WO2012140781A1 - Dc/dc power conversion device and photovoltaic power generation system - Google Patents

Dc/dc power conversion device and photovoltaic power generation system Download PDF

Info

Publication number
WO2012140781A1
WO2012140781A1 PCT/JP2011/059441 JP2011059441W WO2012140781A1 WO 2012140781 A1 WO2012140781 A1 WO 2012140781A1 JP 2011059441 W JP2011059441 W JP 2011059441W WO 2012140781 A1 WO2012140781 A1 WO 2012140781A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charge
capacitor
drive control
switching element
Prior art date
Application number
PCT/JP2011/059441
Other languages
French (fr)
Japanese (ja)
Inventor
一平 竹内
奥田 達也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/059441 priority Critical patent/WO2012140781A1/en
Priority to JP2013509725A priority patent/JP5528622B2/en
Publication of WO2012140781A1 publication Critical patent/WO2012140781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a DC / DC power converter and a solar power generation system including the DC / DC power converter.
  • the conventional DC / DC power converter performs the voltage conversion from direct current to direct current by controlling the amount of energy stored in and discharged from the reactor using the on / off operation of the semiconductor switch. Since this reactor has a large and heavy problem, the voltage applied to the reactor is reduced using charging and discharging of the capacitor, and the inductance value required for the reactor is reduced to make the reactor smaller and lighter. A technique for realizing this is disclosed (for example, Patent Document 1).
  • steady state during normal operation (hereinafter referred to as “steady state”), the voltage across the charge / discharge capacitor can be controlled to an arbitrary value, so that the voltage applied to the switching elements and diodes constituting the DC voltage conversion unit Can be made almost even.
  • the output voltage may be significantly different for each solar cell module group.
  • the solar cell module groups having different output voltages are connected to a plurality of DC / DC power converters and the outputs of the DC / DC power converters are connected in parallel as described above, in the above conventional technique, the output voltage is
  • the charging / discharging capacitor of the DC / DC power converter to which the small solar cell module group is connected may not be charged.
  • the voltage In a no-load state or a transient state up to a steady state, the voltage may be boosted to a desired DC voltage. There was a problem that it was not possible.
  • the present invention has been made in view of the above, and is capable of boosting the output voltage of each DC power source to a desired DC voltage even when a plurality of DC power sources having different output voltages are connected.
  • An object is to provide a power conversion device and a solar power generation system.
  • a DC / DC power converter includes a reactor connected to a DC power supply, a plurality of switching elements connected in series for switching the output of the reactor, and a plurality of switching elements.
  • a plurality of charge / discharge capacitors that are charged / discharged by switching of the switching elements, a plurality of diodes that provide a charge path and a discharge path of the charge / discharge capacitors, and a drive control unit that drives and controls the plurality of switching elements.
  • a Zener diode that maintains a certain range with respect to the connection points of the plurality of output smoothing capacitors, and the drive control unit performs normal drive control for converting the input voltage to a desired output voltage, and When the voltage across the charge / discharge capacitor is less than a predetermined voltage, charge drive control for charging the charge / discharge capacitor is performed.
  • the output voltage of each DC power supply can be boosted to a desired DC voltage.
  • FIG. 1 is a diagram illustrating a configuration example of a DC / DC power converter according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of each switching state in a steady state of the DC voltage conversion unit according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of a state transition of each part waveform in a steady state of the DC voltage conversion unit according to the embodiment.
  • FIG. 4 is a diagram illustrating a current path when an input voltage is applied in a control stop state of the DC voltage conversion unit according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of each switching state in the charge drive control of the DC voltage converter according to the embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a DC / DC power converter according to an embodiment.
  • the DC / DC power converter according to the embodiment includes a DC voltage converter 1a that boosts an input voltage Vina input between a DC power supply 2a and an input terminal VLa and a reference voltage terminal Vcom; A first output smoothing in which a DC voltage conversion unit 1b that boosts an input voltage Vinb input between an input terminal VLb and a reference voltage terminal Vcom from a DC power supply 2b is connected in parallel, and its parallel output is connected in series. Smoothed by the capacitor, the output voltage Vout is output between the output terminal VH and the reference voltage terminal Vcom.
  • FIG. 1 is a diagram illustrating a configuration example of a DC / DC power converter according to an embodiment.
  • the DC / DC power converter according to the embodiment includes a DC voltage converter 1a that boosts an input voltage Vina input between a DC power supply 2a and an input terminal VLa and a reference voltage terminal Vcom; A first output
  • the DC voltage conversion unit 1a and the DC voltage conversion unit 1b are both configured by the same components, and a and b are added to the end of the reference numerals related to the respective components. In the case where it is not necessary to distinguish, the description will be made by omitting a and b at the end.
  • the DC voltage conversion unit 1 is connected between an input terminal VL and a reference voltage terminal Vcom, and has an input-side smoothing capacitor 3 that smoothes the input voltage Vin, and a reactor that has one end connected to the positive terminal of the input-side smoothing capacitor 3. 4, the first switching element 51 and the second switching element 52 connected in series between the other end of the reactor 4 and the reference voltage terminal Vcom, and the other end of the reactor 4 and the output terminal VH, One end is connected to the connection point of the first diode 61 and the second diode 62 connected in series in the forward direction from the input side to the output side, and the connection point of the first diode 61 and the second diode 62.
  • the charge / discharge capacitor 7 having the other end connected to the connection point of the switching element 51 and the second switching element 52, the first switching element 51 and the second switching element 52
  • a backflow prevention diode 8 having an anode connected to a connection point between the switching element 52 and the charge / discharge capacitor 7, a charge auxiliary capacitor 10 connected between the cathode of the backflow prevention diode 8 and the reference voltage terminal Vcom, and a backflow Between the connection point of the prevention diode 8 and the auxiliary charge capacitor 10 and the connection point of the first output-side smoothing capacitor 11 and the second output-side smoothing capacitor 12, it is connected in reverse series to the backflow prevention diode 8.
  • a Zener diode 9 and a drive control unit 100 that drives and controls the first switching element 51 and the second switching element 52 are provided.
  • the backflow prevention diode 8 is connected to the first switching element 51 and the second switching element M from the connection point M between the first output-side smoothing capacitor 11 and the second output-side smoothing capacitor 12 when the first switching element 51 is turned on.
  • the zener diode 9 has a function of preventing a current from flowing back to the connection point B of the switching element 52, and the Zener diode 9 flows from the point B to the point M when the second switching element 52 is turned on. And has a function of maintaining the voltage of the auxiliary charging capacitor 10 within a certain range.
  • MOSFETs are used as the first and second switching elements. However, power transistors such as IGBTs may be used.
  • the drive control unit 100 includes a charge necessity determination unit 13 that determines whether or not the charge / discharge capacitor 7 needs to be charged, and a drive pulse generation unit that generates a drive pulse for driving the first switching element 51 and the second switching element 52. 14.
  • the drive pulse generation unit 14 includes a normal drive pulse generation unit 141 that generates a drive pulse for normal drive control, and a charge drive pulse generation unit 142 that generates a drive pulse for charge drive control.
  • FIG. 2 is a diagram illustrating an example of each switching state in a steady state of the DC voltage conversion unit according to the embodiment.
  • FIG. 3 is a figure which shows an example of the state transition of each part waveform in the steady state of the DC voltage converter concerning Embodiment.
  • FIG. 3A shows an example when the boost ratio is less than twice
  • FIG. 3B shows an example when the boost ratio is two times or more.
  • the steady state refers to a state where the boosting operation is stably performed by normal drive control.
  • a and b at the end of the reference numerals are omitted.
  • state 1 to state 4 there are four switching states of the DC voltage conversion unit 1 in a steady state: state 1 to state 4.
  • state 1 the first switching element 51 is turned on and the second switching element 52 is turned off, and energy is stored in the charge / discharge capacitor 7.
