撚油会经过单向阀 1 14而回流至燃油箱 101 ,并且喷油器中的多余 燃油会经过喷油器低压回路 1 12回流至燃油箱。
从图 1及上面对高压共轨系统的描述可见, 高压共轨系统 100 包括大量部件, 其工况非常复杂, 因此想要通过控制油量计量单元 来精确地控制高压共轨管腔 1 17中的轨压是非常困难的。
因此, 为了解决这一技术问题, 本发明人设计了一种用于控制 高压共轨系统以便得到期望的轨压的技术方案。 本发明人将高压共 轨系统的模型的知识应用于系统控制, 基于对油量计量阀、 高压油 泵、 高压共轨管腔、 喷油器的相关模型知识的运用来实现现有技术 中无法实现的有效控制。 在下文中, 将参考特定的实施方式对本发 明所提供的技术方案进行详细的描述, 以使得本领域技术人员根据 此处的公开, 能够容易地理解和实现本发明。
首先, 将参考图 2 来描述本发明所提供的用于控制柴油发动机 的高压共軌系统的设备。 该图 2 示意性地示出了根据本发明的一个 实施方式的用于控制高压共轨系统的设备的示例方框图。 本领域技 术人员可以理解, 读设备 200可以具体实施为例如图 1 所示的电控 单元 1 18, 然而, 本发明并不局限于此也可以作为一个独立的控制设 备来实现。
如图 2所示, 控制设备 200可以包括工况参数获取装置 201、 控 制量确定装置 202、 信号生成装置 203 , 并且优选地还包括观测值确 定装置 204。 该工况参数获取装置 201与控制量确定装置 202耦合, 配置用于获取与读高压共轨系统相关的工况参数, 以便提供给该控 制量确定装置 202。 该控制量确定装置 202耦合至信号生成装置, 其 基于来自所述工况参数获取装置 201 的工况参数、 高压共轨管腔内 油压力 (即轨压) 的目标值以及基于高压共轨系统的物理模型而 设计的控制模型确定控制量。
在下文中, 将首先结合实例来描述一种示例实施方式以说明该 高压共轨系统的物理模型的建立。 需要说明的是, 在根据本发明的 实施方式中, 可以采用任何适当的方式来建立表征该高压共轨系统 的物理模型, 而并不仅限于此处给出的示例性实施方式。
在该示例性实施方式中, 高压共轨系统的物理模.型可以通过以 下各项来表征: 流量计量单元燃油流出流量表达式; 柱塞泵腔内燃 油压力表达式; 柱塞泵腔撚油流出流量表达式; 高压共轨管腔内燃 油压力表达式; 以及喷油器燃油喷出流量表达式。 接着将详细给出 这些表达式, 然而需要说明的是, 这只是出于示例的目的, 本发明 并不局限于此。 高压共轨系统的物理模型
为了考虑高压共轨燃油系统主要的机械、 液压和控制部件之间 的物理关系, 同时又能够利用给出的物理模型设计基于模型的轨压 控制模型, 首先进行如下假设:
• 忽略高压共轨系统燃油泄漏;
• 流量计量单元利用比例电磁阀驱动;
• 忽略温度和撚油压力变化对燃油密度的影响;
•燃油流量系数不随温度和压力变化而改变;
'撚油的弹性模量不随温度而变化。
在上述假设下, 可以得到如下的一些关系表达式。
1. 流量计量单元燃油流出流量表达式
针对流量计量单元, 例如可以得到如下的撚油流出流量表达式:
(式 1 )
Figure imgf000010_0001
其中:
Qu: 流入柱塞泵腔 (即流出流量计量单元) 的燃油流量; Cu: 流量计量单元的流量系数 (常量); u: 流量计量单元的流量计量阀等效横截面面积,为系统的控 , 燃油密度 (常量);
Pu : 低压油泵供油压力 (常量) ; 以及 Pp : 柱塞泵腔内撚油压力。
2. 柱塞泵腔内燃油压力表达式
针对高压油泵, 例如可以得到关于柱塞泵腔内燃油压力的如下
Figure imgf000011_0001
(式 2) 其中:
PP: 柱塞泵腔内燃油压力;
Pp: 柱塞泵腔燃油弹性模量, = βρ(ρρ)= 其中, βρ(ρΡ)已知是 ΡΡ 的多项式, 即 与 相关, 是其函数;
Vp: 柱塞泵腔体积。 p= , 其中 为柱塞泵腔横截面 积, 为柱塞升程, 为凸轮轴转角;
Q.u: 流入柱塞泵腔的燃油流量;
Qr: 柱塞泵空流入高压共轨腔的流量;
如前所述为柱塞泵腔横截面积 (常量) ; 以及
9: 为柱塞运动线速度,为柴油机转速的函数,其中《9 = ^^ , αθ ί¾为油泵凸轮轴转速。
3. 柱塞泵腔燃油流出流量表达式
针对高压油泵, 例如可以得到针对柱塞泵腔撚油流出流量的如 下表
(式 3)
Figure imgf000011_0002
其中:
Q.r: 柱塞泵腔流入高压共轨管腔的流量;
Cr: 柱塞泵腔到高压共轨管腔单向阀的流量系数 (常量) ; ΑΓ: 柱塞泵腔到高压共轨管腔单向阀的等效横截面面积 (常量); Ρρ: 柱塞泵腔内燃油压力;
ΡΓ: 高压共 4九管腔内燃油压力; 以及 p: 燃油密度 (常量)。
4. 高压共轨管腔内燃油压力表达式
管腔, 例如可以确定如下表达式:
Figure imgf000012_0001
(式 4 ) 其中:
Pr: 高压共轨管腔内燃油压力; βΓ: 高压共轨管腔内撚油弹性模量, β人 Pr , 其中 为 的多项式, 即是 的函数;
vr: 高压共轨管腔体积 (常量);
Qr; 柱塞泵腔流入高压共轨腔的流量; 以及
Qinj: 喷油器喷射到气缸的流量。
5, 喷油器燃油喷出流量表达式
可以确定如下表达式: 式 5 )
Figure imgf000012_0002
其中:
Qinj: 喷油器喷射到气缸的流量;
Cinj: 喷油器流量系数 (常量);
Ainj: 喷油器等效横截面面积(常量);
Pr: 高压共轨管腔内的撚油压力;
