WO2012141798A1 - Adam6 mice - Google Patents
Adam6 mice Download PDFInfo
- Publication number
- WO2012141798A1 WO2012141798A1 PCT/US2012/026416 US2012026416W WO2012141798A1 WO 2012141798 A1 WO2012141798 A1 WO 2012141798A1 US 2012026416 W US2012026416 W US 2012026416W WO 2012141798 A1 WO2012141798 A1 WO 2012141798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mouse
- human
- adam6
- immunoglobulin
- gene
- Prior art date
Links
- 241000699670 Mus sp. Species 0.000 title abstract description 398
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 claims abstract description 168
- 239000012634 fragment Substances 0.000 claims abstract description 161
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 claims abstract description 153
- 108700031127 mouse Adam6a Proteins 0.000 claims abstract description 27
- 230000000694 effects Effects 0.000 claims abstract description 25
- 230000009467 reduction Effects 0.000 claims abstract description 24
- 241000282414 Homo sapiens Species 0.000 claims description 812
- 108090000623 proteins and genes Proteins 0.000 claims description 756
- 210000004027 cell Anatomy 0.000 claims description 193
- 108060003951 Immunoglobulin Proteins 0.000 claims description 185
- 102000018358 immunoglobulin Human genes 0.000 claims description 185
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 116
- 150000007523 nucleic acids Chemical group 0.000 claims description 113
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 100
- 239000000427 antigen Substances 0.000 claims description 99
- 230000004048 modification Effects 0.000 claims description 99
- 238000012986 modification Methods 0.000 claims description 99
- 108091007433 antigens Proteins 0.000 claims description 92
- 102000036639 antigens Human genes 0.000 claims description 92
- 102000004169 proteins and genes Human genes 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 67
- 230000035558 fertility Effects 0.000 claims description 64
- 108700005091 Immunoglobulin Genes Proteins 0.000 claims description 50
- 230000003053 immunization Effects 0.000 claims description 25
- 108020004414 DNA Proteins 0.000 claims description 24
- 210000004408 hybridoma Anatomy 0.000 claims description 15
- 210000004988 splenocyte Anatomy 0.000 claims description 9
- 101100060131 Mus musculus Cdk5rap2 gene Proteins 0.000 claims description 8
- 230000002441 reversible effect Effects 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 6
- 101100434310 Mus musculus Ada gene Proteins 0.000 claims description 4
- 230000008030 elimination Effects 0.000 claims description 4
- 238000003379 elimination reaction Methods 0.000 claims description 4
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 102000053391 human F Human genes 0.000 claims description 2
- 108700031895 human F Proteins 0.000 claims description 2
- 241000699666 Mus <mouse, genus> Species 0.000 abstract description 1067
- 239000002773 nucleotide Substances 0.000 abstract description 93
- 125000003729 nucleotide group Chemical group 0.000 abstract description 93
- 238000012217 deletion Methods 0.000 abstract description 46
- 230000037430 deletion Effects 0.000 abstract description 46
- 230000013011 mating Effects 0.000 abstract description 15
- 241000700159 Rattus Species 0.000 description 72
- 230000014509 gene expression Effects 0.000 description 67
- 241000283984 Rodentia Species 0.000 description 61
- 108700028369 Alleles Proteins 0.000 description 60
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 55
- 210000004602 germ cell Anatomy 0.000 description 50
- 230000006870 function Effects 0.000 description 46
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 43
- 241001465754 Metazoa Species 0.000 description 43
- 108700019146 Transgenes Proteins 0.000 description 41
- 101150117115 V gene Proteins 0.000 description 41
- 230000008685 targeting Effects 0.000 description 41
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 40
- 101150008942 J gene Proteins 0.000 description 37
- 230000006798 recombination Effects 0.000 description 35
- 238000005215 recombination Methods 0.000 description 35
- 210000003101 oviduct Anatomy 0.000 description 34
- 101710189008 Immunoglobulin kappa light chain Proteins 0.000 description 32
- 238000011144 upstream manufacturing Methods 0.000 description 32
- 102100029567 Immunoglobulin kappa light chain Human genes 0.000 description 31
- 238000012239 gene modification Methods 0.000 description 31
- 230000005017 genetic modification Effects 0.000 description 31
- 235000013617 genetically modified food Nutrition 0.000 description 31
- 238000003780 insertion Methods 0.000 description 31
- 230000037431 insertion Effects 0.000 description 31
- 241000699800 Cricetinae Species 0.000 description 30
- 230000027455 binding Effects 0.000 description 30
- 239000013598 vector Substances 0.000 description 30
- 101150097493 D gene Proteins 0.000 description 29
- 210000000349 chromosome Anatomy 0.000 description 28
- 239000000523 sample Substances 0.000 description 28
- 241000894007 species Species 0.000 description 23
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 22
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 22
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 22
- 108091022885 ADAM Proteins 0.000 description 21
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 20
- 210000002966 serum Anatomy 0.000 description 20
- 210000000952 spleen Anatomy 0.000 description 20
- 210000001185 bone marrow Anatomy 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 19
- 210000004291 uterus Anatomy 0.000 description 19
- 241000699729 Muridae Species 0.000 description 18
- 108091008109 Pseudogenes Proteins 0.000 description 18
- 102000057361 Pseudogenes Human genes 0.000 description 18
- 230000007547 defect Effects 0.000 description 18
- 210000004698 lymphocyte Anatomy 0.000 description 18
- 238000013518 transcription Methods 0.000 description 17
- 230000035897 transcription Effects 0.000 description 17
- 102000029791 ADAM Human genes 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 15
- 238000009395 breeding Methods 0.000 description 15
- 230000001488 breeding effect Effects 0.000 description 15
- 230000011712 cell development Effects 0.000 description 15
- 108020004707 nucleic acids Proteins 0.000 description 15
- 102000039446 nucleic acids Human genes 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 description 14
- 101000998953 Homo sapiens Immunoglobulin heavy variable 1-2 Proteins 0.000 description 14
- 238000002649 immunization Methods 0.000 description 14
- 230000008707 rearrangement Effects 0.000 description 14
- 210000004940 nucleus Anatomy 0.000 description 13
- 101000608935 Homo sapiens Leukosialin Proteins 0.000 description 12
- 102100039564 Leukosialin Human genes 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 210000001550 testis Anatomy 0.000 description 12
- 210000001161 mammalian embryo Anatomy 0.000 description 11
- 230000005012 migration Effects 0.000 description 11
- 238000013508 migration Methods 0.000 description 11
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 230000000392 somatic effect Effects 0.000 description 10
- 238000011830 transgenic mouse model Methods 0.000 description 10
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 9
- 108010069446 Fertilins Proteins 0.000 description 9
- 102000001133 Fertilins Human genes 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 9
- 241000398985 Cricetidae Species 0.000 description 8
- 102100036887 Immunoglobulin heavy variable 1-2 Human genes 0.000 description 8
- 241000699660 Mus musculus Species 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 210000002257 embryonic structure Anatomy 0.000 description 8
- 230000004720 fertilization Effects 0.000 description 8
- 208000021267 infertility disease Diseases 0.000 description 8
- 210000001165 lymph node Anatomy 0.000 description 8
- 210000003519 mature b lymphocyte Anatomy 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- 101000929495 Homo sapiens Adenosine deaminase Proteins 0.000 description 7
- 241000398750 Muroidea Species 0.000 description 7
- 238000010240 RT-PCR analysis Methods 0.000 description 7
- 150000001413 amino acids Chemical group 0.000 description 7
- 102000025171 antigen binding proteins Human genes 0.000 description 7
- 108091000831 antigen binding proteins Proteins 0.000 description 7
- 230000024245 cell differentiation Effects 0.000 description 7
- 235000013601 eggs Nutrition 0.000 description 7
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 7
- 238000010353 genetic engineering Methods 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 210000004681 ovum Anatomy 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 102000002322 Egg Proteins Human genes 0.000 description 6
- 108010000912 Egg Proteins Proteins 0.000 description 6
- 108010087819 Fc receptors Proteins 0.000 description 6
- 102000009109 Fc receptors Human genes 0.000 description 6
- 241000699694 Gerbillinae Species 0.000 description 6
- 108091029795 Intergenic region Proteins 0.000 description 6
- 241000121210 Sigmodontinae Species 0.000 description 6
- 101000588258 Taenia solium Paramyosin Proteins 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000027326 copulation Effects 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- 238000010494 dissociation reaction Methods 0.000 description 6
- 230000005593 dissociations Effects 0.000 description 6
- 210000000918 epididymis Anatomy 0.000 description 6
- 201000010063 epididymitis Diseases 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 238000002744 homologous recombination Methods 0.000 description 6
- 230000006801 homologous recombination Effects 0.000 description 6
- 210000000987 immune system Anatomy 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 230000035800 maturation Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 238000003753 real-time PCR Methods 0.000 description 6
- 230000001850 reproductive effect Effects 0.000 description 6
- 241000283707 Capra Species 0.000 description 5
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 5
- 102100033215 DNA nucleotidylexotransferase Human genes 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 108090000144 Human Proteins Proteins 0.000 description 5
- 102000003839 Human Proteins Human genes 0.000 description 5
- 101100322565 Mus musculus Adam3 gene Proteins 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 239000003636 conditioned culture medium Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000006735 deficit Effects 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 208000000509 infertility Diseases 0.000 description 5
- 230000036512 infertility Effects 0.000 description 5
- 231100000535 infertility Toxicity 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 210000000130 stem cell Anatomy 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 102000014914 Carrier Proteins Human genes 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 102100027286 Fanconi anemia group C protein Human genes 0.000 description 4
- 101000746783 Homo sapiens Cytochrome b-c1 complex subunit 6, mitochondrial Chemical group 0.000 description 4
- 101000914680 Homo sapiens Fanconi anemia group C protein Proteins 0.000 description 4
- 101001047628 Homo sapiens Immunoglobulin kappa variable 2-29 Proteins 0.000 description 4
- 102100022949 Immunoglobulin kappa variable 2-29 Human genes 0.000 description 4
- 108010038501 Interleukin-6 Receptors Proteins 0.000 description 4
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 230000007720 allelic exclusion Effects 0.000 description 4
- 108091008324 binding proteins Proteins 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000001010 compromised effect Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 102000054766 genetic haplotypes Human genes 0.000 description 4
- 102000048638 human UQCRH Human genes 0.000 description 4
- 238000011577 humanized mouse model Methods 0.000 description 4
- 230000028996 humoral immune response Effects 0.000 description 4
- 230000008348 humoral response Effects 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000012146 running buffer Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 210000004340 zona pellucida Anatomy 0.000 description 4
- 241000699725 Acomys Species 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 241001095404 Dipodoidea Species 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 238000012286 ELISA Assay Methods 0.000 description 3
- 108060002716 Exonuclease Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 241001046461 Lophiomys imhausi Species 0.000 description 3
- 241000699669 Mus saxicola Species 0.000 description 3
- 101000894412 Mycolicibacterium paratuberculosis (strain ATCC BAA-968 / K-10) Bacterioferritin Proteins 0.000 description 3
- 229930193140 Neomycin Natural products 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 210000002459 blastocyst Anatomy 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000002939 deleterious effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 102000013165 exonuclease Human genes 0.000 description 3
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 210000001280 germinal center Anatomy 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 238000011813 knockout mouse model Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 210000005210 lymphoid organ Anatomy 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 229960004927 neomycin Drugs 0.000 description 3
- 230000005257 nucleotidylation Effects 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 210000001082 somatic cell Anatomy 0.000 description 3
- 230000019100 sperm motility Effects 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- 101150084750 1 gene Proteins 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 108091008875 B cell receptors Proteins 0.000 description 2
- 108010012919 B-Cell Antigen Receptors Proteins 0.000 description 2
- 102000019260 B-Cell Antigen Receptors Human genes 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 101100454807 Caenorhabditis elegans lgg-1 gene Proteins 0.000 description 2
- 241000700193 Calomyscus Species 0.000 description 2
- 241000282832 Camelidae Species 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241001416488 Dipodidae Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241001416537 Gliridae Species 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101001008255 Homo sapiens Immunoglobulin kappa variable 1D-8 Proteins 0.000 description 2
- 101001008321 Homo sapiens Immunoglobulin kappa variable 2D-26 Proteins 0.000 description 2
- 101001047619 Homo sapiens Immunoglobulin kappa variable 3-20 Proteins 0.000 description 2
- 101001008263 Homo sapiens Immunoglobulin kappa variable 3D-15 Proteins 0.000 description 2
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 2
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 2
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 2
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 2
- 101100370002 Mus musculus Tnfsf14 gene Proteins 0.000 description 2
- 241001095427 Myomorpha Species 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 244000082204 Phyllostachys viridis Species 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 239000012979 RPMI medium Substances 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 108010052160 Site-specific recombinase Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 229940100514 Syk tyrosine kinase inhibitor Drugs 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 241001105470 Valenzuela Species 0.000 description 2
- 230000009102 absorption Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 238000003314 affinity selection Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008350 antigen-specific antibody response Effects 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000009028 cell transition Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 230000009194 climbing Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 231100000502 fertility decrease Toxicity 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229940100601 interleukin-6 Drugs 0.000 description 2
- 230000027056 interspecies interaction between organisms Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 210000003563 lymphoid tissue Anatomy 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 208000024393 maple syrup urine disease Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000016087 ovulation Effects 0.000 description 2
- 229960001972 panitumumab Drugs 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000003906 pulsed field gel electrophoresis Methods 0.000 description 2
- 238000001472 pulsed field gradient Methods 0.000 description 2
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 2
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- 101150039504 6 gene Proteins 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 102100027314 Beta-2-microglobulin Human genes 0.000 description 1
- 238000009631 Broth culture Methods 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 238000011814 C57BL/6N mouse Methods 0.000 description 1
- 102000016897 CCCTC-Binding Factor Human genes 0.000 description 1
- 108010014064 CCCTC-Binding Factor Proteins 0.000 description 1
- 101150018757 CD19 gene Proteins 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 101100454808 Caenorhabditis elegans lgg-2 gene Proteins 0.000 description 1
- 101100217502 Caenorhabditis elegans lgg-3 gene Proteins 0.000 description 1
- 101100460650 Caenorhabditis elegans nol-16 gene Proteins 0.000 description 1
- 241000398949 Calomyscidae Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 206010052358 Colorectal cancer metastatic Diseases 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical class O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 241000251729 Elasmobranchii Species 0.000 description 1
- 108010046276 FLP recombinase Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 1
- 101000599048 Homo sapiens Interleukin-6 receptor subunit alpha Proteins 0.000 description 1
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 1
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000666382 Homo sapiens Transcription factor E2-alpha Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 102100029572 Immunoglobulin kappa constant Human genes 0.000 description 1
- 101710139965 Immunoglobulin kappa constant Proteins 0.000 description 1
- 102100025305 Integrin alpha-2 Human genes 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 208000030426 Intermediate maple syrup urine disease Diseases 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 102100029204 Low affinity immunoglobulin gamma Fc region receptor II-a Human genes 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 208000007466 Male Infertility Diseases 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- 101000780283 Mus musculus A disintegrin and metallopeptidase domain 3 Proteins 0.000 description 1
- 101100351020 Mus musculus Pax5 gene Proteins 0.000 description 1
- 241000282339 Mustela Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000398990 Nesomyidae Species 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 241001338313 Platacanthomyidae Species 0.000 description 1
- 241000282405 Pongo abelii Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 102100021651 SUN domain-containing ossification factor Human genes 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000398956 Spalacidae Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 208000035199 Tetraploidy Diseases 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102100027654 Transcription factor PU.1 Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108010032099 V(D)J recombination activating protein 2 Proteins 0.000 description 1
- 102100029591 V(D)J recombination-activating protein 2 Human genes 0.000 description 1
- 238000012452 Xenomouse strains Methods 0.000 description 1
- 101100351021 Xenopus laevis pax5 gene Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940124691 antibody therapeutics Drugs 0.000 description 1
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- 208000005980 beta thalassemia Diseases 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 208000030432 classic maple syrup urine disease Diseases 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 210000001771 cumulus cell Anatomy 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229960001251 denosumab Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 210000000285 follicular dendritic cell Anatomy 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 102000043395 human ADA Human genes 0.000 description 1
- 102000057593 human F8 Human genes 0.000 description 1
- 102000052623 human IL6R Human genes 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 229960000900 human factor viii Drugs 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 210000003297 immature b lymphocyte Anatomy 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 210000004201 immune sera Anatomy 0.000 description 1
- 229940042743 immune sera Drugs 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- CRQPDNIUPWXPNK-UHFFFAOYSA-N madam-6 Chemical compound C1=C(C)C(CC(C)NC)=CC2=C1OCO2 CRQPDNIUPWXPNK-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000010232 migration assay Methods 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 210000001986 peyer's patch Anatomy 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 101150083745 preT gene Proteins 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 108010008929 proto-oncogene protein Spi-1 Proteins 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000027174 regulation of B cell differentiation Effects 0.000 description 1
- 230000005903 regulation of histone modification Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 210000005212 secondary lymphoid organ Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 230000021595 spermatogenesis Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229940124598 therapeutic candidate Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000012448 transchromosomic mouse model Methods 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000011816 wild-type C57Bl6 mouse Methods 0.000 description 1
- 229950009002 zanolimumab Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0278—Knock-in vertebrates, e.g. humanised vertebrates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3228—Cooling devices using compression characterised by refrigerant circuit configurations
- B60H1/32281—Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/323—Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2866—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/461—Igs containing Ig-regions, -domains or -residues form different species
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/461—Igs containing Ig-regions, -domains or -residues form different species
- C07K16/462—Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6489—Metalloendopeptidases (3.4.24)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2207/00—Modified animals
- A01K2207/15—Humanized animals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/072—Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/15—Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/01—Animal expressing industrially exogenous proteins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00007—Combined heating, ventilating, or cooling devices
- B60H1/00021—Air flow details of HVAC devices
- B60H2001/00185—Distribution of conditionned air
- B60H2001/00192—Distribution of conditionned air to left and right part of passenger compartment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00007—Combined heating, ventilating, or cooling devices
- B60H1/00021—Air flow details of HVAC devices
- B60H2001/00185—Distribution of conditionned air
- B60H2001/002—Distribution of conditionned air to front and rear part of passenger compartment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/20—Pseudochromosomes, minichrosomosomes
- C12N2800/204—Pseudochromosomes, minichrosomosomes of bacterial origin, e.g. BAC
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/30—Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
Definitions
- mice, cells, embryos, and tissues that comprise a nucleic acid sequence encoding a functional ADAM6 locus are described. Modifications include human and/or humanized immunoglobulin loci. Mice that lack a functional endogenous ADAM6 gene but that comprise ADAM6 function are described, including mice that comprise an ectopic nucleic acid sequence that encodes an ADAM6 protein. Genetically modified male mice that comprise a modification of an endogenous immunoglobulin V H locus that renders the mouse incapable of making a functional ADAM6 protein and results in a loss in fertility, and that further comprise ADAM6 function in the male mice are described, including mice that comprise an ectopic nucleic acid sequence that restores fertility to the male mouse.
- mice In the transgenic mice, it was necessary to disable the endogenous mouse immunoglobulin genes so that the randomly integrated fully human transgenes would function as the source of immunoglobulin sequences expressed in the mouse.
- Such mice can make human antibodies suitable for use as human therapeutics, but these mice display substantial problems with their immune systems. These problems (1) make the mice impractical for generating a sufficiently diverse antibody repertoire, (2) require the use of extensive re-engineering fixes, (3) provide a suboptimal clonal selection process likely due to incompatibility between human and mouse elements, and (4) render these mice an unreliable source of large and diverse populations of human variable sequences needed to be truly useful for making human therapeutics.
- mice that are capable of rearranging immunoglobulin gene segments to form useful rearranged immunoglobulin genes, or capable of making proteins from altered immunoglobulin loci, while at the same time reducing or eliminating deleterious changes that might result from the genetic
- nucleic acid constructs, cells, embryos, mice, and methods are provided for making mice that comprise a modification that results in a nonfunctional endogenous mouse ADAM6 protein or ADAM6 gene (e.g. , a knockout of or a deletion in an endogenous ADAM6 gene), wherein the mice comprise a nucleic acid sequence that encodes an ADAM6 protein or ortholog or homolog or fragment thereof that is functional in a male mouse.
- nucleic acid constructs, cells, embryos, mice, and methods are provided for making mice that comprise a modification of an endogenous mouse immunoglobulin locus, wherein the mice comprise an ADAM6 protein or ortholog or homolog or fragment thereof that is functional in a male mouse.
- the endogenous mouse immunoglobulin locus is an immunoglobulin heavy chain locus, and the modification reduces or eliminates ADAM6 activity of a cell or tissue of a male mouse.
- mice are provided that comprise an ectopic nucleotide sequence encoding a mouse ADAM6 or ortholog or homolog or functional fragment thereof; mice are also provided that comprise an endogenous nucleotide sequence encoding a mouse ADAM6 or ortholog or homolog or fragment thereof, and at least one genetic modification of a heavy chain immunoglobulin locus.
- mice that comprise a modification of an endogenous mouse immunoglobulin locus, wherein the mice comprise an ADAM6 protein or ortholog or homolog or fragment thereof that is functional in a male mouse.
- Mice according to the invention are obtainable, for example, by the methods described herein.
- mice that comprise a genetic modification of an immunoglobulin heavy chain locus, wherein application of the methods result in male mice that comprise a modified immunoglobulin heavy chain locus (or a deletion thereof), and the male mice are capable of generating offspring by mating.
- the male mice are capable of producing sperm that can transit from a mouse uterus through a mouse oviduct to fertilize a mouse egg.
- mice that comprise a genetic modification of an immunoglobulin heavy chain locus
- application of the methods result in male mice that comprise a modified immunoglobulin heavy chain locus (or a deletion thereof), and the male mice exhibit a reduction in fertility
- the mice comprise a genetic modification that restores in whole or in part the reduction in fertility.
- the reduction in fertility is characterized by an inability of the sperm of the male mice to migrate from a mouse uterus through a mouse oviduct to fertilize a mouse egg.
- the reduction in fertility is characterized by sperm that exhibit an in vivo migration defect.
- the genetic modification that restores in whole or in part the reduction in fertility is a nucleic acid sequence encoding a mouse ADAM6 gene or ortholog or homolog or fragment thereof that is functional in a male mouse.
- the genetic modification comprises replacing endogenous immunoglobulin heavy chain variable loci with immunoglobulin heavy chain variable loci of another species (e.g., a non-mouse species).
- the genetic modification comprises insertion of orthologous immunoglobulin heavy chain variable loci into endogenous immunoglobulin heavy chain variable loci.
- the species is human.
- the genetic modification comprises deletion of an endogenous immunoglobulin heavy chain variable locus in whole or in part, wherein the deletion results in a loss of endogenous ADAM6 function.
- the loss of endogenous ADAM6 function is associated with a reduction in fertility in male mice.
- mice are provided that comprise a modification that reduces or eliminates mouse ADAM6 expression from an endogenous ADAM6 allele such that a male mouse having the modification exhibits a reduced fertility (e.g., a highly reduced ability to generate offspring by mating), or is essentially infertile, due to the reduction or elimination of endogenous ADAM6 function, wherein the mice further comprise an ectopic ADAM6 sequence or homolog or ortholog or functional fragment thereof.
- the modification that reduces or eliminates mouse ADAM6 expression is a modification (e.g., an insertion, a deletion, a replacement, etc.) in a mouse immunoglobulin locus.
- the reduction or loss of ADAM6 function comprises an inability or substantial inability of the mouse to produce sperm that can travel from a mouse uterus through a mouse oviduct to fertilize a mouse egg.
- at least about 95%, 96%, 97%, 98%, or 99% of the sperm cells produced in an ejaculate volume of the mouse are incapable of traversing through an oviduct in vivo following copulation and fertilizing a mouse ovum.
- the reduction or loss of ADAM6 function comprises an inability to form or substantial inability to form a complex of ADAM2 and/or ADAM 3 and/or ADAM6 on a surface of a sperm cell of the mouse.
- the loss of ADAM6 function comprises a substantial inability to fertilize a mouse egg by copulation with a female mouse.
- a mouse that lacks a functional endogenous ADAM6 gene, and comprises a protein (or an ectopic nucleotide sequence that encodes a protein) that confers ADAM6 functionality on the mouse.
- the mouse is a male mouse and the functionality comprises enhanced fertility as compared with a mouse that lacks a functional endogenous ADAM6 gene.
- the protein is encoded by a genomic sequence located within an immunoglobulin locus in the germline of the mouse.
- the immunoglobulin locus is a heavy chain locus.
- the heavy chain locus comprises at least one human V H , at least one human D H and at least one human J H gene segment.
- the ectopic protein is encoded by a genomic sequence located within a non-immunoglobulin locus in the germline of the mouse.
- the non-immunoglobulin locus is a transcriptionally active locus.
- the transcriptionally active locus is the ROSA26 locus.
- the transcriptionally active locus is associated with tissue-specific expression.
- the tissue-specific expression is present in reproductive tissues.
- the protein is encoded by a genomic sequence randomly inserted into the germline of the mouse.
- the mouse comprises a human or chimeric human/mouse or chimeric human/rat light chain (e.g., human variable, mouse or rat constant) and a chimeric human variable/mouse or rat constant heavy chain.
- the mouse comprises a transgene that comprises a chimeric human variable/rat or mouse constant light chain gene operably linked to a transcriptionally active promoter, e.g., a ROSA26 promoter.
- the chimeric human/mouse or rat light chain transgene comprises a rearranged human light chain variable region sequence in the germline of the mouse.
- the ectopic nucleotide sequence is located within an immunoglobulin locus in the germline of the mouse.
- the immunoglobulin locus is a heavy chain locus.
- the heavy chain locus comprises at least one human V H , at least one human D H and at least one human J H gene segment.
- the ectopic nucleotide sequence is located within a non- immunoglobulin locus in the germline of the mouse.
- the non- immunoglobulin locus is a transcriptionally active locus.
- the transcriptionally active locus is the ROSA26 locus.
- the ectopic nucleotide sequence is positioned randomly inserted into the germline of the mouse.
- a mouse is provided that lacks a functional endogenous ADAM6 gene, wherein the mouse comprises an ectopic nucleotide sequence that complements the loss of mouse ADAM6 function.
- the ectopic nucleotide sequence confers upon the mouse an ability to produce offspring that is comparable to a
- the sequence confers upon the mouse an ability to form a complex of ADAM2 and/or ADAM3 and/or ADAM6 on the surface of sperm cell of the mouse. In one embodiment, the sequence confers upon the mouse an ability to travel from a mouse uterus through a mouse oviduct to a mouse ovum to fertilize the ovum.
- the mouse lacking the functional endogenous ADAM6 gene and comprising the ectopic nucleotide sequence produces at least about 50%, 60%, 70%, 80%, or 90% of the number of litters a wild-type mouse of the same age and strain produces in a six-month time period.
- the mouse lacking the functional endogenous ADAM6 gene and comprising the ectopic nucleotide sequence produces at least about 1.5-fold, about 2-fold, about 2.5-fold, about 3-fold, about 4-fold, about 6-fold, about 7-fold, about 8- fold, or about 10-fold or more progeny when bred over a six-month time period than a mouse of the same age and the same or similar strain that lacks the functional
- ADAM6 endogenous ADAM6 gene and that lacks the ectopic nucleotide sequence that is bred over substantially the same time period and under substantially the same conditions.
- the mouse lacking the functional endogenous ADAM6 gene and comprising the ectopic nucleotide sequence produces an average of at least about 2-fold, 3-fold, or 4-fold higher number of pups per litter in a 4- or 6-month breeding period than a mouse that lacks the functional endogenous ADAM6 gene and that lacks the ectopic nucleotide sequence, and that is bred for the same period of time.
- the mouse lacking the functional endogenous ADAM6 gene and comprising the ectopic nucleotide sequence is a male mouse
- the male mouse produces sperm that when recovered from oviducts at about 5-6 hours post- copulation reflects an oviduct migration that is at least 10-fold, at least 20-fold, at least 30- fold, at least 40-fold, at least 50-fold, at least 60-fold, at least 70-fold, at least 80-fold, at least 90-fold, 100-fold, 1 10-fold, or 120-fold or higher than a mouse that lacks the functional endogenous ADAM6 gene and that lacks the ectopic nucleotide sequence.
- the mouse lacking the functional endogenous ADAM6 gene and comprising the ectopic nucleotide sequence when copulated with a female mouse generates sperm that is capable of traversing the uterus and entering and traversing the oviduct within about 6 hours at an efficiency that is about equal to sperm from a wild-type mouse.
- the mouse lacking the functional endogenous ADAM6 gene and comprising the ectopic nucleotide sequence produces about 1.5-fold, about 2- fold, about 3-fold, or about 4-fold or more litters in a comparable period of time than a mouse that lacks the functional ADAM6 gene and that lacks the ectopic nucleotide sequence.
- a mouse comprising in its germline a non-mouse nucleic acid sequence that encodes an immunoglobulin protein
- the non-mouse immunoglobulin sequence comprises an insertion of a mouse ADAM6 gene or homolog or ortholog or functional fragment thereof.
- the non-mouse immunoglobulin sequence comprises an insertion of a mouse ADAM6 gene or homolog or ortholog or functional fragment thereof.
- immunoglobulin sequence comprises a human immunoglobulin sequence.
- the sequence comprises a human immunoglobulin heavy chain sequence.
- the sequence comprises a human immunoglobulin light chain sequence.
- the sequence comprises one or more V gene segments, one or more D gene segments, and one or more J gene segments; in one embodiment, the sequence comprises one or more V gene segments and one or more J gene segments.
- the one or more V, D, and J gene segments, or one or more V and J gene segments are not rearranged.
- the one or more V, D, and J gene segments, or one or more V and J gene segments are rearranged.
- the mouse comprises in its genome at least one nucleic acid sequence encoding a mouse ADAM6 gene or homolog or ortholog or functional fragment thereof. In one embodiment, following rearrangement the mouse comprises in its genome at least two nucleic acid sequences encoding a mouse ADAM6 gene or homolog or ortholog or functional fragment thereof. In one embodiment, following rearrangement the mouse comprises in its genome at least one nucleic acid sequence encoding a mouse ADAM6 gene or homolog or ortholog or functional fragment thereof. In one embodiment, the mouse comprises the ADAM6 gene or homolog or ortholog or functional fragment thereof in a B cell. In one embodiment, the mouse comprises the ADAM6 gene or homolog or ortholog or functional fragment thereof in a non-B cell.
- mice that express a human immunoglobulin heavy chain variable region or functional fragment thereof from an endogenous mouse immunoglobulin heavy chain locus, wherein the mice comprise an ADAM6 activity that is functional in a male mouse.
- the male mice comprise a single unmodified endogenous ADAM6 allele or ortholog of homolog or functional fragment thereof at an endogenous ADAM6 locus.
- the male mice comprise an ectopic mouse ADAM6 sequence or homolog or orthoiog or functional fragment thereof that encodes a protein that confers ADAM6 function.
- the male mice comprise an ADAM6 sequence or homolog or orthoiog or functional fragment thereof at a location in the mouse genome that approximates the location of the endogenous mouse ADAM6 allele, e.g., 3' of a final V gene segment sequence and 5' of an initial D gene segment.
- the male mice comprise an ADAM6 sequence or homolog or orthoiog or functional fragment thereof flanked upstream, downstream, or upstream and downstream (with respect to the direction of transcription of the ADAM6 sequence) of a nucleic acid sequence encoding an immunoglobulin variable gene segment.
- the immunoglobulin variable gene segment is a human gene segment.
- the immunoglobulin variable gene segment is a human gene segment, and the sequence encoding the mouse ADAM6 or orthoiog or homolog or fragment thereof functional in a mouse is between human V gene segments; in one embodiment, the mouse comprises two or more human V gene segments, and the sequence is at a position between the final V gene segment and the penultimate V gene segment; in one
- the sequence is at a position following the final V gene segment and the first D gene segment.
- a male mouse comprises a nonfunctional endogenous ADAM6 gene, or a deletion of an endogenous ADAM6 gene, in its germline; wherein sperm cells of the mouse are capable of transiting an oviduct of a female mouse and fertilizing an egg.
- the mice comprise an extrachromosomal copy of a mouse ADAM6 gene or orthoiog or homolog or functional fragment thereof that is functional in a male mouse.
- the mice comprise an ectopic mouse ADAM6 gene or orthoiog or homolog or functional fragment thereof that is functional in a male mouse.
- mice comprise a genetic modification that reduces endogenous mouse ADAM6 function, wherein the mouse comprises at least some ADAM6 functionality provided either by an endogenous unmodified allele that is functional in whole or in part (e.g., a heterozygote), or by expression from an ectopic sequence that encodes an ADAM6 or an orthoiog or homolog or functional fragment thereof that is functional in a male mouse.
- the mice comprise ADAM6 function sufficient to confer upon male mice the ability to generate offspring by mating, as compared with male mice that lack a functional ADAM6.
- the ADAM6 function is conferred by the presence of an ectopic nucleotide sequence that encodes a mouse ADAM6 or a homolog or orthoiog or functional fragment thereof.
- ADAM6 homologs or orthologs or fragments thereof that are functional in a male mouse include those that restore, in whole or in part, the loss of ability to generate offspring observed in a male mouse that lacks sufficient endogenous mouse ADAM6 activity, e.g., the loss in ability observed in an ADAM6 knockout mouse.
- ADAM6 knockout mice include mice that comprise an endogenous locus or fragment thereof, but that is not functional, i.e., that does not express ADAM6 (ADAM6a and/or ADAM6b) at all, or that expresses ADAM6 (ADAM6a and/or ADAM6b) at a level that is insufficient to support an essentially normal ability to generate offspring of a wild-type male mouse.
- the loss of function can be due, e.g., to a
- a structural gene of the locus i.e., in an ADA 6a or ADAM6b coding region
- a regulatory region of the locus e.g., in a sequence 5' to the ADAM6a gene, or 3' of the ADAM6a or ADAM6b coding region, wherein the sequence controls, in whole or in part, transcription of an ADAM6 gene, expression of an ADAM6 RNA, or expression of an ADAM6 protein).
- orthologs or homologs or fragments thereof that are functional in a male mouse are those that enable a sperm of a male mouse (or a majority of sperm cells in the ejaculate of a male mouse) to transit a mouse oviduct and fertilize a mouse ovum.