  • state 2 the first switching element 51 is turned off and the second switching element 52 is turned on, and the energy of the charge / discharge capacitor 7 is released.
  • state 3 both the first switching element 51 and the second switching element 52 are turned off, and the energy of the reactor 4 is released.
  • both the first switching element 51 and the second switching element 52 are turned on, and energy is stored in the reactor 4.
  • the input voltage Vin input between the input terminal VL and the reference voltage terminal Vcom is boosted to an arbitrary voltage, and the output terminal VH -An output voltage Vout can be output between the reference voltage terminals Vcom.
  • the voltage Vcf across the charging / discharging capacitor 7 is controlled to be about a half of the output voltage Vout.
  • the input voltage Vin, the output voltage Vout, and the terminal voltage Vcf of the charging / discharging capacitor 7 are controlled.
  • the size relationship is as follows.
  • Input-side smoothing capacitor 3 reactor 4 ⁇ first diode 61 ⁇ second diode 62 ⁇ second output-side smoothing capacitor 12 ⁇ first output smoothing capacitor 11
  • the first switching element 51 is turned off and the second switching element 51 is turned off. Since the element 52 is turned on, the energy accumulated in the charge / discharge capacitor 7 through the following path is superimposed on the input-side smoothing capacitor 3, and the first output-side smoothing capacitor 11 and the second output are connected via the second diode 62. 2 and the energy is accumulated in the reactor 4 (broken arrows in FIG. 2B).
  • Input-side smoothing capacitor 3 reactor 4 ⁇ first diode 61 ⁇ second diode 62 ⁇ second output-side smoothing capacitor 12 ⁇ first output smoothing capacitor 11
  • the signal is input between the input terminal VL and the reference voltage terminal Vcom.
  • the input voltage Vin is boosted to an arbitrary voltage from 1 to 2 and output as an output voltage Vout between the output terminal VH and the reference voltage terminal Vcom.
  • the voltage Vcf across the charge / discharge capacitor 7 is controlled to be about a half of the output voltage Vout, as in the case where the step-up ratio N is less than twice, and the input voltage Vin,
  • the magnitude relationship between the output voltage Vout and the voltage Vcf across the charge / discharge capacitor 7 is as follows.
  • the first switching element 51 is turned off and the second switching element 51 is turned off. Since the element 52 is turned on, the energy accumulated in the reactor 4 and the charge / discharge capacitor 7 is superimposed on the input side smoothing capacitor 3 through the following path, and the first output side smoothing capacitor is passed through the second diode 62. 11 and the second output-side smoothing capacitor 12 (broken line arrows in FIG. 2B).
  • the control stop state refers to, for example, a case where a control power source (not shown) to the drive control unit 100 is not in a standby state, or any abnormality occurs in each DC voltage conversion unit 1a, 1b to prevent a spillover failure.
  • the first switching element 51 and the second switching element 52 are not driven and controlled.
  • the input voltage Vina input from the DC power source 2a to the DC voltage converting unit 1a is set to 900 V
  • the DC voltage converting unit 1b is input from the DC power source 2b.
  • the input voltage Vinb is 300 V
  • FIG. 4 is a diagram illustrating a current path when an input voltage is applied in a control stop state of the DC voltage conversion unit according to the embodiment.
  • a description will be given by omitting a and b at the end of the reference numerals.
  • First path (broken line arrow in FIG. 5): Input terminal VL ⁇ input side smoothing capacitor 3 ⁇ reference voltage terminal Vcom
  • Second route (dashed line arrow in FIG. 5): Input terminal VL ⁇ reactor 4 ⁇ first diode 61 ⁇ second diode 62 ⁇ second output-side smoothing capacitor 12 ⁇ first output side smoothing capacitor 11 ⁇ reference voltage terminal Vcom
  • Third route (two-dot chain arrow in FIG. 5): Input terminal VL ⁇ reactor 4 ⁇ first diode 61 ⁇ charge / discharge capacitor 7 ⁇ Backflow prevention diode 8 ⁇ Zener diode 9 ⁇ first output side smoothing capacitor 11 ⁇ reference voltage terminal Vcom
  • the input voltage Vin is applied to the input-side smoothing capacitor 3, and at the same time, the connected body of the charge / discharge capacitor 7 and the second output-side smoothing capacitor 12 connected in parallel via the Zener diode 9, This is applied to the first output-side smoothing capacitor 11 connected in series to this connection body.
  • the capacitance value of the charge / discharge capacitor 7 is Cf
  • the capacitance value of the first output-side smoothing capacitor 11 is Co1
  • the capacitance value of the second output-side smoothing capacitor 12 is Co2
  • Cf ⁇ Co1 In the case of Co2, the both-ends voltage Vco1 of the first output-side smoothing capacitor 11, the both-ends voltage Vco2 of the second output-side smoothing capacitor 12, and the both-ends voltage Vcf of the charge / discharge capacitor 7 are as follows.
  • Vco1 ⁇ Vco2 ⁇ Vin / 2 Vcf ⁇ Vin / 2 ⁇ Vdz Vdz is the reverse voltage of the Zener diode 9)
  • the charging / discharging capacitor 7 is charged in the control stop state, so that the normal drive control is performed from the control stop state. By doing so, it is possible to shift to a steady state.
  • a switching pattern is used to charge the charge / discharge capacitor 7 when the charge / discharge capacitor 7 is insufficiently charged before or after the start of normal drive control.
  • charge drive control different from normal drive control is performed.
  • the charge drive control of the DC voltage converter 1 according to the embodiment will be described.
  • the charge necessity determination unit 13 receives the output voltage Vout, the voltage Vco1 across the first output-side smoothing capacitor, and the voltage Vcf across the charge / discharge capacitor 7, and is charged / discharged before or after the start of normal drive control.
  • the voltage Vcf across the capacitor 7 is less than a predetermined value obtained by subtracting the voltage Vco1 across the first output-side smoothing capacitor from the output voltage Vout and the reverse voltage Vdz of the Zener diode 9 held in advance, that is, When the expression (1) is satisfied, it is determined that the charge / discharge capacitor 7 needs to be charged, and a charge drive control command is output.
  • the drive pulse generator 14 receives the input voltage Vin, the voltage Vcf across the charge / discharge capacitor, and either the normal drive control command or the charge drive control command, and when the charge drive control command is input,
  • the charge drive pulse generator 142 generates each drive pulse for charge drive control, outputs the drive pulses to the first switching element 51 and the second switching element 52, and starts charge drive control.
  • FIG. 5 is a diagram illustrating an example of each switching state in the charge drive control of the DC voltage converter according to the embodiment.
  • the switching state of the DC voltage conversion unit 1 in the charge drive control there are three switching states of state 1 to state 3 as the switching state of the DC voltage conversion unit 1 in the charge drive control.
  • the first switching element 51 is turned on, the second switching element 52 is turned off, a current flows through the reactor 4 through the charge / discharge capacitor 7, and energy is stored in the reactor 4.
  • both the first switching element 51 and the second switching element 52 are turned off, and the energy accumulated in the reactor 4 is transferred to the charge / discharge capacitor 7 and the charge auxiliary capacitor 10.
  • both the first switching element 51 and the second switching element 52 are turned on, the current flowing through the reactor 4 is increased, and energy is stored in the reactor 4.
  • the both-ends voltage Vcf of the charge / discharge capacitor 7 is charged by appropriately setting the conduction ratio of the first switching element 51 and the second switching element 52 in each of these switching states and transitioning each switching state.
  • the switching pattern is different. That is, when the voltage difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor 7 is greater than 100V, the charge / discharge capacitor 7 is first charged, and the input voltage Vin and the voltage Vcf across the charge / discharge capacitor 7 are When the voltage difference is 100 V or less, the switching pattern is switched and charging is performed until the voltage across the charge / discharge capacitor 7 becomes Vin / 2.
  • the switching pattern when the voltage difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor 7 is larger than 100V, that is, when Vin ⁇ Vcf> 100V will be described.