Pcyl: 气缸内压缩空气压力(常量); 以及 p: 燃油密度 (常量)。 基于上文中给出的高压共轨系统的物理模型, 可以设计用于 ΐ玄 系统的控制模型, 下面将参考实施方式来描述基于系统物理模型的 控制模型设计。 然而需要说明的是, 这些实施方式只是出于说明的 目的而给出的, 本发明并不局限于此。 相反, 在本发明的教导下, 支术人员可以对其做出各种修改和变型。 控制模型设计
控制模型设计的目的就是为了在发动机的各种运行工况下, 通 过对高压油轨中的燃油压力实现闭环控制 , 使轨压实际测量值接近
10 轨压目标值。 下面, 给出了基于高压共轨系统的物理模型来设计控 制模型的一种示例性实施方式。
首先, 可以用 ^来表示高压共轨管腔的轨压目标值, 以^来 表示轨压的实际测量值。 于是, 轨压实际测量值 与目标值 ^.之 间的误差可以表示为:
i s e = Pr - Pr<des (式 6 ) 将目标值/^ te移动至误差 e的一端, 于是可以得到:
二 e + Pt,(ks (式 7 ) 对式 7的两端求时间倒数, 则可以到
= Pr (式 8 ) 0 = Pr (式 9 ) 而对前述的式 4的左右两端求时间导数, 则可以得到下式:
(式 )
Figure imgf000013_0001
通过对前述柱塞泵腔燃油流出流量表达式(即式 3 )两端求时间 5 导数, 则可以得到
Figure imgf000013_0002
(式 11 ) 类似地, 通过对前述喷油器撚油喷出流量表达式(即式 5 ) 两端 求时间导数, 则可以得到
Figure imgf000014_0001
"弋 12) 将得到的式 11和 12代入上面的式 10,则可以将式 10进一步筒 化成为:
Figure imgf000014_0002
(式 13) 将前述的流量计量单元燃油流出流量表达式(即式 1 ) 、 柱塞泵 腔内燃油压力表达式(即式 2 )和高压共轨管腔内燃油压力表达式(即 式 4) 以分別带入到上式 13 的右端, 并且考虑到 =^ , 则可以 dPr
得到:
Figure imgf000015_0001
dP v.; i2p{pp-pf) mj 'Ίκ )
Figure imgf000015_0002
+ ■u
VrVP p{ P-Pr) P
(式 14) 经过进一步的整理, 则可以将式 14表示为
Figure imgf000015_0003
(式 15) 其中
Figure imgf000015_0004
β r PpCrArAp
VrVp p{Pp-Pr)
b3 =b,(PP,Pr) =
VrVpPJ2(Pp ~Pr) 如在前面的表达式 1至表示式 5 中所描述的那样, βρ 是 Ρρ的 多项式, 是 Pr的多项式, Vp是 h( )的函数, Qr和(¾¾是?|>和 P 々函数。 因此, 系数!^、 b2和 b3是 Pp和 1 的多项式, 其可以基于 工况参数和所述物理模型相关的常量参数而确定。 具体地, fc^ 可以 由塞泵腔内燃油压力值 PP、 高压共轨腔内燃油压力值 Pr、 油泵柱塞 冲程 h( ) (用于确定 Vp)以及相关物理模型的常量参数来确定, 这些 常量包括气缸内压缩空气压力 Pcyl、喷油器流量系数 Cinj、 喷油器等效 横截面面轵 Ainj、燃油密度 、柱塞泵腔到高压共轨管腔单向阀流量系 数 C r、柱塞泵腔到高压共轨管腔单向阀等效横截面面积 A r和高压共轨 管腔体积 ^等。 类似地, b- 由可由柱塞泵腔内燃油压力值 PP、 高 压共轨腔内燃油压力值 Pr、 油泵柱塞冲程 hO)(用于确定 Vp)以及物 理模型相关的常量确定, 这些常量包括高压共轨管腔体积 Vr、 柱塞 泵腔横截面积 p、 柱塞泵腔到高压共轨管腔单向阔流量系数 Cr、 柱 塞泵腔到高压共轨管腔单向阀等效横截面面积 Ar、 高压共轨管腔体 积 Vr和燃油密度 p。 同样, 3 可由柱塞泵腔内燃油压力值 PP、 高 压共轨腔内燃油压力值 Pr、 油泵柱塞冲程 h ) (用于确定 Vp)以及物 理模型的常量参数来确定, 这些参量参数包括低压端供油压力 Pu、 燃油密度 、 流量计量单元流量系数^ 柱塞泵腔到高压共轨管腔单 向阀流量系数 .、柱塞泵腔到高压共轨管腔单向阀等效横截面面积 Ar 和高压共轨管腔体积 Vr来确定。 基于上述表达式 9和 1 5, 并令 §十 kd + kpe + ki j" e = 0, 可以 设计如下控制模型: υ = - ^- (h1 + h2d + kp + ^ J e + kde^) (式 15 ) 实际上, 该控制模型包括两个部分。 其中一个部分为前馈控制 项: uFF二 - Cbi + b20) (式 16 )
Figure imgf000017_0001
其中, b、 和 1)3为控制系数, 如前所述, 其可以基于获取的所述 工况参数和所述物理模型相关的常量参数而确定; 为高压油泵柱塞 运动线速度。
另一部分为 PID反馈控制项:
1 Γ \
u ρΒ ― ― ~~~ ί kp& - - kf I e + kjjd ) (式 17 ) b3 J /
其中, b3为控制系数, 类似地如前所述, 其可以基于获取的所述工 况参数和所述物理模型相关的常量参数而确定, kp、 1^及1¾为分別针 对比例控制、 积分控制和微分控制的控制系数。 对于该反馈控制项, 可以选择适当的 kp、 iq及 kd增益值, 以确保兹高压共轨系统稳定, 换 句话说确保下式的特征根位于 s平面的左半平面: e + kde + kpe + kj J e = 0 (式 18 ) 即, 确保当 t— 0时, e→0„ 通过这样的方式, 就可以得到 kp、 kj 及 1¾增益值。