- male mice that express the human immunoglobulin variable region or functional fragment thereof comprise sufficient ADAM6 activity to confer upon the male mice the ability to generate offspring by mating with female mice and, in one embodiment, the male mice exhibit an ability to generate offspring when mating with female mice that is in one embodiment at least 25%, in one embodiment, at least 30%, in one embodiment at least 40%, in one embodiment at least 50%, in one embodiment at least 60%, in one embodiment at least 70%, in one embodiment at least 80%, in one embodiment at least 90%, and in one embodiment about the same as, that of mice with one or two endogenous unmodified ADAM6 alleles.
- male mice express sufficient ADAM6 (or an ortholog or homolog or functional fragment thereof) to enable a sperm cell from the male mice to traverse a female mouse oviduct and fertilize a mouse egg.
- the ADAM6 functionality is conferred by a nucleic acid sequence that is contiguous with a mouse chromosomal sequence (e.g., the nucleic acid is randomly integrated into a mouse chromosome; or placed at a specific location, e.g. , by targeting the nucleic acid to a specific location, e.g., by site-specific recombinase-mediated (e.g., Cre-mediated) insertion or homologous recombination).
- a nucleic acid sequence that is contiguous with a mouse chromosomal sequence e.g., the nucleic acid is randomly integrated into a mouse chromosome; or placed at a specific location, e.g., by targeting the nucleic acid to a specific location, e.g., by site-specific recombinase-mediated (e.g., Cre-mediated) insertion or homologous recombination).
- site-specific recombinase-mediated e
- the ADAM6 sequence is present on a nucleic acid that is distinct from a chromosome of the mouse (e.g., the ADAM6 sequence is present on an episome, i.e., extrachromosomally, e.g., in an expression construct, a vector, a YAC, a transchromosome, efc.).
- mice and cells comprise a modification of an endogenous immunoglobulin heavy chain locus, wherein the mice express at least a portion of an immunoglobulin heavy chain sequence, e.g., at least a portion of a human sequence, wherein the mice comprise an ADAM6 activity that is functional in a male mouse.
- the modification reduces or eradicates ADAM6 activity of the mouse.
- the mouse is modified such that both alleles that encode ADAM6 activity are either absent or express an ADAM6 that does not substantially function to support normal mating in a male mouse.
- the mouse further comprises an ectopic nucleic acid sequence encoding a mouse ADAM6 or ortholog or homolog or functional fragment thereof.
- mice and cells comprise a modification of an endogenous immunoglobulin heavy chain locus, wherein the
- ADAM6 modification reduces or eliminates ADAM6 activity expressed from an ADAM6 sequence of the locus, and wherein the mice comprise an ADAM6 protein or ortholog or homolog or functional fragment thereof.
- the ADAM6 protein or fragment thereof is encoded by an ectopic ADAM6 sequence.
- the ADAM6 protein or fragment thereof is expressed from an endogenous ADAM6 allele.
- the mouse comprises a first immunoglobulin heavy chain allele comprises a first modification that reduces or eliminates expression of a functional ADAM6 from the first immunoglobulin heavy chain allele, and the mouse comprises a second immunoglobulin heavy chain allele that comprises a second modification that does not substantially reduce or does not eliminate expression of a functional ADAM6 from the second immunoglobulin heavy chain allele.
- the second modification is located 3' (with respect to the transcriptional directionality of the mouse V gene segment) of a final mouse V gene segment and located 5' (with respect to the transcriptional directionality of the constant sequence) of a mouse (or chimeric human/mouse) immunoglobulin heavy chain constant gene or fragment thereof (e.g., a nucleic acid sequence encoding a human and/or mouse: C H 1 and/or hinge and/or C H 2 and/or C H 3).
- the modification is at a first immunoglobulin heavy chain allele at a first locus that encodes a first ADAM6 allele
- the ADAM6 function results from expression of an endogenous ADAM6 at a second immunoglobulin heavy chain allele at a second locus that encodes a functional ADAM6, wherein the second immunoglobulin heavy chain allele comprises at least one modification of a V, D, and/or J gene segment.
- the at least one modification of the V, D, and or J gene segment is a deletion, a replacement with a human V, D, and/or J gene segment, a replacement with a camelid V, D, and/or J gene segment, a replacement with a humanized or camelized V, D, and/or J gene segment, a replacement of a heavy chain sequence with a light chain sequence, and a combination thereof.
- the at least one modification is the deletion of one or more heavy chain V, D, and/or J gene segments and a replacement with one or more light chain V and/or J gene segments (e.g., a human light chain V and/or J gene segment) at the heavy chain locus.
- the modification is at a first immunoglobulin heavy chain allele at a first locus and a second immunoglobulin heavy chain allele at a second locus
- the ADAM6 function results from expression of an ectopic ADAM6 at a non- immunoglobulin locus in the germline of the mouse.
- the non- immunoglobulin locus is the ROSA26 locus.
- the non- immunoglobulin locus is transcriptionally active in reproductive tissue.
- a mouse comprising a heterozygous or a homozygous knockout of ADAM6 is provided.
- the mouse further comprises a modified immunoglobulin sequence that is a human or a humanized immunoglobulin sequence, or a camelid or camelized human or mouse immunoglobulin sequence.
- the modified immunoglobulin sequence is present at the endogenous mouse heavy chain immunoglobulin locus.
- the modified immunoglobulin sequence comprises a human heavy chain variable gene sequence at an endogenous mouse immunoglobulin heavy chain locus.
- the human heavy chain variable gene sequence replaces an endogenous mouse heavy chain variable gene sequence at the endogenous mouse immunoglobulin heavy chain locus.
- a mouse incapable of expressing a functional endogenous mouse ADAM6 from an endogenous mouse ADAM6 locus is provided.
- the mouse comprises an ectopic nucleic acid sequence that encodes an ADAM6, or functional fragment thereof, that is functional in the mouse.
- the ectopic nucleic acid sequence encodes a protein that rescues a loss in the ability to generate offspring exhibited by a male mouse that is homozygous for an ADAM6 knockout.
- the ectopic nucleic acid sequence encodes a mouse ADAM6 protein.
- a mouse that lacks a functional endogenous ADAM6 locus, and that comprises an ectopic nucleic acid sequence that confers upon the mouse ADAM6 function.
- the nucleic acid sequence comprises an
- the endogenous mouse ADAM6 sequence comprises ADAM6a- and ADAM6b-encoding sequence located in a wild-type mouse between the 3'-most mouse immunoglobulin heavy chain V gene segment (V H ) and the 5'-most mouse immunoglobulin heavy chain D gene segment (D H ).
- the nucleic acid sequence comprises a sequence encoding mouse ADAM6a or functional fragment thereof and/or a sequence encoding mouse ADAM6b or functional fragment thereof, wherein the ADAM6a and/or ADAM6b or functional fragment(s) thereof is operably linked to a promoter.
- the promoter is a human promoter.
- the promoter is the mouse ADAM6 promoter.
- the ADAM6 promoter comprises sequence located between the first codon of the first ADAM6 gene closest to the mouse 5'-most D H gene segment and the recombination signal sequence of the 5'-most D H gene segment, wherein 5' is indicated with respect to direction of transcription of the mouse immunoglobulin genes.
- the promoter is a viral promoter.
- the viral promoter is a cytomegalovirus (CMV) promoter.
- the promoter is a ubiquitin promoter.
- the promoter is an inducible promoter.
- the inducible promoter regulates expression in non-reproductive tissues. In one
- the inducible promoter regulates expression in reproductive tissues.
- the expression of the mouse ADAM6a and/or ADAM6b sequences or functional fragments(s) thereof is developmental ⁇ regulated by the inducible promoter in reproductive tissues.
- the mouse ADAM6a and/or ADAM6b are selected from the ADAM6a of SEQ ID NO:1 and/or ADAM6b of sequence SEQ ID NO:2. In one embodiment, the mouse ADAM6a and/or ADAM6b are selected from the ADAM6a of SEQ ID NO:1 and/or ADAM6b of sequence SEQ ID NO:2. In one
- the mouse ADAM6 promoter is a promoter of SEQ ID NO:3.
- the mouse ADAM6 promoter comprises the nucleic acid sequence of SEQ ID NO:3 directly upstream (with respect to the direction of transcription of ADAM6a) of the first codon of ADAM6a and extending to the end of SEQ ID NO:3 upstream of the ADAM6 coding region.
- the ADAM6 promoter is a fragment extending from within about 5 to about 20 nucleotides upstream of the start codon of ADAM6a to about 0.5kb, 1 kb, 2kb, or 3kb or more upstream of the start codon of ADAM6a.
- the nucleic acid sequence comprises SEQ ID NO:3 or a fragment thereof that when placed into a mouse that is infertile or that has low fertility due to a lack of ADAM6, improves fertility or restores fertility to about a wild-type fertility.
- SEQ ID NO:3 or a fragment thereof confers upon a male mouse the ability to produce a sperm cell that is capable of traversing a female mouse oviduct in order to fertilize a mouse egg.
- a mouse comprises a deletion of an endogenous nucleotide sequence that encodes an ADAM6 protein, a replacement of an endogenous mouse V H gene segment with a human V H gene segment, and an ectopic nucleotide sequence that encodes a mouse ADAM6 protein or ortholog or homolog or fragment thereof that is functional in a male mouse.
- the mouse comprises an immunoglobulin heavy chain locus that comprises a deletion of an endogenous immunoglobulin locus nucleotide sequence that comprises an endogenous ADA 6 gene, comprises a nucleotide sequence encoding one or more human immunoglobulin gene segments, and wherein the ectopic nucleotide sequence encoding the mouse ADAM6 protein is within or directly adjacent to the nucleotide sequence encoding the one or more human immunoglobulin gene segments.
- the mouse comprises a replacement of all or substantially all endogenous V H gene segments with a nucleotide sequence encoding one or more human V H gene segments, and the ectopic nucleotide sequence encoding the mouse ADAM6 protein is within, or directly adjacent to, the nucleotide sequence encoding the one or more human V H gene segments.
- the mouse further comprises a replacement of one or more endogenous D H gene segments with one or more human D H gene segments at the endogenous D H gene locus.
- the mouse further comprises a replacement of one or more endogenous J H gene segments with one or more human J H gene segments at the endogenous J H gene locus.
- the mouse comprises a replacement of all or substantially all endogenous V H , D H , and J H gene segments and a replacement at the endogenous V H , D H , and J H gene loci with human V H , D H , and J H gene segments, wherein the mouse comprises an ectopic sequence encoding a mouse ADAM6 protein.
- the ectopic sequence encoding the mouse ADAM6 protein is placed between the penultimate 3'-most V H gene segment of the human V H gene segments present, and the ultimate 3' V H gene segment of the human V H gene segments present.
- the mouse comprises a deletion of all or substantially all mouse V H gene segments, and a replacement with all or substantially all human V H gene segments, and the ectopic nucleotide sequence encoding the mouse ADAM6 protein is placed downstream of human gene segment VH1-2 and upstream of human gene segment V H 6-1.
- the mouse comprises a replacement of all or substantially all endogenous V H gene segments with a nucleotide sequence encoding one or more human V H gene segments, and the ectopic nucleotide sequence encoding the mouse ADAM6 protein is within, or directly adjacent to, the nucleotide sequence encoding the one or more human V H gene segments.
- the ectopic nucleotide sequence that encodes the mouse ADA 6 protein is present on a transgene in the genome of the mouse.
- the ectopic nucleotide sequence that encodes the mouse ADAM6 protein is present extrachromosomally in the mouse.
- a mouse comprising a modification of an endogenous immunoglobulin heavy chain locus, wherein the mouse expresses a B cell that comprises a rearranged immunoglobulin sequence operably linked to a heavy chain constant region gene sequence, and the B cell comprises in its genome (e.g., on a B cell chromosome) a gene encoding an ADAM6 or ortholog or homolog or fragment thereof that is functional in a male mouse.
- the rearranged immunoglobulin sequence operably linked to the heavy chain constant region gene sequence comprises a human heavy chain V, D, and/or J sequence; a mouse heavy chain V, D, and/or J sequence; a human or mouse light chain V and/or J sequence.
- the heavy chain constant region gene sequence comprises a human or a mouse heavy chain sequence selected from the group consisting of a C H 1 , a hinge, a C H 2, a C H 3, and a combination thereof.
- a genetically modified mouse comprising a functionally silenced immunoglobulin light chain gene, and further comprises a replacement of one or more endogenous immunoglobulin heavy chain variable region gene segments with one or more human immunoglobulin heavy chain variable region gene segments, wherein the mouse lacks a functional endogenous ADAM6 locus, and wherein the mouse comprises an ectopic nucleotide sequence that expresses a mouse ADAM6 protein or an ortholog or homolog or fragment thereof that is functional in a male mouse.
- a mouse that lacks a functional endogenous mouse ADAM6 locus or sequence and that comprises an ectopic nucleotide sequence encoding a mouse ADAM6 locus or functional fragment of a mouse ADAM6 locus or sequence, wherein the mouse is capable of mating with a mouse of the opposite sex to produce a progeny that comprises the ectopic ADAM6 locus or sequence.
- the mouse is male. In one embodiment, the mouse is female.
- a genetically modified mouse comprising a human immunoglobulin heavy chain variable region gene segment at an endogenous mouse immunoglobulin heavy chain variable region gene locus, the mouse lacks an endogenous functional ADAM6 sequence at the endogenous mouse
- mouse comprises an ectopic nucleotide sequence that expresses a mouse ADAM6 protein or an ortholog or homolog or fragment thereof that is functional in a male mouse.
- the ectopic nucleotide sequence that expresses the mouse ADAM6 protein is extrachromosomal. In one embodiment, the ectopic nucleotide sequence that expresses the mouse ADAM6 protein is integrated at one or more loci in a genome of the mouse. In a specific embodiment, the one or more loci include an immunoglobulin locus.
- a mouse that expresses an immunoglobulin heavy chain sequence from a modified endogenous mouse immunoglobulin heavy chain locus, wherein the heavy chain is derived from a human V gene segment, a D gene segment, and a J gene segment, wherein the mouse comprises an ADAM6 activity that is functional in the mouse.
- the mouse comprises a plurality of human V gene segments, a plurality of D gene segments, and a plurality of J gene segments.
- the D gene segments are human D gene segments.
- the J gene segments are human J gene segments.
- the mouse further comprises a humanized heavy chain constant region sequence, wherein the humanization comprises replacement of a sequence selected from a C H 1 , hinge, C H 2, C H 3, and a combination thereof.
- the heavy chain is derived from a human V gene segment, a human D gene segment, a human J gene segment, a human C H 1 sequence, a human or mouse hinge sequence, a mouse C H 2 sequence, and a mouse C H 3 sequence.
- the mouse further comprises a human light chain constant sequence.
- the D gene segment is flanked 5' (with respect to transcriptional direction of the D gene segment) by a sequence encoding an ADAM6 activity that is functional in the mouse.
- the ADAM6 activity that is functional in the mouse results from expression of a nucleotide sequence located 5' of the 5'-most D gene segment and 3' of the 3'-most V gene segment (with respect to the direction of transcription of the V gene segment) of the modified endogenous mouse heavy chain immunoglobulin locus.
- the ADAM6 activity that is functional in the mouse results from expression of a nucleotide sequence located between two human V gene segments in the modified endogenous mouse heavy chain immunoglobulin locus.
- the two human V gene segments are a human V H 1-2 gene segment and a V H 6-1 gene segment.
- the nucleotide sequence comprises a sequence selected from a mouse ADAM6b sequence or functional fragment thereof, a mouse ADAM6a sequence or functional fragment thereof, and a combination thereof.
- nucleotide sequence between the two human V gene segments is placed in opposite transcription orientation with respect to the human V gene segments.
- nucleotide sequence encodes, from 5' to 3' with respect to the direction of transcription of ADAM6 genes, and ADAM6a sequence followed by an ADAM6b sequence.
- the mouse comprises a replacement of a human ADA 6 pseudogene sequence between human V gene segments V H 1 -2 and V H 6-1 with a mouse ADAM6 sequence or a functional fragment thereof.
- the sequence encoding the ADAM6 activity that is functional in the mouse is a mouse ADAM6 sequence or functional fragment thereof.
- the mouse comprises an endogenous mouse DFL16.1 gene segment (e.g. , in a mouse heterozygous for the modified endogenous mouse immunoglobulin heavy chain locus), or a human D H 1-1 gene segment.
- an endogenous mouse DFL16.1 gene segment e.g. , in a mouse heterozygous for the modified endogenous mouse immunoglobulin heavy chain locus
- a human D H 1-1 gene segment e.g., in a mouse heterozygous for the modified endogenous mouse immunoglobulin heavy chain locus
- the D gene segment of the immunoglobulin heavy chain expressed by the mouse is derived from an endogenous mouse DFL16.1 gene segment or a human D H 1-1 gene segment.
- a mouse comprises a nucleic acid sequence encoding a mouse ADAM6 (or homolog or ortholog or functional fragment thereof) in a DNA-bearing cell of non-rearranged B cell lineage, but does not comprise the nucleic acid sequence encoding the mouse ADAM6 (or homolog or ortholog or functional fragment thereof) in a B cell that comprise rearranged immunoglobulin loci, wherein the nucleic acid sequence encoding the mouse ADAM6 (or homolog or ortholog or functional fragment thereof) occurs in the genome at a position that is different from a position in which a mouse ADAM6 gene appears in a wild-type mouse.
- the nucleic acid sequence encoding the mouse ADAM6 (or homolog or ortholog or functional fragment thereof) is present in all or substantially all DNA-bearing cells that are not of rearranged B cell lineage; in one embodiment, the nucleic acid sequence is present in germline cells of the mouse, but not in a chromosome of a rearranged B cell.
- a mouse comprises a nucleic acid sequence encoding a mouse ADAM6 (or homolog or ortholog or functional fragment thereof) in all or substantially all DNA-bearing cells, including B cells that comprise rearranged
- the nucleic acid sequence encoding the mouse ADAM6 (or homolog or ortholog or functional fragment thereof) occurs in the genome at a position that is different from a position in which a mouse ADAM6 gene appears in a wild-type mouse.
- the nucleic acid sequence encoding the mouse ADAM6 (or homolog or ortholog or functional fragment thereof) is on a nucleic acid that is contiguous with the rearranged immunoglobulin locus.
- the nucleic acid that is contiguous with the rearranged immunoglobulin locus is a chromosome.
- the chromosome is a chromosome that is found in a wild-type mouse and the chromosome comprises a modification of a mouse immunoglobulin locus.
- a genetically modified mouse comprising a B cell that comprises in its genome an ADAM6 sequence or ortholog or homolog thereof.
- the ADAM6 sequence or ortholog or homolog thereof is at an immunoglobulin heavy chain locus.
- the ADAM6 sequence or ortholog or homolog thereof is at a locus that is not an immunoglobulin locus.
- the ADAM6 sequence is on a transgene driven by a heterologous promoter.
- the heterologous promoter is a non-immunoglobulin promoter.
- B cell expresses an ADAM6 protein or ortholog or homolog thereof.
- 90% or more of the B cells of the mouse comprise a gene encoding an ADAM6 protein or an ortholog thereof or a homolog thereof or a fragment thereof that is functional in the mouse.
- the mouse is a male mouse.
- the B cell genome comprises a first allele and a second allele comprising the ADAM6 sequence or ortholog or homolog thereof.
- the B cell genome comprises a first allele but not a second allele comprising the ADAM6 sequence or ortholog or homolog thereof.
- a mouse that comprises a modification at one or more endogenous ADAM6 alleles.
- the modification renders the mouse incapable of expressing a functional ADAM6 protein from at least one of the one or more endogenous
- the mouse is incapable of expressing a functional ADAM6 protein from each of the endogenous ADAM6 alleles.
- the mice are incapable of expressing a functional ADAM6 protein from each endogenous ADAM6 allele, and the mice comprise an ectopic ADAM6 sequence.
- the mice are incapable of expressing a functional ADAM6 protein from each endogenous ADAM6 allele, and the mice comprise an ectopic ADAM6 sequence located within 1 , 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1 10, or 120 or more kb upstream (with respect to the direction of transcription of the mouse heavy chain locus) of a mouse immunoglobulin heavy chain constant region sequence.
- the ectopic ADAM6 sequence is at the endogenous immunoglobulin heavy chain locus (e.g., in an intergenic V-D region, between two V gene segments, between a V and a D gene segment, between a D and a J gene segment, efc.).
- the ectopic ADAM6 sequence is located within a 90 to 100 kb intergenic sequence between the final mouse V gene segment and the first mouse D gene segment.
- the endogenous 90 to 00 kb intergenic V-D sequence is removed, and the ectopic ADAM6 sequence is placed between the final V and the first D gene segment.
- an infertile male mouse comprising a deletion of two or more endogenous ADAM6 alleles.
- a female mouse is provided that is a carrier of a male infertility trait, wherein the female mouse comprises in its germline a nonfunctional ADAM6 allele or a knockout of an endogenous ADAM6 allele.
- a mouse that lacks an endogenous immunoglobulin heavy chain V, D, and J gene segment is provided, wherein a majority of the B cells of the mouse comprise an ADAM6 sequence or ortholog or homolog thereof.
- the mouse lacks endogenous immunoglobulin heavy chain gene segments selected from two or more V gene segments, two or more D gene segments, two or more J gene segments, and a combination thereof. In one embodiment, the mouse lacks immunoglobulin heavy chain gene segments selected from at least one and up to 89 V gene segments, at least one and up to 13 D gene segments, at least one and up to four J gene segments, and a combination thereof. In one embodiment, the mouse lacks a genomic DNA fragment from chromosome 2 comprising about three megabases of the endogenous immunoglobulin heavy chain locus. In a specific embodiment, the mouse lacks all functional endogenous heavy chain V, D, and J gene segments. In a specific embodiment, the mouse lacks 89 V H gene segments, 13 D H gene segments and four J H gene segments.
- a mouse wherein the mouse has a genome in the germline comprising a modification of an immunoglobulin heavy chain locus, wherein the modification to the immunoglobulin heavy chain locus comprises the replacement of one or more mouse immunoglobulin variable region sequences with one or more non-mouse immunoglobulin variable region sequences, and wherein the mouse comprises a nucleic acid sequence encoding a mouse ADAM6 protein.
- the D H and J H sequences and at least 3, at least 10, at least 20, at least 40, at least 60, or at least 80 V H sequences of the immunoglobulin heavy chain locus are replaced by non-mouse immunoglobulin variable region sequences.
- the D H , JH, and all V H sequences of the immunoglobulin heavy chain locus are replaced by non-mouse immunoglobulin variable region sequences.
- the non-mouse immunoglobulin variable region sequences can be non-rearranged.
- the non-mouse immunoglobulin variable region sequences comprise complete non-rearranged D H and J H regions and at least 3, at least 10, at least 20, at least 40, at least 60, or at least 80 non- rearranged V H sequences of the non-mouse species.
- the non-mouse immunoglobulin variable region sequences comprise the complete variable region, including all V H , D H , and JH regions, of the non-mouse species.
- the non-mouse species can be Homo sapiens and the non-mouse immunoglobulin variable region sequences can be human sequences.
- a mouse that expresses an antibody that comprises at least one human variable domain/non-human constant domain immunoglobulin polypeptide is provided, wherein the mouse expresses a mouse ADAM6 protein or ortholog or homolog thereof from a locus other than an immunoglobulin locus.
- the ADAM6 protein or ortholog or homolog thereof is expressed in a B cell of the mouse, wherein the B cell comprises a rearranged
- immunoglobulin sequence that comprises a human variable sequence and a non-human constant sequence.
- the non-human constant sequence is a rodent sequence.
- the rodent is selected from a mouse, a rat, and a hamster.
- a method for making an infertile male mouse comprising rendering an endogenous ADAM6 allele of a donor ES cell nonfunctional (or knocking out said allele), introducing the donor ES cell into a host embryo, gestating the host embryo in a surrogate mother, and allowing the surrogate mother to give birth to progeny derived in whole or in part from the donor ES cell.
- the method further comprises breeding progeny to obtain an infertile male mouse.
- a method for making a mouse with a genetic modification of interest, wherein the mouse is infertile, the method comprising the steps of (a) making a genetic modification of interest in a genome; (b) modifying the genome to knockout an endogenous ADAM6 allele, or render an endogenous ADAM6 allele nonfunctional; and, (c) employing the genome in making a mouse.
- the genome is from an ES cell or used in a nuclear transfer experiment.
- a mouse made using a targeting vector, nucleotide construct, or cell as described herein is provided.
- a progeny of a mating of a mouse as described herein with a second mouse that is a wild-type mouse or genetically modified is provided.
- a method for maintaining a mouse strain comprising a replacement of a mouse immunoglobulin heavy chain sequence with one or more heterologous immunoglobulin heavy chain sequences.
- the one or more heterologous immunoglobulin heavy chain sequences are human immunoglobulin heavy chain sequences.
- the mouse strain comprises a deletion of one or more mouse V H , D H , and/or J H gene segments.
- the mouse further comprises one or more human V H gene segments, one or more human D H gene segments, and/or one or more human J H gene segments.
- the mouse comprises at least 3, at least 10, at least 20, at least 40, at least 60, or at least 80 human V H segments, at least 27 human D H gene segments, and at least six J H gene segments.
- the mouse comprises at least 3, at least 10, at least 20, at least 40, at least 60, or at least 80 human V H segments, the at least 27 human D H gene segments, and the at least six JH gene segments are operably linked to a constant region gene.
- the constant region gene is a mouse constant region gene.
- the constant region gene comprises a mouse constant region gene sequence selected from a C H 1 , a hinge, a C H 2, a C H 3, and/or a C H 4 or a combination thereof.
- the method comprises generating a male mouse heterozygous for the replacement of the mouse immunoglobulin heavy chain sequence, and breeding the heterozygous male mouse with a wild-type female mouse or a female mouse that is homozygous or heterozygous for the human heavy chain sequence.
- the method comprises maintaining the strain by repeatedly breeding heterozygous males with females that are wild type or homozygous or heterozygous for the human heavy chain sequence.
- the method comprises obtaining cells from male or female mice homozygous or heterozygous for the human heavy chain sequence, and employing those cells as donor cells or nuclei therefrom as donor nuclei, and using the cells or nuclei to make genetically modified animals using host cells and/or gestating the cells and/or nuclei in surrogate mothers.
- mice that are heterozygous for the replacement at the heavy chain locus are bred to female mice.
- the female mice are homozygous, heterozygous, or wild type with respect to a replaced heavy chain locus.
- the mouse further comprises a replacement of ⁇ and/or ⁇ light chain variable sequences at an endogenous immunoglobulin light chain locus with heterologous immunoglobulin light chain sequences.
- the mouse further comprises a replacement of ⁇ and/or ⁇ light chain variable sequences at an endogenous immunoglobulin light chain locus with heterologous immunoglobulin light chain sequences.
- heterologous immunoglobulin light chain sequences are human immunoglobulin ⁇ and/or light chain variable sequences.
- the mouse further comprises a transgene at a locus other than an endogenous immunoglobulin locus, wherein the transgene comprises a sequence encoding a rearranged or unrearranged heterologous ⁇ or ⁇ light chain sequence (e.g., unrearranged V L and unrearranged J L , or rearranged VJ) operably linked (for
- the heterologous ⁇ or ⁇ light chain sequence is human.
- the constant region sequence is selected from rodent, human, and non- human primate.
- the constant region sequence is selected from mouse, rat, and hamster.
- the transgene comprises a non- immunoglobulin promoter that drives expression of the light chain sequences.
- the promoter is a transcriptionally active promoter.
- the promoter is a ROSA26 promoter.
- a nucleic acid construct comprising an upstream homology arm and a downstream homology arm, wherein the upstream homology arm comprises a sequence that is identical or substantially identical to a human
- the downstream homology arm comprises a sequence that is identical or substantially identical to a human or mouse immunoglobulin variable region sequence
- disposed between the upstream and downstream homology arms is a sequence that comprises a nucleotide sequence encoding a mouse ADAM6 protein.
- the sequence encoding the mouse ADAM6 gene is operably linked with a mouse promoter with which the mouse ADAM6 is linked in a wild type mouse.
- a targeting vector comprising (a) a nucleotide sequence that is identical or substantially identical to a human variable region gene segment nucleotide sequence; and, (b) a nucleotide sequence encoding a mouse ADAM6 or ortholog or homolog or fragment thereof that is functional in a mouse.
- the targeting vector further comprises a promoter operably linked to the sequence encoding the mouse ADAM6.
- the promoter is a mouse ADAM6 promoter.
- a nucleotide construct for modifying a mouse immunoglobulin heavy chain variable locus comprises at least one site- specific recombinase recognition site and a sequence encoding an ADAM6 protein or ortholog or homolog or fragment thereof that is functional in a mouse.
- mouse cells and mouse embryos are provided, including but not limited to ES cells, pluripotent cells, and induced pluripotent cells, that comprise genetic modifications as described herein.
- Cells that are XX and cells that are XY are provided.
- Cells that comprise a nucleus containing a modification as described herein are also provided, e.g., a modification introduced into a cell by pronuclear injection.
- Cells, embryos, and mice that comprise a virally introduced ADAM6 gene are also provided, e.g., cells, embryos, and mice comprising a transduction construct comprising an ADAM6 gene that is functional in the mouse.
- a genetically modified mouse cell wherein the cell lacks a functional endogenous mouse ADAM6 locus, and the cell comprises an ectopic nucleotide sequence that encodes a mouse ADAM6 protein or functional fragment thereof. In one embodiment, the cell further comprises a modification of an endogenous mouse ADAM6 locus
- the modification of the endogenous immunoglobulin heavy chain variable gene sequence comprises a deletion selected from a deletion of a mouse V H gene segment, a deletion of a mouse D H gene segment, a deletion of a mouse J H gene segment, and a combination thereof.
- the mouse comprises a replacement of one or more mouse immunoglobulin V H , D H , and/or J H sequences with a human immunoglobulin sequence.
- the human immunoglobulin sequence is selected from a human V H , a human V L , a human D H , a human J H , a human J L , and a combination thereof.
- the cell is a totipotent cell, a pluripotent cell, or an induced pluripotent cell.
- the cell is a mouse ES cell.
- a mouse B cell comprising a rearranged immunoglobulin heavy chain gene, wherein the B cell comprises on a chromosome of the B cell a nucleic acid sequence encoding an ADAM6 protein or ortholog or homolog or fragment thereof that is functional in a male mouse.
- the mouse B cell comprises two alleles of the nucleic acid sequence.
- the nucleic acid sequence is on a nucleic acid molecule
- a B cell chromosome e.g., a B cell chromosome that is contiguous with the rearranged mouse immunoglobulin heavy chain locus.
- the nucleic acid sequence is on a nucleic acid molecule (e.g., a B cell chromosome) that is distinct from the nucleic acid molecule that comprises the rearranged mouse immunoglobulin heavy chain locus.
- a nucleic acid molecule e.g., a B cell chromosome
- the mouse B cell comprises a rearranged non-mouse immunoglobulin variable gene sequence operably linked to a mouse or human
- the B cell comprises a nucleic acid sequence that encodes an ADAM6 protein or ortholog or homolog or fragment thereof that is functional in a male mouse.
- a somatic mouse cell comprising a chromosome that comprises a modified immunoglobulin heavy chain locus, and a nucleic acid sequence encoding a mouse ADAM6 or ortholog or homolog or fragment thereof that is functional in a male mouse.
- the nucleic acid sequence is on the same
- the somatic cell comprises a single copy of the nucleic acid sequence. In one embodiment, the somatic cell comprises at least two copies of the nucleic acid sequence. In a specific embodiment, the somatic cell is a B cell. In a specific embodiment, the cell is a germ cell. In a specific embodiment, the cell is a stem cell.
- a mouse germ cell comprising a nucleic acid sequence encoding a mouse ADAM6 (or homolog or ortholog or functional fragment thereof) on a chromosome of the germ cell, wherein the nucleic acid sequence encoding the mouse ADAM6 (or homolog or ortholog or functional fragment thereof) is at a position in the chromosome that is different from a position in a chromosome of a wild-type mouse germ cell.
- the nucleic acid sequence is at a mouse immunoglobulin locus.
- the nucleic acid sequence is on the same chromosome of the germ cell as a mouse immunoglobulin locus.
- the nucleic acid sequence is on a different chromosome of the germ cell than the mouse immunoglobulin locus.
- the mouse immunoglobulin locus comprises a replacement of at least one mouse immunoglobulin sequence with at least one non-mouse
- the at least one non-mouse immunoglobulin sequence is a human immunoglobulin sequence.
- a pluripotent, induced pluripotent, or totipotent cell derived from a mouse as described herein is provided.
- the cell is a mouse embryonic stem (ES) cell.
- tissue derived from a mouse as described herein is provided.
- the tissue is derived from spleen, lymph node or bone marrow of a mouse as described herein.
- nucleus derived from a mouse as described herein is provided.
- the nucleus is from a diploid cell that is not a B cell.
- nucleotide sequence encoding an immunoglobulin variable region made in a mouse as described herein is provided.
- an immunoglobulin heavy chain or immunoglobulin light chain variable region amino acid sequence of an antibody made in a mouse as described herein is provided.
- an immunoglobulin heavy chain or immunoglobulin light chain variable region nucleotide sequence encoding a variable region of an antibody made in a mouse as described herein is provided.
- an antibody or antigen-binding fragment thereof made in a mouse as described herein is provided.
- a method for making a genetically modified mouse comprising replacing one or more immunoglobulin heavy chain gene segments upstream (with respect to transcription of the immunoglobulin heavy chain gene segments) of an endogenous ADAM6 locus of the mouse with one or more human immunoglobulin heavy chain gene segments, and replacing one or more immunoglobulin gene segments downstream (with respect to transcription of the immunoglobulin heavy chain gene segments) of the ADAM6 locus of the mouse with one or more human immunoglobulin heavy chain or light chain gene segments.
- the one or more human immunoglobulin gene segments replacing one or more endogenous immunoglobulin gene segments upstream of an endogenous ADAM6 locus of the mouse include V gene segments. In one embodiment, the human immunoglobulin gene segments replacing one or more endogenous
- immunoglobulin gene segments upstream of an endogenous ADAM6 locus of the mouse include V and D gene segments.
- immunoglobulin gene segments replacing one or more endogenous immunoglobulin gene segments downstream of an endogenous ADAM6 locus of the mouse include J gene segments.
- the one or more human immunoglobulin gene segments replacing one or more endogenous immunoglobulin gene segments downstream of an endogenous ADAM6 locus of the mouse include D and J gene segments.
- the one or more human immunoglobulin gene segments replacing one or more endogenous immunoglobulin gene segments downstream of an endogenous ADAM6 locus of the mouse include V, D and J gene segments.