  • the value obtained by subtracting 100V from the input voltage Vin is larger than half of the output voltage Vout until Vcf ⁇ Vin-100V, that is, Vin-100V> Vout / 2.
  • the charge / discharge capacitor 7 is charged until Vcf ⁇ Vout / 2.
  • the state transitions to the state 1, and Vcf ⁇ Vin ⁇ 100V by repeating a series of state transitions (switching patterns) with the state 1 ⁇ the state 2 as one cycle described above.
  • the charge / discharge capacitor 7 is charged until Vcf ⁇ Vout / 2. Note that the voltage across the charging auxiliary capacitor 10 is maintained at Vco2 to Vco2 + Vdz by the Zener diode 9.
  • the conduction ratio of the first switching element 51 in the above-described state 1 and state 3 is, for example, 10 / (Vin ⁇ Vcf), and the conduction ratio of the second switching element 52 is, for example, 10 / Vin. And it is sufficient.
  • the flow ratio of the first and second switching elements 51 and 52 is an example, and may be set to an appropriate ratio according to conditions such as the input voltage difference of each DC voltage conversion unit 1.
  • the charge necessity determination unit 13 outputs a normal drive control command when the above-described expression (2) is satisfied, and the drive pulse generation unit 14 performs normal drive when the normal drive control command is input.
  • the pulse generator 141 generates each drive pulse for normal drive control, outputs it to each of the first switching element 51 and the second switching element 52, and starts normal drive control.
  • the charge / discharge capacitor 7 is charged by performing the charge drive control from the control stop state, and the charge / discharge capacitor 7 is charged.
  • the charge / discharge capacitor is turned off by turning off the first and second switching elements 51 and 52.
  • 7 is connected in series to the charging auxiliary capacitor 10 that is charged together with the charging / discharging capacitor 7 by the energy stored in the reactor 4, and the backflow preventing diode 8 that prevents the reverse flow of the charge stored in the charging auxiliary capacitor 10;
  • a Zener diode 9 connected in reverse series to the backflow prevention diode 8 and maintaining the voltage value of the auxiliary charging capacitor 10 within a certain range with respect to the connection point of the first and second output smoothing capacitors 11 and 12;
  • a normal drive control for converting the input voltage into a desired output voltage, and the voltage across the charge / discharge capacitor 10 is predetermined.
  • the first switching element 51 When the pressure is less than the pressure, the first switching element 51 is turned on after the second switching element 52 or both the first switching element 51 and the second switching element 52 are turned on to accumulate energy in the reactor 4. And the second switching element 52 is turned off, and the charge drive control having the switching pattern for transferring the energy stored in the reactor 4 to the charge / discharge capacitor 7 and the charge auxiliary capacitor 10 is performed. Even when a plurality of DC power supplies having different output voltages are connected to the converter, the output voltage of each DC power supply can be boosted to a desired DC voltage.
  • the example in which the charge drive control is performed before the transition from the control stop state to the steady state, that is, before the normal drive control is started, has been described. It is also possible to perform charge drive control. That is, when it is determined that the charging / discharging capacitor is insufficiently charged during the normal driving control, the charging / discharging capacitor can be charged by shifting to the charging driving control.
  • the charge drive control when the charge drive control is performed, two switching patterns are provided, and whether the voltage difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor is greater than 100V or less than 100V.
  • the potential difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor when switching the switching pattern is set according to the conditions of the system to which the DC / DC power converter is applied. do it. Or depending on conditions, it is also possible to operate with only one of the two switching patterns.
  • the DC / DC power conversion device is suitable for use in a solar power generation system including a plurality of solar cell module groups. Since the number of solar cell modules in series varies depending on, for example, the condition of the roof on which the solar cell module group is installed, the output voltage differs for each solar cell module group. Since the DC / DC power converter according to the embodiment operates independently for each DC voltage converter, an optimum boosting operation can be performed for each solar cell module group.
  • a general switching element is formed of a silicon (silicon: Si) -based semiconductor, and the first and second switching elements of each DC voltage conversion unit of the DC / DC power conversion device described in the embodiment.
  • a silicon silicon: Si
  • WBG semiconductor include silicon carbide (SiC), gallium nitride (GaN) -based materials, and diamond.
  • the switching operation frequency of the first and second switching elements increases, and the switching loss and conduction loss also increase.
  • the amount of heat generated by the element also increases. Therefore, in the design stage, a maximum heat generation condition in a system or the like to which the DC / DC power converter is applied, that is, a condition that causes the highest switching operation frequency is assumed in advance, and the limit temperature of the switching element is not exceeded under the condition. Thus, the size of the heat sink connected to the switching element is determined.
  • the switching operation frequency of the first and second switching elements is reduced, and the switching loss and conduction loss are also reduced.
  • the amount of heat generated by each switching element is also reduced.
  • the size of the heat sink designed assuming the above-mentioned maximum heat generation condition has a large tolerance for the limit temperature of the switching element, and a large installation space is required, and the DC / DC power converter is enlarged. To do.
  • the cost of the heat sink and the cost of the DC / DC power converter increase.
  • the WBG semiconductor has lower switching loss and conduction loss than the Si-based semiconductor, has high heat resistance, and can operate at a high temperature. Therefore, the size of the heat sink can be reduced by using the switching element formed of the WBG semiconductor as compared with the case of using the switching element formed of the Si-based semiconductor.
  • the switching element formed of such a WBG semiconductor has high voltage resistance and high allowable current density, the switching element itself can be downsized.
  • the DC / DC power converter can be reduced in size and cost even when the above-described maximum heat generation condition is assumed. Can be planned.
  • the first and second switching elements of each DC voltage conversion unit are cooled.
  • the heat sink can be configured with an optimal size that does not provide an excess margin, and by extension, this DC / DC power conversion device can be applied to support various constraints such as roofs or houses.
  • a power generation system can be constructed.

Abstract

To provide a DC/DC power conversion device, and a photovoltaic power generation system, which are capable of boosting an output voltage of each of DC power sources to a desired direct current voltage, even when connecting a plurality of the DC power sources, the output voltages of which are different. The DC/DC power conversion device is provided with: a charge auxiliary capacitor (10) connected in series with a charge and discharge capacitor (7) by turning first and second switching elements (51, 52) off, and charged along with the charge and discharge capacitor (7) by energy stored in a reactor (4); a back flow preventing diode (8) preventing back flow of charges stored in the charge auxiliary capacitor (10); and a zener diode (9) connected in anti-series with the back flow preventing diode (8), and holding a voltage value of the charge auxiliary capacitor (10) within a constant range with respect to a connecting point of first and second output smoothing capacitors (11, 12). In this device, normal drive control for converting an input voltage to a desired output voltage is performed, and charge drive control for charging the charge and discharge capacitor (7) is performed when a voltage between both ends of the charge and discharge capacitor (7) is less than a predetermined voltage.

Description

DC/DC電力変換装置および太陽光発電システムDC / DC power converter and solar power generation system
 本発明は、DC/DC電力変換装置およびそのDC/DC電力変換装置を備えた太陽光発電システムに関する。 The present invention relates to a DC / DC power converter and a solar power generation system including the DC / DC power converter.
 従来のDC/DC電力変換装置は、半導体スイッチのオンオフ動作を利用して、リアクトルへのエネルギー蓄積と放出の量をコントロールして直流から直流への電圧変換を行っている。このリアクトルは、大形で重いという課題があることから、コンデンサの充放電を利用してリアクトルに印加される電圧を低減し、そのリアクトルに必要なインダクタンス値を低減することによりリアクトルを小形、軽量化する技術が開示されている(例えば、特許文献1)。 The conventional DC / DC power converter performs the voltage conversion from direct current to direct current by controlling the amount of energy stored in and discharged from the reactor using the on / off operation of the semiconductor switch. Since this reactor has a large and heavy problem, the voltage applied to the reactor is reduced using charging and discharging of the capacitor, and the inductance value required for the reactor is reduced to make the reactor smaller and lighter. A technique for realizing this is disclosed (for example, Patent Document 1).