然而, 如本领域技术人员所知, 该控制模型可以仅包括前馈控 制项、 反馈控制项, 或者可以包括二者的组合。 而且反馈控制也不 局限于 PID控制, PI控制在实际应用中也是可行的。 因此, 本发明 并不局限于此处给出的示例性实施方式。
因此, 在根据本发明的一个实施方式中, 需要测量的工况参数 可以包括高压油泵柱塞冲程 h、 高压油泵柱塞运动线速度《9、 柱塞泵 腔内燃油压力 Pp和高压共轨管腔内燃油压力 Pr。 这些参数是基于所 述控制模型来确定控制量所需的参数。 然而, 本发明并不局限于此, 而是还可以测量更多的参数或者其他替代参数, 以从这些参数计算 或确定这些工况参数。 例如, 对于高压油泵柱塞冲程, 其是凸轮轴 转角的函数, 因此可以获取该凸轮轴转角, 基于凸轮轴转角与高压 油泵柱塞冲程的物理关系来计算该高压油泵柱塞冲程。
应当理解, 上文给出的控制模型仅是一种示例性的实施方式。 针对该控制模型的各种变形是可能的。 例如, 在某些工况条件下, 在物理模型中可以不考虑上文表达式中的一个或多个参数或方面, 和 /或可以增加与发动机高压燃油系统有关的新的参数或方面。 实际 上, 基于本发明给出的如上启示和教导, 本领域技术人员可以结合 其具体需求和条件, 设计实现任何适当的控制模型。
此外, 该控制模型优选地是预先基于物理模型而确定的, 这样 在发动机运行期间可以直接基于各种工况参数、 系统目标值来确定 控制量的值, 这样可以加速系统的响应速度, 提高控制效率。
在前述的工况参数中, 部分参数依据现有技术可以通过传感器 等测量设备直接测量, 例如高压共轨管腔内的撚油压力 。 另外, 有 一些工况参数诸如高压油泵柱塞冲程 h(^)、 高压油泵柱塞运动线速 度 可以通过测量的其他参数(如, 凸轮轴转角, 油泵凸轮轴转速) 并基于它们之间的物理关系计算得到。 此外, 还有一些参数是依据 现有技术是无法或者难以通过测量而得到, 或者实现的成本高, 针 对这样的参数, 可以通过其他相关参数的状态而估算得到, 或者通 过其他经验方式来得到。 这样的参数的一个示例是高压油泵的柱塞 泵腔内的燃油压力 Pp
在根据本发明的一个优选实施方式中,还包括观测值确定装置 204 ,用于确定参数诸如柱塞泵腔内燃油压力的观测值。如图 2所示, 该观测值确定装置 204与工况参数获取装置 201和所述控制量确定 装置 202耦合, 配置用于依据所述工况参数以及基于所述物理模型 而设计的观测器模型, 来确定高压油泵柱塞腔内燃油压力 P p的观测 值, 以供所述控制量确定装置来确定所述控制量。 在下文中, 出于 说明的目的, 将给出状态观测器模型设计的一个实例, 然而需要说 明的是, 如本领域技术人员所知, 可以采用各种手段来设计观测器。 燃油压力状态观测器模型
为了能够确定柱塞泵腔内燃油压力 Pp的观测器值, 观测器将借 助于前述的柱塞泵腔内燃油压力表达式 2和高压共轨管腔内燃油压 力表达式 4。
首先可以假设柱塞泵腔内燃油压力 Pp的状态观测值为 , 高压 共轨管腔内的撚油压力的测量值为 ,高压共轨管腔内的燃油压力的 状态观测值为 基于表达式 2和 4, 通过为柱塞泵腔内燃油压力表达式和高压 共轨管腔内搽油压力表达式分别增加调整项并将表达式 3和式 5代 入前述式 2和 4来设计观测器, 从而得到以下的两个式子:
¾ - + χ (pr _ Pr) (式 19 )
Figure imgf000019_0001
% = vr crA p ― Cinj JAinjJ^^ p J CPr - Pr) (式 20 ) 而表达式 19和 20中的与调整项相关的调整因子 和 ^则可 以选择为使得上述两个表达式 19和 20均稳定和收敛的适当值。 这 可以根据实际应用要求来确定。
由此, 表达式 19和 20所联立的方程有解。 因此, 这意味可以 基于工况参数(包括例如柱塞泵腔体积 Vp (或者油泵柱塞冲程 h ) 、 柱塞泵腔的燬油流量 Qu (或流量计量单元电磁阀的计量单元等效横 截面枳 υ ) 、 柱塞运动线速度 和高压共轨的轨压 Pr的测量值来 得至 i j 的值, 或者优选地得 Ρρ和 Pr两者的值。 因此, 在该优选的实施例中, 观测值确定装置 204可以基于所 述物理模型以及所述工况参数, 来确定高压油泵柱塞腔内的 油压 力观测值 , 以用于确定将在下文中描述的控制量。 优选地, 还可 以进一步确定高压共轨管腔内的燃油压力的观测值 ί¾.,以用于确定将 在下文中确定的控制量。
实际上,确定该控制量也可以使用高压共轨管腔内的燃油压力 的测量值。 然而, 使用高压共轨管腔内的燃油压力的观测值 是优选 的, 这是因为观测值 P实际上相当于对测量值 的滤波后的值, 所以 该观测值的使用能够增加控制模型的准确性。
为了更加清楚起见,在图 3中示出了根据本发明的一个优选实 施方式的柴油发动机的高压共轨系统的闭环反馈控制模型的示意性 方框图。 如图 3 所示, 该高压共轨系统配备有观测器和控制器, 该 控制器包括前馈控制部分和 PID反馈控制部分。 实际测量轨压值与 目标轨压值之间的误差被提供给如前所述的 PID反馈控制部分, 依 据获取的工况参数,通过 PID反馈控制部分而提供反馈控制分量 uFB。 另一方面, 撚油压力状态观测器基于控制量 u、 轨压实际测量值 Pr 以及获取的工况参数油泵柱塞冲程 h 和柱塞运动线速度《 观测柱塞 泵腔内燃油压力和高压共轨管腔内燃油压力的观测值 和 。前馈控 制部分基于观测得到的这两个观测值和测量的工况参数 (即油泵柱 塞冲程 h和柱塞运动线速度《9 ) 来提供前馈控制分量 uFF。 这两个分 量 11 和 uF i..共同构成控制量 u , 即流量计量单元电磁阀的等效横截 面积。