- the one or more immunoglobulin heavy chain gene segments upstream and/or downstream of the ADAM6 gene are replaced in a pluripotent, induced pluripotent, or totipotent cell to form a genetically modified progenitor cell; the genetically modified progenitor cell is introduced into a host; and, the host comprising the genetically modified progenitor cell is gestated to form a mouse comprising a genome derived from the genetically modified progenitor cell.
- the host is an embryo.
- the host is selected from a mouse pre-morula (e.g., 8- or 4-cell stage), a tetraploid embryo, an aggregate of embryonic cells, or a blastocyst.
- a method for making a genetically modified mouse comprising replacing a mouse nucleotide sequence that comprises a mouse
- immunoglobulin gene segment and a mouse ADAM6 (or ortholog or homolog or fragment thereof functional in a male mouse) nucleotide sequence with a sequence comprising a human immunoglobulin gene segment to form a first chimeric locus, then inserting a sequence comprising a mouse ADAM6-encoding sequence (or a sequence encoding an ortholog or homolog or functional fragment thereof) into the sequence comprising the human immunoglobulin gene segment to form a second chimeric locus.
- the second chimeric locus comprises a human
- the second chimeric locus comprises a human immunoglobulin light chain variable (V L ) gene segment.
- the second chimeric locus comprises a human V H gene segment or a human V L gene segment operably linked to a human D H gene segment and a human J H gene segment.
- the second chimeric locus is operably linked to a third chimeric locus that comprises a human CH1 sequence, or a human C H 1 and human hinge sequence, fused with a mouse CH2 + C H 3 sequence.
- a mouse that comprises an ectopic nucleotide sequence comprising a mouse ADAM6 locus or sequence to make a fertile male mouse comprising mating the mouse comprising the ectopic nucleotide sequence that comprises the mouse ADAM6 locus or sequence to a mouse that lacks a functional endogenous mouse ADAM6 locus or sequence, and obtaining a progeny that is a female capable of producing progeny having the ectopic ADAM6 locus or sequence or that is a male that comprises the ectopic ADAM6 locus or sequence, and the male exhibits a fertility that is approximately the same as a fertility exhibited by a wild-type male mouse.
- a mouse as described herein to generate a variable region sequence for making a human antibody comprising (a) immunizing a mouse as described herein with an antigen of interest, (b) isolating a lymphocyte from the immunized mouse of (a), (c) exposing the lymphocyte to one or more labeled antibodies, (d) identifying a lymphocyte that is capable of binding to the antigen of interest, and (e) amplifying one or more variable region nucleic acid sequence from the lymphocyte thereby generating a variable region sequence.
- the lymphocyte is derived from the spleen of the mouse. In one embodiment, the lymphocyte is derived from a lymph node of the mouse. In one embodiment, the lymphocyte is derived from the bone marrow of the mouse.
- the labeled antibody is a fluorophore-conjugated antibody.
- the one or more fluorophore-conjugated antibodies are selected from an IgM, an IgG, and/or a combination thereof.
- the lymphocyte is a B cell.
- the one or more variable region nucleic acid sequence comprises a heavy chain variable region sequence. In one embodiment, the one or more variable region nucleic acid sequence comprises a light chain variable region sequence. In a specific embodiment, the light chain variable region sequence is an immunoglobulin ⁇ light chain variable region sequence. In one embodiment, the one or more variable region nucleic acid sequence comprises a heavy chain and a ⁇ light chain variable region sequence.
- a mouse as described herein to generate a heavy and a ⁇ light chain variable region sequence for making a human antibody comprising (a) immunizing a mouse as described herein with an antigen of interest, (b) isolating the spleen from the immunized mouse of (a), (c) exposing B lymphocytes from the spleen to one or more labeled antibodies, (d) identifying a B lymphocyte of (c) that is capable of binding to the antigen of interest, and (e) amplifying a heavy chain variable region nucleic acid sequence and a ⁇ light chain variable region nucleic acid sequence from the B lymphocyte thereby generating the heavy chain and ⁇ light chain variable region sequences.
- a mouse as described herein to generate a heavy and a ⁇ light chain variable region sequence for making a human antibody comprising (a) immunizing a mouse as described herein with an antigen of interest, (b) isolating one or more lymph nodes from the immunized mouse of (a), (c) exposing B lymphocytes from the one or more lymph nodes to one or more labeled antibodies, (d) identifying a B lymphocyte of (c) that is capable of binding to the antigen of interest, and (e) amplifying a heavy chain variable region nucleic acid sequence and a ⁇ light chain variable region nucleic acid sequence from the B lymphocyte thereby generating the heavy chain and K light chain variable region sequences.
- a mouse as described herein to generate a heavy and a ⁇ light chain variable region sequence for making a human antibody comprising (a) immunizing a mouse as described herein with an antigen of interest, (b) isolating bone marrow from the immunized mouse of (a), (c) exposing B lymphocytes from the bone marrow to one or more labeled antibodies, (d) identifying a B lymphocyte of (c) that is capable of binding to the antigen of interest, and (e) amplifying a heavy chain variable region nucleic acid sequence and a ⁇ light chain variable region nucleic acid sequence from the B lymphocyte thereby generating the heavy chain and ⁇ light chain variable region sequences.
- the one or more labeled antibodies are selected from an IgM, an IgG, and/or a combination thereof.
- use of a mouse as described herein to generate a heavy and ⁇ light chain variable region sequence for making a human antibody is provided, further comprising fusing the amplified heavy and light chain variable region sequences to human heavy and light chain constant region sequences, expressing the fused heavy and light chain sequences in a cell, and recovering the expressed heavy and light chain sequences thereby generating a human antibody.
- the human heavy chain constant regions are selected from IgM, IgD, IgA, IgE and IgG.
- the IgG is selected from an lgG1 , an lgG2, an lgG3 and an lgG4.
- the human heavy chain constant region comprises a C H 1 , a hinge, a C H 2, a C H 3, a C H 4, or a combination thereof.
- the light chain constant region is an immunoglobulin ⁇ constant region.
- the cell is selected from a HeLa cell, a DU145 cell, a Lncap cell, a MCF-7 cell, a MDA-MB-438 cell, a PC3 cell, a T47D cell, a THP-1 cell, a U87 cell, a SHSY5Y (human neuroblastoma) cell, a Saos-2 cell, a Vero cell, a CHO cell, a GH3 cell, a PC12 cell, a human retinal cell (e.g., a PER.C6TM cell), and a MC3T3 cell.
- the cell is a CHO cell.
- a method for generating a reverse-chimeric rodent-human antibody specific against an antigen of interest comprising the steps of immunizing a mouse as described herein with the antigen, isolating at least one cell from the mouse producing a reverse-chimeric mouse-human antibody specific against the antigen, culturing at least one cell producing the reverse-chimeric mouse-human antibody specific against the antigen, and obtaining said antibody.
- the reverse-chimeric mouse-human antibody comprises a human heavy chain variable domain fused with a mouse or rat heavy chain constant gene, and a human light chain variable domain fused with a mouse or rat or human light chain constant gene.
- culturing at least one cell producing the reverse-chimeric rodent-human antibody specific against the antigen is performed on at least one hybridoma cell generated from the at least one cell isolated from the mouse.
- a method for generating a fully human antibody specific against an antigen of interest comprising the steps of immunizing a mouse as described herein with the antigen, isolating at least one cell from the mouse producing a reverse-chimeric rodent-human antibody specific against the antigen, generating at least one cell producing a fully human antibody derived from the reverse-chimeric rodent-human antibody specific against the antigen, and culturing at least one cell producing the fully human antibody, and obtaining said fully human antibody.
- the at least one cell isolated from the mouse producing a reverse-chimeric rodent-human antibody specific against the antigen is a splenocyte or a B cell.
- the antibody is a monoclonal antibody.
- immunization with the antigen of interest is carried out with protein, DNA, a combination of DNA and protein, or cells expressing the antigen.
- use of a mouse as described herein to make a nucleic acid sequence encoding an immunoglobulin variable region or fragment thereof is provided.
- the nucleic acid sequence is used to make a human antibody or antigen- binding fragment thereof.
- the mouse is used to make an antigen- binding protein selected from an antibody, a multi-specific antibody (e.g., a bi-specific antibody), an scFv, a bi-specific scFv, a diabody, a triabody, a tetrabody, a V-NAR, a V H H, a V L , a F(ab), a F(ab) 2 , a DVD (i.e., dual variable domain antigen-binding protein), a an SVD (i.e. , single variable domain antigen-binding protein), or a bispecific T-cell engager (BiTE).
- a multi-specific antibody e.g., a bi-specific antibody
- an scFv e.g., a bi-specific scFv
- a diabody e.g., a bi-specific antibody
- a triabody etrabody
- V-NAR e.g., dual
- a mouse as described herein to introduce an ectopic ADAM6 sequence into a mouse that lacks a functional endogenous mouse ADAM6 sequence is provided, wherein the use comprises mating a mouse as described herein with the mouse that lacks the functional endogenous mouse ADAM6 sequence.
- use of genetic material from a mouse as described herein to make a mouse having an ectopic ADAM6 sequence comprises nuclear transfer using a nucleus of a cell of a mouse as described herein. In one embodiment, the use comprises cloning a cell of a mouse as described herein to produce an animal derived from the cell. In one embodiment, the use comprises employing a sperm or an egg of a mouse as described herein in a process for making a mouse comprising the ectopic ADAM6 sequence.
- a method for making a fertile male mouse comprising a modified immunoglobulin heavy chain locus comprising fertilizing a first mouse germ cell that comprises a modification of an endogenous immunoglobulin heavy chain locus with a second mouse germ cell that comprises an ADAM6 gene or ortholog or homolog or fragment thereof that is functional in a male mouse; forming a fertilized cell; allowing the fertilized cell to develop into an embryo; and, gestating the embryo in a surrogate to obtain a mouse.
- the fertilization is achieved by mating a male mouse and a female mouse.
- the female mouse comprises the ADAM6 gene or ortholog or homolog or fragment thereof.
- the male mouse comprises the ADAM6 gene or ortholog or homolog or fragment thereof.
- nucleic acid sequence encoding a mouse ADAM6 protein or an ortholog or homolog thereof or a functional fragment of the corresponding ADAM6 protein for restoring or enhancing the fertility of a mouse having a genome comprising a modification of an immunoglobulin heavy chain locus is provided, wherein the modification reduces or eliminates endogenous ADAM6 function.
- the nucleic acid sequence is integrated into the genome of the mouse at an ectopic position. In one embodiment, the nucleic acid sequence is integrated into the genome of the mouse at an endogenous immunoglobulin locus. In a specific embodiment, the endogenous immunoglobulin locus is a heavy chain locus. In one embodiment, the nucleic acid sequence is integrated into the genome of the mouse at a position other than an endogenous immunoglobulin locus.
- a medicament e.g. , an antigen-binding protein
- a sequence encoding a variable sequence of a medicament e.g., an antigen-binding protein
- FIG. 1A shows a general illustration, not to scale, of direct genomic
- FIG. 1 B shows a general illustration, not to scale, of direct genomic
- FIG. 2A shows a detailed illustration, not to scale, of three initial steps (A-C) for direct genomic replacement of a mouse immunoglobulin heavy chain variable gene locus that results in deletion of all mouse V H , D H and J H gene segments and replacement with three human V H , all human D H and J H gene segments.
- a targeting vector for a first insertion of human immunoglobulin heavy chain gene segments is shown (3hV H BACvec) with a 67 kb 5' mouse homology arm, a selection cassette (open rectangle), a site-specific recombination site (open triangle), a 145 kb human genomic fragment and an 8 kb 3' mouse homology arm.
- immunoglobulin gene segments immunoglobulin gene segments, additional selection cassettes (open rectangles) and site- specific recombination sites (open triangles) inserted from subsequent targeting vectors are shown.
- FIG. 2B shows a detailed illustration, not to scale, of six additional steps (D-l) for direct genomic replacement of a mouse immunoglobulin heavy chain variable gene locus that results in the insertion of 77 additional human V H gene segments and removal of a final selection cassette.
- a targeting vector for insertion of additional human V H gene segments (18hV H BACvec) to the initial insertion of human heavy chain gene segments (3hV H -CRE Hybrid Allele) is shown with a 20 kb 5' mouse homology arm, a selection cassette (open rectangle), a 196 kb human genomic fragment and a 62 kb human homology arm that overlaps with the 5' end of the initial insertion of human heavy chain gene segments which is shown with a site-specific recombination site (open triangle) located 5' to the human gene segments.
- Human (open symbols) and mouse (closed symbols) immunoglobulin gene segments and additional selection cassettes (open rectangles) inserted by subsequent targeting vectors are shown.
- FIG. 2C shows a detailed illustration, not to scale, of three initial steps (A-C) for direct genomic replacement of a mouse immunoglobulin ⁇ light chain variable gene locus that results in deletion of all mouse VK, and JK gene segments (IgK-CRE Hybrid Allele). Selection cassettes (open rectangles) and site-specific recombination sites (open triangles) inserted from the targeting vectors are shown.
- FIG. 2D shows a detailed illustration, not to scale, of five additional steps (D-H) for direct genomic replacement of a mouse immunoglobulin ⁇ light chain variable gene locus that results in the insertion of all human VK and JK gene segments of the proximal repeat and deletion of a final selection cassette (40hVKdHyg Hybrid Allele).
- Human (open symbols) and mouse (closed symbols) immunoglobulin gene segments and additional selection cassettes (open rectangles) inserted by subsequent targeting vectors are shown.
- FIG. 3A shows a general illustration, not to scale, of a screening strategy including the locations of quantitative PCR (qPCR) primer/probe sets to detect insertion of human heavy chain gene sequences and loss of mouse heavy chain gene sequences in targeted embryonic stem (ES) cells.
- the screening strategy in ES cells and mice for a first human heavy gene insertion is shown with qPCR primer/probe sets for the deleted region ("loss" probes C and D), the region inserted ("hlgH” probes G and H) and flanking regions ("retention" probes A, B, E and F) on an unmodified mouse chromosome (top) and a correctly targeted chromosome (bottom).
- qPCR quantitative PCR
- FIG. 3B shows a representative calculation of observed probe copy number in parental and modified ES cells for a first insertion of human immunoglobulin heavy chain gene segments. Observed probe copy number for probes A through F were calculated as 2/2 ⁇ .
- AACt is calculated as ave[ACt(sample) - medACt(control)] where ACt is the difference in Ct between test and reference probes (between 4 and 6 reference probes depending on the assay).
- the term medACt(controI) is the median ACt of multiple (>60) non-targeted DNA samples from parental ES cells. Each modified ES cell clone was assayed in sextuplicate.
- FIG. 3C shows a representative calculation of copy numbers for four mice of each genotype calculated using only probes D and H.
- Wild-type mice WT Mice; Mice heterozygous for a first insertion of human immunoglobulin gene segments: HET Mice; Mice homozygous for a first insertion of human immunoglobulin gene segments: Homo Mice.
- FIG. 4A shows a detailed illustration, not to scale, of the three steps employed for construction of a 3hV H BACvec by bacterial homologous recombination (BHR).
- Human (open symbols) and mouse (closed symbols) immunoglobulin gene segments, selection cassettes (open rectangles) and site-specific recombination sites (open triangles) inserted from targeting vectors are shown.
- FIG. 4B shows pulse-field gel electrophoresis (PFGE) of three BAC clones (B1 , B2 and B3) after Notl digestion.
- Markers M1 , M2 and M3 are low range, mid range and lambda ladder PFG markers, respectively (New England BioLabs, Ipswich, MA).
- FIG. 5A shows a schematic illustration, not to scale, of sequential modifications of a mouse immunoglobulin heavy chain locus with increasing amounts of human immunoglobulin heavy chain gene segments. Homozygous mice were made from each of the three different stages of heavy chain humanization. Open symbols indicate human sequence; closed symbols indicate mouse sequence.
- FIG. 5B shows a schematic illustration, not to scale, of sequential modifications of a mouse immunoglobulin ⁇ light chain locus with increasing amounts of human immunoglobulin ⁇ light chain gene segments. Homozygous mice were made from each of the three different stages of ⁇ light chain humanization. Open symbols indicate human sequence; closed symbols indicate mouse sequence.
- FIG. 6 shows FACS dot plots of B cell populations in wild type
- VELOCIMMUNE® humanized mice Cells from spleen (top row, third row from top and bottom row) or inguinal lymph node (second row from top) of wild type (wt),
- VELOCIMMUNE® 1 (V1 ), VELOCIMMUNE® 2 (V2) or VELOCIMMUNE® 3 (V3) mice were stained for surface IgM expressing B cells (top row, and second row from top), surface immunoglobulin containing either ⁇ or ⁇ light chains (third row from top) or surface IgM of specific haplotypes (bottom row), and populations separated by FACS.
- FIG. 7A shows representative heavy chain CDR3 sequences of randomly selected VELOCIMMUNE® antibodies around the V H -D H -J H (CDR3) junction
- Heavy chain CDR3 sequences are grouped according to D H gene segment usage, the germline of which is provided above each group in bold.
- V H gene segments for each heavy chain CDR3 sequence are noted within parenthesis at the 5' end of each sequence ⁇ e.g., 3-72 is human V H 3-72).
- J H gene segments for each heavy chain CDR3 are noted within parenthesis at the 3' end of each sequence (e.g., 3 is human J H 3).
- SEQ ID NOs for each sequence shown are as follows proceeding from top to bottom: SEQ ID NO:21 ; SEQ ID NO:22; SEQ ID NO:23; SEQ ID NO:24; SEQ ID NO:25; SEQ ID NO:26; SEQ ID NO:27; SEQ ID NO:28; SEQ ID NO:29; SEQ ID NO:30; SEQ ID NO:31 ; SEQ ID NO:32; SEQ ID NO:33; SEQ ID NO:34; SEQ ID NO:35; SEQ ID NO:36; SEQ ID NO:37; SEQ ID NO:38; SEQ ID NO:39.
- FIG. 7B shows representative light chain CDR3 sequences of randomly selected VELOC IMMUNE® antibodies around the VK-JK (CDR3) junction, demonstrating junctional diversity and nucleotide additions.
- VK gene segments for each light chain CDR3 sequence are noted within parenthesis at the 5' end of each sequence (e.g., 1 -6 is human VK1 -6).
- JK gene segments for each light chain CDR3 are noted within parenthesis at the 3' end of each sequence (e.g., 1 is human JK1 ).
- SEQ ID NOs for each sequence shown are as follows proceeding from top to bottom: SEQ ID NO:40; SEQ ID NO:41 ; SEQ ID NO:42; SEQ ID NO:43; SEQ ID NO:44; SEQ ID NO:45; SEQ ID NO:46; SEQ ID NO:47; SEQ ID NO:48; SEQ ID NO:49; SEQ ID NO:50; SEQ ID NO:51 ; SEQ ID NO:52; SEQ ID NO:53; SEQ ID NO:54; SEQ ID NO:55; SEQ ID NO:56; SEQ ID NO:57; SEQ ID NO:58.
- FIG. 8 shows somatic hypermutation frequencies of heavy and light chains of VELOCIMMUNE® antibodies scored (after alignment to matching germline sequences) as percent of sequences changed at each nucleotide (NT; left column) or amino acid (AA; right column) position among sets of 38 (unimmunized IgM), 28 (unimmunized IgG), 32 (unimmunized IgK from IgG), 36 (immunized IgG) or 36 (immunized IgK from IgG) sequences. Shaded bars indicate the locations of CDRs.
- FIG. 9A shows levels of serum immunoglobulin for IgM and IgG isotypes in wild type (open bars) or VELOCIMMUNE® mice (closed bars).
- FIG. 9B shows levels of serum immunoglobulin for IgA isotype in wild type (open bars) or VELOCIMMUNE® mice (closed bars).
- FIG. 9C shows levels of serum immunoglobulin for IgE isotype in wild type (open bars) or VELOCIMMUNE® mice (closed bars).
- FIG. 10A shows antigen-specific IgG titers against interleukin-6 receptor (IL-6R) of serum from seven VELOCIMMUNE® (VI) and five wild type (WT) mice after two (bleed 1 ) or three (bleed 2) rounds of immunization with the ectodomain of IL-6R.
- IL-6R interleukin-6 receptor
- FIG. 10B shows anti-IL-6R-specific IgG isotype-specific titers from seven VELOCIMMUNE® (VI) and five wild type (WT) mice.
- FIG. 1 1 A shows the affinity distribution of anti-interleukin-6 receptor monoclonal antibodies generated in VELOCIMMUNE® mice.
- FIG. 1 1 B shows the antigen-specific blocking of anti-interleukin-6 receptor monoclonal antibodies generated in VELOCIMMUNE® (VI) and wild type (WT) mice.
- FIG. 12 shows a schematic illustration, not to scale, of mouse ADAM6a and ADAM6b genes in a mouse immunoglobulin heavy chain locus.
- a targeting vector mADAM6 Targeting Vector
- a selection cassette HAG: hygromycin
- Frt site-specific recombination sites
- FIG. 13 shows a schematic illustration, not to scale, of a human ADAM6 pseudogene (hADAM6 ) located between human heavy chain variable gene segments 1- 2 (V H 1-2) and 6-1 (V H 6-1).
- a targeting vector for bacterial homologous recombination ( ⁇ Targeting Vector) to delete a human ADAM6 pseudogene and insert unique restriction sites into a human heavy chain locus is shown with a selection cassette (NEO: neomycin) flanked by site-specific recombination sites (loxP) including engineered restriction sites on the 5' and 3' ends.
- NEO site-specific recombination sites
- An illustration, not to scale, of the resulting targeted humanized heavy chain locus containing a genomic fragment that encodes for the mouse ADAM6a and ADAM6b genes including a selection cassette flanked by site-specific recombination sites is shown.
- FIG. 14A shows FACS contour plots of lymphocytes gated on singlets for surface expression of IgM and B220 in the bone marrow for mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ +/+ ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H + + A6 res K + + ). Percentage of immature (B220 int lgM + ) and mature (B220 high lgM + ) B cells is noted in each contour plot.
- FIG. 14B shows the total number of immature (B220 int lgM + ) and mature (B220 h ' 9h lgM + ) B cells in the bone marrow isolated from femurs of mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ +/+ ) and mice homozygous for human heavy and human light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H +/+ A6 res K + + ) .
- FIG. 15A shows FACS contour plots of CD19 + -gated B cells for surface expression of c-kit and CD43 in the bone marrow for mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ +/+ ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H +/+ A6 res K + + ) . Percentage of pro-B
- CD19 + CD43 + ckit + and pre-B (CD19 + CD43 " ckit " ) cells is noted in the upper right and lower left quadrants, respectively, of each contour plot.
- FIG. 15B shows the total number of pro-B cells (CD19 + CD43 + ckit + ) and pre-B cells (CD19 + CD43 ⁇ ckif) in the bone marrow isolated from femurs of mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ + + ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H +/+ A6 res K +/+ ).
- FIG. 16A shows FACS contour plots of lymphocytes gated on singlets for surface expression of CD19 and CD43 in the bone marrow for mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ +/+ ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H + + A6 res K + + ). Percentage of immature B (CD19 + CD43 ), pre-B (CD19 + CD43 int ) and pro-B (CD19 + CD43 + ) cells is noted in each contour plot.
- FIG. 16B shows histograms of immature B (CD19 + CD43 " ) and pre-B
- mice CD19 + CD43' nt cells in the bone marrow of mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ +/+ ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H +/+ A6 re V /+ ).
- FIG. 17A shows FACS contour plots of lymphocytes gated on singlets for surface expression of CD19 and CD3 in splenocytes for mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ +/+ ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H +/+ A6 re V + ). Percentage of B (CD19 + CD3 " ) and T (CD19 " CD3 + ) cells is noted in each contour plot.
- FIG. 17B shows FACs contour plots for CD19 + -gated B cells for surface expression of and IgK light chain in the spleen of mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ +/+ ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H + + A6 res K + + ) . Percentage of ⁇ g + (upper left quadrant) and lgK + (lower right quadrant) B cells is noted in each contour plot.
- FIG. 17C shows the total number of CD19 + B cells in the spleen of mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ +/+ ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H +/+ A6 res K +/+ ) .
- FIG. 18A shows FACs contour plots of CD19 + -gated B cells for surface expression of IgD and IgM in the spleen of mice homozygous for human heavy and human K light chain variable gene loci (H + V + ) and mice homozygous for human heavy and human ⁇ light chain variable gene loci having an ectopic mouse genomic fragment encoding mouse ADAM6 genes (H +/+ A6 re V /+ ). Percentage of mature B cells
- FIG. 18B shows the total number of B cells in the spleen of mice homozygous for human heavy and human ⁇ light chain variable gene loci ( ⁇ +/+ ⁇ +/+ ) and mice
- the phrase "substantial” or “substantially” when used to refer to an amount of gene segments includes both functional and non functional gene segments and include, in various embodiments, e.g., 80% or more, 85% or more, 90% or more, 95% or more 96% or more, 97% or more, 98% or more, or 99% or more of all gene segments; in various embodiments, "substantially all” gene segments includes, e.g., at least 95%, 96%, 97%, 98%, or 99% of functional (i.e., non-pseudogene) gene segments.
- the term "replacement” includes wherein a DNA sequence is placed into a genome of a cell in such a way as to replace a sequence within the genome with a heterologous sequence (e.g. , a human sequence in a mouse), at the locus of the genomic sequence,.
- the DNA sequence so placed may include one or more regulatory sequences that are part of source DNA used to obtain the sequence so placed (e.g. , promoters, enhancers, 5'- or 3'-untranslated regions, appropriate recombination signal sequences, etc.).
- the replacement is a substitution of an endogenous sequence for a heterologous sequence that results in the production of a gene product from the DNA sequence so placed (comprising the heterologous sequence), but not expression of the endogenous sequence;
- the replacement is of an endogenous genomic sequence with a DNA sequence that encodes a protein that has a similar function as a protein encoded by the endogenous genomic sequence (e.g., the endogenous genomic sequence encodes an immunoglobulin gene or domain, and the DNA fragment encodes one or more human immunoglobulin genes or domains).
- an endogenous gene or fragment thereof is replaced with a corresponding human gene or fragment thereof.
- a corresponding human gene or fragment thereof is a human gene or fragment that is an ortholog of, a homolog of, or is substantially identical or the same in structure and/or function, as the endogenous gene or fragment thereof that is replaced.
- the mouse as a genetic model has been greatly enhanced by transgenic and knockout technologies, which have allowed for the study of the effects of the directed over- expression or deletion of specific genes. Despite all of its advantages, the mouse still presents genetic obstacles that render it an imperfect model for human diseases and an imperfect platform to test human therapeutics or make them.
- selected target genes can be "humanized,” that is, the mouse gene can be eliminated and replaced by the corresponding human orthologous gene sequence (e.g., US 6,586,251 , US 6,596,541 and US 7,105,348, incorporated herein by reference).
- human orthologous gene sequence e.g., US 6,586,251 , US 6,596,541 and US 7,105,348, incorporated herein by reference.
- knockout-plus-transgenic humanization strategy entailed crossing a mouse carrying a deletion (i.e., knockout) of the endogenous gene with a mouse carrying a randomly integrated human transgene (see, e.g., Bril et al., 2006, Tolerance to factor VIII in a transgenic mouse expressing human factor VIII cDNA carrying an Arg(593) to Cys substitution, Thromb Haemost 95:341 -347; Homanics et al., 2006, Production and characterization of murine models of classic and intermediate maple syrup urine disease, BMC Med Genet 7:33; Jamsai et al., 2006, A humanized BAC transgenic/knockout mouse model for HbE/beta-thalassemia, Genomics 88(3):309-15; Pan er a/., 2006, Different role for mouse and human CD3delta/epsilon heterodimer in preT cell receptor (preTCR) function:human CD3delta/eps
- mice immunoglobulin heavy chain and ⁇ light chain loci were inactivated in these mice by targeted deletion of small but critical portions of each endogenous locus, followed by introducing human immunoglobulin gene loci as randomly integrated large transgenes, as described above, or minichromosomes (Tomizuka et al., 2000, Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies, PNAS USA 97:722-727).
- Such mice represented an important advance in genetic engineering; fully human monoclonal antibodies isolated from them yielded promising therapeutic potential for treating a variety of human diseases (Gibson et al., 2006, Randomized phase III trial results of
- panitumumab a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer, Clin Colorectal Cancer 6:29-31 ; Jakobovits et al., 2007; Kim et al., 2007, Clinical efficacy of zanolimumab (HuMax-CD4): two Phase II studies in refractory cutaneous T-cell lymphoma, Blood 109(1 1 ):4655-62; Lonberg, 2005, Human antibodies from transgenic animals, Nat Biotechnol 23:1 1 17-1125; Maker et al., 2005, Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte- associated antigen 4 blockade and interleukin 2: a phase l/ll study, Ann Surg Oncol 12:1005-1016; McClung et al., 2006, Denosumab in postmenopausal women with low bone mineral density, New Engl J Med 354:821-83
- mice exhibit compromised B cell development and immune deficiencies when compared to wild type mice.
- Such problems potentially limit the ability of the mice to support a vigorous humoral response and, consequently, generate fully human antibodies against some antigens.
- the deficiencies may be due to: (1) inefficient functionality due to the random introduction of the human immunoglobulin transgenes and resulting incorrect expression due to a lack of upstream and downstream control elements (Garrett et al., 2005,
- Chromatin architecture near a potential 3' end of the IgH locus involves modular regulation of histone modifications during B-Cell development and in vivo occupancy at CTCF sites, Mot Cell Biol 25:151 1-1525; Manis et al., 2003, Elucidation of a downstream boundary of the 3' IgH regulatory region, Mol Immunol 39:753-760; Pawlitzky et al., 2006, Identification of a candidate regulatory element within the 5' flanking region of the mouse IgH locus defined by pro-B cell-specific hypersensitivity associated with binding of PU.1 , Pax5, and E2A, J Immunol 176:6839-6851); (2) inefficient interspecies interactions between human constant domains and mouse components of the B-cell receptor signaling complex on the cell surface, which may impair signaling processes required for normal maturation, proliferation, and survival of B cells (Hombach et al., 1990, Molecular components of the B- cell antigen receptor complex of the IgM class, Nature 343:760
- transgenes e.g., chimeric immunoglobulin light chain transgenes or fully human fully mouse, etc.
- the species from which the heterologous immunoglobulin heavy chain sequences are derived can vary widely; as with immunoglobulin light chain sequences employed in immunoglobulin light chain sequence replacements or immunoglobulin light chain transgenes.
- Immunoglobulin variable region nucleic acid sequences are in various embodiments obtained from a human or a non-human animal.
- Non-human animals suitable for providing V, D, and/or J segments include, for example bony fish, cartilaginous fish such as sharks and rays, amphibians, reptiles, mammals, birds (e.g., chickens).
- Non-human animals include, for example, mammals.
- Mammals include, for example, non-human primates, goats, sheep, pigs, dogs, bovine (e.g., cow, bull, buffalo), deer, camels, ferrets and rodents and non-human primates (e.g., chimpanzees, orangutans, gorillas, marmosets, rhesus monkeys baboons).
- Suitable non-human animals are selected from the rodent family including rats, mice, and hamsters.
- the non-human animals are mice.
- various non- human animals can be used as sources of variable domains or variable region gene segments (e.g., sharks, rays, mammals (e.g., camels, rodents such as mice and rats).
- non-human animals are also used as sources of constant region sequences to be used in connection with variable sequences or segments, for example, rodent constant sequences can be used in transgenes operably linked to human or non-human variable sequences (e.g., human or non-human primate variable sequences operably linked to, e.g., rodent, e.g. , mouse or rat or hamster, constant sequences).
- human V, D, and/or J segments are operably linked to rodent (e.g., mouse or rat or hamster) constant region gene sequences.
- rodent e.g., mouse or rat or hamster
- the human V, D, and/or J segments (or one or more rearranged VDJ or VJ genes) are operably linked or fused to a mouse, rat, or hamster constant region gene sequence in, e.g., a transgene integrated at a locus that is not an endogenous
- a mouse comprises a replacement of V H , D H , and J H segments at an endogenous immunoglobulin heavy chain locus with one or more human V H , D H , and J H segments, wherein the one or more human V H , D H , and J H segments are operably linked to an endogenous immunoglobulin heavy chain gene;
- the mouse comprises a transgene at a locus other than an endogenous immunoglobulin locus, wherein the transgene comprises an unrearranged or rearranged human V L and human J L segment operably linked to a mouse or rat or human constant region.
- a method for a large in situ genetic replacement of the mouse germline immunoglobulin variable gene loci with human germline immunoglobulin variable gene loci while maintaining the ability of the mice to generate offspring is described. Specifically, the precise replacement of six megabases of both the mouse heavy chain and ⁇ light chain immunoglobulin variable gene loci with their human counterparts while leaving the mouse constant regions intact is described. As a result, mice have been created that have a precise replacement of their entire germline immunoglobulin variable repertoire with equivalent human germline immunoglobulin variable sequences, while maintaining mouse constant regions.
- the human variable regions are linked to mouse constant regions to form chimeric human-mouse immunoglobulin loci that rearrange and express at physiologically appropriate levels.
- the antibodies expressed are "reverse chimeras," i.e., they comprise human variable region sequences and mouse constant region sequences. These mice having humanized immunoglobulin variable regions that express antibodies having human variable regions and mouse constant regions are called VELCOIMMUNE® mice.
- VELOCIMMUNE® humanized mice exhibit a fully functional humoral immune system that is essentially indistinguishable from that of wild-type mice. They display normal cell populations at all stages of B cell development. They exhibit normal lymphoid organ morphology. Antibody sequences of VELOCIMMUNE® mice exhibit normal V(D)J rearrangement and normal somatic hypermutation frequencies. Antibody populations in these mice reflect isotype distributions that result from normal class switching (e.g., normal isotype c/s-switching). Immunizing VELOCIMMUNE® mice results in robust humoral immune responses that generate a large, diverse antibody repertoires having human immunoglobulin variable domains suitable for use as therapeutic candidates. This platform provides a plentiful source of naturally affinity-matured human immunoglobulin variable region sequences for making pharmaceutically acceptable antibodies and other antigen- binding proteins.
- mouse immunoglobulin variable sequences with human immunoglobulin variable sequences that allows for making VELOCIMMUNE® mice.
- endogenous mouse immunoglobulin sequences at heavy and light chain loci with equivalent human immunoglobulin sequences, by sequential recombineering of very large spans of human immunoglobulin sequences, may present certain challenges due to divergent evolution of the immunoglobulin loci between mouse and man.
- intergenic sequences interspersed within the immunoglobulin loci are not identical between mice and humans and, in some circumstances, may not be functionally equivalent.