 上記従来技術では、通常動作時(以下、「定常状態」という)には充放電コンデンサの両端電圧を任意の値に制御できるため、直流電圧変換部を構成するスイッチング素子やダイオードに印加される電圧をほぼ均等にすることができる。 In the above prior art, during normal operation (hereinafter referred to as “steady state”), the voltage across the charge / discharge capacitor can be controlled to an arbitrary value, so that the voltage applied to the switching elements and diodes constituting the DC voltage conversion unit Can be made almost even.
特公平6-67181号公報Japanese Patent Publication No. 6-67181
 しかしながら、例えば、太陽電池モジュールの直列接続枚数の異なる太陽電池モジュールでは、各太陽電池モジュール群毎に出力電圧が著しく異なる場合がある。このように出力電圧の異なる太陽電池モジュール群をそれぞれ複数のDC/DC電力変換装置に接続して、各DC/DC電力変換装置の出力を並列に接続した場合、上記従来技術では、出力電圧が小さい太陽電池モジュール群が接続されたDC/DC電力変換装置の充放電コンデンサが充電されない場合があり、無負荷の場合や定常状態に至るまでの過渡状態では、所望の直流電圧に昇圧することができない、という問題があった。 However, for example, in a solar cell module in which the number of solar cell modules connected in series is different, the output voltage may be significantly different for each solar cell module group. When the solar cell module groups having different output voltages are connected to a plurality of DC / DC power converters and the outputs of the DC / DC power converters are connected in parallel as described above, in the above conventional technique, the output voltage is The charging / discharging capacitor of the DC / DC power converter to which the small solar cell module group is connected may not be charged. In a no-load state or a transient state up to a steady state, the voltage may be boosted to a desired DC voltage. There was a problem that it was not possible.
 本発明は、上記に鑑みてなされたものであって、複数の出力電圧の異なる直流電源を接続する場合でも、それぞれの直流電源の出力電圧を所望の直流電圧に昇圧することができるDC/DC電力変換装置および太陽光発電システムを提供することを目的とする。 The present invention has been made in view of the above, and is capable of boosting the output voltage of each DC power source to a desired DC voltage even when a plurality of DC power sources having different output voltages are connected. An object is to provide a power conversion device and a solar power generation system.
 上述した課題を解決し、目的を達成するため、本発明にかかるDC/DC電力変換装置は、直流電源に接続されたリアクトル、前記リアクトルの出力をスイッチングする直列接続された複数のスイッチング素子、複数の前記スイッチング素子のスイッチングにより充放電される充放電コンデンサ、前記充放電コンデンサの充電経路と放電経路とを与える複数のダイオード、および、複数の前記スイッチング素子を駆動制御する駆動制御部を備える複数の直流電圧変換部と、複数の前記直流電圧変換部の並列出力を平滑する直列接続された複数の出力用平滑コンデンサと、を備え、前記直流電圧変換部は、複数の前記スイッチング素子のオフにより前記充放電コンデンサと直列に接続され、前記リアクトルに蓄えられたエネルギーにより、前記充放電コンデンサと共に充電される充電補助コンデンサと、前記充電補助コンデンサに蓄えられた電荷の逆流を防止する逆流防止ダイオードと、前記逆流防止ダイオードに対して逆直列に接続され、充電補助コンデンサの電圧値を複数の前記出力用平滑コンデンサの接続点に対して一定の範囲内に保つツェナーダイオードと、を備え、前記駆動制御部は、入力電圧を所望の出力電圧に変換する通常駆動制御を行うと共に、前記充放電コンデンサの両端電圧が所定電圧未満である場合に、前記充放電コンデンサを充電する充電駆動制御を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, a DC / DC power converter according to the present invention includes a reactor connected to a DC power supply, a plurality of switching elements connected in series for switching the output of the reactor, and a plurality of switching elements. A plurality of charge / discharge capacitors that are charged / discharged by switching of the switching elements, a plurality of diodes that provide a charge path and a discharge path of the charge / discharge capacitors, and a drive control unit that drives and controls the plurality of switching elements. A DC voltage conversion unit, and a plurality of output smoothing capacitors connected in series to smooth parallel outputs of the plurality of DC voltage conversion units, the DC voltage conversion unit by turning off a plurality of the switching elements It is connected in series with the charge / discharge capacitor, and the energy stored in the reactor A charging auxiliary capacitor that is charged together with the charging / discharging capacitor, a backflow prevention diode that prevents backflow of charges stored in the charging auxiliary capacitor, and a voltage value of the charging auxiliary capacitor that is connected in reverse series to the backflow prevention diode. And a Zener diode that maintains a certain range with respect to the connection points of the plurality of output smoothing capacitors, and the drive control unit performs normal drive control for converting the input voltage to a desired output voltage, and When the voltage across the charge / discharge capacitor is less than a predetermined voltage, charge drive control for charging the charge / discharge capacitor is performed.
 本発明によれば、複数の出力電圧の異なる直流電源を接続する場合でも、それぞれの直流電源の出力電圧を所望の直流電圧に昇圧することができる、という効果を奏する。 According to the present invention, even when a plurality of DC power supplies having different output voltages are connected, the output voltage of each DC power supply can be boosted to a desired DC voltage.
図1は、実施の形態にかかるDC/DC電力変換装置の一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a DC / DC power converter according to an embodiment. 図2は、実施の形態にかかる直流電圧変換部の定常状態における各スイッチング状態の一例を示す図である。FIG. 2 is a diagram illustrating an example of each switching state in a steady state of the DC voltage conversion unit according to the embodiment. 図3は、実施の形態にかかる直流電圧変換部の定常状態における各部波形の状態遷移の一例を示す図である。FIG. 3 is a diagram illustrating an example of a state transition of each part waveform in a steady state of the DC voltage conversion unit according to the embodiment. 図4は、実施の形態にかかる直流電圧変換部の制御停止状態において入力電圧が印加された場合の電流経路を示す図である。FIG. 4 is a diagram illustrating a current path when an input voltage is applied in a control stop state of the DC voltage conversion unit according to the embodiment. 図5は、実施の形態にかかる直流電圧変換部の充電駆動制御における各スイッチング状態の一例を示す図である。FIG. 5 is a diagram illustrating an example of each switching state in the charge drive control of the DC voltage converter according to the embodiment.
 以下に添付図面を参照し、本発明の実施の形態にかかるDC/DC電力変換装置および太陽光発電システムについて説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。 Hereinafter, a DC / DC power converter and a photovoltaic power generation system according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
実施の形態.
 図1は、実施の形態にかかるDC/DC電力変換装置の一構成例を示す図である。実施の形態にかかるDC/DC電力変換装置は、図1に示すように、直流電源2aから入力端子VLa-基準電圧端子Vcom間に入力された入力電圧Vinaを昇圧する直流電圧変換部1aと、直流電源2bから入力端子VLb-基準電圧端子Vcom間に入力された入力電圧Vinbを昇圧する直流電圧変換部1bとが並列に接続され、その並列出力が直列に接続された第1の出力用平滑コンデンサにより平滑され、出力電圧Voutが出力端子VH-基準電圧端子Vcom間に出力される。なお、図1に示す例では、2つの直流電圧変換部1a,1bを並列接続した例を示しているが、3つ以上の直流電圧変換部を並列接続することも可能である。また、直流電圧変換部1aおよび直流電圧変換部1bは、いずれも同様の構成部により構成され、それぞれの構成部に関連する符号の末尾にa,bを付しているが、以下、特段に区別する必要がない場合には、末尾のa,bを省略して説明する。
Embodiment.