由此可见, 实现 i玄控制需要的工况参数包括: 高压油泵柱塞冲 程 h、 高压油泵柱塞运动线速度 、 柱塞泵腔内燃油压力 ί 和高压 共轨管腔内燃油压力 Ρρ。 而观测:^和 Ρρ时所用到的流量计量单元电 磁阀的等效横截面积 u的值则可以是前次计算得到的控制量 u。
因此, 如上所述, 观测值确定装置 204可以基于工况参数获取 装置 201 测量或者计算得到的工况参数、 基于例如前述设计的观测 器模型, 来确定柱塞泵腔内的燃油压力和高压共轨管腔内燃油压力 的观测值。 然后, 控制量确定装置 202 可以利用这些工况参数 (包 括通过观测器而观测得到的燃油压力值) , 基于所述物理模型而确 定的控制模型和轨压目标值来确定控制量, 即所述流量计量单元等 效横截面积的等效横截面积。 而驱动信号生成装置 203 可以进一步 基于该控制量的大小生成用于驱动油量计量单元的驱动信号。
5 根据本发明的实施方式, 特别是优选实施方式, 提供的控制设 备是基于柴油发动机的高压共轨燃油喷射系统的物理模型而进行控 制的。 由于柴油发动机的高压共轨燃油喷射系统的物理模型适用于 该系统在任何工况下的工作过程, 所以本发明基于物理模型的技术 方案可以达到精确的喷射压力和快速的系统响应, 进而可以减小轨 ! 0 压的实际压力同轨压的目标压力之间的偏差, 并且在优选的实施方 式中, 可以使其最小。 基于高压共轨撚油系统的物理模型所设计的 控制模型均可以定量化, 因而大大减少了针对控制模型的标定工作 量, 改善了发动机高压共轨燃油喷射系统的效率和功能性。
此夕卜,本发明还提供了一种用于控制 ¾油发动机的高压共轨系
] 5 统的方法。 接下来, 将参考图 4对其进行详细的描述, 其中图 4示 意性地示出了根据本发明的一个实施方式的用于控制柴油发动机的 高压共轨系统的方法的流程图。
如图 4所示, 首先在步骤 401, 获取与所述高压共轨系统相关 的工况参数。 如前所述, 所述工况参数可以包括: 高压油泵柱塞冲 0 程、 高压油泵柱塞运动线速度、 柱塞泵腔内燃油压力和高压共轨管 腔内燃油压力。
在优选的实施方式中, 如前所述, 可以在步骤 402依据所述工 况参数以及基于所迷物理模型而设计的观测器模型, 来确定高压油 泵柱塞腔内撚油压力的观测值, 以用于确定下面将描述的控制量。 5 在根据本发明的一个实施方式中, 所述观测器模型通过为所述物理 模型中的柱塞泵腔内燃油压力表达式和高压共轨管腔内燃油压力表 达式分别增加调整项, 并选择使得调整后的所述两个表达式均稳定 和收敛的调整因子来设计。 更加优选地, 可以依据所述工况参数以 及所述观测器模型, 来确定高压共轨管腔内燃油压力的观测值, 以 用于确定所述控制量。
接着, 可以在步骤 403 , 依据所述工况参数、 高压共轨管腔内 燃油压力的目标值和基于表征所述高压共轨系统的物理模型而设计 的控制模型, 来确定用于控制所述高压共轨系统的控制量, 所述控 制量为流量计量单元电磁阀的等效横截面积。
在根据本发明的一个实施方式中, 高压共轨系统的物理模型可 以通过以下各项来表征: 流量计量单元燃油流出流量表达式; 柱塞 泵腔内燃油压力表达式; 柱塞泵腔燃油流出流量表达式; 高压共轨 管腔内燃油压力表达式; 以及喷油器燃油喷出流量表达式。
另外, 基于该物理模型而设计的控制模型可以包括前馈控制 器, 所述控制量包括前馈控制分量。 在本发明的一个实施方式中, 该前馈控制分量 uFF可以表示为:
Figure imgf000022_0001
其中 ^、 1¾和 1)3为控制系数, 且基于获取的所述工况参数和所述物 理模型相关的常量参数而确定; 以及 >为高压油泵柱塞运动线速度。
此外或者备选地, 该控制模型包括反馈控制器, 例如 PID反馈 控制项, 所述控制量包括反馈控制分量。 在根据本发明的一个实施 方 所述反馈控制分量 uFB可以表示为:
Figure imgf000022_0002
其中 e 为所述高压共轨管腔内燃油压力的实际值与其目标值之间的 误差; b3为控制系数, 且基于获取的所述工况参数和所述物理模型 的相关常量参数而确定; 以及 kp, k,和 kd分别为针对比例控制、 积 分控制和微分控制的控制系数, 且 kp, 1^和 kd被选择为使高压共轨 系统稳、定。
随后, 可以在步骤 404, 根据所述确定的控制量, 来确定用于 驱动所述流量计量单元的驱动信号。
该方法中的各个步骤的搡作实际上与前述控制设备的各个部 件的操作是基本对应的。 因此关于该方法中的各个步騍的具体操作 或者其中相关内容的细节, 可以参考前文参考图 2和图 3针对控制 设备所进 ^"的描述。
此外, 需要说明的是, 本发明的实施方式可以通过硬件、 软件 或者软件和硬件的结合来实现。 硬件部分可以利用专用逻辑来实现; 软件部分可以存儲在存储器中, 由适当的指令执行系统, 例如微处 理器或者专用设计硬件来执行。 本领域的普通技术人员可以理解上 述的设备和方法可以使用计算机可执行指令和 /或包含在处理器控制 代码中来实现, 例如在诸如磁盘、 CD或 DVD- ROM的载体介质、 诸 如只读存储器 (固件) 的可编程的存储器或者诸如光学或电子信号 载体的数据载体上提供了这样的代码。 本发明的设备及其模块可以 由诸如超大规模集成电路或门阵列、 诸如逻辑芯片、 晶体管等的半 导体、 或者诸如现场可编程门阵列、 可编程逻辑设备等的可编程硬 件设备的硬件电路实现, 也可以用由各种类型的处理器执行的软件 实现, 也可以由上述硬件电路和软件的结合例如固件来实现。