- mice and humans in their immunoglobulin loci can still result in abnormalities in humanized mice, particularly when humanizing or manipulating certain portions of endogenous mouse immunoglobulin heavy chain loci. Some modifications at mouse immunoglobulin heavy chain loci are deleterious.
- Deleterious modifications can include, for example, loss of the ability of the modified mice to mate and produce offspring.
- V H -D H -JH and VK-JK variable regions of the mouse heavy and light chain immunoglobulin loci
- VK-JK variable regions of the mouse heavy and light chain immunoglobulin loci
- the human V H , D H , JH, VK and JK gene sequences were introduced through stepwise insertion of 13 chimeric BAC targeting vectors bearing overlapping fragments of the human germline variable loci into mouse ES cells using VELOCIGENE® genetic engineering technology (see, e.g., US Pat. No. 6,586,251 and Valenzuela et al., 2003, High-throughput engineering of the mouse genome coupled with high-resolution expression analysis, Nat Biotechnol 21 :652-659).
- mice [000205] Humanization of the mouse immunoglobulin genes represents the largest genetic modification to the mouse genome to date. While previous efforts with randomly integrated human immunoglobulin transgenes have met with some success (discussed above), direct replacement of the mouse immunoglobulin genes with their human counterparts dramatically increases the efficiency with which fully-human antibodies can be efficiently generated in otherwise normal mice. Further, such mice exhibit a dramatically increased diversity of fully human antibodies that can be obtained after immunization with virtually any antigen, as compared with mice bearing disabled endogenous loci and fully human antibody transgenes. Multiple versions of replaced, humanized loci exhibit completely normal levels of mature and immature B cells, in contrast to mice with randomly integrated human transgenes, which exhibit significantly reduced B cell populations at various stages of differentiation. While efforts to increase the number of human gene segments in human transgenic mice have reduced such defects, the expanded
- immunoglobulin repertoires have not altogether corrected reductions in B cell populations as compared to wild-type mice.
- mice with replaced immunoglobulin loci i.e., VELOCIMMUNE® mice
- VELOCIMMUNE® mice there are other challenges encountered when employing a direct replacement of the immunoglobulin that is not encountered in some approaches that employ randomly integrated transgenes.
- Differences in the genetic composition of the immunoglobulin loci between mice and humans has lead to the discovery of sequences beneficial for the propagation of mice with replaced immunoglobulin gene segments.
- mouse ADAM genes located within the endogenous immunoglobulin locus are optimally present in mice with replaced immunoglobulin loci, due to their role in fertility.
- mice that lack the ability to express any functional ADAM6 protein surprisingly exhibit a defect in the ability of the mice to mate and to generate offspring.
- the mice lack the ability to express a functional ADAM6 protein by virtue of a replacement of all or substantially all mouse immunoglobulin variable region gene segments with human variable region gene segments.
- the loss of ADAM6 function results because the ADAM6 locus is located within a region of the endogenous mouse immunoglobulin heavy chain variable region gene locus, proximal to the 3' end of the V H gene segment locus that is upstream of the D H gene segments.
- mice that are homozygous for a replacement of all or substantially all endogenous mouse heavy chain variable gene segments with human heavy chain variable gene segments In order to breed mice that are homozygous for a replacement of all or substantially all endogenous mouse heavy chain variable gene segments with human heavy chain variable gene segments, it is generally a cumbersome approach to set up males and females that are each homozygous for the replacement and await a productive mating. Successful litters are low in frequency and size. Instead, males heterozygous for the replacement have been employed to mate with females homozygous for the replacement to generate progeny that are heterozygous for the replacement, then breed a homozygous mouse therefrom. The inventors have determined that the likely cause of the loss in fertility in the male mice is the absence in homozygous male mice of a functional ADAM6 protein.
- male mice that comprise a damaged (i.e., nonfunctional or marginally functional) ADAM6 gene exhibit a reduction or elimination of fertility. Because in mice (and other rodents) the ADAM6 gene is located in the immunoglobulin heavy chain locus, the inventors have determined that in order to propagate mice, or create and maintain a strain of mice, that comprise a replaced immunoglobulin heavy chain locus, various modified breeding or propagation schemes are employed. The low fertility, or infertility, of male mice homozygous for a replacement of the endogenous immunoglobulin heavy chain variable gene locus renders maintaining such a modification in a mouse strain difficult. In various embodiments, maintaining the strain comprises avoiding infertility problems exhibited by male mice homozygous for the replacement.
- a method for maintaining a strain of mouse as described herein is provided.
- the strain of mouse need not comprise an ectopic ADAM6 sequence, and in various embodiments the strain of mouse is homozygous or heterozygous for a knockout (e.g., a functional knockout) of ADA 6.
- the mouse strain comprises a modification of an endogenous immunoglobulin heavy chain locus that results in a reduction or loss in fertility in a male mouse.
- the modification comprises a deletion of a regulatory region and/or a coding region of an ADAM6 gene.
- the modification comprises a modification of an endogenous ADAM6 gene (regulatory and/or coding region) that reduces or eliminates fertility of a male mouse that comprises the modification; in a specific embodiment, the modification reduces or eliminates fertility of a male mouse that is homozygous for the modification.
- the mouse strain is homozygous or heterozygous for a knockout (e.g., a functional knockout) or a deletion of an ADAM6 gene.
- the mouse strain is maintained by isolating from a mouse that is homozygous or heterozygous for the modification a cell, and employing the donor cell in host embryo, and gestating the host embryo and donor cell in a surrogate mother, and obtaining from the surrogate mother a progeny that comprises the genetic
- the donor cell is an ES cell. In one embodiment, the donor cell is a pluripotent cell, e.g., an induced pluripotent cell.
- the mouse strain is maintained by isolating from a mouse that is homozygous or heterozygous for the modification a nucleic acid sequence comprising the modification, and introducing the nucleic acid sequence into a host nucleus, and gestating a cell comprising the nucleic acid sequence and the host nucleus in a suitable animal.
- the nucleic acid sequence is introduced into a host oocyte embryo.
- the mouse strain is maintained by isolating from a mouse that is homozygous or heterozygous for the modification a nucleus, and introducing the nucleus into a host cell, and gestating the nucleus and host cell in a suitable animal to obtain a progeny that is homozygous or heterozygous for the modification.
- the mouse strain is maintained by employing in vitro fertilization (IVF) of a female mouse (wild-type, homozygous for the modification, or heterozygous for the modification) employing a sperm from a male mouse comprising the genetic modification.
- IVF in vitro fertilization
- the male mouse is heterozygous for the genetic modification.
- the male mouse is homozygous for the genetic modification.
- the mouse strain is maintained by breeding a male mouse that is heterozygous for the genetic modification with a female mouse to obtain progeny that comprises the genetic modification, identifying a male and a female progeny comprising the genetic modification, and employing a male that is heterozygous for the genetic modification in a breeding with a female that is wild-type, homozygous, or heterozygous for the genetic modification to obtain progeny comprising the genetic modification.
- the step of breeding a male heterozygous for the genetic modification with a wild-type female, a female heterozygous for the genetic modification, or a female homozygous for the genetic modification is repeated in order to maintain the genetic modification in the mouse strain.
- a method for maintaining a mouse strain that comprises a replacement of an endogenous immunoglobulin heavy chain variable gene locus with one or more human immunoglobulin heavy chain sequences, comprising breeding the mouse strain so as to generate heterozygous male mice, wherein the heterozygous male mice are bred to maintain the genetic modification in the strain.
- the strain is not maintained by any breeding of a homozygous male with a wild-type female, or a female homozygous or heterozygous for the genetic modification.
- the ADAM6 protein is a member of the ADAM family of proteins, where ADAM is an acronym for A Disintegrin And Metalloprotease.
- the ADAM family of proteins is large and diverse, with diverse functions including cell adhesion. Some members of the ADAM family are implicated in spermatogenesis and fertilization.
- ADAM2 encodes a subunit of the protein fertilin, which is implicated in sperm-egg interactions.
- ADAM3, or cyritestin appears necessary for sperm binding to the zona pellucida. The absence of either ADAM2 or ADAM3 results in infertility.
- ADAM2, ADAM 3, and ADAM6 form a complex on the surface of mouse sperm cells.
- the human ADAM6 gene normally found between human V H gene segments V H 1 -2 and V H 6-1 , appears to be a pseudogene ( Figure 12). In mice, there are two ADAM6 genes— ADAM6a and
- ADAM6b that are found in an intergenic region between mouse V H and D H gene segments, and in the mouse the ADAM6a and ADAM6b genes are oriented in opposite transcriptional orientation to that of the surrounding immunoglobulin gene segments (FIG. 12).
- a functional ADAM6 locus is apparently required for normal fertilization.
- a functional ADAM6 locus or sequence refers to an ADAM6 locus or sequence that can complement, or rescue, the drastically reduced fertilization exhibited in male mice with missing or nonfunctional endogenous ADAM6 loci.
- mice that encodes ADAM6a and ADAM6b renders the intergenic sequence susceptible to modification when modifying an endogenous mouse heavy chain.
- V H gene segments are deleted or replaced, or when D H gene segments are deleted or replaced, there is a high probability that a resulting mouse will exhibit a severe deficit in fertility.
- the mouse is modified to include a nucleotide sequence that encodes a protein that will complement the loss in ADAM6 activity due to a modification of the endogenous mouse ADAM6 locus.
- the complementing nucleotide sequence is one that encodes a mouse ADAM6a, a mouse ADAM6b, or a homolog or ortholog or functional fragment thereof that rescues the fertility deficit.
- the nucleotide sequence that rescues fertility can be placed at any suitable position. It can be placed in the intergenic region, or in any suitable position in the genome (i.e., ectopically).
- the nucleotide sequence can be introduced into a transgene that randomly integrates into the mouse genome.
- the sequence can be maintained episomally, that is, on a separate nucleic acid rather than on a mouse chromosome.
- Suitable positions include positions that are transcriptionally permissive or active, e.g., a ROSA26 locus (Zambrowicz et al., 1997, PNAS USA 94:3789- 3794), a BT-5 locus (Michael et al., 1999, Mech. Dev. 85:35-47), or an Oct4 locus (Wallace et al., 2000, Nucleic Acids Res. 28:1455-1464).
- a ROSA26 locus Zabrowicz et al., 1997, PNAS USA 94:3789- 3794
- BT-5 locus Zikalocate et al., 1999, Mech. Dev. 85:35-47
- Oct4 locus Wang et al., 2000, Nucleic Acids Res. 28:1455-1464.
- the nucleotide sequence that rescues fertility can be coupled with an inducible promoter so as to facilitate optimal expression in the appropriate cells and/or tissues, e.g., reproductive tissues.
- exemplary inducible promoters include promoters activated by physical (e.g., heat shock promoter) and/or chemical means (e.g., IPTG or Tetracycline).
- expression of the nucleotide sequence can be linked to other genes so as to achieve expression at specific stages of development or within specific tissues. Such expression can be achieved by placing the nucleotide sequence in operable linkage with the promoter of a gene expressed at a specific stage of development.
- immunoglobulin sequences from one species engineered into the genome of a host species are place in operable linkage with a promoter sequence of a CD19 gene (a B cell specific gene) from the host species.
- B cell-specific expression at precise developmental stages when immunoglobulins are expressed is achieved.
- a constitutive promoter include SV40, CMV, UBC, EF1 A, PGK and CAGG.
- the desired nucleotide sequence is placed in operable linkage with a selected constitutive promoter, which provides high level of expression of the protein(s) encoded by the nucleotide sequence.
- ectopic is intended to include a displacement, or a placement at a position that is not normally encountered in nature (e.g., placement of a nucleic acid sequence at a position that is not the same position as the nucleic acid sequence is found in a wild-type mouse).
- the term in various embodiments, is used in the sense of its object being out of its normal, or proper, position.
- an ectopic nucleotide sequence encoding... refers to a nucleotide sequence that appears at a position at which it is not normally encountered in the mouse.
- an ectopic nucleotide sequence encoding a mouse ADA 6 protein (or an ortholog or homolog or fragment thereof that provides the same or similar fertility benefit on male mice)
- the sequence can be placed at a different position in the mouse's genome than is normally found in a wild-type mouse.
- novel sequence junctions of mouse sequence will be created by placing the sequence at a different position in the mouse's genome than in a wild-type mouse.
- a functional homolog or ortholog of mouse ADAM6 is a sequence that confers a rescue of fertility loss (e.g., loss of the ability of a male mouse to generate offspring by mating) that is observed in an ADAM6 "A mouse.
- Functional homologs or orthologs include proteins that have at least about 89% identity or more, e.g., up to 99% identity, to the amino acid sequence of ADAM6a and/or to the amino acid sequence of ADAM6b, and that can complement, or rescue ability to successfully mate, of a mouse that has a genotype that includes a deletion or knockout of ADAM6a and/or ADAM6b.
- the ectopic position can be anywhere (e.g., as with random insertion of a transgene containing a mouse ADAM6 sequence), or can be, e.g., at a position that approximates (but is not precisely the same as) its location in a wild-type mouse (e.g., in a modified endogenous mouse immunoglobulin locus, but either upstream or downstream of its natural position, e.g., within a modified immunoglobulin locus but between different gene segments, or at a different position in a mouse V-D intergenic sequence).
- a humanized immunoglobulin heavy chain locus For example, a mouse comprising a replacement of one or more endogenous V H gene segments with human V H gene segments, wherein the replacement removes an
- endogenous ADAM6 sequence can be engineered to have a mouse ADAM6 sequence located within a sequence that contains the human V H gene segments.
- the resulting modification would generate a (ectopic) mouse ADAM6 sequence within a human gene sequence, and the (ectopic) placement of the mouse ADAM6 sequence within the human gene sequence can approximate the position of the human ADAM6 pseudogene ⁇ i.e., between two V segments) or can approximate the position of the mouse ADAM6 sequence (i.e., within the V-D intergenic region).
- the resulting sequence junctions created by the joining of a (ectopic) mouse ADAM6 sequence within or adjacent to a human gene sequence (e.g., an immunoglobulin gene sequence) within the germline of the mouse would be novel as compared to the same or similar position in the genome of a wild-type mouse.
- non-human animals are provided that lack an ADAM6 or ortholog or homolog thereof, wherein the lack renders the non-human animal infertile, or substantially reduces fertility of the non-human animal.
- the lack of ADAM6 or ortholog or homolog thereof is due to a modification of an endogenous immunoglobulin heavy chain locus.
- a substantial reduction in fertility is, e.g., a reduction in fertility (e.g., breeding frequency, pups per litter, litters per year, etc.) of about 50%, 60%, 70%, 80%, 90%, or 95% or more.
- the non-human animals are supplemented with a mouse ADAM6 gene or ortholog or homolog or functional fragment thereof that is functional in a male of the non-human animal, wherein the supplemented ADAM6 gene or ortholog or homolog or functional fragment thereof rescues the reduction in fertility in whole or in substantial part.
- a rescue of fertility in substantial part is, e.g., a restoration of fertility such that the non-human animal exhibits a fertility that is at least 70%, 80%, or 90% or more as compared with an unmodified (i.e., an animal without a
- ADAM6 gene or ortholog or homolog thereof heavy chain locus
- the sequence that confers upon the genetically modified animal i.e., the animal that lacks a functional ADAM6 or ortholog or homolog thereof, due to, e.g., a modification of a immunoglobulin heavy chain locus
- the loss of ADAM6 function is rescued by adding, in one embodiment, a mouse ADAM6 gene.
- the loss of ADAM6 function in the mouse is rescued by adding an ortholog or homolog of a closely related specie with respect to the mouse, e.g., a rodent, e.g., a mouse of a different strain or species, a rat of any species, a rodent; wherein the addition of the ortholog or homolog to the mouse rescues the loss of fertility due to loss of ADAM6 function or loss of an ADAM6 gene.
- a rodent e.g., a mouse of a different strain or species, a rat of any species, a rodent
- Orthologs and homologs from other species are selected from a phylogenetically related species and, in various embodiments, exhibit a percent identity with the endogenous ADAM6 (or ortholog) that is about 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, or 97% or more; and that rescue ADAM6-related or (in a non-mouse) ADAM6 ortholog-related loss of fertility.
- a genetically modified male rat that lacks ADAM6 function e.g., a rat with an endogenous immunoglobulin heavy chain variable region replaced with a human immunoglobulin heavy chain variable region, or a knockout in the rat
- loss of fertility in the rat is rescued by addition of a rat ADAM6 or, in some embodiments, an ortholog of a rat ADAM6 (e.g., an ADAM6 ortholog from another rat strain or species, or, in one embodiment, from a mouse).
- a rat ADAM6 e.g., an ADAM6 ortholog from another rat strain or species, or, in one embodiment, from a mouse.
- genetically modified animals that exhibit no fertility or a reduction in fertility due to modification of a nucleic acid sequence encoding an ADAM6 protein (or ortholog or homolog thereof) or a regulatory region operably linked with the nucleic acid sequence, comprise a nucleic acid sequence that complements, or restores, the loss in fertility where the nucleic acid sequence that complements or restores the loss in fertility is from a different strain of the same species or from a phylogenetically related species.
- the complementing nucleic acid sequence is an ADAM6 ortholog or homolog or functional fragment thereof.
- the complementing ADAM6 ortholog or homolog or functional fragment thereof is from a non- human animal that is closely related to the genetically modified animal having the fertility defect.
- the genetically modified animal is a mouse of a particular strain
- an ADAM6 ortholog or homolog or functional fragment thereof can be obtained from a mouse of another strain, or a mouse of a related species.
- the genetically modified animal comprising the fertility defect is of the order Rodentia
- the ADAM6 ortholog or homolog or functional fragment thereof is from another animal of the order Rodentia.
- the genetically modified animal comprising the fertility defect is of a suborder Myomoropha (e.g., jerboas, jumping mice, mouse-like hamsters, hamsters, New World rats and mice, voles, true mice and rats, gerbils, spiny mice, crested rats, climbing mice, rock mice, white-tailed rats, malagasy rats and mice, spiny dormice, mole rats, bamboo rats, zokors), and the ADAM6 ortholog or homolog or functional fragment thereof is selected from an animal of order Rodentia, or of the suborder
- Myomoropha e.g., jerboas, jumping mice, mouse-like hamsters, hamsters, New World rats and mice, voles, true mice and rats, gerbils, spiny mice, crested rats, climbing mice, rock mice, white-tailed rats, malagasy rats and mice, spiny dormice, mole rats, bamboo rats, zokors
- the genetically modified animal is from the superfamily Dipodoidea, and the ADAM6 ortholog or homolog or functional fragment thereof is from the superfamily Muroidea. In one embodiment, the genetically modified animal is from the superfamily Muroidea, and the ADAM6 ortholog or homolog or functional fragment thereof is from the superfamily Dipodoidea.
- the genetically modified animal is a rodent.
- the rodent is selected from the superfamily Muroidea
- the ADAM6 ortholog or homolog is from a different species within the superfamily Muroidea.
- the genetically modified animal is from a family selected from Calomyscidae (e.g., mouse-like hamsters), Cricetidae (e.g., hamster, New World rats and mice, voles), Muridae (true mice and rats, gerbils, spiny mice, crested rats), Nesomyidae (climbing mice, rock mice, with-tailed rats, Malagasy rats and mice), Platacanthomyidae (e.g., spiny dormice), and Spalacidae (e.g., mole rates, bamboo rats, and zokors); and the ADAM6 ortholog or homolog is selected from a different species of the same family.
- the genetically modified rodent is selected from a true mouse or rat (family Muridae), and the ADAM6 ortholog or homolog is from a species selected from a gerbil, spiny mouse, or crested rat.
- the genetically modified mouse is from a member of the family Muridae, and the ADAM6 ortholog or homolog is from a different species of the family Muridae.
- the genetically modified rodent is a mouse of the family Muridae, and the ADAM6 ortholog or homolog is from a rat, gerbil, spiny mouse, or crested rat of the family Muridae.
- one or more rodent ADAM6 orthologs or homologs or functional fragments thereof of a rodent in a family restores fertility to a genetically modified rodent of the same family that lacks an ADAM6 ortholog or homolog (e.g., Cricetidae (e.g., hamsters, New World rats and mice, voles); Muridae (e.g., true mice and rats, gerbils, spiny mice, crested rats)).
- Cricetidae e.g., hamsters, New World rats and mice, voles
- Muridae e.g., true mice and rats, gerbils, spiny mice, crested rats
- ADAM6 orthologs, homologs, and fragments thereof are assessed for functionality by ascertaining whether the ortholog, homolog, or fragment restores fertility to a genetically modified male non-human animal that lacks ADAM6 activity (e.g., a rodent, e.g., a mouse or rat, that comprises a knockout of ADAM6 or its ortholog).
- functionality is defined as the ability of a sperm of a genetically modified animal lacking an endogenous ADAM6 or ortholog or homolog thereof to migrate an oviduct and fertilize an ovum of the same specie of genetically modified animal.
- mice that comprise deletions or replacements of the endogenous heavy chain variable region locus or portions thereof can be made that contain an ectopic nucleotide sequence that encodes a protein that confers similar fertility benefits to mouse ADAM6 (e.g., an ortholog or a homolog or a fragment thereof that is functional in a male mouse).
- the ectopic nucleotide sequence can include a nucleotide sequence that encodes a protein that is an ADAM6 homolog or ortholog (or fragment thereof) of a different mouse strain or a different species, e.g., a different rodent species, and that confers a benefit in fertility, e.g., increased number of litters over a specified time period, and/or increased number of pups per litter, and/or the ability of a sperm cell of a male mouse to traverse through a mouse oviduct to fertilize a mouse egg.
- a nucleotide sequence that encodes a protein that is an ADAM6 homolog or ortholog (or fragment thereof) of a different mouse strain or a different species, e.g., a different rodent species, and that confers a benefit in fertility, e.g., increased number of litters over a specified time period, and/or increased number of pups per litter, and/or the ability of a sperm cell of a male
- the ADAM6 is a homolog or ortholog that is at least 89% to 99% identical to a mouse ADAM6 protein (e.g., at least 89% to 99% identical to mouse ADAM6a or mouse ADAM6b).
- the ectopic nucleotide sequence encodes one or more proteins independently selected from a protein at least 89% identical to mouse ADAM6a, a protein at least 89% identical to mouse ADAM6b, and a combination thereof.
- the homolog or ortholog is a rat, hamster, mouse, or guinea pig protein that is or is modified to be about 89% or more identical to mouse ADA 6a and/or mouse ADAM6b.
- the homolog or ortholog is or is at least 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to a mouse ADAM6a and/or mouse ADAM6b.
- BACs bacterial artificial chromosomes
- mice that make human antibodies have been available for some time now. Although they represent an important advance in the development of human therapeutic antibodies, these mice display a number of significant abnormalities that limit their usefulness. For example, they display compromised B cell development. The
- transgenic mice compromised development may be due to a variety of differences between the transgenic mice and wild-type mice.
- Human antibodies might not optimally interact with mouse pre B cell or B cell receptors on the surface of mouse cells that signal for maturation, proliferation, or survival during clonal selection. Fully human antibodies might not optimally interact with a mouse Fc receptor system; mice express Fc receptors that do not display a one-to-one
- mice that make fully human antibodies do not include all genuine mouse sequences, e.g., downstream enhancer elements and other locus control elements, which may be required for wild-type B cell development.
- Mice that make fully human antibodies generally comprise endogenous immunoglobulin loci that are disabled in some way, and human transgenes that comprise variable and constant immunoglobulin gene segments are introduced into a random location in the mouse genome. As long as the endogenous locus is sufficiently disabled so as not to rearrange gene segments to form a functional immunoglobulin gene, the goal of making fully human antibodies in such a mouse can be achieved— albeit with compromised B cell development.
- frans-switched antibodies made in such mice retain fully human light chains, since the phenomenon of frans-switching apparently does not occur with respect to light chains; frans-switching presumably relies on switch sequences in endogenous loci used (albeit differently) in normal isotype switching in c/ ' s.
- frans-switching presumably relies on switch sequences in endogenous loci used (albeit differently) in normal isotype switching in c/ ' s.
- a primary concern in making antibody-based human therapeutics is making a sufficiently large diversity of human immunoglobulin variable region sequences to identify useful variable domains that specifically recognize particular epitopes and bind them with a desirable affinity, usually— but not always— with high affinity.
- VELOCIMMUNE® mice there was no indication that mice expressing human variable regions with mouse constant regions would exhibit any significant differences from mice that made human antibodies from a transgene. That supposition, however, was incorrect.
- VELOCIMMUNE® mice which contain a precise replacement of mouse immunoglobulin variable regions with human immunoglobulin variable regions at the endogenous mouse loci, display a surprising and remarkable similarity to wild-type mice with respect to B cell development. In a surprising and stunning development,
- VELOCIMMUNE® mice displayed an essentially normal, wild-type response to
- variable regions generated in response to immunization are fully human.
- VELOCIMMUNE® mice contain a precise, large-scale replacement of germline variable regions of mouse immunoglobulin heavy chain (IgH) and immunoglobulin light chain (e.g., ⁇ light chain, Igic) with corresponding human immunoglobulin variable regions, at the endogenous loci. In total, about six megabases of mouse loci are replaced with about 1.5 megabases of human genomic sequence. This precise replacement results in a mouse with hybrid immunoglobulin loci that make heavy and light chains that have a human variable regions and a mouse constant region. The precise replacement of mouse VH-DH-JH and VK-JK segments leave flanking mouse sequences intact and functional at the hybrid immunoglobulin loci. The humoral immune system of the mouse functions like that of a wild-type mouse. B cell development is unhindered in any significant respect and a rich diversity of human variable regions is generated in the mouse upon antigen challenge.
- IgH immunoglobulin heavy chain
- Igic immunoglobulin light chain
- VELOCIMMUNE® mice are possible because immunoglobulin gene segments for heavy and ⁇ light chains rearrange similarly in humans and mice, which is not to say that their loci are the same or even nearly so— clearly they are not. However, the loci are similar enough that humanization of the heavy chain variable gene locus can be accomplished by replacing about three million base pairs of contiguous mouse sequence that contains all the V H , D H , and J H gene segments with about one million bases of contiguous human genomic sequence covering basically the equivalent sequence from a human immunoglobulin locus.
- mice with hybrid immunoglobulin loci that make antibodies that have human variable regions and partly human constant regions suitable for, e.g., making fully human antibody fragments, e.g., fully human Fab's.
- Mice with hybrid immunoglobulin loci exhibit normal variable gene segment rearrangement, normal somatic hypermutation frequencies, and normal class switching.
- mice exhibit a humoral immune system that is indistinguishable from wild type mice, and display normal cell populations at all stages of B cell development and normal lymphoid organ structures— even where the mice lack a full repertoire of human variable region gene segments. Immunizing these mice results in robust humoral responses that display a wide diversity of variable gene segment usage.
- mice that have partly human immunoglobulin loci. Because the partly human immunoglobulin loci rearrange, hypermutate, and class switch normally, the partly human immunoglobulin loci generate antibodies in a mouse that comprise human variable regions. Nucleotide sequences that encode the variable regions can be identified and cloned, then fused (e.g., in an in vitro system) with any sequences of choice, e.g., any immunoglobulin isotype suitable for a particular use, resulting in an antibody or antigen- binding protein derived wholly from human sequences.
- any sequences of choice e.g., any immunoglobulin isotype suitable for a particular use
- mice with such replaced immunoglobulin loci can comprise a disruption or deletion of the endogenous mouse ADAM6 locus, which is normally found between the 3'- most V H gene segment and the 5'-most DH gene segment at the mouse immunoglobulin heavy chain locus. Disruption in this region can lead to reduction or elimination of functionality of the endogenous mouse ADAM6 locus. If the 3'-most V H gene segments of the human heavy chain repertoire are used in a replacement, an intergenic region containing a pseudogene that appears to be a human ADAM6 pseudogene is present between these V H gene segments, i.e., between human V H 1-2 and V H 1-6. However, male mice that comprise this human intergenic sequence exhibit a reduction in fertility.
- mice are described that comprise the replaced loci as described above, and that also comprise an ectopic nucleic acid sequence encoding a mouse ADAM6, where the mice exhibit essentially normal fertility.
- the ectopic nucleic acid sequence comprises a mouse ADAM6a and/or a mouse ADAM6b sequence or functional fragments thereof placed between a human V H 1-2 and a human V H 6-1 at a modified endogenous heavy chain locus.
- the ectopic nucleic acid sequence is SEQ ID NO:3, placed between a human V H 1 -2 and a human V H 6-1 at a modified endogenous heavy chain locus.
- the direction of transcription of the ADAM6 genes of SEQ ID NO:3 are opposite with respect to the direction of transcription of the surrounding human V H gene segments.
- examples herein show rescue of fertility by placing the ectopic sequence between the indicated human V H gene segments, skilled persons will recognize that placement of the ectopic sequence at any suitable transcriptionally- permissive locus in the mouse genome (or even extrachromosomally) will be expected to similarly rescue fertility in a male mouse.
- the phenomenon of complementing a mouse that lacks a functional ADAM6 locus with an ectopic sequence that comprises a mouse ADAM6 gene or ortholog or homolog or functional fragment thereof is a general method that is applicable to rescuing any mice with nonfunctional or minimally functional endogenous ADAM6 loci.
- a great many mice that comprise an ADAM6-disrupting modification of the immunoglobulin heavy chain locus can be rescued with the compositions and methods of the invention.
- the invention comprises mice with a wide variety of modifications of immunoglobulin heavy chain loci that compromise endogenous ADAM6 function.
- compositions and methods related to ADAM6 can be used in a great many applications, e.g. , when modifying a heavy chain locus in a wide variety of ways.
- a mouse comprising an ectopic ADA 6 sequence that encodes a functional ADAM6 protein (or ortholog or homolog or functional fragment thereof), a replacement of all or substantially all mouse V H gene segments with one or more human V H gene segments, a replacement of all or substantially all mouse D H gene segments and J H gene segments with human D H and human JH gene segments; wherein the mouse lacks a C H 1 and/or hinge region.
- the mouse makes a single variable domain binding protein that is a dimer of immunoglobulin chains selected from: (a) human V H - mouse C H 1 - mouse C H 2 - mouse CH3; (b) human V H - mouse hinge - mouse C H 2 - mouse CH3; and, (c) human V H - mouse CH2 - mouse CH3.
- the nucleotide sequence that rescues fertility is placed within a human immunoglobulin heavy chain variable region sequence ⁇ e.g., between human V H 1 -2 and V H 1-6 gene segments) in a mouse that has a replacement of one or more mouse immunoglobulin heavy chain variable gene segments (mV H 's, mD H 's, and/or mJ H 's) with one or more human immunoglobulin heavy chain variable gene segments (hV H 's, hD H 's, and/or hJ H 's), and the mouse further comprises a replacement of one or more mouse immunoglobulin ⁇ light chain variable gene segments (mWs and/or rruk's) with one or more human immunoglobulin light chain variable gene segments (h s and/or hvk's).
- mWs and/or rruk's mouse immunoglobulin ⁇ light chain variable gene segments
- the one or more mouse immunoglobulin heavy chain variable gene segments comprises about three megabases of the mouse immunoglobulin heavy chain locus. In one embodiment, the one or more mouse immunoglobulin heavy chain variable gene segments comprises at least 89 V H gene segments, at least 13 D H gene segments, at least four J H gene segments or a combination thereof of the mouse immunoglobulin heavy chain locus. In one embodiment, the one or more human immunoglobulin heavy chain variable gene segments comprises about one megabase of a human immunoglobulin heavy chain locus. In one embodiment, the one or more human immunoglobulin heavy chain variable gene segments comprises at least 80 V H gene segments, at least 27 D H gene segments, at least six J H gene segments or a combination thereof of a human immunoglobulin heavy chain locus.
- the one or more mouse immunoglobulin ⁇ light chain variable gene segments comprises about three megabases of the mouse immunoglobulin K light chain locus. In one embodiment, the one or more mouse immunoglobulin ⁇ light chain variable gene segments comprises at least 137 VK gene segments, at least five JK gene segments or a combination thereof of the mouse immunoglobulin ⁇ light chain locus. In one embodiment, the one or more human immunoglobulin ⁇ light chain variable gene segments comprises about one-half megabase of a human immunoglobulin light chain locus.
- the one or more human immunoglobulin ⁇ light chain variable gene segments comprises the proximal repeat (with respect to the immunoglobulin K constant region) of a human immunoglobulin ⁇ light chain locus.
- the one or more human immunoglobulin ⁇ light chain variable gene segments comprises at least 40VK gene segments, at least five JK gene segments or a combination thereof of a human immunoglobulin ⁇ light chain locus.
- the nucleotide sequence is place between two human immunoglobulin gene segments.
- the two human immunoglobulin gene segments In a specific embodiment, the two human
- immunoglobulin gene segments are heavy chain gene segments.
- the nucleotide sequence is placed between a human V H 1-2 gene segment and a human V H 1-6 gene segment in a VELOCIMMUNE® mouse (US 6,596,541 and US 7,105,348, incorporated herein by reference).
- the VELOCIMMUNE® mouse so modified comprises a replacement of mouse immunoglobulin heavy chain variable gene segments with at least 80 human V H gene segments, 27 human D H gene segments and six human JH gene segments, and a replacement of mouse immunoglobulin ⁇ light chain variable gene segments with at least 40 human VK gene segments and five human JK gene segments.
- a functional mouse ADAM6 locus (or ortholog or homolog or functional fragment thereof) is present in the midst of human V H gene segments that replace endogenous mouse V H gene segments.
- at least 89 mouse V H gene segments are removed and replaced with one or more human V H gene segments, and the mouse ADAM6 locus is present immediately adjacent to the 3' end of the human V H gene segments, or between two human V H gene segments.
- the mouse ADAM6 locus is present between two V H gene segments within about 20 kilo bases (kb) to about 40 kilo bases (kb) of the 3' terminus of the inserted human V H gene segments.
- the mouse ADAM6 locus is present between two V H gene segments within about 29 kb to about 31 kb of the 3' terminus of the inserted human VH gene segments. In a specific embodiment, the mouse ADAM6 locus is present within about 30 kb of the 3' terminus of the inserted human V H gene segments. In a specific embodiment, the mouse ADAM6 locus is present within about 30, 184 bp of the 3' terminus of the inserted human VH gene segments. In a specific embodiment, the replacement includes human V H gene segments V H 1-2 and V H 6-1 , and the mouse ADAM6 locus is present downstream of the V H 1-2 gene segment and upstream of the V H 6-1 gene segment.