FIG. 1 is a diagram illustrating a configuration example of a DC / DC power converter according to an embodiment. As shown in FIG. 1, the DC / DC power converter according to the embodiment includes a DC voltage converter 1a that boosts an input voltage Vina input between a DC power supply 2a and an input terminal VLa and a reference voltage terminal Vcom; A first output smoothing in which a DC voltage conversion unit 1b that boosts an input voltage Vinb input between an input terminal VLb and a reference voltage terminal Vcom from a DC power supply 2b is connected in parallel, and its parallel output is connected in series. Smoothed by the capacitor, the output voltage Vout is output between the output terminal VH and the reference voltage terminal Vcom. In addition, although the example shown in FIG. 1 has shown the example which connected two DC voltage converters 1a and 1b in parallel, it is also possible to connect three or more DC voltage converters in parallel. Further, the DC voltage conversion unit 1a and the DC voltage conversion unit 1b are both configured by the same components, and a and b are added to the end of the reference numerals related to the respective components. In the case where it is not necessary to distinguish, the description will be made by omitting a and b at the end.
 直流電圧変換部1は、入力端子VLと基準電圧端子Vcomとの間に接続され、入力電圧Vinを平滑する入力側平滑コンデンサ3と、一端が入力側平滑コンデンサ3の正極端子に接続されたリアクトル4と、リアクトル4の他端と基準電圧端子Vcomとの間に直列接続された第1のスイッチング素子51および第2のスイッチング素子52と、リアクトル4の他端と出力端子VHとの間に、入力側から出力側に向かって順方向に直列接続された第1のダイオード61および第2のダイオード62と、第1のダイオード61および第2のダイオード62の接続点に一端が接続され、第1のスイッチング素子51および第2のスイッチング素子52の接続点に他端が接続された充放電コンデンサ7と、第1のスイッチング素子51および第2のスイッチング素子52と充放電コンデンサ7との接続点にアノードが接続された逆流防止ダイオード8と、逆流防止ダイオード8のカソードと基準電圧端子Vcomとの間に接続された充電補助コンデンサ10と、逆流防止ダイオード8および充電補助コンデンサ10の接続点と第1の出力側平滑コンデンサ11および第2の出力側平滑コンデンサ12の接続点との間に、逆流防止ダイオード8に対して逆直列に接続されたツェナーダイオード9と、第1のスイッチング素子51および第2のスイッチング素子52を駆動制御する駆動制御部100とを備えている。なお、逆流防止ダイオード8は、第1のスイッチング素子51がオンした時に、第1の出力側平滑コンデンサ11および第2の出力側平滑コンデンサ12の接続点Mから第1のスイッチング素子51および第2のスイッチング素子52の接続点Bに電流が逆流するのを防止する機能を有し、また、ツェナーダイオード9は、第2のスイッチング素子52がオン動作した時に、B点からM点に電流が流れるのを防止し、充電補助コンデンサ10の電圧を一定の範囲内に保持する機能を有している。また、図1に示す例では、第1および第2のスイッチング素子としてMOSFETを用いているが、例えばIGBT等のパワートランジスタであってもよい。 The DC voltage conversion unit 1 is connected between an input terminal VL and a reference voltage terminal Vcom, and has an input-side smoothing capacitor 3 that smoothes the input voltage Vin, and a reactor that has one end connected to the positive terminal of the input-side smoothing capacitor 3. 4, the first switching element 51 and the second switching element 52 connected in series between the other end of the reactor 4 and the reference voltage terminal Vcom, and the other end of the reactor 4 and the output terminal VH, One end is connected to the connection point of the first diode 61 and the second diode 62 connected in series in the forward direction from the input side to the output side, and the connection point of the first diode 61 and the second diode 62. The charge / discharge capacitor 7 having the other end connected to the connection point of the switching element 51 and the second switching element 52, the first switching element 51 and the second switching element 52 A backflow prevention diode 8 having an anode connected to a connection point between the switching element 52 and the charge / discharge capacitor 7, a charge auxiliary capacitor 10 connected between the cathode of the backflow prevention diode 8 and the reference voltage terminal Vcom, and a backflow Between the connection point of the prevention diode 8 and the auxiliary charge capacitor 10 and the connection point of the first output-side smoothing capacitor 11 and the second output-side smoothing capacitor 12, it is connected in reverse series to the backflow prevention diode 8. A Zener diode 9 and a drive control unit 100 that drives and controls the first switching element 51 and the second switching element 52 are provided. The backflow prevention diode 8 is connected to the first switching element 51 and the second switching element M from the connection point M between the first output-side smoothing capacitor 11 and the second output-side smoothing capacitor 12 when the first switching element 51 is turned on. The zener diode 9 has a function of preventing a current from flowing back to the connection point B of the switching element 52, and the Zener diode 9 flows from the point B to the point M when the second switching element 52 is turned on. And has a function of maintaining the voltage of the auxiliary charging capacitor 10 within a certain range. In the example shown in FIG. 1, MOSFETs are used as the first and second switching elements. However, power transistors such as IGBTs may be used.
 駆動制御部100は、充放電コンデンサ7の充電要否を判定する充電要否判定部13と、第1のスイッチング素子51および第2のスイッチング素子52を駆動する駆動パルスを生成する駆動パルス生成部14とを備えている。また、駆動パルス生成部14は、通常駆動制御用の駆動パルスを生成する通常駆動パルス生成部141と、充電駆動制御用の駆動パルスを生成する充電駆動パルス生成部142とを備えている。 The drive control unit 100 includes a charge necessity determination unit 13 that determines whether or not the charge / discharge capacitor 7 needs to be charged, and a drive pulse generation unit that generates a drive pulse for driving the first switching element 51 and the second switching element 52. 14. The drive pulse generation unit 14 includes a normal drive pulse generation unit 141 that generates a drive pulse for normal drive control, and a charge drive pulse generation unit 142 that generates a drive pulse for charge drive control.
 つぎに、実施の形態にかかる直流電圧変換部1の定常状態における動作について、図1~図3を参照して説明する。図2は、実施の形態にかかる直流電圧変換部の定常状態における各スイッチング状態の一例を示す図である。また、図3は、実施の形態にかかる直流電圧変換部の定常状態における各部波形の状態遷移の一例を示す図である。図3(a)は、昇圧比が2倍未満である場合の例を示し、図3(b)は、昇圧比が2倍以上である場合の例を示している。なお、定常状態とは、通常駆動制御により安定して昇圧動作を行っている状態をいう。なお、図2に示す例では、符号の末尾のa,bを省略している。 Next, the operation in the steady state of the DC voltage converter 1 according to the embodiment will be described with reference to FIGS. FIG. 2 is a diagram illustrating an example of each switching state in a steady state of the DC voltage conversion unit according to the embodiment. Moreover, FIG. 3 is a figure which shows an example of the state transition of each part waveform in the steady state of the DC voltage converter concerning Embodiment. FIG. 3A shows an example when the boost ratio is less than twice, and FIG. 3B shows an example when the boost ratio is two times or more. The steady state refers to a state where the boosting operation is stably performed by normal drive control. In the example shown in FIG. 2, a and b at the end of the reference numerals are omitted.