应当注意,尽管在上文详细描述中提及了控制设备和观测设备 的若千装置或子装置, 但是这种划分仅仅并非强制性的。 实际上, 根据本发明的实施方式, 上文描述的两个或更多装置的特征和功能 可以在一个装置中具体化。 反之, 上文描述的一个装置的特征和功 能可以进一步划分为由多个装置来具体化。
此外, 尽管在附图中以特定顺序描述了本发明方法的操作, 但 是, 这并非要求或者暗示必须按照该特定顺序来执行这些操作, 或 是必须执行全部所示的操作才能实现期望的结果。 相反, 流程图中 描绘的步驟可以改变执行顺序。 附加地或备选地, 可以省略某些步 骤, 将多个步驟合并为一个步骤执行, 和 /或将一个步骤分解为多个 步骤执行。
虽然已经参考目前考虑到的实施方式描述了本发明, 但是应该 理解本发明不限于所公开的实施方式。 相反, 本发明旨在涵盖所附 权利要求的精神和范围内所包括的各种修改和等同布置。 以下权利 要求的范围符合最广泛解释, 以便包含所有这样的修改及等同结构 和功能。

Claims

权 利 要 求 书
1 . 一种用于控制柴油发动机的高压共轨系统的设备, 其特征在 于, 包括:
工况参数获取装置, 配置用于获取与所述高压共轨系统相关的 工况参数;
控制量确定装置, 其与所述工况参数获取装置耦合, 配置用于 依据所述工况参数、 高压共轨管腔内撚油压力的目标值和基于表征 所述高压共轨系统的物理模型而设计的控制模型, 来确定用于控制 所述高压共轨系统的控制量, 所述控制量为流量计量单元电磁阀的 等效横截面积; 以及
驱动信号确定装置, 其与所述控制量确定装置耦合, 配置用于 根据确定的所述控制量, 来确定用于驱动所述流量计量单元的驱动
A二- Ό 2. 根据权利要求 1所述的设备, 其特征在于, 进一步包括: 观测值确定装置, 其与所述工况参数获取装置和所述控制量确 定装置耦合, 配置用于依据所述工况参数以及基于所述物理模型而 设计的观测器模型, 来确定高压油泵柱塞腔内撚油压力的观测值, 以供所述控制量确定装置来确定所述控制量。
3, 根据权利要求 2所述的设备, 其特征在于, 所述观测器模型 通过为所述物理模型中的柱塞泵腔内燃油压力表达式和高压共轨管 腔内燃油压力表达式分別增加调整项, 并选择使得调整后的所述两 个表达式均稳定和收敛的调整因子来设计。
4. 根据权利要求 2所述的设备, 其特征在于, 所述观测值确定 装置进一步配置用于:
依据所述工况参数以及所述观测器模型, 来确定高压共轨管腔 内燃油压力的观测值, 以供所述控制量确定装置来确定所述控制量。
5. 根据权利要求 1 所述的设备, 其特征在于, 所述工况参数包 括: 高压油泵柱塞冲程、 高压油泵柱塞运动线速度、 柱塞泵腔内燃 油压力和高压共轨管腔内燃油压力。
6. 根据权利要求 1 所述的设备, 其特征在于, 所述物理模型通 过以下各项来表征:
流量计量单元燃油流出流量表达式;
柱塞泵腔内燃油压力表达式;
柱塞泵腔燃油流出流量表达式;
高压共轨管腔内燃油压力表达式; 以及
喷油器燃油喷出流量表达式。
7. 根据权利要求 1 所述的设备, 其特征在于, 所述控制模型包 括前馈控制器, 所述控制量包括前馈控制分量。
8. 根据权利要求 7所述的设备, 其特征在于, 所述前馈控制分 量 un.表示为:
Figure imgf000025_0001
其中 b b2和 b3为控制系数, 其基于获取的所述工况参数和与 所述物理模型相关的常量参数而确定; 以及 >9为高压油泵柱塞运动线 速度
9. 根据权利要求 7所述的设备, 其特征在于, 所述控制模型包 括反馈控制器, 所述控制量包括反馈控制分量。
10. 根据权利要求 9所述的设备, 其特征在于, 所述反馈控制分 量 UFB
UpB
Figure imgf000025_0002
其中 e为所述高压共轨管腔内燃油压力与其目标值之间的误差; b3为控制系数, 其基于获取的所述工况参数和所述物理模型的相关 常量参数而确定; 以及 kp, 和 kd分别为针对比例控制、 积分控制 和微分控制的控制系数, 且 kp, 和 kd被选择为使高压共轨系统稳 定。
1 1. 一种用于控制柴油发动机的高压共轨系统的方法, 其特征在 于, 包括:
获取与所述高压共轨系统相关的工况参数;
依据所述工况参数、 高压共轨管腔内燃油压力的目标值和基于 表征所述高压共轨系统的物理模型而设计的控制模型, 来确定用于 控制所述高压共轨系统的控制量, 所述控制量为流量计量单元电磁 阀的等效横截面积; 以及
根据确定的所述控制量, 来确定用于驱动所述流量计量单元的 驱动信号。
12. 根据权利要求 1 1所述的方法, 其特征在于, 进一步包括: 依据所述工况参数以及基于所述物理模型而设计的观测器模 型, 来确定高压油泵柱塞腔内燃油压力的观测值, 以用于确定所述 控制量。
13. 根据权利要求 12所述的方法, 其特征在于, 所述观测器模 型通过为所述物理模型中的柱塞泵腔内燃油压力表达式和高压共轨 管腔内燃油压力表达式分别增加调整项, 并选择使得调整后的所述 两个表达式均稳定和收敛的调整因子来设计。
14. 根据权利要求 12所述的方法, 其特征在于, 进一步包括: 依椐所述工况参数以及所述观测器模型, 来确定高压共轨管腔 内燃油压力的观测值, 以用于确定所述控制量。
15. 根据权利要求 1 1 所述的方法, 其特征在于, 所述工况参数 包括: 高压油泵柱塞冲程、 高压油泵柱塞运动线速度、 柱塞泵腔内 燃油压力和高压共轨管腔内燃油压力。
16. 根据权利要求 1 1 述的方法, 其特征在于, 所述物理模型通 过以下各项来表征:
流量计量单元燃油流出流量表达式;
柱塞泵腔内燃油压力表达式;
柱塞泵腔燃油流出流量表达式;
高压共轨管腔内燃油压力表达式; 以及