- the mouse ADAM6 locus is present between a human V H 1-2 gene segment and a human V H 6-1 gene segment, wherein the 5' end of the mouse ADAM6 locus is about 13,848 bp from the 3' terminus of the human V H 1-2 gene segment and the 3' end of the ADAM6 locus is about 29,737 bp 5' of the human V H 6-1 gene segment.
- the mouse ADAM6 locus comprises SEQ ID NO:3 or a fragment thereof that confers ADAM6 function within cells of the mouse.
- the arrangement of human V H gene segments is then the following (from upstream to downstream with respect to direction of transcription of the human V H gene segments): human V H 1-2 - mouse ADAM6 locus - human V H 6-1 .
- the ADAM6 pseudogene between human V H 1-2 and human V H 6-1 is replaced with the mouse ADAM6 locus.
- the orientation of one or more of mouse ADAM6a and mouse ADAM6b of the mouse ADAM6 locus is opposite with respect to direction of transcription as compared with the orientation of the human V H gene segments.
- the mouse ADAM6 locus is present in the intergenic region between the 3'-most human V H gene segment and the 5'-most D H gene segment. This can be the case whether the 5'-most D H segment is mouse or human.
- a mouse modified with one or more human V L gene segments (e.g., VK or ⁇ segments) replacing all or substantially all endogenous mouse V H gene segments can be modified so as to either maintain the endogenous mouse ADAM6 locus, as described above, e.g., by employing a targeting vector having a downstream homology arm that includes a mouse ADAM6 locus or functional fragment thereof, or to replace a damaged mouse ADAM6 locus with an ectopic sequence positioned between two human V L gene segments or between the human V L gene segments and a D H gene segment (whether human or mouse, e.g., V + m/hD H ), or a J gene segment (whether human or mouse, e.g., VK + J H ).
- a targeting vector having a downstream homology arm that includes a mouse ADAM6 locus or functional fragment thereof, or to replace a damaged mouse ADAM6 locus with an ectopic sequence positioned between two human V L gene segments or between the human V L gene segments and a
- the replacement includes two or more human V L gene segments, and the mouse ADAM6 locus or functional fragment thereof is present between the two 3'-most V L gene segments.
- the arrangement of human V L gene segments is then the following (from upstream to downstream with respect to direction of transcription of the human gene segments): human V L 3'-1 - mouse ADAM6 locus - human V L 3'.
- the orientation of one or more of mouse ADAM6a and mouse ADAM6b of the mouse ADAM6 locus is opposite with respect to direction of transcription as compared with the orientation of the human V L gene segments.
- the mouse ADAM6 locus is present in the intergenic region between the 3'- most human V L gene segment and the 5'-most D H gene segment. This can be the case whether the 5'-most D H segment is mouse or human.
- a mouse is provided with a replacement of one or more endogenous mouse V H gene segments, and that comprises at least one endogenous mouse D H gene segment.
- the modification of the endogenous mouse V H gene segments can comprise a modification of one or more of the 3'-most V H gene segments, but not the 5'-most D H gene segment, where care is taken so that the modification of the one or more 3'-most V H gene segments does not disrupt or render the endogenous mouse ADAM6 locus nonfunctional.
- the mouse comprises a replacement of all or substantially all endogenous mouse V H gene segments with one or more human V H gene segments, and the mouse comprises one or more endogenous D H gene segments and a functional endogenous mouse ADAM6 locus.
- the mouse comprises the modification of endogenous mouse 3'-most V H gene segments, and a modification of one or more endogenous mouse D H gene segments, and the modification is carried out so as to maintain the integrity of the endogenous mouse ADAM6 locus to the extent that the endogenous ADAM6 locus remains functional.
- such a modification is done in two steps: (1 ) replacing the 3'-most endogenous mouse V H gene segments with one or more human V H gene segments employing a targeting vector with an upstream homology arm and a downstream homology arm wherein the downstream homology arm includes all or a portion of a functional mouse ADAM6 locus; (2) then replacing and endogenous mouse D H gene segment with a targeting vector having an upstream homology arm that includes a all or a functional portion of a mouse ADAM6 locus.
- mice that contain an ectopic sequence that encodes a mouse ADAM6 protein or an ortholog or homolog or functional homolog thereof are useful where modifications disrupt the function of endogenous mouse ADAM6.
- the probability of disrupting endogenous mouse ADAM6 function is high when making modifications to mouse immunoglobulin loci, in particular when modifying mouse immunoglobulin heavy chain variable regions and surrounding sequences. Therefore, such mice provide particular benefit when making mice with immunoglobulin heavy chain loci that are deleted in whole or in part, are humanized in whole or in part, or are replaced (e.g., with VK or ⁇ / ⁇ sequences) in whole or in part.
- mice containing an ectopic sequence encoding a mouse ADAM6 protein, or a substantially identical or similar protein that confers the fertility benefits of a mouse ADAM6 protein are particularly useful in conjunction with modifications to a mouse immunoglobulin heavy chain variable gene locus that disrupt or delete the endogenous mouse ADAM6 sequence.
- a mouse immunoglobulin heavy chain variable gene locus that disrupt or delete the endogenous mouse ADAM6 sequence.
- mice that express antibodies with human variable regions and mouse constant regions such mice are useful in connection with any genetic modifications that disrupt endogenous mouse ADAM6 genes. Persons of skill will recognize that this encompasses a wide variety of genetically modified mice that contain modifications of mouse immunoglobulin heavy chain variable gene loci. These include, for example, mice with a deletion or a replacement of all or a portion of mouse immunoglobulin heavy chain gene segments, regardless of other modifications. Non-limiting examples are described below.
- genetically modified mice comprise an ectopic mouse, rodent, or other ADAM6 gene (or ortholog or homolog or fragment) functional in a mouse, and one or more human immunoglobulin variable and/or constant region gene segments.
- other ADAM6 gene orthologs or homologs or fragments functional in a mouse may include sequences from bovine, canine, primate, rabbit or other non-human sequences.
- a mouse comprising an ectopic ADAM6 sequence that encodes a functional ADAM6 protein, a replacement of all or substantially all mouse VH gene segments with one or more human V H gene segments; a replacement of all or substantially all mouse D H gene segments with one or more human D H gene segments; and a replacement of all or substantially all mouse JH gene segments with one or more human J H gene segments.
- the mouse further comprises a replacement of a mouse CH1 nucleotide sequence with a human C H 1 nucleotide sequence. In one embodiment, the mouse further comprises a replacement of a mouse hinge nucleotide sequence with a human hinge nucleotide sequence. In one embodiment, the mouse further comprises a replacement of an immunoglobulin light chain variable locus (V L and J L ) with a human immunoglobulin light chain variable locus. In one embodiment, the mouse further comprises a replacement of a mouse immunoglobulin light chain constant region nucleotide sequence with a human immunoglobulin light chain constant region nucleotide sequence.
- V L and J L immunoglobulin light chain variable locus
- the mouse further comprises a replacement of a mouse immunoglobulin light chain constant region nucleotide sequence with a human immunoglobulin light chain constant region nucleotide sequence.
- the V L , JL, and C L are immunoglobulin ⁇ light chain sequences.
- the mouse comprises a mouse C H 2 and a mouse C H 3 immunoglobulin constant region sequence fused with a human hinge and a human C H 1 sequence, such that the mouse immunoglobulin loci rearrange to form a gene that encodes a binding protein comprising (a) a heavy chain that has a human variable region, a human CH1 region, a human hinge region, and a mouse CH2 and a mouse C H 3 region; and (b) a gene that encodes an immunoglobulin light chain that comprises a human variable domain and a human constant region.
- a mouse comprises an ectopic ADAM6 sequence that encodes a functional ADAM6 protein, a replacement of all or substantially all mouse V H gene segments with one or more human V L gene segments, and optionally a replacement of all or substantially all D H gene segments and/or J H gene segments with one or more human D H gene segments and/or human J H gene segments, or optionally a replacement of all or substantially all D H gene segments and J H gene segments with one or more human J L gene segments.
- the mouse comprises a replacement of all or substantially all mouse V H , D H , and J H gene segments with one or more V L , one or more D H , and one or more J gene segments (e.g., JK or ⁇ ), wherein the gene segments are operably linked to an endogenous mouse hinge region, wherein the mouse forms a rearranged
- the J region is a human JK region.
- the J region is a human J H region.
- the J region is a human Jk region.
- the human V L region is selected from a human ⁇ region and a human VK region.
- the mouse expresses a single variable domain antibody having a mouse or human constant region and a variable region derived from a human VK, a human D H and a human JK; a human VK, a human D H , and a human J H ; a human ⁇ , a human D H , and a human J ⁇ ; a human ⁇ , a human D H , and a human J H ; a human VK, a human D H , and a human JX; a human ⁇ , a human D H l and a human JK.
- recombination recognition sequences are modified so as to allow for productive rearrangements to occur between recited V, D, and J gene segments or between recited V and J gene segments.
- a mouse comprising an ectopic ADAM6 sequence that encodes a functional ADAM6 protein (or ortholog or homolog or functional fragment thereof), a replacement of all or substantially all mouse V H gene segments with one or more human V L gene segments, a replacement of all or substantially all mouse D H gene segment and J H gene segments with human J L gene segments; wherein the mouse lacks a C H 1 and/or hinge region.
- the mouse lacks a sequence encoding a C H 1 domain. In one embodiment, the mouse lacks a sequence encoding a hinge region. In one
- the mouse lacks a sequence encoding a C H 1 domain and a hinge region.
- the mouse expresses a binding protein that comprises a human immunoglobulin light chain variable domain ( ⁇ or ⁇ ) fused to a mouse C H 2 domain that is attached to a mouse C H 3 domain.
- a mouse that comprises an ectopic ADAM6 sequence that encodes a functional ADA 6 protein (or ortholog or homolog or functional fragment thereof), a replacement of all or substantially all mouse V H gene segments with one or more human V L gene segments, a replacement of all or substantially all mouse D H and J H gene segments with human J L gene segments.
- the mouse comprises a deletion of an immunoglobulin heavy chain constant region gene sequence encoding a C H 1 region, a hinge region, a C H 1 and a hinge region, or a C H 1 region and a hinge region and a C H 2 region.
- the mouse makes a single variable domain binding protein comprising a homodimer selected from the following: (a) human V L - mouse C H 1 - mouse C H 2 - mouse C H 3; (b) human V L - mouse hinge - mouse C H 2 - mouse C H 3; (c) human V L - mouse C H 2 - mouse C H 3.
- a mouse is provided with a disabled endogenous heavy chain immunoglobulin locus, comprising a disabled or deleted endogenous mouse ADAM6 locus, wherein the mouse comprises a nucleic acid sequence that expresses a human or mouse or human/mouse or other chimeric antibody.
- the nucleic acid sequence is present on a transgene integrated that is randomly integrated into the mouse genome.
- the nucleic acid sequence is on an episome (e.g. , a chromosome) not found in a wild-type mouse.
- the mouse further comprises a disabled endogenous immunoglobulin light chain locus.
- the endogenous immunoglobulin light chain locus In a specific embodiment, the endogenous immunoglobulin light chain locus
- the immunoglobulin light chain locus is selected from a kappa ( ⁇ ) and a lambda ( ⁇ ) light chain locus.
- the mouse comprises a disabled endogenous ⁇ light chain locus and a disabled ⁇ light chain locus, wherein the mouse expresses an antibody that comprises a human immunoglobulin heavy chain variable domain and a human immunoglobulin light chain domain.
- the human immunoglobulin light chain domain is selected from a human ⁇ light chain domain and a human ⁇ light chain domain.
- a genetically modified animal that expresses a chimeric antibody and expresses an ADAM6 protein or ortholog or homolog thereof that is functional in the genetically modified animal.
- the genetically modified animal is selected from a mouse and a rat.
- the genetically modified animal is a mouse, and the ADAM6 protein or ortholog or homolog thereof is from a mouse strain that is a different strain than the genetically modified animal.
- the genetically modified animal is a rodent of family Cricetidae (e.g., a hamster, a New World rat or mouse, a vole), and the ADAM6 protein ortholog or homolog is from a rodent of family Muridae (e.g., true mouse or rat, gerbil, spiny mouse, crested rat).
- the genetically modified animal is a rodent of the family Muridae, and the ADAM6 protein ortholog or homolog is from a rodent of family Cricetidae.
- the chimeric antibody comprises a human variable domain and a constant region sequence of a rodent.
- the rodent is selected from a rodent of the family Cricetidae and a rodent of family Muridae, In a specific embodiment, the rodent of the family Cricetidae and of the family Muridae is a mouse. In a specific embodiment, the rodent of the family Cricetidae and of the family Muridae is a rat.
- the chimeric antibody comprises a human variable domain and a constant domain from an animal selected from a mouse or rat; in a specific embodiment, the mouse or rat is selected from the family Cricetidae and the family Muridae.
- the chimeric antibody comprises a human heavy chain variable domain, a human light chain variable domain and a constant region sequence derived from a rodent selected from mouse and rat, wherein the human heavy chain variable domain and the human light chain are cognate.
- cognate includes that the human heavy chain and the human light chain variable domains are from a single B cell that expresses the human light chain variable domain and the human heavy chain variable domain together and present the variable domains together on the surface of an individual B cell.
- the chimeric antibody is expressed from an
- the heavy chain variable domain of the chimeric antibody is expressed from a rearranged endogenous immunoglobulin heavy chain locus.
- the light chain variable domain of the chimeric antibody is expressed from a rearranged endogenous immunoglobulin light chain locus.
- the heavy chain variable domain of the chimeric antibody and/or the light chain variable domain of the chimeric antibody is expressed from a rearranged transgene (e.g., a rearranged nucleic acid sequence derived from an unrearranged nucleic acid sequence integrated into the animal's genome at a locus other than an endogenous immunoglobulin locus).
- the light chain variable domain of the chimeric antibody is expressed from a rearranged transgene (e.g., a rearranged nucleic acid sequence derived from an unrearranged nucleic acid sequence integrated into the animal's genome at a locus other than an endogenous immunoglobulin locus).
- a rearranged transgene e.g., a rearranged nucleic acid sequence derived from an unrearranged nucleic acid sequence integrated into the animal's genome at a locus other than an endogenous immunoglobulin locus.
- the transgene is expressed from a transcriptionally active locus, e.g., a ROSA26 locus, e.g., a murine (e.g., mouse) ROSA26 locus.
- a transcriptionally active locus e.g., a ROSA26 locus, e.g., a murine (e.g., mouse) ROSA26 locus.
- a non-human animal comprising a humanized immunoglobulin heavy chain locus, wherein the humanized immunoglobulin heavy chain locus comprises a non-human ADAM6 sequence or ortholog or homolog thereof.
- the non-human animal is a rodent selected from a mouse, a rat, and a hamster.
- the non-human ADAM6 ortholog or homolog is a sequence that is orthologous and/or homologous to a mouse ADAM6 sequence, wherein the ortholog or homolog is functional in the non-human animal.
- the non-human animal is selected from a mouse, a rat, and a hamster and the ADAM6 ortholog or homolog is from a non-human animal selected from a mouse, a rat, and a hamster.
- the non-human animal is a mouse and the ADAM6 ortholog or homolog is from an animal that is selected from a different mouse species, a rat, and a hamster.
- the non-human animal is a rat, and the ADAM6 ortholog or homolog is from a rodent that is selected from a different rat species, a mouse, and a hamster.
- the non-human animal is a hamster, and the ADAM6 ortholog or homolog is form a rodent that is selected from a different hamster species, a mouse, and a rat.
- the non-human animal is from the suborder
- the ADAM6 sequence is from an animal selected from a rodent of superfamily Dipodoidea and a rodent of the superfamily Muroidea.
- the rodent is a mouse of superfamily Muroidea
- the ADAM6 ortholog or homolog is from a mouse or a rat or a hamster of superfamily Muroidea.
- the humanized heavy chain locus comprises one or more human V H gene segments, one or more human DH gene segments and one or more human J H gene segments.
- the one or more human V H gene segments, one or more human D H gene segments and one or more human J H gene segments are operably linked to one or more human, chimeric and/or rodent (e.g., mouse or rat) constant region genes.
- the constant region genes are mouse.
- the constant region genes are rat.
- the constant region genes are hamster.
- the constant region genes comprise a sequence selected from a hinge, a C H 2, a C H 3, and a combination thereof.
- the constant region genes comprise a hinge, a C H 2, and a C H 3 sequence.
- the non-human ADAM6 sequence is contiguous with a human immunoglobulin heavy chain sequence. In one embodiment, the non-human ADAM6 sequence is positioned within a human immunoglobulin heavy chain sequence. In a specific embodiment, the human immunoglobulin heavy chain sequence comprises a V, D and/or J gene segment.
- the non-human ADAM6 sequence is positioned between two V gene segments. In one embodiment, the non-human ADAM6 sequence is juxtaposed between a V and a D gene segment. In one embodiment, the mouse ADAM6 sequence is positioned between a V and a J gene segment. In one embodiment, the mouse ADAM6 sequence is juxtaposed between a D and a J gene segment.
- a genetically modified non-human animal comprising a B cell that expresses a human V H domain cognate with a human V L domain from an immunoglobulin locus, wherein the non-human animal expresses a non-immunoglobulin non-human protein from the immunoglobulin locus.
- the non- immunoglobulin non-human protein is an ADAM protein.
- the ADAM protein is an ADAM6 protein or homolog or ortholog or functional fragment thereof.
- the non-human animal is a rodent (e.g., mouse or rat).
- the rodent is of family Muridae.
- the rodent is of subfamily Murinae.
- the rodent of subfamily Murinae is selected from a mouse and a rat.
- the non-immunoglobulin non-human protein is a rodent protein.
- the rodent is of family Muridae.
- the rodent is of subfamily Murinae.
- the rodent is selected from a mouse, a rat, and a hamster.
- the human V H and V L domains are attached directly or through a linker to an immunoglobulin constant domain sequence.
- the constant domain sequence comprises a sequence selected from a hinge, a C H 2 a C H 3, and a combination thereof.
- the human V L domain is selected from a VK or a ⁇ ⁇ domain.
- a genetically modified non-human animal comprising in its germline a human immunoglobulin sequence, wherein the sperm of a male non- human animal is characterized by an in vivo migration defect.
- the in vivo migration defect comprises an inability of the sperm of the male non-human animal to migrate from a uterus through an oviduct of a female non-human animal of the same species.
- the non-human animal lacks a nucleotide sequence that encodes and ADAM6 protein or functional fragment thereof.
- the ADAM6 protein or functional fragment thereof includes an ADAM6a and/or an ADAM6b protein or functional fragments thereof.
- the non-human animal is a rodent.
- the rodent is selected from a mouse, a rat, and a hamster.
- a non-human animal comprising a human immunoglobulin sequence contiguous with a non-human sequence that encodes an ADAM6 protein or ortholog or homoiog or functional fragment thereof.
- the non-human animal is a rodent.
- the rodent is selected from a mouse, a rat, and a hamster.
- the human immunoglobulin sequence is an
- the immunoglobulin heavy chain sequence comprises one or more V H gene segments.
- the human immunoglobulin sequence comprises one or more D H gene segments. In one
- the human immunoglobulin sequence comprises one or more J H gene segments. In one embodiment, the human immunoglobulin sequence comprises one or more V H gene segments, one or more D H gene segments and one or more JH gene segments.
- the immunoglobulin sequence comprises one or more V H gene segments have a high frequency in natural human repertoires.
- the one or more V H gene segments comprise no more than two V H gene segments, no more than three V H gene segments, no more than four V H gene segments, no more than five V H gene segments, no more than six V H gene segments, no more than seven VH gene segments, no more than eight V H gene segments, no more than nine V H gene segments, no more than 10 V H gene segments, no more than 1 1 V H gene segments, no more than 12 V H gene segments, no more than 1 3 V H gene segments, no more than 14 V H gene segments, no more than 1 5 V H gene segments, no more than 16, V H gene segments, no more than 17 V H gene segments, no more than 18 V H gene segments, no more than 19 V H gene segments, no more than 20 V H gene segments, no more than 21 V H gene segments, no more than 22 V H gene segments or no more than 23 V H gene segments.
- the one or more V H gene segments comprise five V H gene segments. In a specific embodiment, the one or more VH gene segments comprise 10 V H gene segments. In a specific embodiment, the one or more V H gene segments comprise 15 V H gene segments. In a specific embodiment, the one or more V H gene segments comprise 20 V H gene segments.
- the V H gene segments are selected from V H 6-1 , V H 1 -2, V H 1 -3, V H 2-5, V H 3-7, V H 1 -8, V H 3-9, V H 3-1 1 , V H 3-1 3, V H 3-15, V H 3-16, V H 1 -18, V H 3-20, V H 3- 21 , V H 3-23, V H 1 -24, V H 2-26, V H 4-28, V H 3-30, V H 4-31 , V H 3-33, V H 4-34, V H 3-35, V H 3-38, V H 4-39, V H 3-43, V H 1 -45, V H 1 -46, V H 3-48, V H 3-49, V H 5-51 , V H 3-53, V H 1 -58, V H 4-59, V H 4-61 , V H 3-64, V H 3-66, V H 1 -69, VH 2-70, V H 3-72, V H 3-73 and V H 3-74.
- the V H gene segments are selected from V H 1 -2, V H 1 -8, V H 1 -18, V H 1 -46, V H 1 -69, V H 3-7, V H 3-9, V H 3-1 1 , V H 3-13, V H 3-15, V H 3-21 , V H 3-23, V H 3-30, V H 3-33, V H 3-43, V H 3-48, V H 4-31 , V H 4-34, V H 4-39, V H 4-59, V H 5-51 and V H 6-1 .
- the V H gene segments are selected from V H 1-18, V H 1- 46, V H 1-69, V H 3-7, V H 3-1 1 , V H 3-15, V H 3-21 , V H 3-23, V H 3-30, V H 3-33, V H 3-48, V H 4-34, V H 4- 39, V H 4-59 and V H 5-51.
- the V H gene segments are selected from V H 1-18, V H 1- 69, V H 3-7, V H 3-1 1 , V H 3-15, V H 3-21 , V H 3-23, V H 3-30, V H 3-43, V H 3-48, V H 4-39, V H 4-59 and V H 5-51.
- the V H gene segments are selected from V H 1-18, V H 3- 1 1 , V H 3-21 , V H 3-23, V H 3-30, V H 4-39 and V H 4-59.
- the V H gene segments are selected from V H 1-18, V H 3- 21 , V H 3-23, V H 3-30 and V H 4-39.
- V H gene segments are selected from V H 1 -18, V H 3- 23 and V H 4-39.
- V H gene segments are selected from V H 3-21 , V H 3- 23 and V H 3-30.
- the V H gene segments are selected from V H 3-23, V H 3- 30 and V H 4-39.
- human immunoglobulin sequence comprises at least 18 V H gene segments, 27 D H gene segments and six J H gene segments. In a specific embodiment, the human immunoglobulin sequence comprises at least 39 V H gene segments, 27 D H gene segments and six JH gene segments. In a specific embodiment, the human immunoglobulin sequence comprises at least 80 V H gene segments, 27 DH gene segments and six JH gene segments.
- the non-human animal is a mouse
- the mouse comprises a replacement of endogenous mouse V H gene segments with one or more human V H gene segments, wherein the human V H gene segments are operabiy linked to a mouse C H region gene, such that the mouse rearranges the human V H gene segments and expresses a reverse chimeric immunoglobulin heavy chain that comprises a human V H domain and a mouse C H .
- 90-100% of unrearranged mouse V H gene segments are replaced with at least one unrearranged human V H gene segment.
- all or substantially all of the endogenous mouse V H gene segments are replaced with at least one unrearranged human V H gene segment.
- the replacement is with at least 19, at least 39, or at least 80 or 81 unrearranged human V H gene segments. In one embodiment, the replacement is with at least 12 functional unrearranged human V H gene segments, at least 25 functional unrearranged human V H gene segments, or at least 43 functional unrearranged human V H gene segments.
- the mouse comprises a replacement of all mouse D H and JH segments with at least one unrearranged human DH segment and at least one unrearranged human J H segment. In one embodiment, the at least one unrearranged human D H segment is selected from 1-1 , 1-7, 1-26, 2-8, 2-15, 3-3, 3-10, 3-16, 3-22, 5-5, 5- 12, 6-6, 6-13, 7-27, and a combination thereof.
- the at least one unrearranged human J H segment is selected from 1 , 2, 3, 4, 5, 6, and a combination thereof.
- the one or more human V H gene segment is selected from a 1-2, 1-8, 1-24, 1-69, 2-5, 3-7, 3-9, 3-1 1 , 3-13, 3-15, 3-20, 3-23, 3-30, 3-33, 3-48, 3- 53, 4-31 , 4-39, 4-59, 5-51 , a 6-1 human V H gene segment, and a combination thereof.
- the human immunoglobulin sequence is in operable linkage with a constant region in the germline of the non-human animal (e.g., the rodent, e.g., the mouse, rat, or hamster).
- the constant region is a human, chimeric human/mouse or chimeric human/rat or chimeric human/hamster, a mouse, a rat, or a hamster constant region.
- the constant region is a rodent (e.g., mouse or rat or hamster) constant region.
- the rodent is a mouse or rat.
- the constant region comprises at least a CH2 domain and a C H 3 domain.
- the human immunoglobulin heavy chain sequence is located at an immunoglobulin heavy chain locus in the germline of the non-human animal (e.g., the rodent, e.g., the mouse or rat or hamster). In one embodiment, the human immunoglobulin heavy chain sequence is located at a non-immunoglobulin heavy chain locus in the germline of the non-human animal, wherein the non-heavy chain locus is a transcriptionally active locus. In a specific embodiment, the non-heavy chain locus is a ROSA26 locus.
- the non-human animal further comprises a human immunoglobulin light chain sequence (e.g., one or more unrearranged light chain V and J sequences, or one or more rearranged VJ sequences) in the germline of the non-human animal.
- the immunoglobulin light chain sequence is an immunoglobulin ⁇ light chain sequence.
- the human immunoglobulin light chain sequence comprises one or more V L gene segments.
- the human immunoglobulin light chain sequence comprises one or more J L gene segments.
- the human immunoglobulin light chain sequence comprises one or more V L gene segments and one or more J L gene segments.
- the human immunoglobulin light chain sequence comprises at least 16 VK gene segments and five JK gene segments. In a specific embodiment, the human immunoglobulin light chain sequence comprises at least 30 VK gene segments and five JK gene segments. In a specific embodiment, the human immunoglobulin light chain sequence comprises at least 40 VK gene segments and five JK gene segments. In various embodiments, the human immunoglobulin light chain sequence is in operable linkage with a constant region in the germline of the non-human animal (e.g., rodent, e.g., mouse or rat or hamster). In one embodiment, the constant region is a human, chimeric human/rodent, mouse, rat, or hamster constant region. In a specific embodiment, the constant region is a mouse or rat constant region. In a specific embodiment, the constant region is a mouse ⁇ constant (mCK) region or a rat ⁇ constant (rC ) region.
- mCK mouse ⁇ constant
- rC rat ⁇ constant
- the non-human animal is a mouse and the mouse comprises a replacement of all or substantially all VK and JK gene segments with at least six human VK gene segments and at least one JK gene segment.
- all or substantially all VK and JK gene segments are replaced with at least 1 6 human VK gene segments (human VK) and at least one JK gene segment.
- all or substantially all VK and JK gene segments are replaced with at least 30 human VK gene segments and at least one JK gene segment.
- all or substantially all VK and JK gene segments are replaced with at least 40 human VK gene segments and at least one JK gene segment.
- the at least one JK gene segment comprises two, three, four, or five human JK gene segments.
- the human VK gene segments comprise VK4-1 , VK5-2, VK7-3, VK2-4, VK1 -5, and VK1 -6.
- the VK gene segments comprise VK3-7, VK1 -8, VK1 -9, VK2-1 0, VK3-1 1 , VK1 -1 2, VK1 -1 3, VK2-14, VK3-1 5 and 1 -1 6.
- the human VK gene segments comprise VK1 -1 7, VK2-1 8, VK2-1 9, VK3- 20, VK6-21 , VK1 -22, VK1 -23, VK2-24, VK3-25, VK2-26, 1 -27, 2-28, 2-29, and VK2- 30.
- the human VK gene segments comprise VK3-31 , VK1 -32, VK1 -33, VK3-34, VK1 -35, VK2-36, VK1 -37, VK2-38, VK1 -39, and 2-40.
- the VK gene segments comprise contiguous human immunoglobulin ⁇ gene segments spanning the human immunoglobulin ⁇ light chain locus from VK4-1 through 2-40
- the JK gene segments comprise contiguous gene segments spanning the human immunoglobulin ⁇ light chain locus from JK1 through JK5.
- the human immunoglobulin light chain sequence is located at an immunoglobulin light chain locus in the germline of the non-human animal.
- the immunoglobulin light chain locus in the germline of the non- human animal is an immunoglobulin ⁇ light chain locus.
- the human immunoglobulin light chain sequence is located at a non-immunoglobulin light chain locus in the germline of the non-human animal that is transcriptionally active.
- the non-immunoglobulin locus is a ROSA26 locus.
- a pharmaceutical composition comprising a polypeptide that comprises antibody or antibody fragment that is derived from one or more variable region nucleic acid sequences isolated from a non-human animal as described herein.
- the polypeptide is an antibody.
- the polypeptide is a heavy chain only antibody.
- the polypeptide is a single chain variable fragment (e.g., an scFv).
- the antibody comprises one or more variable domains that are derived from one or more variable region nucleic acid sequences isolated from the non-human animal.
- the variable region nucleic acid sequences comprise immunoglobulin heavy chain gene segments.
- the variable region nucleic acid sequences comprise immunoglobulin light chain gene segments.
- BACs Human and mouse bacterial artificial chromosomes
- Tables 1 and 2 set forth descriptions of the steps performed for construction of all BACvecs employed for the humanization of mouse immunoglobulin heavy chain and ⁇ light chain loci, respectively.
- Mouse BACs that span the 5' and 3' ends of the immunoglobulin heavy chain and ⁇ light chain loci were identified by hybridization of filters spotted with BAC library or by PCR screening mouse BAC library DNA pools. Filters were hybridized under standard conditions using probes that corresponded to the regions of interest. Library pools were screened by PCR using unique primer pairs that flank the targeted region of interest. Additional PCR using the same primers was performed to deconvolute a given well and isolate the corresponding BAC of interest. Both BAC filters and library pools were generated from 129 SvJ mouse ES cells (Incyte Genomics/lnvitrogen).
- Human BACs that cover the entire immunoglobulin heavy chain and ⁇ light chain loci were identified either by hybridization of filters spotted with BAC library (Caltech B, C, or D libraries & RPCI-1 1 library, Research Genetics/I nvitrogen) through screening human BAC library pools (Caltech library, Invitrogen) by a PCR-based method or by using a BAC end sequence database (Caltech D library, TIGR).
- a 3hV H BACvec was constructed using three sequential BHR steps for the initial step of humanization of the immunoglobulin heavy chain locus (FIG. 4A and Table 1).
- a cassette was introduced into a human parental BAC upstream from the human V H 1-3 gene segment that contains a region of homology to the mouse immunoglobulin heavy chain locus (HB1 ), a gene that confers kanamycin resistance in bacteria and G418 resistance in animals cells (kanR) and a site-specific recombination site (e.g., loxP).
- Step 2 a second cassette was introduced just downstream from the last J H segment that contains a second region of homology to the mouse immunoglobulin heavy chain locus (HB2) and a gene that confers resistance in bacteria to spectinomycin (specR).
- This second step included deleting human
- the doubly modified human BAC (B1 ) was then linearized using l-Ceul sites that had been added during the first two steps and integrated into a mouse BAC (B2) by BHR through the two regions of homology (HB1 and HB2).
- the drug selections for first (cm/kan), second (spec/kan) and third (cm/kan) steps were designed to be specific for the desired products.
- Modified BAC clones were analyzed by pulse-filed gel electrophoresis (PFGE) after digestion with restriction enzymes to determine appropriate construction (FIG. 4B).
- BAC ligation was performed in lieu of BHR to conjoin two large BACs through introduction of rare restriction sites into both parental BACvecs by BHR along with careful placement of selectable markers. This allowed for the survival of the desired ligation product upon selection with specific drug marker combinations.
- Recombinant BACs obtained by ligation after digestion with rare restriction enzymes were identified and screened in a similar fashion to those obtained by BHR (as described above).
- ES cell (F1 H4) targeting was performed using the VELOCIGENE® genetic engineering method as described (Valenzuela et al., 2003). Derivation of mice from modified ES cells by either blastocyst (Valenzuela ef al., 2003) or 8-cell injection (Poueymirou et al., 2007, F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses, Nat Biotechnol 25:91-99) was as described.
- Targeted ES cells and mice were confirmed by screening DNA from ES cells or mice with unique sets of probes and primers in a PCR based assay (e.g., FIG. 3A, 3B and 3C). All mouse studies were overseen and approved by Regeneron's Institutional Animal Care and Use Committee (IACUC).
- IACUC Institutional Animal Care and Use Committee
- Probes corresponding to either mouse BAC DNA or human BAC DNA were labeled by nick translation (Invitrogen) with the fluorescently labeled dUTP nucleotides spectrum orange or spectrum green (Vysis).
- Immunoglobulin Heavy Chain Variable Gene Locus Humanization of the variable region of the heavy chain locus was achieved in nine sequential steps by the direct replacement of about three million base pairs (Mb) of contiguous mouse genomic sequence containing all V H , D H and J H gene segments with about one Mb of contiguous human genomic sequence containing the equivalent human gene segments (FIG. 1A and Table 1) using VELOCIGENE® genetic engineering technology (see, e.g., US Pat. No. 6,586,251 and Valenzuela et al, 2003).
- Mb base pairs
- the intron between J H gene segments and constant region genes contains a transcriptional enhancer (Neuberger, 1983, Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells, EMBO J 2:1373-1378) followed by a region of simple repeats required for recombination during isotype switching (Kataoka et al., 1980, Rearrangement of immunoglobulin gamma 1 -chain gene and mechanism for heavy-chain class switch, PNAS USA 77:919-923).
- the junction between human V H -D H -JH region and the mouse C H region was chosen to maintain the mouse heavy chain intronic enhancer and switch domain in order preserve both efficient expression and class switching of the humanized heavy chain locus within the mouse.
- the exact nucleotide position of this and subsequent junctions in all the replacements was possible by use of the VELOCIGENE® genetic engineering method (supra), which employed bacterial homologous recombination driven by synthesized oligonucleotides.