 図2に示すように、定常状態における直流電圧変換部1のスイッチング状態としては、状態1~状態4の4つがある。状態1では、第1のスイッチング素子51がオン、第2のスイッチング素子52がオフとなり、充放電コンデンサ7にエネルギーを蓄積する。状態2では、第1のスイッチング素子51がオフ、第2のスイッチング素子52がオンとなり、充放電コンデンサ7のエネルギーを放出する。状態3では、第1のスイッチング素子51と第2のスイッチング素子52が共にオフとなり、リアクトル4のエネルギーを放出する。状態4では、第1のスイッチング素子51と第2のスイッチング素子52が共にオンとなり、リアクトル4にエネルギーを蓄積する。これらの各スイッチング状態の時間比率を適宜設定して各スイッチング状態を遷移させることにより、入力端子VL-基準電圧端子Vcom間に入力された入力電圧Vinを任意の電圧に昇圧して、出力端子VH-基準電圧端子Vcom間に出力電圧Voutとして出力することができる。 As shown in FIG. 2, there are four switching states of the DC voltage conversion unit 1 in a steady state: state 1 to state 4. In the state 1, the first switching element 51 is turned on and the second switching element 52 is turned off, and energy is stored in the charge / discharge capacitor 7. In the state 2, the first switching element 51 is turned off and the second switching element 52 is turned on, and the energy of the charge / discharge capacitor 7 is released. In the state 3, both the first switching element 51 and the second switching element 52 are turned off, and the energy of the reactor 4 is released. In the state 4, both the first switching element 51 and the second switching element 52 are turned on, and energy is stored in the reactor 4. By appropriately setting the time ratios of these switching states and transitioning between the switching states, the input voltage Vin input between the input terminal VL and the reference voltage terminal Vcom is boosted to an arbitrary voltage, and the output terminal VH -An output voltage Vout can be output between the reference voltage terminals Vcom.
 実施の形態にかかる直流電圧変換部1の定常状態における通常駆動制御では、入力電圧Vinに対する出力電圧Voutの昇圧比Nが2倍未満の場合(Vout/Vin=N<2:図3(a))と、2倍以上の場合(Vout/Vin=N≧2:図3(b))とでスイッチングパターンが異なっている。 In the normal drive control in the steady state of the DC voltage converter 1 according to the embodiment, when the step-up ratio N of the output voltage Vout with respect to the input voltage Vin is less than twice (Vout / Vin = N <2: FIG. 3A). ) And the case of more than twice (Vout / Vin = N ≧ 2: FIG. 3B), the switching pattern is different.
 まず、昇圧比Nが2倍未満の場合の動作について説明する。定常状態では、充放電コンデンサ7の両端電圧Vcfが出力電圧Voutの約2分の1の電圧になるように制御しており、入力電圧Vin、出力電圧Vout、充放電コンデンサ7の端子間電圧Vcfの大小関係は、以下のようになっている。 First, the operation when the step-up ratio N is less than 2 will be described. In the steady state, the voltage Vcf across the charging / discharging capacitor 7 is controlled to be about a half of the output voltage Vout. The input voltage Vin, the output voltage Vout, and the terminal voltage Vcf of the charging / discharging capacitor 7 are controlled. The size relationship is as follows.
 Vout>Vin>Vcf Vout> Vin> Vcf
 まず、状態1において、第1のスイッチング素子51のゲート信号G1がHigh、第2のスイッチング素子52のゲート信号G2がLowとなると、第1のスイッチング素子51がオン、第2のスイッチング素子52がオフとなるため、以下の経路で入力側平滑コンデンサ3からリアクトル4に、さらに第1のダイオード61を介して充放電コンデンサ7にエネルギーが移行する(図2(a)の破線矢印)。 First, in the state 1, when the gate signal G1 of the first switching element 51 becomes High and the gate signal G2 of the second switching element 52 becomes Low, the first switching element 51 is turned on and the second switching element 52 is turned on. Since it is turned off, energy is transferred from the input-side smoothing capacitor 3 to the reactor 4 through the following path, and further to the charge / discharge capacitor 7 through the first diode 61 (broken arrow in FIG. 2A).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →充放電コンデンサ7→第1のスイッチング素子51
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
→ Charging / discharging capacitor 7 → first switching element 51
 つぎに、状態3に遷移し、第1のスイッチング素子51のゲート信号G1がLow、第2のスイッチング素子52のゲート信号G2がLowとなると、第1のスイッチング素子51がオフ、第2のスイッチング素子52がオフとなるため、以下の経路でリアクトル4に蓄積されたエネルギーが入力側平滑コンデンサ3に重畳して、第1のダイオード61および第2のダイオード62を介して第1の出力側平滑コンデンサ11および第2の出力側平滑コンデンサ12に移行する(図2(c)の破線矢印)。 Next, when the state transits to the state 3 and the gate signal G1 of the first switching element 51 becomes Low and the gate signal G2 of the second switching element 52 becomes Low, the first switching element 51 is turned off and the second switching element 51 is turned off. Since the element 52 is turned off, the energy accumulated in the reactor 4 through the following path is superimposed on the input-side smoothing capacitor 3, and the first output-side smoothing is performed via the first diode 61 and the second diode 62. Transition is made to the capacitor 11 and the second output-side smoothing capacitor 12 (broken arrows in FIG. 2C).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →第2のダイオード62→第2の出力側平滑コンデンサ12
  →第1の出力側平滑コンデンサ11
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
second diode 62 → second output-side smoothing capacitor 12
→ first output smoothing capacitor 11
 つぎに、状態2に遷移し、第1のスイッチング素子51のゲート信号G1がLow、第2のスイッチング素子52のゲート信号G2がHighとなると、第1のスイッチング素子51がオフ、第2のスイッチング素子52がオンとなるため、以下の経路で充放電コンデンサ7に蓄積されたエネルギーが入力側平滑コンデンサ3に重畳して、第2のダイオード62を介して第1の出力側平滑コンデンサ11および第2の出力側平滑コンデンサ12に移行するとともに、リアクトル4にエネルギーを蓄積する(図2(b)の破線矢印)。 Next, when the state transits to the state 2 and the gate signal G1 of the first switching element 51 becomes Low and the gate signal G2 of the second switching element 52 becomes High, the first switching element 51 is turned off and the second switching element 51 is turned off. Since the element 52 is turned on, the energy accumulated in the charge / discharge capacitor 7 through the following path is superimposed on the input-side smoothing capacitor 3, and the first output-side smoothing capacitor 11 and the second output are connected via the second diode 62. 2 and the energy is accumulated in the reactor 4 (broken arrows in FIG. 2B).
 入力側平滑コンデンサ3→リアクトル4→第2のスイッチング素子52
  →充放電コンデンサ7→第2のダイオード62
  →第2の出力側平滑コンデンサ12→第1の出力側平滑コンデンサ11
Input-side smoothing capacitor 3 → reactor 4 → second switching element 52
→ Charging / discharging capacitor 7 → Second diode 62
→ second output-side smoothing capacitor 12 → first output-side smoothing capacitor 11
 つぎに、状態3に遷移し、第1のスイッチング素子51のゲート信号G1がLow、第2のスイッチング素子52のゲート信号G2がLowとなると、第1のスイッチング素子51がオフ、第2のスイッチング素子52がオフとなるため、以下の経路でリアクトル4に蓄積されたエネルギーが入力側平滑コンデンサ3に重畳して、第1のダイオード61および第2のダイオード62を介して第1の出力側平滑コンデンサ11および第2の出力側平滑コンデンサ12に移行する(図2(c)の破線矢印)。 Next, when the state transits to the state 3 and the gate signal G1 of the first switching element 51 becomes Low and the gate signal G2 of the second switching element 52 becomes Low, the first switching element 51 is turned off and the second switching element 51 is turned off. Since the element 52 is turned off, the energy accumulated in the reactor 4 through the following path is superimposed on the input-side smoothing capacitor 3, and the first output-side smoothing is performed via the first diode 61 and the second diode 62. Transition is made to the capacitor 11 and the second output-side smoothing capacitor 12 (broken arrows in FIG. 2C).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →第2のダイオード62→第2の出力側平滑コンデンサ12
  →第1の出力側平滑コンデンサ11
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
second diode 62 → second output-side smoothing capacitor 12
→ first output smoothing capacitor 11
 上述した状態1→状態3→状態2→状態3を1周期とする一連の状態遷移(スイッチングパターン:図3(a))を繰り返すことにより、入力端子VL-基準電圧端子Vcom間に入力された入力電圧Vinを1倍から2倍までの任意の電圧に昇圧して、出力端子VH-基準電圧端子Vcom間に出力電圧Voutとして出力される。 By repeating a series of state transitions (switching pattern: FIG. 3A) with the above-described state 1 → state 3 → state 2 → state 3 as one cycle, the signal is input between the input terminal VL and the reference voltage terminal Vcom. The input voltage Vin is boosted to an arbitrary voltage from 1 to 2 and output as an output voltage Vout between the output terminal VH and the reference voltage terminal Vcom.