喷油器燃油喷出流量表达式。
17. 根据权利要求 1 1 所述的方法, 其特征在于, 所述控制模型 包括前馈控制器, 所述控制量包括前馈控制分量。
18. 根据权利要求 17所述的方法, 其特征在于, 所述前馈控制 分量 uFF表示为:
1 f
uFF 二 -— ( i + b20) 其中 b!、 b2和 b3为控制系数, 且基于获取的所述工况参数和所 述物理模型相关的常量参数而确定;以及 为高压油泵柱塞运动线速 度。
19. 根据权利要求 17所述的方法, 其特征在于, 所述控制模型 包括反馈控制器, 所述控制量包括反馈控制分量。
20. 根据权利要求 19所述的方法, 其特征在于, 所述反馈控制 分量 uFB 示为:
Figure imgf000027_0001
其中 e 为所述高压共轨管腔内燃油压力的实际值与其目标值之 间的误差; b3 为控制系数, 且基于获取的所述工况参数和所述物理 模型的相关常量参数而确定; 以及 kp, kj和 kd分别为针对比例控制、 积分控制和微分控制的控制系数, 且 kp, ki和 kd被选择为使高压共 轨系统稳定。
PCT/CN2011/073003 2011-04-19 2011-04-19 用于控制柴油发动机的高压共轨系统的设备和方法 WO2012142744A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/073003 WO2012142744A1 (zh) 2011-04-19 2011-04-19 用于控制柴油发动机的高压共轨系统的设备和方法
US14/112,919 US9664157B2 (en) 2011-04-19 2011-04-19 Device and method for controlling high-pressure common-rail system of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073003 WO2012142744A1 (zh) 2011-04-19 2011-04-19 用于控制柴油发动机的高压共轨系统的设备和方法

Publications (1)

Publication Number Publication Date
WO2012142744A1 true WO2012142744A1 (zh) 2012-10-26

Family

ID=47041021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073003 WO2012142744A1 (zh) 2011-04-19 2011-04-19 用于控制柴油发动机的高压共轨系统的设备和方法

Country Status (2)

Country Link
US (1) US9664157B2 (zh)
WO (1) WO2012142744A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695511A (zh) * 2019-02-21 2019-04-30 中国重汽集团重庆燃油喷射系统有限公司 多缸发动机共轨燃油喷射系统
CN113339152A (zh) * 2021-06-18 2021-09-03 中国北方发动机研究所(天津) 一种高压共轨柴油机的轨压控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422898B2 (en) * 2013-02-12 2016-08-23 Ford Global Technologies, Llc Direct injection fuel pump
US20140331974A1 (en) * 2013-05-08 2014-11-13 Caterpillar Inc. Modular Low Pressure Fuel System with Filtration
US10260444B2 (en) * 2013-12-19 2019-04-16 Fca Us Llc Direct injection fuel system with controlled accumulator energy storage
EP3660284A1 (de) * 2018-11-30 2020-06-03 Andreas Stihl AG & Co. KG Gemischgeschmierter viertaktmotor, handgeführtes arbeitsgerät mit einem viertaktmotor und verfahren zum betrieb eines gemischgeschmierten viertaktmotors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324440A (ja) * 2003-04-22 2004-11-18 Toyota Motor Corp ディーゼルエンジン制御装置
JP2005301764A (ja) * 2004-04-14 2005-10-27 Mazda Motor Corp 制御対象モデルを用いた制御装置
CN201221417Y (zh) * 2008-07-15 2009-04-15 湖南奔腾动力科技有限公司 柴油机高压共轨燃油系统电控装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674243A5 (zh) * 1987-07-08 1990-05-15 Dereco Dieselmotoren Forschung