- the proximal junction was placed about 200 bp downstream from the last J H gene segment and the distal junction was placed several hundred upstream of the most 5' V H gene segment of the human locus and about 9 kb downstream from the mouse V H 1 -86 gene segment, also known as J558.55.
- the mouse V H 1-86 (J558.55) gene segment is the most distal heavy chain variable gene segment, reported to be a
- mice pseudogene in C57BL/6 mice, but potentially active, albeit with a poor RSS sequence, in the targeted 129 allele.
- the distal end of the mouse heavy chain locus reportedly may contain control elements that regulate locus expression and/or rearrangement (Pawiitzky et al., 2006).
- a first insertion of human immunoglobulin DNA sequence into the mouse was achieved using 144 kb of the proximal end of the human heavy chain locus containing 3 V H , all 27 D H and 9 J H human gene segments inserted into the proximal end of the mouse IgH locus, with a concomitant 16.6 kb deletion of mouse genomic sequence, using about 75 kb of mouse homology arms (Step A, FIG. 2A; Tables 1 and 3, 3hV H ). This large 144kb insertion and accompanying 16.6 kb deletion was performed in a single step (Step A) that occurred with a frequency of 0.2% (Table 3).
- ES cells Correctly targeted ES cells were scored by a loss-of-native-allele (LONA) assay (Valenzuela et al., 2003) using probes within and flanking the deleted mouse sequence and within the inserted human sequence, and the integrity of the large human insert was verified using multiple probes spanning the entire insertion (FIG. 3A, 3B and 3C). Because many rounds of sequential ES cell targeting were anticipated, targeted ES cell clones at this, and all subsequent, steps were subjected to karyotypic analysis (supra) and only those clones showing normal karyotypes in at least 17 of 20 spreads were utilized for subsequent steps.
- LONA loss-of-native-allele
- Step B Targeted ES cells from Step A were re-targeted with a BACvec that produced a 19 kb deletion at the distal end of the heavy chain locus (Step B, FIG. 2A).
- the Step B BACvec contained a hygromycin resistance gene (hyg) in contrast to the neomycin resistance gene (neo) contained on the BACvec of Step A.
- the resistance genes from the two BACvecs were designed such that, upon successful targeting to the same
- chromosome approximately three Mb of the mouse heavy chain variable gene locus containing all of the mouse V H gene segments other than V H 1-86 and all of the D H gene segments other than DQ52, as well as the two resistance genes, were flanked by loxP sites; DQ52 and all of the mouse J H chain gene segments were deleted in Step A.
- ES cell clones doubly targeted on the same chromosome were identified by driving the 3hV H proximal cassette to homozygosity in high G418 (Mortensen et al., 1992, Production of homozygous mutant ES cells with a single targeting construct, Mol Cell Biol 12:2391 -2395) and following the fate of the distal hyg cassette.
- the deletion was scored by the LONA assay using probes at either end of the deleted mouse sequence, as well as the loss of neo and hyg and the appearance of a PCR product across the deletion point containing the sole remaining loxP site. Further, the deletion was confirmed by fluorescence in situ hybridization (data not shown).
- Step D Targeting in Step D was assayed by the loss of the unique PCR product across the distal loxP site of 3hV H Hybrid Allele. Targeting for Steps E through I was assayed by loss of the previous selection cassette. In the final step (Step I, FIG.
- the ⁇ light chain variable region was humanized in eight sequential steps by the direct replacement of about three Mb of mouse sequence containing all VK and JK gene segments with about 0.5 Mb of human sequence containing the proximal human VK and JK gene segments in a manner similar to that of the heavy chain (FIG. 1 B; Tables 2 and 4).
- variable region of the human ⁇ light chain locus contains two nearly identical 400 kb repeats separated by an 800 kb spacer (Weichhold et al., 1993, The human immunoglobulin kappa locus consists of two copies that are organized in opposite polarity, Genomics 16:503-51 1 ). Because the repeats are so similar, nearly all of the locus diversity can be reproduced in mice by using the proximal repeat. Further, a natural human allele of the ⁇ light chain locus missing the distal repeat has been reported
- the entire mouse VK gene region containing all VK and JK gene segments, was deleted in a three-step process before any human sequence was added.
- a neo cassette was introduced at the proximal end of the variable region (Step A, FIG. 2C).
- a hyg cassette was inserted at the distal end of the ⁇ locus (Step B, FIG. 2C).
- Recombinase recognition sites e.g., loxP
- a human genomic fragment of about 480 kb in size containing the entire immunoglobulin ⁇ light chain variable region was inserted in four sequential steps (FIG. 2D; Tables 2 and 4), with up to 150 kb of human immunoglobulin ⁇ light chain sequence inserted in a single step, using methods similar to those employed for the heavy chain (see Example 1 ).
- the final hygromycin resistance gene was removed by transient FLPe expression.
- targeted ES cell clones were evaluated for integrity of the entire human insert, normal karyotype and germ-line potential after every step. Mice homozygous for each of the ⁇ light chain alleles were generated and found to be healthy and of normal appearance.
- ES cells bearing a portion of the human immunoglobulin heavy chain or ⁇ light chain variable repertoires as described in Example 1 were microinjected and the resulting mice bred to create multiple versions of VELOCIMMUNE® mice with progressively larger fractions of the human germline immunoglobulin repertoires (Table 5; FIG. 5A and 5B).
- VELOCIMMUNE® 1 (V1 ) mice possess eighteen human V H gene segments and all of the human D H and J H gene segments combined with sixteen human VK gene segments and all the human JK gene segments.
- VELOCIMMUNE® 2 V2
- V3 VELOCIMMUNE® mice
- mice contain human variable regions linked to mouse constant regions.
- the mouse ⁇ light chain loci remain intact in various embodiments of the
- VELOCIMMUNE® mice serve as a comparator for efficiency of expression of the various VELOCIMMUNE® ⁇ light chain loci.
- mice doubly homozygous for both immunoglobulin heavy chain and ⁇ light chain humanizations were generated from a subset of the alleles described in Example 1. All genotypes observed during the course of breeding to generate the doubly homozygous mice occurred in roughly Mendelian proportions. Male progeny homozygous for each of the human heavy chain alleles demonstrated reduced fertility, which resulted from loss of mouse ADAM6 activity.
- the mouse heavy chain variable gene locus contains two embedded functional ADAM6 genes (ADAM6a and ADAM6b). During humanization of the mouse heavy chain variable gene locus, the inserted human genomic sequence contained an ADAM6 pseudogene.
- Mouse ADAM6 may be required for fertility, and thus lack of mouse ADAM6 genes in humanized heavy chain variable gene loci might lead to a reduction in fertility notwithstanding the presence of the human pseudogene.
- Examples 7- 1 1 describe the reengineering of mouse ADAM6 genes into a humanized heavy chain variable gene locus, and restoration of wild-type level fertility in mice with a humanized heavy chain immunoglobulin locus.
- cell suspensions from bone marrow, spleen and thymus were made using standard methods.
- Cells were resuspended at 5x10 5 cells/mL in BD Pharmingen FACS staining buffer, blocked with anti-mouse CD16/32 (BD Pharmingen), stained with the appropriate cocktail of antibodies and fixed with BD CYTOFIXTM all according to the manufacturer's instructions.
- Final cell pellets were resuspended in 0.5 mL staining buffer and analyzed using a BD FACSCALIBURTM and BD CELLQUEST PROTM software. All antibodies (BD Pharmingen) were prepared in a mass dilution/cocktail and added to a final concentration of 0.5 mg/10 5 cells.
- Antibody cocktails for bone marrow (A-D) staining were as follows: A: anti- mouse lgM b -FITC, anti-mouse lgM a -PE, anti-mouse CD45R(B220)-APC; B: anti-mouse CD43(S7)-PE, anti-mouse CD45R(B220)-APC; C: anti-mouse CD24(HSA)-PE; anti-mouse CD45R(B220)-APC; D: anti-mouse BP-1-PE, anti-mouse CD45R(B220)-APC.
- E anti-mouse lgM b -FITC, anti-mouse lgM a -PE, anti-mouse CD45R(B220)-APC
- F anti-mouse Ig, ⁇ 1 , ⁇ 2, ⁇ 3 Light Chain-FITC, anti mouse Igi Light Chain-PE, anti-mouse CD45R(B220)-APC
- G anti-mouse Ly6G/C-FITC, anti-mouse CD49b(DX5)-PE, anti- mouse CD11 b-APC
- H anti-mouse CD4(L3T4)-FITC, anti-mouse CD45R(B220)-PE, anti- mouse CD8a-APC. Results are shown in FIG. 6.
- VELOCIMMUNE® mice were stained for surface expression of the markers B220 and IgM and analyzed using flow cytometry (FIG. 6).
- the sizes of the B220 + lgM + mature B cell populations in all versions of VELOCIMMUNE® mice tested were virtually identical to those of wild type mice, regardless of the number of V H gene segments they contained.
- mice containing homozygous hybrid humanized immunoglobulin heavy chain loci even those with only 3 V H gene segments but normal mouse immunoglobulin ⁇ light chain loci or mice containing homozygous hybrid humanized ⁇ light chain loci with normal mouse immunoglobulin heavy chain loci, also had normal numbers of B220 + lgM + cells in their peripheral compartments (not shown).
- mice with randomly integrated fully-human immunoglobulin transgenes and inactivated mouse immunoglobulin loci have reduced numbers of B cells in these compartments, with the severity of the deficit depending on the number of variable gene segments included in the transgene (Green and Jakobovits, 1998, Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes, J Exp Med 188:483-495).
- the humanization of the immunoglobulin loci was carried out in an F1 ES line (F1 H4, Valenzuela et al., 2003), derived from 129S6/SvEvTac and C57BL/6NTac heterozygous embryos.
- the human heavy chain germline variable gene sequences are targeted to the 129S6 allele, which carries the lgM a haplotype, whereas the unmodified mouse C576BL/6N allele bears the lgM b haplotype.
- These allelic forms of IgM can be distinguished by flow cytometry using antibodies specific to the polymorphisms found in the lgM a or lgM b alleles. As shown in FIG.
- the B cells identified in mice heterozygous for each version of the humanized heavy chain locus only express a single allele, either lgM a (the humanized allele) or lgM b (the wild type allele).
- lgM a the humanized allele
- lgM b the wild type allele
- heterozygote mice which have 18 human V H gene segments, and in 50% of the B cells in VELOCIMMUNE® 2 and 3 (not shown) heterozygote mice, with 39 and 80 human V H gene segments, respectively.
- the ratio of cells expressing the humanized versus wild type mouse allele 0.5 for VELOCIMMUNE® 1 mice and 0.9 for VELOCIMMUNE® 2 mice
- the ratio of the number of variable gene segments contained in the humanized versus wild type loci 0.2 for VELOCIMMUNE® 1 mice and 0.4 for
- VELOCIMMUNE® 2 mice This may indicate that the probability of allele choice is intermediate between a random choice of one or the other chromosome and a random choice of any particular V segment RSS. Further, there may be a fraction of B-cells, but not all, in which one allele becomes accessible for recombination, completes the process and shuts down recombination before the other allele becomes accessible. In addition, the even distribution of cells that have surface IgM (slgM) derived from either the hybrid humanized heavy chain locus or the wild type mouse heavy chain locus is evidence that the hybrid locus is operating at a normal level.
- slgM surface IgM
- VELOCIMMUNE® mice resemble those of wild type mice (described above), it is possible that defects in early B cell differentiation are compensated for by the expansion of mature B cell populations.
- the various stages of B cell differentiation were examined by analysis of B cell populations using flow cytometry. Table 6 sets forth the ratio of the fraction of cells in each B cell lineage defined by FACs, using specific cell surface markers, in VELOCIMMUNE® mice compared to wild type littermates.
- V2 1.0 1.0 1.0 1.0 1.0 1 .0
- VELOCIMMUNE® mice The introduction of human heavy chain gene segments does not appear to affect the pro-B to pre-B transition, and introduction of human ⁇ light chain gene segments does not affect the pre-B to B transition in VELOCIMMUNE® mice.
- the balance between the different populations during B cell differentiation are perturbed to varying extents in mice that contain randomly integrated immunoglobulin transgenes and inactivated endogenous heavy chain or ⁇ light chain loci (Green and Jakobovits, 1998).
- variable gene segments in the humanized antibody repertoire of VELOCIMMUNE® mice was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) of human variable regions from multiple sources including splenocytes and hybridoma cells.
- RT-PCR reverse transcriptase-polymerase chain reaction
- mice were generated from ES cells containing the initial heavy chain
- VELOCIMMUNE® mice were separated by flow cytometry based upon surface expression of B220 and IgM or IgG.
- the B220 + lgM + or surface lgG + (slgG + ) cells were pooled and V H and VK sequences were obtained following RT-PCR amplification and cloning (described above). Representative gene usage in a set of RT-PCR amplified cDNAs from
- non-template encoded nucleotide additions are observed at both the V H -D H and D H -JH joint in antibodies from VELOC IMMUNE® mice, indicating proper function of TdT with the human segments.
- the endpoints of the V H , D H and JH segments relative to their germline counterparts indicate that exonuclease activity has also occurred.
- the human ⁇ light chain rearrangements exhibit little or no TdT additions at CDR3, which is formed by the recombination of the VK and JK segments (FIG. 7B).
- Somatic hypermutation Additional diversity is added to the variable regions of rearranged immunoglobulin genes during the germinal center reaction by a process termed somatic hypermutation.
- B cells expressing somatically mutated variable regions compete with other B cells for access to antigen presented by the follicular dendritic cells. Those B cells with higher affinity for the antigen will further expand and undergo class switching before exiting to the periphery.
- B cells expressing switched isotypes typically have encountered antigen and undergone germinal center reactions and will have increased numbers of mutations relative to naive B cells.
- variable region sequences from predominantly naive slgM + B cells would be expected to have relatively fewer mutations than variable sequences from slgG + B cells which have undergone antigen selection.
- human heavy chain variable regions derived from slgG + B cells from non-immunized VELOCIMMUNE® mice exhibit many more nucleotides relative to slgM + B cells from the same splenocyte pools, and heavy chain variable regions derived from immunized mice exhibit even more changes.
- the number of changes is increased in the complementarity-determining regions (CDRs) relative to the framework regions, indicating antigen selection.
- CDRs complementarity-determining regions
- the corresponding amino acid sequences from the human heavy chain variable regions also exhibit significantly higher numbers of mutations in IgG versus IgM and even more in immunized IgG.
- VELOC IMMUNE® mice demonstrate that essentially all gene segments present are capable of rearrangement to form fully functionally reverse chimeric antibodies in these mice. Further, VELOCIMMUNE® antibodies fully participate within the mouse immune system to undergo affinity selection and maturation to create fully mature human antibodies that can effectively neutralize their target antigen. VELOCIMMUNE® mice are able to mount robust immune responses to multiple classes of antigens that result in usage of a wide range of human antibodies that are both high affinity and suitable for therapeutic use (data not shown).
- lymphoid Organ Structure The structure and function of the lymphoid tissues are in part dependent upon the proper development of hematopoietic cells. A defect in B cell development or function may be exhibited as an alteration in the structure of the lymphoid tissues. Upon analysis of stained tissue sections, no significant difference in appearance of secondary lymphoid organs between wild type and VELOCIMMUNE® mice was identified (data not shown).
- mice can be immunized with an antigen in the form of protein, DNA, a combination of DNA and protein, or cells expressing the antigen. Animals are typically boosted every three weeks for a total of two to three times. Following each antigen boost, serum samples from each animal are collected and analyzed for antigen-specific antibody responses by serum titer determination. Prior to fusion, mice received a final pre-fusion boost of 5 pg protein or DNA, as desired, via intra-peritoneal and/or intravenous injections.
- Splenocytes are harvested and fused to Ag8.653 myeloma cells in an electrofusion chamber according to the manufacture's suggested protocol (Cyto Pulse Sciences Inc., Glen Burnie, MD). Ten days after culture, hybridomas are screened for antigen specificity using an ELISA assay (Harlow and Lane, 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Press, New York). Alternatively, antigen specific B cells are isolated directly from immunized
- VELOCIMMUNE® mice and screened using standard techniques, including those described here, to obtain human antibodies specific for an antigen of interest (e.g., see US 2007/0280945A1 , herein incorporated by reference in its entirety).
- Serum Titer Determination To monitor animal anti-antigen serum response, serum samples are collected about 10 days after each boost and the titers are determined using antigen specific ELISA. Briefly, Nunc MAXISORPTM 96 well plates are coated with 2 pg/mL antigen overnight at 4° C and blocked with bovine serum albumin (Sigma, St. Louis, MO). Serum samples in a serial 3 fold dilutions are allowed to bind to the plates for one hour at room temperature.
- the plates are then washed with PBS containing 0.05% Tween-20 and the bound IgG are detected using HRP-conjugated goat anti-mouse Fc (Jackson Immuno Research Laboratories, Inc., West Grove, PA) for total IgG titer, or biotin-labeled isotype specific or light chain specific polyclonal antibodies (Southern Biotech Inc.) for isotype specific titers, respectively.
- HRP-conjugated streptavidin Pierce, Rockford, IL
- All plates are developed using colorimetric substrates such as BD OPTEIATM (BD Biosciences).
- VELOCIMMUNE® mice were immunized with human interleukin-6 receptor (hlL-6R).
- hlL-6R human interleukin-6 receptor
- FIG. 10A and 10B A representative set of serum titers for VELOCIMMUNE® and wild type mice immunized with hlL-6R is shown in FIG. 10A and 10B.
- VELOCIMMUNE® and wild-type mice mounted strong responses towards IL-6R with similar titer ranges (FIG. 10A).
- Several mice from the VELOCIMMUNE® and wild- type cohorts reached a maximal response after a single antigen boost. These results indicate that the immune response strength and kinetics to this antigen were similar in the VELOCIMMUNE® and wild type mice.
- These antigen-specific antibody responses were further analyzed to examine the particular isotypes of the antigen-specific antibodies found in the sera.
- Both VELOCIMMUNE® and wild type groups predominantly elicited an lgG1 response (FIG. 10B), suggesting that class switching during the humoral response is similar in mice of each type.
- ELISA-based solution competition assay is typically designed to determine antibody- binding affinity to the antigen.
- antibodies in conditioned medium are premixed with serial dilutions of antigen protein ranging from 0 to 10 mg/mL.
- the solutions of the antibody and antigen mixture are then incubated for two to four hours at room temperature to reach binding equilibria.
- the amounts of free antibody in the mixtures are then measured using a quantitative sandwich ELISA.
- Ninety-six well MAXISORBTM plates (WVR, West Chester, PA) are coated with 1 Mg/mL antigen protein in PBS solution overnight at 4°C followed by BSA nonspecific blocking.
- the antibody-antigen mixture solutions are then transferred to these plates followed by one-hour incubation.
- the plates are then washed with washing buffer and the plate-bound antibodies were detected with an HRP-conjugated goat anti- mouse IgG polyclonal antibody reagent (Jackson Immuno Research Lab) and developed using colorimetric substrates such as BD OPTEIATM (BD Biosciences Pharmingen, San Diego, CA). After the reaction is stopped with 1 M phosphoric acid, optical absorptions at 450 nm are recorded and the data are analyzed using PRISMTM software from Graph Pad. The dependency of the signals on the concentrations of antigen in solution are analyzed with a 4 parameter fit analysis and reported as IC 50 , the antigen concentration required to achieve 50% reduction of the signal from the antibody samples without the presence of antigen in solution.
- FIG. 11 A and 11 B show a representative set of affinity measurements for anti-hlL6R antibodies from VELOCIMMUNE® and wild-type mice.
- VELOCIMMUNE® mouse cohorts and fused with Ag8.653 myeloma cells to form hybridomas and grown under selection (as described above). Out of a total of 671 anti-IL- 6R hybridomas produced, 236 were found to express antigen-specific antibodies. Media harvested from antigen positive wells was used to determine the antibody affinity of binding to antigen using a solution competition ELISA. Antibodies derived from VELOCIMMUNE® mice exhibit a wide range of affinity in binding to antigen in solution (FIG. 1 1 A).
- VELOC IMMUNE® mice lack expression of mouse ADAM6 genes.
- male VELOCIMMUNE® mice demonstrate a reduction in fertility.
- ADAM6 was reengineered into VELOCIMMUNE® mice to rescue the fertility defect.
- a targeting vector for insertion of mouse ADAM6a and ADAM6b genes into a humanized heavy chain locus was constructed using VELOCIGENE® genetic engineering technology (supra) to modify a Bacterial Artificial Chromosome (BAC) 929d24, which was obtained from Dr. Frederick Alt (Harvard University).
- 929d24 BAC DNA was engineered to contain genomic fragments containing the mouse ADAM6a and ADAM6b genes and a hygromycin cassette for targeted deletion of a human ADAM6 pseudogene ( ⁇ ) located between human V H 1 -2 and V H 6-1 gene segments of a humanized heavy chain locus (FIG. 12).
- the two genomic fragments containing the mouse ADAM6b and ADAM6a genes were ligated to a hygromycin cassette flanked by Frt recombination sites to create the targeting vector (Mouse ADAM6 Targeting Vector, Figure 12; SEQ ID NO:3).
- Different restriction enzyme sites were engineered onto the 5' end of the targeting vector following the mouse ADAM6b gene and onto the 3' end following the mouse ADAM6a gene (bottom of FIG. 12) for ligation into the humanized heavy chain locus.
- a separate modification was made to a BAC clone containing a replacement of mouse heavy chain variable gene loci with human heavy chain variable gene loci, including the human ADAM6 pseudogene ( ⁇ ) located between the human V H 1-2 and V H 6-1 gene segments of the humanized locus for the subsequent ligation of the mouse ADAM6 targeting vector (FIG. 13).
- a neomycin cassette flanked by loxP recombination sites was engineered to contain homology arms containing human genomic sequence at positions 3' of the human V H 1-2 gene segment (5' with respect to ⁇ ) and 5' of human V H 6-1 gene segment (3' with respect to ⁇ ; see middle of FIG. 13).
- the location of the insertion site of this targeting construct was about 1.3 kb 5' and ⁇ 350 bp 3' of the human ADAM6 pseudogene.
- the targeting construct also included the same restriction sites as the mouse ADAM6 targeting vector to allow for subsequent BAC ligation between the modified BAC clone containing the deletion of the human ADAM6 pseudogene and the mouse ADAM6 targeting vector.
- the final targeting construct for the deletion of a human ADAM6 gene within a humanized heavy chain locus and insertion of mouse ADAM6a and ADAM6b sequences in ES cells contained, from 5' to 3', a 5' genomic fragment containing ⁇ 13 kb of human genomic sequence 3' of the human V H 1-2 gene segment, ⁇ 800 bp of mouse genomic sequence downstream of the mouse ADAM6b gene, the mouse ADAM6b gene, ⁇ 4800 bp of genomic sequence upstream of the mouse ADAM6b gene, a 5' Frt site, a hygromycin cassette, a 3' Fit site, ⁇ 300 bp of mouse genomic sequence downstream of the mouse ADAM6a gene, the mouse ADAM6a gene, ⁇ 3400 bp of mouse genomic sequence upstream of the mouse ADAM6a gene, and a 3' genomic fragment containing ⁇ 30 kb of human genomic sequence 5' of the human V H 6-1 gene segment (bottom of FIG. 13).
- the engineered BAC clone (described above) was used to electroporate mouse ES cells that contained a humanized heavy chain locus to created modified ES cells comprising a mouse genomic sequence ectopically placed that comprises mouse ADAM6a and ADAM6b sequences within a humanized heavy chain locus. Positive ES cells containing the ectopic mouse genomic fragment within the humanized heavy chain locus were identified by a quantitative PCR assay using TAQMANTM probes (Lie and
- nucleotide sequence across the downstream insertion point at the 3' end of the targeted region included the following, which indicates mouse genomic sequence and a Pl-Scel restriction site (contained within the parentheses below) linked contiguously with human heavy chain genomic sequence downstream of the insertion point:
- Targeted ES cells described above were used as donor ES cells and introduced into an 8-cell stage mouse embryo by the VELOCIMOUSE® mouse engineering method (see, e.g., US Pat. Nos. 7,6598,442, 7,576,259, 7,294,754).
- Mice bearing a humanized heavy chain locus containing an ectopic mouse genomic sequence comprising mouse ADAM6a and ADAM6b sequences were identified by genotyping using a modification of allele assay (Valenzuela et al., 2003) that detected the presence of the mouse ADAM6a and ADAM6b genes within the humanized heavy chain locus.
- mice bearing a humanized heavy chain locus that contains mouse ADAM6a and ADAM6b genes are bred to a FLPe deleter mouse strain (see, e.g., Rodriguez et al., 2000, High-efficiency deleter mice show that FLPe is an alternative to Cre-/oxP. Nature Genetics 25:139-140) in order to remove any Frt'ed hygromycin cassette introduced by the targeting vector that is not removed, e.g., at the ES cell stage or in the embryo. Optionally, the hygromycin cassette is retained in the mice.
- Pups are genotyped and a pup heterozygous for a humanized heavy chain locus containing an ectopic mouse genomic fragment that comprises mouse ADAM6a and ADAM6b sequences is selected for characterizing mouse ADAM6 gene expression and fertility.
- Lymphocytes were gated for specific cell lineages and analyzed for progression through various stages of B cell development.
- Tissues collected from the animals included blood, spleen and bone marrow. Blood was collected into BD microtainer tubes with EDTA (BD Biosciences). Bone marrow was collected from femurs by flushing with complete RPMI medium supplemented with fetal calf serum, sodium pyruvate, HEPES, 2-mercaptoethanol, non-essential amino acids, and gentamycin. Red blood cells from blood, spleen and bone marrow preparations were lysed with an ammonium chloride-based lysis buffer (e.g., ACK lysis buffer), followed by washing with complete RPMI medium.
- an ammonium chloride-based lysis buffer e.g., ACK lysis buffer
- Bone marrow anti-mouse FITC-CD43 (1 B1 1 , BioLegend), PE-ckit (2B8, BioLegend), PeCy7-lgM (11/41 , eBioscience), PerCP-Cy5.5-lgD (1 1 -26c.2a, BioLegend), APC-eFluor780-B220 (RA3-6B2, eBioscience), A700-CD 9 (1 D3, BD Biosciences).
- Peripheral blood and spleen anti-mouse FITC-K (187.1 , BD Biosciences), ⁇ - ⁇ (RML-42, BioLegend), PeCy7-lgM (11/41 , eBioscience), PerCP-Cy5.5-lgD (1 1 -26c.2a, BioLegend), APC-CD3 (145-2C1 1 , BD), A700-CD19 (1 D3, BD), APC-eFluor780-B220 (RA3-6B2, eBioscience). Following incubation with the labeled antibodies, cells were washed and fixed in 2% formaldehyde.
- H +/+ A6 RES K +/+ mice demonstrate that B cells of H +/+ A6 re V /+ mice progress through the stages of B cell development in a similar fashion to H +/+ K +/+ mice in the bone marrow and peripheral compartments, and show normal patterns of maturation once they enter the periphery.
- H + + A6 RES K +/+ mice demonstrated an increased CD43 ,nt CD19 + cell population as compared to H +/ V /+ mice (FIG. 16B). This may indicate an accelerated IgM expression from the humanized heavy chain locus containing an ectopic mouse genomic fragment comprising the mouse ADAM6a and ADAM6b sequences in H + + A6 RES K + + mice.
- B and T cell populations of H +/+ A6 RES K +/+ mice appear normal and similar to
- testis Morphology and Sperm Characterization To determine if infertility in mice having humanized immunoglobulin heavy chain variable loci is due to testis and/or sperm production defects, testis morphology and sperm content of the epididymis was examined.
- testes from two groups were dissected with the epididymis intact and weighed.
- group 1 mice homozygous for human heavy and ⁇ light chain variable gene loci, ⁇ +/+ ⁇ +/+
- group 2 mice heterozygous for human heavy chain variable gene loci and homozygous for ⁇ light chain variable gene loci, H +/" K +/+
- HE hematoxylin and eosin
- mice heterozygous for human heavy chain variable gene loci and homozygous for human ⁇ light chain variable gene loci H +/" K +/+
- mice homozygous for human heavy chain variable gene loci and homozygous for human ⁇ light chain variable gene loci H +/+ K +/+
- mice homozygous for human heavy chain variable gene loci and homozygous for wild-type ⁇ light chain H + + ITIK
- WT wild- type C57 BL/6 mice
- mice cumulus dispersal was observed, indicating that each sperm sample was able to penetrate the cumulus cells and bind the zona pellucida in vitro.
- the mating pairs were observed for copulation, and five to six hours post-copulation the uterus and attached oviduct from all females were removed and flushed for analysis.
- Flush solutions were checked for eggs to verify ovulation and obtain a sperm count.
- Sperm migration was evaluated in two different ways. First, both oviducts were removed from the uterus, flushed with saline, and any sperm identified were counted.
- oviducts were left attached to the uterus and both tissues were fixed, embedded in paraffin, sectioned and stained (as described above). Sections were examined for presence of sperm, in both the uterus and in both oviducts.
- mice lacking ADAM6a and ADAM6b genes make sperm that exhibit an in vivo migration defect. In all cases, sperm was observed within the uterus, indicating that copulation and sperm release apparently occur as normal, but little to no sperm was observed within the oviducts after copulation as measured either by sperm count or histological observation. These results establish that mice lacking
- ADAM6a and ADAM6b genes produce sperm that exhibit an inability to migrate from the uterus to the oviduct. This defect apparently leads to infertility because sperm are unable to cross the uterine-tubule junction into the oviduct, where eggs are fertilized.
- mouse ADAM6 genes help direct sperm with normal motility to migrate out of the uterus, through the uterotubal junction and the oviduct, and thus approach an egg to achieve the fertilization event.
- the mechanism by which ADAM6 achieves this may be directed by one or both of the ADAM6 proteins, or through coordinate expression with other proteins, e.g., other ADAM proteins, in the sperm cell, as described below.
- ADAM Gene Family Expression A complex of ADAM proteins are known to be present as a complex on the surface of maturing sperm. Mice lacking other ADAM gene family members lose this complex as sperm mature, and exhibit a reduction of multiple ADAM proteins in mature sperm. To determine if a lack of ADAM6a and ADAM6b genes affects other ADAM proteins in a similar manner, Western blots of protein extracts from testis (immature sperm) and epididymis (maturing sperm) were analyzed to determine the expression levels of other ADAM gene family members.
- ADAM2 and ADAM 3 were not affected in testis extracts.
- both ADAM2 and ADAM3 were dramatically reduced in epididymis extracts.
- ADAM6a and ADAM6b are part of an ADAM protein complex on the surface of sperm, which might be critical for proper sperm migration.
- mice homozygous for human heavy and ⁇ light chain variable gene loci either lacking mouse ADAM6a and ADAM6b genes ( ⁇ +/+ ⁇ +/+ ) or containing an ectopic genomic fragment encoding for mouse ADAM6a and ADAM6b genes (H +/+ A6 re V + ) by a quantitative PCR assay using TAQMANTM probes (as described above).
- CD19 + B cells were purified from the spleens of H +/ V /+ and H + + A6 re V /+ mice using mouse CD19 Microbeads (Miltenyi Biotec) and total RNA was purified using the RNEASYTM Mini kit (Qiagen). Genomic RNA was removed using an RNase-free DNase on-column treatment (Qiagen). About 200 ng mRNA was reverse-transcribed into cDNA using the First Stand cDNA Synthesis kit (Invitrogen) and then amplified with the
- mice homozygous for human heavy and ⁇ light chain variable gene loci either lacking mouse ADAM6a and ADAM6b genes ( ⁇ + + ⁇ +/+ ) or containing an ectopic genomic fragment encoding for mouse ADAM6a and ADAM6b genes (H +/+ A6 re V + ) by a multi-antigen immunization scheme followed by antibody isolation and characterization.
- Results were compared for determination of any effect on V(D)J recombination involving the human immunoglobulin gene segments, assessment of serum titer progression, production of antibodies by hybridomas and affinity for antigen.
- Antigen A A human cell surface receptor (Antigen A), a human antibody specific for a human receptor tyrosine-protein kinase (Antigen B), a secreted human protein that functions in regulation of the TGF- ⁇ signaling pathway (Antigen C), and a human receptor tyrosine kinase (Antigen D) were employed for comparative
- mice were boosted via f.p. with 2.3 pg of antigen along with 10 pg CpG and 25 pg Adju-Phos (Brenntag) as adjuvants on days 3, 6, 11 , 13, 17, and 20 for a total of six boosts. Mice were bled on days 15 and 22 after the fourth and sixth boosts, respectively, and antisera were assayed for antibody titer to each specific antigen.
- Antibody titers were determined in sera of immunized mice using an ELISA assay.
- Ninety six-well microtiter plates (Thermo Scientific) were coated with the respective antigen (2 pg/ml) in phosphate-buffered saline (PBS, Irvine Scientific) overnight at 4°C. The following day, plates were washed with phosphate-buffered saline containing 0.05% Tween 20 (PBS-T, Sigma-Aldrich) four times using a plate washer (Molecular Devices). Plates were then blocked with 250 pi of 0.5% bovine serum albumin (BSA, Sigma-Aldrich) in PBS and incubated for one hour at room temperature.
- BSA bovine serum albumin
- Serum titer was calculated as serum dilution within experimental titration range at the signal of antigen binding equivalent to two times above background. Results for the humoral immune response are shown in FIG. 19 (Antigen A), FIG. 20 (Antigen B), FIG. 21 (Antigen C), and FIG. 22 (Antigen D). Antigen positive score of hybridomas made using two spleens isolated from mice from each group of selected immunizations is shown in Table 11 (Antigen score is equal to 2X/background).
- Binding affinities of antibodies showing specific binding to Antigen B were screened using a real-time surface plasmon resonance biosensor (BIAcore 2000).
- Conditioned media from hybridomas isolated from two strains of mice immunized with Antigen B (H +/ V + and H + + A6 re V + ) were used during BIAcore screening.
- BIAcore sensor surface was first derivatized with polyclonal rabbit anti-mouse antibody (GE) to capture anti-Antigen B antibodies from conditioned media.
- GE polyclonal rabbit anti-mouse antibody
- HBST 0.01 M HEPES pH 7.4, 0.15M NaCI, 3mM EDTA, 0.005% v/v Surfactant P20
- Fab fragment of Antigen B was injected over the anti-Antigen B antibody captured surface at a flow rate of 50 ⁇ /minute at 100nM concentration.
- polyclonal rabbit anti- mouse antibody (GE Catalog* BR-1008-38) was first immobilized on the sensor chip.