 つぎに、昇圧比Nが2倍以上の場合の動作について説明する。定常状態では、昇圧比Nが2倍未満の場合と同様に、充放電コンデンサ7の両端電圧Vcfは出力電圧Voutの約2分の1の電圧になるように制御しており、入力電圧Vin、出力電圧Vout、充放電コンデンサ7の両端電圧Vcfの大小関係は、以下のようになっている。 Next, the operation when the step-up ratio N is twice or more will be described. In the steady state, the voltage Vcf across the charge / discharge capacitor 7 is controlled to be about a half of the output voltage Vout, as in the case where the step-up ratio N is less than twice, and the input voltage Vin, The magnitude relationship between the output voltage Vout and the voltage Vcf across the charge / discharge capacitor 7 is as follows.
 Vout>Vcf>Vin Vout> Vcf> Vin
 まず、状態4において、第1のスイッチング素子51のゲート信号G1がHigh、第2のスイッチング素子52のゲート信号G2がHighとなると、第1のスイッチング素子51がオン、第2のスイッチング素子52がオンとなるため、以下の経路で入力側平滑コンデンサ3からリアクトル4にエネルギーが移行する(図2(d)の破線矢印)。 First, in the state 4, when the gate signal G1 of the first switching element 51 is High and the gate signal G2 of the second switching element 52 is High, the first switching element 51 is turned on and the second switching element 52 is turned on. Since it is turned on, energy is transferred from the input-side smoothing capacitor 3 to the reactor 4 through the following path (broken line arrow in FIG. 2D).
 入力側平滑コンデンサ3→リアクトル4→第2のスイッチング素子52
  →第1のスイッチング素子51
Input-side smoothing capacitor 3 → reactor 4 → second switching element 52
first switching element 51
 つぎに、状態1に遷移し、第1のスイッチング素子51のゲート信号G1がHigh、第2のスイッチング素子52のゲート信号G2がLowとなると、第1のスイッチング素子51がオン、第2のスイッチング素子52がオフとなるため、以下の経路でリアクトル4に蓄積されたエネルギーが入力側平滑コンデンサ3に重畳して、第1のダイオード61を介して充放電コンデンサ7に移行する(図2(a)の破線矢印)。 Next, when the state transitions to state 1 and the gate signal G1 of the first switching element 51 is High and the gate signal G2 of the second switching element 52 is Low, the first switching element 51 is turned on and the second switching element 51 is turned on. Since the element 52 is turned off, the energy accumulated in the reactor 4 through the following path is superimposed on the input-side smoothing capacitor 3 and transferred to the charge / discharge capacitor 7 via the first diode 61 (FIG. 2 (a ) Dashed arrow).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →充放電コンデンサ7→第1のスイッチング素子51
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
→ Charging / discharging capacitor 7 → first switching element 51
 つぎに、状態4に遷移し、第1のスイッチング素子51のゲート信号G1がHigh、第2のスイッチング素子52のゲート信号G2がHighとなると、第1のスイッチング素子51がオン、第2のスイッチング素子52がオンとなるため、以下の経路で入力側平滑コンデンサ3からリアクトル4にエネルギーが移行する(図2(d)の破線矢印)。 Next, when the state transitions to state 4 and the gate signal G1 of the first switching element 51 is High and the gate signal G2 of the second switching element 52 is High, the first switching element 51 is turned on and the second switching element 51 is turned on. Since the element 52 is turned on, energy is transferred from the input-side smoothing capacitor 3 to the reactor 4 through the following path (broken line arrow in FIG. 2D).
 入力側平滑コンデンサ3→リアクトル4→第2のスイッチング素子52
  →第1のスイッチング素子51
Input-side smoothing capacitor 3 → reactor 4 → second switching element 52
first switching element 51
 つぎに、状態2に遷移し、第1のスイッチング素子51のゲート信号G1がLow、第2のスイッチング素子52のゲート信号G2がHighとなると、第1のスイッチング素子51がオフ、第2のスイッチング素子52がオンとなるため、以下の経路でリアクトル4と充放電コンデンサ7に蓄積されたエネルギーが入力側平滑コンデンサ3に重畳して、第2のダイオード62を介して第1の出力側平滑コンデンサ11および第2の出力側平滑コンデンサ12に移行する(図2(b)の破線矢印)。 Next, when the state transits to the state 2 and the gate signal G1 of the first switching element 51 becomes Low and the gate signal G2 of the second switching element 52 becomes High, the first switching element 51 is turned off and the second switching element 51 is turned off. Since the element 52 is turned on, the energy accumulated in the reactor 4 and the charge / discharge capacitor 7 is superimposed on the input side smoothing capacitor 3 through the following path, and the first output side smoothing capacitor is passed through the second diode 62. 11 and the second output-side smoothing capacitor 12 (broken line arrows in FIG. 2B).
 入力側平滑コンデンサ3→リアクトル4→第2のスイッチング素子52 
  →充放電コンデンサ7→第2のダイオード62
  →第2の出力側平滑コンデンサ12→第1の出力側平滑コンデンサ11
Input-side smoothing capacitor 3 → reactor 4 → second switching element 52
→ Charging / discharging capacitor 7 → Second diode 62
→ second output-side smoothing capacitor 12 → first output-side smoothing capacitor 11
 上述した状態4→状態1→状態4→状態2を1周期とする一連の状態遷移(スイッチングパターン:図3(b))を繰り返すことにより、入力端子VL-基準電圧端子Vcom間に入力された入力電圧Vinを2倍以上の任意の電圧に昇圧して、出力端子VH-基準電圧端子Vcom間に出力電圧Voutとして出力する。 By repeating a series of state transitions (switching pattern: FIG. 3B) with the above-described state 4 → state 1 → state 4 → state 2 as one cycle, it is input between the input terminal VL and the reference voltage terminal Vcom. The input voltage Vin is boosted to an arbitrary voltage more than twice and output as an output voltage Vout between the output terminal VH and the reference voltage terminal Vcom.
 つぎに、実施の形態にかかるDC/DC電力変換装置において、各直流電圧変換部1a,1bが制御停止状態から定常状態に移行するまでの動作について、図1、図4、および図5を参照して説明する。なお、制御停止状態とは、例えば、駆動制御部100への制御電源(図示せず)がスタンバイしていない場合や、各直流電圧変換部1a,1bに何らかの異常が発生して波及故障を防止する場合など、第1のスイッチング素子51および第2のスイッチング素子52が駆動制御されていない状態をいう。 Next, in the DC / DC power converter according to the embodiment, refer to FIG. 1, FIG. 4, and FIG. 5 for the operation until each DC voltage converter 1a, 1b shifts from the control stop state to the steady state. To explain. The control stop state refers to, for example, a case where a control power source (not shown) to the drive control unit 100 is not in a standby state, or any abnormality occurs in each DC voltage conversion unit 1a, 1b to prevent a spillover failure. In this case, the first switching element 51 and the second switching element 52 are not driven and controlled.
 ここで、例えば、図1に示すDC/DC電力変換装置において、直流電圧変換部1aに直流電源2aから入力される入力電圧Vinaを900Vとし、直流電圧変換部1bに直流電源2bから入力される入力電圧Vinbを300Vとすると、制御停止状態では、入力電圧Vinb(=300V)≦出力電圧Vout≦入力電圧Vina(=900V)となる。 Here, for example, in the DC / DC power converter shown in FIG. 1, the input voltage Vina input from the DC power source 2a to the DC voltage converting unit 1a is set to 900 V, and the DC voltage converting unit 1b is input from the DC power source 2b. Assuming that the input voltage Vinb is 300 V, the input voltage Vinb (= 300 V) ≦ the output voltage Vout ≦ the input voltage Vina (= 900 V) in the control stop state.