DE3885689T2 (de) * 1987-09-16 1994-03-24 Nippon Denso Co Hochdruckverstellpumpe.
US5133645A (en) * 1990-07-16 1992-07-28 Diesel Technology Corporation Common rail fuel injection system
WO1994027039A1 (en) * 1993-05-06 1994-11-24 Cummins Engine Company, Inc. Variable displacement high pressure pump for common rail fuel injection systems
US5678521A (en) * 1993-05-06 1997-10-21 Cummins Engine Company, Inc. System and methods for electronic control of an accumulator fuel system
WO1994027040A1 (en) * 1993-05-06 1994-11-24 Cummins Engine Company, Inc. Distributor for a high pressure fuel system
US5486097A (en) * 1995-01-26 1996-01-23 Denison Hydraulics Inc. Control for a variable displacement axial piston pump
JP3834918B2 (ja) * 1997-03-04 2006-10-18 いすゞ自動車株式会社 エンジンの燃料噴射方法及びその装置
US6053147A (en) * 1998-03-02 2000-04-25 Cummins Engine Company, Inc. Apparatus and method for diagnosing erratic pressure sensor operation in a fuel system of an internal combustion engine
US6293251B1 (en) * 1999-07-20 2001-09-25 Cummins Engine, Inc. Apparatus and method for diagnosing erratic pressure sensor operation in a fuel system of an internal combustion engine
JP3849367B2 (ja) * 1999-09-20 2006-11-22 いすゞ自動車株式会社 コモンレール式燃料噴射装置
JP4123729B2 (ja) * 2001-03-15 2008-07-23 株式会社日立製作所 燃料供給装置の制御方法
US6484696B2 (en) * 2001-04-03 2002-11-26 Caterpillar Inc. Model based rail pressure control for variable displacement pumps
JP4101802B2 (ja) * 2002-06-20 2008-06-18 株式会社日立製作所 内燃機関の高圧燃料ポンプ制御装置
JP3931120B2 (ja) * 2002-07-10 2007-06-13 ボッシュ株式会社 蓄圧式燃料噴射装置
US6712045B1 (en) * 2002-08-08 2004-03-30 Detroit Diesel Corporation Engine control for a common rail fuel system using fuel spill determination
JP4277677B2 (ja) * 2003-06-27 2009-06-10 株式会社デンソー ディーゼル機関の噴射量制御装置
JP4075774B2 (ja) * 2003-11-07 2008-04-16 株式会社デンソー ディーゼル機関の噴射量制御装置
JP2006046169A (ja) * 2004-08-04 2006-02-16 Toyota Motor Corp 内燃機関の燃料圧力制御装置
DE102005029138B3 (de) * 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Steuer- und Regelverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
JP4000159B2 (ja) * 2005-10-07 2007-10-31 三菱電機株式会社 エンジンの高圧燃料ポンプ制御装置
JP4327183B2 (ja) * 2006-07-31 2009-09-09 株式会社日立製作所 内燃機関の高圧燃料ポンプ制御装置
JP4600369B2 (ja) * 2006-09-05 2010-12-15 株式会社デンソー 減圧弁遅延補償装置、及びプログラム
JP4338742B2 (ja) * 2007-03-09 2009-10-07 三菱電機株式会社 内燃機関の高圧燃料ポンプ制御装置