- BIAcore screening was performed in two different buffers - PBSP, pH7.2 and PBSP, pH6.0. Both the buffers were supplemented with 0.1 mg/ml BSA.
- 1 ⁇ of Antigen A monomer (prepared in respective running buffer) was injected over the captured antibody surface for 1.5 minutes at 30 ⁇ /minute and the dissociation of bound Antigen A monomer was monitored for 1.5 minutes in the respective running buffer at 25°C.
- K D (M) kd / ka
- T 1 ⁇ 2 (min) (In2/(60*kd).
- Table 13 sets forth the binding kinetics parameters for selected anti-Antigen A antibody binding to Antigen A monomer at pH7.2 and pH6.0. NB: no binding detected under current experimental conditions.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Environmental Sciences (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- Microbiology (AREA)
- Animal Behavior & Ethology (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (39)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013550677A JP2014507137A (en) | 2011-02-25 | 2012-02-24 | ADAM6 mouse |
IN7629CHN2013 IN2013CN07629A (en) | 2011-02-25 | 2012-02-24 | |
RS20150163A RS53880B1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
SI201230157T SI2550363T1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
MEP-2015-35A ME02106B (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
PL14154918.8T PL2738258T5 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
BR112013021771-5A BR112013021771B1 (en) | 2011-02-25 | 2012-02-24 | EX VIVO METHOD TO PRODUCE MICE GENETICALLY MODIFIED BY ADAM6 GENE INSERTION AND EX VIVO METHOD TO PRODUCE ANTIBODY SPECIFIC TO ANTIGEN OF INTEREST |
EP14176593.3A EP2813573B1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
DK12716101.6T DK2550363T3 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
KR1020137025191A KR101387377B1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
CA2820824A CA2820824A1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
PL12192727.1T PL2578688T5 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
EP22156414.9A EP4067496B1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
EP12716101.6A EP2550363B1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
EP14154967.5A EP2738259B1 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
CN201280010457.XA CN103429746B (en) | 2011-02-25 | 2012-02-24 | Adam6 mouse |
MYPI2013003123A MY172713A (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
SG2013064159A SG192933A1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
PL14154967T PL2738259T3 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
RU2013125717/10A RU2582261C2 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
AU2012243291A AU2012243291B2 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
MX2013009649A MX343009B (en) | 2011-02-25 | 2012-02-24 | Adam6 mice. |
EP14154918.8A EP2738258B2 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
NZ612643A NZ612643B2 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
PL12716101T PL2550363T3 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
ES12716101.6T ES2532487T3 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
EP12192727.1A EP2578688B2 (en) | 2011-02-25 | 2012-02-24 | ADAM6 mice |
EP20170540.7A EP3744850A1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
HK13101802.1A HK1174490A1 (en) | 2011-02-25 | 2013-02-08 | Adam6 mice adam6 |
IL226727A IL226727A (en) | 2011-02-25 | 2013-06-04 | Adam6 mice |
ZA2013/05998A ZA201305998B (en) | 2011-02-25 | 2013-08-08 | Adam6 mice |
HRP20150262AT HRP20150262T1 (en) | 2011-02-25 | 2015-03-09 | Adam6 mice |
SM201500061T SMT201500061B (en) | 2011-02-25 | 2015-03-11 | Adam mice6 |
IL261243A IL261243B (en) | 2011-02-25 | 2018-08-20 | Adam6 mice |
IL268671A IL268671B (en) | 2011-02-25 | 2019-08-13 | Adam6 mice |
CY20191100988T CY1122205T1 (en) | 2011-02-25 | 2019-09-19 | Mice ADAM6 |
CY20191101104T CY1122459T1 (en) | 2011-02-25 | 2019-10-23 | MOUSE ADAM6 |
CY20201100054T CY1122820T1 (en) | 2011-02-25 | 2020-01-22 | Mice ADAM6 |
IL273986A IL273986B (en) | 2011-02-25 | 2020-04-16 | Adam6 mice |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161446895P | 2011-02-25 | 2011-02-25 | |
US61/446,895 | 2011-02-25 | ||
US201161497650P | 2011-06-16 | 2011-06-16 | |
US61/497,650 | 2011-06-16 | ||
US201261595200P | 2012-02-06 | 2012-02-06 | |
US61/595,200 | 2012-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012141798A1 true WO2012141798A1 (en) | 2012-10-18 |
Family
ID=45998616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/026416 WO2012141798A1 (en) | 2011-02-25 | 2012-02-24 | Adam6 mice |
Country Status (32)
Country | Link |
---|---|
US (12) | US8642835B2 (en) |
EP (7) | EP4067496B1 (en) |
JP (7) | JP2014507137A (en) |
KR (1) | KR101387377B1 (en) |
CN (2) | CN105861548B (en) |
AU (5) | AU2012243291B2 (en) |
BR (1) | BR112013021771B1 (en) |
CA (1) | CA2820824A1 (en) |
CY (5) | CY1116301T1 (en) |
DE (5) | DE14154918T1 (en) |
DK (6) | DK2738258T4 (en) |
ES (6) | ES2805364T3 (en) |
FI (3) | FI2578688T4 (en) |
HK (2) | HK1174490A1 (en) |
HR (5) | HRP20191895T4 (en) |
HU (5) | HUE046746T2 (en) |
IL (4) | IL226727A (en) |
IN (1) | IN2013CN07629A (en) |
LT (4) | LT4067496T (en) |
ME (3) | ME02106B (en) |
MX (2) | MX343009B (en) |
MY (1) | MY172713A (en) |
NZ (2) | NZ731926A (en) |
PL (5) | PL2738258T5 (en) |
PT (5) | PT2550363E (en) |
RS (5) | RS64280B1 (en) |
RU (2) | RU2722373C2 (en) |
SG (4) | SG10201405135RA (en) |
SI (5) | SI2578688T2 (en) |
SM (1) | SMT201500061B (en) |
WO (1) | WO2012141798A1 (en) |
ZA (1) | ZA201305998B (en) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013022782A1 (en) * | 2011-08-05 | 2013-02-14 | Regeneron Pharmaceuticals, Inc. | Humanized universal light chain mice |
WO2013041844A2 (en) | 2011-09-19 | 2013-03-28 | Kymab Limited | Antibodies, variable domains & chains tailored for human use |
WO2013061098A2 (en) | 2011-12-02 | 2013-05-02 | Kymab Limited | Functional isotype switching of chimaeric antibody chains & chimaeric animals expressing different igh isotypes |
WO2013079953A1 (en) * | 2011-12-02 | 2013-06-06 | Kymab Limited | Fertile transgenic animals useful for producing antibodies bearing human variable regions |
WO2013096142A1 (en) * | 2011-12-20 | 2013-06-27 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
WO2013116609A1 (en) * | 2012-02-01 | 2013-08-08 | Regeneron Pharmaceuticals, Inc. | Humanized rodents that express heavy chains containing vl domains |
EP2627773A1 (en) | 2011-10-17 | 2013-08-21 | Regeneron Pharmaceuticals, Inc. | Restricted immunoglobulin heavy chain mice |
WO2013187953A1 (en) * | 2012-06-12 | 2013-12-19 | Regeneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
EP2738258A2 (en) | 2011-02-25 | 2014-06-04 | Regeneron Pharmaceuticals, Inc. | ADAM6 mice |
WO2014130690A1 (en) | 2013-02-20 | 2014-08-28 | Regeneron Pharmaceuticals, Inc. | Non-human animals with modified immunoglobulin heavy chain sequences |
WO2014141189A1 (en) * | 2013-03-14 | 2014-09-18 | Erasmus University Medical Center | Transgenic non-human mammal for antibody production |
WO2014141192A1 (en) * | 2013-03-15 | 2014-09-18 | Erasmus University Medical Center | Generation of heavy chain-only antibodies |
US8883150B2 (en) | 2009-03-24 | 2014-11-11 | Erasmus University Medical Center | Soluble “heavy-chain only” antibodies |
EP2852672A2 (en) * | 2012-05-17 | 2015-04-01 | Kymab Limited | In vivo guided selection&antibodies |
US20150113669A1 (en) * | 2009-07-08 | 2015-04-23 | Kymab Limited | Animal Models and Therapeutic Molecules |
JP2015152395A (en) * | 2014-02-13 | 2015-08-24 | 株式会社特殊免疫研究所 | In vivo assessment method of molecular target substance binding to human specific molecule |
EP2264163B1 (en) | 2001-02-16 | 2015-10-14 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
WO2015143414A3 (en) * | 2014-03-21 | 2015-12-23 | Regeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
US9301510B2 (en) | 2012-03-16 | 2016-04-05 | Regeneron Pharmaceuticals, Inc. | Mice that produce antigen-binding proteins with pH-dependent binding characteristics |
US9332742B2 (en) | 2012-03-16 | 2016-05-10 | Regeneron Pharmaceuticals, Inc. | Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same |
US9334334B2 (en) | 2012-03-16 | 2016-05-10 | Regeneron Pharmaceuticals, Inc. | Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same |
US9346877B2 (en) | 2004-07-22 | 2016-05-24 | Erasmus University Medical Centre | Binding molecules |
US9445581B2 (en) | 2012-03-28 | 2016-09-20 | Kymab Limited | Animal models and therapeutic molecules |
US9516868B2 (en) | 2010-08-02 | 2016-12-13 | Regeneron Pharmaceuticals, Inc. | Mice that make VL binding proteins |
US9648856B2 (en) | 2012-03-16 | 2017-05-16 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing pH-sensitive immunoglobulin sequences |
US9738701B2 (en) | 2003-05-30 | 2017-08-22 | Merus N.V. | Method for selecting a single cell expressing a heterogeneous combination of antibodies |
US9758805B2 (en) | 2012-04-20 | 2017-09-12 | Merus N.V. | Methods and means for the production of Ig-like molecules |
US9765133B2 (en) | 2008-06-27 | 2017-09-19 | Merus N.V. | Antibody producing non-human mammals |
US9783593B2 (en) | 2013-05-02 | 2017-10-10 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
US9783618B2 (en) | 2013-05-01 | 2017-10-10 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
US9788534B2 (en) | 2013-03-18 | 2017-10-17 | Kymab Limited | Animal models and therapeutic molecules |
US9796788B2 (en) | 2010-02-08 | 2017-10-24 | Regeneron Pharmaceuticals, Inc. | Mice expressing a limited immunoglobulin light chain repertoire |
WO2017214089A1 (en) * | 2016-06-06 | 2017-12-14 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing antibodies with human lambda light chains |
US9963716B2 (en) | 2011-09-26 | 2018-05-08 | Kymab Limited | Chimaeric surrogate light chains (SLC) comprising human VpreB |
US9969814B2 (en) | 2010-02-08 | 2018-05-15 | Regeneron Pharmaceuticals, Inc. | Methods for making fully human bispecific antibodies using a common light chain |
US10143186B2 (en) | 2010-02-08 | 2018-12-04 | Regeneron Pharmaceuticals, Inc. | Common light chain mouse |
US10149462B2 (en) | 2013-10-01 | 2018-12-11 | Kymab Limited | Animal models and therapeutic molecules |
US10251377B2 (en) | 2012-03-28 | 2019-04-09 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
US10344299B2 (en) | 2000-10-31 | 2019-07-09 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for modifying cells |
USRE47770E1 (en) | 2002-07-18 | 2019-12-17 | Merus N.V. | Recombinant production of mixtures of antibodies |
US10626168B2 (en) | 2013-02-06 | 2020-04-21 | Regeneron Pharmaceuticals, Inc. | B cell lineage based immunogen design with humanized animals |
US10787522B2 (en) | 2014-03-21 | 2020-09-29 | Regeneron Pharmaceuticals, Inc. | VL antigen binding proteins exhibiting distinct binding characteristics |
US10835599B2 (en) | 2011-10-03 | 2020-11-17 | Duke University | Methods to identify prime and boost immunogens for use in a B cell lineage-based vaccination protocol |
EP3741862A1 (en) | 2011-09-19 | 2020-11-25 | Kymab Limited | Animals, repertoires & methods for the production of human antibodies |
US10934571B2 (en) | 2002-07-18 | 2021-03-02 | Merus N.V. | Recombinant production of mixtures of antibodies |
EP3785536A1 (en) * | 2019-08-28 | 2021-03-03 | Trianni, Inc. | Adam6 knockin mice |
US11053285B2 (en) | 2011-07-05 | 2021-07-06 | Duke University | Nucleic acids encoding human immunodeficiency virus type 1 (HIV-1) N-terminal deleted gp120 immunogens and methods of use |
US11111314B2 (en) | 2015-03-19 | 2021-09-07 | Regeneron Pharmaceuticals, Inc. | Non-human animals that select for light chain variable regions that bind antigen |
US11707056B2 (en) | 2013-05-02 | 2023-07-25 | Kymab Limited | Animals, repertoires and methods |
US11730151B2 (en) | 2019-02-18 | 2023-08-22 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animals with humanized immunoglobulin locus |
US11997994B2 (en) | 2020-06-02 | 2024-06-04 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animals with common light chain immunoglobulin locus |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112017005245A2 (en) | 2014-09-19 | 2017-12-12 | Regeneron Pharma | genetically modified nonhuman animal, methods for producing t cell, t cell hybridoma, nucleic acid, specific antibody, human cell, genetically modified nonhuman animal and for inducing an immune response, cell, t cell hybridoma, acid nucleic acid, specific antibody, chimeric antigen receptor, non-human embryo, chimeric antigen receptor locus, and nucleic acid composition. |
RU2763320C2 (en) | 2016-01-13 | 2021-12-28 | Регенерон Фармасьютикалз, Инк. | Rodents having constructed section of heavy chain diversity |
JP2019509059A (en) | 2016-02-16 | 2019-04-04 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Non-human animal having mutant kynureninase gene |
BR112018073750A2 (en) * | 2016-05-20 | 2019-02-26 | Regeneron Pharmaceuticals, Inc. | methods for generating antigen binding proteins against a foreign antigen of interest and for producing a genetically modified non-human animal with reduced tolerance of a foreign antigen of interest |
AU2017272337C1 (en) | 2016-06-03 | 2024-02-29 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing exogenous terminal deoxynucleotidyltransferase |
AU2017391167B2 (en) | 2016-11-04 | 2024-02-15 | Regeneron Pharmaceuticals, Inc. | Non-human animals having an engineered immunoglobulin lambda light chain locus |
US11122042B1 (en) | 2017-05-12 | 2021-09-14 | F5 Networks, Inc. | Methods for dynamically managing user access control and devices thereof |
EP3635009A1 (en) | 2017-06-07 | 2020-04-15 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for internalizing enzymes |
US20210345591A1 (en) | 2017-12-05 | 2021-11-11 | Regeneron Pharmaceuticals, Inc. | Non-human animals having an engineered immunoglobulin lambda light chain and uses thereof |
EP3772927A1 (en) | 2018-03-24 | 2021-02-17 | Regeneron Pharmaceuticals, Inc. | Genetically modified non-human animals for generating therapeutic antibodies against peptide-mhc complexes, methods of making and uses thereof |
KR20210004994A (en) | 2018-03-26 | 2021-01-13 | 리제너론 파마슈티칼스 인코포레이티드 | Humanized rodents to test therapeutic agents |
US20210079109A1 (en) | 2018-05-17 | 2021-03-18 | Regeneron Pharmaceuticals, Inc. | Anti-cd63 antibodies, conjugates, and uses thereof |
WO2019240999A1 (en) * | 2018-06-13 | 2019-12-19 | Crystal Bioscience Inc. | Camelization of a human variable domain by gene conversion |
IL279311B2 (en) | 2018-06-14 | 2024-02-01 | Regeneron Pharma | Non-human animals capable of dh-dh rearrangement in the immunoglobulin heavy chain coding sequences |
CA3127153A1 (en) | 2019-02-22 | 2020-08-27 | Regeneron Pharmaceuticals, Inc. | Rodents having genetically modified sodium channels and methods of use thereof |
MX2021014893A (en) | 2019-06-05 | 2022-03-11 | Regeneron Pharma | Non-human animals having a limited lambda light chain repertoire expressed from the kappa locus and uses thereof. |
US20220409732A1 (en) | 2019-12-02 | 2022-12-29 | Regeneron Pharmaceuticals, Inc. | Peptide-mhc ii protein constructs and uses thereof |
KR20230066386A (en) | 2020-09-11 | 2023-05-15 | 리제너론 파마슈티칼스 인코포레이티드 | Identification and production of antigen-specific antibodies |
AU2021400584A1 (en) | 2020-12-16 | 2023-06-29 | Regeneron Pharmaceuticals, Inc. | Mice expressing humanized fc alpha receptors |
BR112023011689A2 (en) | 2020-12-23 | 2023-10-31 | Regeneron Pharma | METHOD FOR OBTAINING AN ANTIBODY PRODUCING CELL, ANTIBODY, AND MAMMALIAN HOST CELL |
US20220195014A1 (en) | 2020-12-23 | 2022-06-23 | Regeneron Pharmaceuticals, Inc. | Nucleic acids encoding anchor modified antibodies and uses thereof |
WO2022225985A1 (en) | 2021-04-20 | 2022-10-27 | Regeneron Pharmaceuticals, Inc. | Human antibodies to artemin and methods of use thereof |
WO2024015816A1 (en) | 2022-07-12 | 2024-01-18 | Regeneron Pharmaceuticals, Inc. | Antibodies to ciliary neurotrophic factor receptor (cntfr) and methods of use thereof |
WO2024173248A1 (en) | 2023-02-13 | 2024-08-22 | Regeneron Pharmaceuticals, Inc. | Treatment of muscle related disorders with anti-human cacng1 antibodies |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6586251B2 (en) | 2000-10-31 | 2003-07-01 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US7105348B2 (en) | 2000-10-31 | 2006-09-12 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US7294754B2 (en) | 2004-10-19 | 2007-11-13 | Regeneron Pharmaceuticals, Inc. | Method for generating an animal homozygous for a genetic modification |
US20070280945A1 (en) | 2006-06-02 | 2007-12-06 | Sean Stevens | High affinity antibodies to human IL-6 receptor |
US7473557B2 (en) | 2001-06-06 | 2009-01-06 | Regeneron Pharmaceuticals, Inc. | Method for targeting transcriptionally active loci |
WO2011072204A1 (en) * | 2009-12-10 | 2011-06-16 | Regeneron Pharmaceuticals, Inc. | Mice that make heavy chain antibodies |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8823869D0 (en) | 1988-10-12 | 1988-11-16 | Medical Res Council | Production of antibodies |
WO1991000906A1 (en) | 1989-07-12 | 1991-01-24 | Genetics Institute, Inc. | Chimeric and transgenic animals capable of producing human antibodies |
US6657103B1 (en) | 1990-01-12 | 2003-12-02 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6673986B1 (en) | 1990-01-12 | 2004-01-06 | Abgenix, Inc. | Generation of xenogeneic antibodies |
US7041871B1 (en) | 1995-10-10 | 2006-05-09 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
JPH08503617A (en) * | 1992-12-01 | 1996-04-23 | プロテイン デザイン ラブズ、インコーポレーテッド | Humanized antibody reactive with L-selectin |
PT1500329E (en) | 1996-12-03 | 2012-06-18 | Amgen Fremont Inc | Human antibodies that specifically bind human tnf alpha |
CN1203922A (en) * | 1997-03-21 | 1999-01-06 | 三共株式会社 | Humanized anti-human fas antibody |
US20020062010A1 (en) | 1997-05-02 | 2002-05-23 | Genentech, Inc. | Method for making multispecific antibodies having heteromultimeric and common components |
RU10506U1 (en) | 1999-04-08 | 1999-08-16 | Кривулин Виталий Николаевич | MANUAL CULTIVATOR |
JP2003501016A (en) * | 1999-05-27 | 2003-01-14 | ヒューマン ジノーム サイエンシーズ, インコーポレイテッド | ADAM polynucleotides and polypeptides |
GB0001448D0 (en) * | 2000-01-21 | 2000-03-08 | Novartis Ag | Organic compounds |
TWI255272B (en) | 2000-12-06 | 2006-05-21 | Guriq Basi | Humanized antibodies that recognize beta amyloid peptide |
US7034134B2 (en) | 2001-04-26 | 2006-04-25 | Bristol-Myers Squibb Company | Polynucleotide encoding a novel metalloprotease highly expressed in the testis, MMP-29 |
CN1789416B (en) * | 2001-05-11 | 2011-11-16 | 协和发酵麒麟株式会社 | Human artificial chromosome containing human antibody lambda light chain |
US20060199204A1 (en) | 2001-10-05 | 2006-09-07 | U.S. Epa | Genetic testing for male factor infertility |
WO2003031656A1 (en) | 2001-10-05 | 2003-04-17 | United States Environmental Protection Agency | Genetic testing for male factor infertility |
JP4099646B2 (en) | 2002-06-04 | 2008-06-11 | 株式会社安川電機 | Voice coil motor |
PT1523496E (en) | 2002-07-18 | 2011-09-29 | Merus B V | Recombinant production of mixtures of antibodies |
RU2251699C1 (en) | 2003-09-25 | 2005-05-10 | Киселев Всеволод Иванович | Method for early and preclinical diagnostics of cervical cancer |
EP1739691B1 (en) | 2005-06-30 | 2008-12-03 | Borealis Technology Oy | Outer sheath layer for power or communication cable |
EP2505058A1 (en) | 2006-03-31 | 2012-10-03 | Medarex, Inc. | Transgenic animals expressing chimeric antibodies for use in preparing human antibodies |
JP5588866B2 (en) | 2007-08-10 | 2014-09-10 | メダレックス エル.エル.シー. | HCO 32 and HCO 27 and related examples |
US7659842B2 (en) | 2007-10-24 | 2010-02-09 | Infineon Technologies Ag | Quantization error reduction in PWM full-MASH converters |
ES2908040T3 (en) | 2008-09-30 | 2022-04-27 | Ablexis Llc | Mice with gene insertion for the production of chimeric antibodies |
CN112690250B (en) * | 2008-12-18 | 2024-03-08 | 伊拉兹马斯大学鹿特丹医学中心 | Non-human transgenic animals expressing humanized antibodies and uses thereof |
GB0905023D0 (en) | 2009-03-24 | 2009-05-06 | Univ Erasmus Medical Ct | Binding molecules |
JP5399140B2 (en) * | 2009-06-18 | 2014-01-29 | 株式会社タイトー | Morse code communication system |
PT2421357E (en) * | 2009-07-08 | 2013-04-18 | Kymab Ltd | Animal models and therapeutic molecules |
US20120021409A1 (en) | 2010-02-08 | 2012-01-26 | Regeneron Pharmaceuticals, Inc. | Common Light Chain Mouse |
ME02288B (en) | 2010-02-08 | 2016-02-20 | Regeneron Pharma | Common light chain mouse |
EP2582230A1 (en) * | 2010-06-17 | 2013-04-24 | Kymab Limited | Animal models and therapeutic molecules |
RS64280B1 (en) | 2011-02-25 | 2023-07-31 | Regeneron Pharma | Adam6 mice |
IL273982B2 (en) | 2011-08-05 | 2023-03-01 | Regeneron Pharma | Humanized universal light chain mice |
KR20160098514A (en) | 2011-10-17 | 2016-08-18 | 리제너론 파아마슈티컬스, 인크. | Restricted immunoglobulin heavy chain mice |
GB201118579D0 (en) | 2011-10-27 | 2011-12-07 | Micromass Ltd | Control of ion populations |
GB201122047D0 (en) | 2011-12-21 | 2012-02-01 | Kymab Ltd | Transgenic animals |
US9253965B2 (en) | 2012-03-28 | 2016-02-09 | Kymab Limited | Animal models and therapeutic molecules |
WO2013096142A1 (en) | 2011-12-20 | 2013-06-27 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
-
2012
- 2012-02-24 RS RS20230475A patent/RS64280B1/en unknown
- 2012-02-24 FI FIEP12192727.1T patent/FI2578688T4/en active
- 2012-02-24 NZ NZ731926A patent/NZ731926A/en unknown
- 2012-02-24 CN CN201610204885.6A patent/CN105861548B/en active Active
- 2012-02-24 SI SI201231675T patent/SI2578688T2/en unknown
- 2012-02-24 KR KR1020137025191A patent/KR101387377B1/en active IP Right Grant
- 2012-02-24 EP EP22156414.9A patent/EP4067496B1/en active Active
- 2012-02-24 SG SG10201405135RA patent/SG10201405135RA/en unknown
- 2012-02-24 MY MYPI2013003123A patent/MY172713A/en unknown
- 2012-02-24 PL PL14154918.8T patent/PL2738258T5/en unknown
- 2012-02-24 PT PT12716101T patent/PT2550363E/en unknown
- 2012-02-24 MX MX2013009649A patent/MX343009B/en active IP Right Grant
- 2012-02-24 CN CN201280010457.XA patent/CN103429746B/en active Active
- 2012-02-24 ES ES14176593T patent/ES2805364T3/en active Active
- 2012-02-24 PL PL12716101T patent/PL2550363T3/en unknown
- 2012-02-24 HR HRP20191895TT patent/HRP20191895T4/en unknown
- 2012-02-24 WO PCT/US2012/026416 patent/WO2012141798A1/en active Application Filing
- 2012-02-24 SI SI201231712T patent/SI2738258T2/en unknown
- 2012-02-24 EP EP14154918.8A patent/EP2738258B2/en active Active
- 2012-02-24 HU HUE14154918A patent/HUE046746T2/en unknown
- 2012-02-24 NZ NZ776770A patent/NZ776770A/en unknown
- 2012-02-24 DE DE14154918.8T patent/DE14154918T1/en active Pending
- 2012-02-24 EP EP14154967.5A patent/EP2738259B1/en active Active
- 2012-02-24 ME MEP-2015-35A patent/ME02106B/en unknown
- 2012-02-24 CA CA2820824A patent/CA2820824A1/en not_active Withdrawn
- 2012-02-24 ES ES12716101.6T patent/ES2532487T3/en active Active
- 2012-02-24 HU HUE12716101A patent/HUE024534T2/en unknown
- 2012-02-24 ME MEP-2020-41A patent/ME03732B/en unknown
- 2012-02-24 DE DE12192727T patent/DE12192727T1/en active Pending
- 2012-02-24 RS RS20191337A patent/RS59413B2/en unknown
- 2012-02-24 DK DK14154918.8T patent/DK2738258T4/en active
- 2012-02-24 ES ES12192727T patent/ES2748832T5/en active Active
- 2012-02-24 LT LTEP22156414.9T patent/LT4067496T/en unknown
- 2012-02-24 DE DE14176593.3T patent/DE14176593T1/en active Pending
- 2012-02-24 DK DK14154967.5T patent/DK2738259T3/en active
- 2012-02-24 US US13/404,075 patent/US8642835B2/en active Active
- 2012-02-24 RU RU2016109443A patent/RU2722373C2/en not_active Application Discontinuation
- 2012-02-24 PT PT141549188T patent/PT2738258T/en unknown
- 2012-02-24 PL PL22156414.9T patent/PL4067496T3/en unknown
- 2012-02-24 HU HUE14154967A patent/HUE047687T2/en unknown
- 2012-02-24 AU AU2012243291A patent/AU2012243291B2/en active Active
- 2012-02-24 LT LTEP14154918.8T patent/LT2738258T/en unknown
- 2012-02-24 LT LT12192727T patent/LT2578688T/en unknown
- 2012-02-24 DE DE14154967.5T patent/DE14154967T1/en active Pending
- 2012-02-24 DK DK14176593.3T patent/DK2813573T1/en unknown
- 2012-02-24 ES ES14154918T patent/ES2758974T5/en active Active
- 2012-02-24 SI SI201230157T patent/SI2550363T1/en unknown
- 2012-02-24 SG SG2013064159A patent/SG192933A1/en unknown
- 2012-02-24 FI FIEP14154918.8T patent/FI2738258T4/en active
- 2012-02-24 DK DK12716101.6T patent/DK2550363T3/en active
- 2012-02-24 PL PL12192727.1T patent/PL2578688T5/en unknown
- 2012-02-24 BR BR112013021771-5A patent/BR112013021771B1/en active IP Right Grant
- 2012-02-24 ES ES22156414T patent/ES2946169T3/en active Active
- 2012-02-24 SI SI201231739T patent/SI2738259T1/en unknown
- 2012-02-24 SG SG10201913160QA patent/SG10201913160QA/en unknown
- 2012-02-24 LT LTEP14154967.5T patent/LT2738259T/en unknown
- 2012-02-24 ME MEP2019272 patent/ME03537B/xx unknown
- 2012-02-24 SG SG10201913155QA patent/SG10201913155QA/en unknown
- 2012-02-24 RS RS20200177A patent/RS59929B1/en unknown
- 2012-02-24 ES ES14154967T patent/ES2770424T3/en active Active
- 2012-02-24 PT PT221564149T patent/PT4067496T/en unknown
- 2012-02-24 EP EP20170540.7A patent/EP3744850A1/en active Pending
- 2012-02-24 SI SI201232031T patent/SI4067496T1/en unknown
- 2012-02-24 HU HUE22156414A patent/HUE062552T2/en unknown
- 2012-02-24 RS RS20150163A patent/RS53880B1/en unknown
- 2012-02-24 HR HRP20230526TT patent/HRP20230526T1/en unknown
- 2012-02-24 JP JP2013550677A patent/JP2014507137A/en active Pending
- 2012-02-24 DE DE12716101T patent/DE12716101T1/en active Pending
- 2012-02-24 HR HRP20192311TT patent/HRP20192311T4/en unknown
- 2012-02-24 IN IN7629CHN2013 patent/IN2013CN07629A/en unknown
- 2012-02-24 EP EP12192727.1A patent/EP2578688B2/en active Active
- 2012-02-24 PL PL14154967T patent/PL2738259T3/en unknown
- 2012-02-24 PT PT121927271T patent/PT2578688T/en unknown
- 2012-02-24 PT PT141549675T patent/PT2738259T/en unknown
- 2012-02-24 EP EP12716101.6A patent/EP2550363B1/en active Active
- 2012-02-24 HU HUE12192727A patent/HUE046081T2/en unknown
- 2012-02-24 RS RS20191599A patent/RS59661B2/en unknown
- 2012-02-24 RU RU2013125717/10A patent/RU2582261C2/en active
- 2012-02-24 DK DK12192727.1T patent/DK2578688T4/en active
- 2012-02-24 EP EP14176593.3A patent/EP2813573B1/en active Active
- 2012-02-24 DK DK22156414.9T patent/DK4067496T5/en active
-
2013
- 2013-02-08 HK HK13101802.1A patent/HK1174490A1/en unknown
- 2013-02-08 HK HK15101692.2A patent/HK1201292A1/en unknown
- 2013-05-09 US US13/890,519 patent/US8697940B2/en active Active
- 2013-06-04 IL IL226727A patent/IL226727A/en active IP Right Grant
- 2013-08-08 ZA ZA2013/05998A patent/ZA201305998B/en unknown
- 2013-08-21 MX MX2020009714A patent/MX2020009714A/en unknown
-
2014
- 2014-02-27 US US14/192,051 patent/US9932408B2/en active Active
- 2014-03-20 JP JP2014057616A patent/JP5866127B2/en active Active
-
2015
- 2015-01-20 US US14/600,829 patent/US10072095B2/en active Active
- 2015-02-26 JP JP2015036588A patent/JP2015107131A/en not_active Withdrawn
- 2015-03-03 CY CY20151100221T patent/CY1116301T1/en unknown
- 2015-03-09 HR HRP20150262AT patent/HRP20150262T1/en unknown
- 2015-03-11 SM SM201500061T patent/SMT201500061B/en unknown
- 2015-04-09 US US14/682,859 patent/US9944716B2/en active Active
- 2015-10-07 AU AU2015238806A patent/AU2015238806A1/en not_active Abandoned
-
2016
- 2016-04-27 JP JP2016088848A patent/JP2016135143A/en not_active Withdrawn
-
2017
- 2017-10-26 AU AU2017251802A patent/AU2017251802A1/en not_active Abandoned
-
2018
- 2018-06-04 JP JP2018107070A patent/JP2018143250A/en not_active Withdrawn
- 2018-08-09 US US16/059,922 patent/US10905109B2/en active Active
- 2018-08-09 US US16/059,884 patent/US10694725B2/en active Active
- 2018-08-09 US US16/059,821 patent/US10905108B2/en active Active
- 2018-08-09 US US16/059,871 patent/US10577430B2/en active Active
- 2018-08-20 IL IL261243A patent/IL261243B/en active IP Right Grant
-
2019
- 2019-07-09 JP JP2019127562A patent/JP2019187446A/en not_active Withdrawn
- 2019-08-13 IL IL268671A patent/IL268671B/en active IP Right Grant
- 2019-09-19 CY CY20191100988T patent/CY1122205T1/en unknown
- 2019-10-23 CY CY20191101104T patent/CY1122459T1/en unknown
-
2020
- 2020-01-22 CY CY20201100054T patent/CY1122820T1/en unknown
- 2020-02-21 AU AU2020201279A patent/AU2020201279A1/en not_active Abandoned
- 2020-02-21 HR HRP20200294TT patent/HRP20200294T1/en unknown
- 2020-04-16 IL IL273986A patent/IL273986B/en active IP Right Grant
- 2020-12-21 US US17/129,708 patent/US11950578B2/en active Active
- 2020-12-21 US US17/129,706 patent/US20210105984A1/en active Pending
-
2022
- 2022-02-11 FI FIEP22156414.9T patent/FI4067496T3/en active
- 2022-02-28 JP JP2022029501A patent/JP2022071051A/en active Pending
- 2022-07-22 AU AU2022206806A patent/AU2022206806A1/en active Pending
-
2023
- 2023-05-31 CY CY20231100256T patent/CY1126091T1/en unknown
-
2024
- 2024-03-06 US US18/597,797 patent/US20240306617A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6586251B2 (en) | 2000-10-31 | 2003-07-01 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US20040018626A1 (en) * | 2000-10-31 | 2004-01-29 | Murphy Andrew J. | Methods of modifying eukaryotic cells |
US7105348B2 (en) | 2000-10-31 | 2006-09-12 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US7473557B2 (en) | 2001-06-06 | 2009-01-06 | Regeneron Pharmaceuticals, Inc. | Method for targeting transcriptionally active loci |
US7294754B2 (en) | 2004-10-19 | 2007-11-13 | Regeneron Pharmaceuticals, Inc. | Method for generating an animal homozygous for a genetic modification |
US7576259B2 (en) | 2004-10-19 | 2009-08-18 | Regeneron Pharmaceuticals, Inc. | Method for making genetic modifications |
US7659442B2 (en) | 2004-10-19 | 2010-02-09 | Regeneron Pharmaceuticals, Inc. | Method for making homozygous genetic modifications |
US20070280945A1 (en) | 2006-06-02 | 2007-12-06 | Sean Stevens | High affinity antibodies to human IL-6 receptor |
WO2011072204A1 (en) * | 2009-12-10 | 2011-06-16 | Regeneron Pharmaceuticals, Inc. | Mice that make heavy chain antibodies |
Non-Patent Citations (54)
Title |
---|
ALT ET AL.: "Immunoglobulin genes in transgenic mice", TRENDS GENET, vol. 1, 1985, pages 231 - 236, XP025943164, DOI: doi:10.1016/0168-9525(85)90089-7 |
BRAMBELL: "A Theoretical Model of Gamma-Globulin Catabolism", NATURE, vol. 203, 1964, pages 1352 - 1354 |