US7706957B2 (en) * 2007-08-30 2010-04-27 Denso Corporation Apparatus for controlling quantity of fuel to be actually sprayed from injector in multiple injection mode
US7690361B2 (en) * 2007-09-28 2010-04-06 Cummins Inc. System and method for metering fuel in a high pressure pump system
JP5105422B2 (ja) * 2008-01-18 2012-12-26 三菱重工業株式会社 蓄圧式燃料噴射装置の蓄圧室圧力制御方法および制御装置
JP5202123B2 (ja) * 2008-06-16 2013-06-05 日立オートモティブシステムズ株式会社 内燃機関の燃料供給制御装置
US20110253103A1 (en) * 2010-04-14 2011-10-20 Mahesh Talwar Tug Boat Engine Emissions Control Suite
EP2570875B1 (en) * 2010-05-10 2018-06-20 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
WO2012142742A1 (zh) * 2011-04-19 2012-10-26 潍柴动力股份有限公司 控制高压共轨燃油系统的高压共轨管腔轨压的设备和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324440A (ja) * 2003-04-22 2004-11-18 Toyota Motor Corp ディーゼルエンジン制御装置
JP2005301764A (ja) * 2004-04-14 2005-10-27 Mazda Motor Corp 制御対象モデルを用いた制御装置
CN201221417Y (zh) * 2008-07-15 2009-04-15 湖南奔腾动力科技有限公司 柴油机高压共轨燃油系统电控装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695511A (zh) * 2019-02-21 2019-04-30 中国重汽集团重庆燃油喷射系统有限公司 多缸发动机共轨燃油喷射系统
CN109695511B (zh) * 2019-02-21 2024-01-09 重油高科电控燃油喷射系统有限公司 多缸发动机共轨燃油喷射系统
CN113339152A (zh) * 2021-06-18 2021-09-03 中国北方发动机研究所(天津) 一种高压共轨柴油机的轨压控制方法

Also Published As

Publication number Publication date
US20140041634A1 (en) 2014-02-13
US9664157B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
WO2012142744A1 (zh) 用于控制柴油发动机的高压共轨系统的设备和方法
US9885310B2 (en) System and methods for fuel pressure control
JP5212501B2 (ja) 燃料噴射装置
JP2011027041A (ja) 内燃機関の燃料ポンプ制御装置
JP4605038B2 (ja) 燃料噴射装置
WO2012142745A1 (zh) 用于控制柴油发动机的尿素喷射系统的设备和方法
JP2010255501A (ja) 筒内噴射式内燃機関の燃圧制御装置
JP2008002361A (ja) 高圧燃料ポンプ
CN102192033B (zh) 用于控制柴油发动机的高压共轨系统的设备和方法
JP2015081538A (ja) ポンプ制御装置
JP2013002309A (ja) 燃料ポンプの制御装置
JP3885652B2 (ja) 蓄圧式燃料噴射装置
JP2004293540A (ja) 内燃機関の燃料噴射制御装置
JP2012237274A (ja) 内燃機関の燃料噴射制御装置
CN106704011B (zh) 轨压传感器故障模式下轨压控制优化的方法
JP2004156578A (ja) 蓄圧式燃料噴射装置
JP2007224785A (ja) 燃料供給装置
JP5085483B2 (ja) エンジンの高圧燃料ポンプ制御装置
JP5401579B2 (ja) 高圧燃料ポンプ
JP2007023852A (ja) 内燃機関用燃料噴射制御装置
JP4470976B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
WO2018061472A1 (ja) 車両用制御装置
JP4995941B2 (ja) 高圧燃料ポンプ
JP2007032454A (ja) 内燃機関の燃料系統の制御装置
JP2007126980A (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863792

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14112919

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863792

Country of ref document: EP

Kind code of ref document: A1