BRIL ET AL.: "Tolerance to factor VIII in a transgenic mouse expressing human factor VIII cDNA carrying an Arg(593) to Cys substitution", THROMB HAEMOST, vol. 95, 2006, pages 341 - 347 |
BROCHET ET AL.: "IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis", NUCLEIC ACIDS RES, vol. 36, 2008, pages W503 - 508, XP055217485, DOI: doi:10.1093/nar/gkn316 |
BRUGGEMANN ET AL.: "A repertoire of monoclonal antibodies with human heavy chains from transgenic mice", PNAS, vol. 86, 1989, pages 6709 - 6713, XP000068417, DOI: doi:10.1073/pnas.86.17.6709 |
BUCHHOLZ ET AL.: "Improved properties of FLP recombinase evolved by cycling mutagenesis", NAT BIOTECHNOL, vol. 16, 1998, pages 657 - 662, XP000775868, DOI: doi:10.1038/nbt0798-657 |
CHEN ET AL.: "RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development", PNAS USA, vol. 90, 1993, pages 4528 - 4532, XP002962993, DOI: doi:10.1073/pnas.90.10.4528 |
EDWARDS D R ET AL: "The ADAM metalloproteinases", MOLECULAR ASPECTS OF MEDICINE, PERGAMON PRESS, OXFORD, GB, vol. 29, no. 5, 1 October 2009 (2009-10-01), pages 258 - 289, XP025473840, ISSN: 0098-2997, [retrieved on 20080815], DOI: 10.1016/J.MAM.2008.08.001 * |
FEATHERSTONE KAREN ET AL: "The Mouse Immunoglobulin Heavy Chain V-D Intergenic Sequence Contains Insulators That May Regulate Ordered V(D)J Recombination", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 285, no. 13, March 2010 (2010-03-01), pages 9327 - 9338, XP002677428, ISSN: 0021-9258 * |
FEENEY; 2000: "Factors that influence formation of B cell repertoire", IMMUNOL RES, vol. 21, pages 195 - 202 |
GARRETT ET AL.: "Chromatin architecture near a potential 3' end of the IgH locus involves modular regulation of histone modifications during B-Cell development and in vivo occupancy at CTCF sites", MOL CELL BIOL, vol. 25, 2005, pages 1511 - 1525 |
GIBSON ET AL.: "Randomized phase III trial results of panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer", CLIN COLORECTAL CANCER, vol. 6, 2006, pages 29 - 31 |
GREEN ET AL.: "Antigen-specific human monoclonal antibodies from mice engineered with human lg heavy and light chain YACs", NAT GENET, vol. 7, 1994, pages 13 - 21, XP000953045, DOI: doi:10.1038/ng0594-13 |
GREEN; JAKOBOVITS: "Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes", J EXP MED, vol. 188, 1998, pages 483 - 495 |
HAN CECIL ET AL: "Comprehensive analysis of reproductive ADAMs: relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice.", BIOLOGY OF REPRODUCTION MAY 2009 LNKD- PUBMED:19129510, vol. 80, no. 5, May 2009 (2009-05-01), pages 1001 - 1008, XP002677427, ISSN: 0006-3363 * |
HARLOW; LANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR PRESS |
HJELM ET AL.: "Antibody-mediated regulation of the immune response", SCAND J IMMUNOL, vol. 64, 2006, pages 177 - 184, XP055058755, DOI: doi:10.1111/j.1365-3083.2006.01818.x |
HOMANICS: "Production and characterization of murine models of classic and intermediate maple syrup urine disease", BMC MED GENET, vol. 7, 2006, pages 33, XP021015829, DOI: doi:10.1186/1471-2350-7-33 |
HOMBACH ET AL.: "Molecular components of the B-cell antigen receptor complex of the IgM class", NATURE, vol. 343, 1990, pages 760 - 762, XP001179842, DOI: doi:10.1038/343760a0 |
JAKOBOVITS: "From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice", NAT BIOTECHNOL, vol. 25, 2007, pages 1134 - 1143, XP002556637, DOI: doi:10.1038/nbt1337 |
JAMSAI ET AL.: "A humanized BAC transgenic/knockout mouse model for HbE/beta-thalassemia", GENOMICS, vol. 88, no. 3, 2006, pages 309 - 15, XP024929433, DOI: doi:10.1016/j.ygeno.2006.03.009 |
JUNGHANS; ANDERSON: "The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor", PNAS USA, vol. 93, 1996, pages 5512 - 5516, XP002325439, DOI: doi:10.1073/pnas.93.11.5512 |
KATAOKA ET AL.: "Rearrangement of immunoglobulin gamma 1-chain gene and mechanism for heavy-chain class switch", PNAS USA, vol. 77, 1980, pages 919 - 923 |
KIM ET AL.: "Clinical efficacy of zanolimumab (HuMax-CD4): two Phase II studies in refractory cutaneous T-cell lymphoma", BLOOD, vol. 109, no. 11, 2007, pages 4655 - 62 |
LIE; PETROPOULOS: "Advances in quantitative PCR technology: 5'nuclease assays", CURR OPIN BIOTECHNOL, vol. 9, no. 1, 1998, pages 43 - 48, XP002909587, DOI: doi:10.1016/S0958-1669(98)80082-7 |
LONBERG ET AL.: "Antigen-specific human antibodies from mice comprising four distinct genetic modifications", NATURE, vol. 368, 1994, pages 856 - 859, XP002626115, DOI: doi:10.1038/368856a0 |
LONBERG NILS: "Human antibodies from transgenic animals", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US, vol. 23, no. 9, 1 September 2005 (2005-09-01), pages 1117 - 1125, XP002442149, ISSN: 1087-0156, DOI: 10.1038/NBT1135 * |
LONBERG: "Human antibodies from transgenic animals", NAT BIOTECHNOL, vol. 23, 2005, pages 1117 - 1125, XP002442149, DOI: doi:10.1038/nbt1135 |
MAKER: "Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase 1/11 study", ANN SURG ONCOL, vol. 12, 2005, pages 1005 - 1016, XP019369612 |
MANIS ET AL.: "Elucidation of a downstream boundary of the 3' IgH regulatory region", MOL IMMUNOL, vol. 39, 2003, pages 753 - 760 |
MATSUDA ET AL.: "The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus", J EXP MED, vol. 188, 1998, pages 2151 - 2162, XP001008659, DOI: doi:10.1084/jem.188.11.2151 |
MCCLUNG ET AL.: "Denosumab in postmenopausal women with low bone mineral density", NEW ENGL J MED, vol. 354, 2006, pages 821 - 831 |
MCLEOD: "Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle", MOL CELL BIOL, vol. 6, 1986, pages 3357 - 3367 |
MICHAEL, MECH. DEV., vol. 85, 1999, pages 35 - 47 |
MORTENSEN ET AL.: "Production of homozygous mutant ES cells with a single targeting construct", MOL CELL BIOL, vol. 12, 1992, pages 2391 - 2395 |
NEUBERGER: "Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells", EMBO J, vol. 2, 1983, pages 1373 - 1378, XP002713612 |
NIMMERJAHN; RAVETCH: "Fc-receptors as regulators of immunity", ADV IMMUNOL, vol. 96, 2007, pages 179 - 204 |
PAN ET AL.: "Different role for mouse and human CD3delta/epsilon heterodimer in preT cell receptor (preTCR) function:human CD3delta/epsilon heterodimer restores the defective preTCR function in CD3gamma- and CD3gammadelta-deficient mice", MOL LMMUNOL, vol. 43, 2006, pages 1741 - 1750 |
PAWLITZKY ET AL.: "Identification of a candidate regulatory element within the 5' flanking region of the mouse igH locus defined by pro-B cell-specific hypersensitivity associated with binding of PU.1, Pax5, and E2A", J LMMUNOL, vol. 176, 2006, pages 6839 - 6851, XP055197563, DOI: doi:10.4049/jimmunol.176.11.6839 |
POUEYMIROU ET AL.: "FO generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses", NAT BIOTECHNOL, vol. 25, 2007, pages 91 - 99, XP002464122, DOI: doi:10.1038/nbt1263 |
RAO: "Differential expression of the inhibitory IgG Fc receptor FcgammaRIIB on germinal center cells: implications for selection of high-affinity B cells", J IMMUNOL, vol. 169, 2002, pages 1859 - 1868 |
RODRIGUEZ ET AL.: "High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP", NATURE GENETICS, vol. 25, 2000, pages 139 - 140, XP003034016, DOI: doi:10.1038/75973 |
SCHAIBLE ET AL.: "The immunoglobulin kappa locus: polymorphism and haplotypes of Caucasoid and non-Caucasoid individuals", HUM GENET, vol. 91, 1993, pages 261 - 267 |
SCHWARTZ; CANTOR: "Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis", CELL, vol. 37, 1984, pages 67 - 75, XP023911861, DOI: doi:10.1016/0092-8674(84)90301-5 |
TOMIZUKA ET AL.: "Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies", PNAS USA, vol. 97, 2000, pages 722 - 727, XP002949329, DOI: doi:10.1073/pnas.97.2.722 |
TUAILLON ET AL.: "Human immunoglobulin heavy-chain minilocus recombination in transgenic mice: gene-segment use in mu and gamma transcripts", PNAS USA, vol. 90, 1993, pages 3720 - 3724, XP002625290, DOI: doi:10.1073/pnas.90.8.3720 |
VALENZUELA ET AL.: "High-throughput engineering of the mouse genome coupled with high-resolution expression analysis", NAT BIOTECHNOL, vol. 21, 2003, pages 652 - 659 |
WALLACE ET AL., NUCLEIC ACIDS RES., vol. 28, 2000, pages 1455 - 1464 |
WANG; STOLLAR: "Human immunoglobulin variable region gene analysis by single cell RT-PCR", J IMMUNOL METHODS, vol. 244, 2000, pages 217 - 225, XP004218461, DOI: doi:10.1016/S0022-1759(00)00260-X |
WATERSTON ET AL.: "Initial sequencing and comparative analysis of the mouse genome", NATURE, vol. 420, 2002, pages 520 - 562, XP002270594, DOI: doi:10.1038/nature01262 |
WEICHHOLD ET AL.: "The human immunoglobulin kappa locus consists of two copies that are organized in opposite polarity", GENOMICS, vol. 16, 1993, pages 503 - 511, XP024796526, DOI: doi:10.1006/geno.1993.1217 |
ZAMBROWICZ ET AL., PNAS USA, vol. 94, 1997, pages 3789 - 3794 |
ZHANG ET AL.: "A new logic for DNA engineering using recombination in Escherichia coli", NAT GENET, vol. 20, 1998, pages 123 - 128, XP002225129, DOI: doi:10.1038/2417 |
ZHENG ET AL.: "Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications", MOL CELL BIOL, vol. 20, 2000, pages 648 - 655, XP003030871, DOI: doi:10.1128/MCB.20.2.648-655.2000 |
Cited By (165)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10227625B2 (en) | 2000-10-31 | 2019-03-12 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US10344299B2 (en) | 2000-10-31 | 2019-07-09 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for modifying cells |
US9708635B2 (en) | 2000-10-31 | 2017-07-18 | Regeneron Pharmaceuticals, Inc. | Methods of making a nucleic acid encoding a human variable region |
US10584364B2 (en) | 2000-12-07 | 2020-03-10 | Rgeneron Pharmaceuticals, Inc. | Mice that produce hybrid antibodies |
US10640800B2 (en) | 2001-02-16 | 2020-05-05 | Regeneron Pharmaceuticals, Inc. | Mice that produce hybrid antibodies |
US9528136B2 (en) | 2001-02-16 | 2016-12-27 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US10526630B2 (en) | 2001-02-16 | 2020-01-07 | Regeneron Pharmaceuticals, Inc. | Genetically modified mice that produce hybrid antibodies |
EP2264163B1 (en) | 2001-02-16 | 2015-10-14 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US10378037B2 (en) | 2001-02-16 | 2019-08-13 | Regeneron Pharmaceuticals, Inc. | Methods of making a nucleic acid encoding a human variable region |
US10378039B2 (en) | 2001-02-16 | 2019-08-13 | Regeneron Pharmaceuticals, Inc. | Mouse embryonic stem cells comprising a hybrid heavy chain immunoglobulin locus |
US10378040B2 (en) | 2001-02-16 | 2019-08-13 | Regeneron Pharmaceuticals, Inc. | Mice that produce hybrid antibodies |
US10378038B2 (en) | 2001-02-16 | 2019-08-13 | Regeneron Pharmaceuticals, Inc. | Mice that produce hybrid antibodies |
USRE47770E1 (en) | 2002-07-18 | 2019-12-17 | Merus N.V. | Recombinant production of mixtures of antibodies |
US10934571B2 (en) | 2002-07-18 | 2021-03-02 | Merus N.V. | Recombinant production of mixtures of antibodies |
US10670599B2 (en) | 2003-05-30 | 2020-06-02 | Merus N.V. | Method for selecting a single cell expressing a heterogeneous combination of antibodies |
US9738701B2 (en) | 2003-05-30 | 2017-08-22 | Merus N.V. | Method for selecting a single cell expressing a heterogeneous combination of antibodies |
US10605808B2 (en) | 2003-05-30 | 2020-03-31 | Merus N.V. | Antibody producing non-human animals |
US10906970B2 (en) | 2004-07-22 | 2021-02-02 | Erasmus University Medical Centre | Methods of making heavy chain only antibodies using transgenic animals |
US9353179B2 (en) | 2004-07-22 | 2016-05-31 | Erasmus University Medical Centre | Binding molecules |
US9346877B2 (en) | 2004-07-22 | 2016-05-24 | Erasmus University Medical Centre | Binding molecules |
US11237165B2 (en) | 2008-06-27 | 2022-02-01 | Merus N.V. | Antibody producing non-human animals |
US11559049B2 (en) | 2008-06-27 | 2023-01-24 | Merus N.V. | Antibody producing non-human animals |
US9944695B2 (en) | 2008-06-27 | 2018-04-17 | Merus N.V. | Antibody producing non-human mammals |
US9765133B2 (en) | 2008-06-27 | 2017-09-19 | Merus N.V. | Antibody producing non-human mammals |
US9951124B2 (en) | 2008-06-27 | 2018-04-24 | Merus N.V. | Antibody producing non-human mammals |
US10966411B2 (en) | 2008-06-27 | 2021-04-06 | Merus N.V. | Antibody producing non-human mammals |
US11785924B2 (en) | 2008-06-27 | 2023-10-17 | Merus N.V. | Antibody producing non-human animals |
US11925174B2 (en) | 2008-06-27 | 2024-03-12 | Merus N.V. | Antibody producing non-human animals |
US9365655B2 (en) | 2009-03-24 | 2016-06-14 | Erasmus University Medical Center | Soluble heavy-chain only antibodies |
US8883150B2 (en) | 2009-03-24 | 2014-11-11 | Erasmus University Medical Center | Soluble “heavy-chain only” antibodies |
US11812731B2 (en) | 2009-07-08 | 2023-11-14 | Kymab Ltd. | Animal models and therapeutic molecules |
US10064398B2 (en) | 2009-07-08 | 2018-09-04 | Kymab Limited | Animal models and therapeutic molecules |
US9434782B2 (en) | 2009-07-08 | 2016-09-06 | Kymab Limited | Animal models and therapeutic molecules |
US9447177B2 (en) | 2009-07-08 | 2016-09-20 | Kymab Limited | Transgenic mouse homozygous for chimeric IgH locus |
US11564380B2 (en) | 2009-07-08 | 2023-01-31 | Kymab Limited | Animal models and therapeutic molecules |
US11606941B2 (en) | 2009-07-08 | 2023-03-21 | Kymab Limited | Animal models and therapeutic molecules |
US20150113669A1 (en) * | 2009-07-08 | 2015-04-23 | Kymab Limited | Animal Models and Therapeutic Molecules |
US9504236B2 (en) | 2009-07-08 | 2016-11-29 | Kymab Limited | Animal models and therapeutic molecules |
US9505827B2 (en) | 2009-07-08 | 2016-11-29 | Kymab Limited | Animal models and therapeutic molecules |
US10165763B2 (en) | 2009-07-08 | 2019-01-01 | Kymab Limited | Animal models and therapeutic molecules |
US10143186B2 (en) | 2010-02-08 | 2018-12-04 | Regeneron Pharmaceuticals, Inc. | Common light chain mouse |
US10412940B2 (en) | 2010-02-08 | 2019-09-17 | Regeneron Pharmaceuticals, Inc. | Mice expressing a limited immunoglobulin light chain repertoire |
US10167344B2 (en) | 2010-02-08 | 2019-01-01 | Regeneron Pharmaceuticals, Inc. | Mice expressing a limited immunoglobulin light chain repertoire |
US10986820B2 (en) | 2010-02-08 | 2021-04-27 | Regeneron Pharmaceuticals, Inc. | Common light chain mouse |
US9796788B2 (en) | 2010-02-08 | 2017-10-24 | Regeneron Pharmaceuticals, Inc. | Mice expressing a limited immunoglobulin light chain repertoire |
US11026407B2 (en) | 2010-02-08 | 2021-06-08 | Regeneran Pharmaceuticals, Inc. | Mice expressing a limited immunoglobulin light chain repertoire |
US9969814B2 (en) | 2010-02-08 | 2018-05-15 | Regeneron Pharmaceuticals, Inc. | Methods for making fully human bispecific antibodies using a common light chain |
US9516868B2 (en) | 2010-08-02 | 2016-12-13 | Regeneron Pharmaceuticals, Inc. | Mice that make VL binding proteins |
US9686970B2 (en) | 2010-08-02 | 2017-06-27 | Regeneron Pharmaceuticals, Inc. | Mice that make VL binding proteins |
US10954310B2 (en) | 2010-08-02 | 2021-03-23 | Regeneran Pharmaceuticals, Inc. | Mice that make VL binding proteins |
US11950578B2 (en) | 2011-02-25 | 2024-04-09 | Regeneron Pharmaceuticals, Inc. | ADAM6 mice |
US10694725B2 (en) | 2011-02-25 | 2020-06-30 | Regeneron Pharmaceuticals, Inc. | ADAM6 mice |
US10577430B2 (en) | 2011-02-25 | 2020-03-03 | Regeneron Pharmaceuticals, Inc. | ADAM6 mice |
US10905109B2 (en) | 2011-02-25 | 2021-02-02 | Regeneren Pharmaceuticals, Inc. | ADAM6 mice |
EP2738258A2 (en) | 2011-02-25 | 2014-06-04 | Regeneron Pharmaceuticals, Inc. | ADAM6 mice |
US10905108B2 (en) | 2011-02-25 | 2021-02-02 | Regeneron Pharmaceuticals, Inc. | ADAM6 mice |
US11053285B2 (en) | 2011-07-05 | 2021-07-06 | Duke University | Nucleic acids encoding human immunodeficiency virus type 1 (HIV-1) N-terminal deleted gp120 immunogens and methods of use |
WO2013022782A1 (en) * | 2011-08-05 | 2013-02-14 | Regeneron Pharmaceuticals, Inc. | Humanized universal light chain mice |
EP3572517A1 (en) * | 2011-08-05 | 2019-11-27 | Regeneron Pharmaceuticals, Inc. | Humanized universal light chain mice |
US11357217B2 (en) | 2011-08-05 | 2022-06-14 | Regeneron Pharmaceuticals, Inc. | Humanized universal light chain mice |
US10130081B2 (en) | 2011-08-05 | 2018-11-20 | Regeneron Pharmaceuticals, Inc. | Humanized universal light chain mice |
EP3865581A1 (en) * | 2011-08-05 | 2021-08-18 | Regeneron Pharmaceuticals, Inc. | Humanized universal light chain mice |
WO2013041844A2 (en) | 2011-09-19 | 2013-03-28 | Kymab Limited | Antibodies, variable domains & chains tailored for human use |
EP3741862A1 (en) | 2011-09-19 | 2020-11-25 | Kymab Limited | Animals, repertoires & methods for the production of human antibodies |
US11051497B2 (en) | 2011-09-19 | 2021-07-06 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
EP2758535B1 (en) * | 2011-09-19 | 2016-11-09 | Kymab Limited | Antibodies, variable domains&chains tailored for human use |
US9963716B2 (en) | 2011-09-26 | 2018-05-08 | Kymab Limited | Chimaeric surrogate light chains (SLC) comprising human VpreB |
US10835599B2 (en) | 2011-10-03 | 2020-11-17 | Duke University | Methods to identify prime and boost immunogens for use in a B cell lineage-based vaccination protocol |
US11261248B2 (en) | 2011-10-17 | 2022-03-01 | Regeneron Pharmaceuticals, Inc. | Restricted immunoglobulin heavy chain mice |
EP3216871A1 (en) * | 2011-10-17 | 2017-09-13 | Regeneron Pharmaceuticals, Inc. | Restricted immunoglobulin heavy chain mice |
EP2627773A1 (en) | 2011-10-17 | 2013-08-21 | Regeneron Pharmaceuticals, Inc. | Restricted immunoglobulin heavy chain mice |
US9932398B2 (en) | 2011-10-17 | 2018-04-03 | Regeneron Pharmaceuticals, Inc. | Restricted immunoglobulin heavy chain mice |
US10246509B2 (en) | 2011-10-17 | 2019-04-02 | Regeneron Pharmaceuticals, Inc. | Restricted immunoglobulin heavy chain mice |
EP4074833A1 (en) * | 2011-10-17 | 2022-10-19 | Regeneron Pharmaceuticals, Inc. | Restricted immunoglobulin heavy chain mice |
EP2785845A2 (en) * | 2011-12-02 | 2014-10-08 | Kymab Limited | Functional isotype switching of chimaeric antibody chains & chimaeric animals expressing different igh isotypes |
EP2989894B1 (en) | 2011-12-02 | 2020-08-12 | Kymab Limited | Use of fertile transgenic mice or rats for producing antibodies bearing human variable regions |
EP3298889A1 (en) * | 2011-12-02 | 2018-03-28 | Kymab Limited | Use of fertile transgenic animals for producing antibodies bearing human variable regions |
WO2013061098A2 (en) | 2011-12-02 | 2013-05-02 | Kymab Limited | Functional isotype switching of chimaeric antibody chains & chimaeric animals expressing different igh isotypes |
JP2018038428A (en) * | 2011-12-02 | 2018-03-15 | カイマブ・リミテッド | Fertile transgenic animals useful for producing antibodies bearing human variable regions |
AU2016101604B4 (en) * | 2011-12-02 | 2016-11-24 | Kymab Limited | Fertile transgenic animals useful for producing antibodies bearing human variable regions |
WO2013079953A1 (en) * | 2011-12-02 | 2013-06-06 | Kymab Limited | Fertile transgenic animals useful for producing antibodies bearing human variable regions |
JP2015502149A (en) * | 2011-12-02 | 2015-01-22 | カイマブ・リミテッド | Breedable transgenic animals useful for producing antibodies carrying human variable regions |
EP2649184A1 (en) | 2011-12-02 | 2013-10-16 | Kymab Limited | Fertile transgenic animals useful for producing antibodies bearing human variable regions |
EP2989894A1 (en) * | 2011-12-02 | 2016-03-02 | Kymab Limited | Use of fertile transgenic animals for producing antibodies bearing human variable regions |
EP4282879A3 (en) * | 2011-12-02 | 2024-03-20 | Kymab Ltd. | Use of fertile transgenic animals for producing antibodies bearing human variable regions |
US9706759B2 (en) | 2011-12-20 | 2017-07-18 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
US11617357B2 (en) | 2011-12-20 | 2023-04-04 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
US10561124B2 (en) | 2011-12-20 | 2020-02-18 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
US11612151B2 (en) | 2011-12-20 | 2023-03-28 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
JP2015502177A (en) * | 2011-12-20 | 2015-01-22 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Humanized light chain mouse |
EP3527070A1 (en) * | 2011-12-20 | 2019-08-21 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
WO2013096142A1 (en) * | 2011-12-20 | 2013-06-27 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
US9622459B2 (en) | 2011-12-20 | 2017-04-18 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
WO2013116609A1 (en) * | 2012-02-01 | 2013-08-08 | Regeneron Pharmaceuticals, Inc. | Humanized rodents that express heavy chains containing vl domains |
EP3597038A1 (en) * | 2012-02-01 | 2020-01-22 | Regeneron Pharmaceuticals, Inc. | Humanized rodents that express heavy chains containing vl domains |
EP3912465A1 (en) * | 2012-02-01 | 2021-11-24 | Regeneron Pharmaceuticals, Inc. | Humanized rodents that express heavy chains containing vl domains |
US9332742B2 (en) | 2012-03-16 | 2016-05-10 | Regeneron Pharmaceuticals, Inc. | Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same |
US9334334B2 (en) | 2012-03-16 | 2016-05-10 | Regeneron Pharmaceuticals, Inc. | Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same |
US9422370B2 (en) | 2012-03-16 | 2016-08-23 | Regeneron Pharmaceuticals, Inc. | Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same |
US9301510B2 (en) | 2012-03-16 | 2016-04-05 | Regeneron Pharmaceuticals, Inc. | Mice that produce antigen-binding proteins with pH-dependent binding characteristics |
US9801362B2 (en) | 2012-03-16 | 2017-10-31 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing pH-sensitive immunoglobulin sequences |
US11192947B2 (en) | 2012-03-16 | 2021-12-07 | Regeneran Pharmaceuticals, Inc. | Histidine engineered light chain antibodies and genetically modified non-human animals for generating same |
US9648856B2 (en) | 2012-03-16 | 2017-05-16 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing pH-sensitive immunoglobulin sequences |
US11224207B2 (en) | 2012-03-16 | 2022-01-18 | Regeneran Pharmaceuticals, Inc. | Non-human animals expressing pH-sensitive immunoglobulin sequences |
US10251377B2 (en) | 2012-03-28 | 2019-04-09 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
US9896516B2 (en) | 2012-03-28 | 2018-02-20 | Kymab Limited | Animal models and therapeutic molecules |
EP3366126A1 (en) * | 2012-03-28 | 2018-08-29 | Kymab Limited | Animal models and therapeutic molecules |
US9938357B2 (en) | 2012-03-28 | 2018-04-10 | Kymab Limited | Animal models and therapeutic molecules |
US11297811B2 (en) | 2012-03-28 | 2022-04-12 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
US9938358B2 (en) | 2012-03-28 | 2018-04-10 | Kymab Limited | Animal models and therapeutic molecules |
US10774155B2 (en) | 2012-03-28 | 2020-09-15 | Kymab Limited | Animal models and therapeutic molecules |
US9445581B2 (en) | 2012-03-28 | 2016-09-20 | Kymab Limited | Animal models and therapeutic molecules |
US9253965B2 (en) | 2012-03-28 | 2016-02-09 | Kymab Limited | Animal models and therapeutic molecules |
US9924705B2 (en) | 2012-03-28 | 2018-03-27 | Kymab Limited | Animal models and therapeutic molecules |
US10752929B2 (en) | 2012-04-20 | 2020-08-25 | Merus N.V. | Methods and means for the production of ig-like molecules |
US10329596B2 (en) | 2012-04-20 | 2019-06-25 | Merus N.V. | Methods and means for the production of Ig-like molecules |
US10337045B2 (en) | 2012-04-20 | 2019-07-02 | Merus N.V. | Methods and means for the production of Ig-like molecules |
US12123043B2 (en) | 2012-04-20 | 2024-10-22 | Merus N.V. | Methods and means for the production of Ig-like molecules |
US11926859B2 (en) | 2012-04-20 | 2024-03-12 | Merus N.V. | Methods and means for the production of Ig-like molecules |
US9758805B2 (en) | 2012-04-20 | 2017-09-12 | Merus N.V. | Methods and means for the production of Ig-like molecules |
EP2852672A2 (en) * | 2012-05-17 | 2015-04-01 | Kymab Limited | In vivo guided selection&antibodies |
US10667501B2 (en) | 2012-05-17 | 2020-06-02 | Kymab Limited | Transgenic non-human vertebrate for the in vivo production of dual specificity immunoglobulins or hypermutated heavy chain only immunoglobulins |
EP3597037A1 (en) * | 2012-06-12 | 2020-01-22 | Regeneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
US11559050B2 (en) | 2012-06-12 | 2023-01-24 | Regeneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
US11666040B2 (en) | 2012-06-12 | 2023-06-06 | Regeneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
US10238093B2 (en) | 2012-06-12 | 2019-03-26 | Regeneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
WO2013187953A1 (en) * | 2012-06-12 | 2013-12-19 | Regeneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
AU2020202185B2 (en) * | 2012-06-12 | 2022-09-29 | Regeneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
US10542735B2 (en) | 2012-06-12 | 2020-01-28 | Regerneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
EP3912464A1 (en) * | 2012-06-12 | 2021-11-24 | Regeneron Pharmaceuticals, Inc. | Humanized non-human animals with restricted immunoglobulin heavy chain loci |
US10626168B2 (en) | 2013-02-06 | 2020-04-21 | Regeneron Pharmaceuticals, Inc. | B cell lineage based immunogen design with humanized animals |
EP3351095A1 (en) | 2013-02-20 | 2018-07-25 | Regeneron Pharmaceuticals, Inc. | Non-human animals with modified immunoglobulin heavy chain sequences |
WO2014130690A1 (en) | 2013-02-20 | 2014-08-28 | Regeneron Pharmaceuticals, Inc. | Non-human animals with modified immunoglobulin heavy chain sequences |
US9204624B2 (en) | 2013-02-20 | 2015-12-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals with modifed immunoglobulin heavy chain sequences |
US9930871B2 (en) | 2013-02-20 | 2018-04-03 | Regeneron Pharmaceuticals, Inc. | Non-human animals with modified immunoglobulin heavy chain sequences |
EP3841876A1 (en) * | 2013-03-14 | 2021-06-30 | Erasmus University Medical Center Rotterdam | Transgenic mouse for antibody production |
WO2014141189A1 (en) * | 2013-03-14 | 2014-09-18 | Erasmus University Medical Center | Transgenic non-human mammal for antibody production |
US10993420B2 (en) | 2013-03-15 | 2021-05-04 | Erasmus University Medical Center | Production of heavy chain only antibodies in transgenic mammals |
WO2014141192A1 (en) * | 2013-03-15 | 2014-09-18 | Erasmus University Medical Center | Generation of heavy chain-only antibodies |
US11297810B2 (en) | 2013-03-18 | 2022-04-12 | Kymab Limited | Animal models and therapeutic molecules |
US9788534B2 (en) | 2013-03-18 | 2017-10-17 | Kymab Limited | Animal models and therapeutic molecules |
US10226033B2 (en) | 2013-03-18 | 2019-03-12 | Kymab Limited | Animal models and therapeutic molecules |
US9783618B2 (en) | 2013-05-01 | 2017-10-10 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
US9783593B2 (en) | 2013-05-02 | 2017-10-10 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
US11820810B2 (en) | 2013-05-02 | 2023-11-21 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
US11707056B2 (en) | 2013-05-02 | 2023-07-25 | Kymab Limited | Animals, repertoires and methods |
US10730930B2 (en) | 2013-05-02 | 2020-08-04 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
US11399522B2 (en) | 2013-10-01 | 2022-08-02 | Kymab Limited | Animal models and therapeutic molecules |
EP3794941A1 (en) | 2013-10-01 | 2021-03-24 | Kymab Limited | Animal models and therapeutic molecules |
US10149462B2 (en) | 2013-10-01 | 2018-12-11 | Kymab Limited | Animal models and therapeutic molecules |
JP2015152395A (en) * | 2014-02-13 | 2015-08-24 | 株式会社特殊免疫研究所 | In vivo assessment method of molecular target substance binding to human specific molecule |
US10881085B2 (en) | 2014-03-21 | 2021-01-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
CN106255410A (en) * | 2014-03-21 | 2016-12-21 | 瑞泽恩制药公司 | Produce the protein-bonded non-human animal of single domain |
JP2017509355A (en) * | 2014-03-21 | 2017-04-06 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
WO2015143414A3 (en) * | 2014-03-21 | 2015-12-23 | Regeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
US10787522B2 (en) | 2014-03-21 | 2020-09-29 | Regeneron Pharmaceuticals, Inc. | VL antigen binding proteins exhibiting distinct binding characteristics |
EP3895528A1 (en) * | 2014-03-21 | 2021-10-20 | Regeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
US11111314B2 (en) | 2015-03-19 | 2021-09-07 | Regeneron Pharmaceuticals, Inc. | Non-human animals that select for light chain variable regions that bind antigen |
WO2017214089A1 (en) * | 2016-06-06 | 2017-12-14 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing antibodies with human lambda light chains |
US11730151B2 (en) | 2019-02-18 | 2023-08-22 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animals with humanized immunoglobulin locus |
US12004495B2 (en) | 2019-02-18 | 2024-06-11 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animals with humanized immunoglobulin locus |
EP3785536A1 (en) * | 2019-08-28 | 2021-03-03 | Trianni, Inc. | Adam6 knockin mice |
US20210059229A1 (en) * | 2019-08-28 | 2021-03-04 | Trianni, Inc. | Adam6 knockin mice |
EP3785536B1 (en) | 2019-08-28 | 2022-01-26 | Trianni, Inc. | Adam6 knockin mice |
US11997994B2 (en) | 2020-06-02 | 2024-06-04 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animals with common light chain immunoglobulin locus |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11950578B2 (en) | ADAM6 mice | |
NZ718688B2 (en) | ADAM6 mice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280010457.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012716101 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12716101 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012243291 Country of ref document: AU Date of ref document: 20120224 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013125717 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2820824 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013550677 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/009649 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137025191 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: P-2015/0163 Country of ref document: RS |
|
WWE | Wipo information: entry into national phase |
Ref document number: 247145 Country of ref document: IL |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013021771 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013021771 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130826 |