 まず、図1における直流電圧変換部1aの場合、つまり、入力電圧Vina≧出力電圧Voutである場合の制御停止状態から定常状態に移行するまでの動作について説明する。図4は、実施の形態にかかる直流電圧変換部の制御停止状態において入力電圧が印加された場合の電流経路を示す図である。なお、ここでは、符号の末尾のa,bを省略して説明する。 First, the operation from the control stop state to the steady state in the case of the DC voltage conversion unit 1a in FIG. 1, that is, when the input voltage Vina ≧ the output voltage Vout will be described. FIG. 4 is a diagram illustrating a current path when an input voltage is applied in a control stop state of the DC voltage conversion unit according to the embodiment. Here, a description will be given by omitting a and b at the end of the reference numerals.
 制御停止状態において、入力電圧Vin≧出力電圧Voutである場合には、図4に示すように、第1のスイッチング素子51および第2のスイッチング素子52はオフ状態であるため、入力端子VL-基準電圧端子Vcom間の下記の3経路に電流が流れ、各々の充放電コンデンサ7、第1の出力側平滑コンデンサ11、および第2の出力側平滑コンデンサ12が充電される。 In the control stop state, when the input voltage Vin ≧ the output voltage Vout, as shown in FIG. 4, the first switching element 51 and the second switching element 52 are in the OFF state, so that the input terminal VL−reference A current flows through the following three paths between the voltage terminals Vcom, and the charge / discharge capacitors 7, the first output-side smoothing capacitor 11, and the second output-side smoothing capacitor 12 are charged.
 第1の経路(図5の破線矢印):
  入力端子VL→入力側平滑コンデンサ3→基準電圧端子Vcom
 第2の経路(図5の一点鎖線矢印):
  入力端子VL→リアクトル4→第1のダイオード61
    →第2のダイオード62→第2の出力側平滑コンデンサ12
    →第1の出力側平滑コンデンサ11→基準電圧端子Vcom
 第3の経路(図5の二点鎖線矢印):
  入力端子VL→リアクトル4→第1のダイオード61→充放電コンデンサ7
    →逆流防止ダイオード8→ツェナーダイオード9
    →第1の出力側平滑コンデンサ11→基準電圧端子Vcom
First path (broken line arrow in FIG. 5):
Input terminal VL → input side smoothing capacitor 3 → reference voltage terminal Vcom
Second route (dashed line arrow in FIG. 5):
Input terminal VL → reactor 4 → first diode 61
second diode 62 → second output-side smoothing capacitor 12
→ first output side smoothing capacitor 11 → reference voltage terminal Vcom
Third route (two-dot chain arrow in FIG. 5):
Input terminal VL → reactor 4 → first diode 61 → charge / discharge capacitor 7
Backflow prevention diode 8 → Zener diode 9
→ first output side smoothing capacitor 11 → reference voltage terminal Vcom
 これより、入力電圧Vinは、入力側平滑コンデンサ3に印加されるのと同時に、ツェナーダイオード9を介して互いに並列接続された充放電コンデンサ7および第2の出力側平滑コンデンサ12の接続体と、この接続体に直列接続された第1の出力側平滑コンデンサ11とに印加されることになる。 As a result, the input voltage Vin is applied to the input-side smoothing capacitor 3, and at the same time, the connected body of the charge / discharge capacitor 7 and the second output-side smoothing capacitor 12 connected in parallel via the Zener diode 9, This is applied to the first output-side smoothing capacitor 11 connected in series to this connection body.
 ここで、充放電コンデンサ7のキャパシタンス値をCf、第1の出力側平滑コンデンサ11のキャパシタンス値をCo1、および第2の出力側平滑コンデンサ12のキャパシタンス値をCo2とすると、例えばCf<<Co1=Co2である場合には、第1の出力側平滑コンデンサ11の両端電圧Vco1、第2の出力側平滑コンデンサ12の両端電圧Vco2、充放電コンデンサ7の両端電圧Vcfは、以下のようになる。 Here, if the capacitance value of the charge / discharge capacitor 7 is Cf, the capacitance value of the first output-side smoothing capacitor 11 is Co1, and the capacitance value of the second output-side smoothing capacitor 12 is Co2, for example, Cf << Co1 = In the case of Co2, the both-ends voltage Vco1 of the first output-side smoothing capacitor 11, the both-ends voltage Vco2 of the second output-side smoothing capacitor 12, and the both-ends voltage Vcf of the charge / discharge capacitor 7 are as follows.
 Vco1≒Vco2≒Vin/2
 Vcf≒Vin/2-Vdz
 (Vdzは、ツェナーダイオード9の逆方向電圧)
Vco1≈Vco2≈Vin / 2
Vcf≈Vin / 2−Vdz
(Vdz is the reverse voltage of the Zener diode 9)
 ここで、例えば、Vin=900V、Vdz=40Vとすると、Vco1≒Vco2≒450V、Vcf≒410Vとなる。 Here, for example, when Vin = 900V and Vdz = 40V, Vco1≈Vco2≈450V and Vcf≈410V.
 したがって、入力電圧Vin≧Voutである場合(例えば、図1における直流電圧変換部1a)には、制御停止状態において充放電コンデンサ7が充電された状態となるので、制御停止状態から通常駆動制御を行うことにより、定常状態に移行することができる。 Therefore, when the input voltage Vin ≧ Vout (for example, the DC voltage conversion unit 1a in FIG. 1), the charging / discharging capacitor 7 is charged in the control stop state, so that the normal drive control is performed from the control stop state. By doing so, it is possible to shift to a steady state.
 つぎに、図1における直流電圧変換部1bの場合、つまり、入力電圧Vinb<出力電圧Voutである場合の制御停止状態から定常状態に移行するまでの動作について説明する。なお、ここでも、符号の末尾のa,bを省略して説明する。 Next, in the case of the DC voltage converter 1b in FIG. 1, that is, the operation from the control stop state to the steady state when the input voltage Vinb <the output voltage Vout is described. In this case as well, description will be made with a and b at the end of the reference numerals omitted.
 制御停止状態において、入力電圧Vin≦出力電圧Voutである場合には、第1のダイオード61に逆電圧が印加されるため、上述した第2の経路および第3の経路に電流が流れず、充放電コンデンサ7が充電されない。したがって、入力電圧Vin≦出力電圧Voutである場合(例えば、図1における直流電圧変換部1b)では、制御停止状態から通常駆動制御を行っても、入力電圧Vinを所望の電圧値に昇圧することができない。 In the control stop state, when the input voltage Vin ≦ the output voltage Vout, a reverse voltage is applied to the first diode 61, so that no current flows in the second path and the third path described above. The discharge capacitor 7 is not charged. Therefore, when the input voltage Vin ≦ the output voltage Vout (for example, the DC voltage converter 1b in FIG. 1), the input voltage Vin is boosted to a desired voltage value even if the normal drive control is performed from the control stop state. I can't.
 本実施の形態にかかる直流電圧変換部1では、通常駆動制御の開始前あるいは開始後において、充放電コンデンサ7の充電が不十分である場合に、充放電コンデンサ7を充電するために、スイッチングパターンが通常駆動制御とは異なる充電駆動制御を実施する。以下、実施の形態にかかる直流電圧変換部1の充電駆動制御について説明する。 In the DC voltage conversion unit 1 according to the present embodiment, a switching pattern is used to charge the charge / discharge capacitor 7 when the charge / discharge capacitor 7 is insufficiently charged before or after the start of normal drive control. However, charge drive control different from normal drive control is performed. Hereinafter, the charge drive control of the DC voltage converter 1 according to the embodiment will be described.
 充電要否判定部13は、出力電圧Vout、第1の出力側平滑コンデンサの両端電圧Vco1、および充放電コンデンサ7の両端電圧Vcfが入力され、通常駆動制御の開始前あるいは開始後において、充放電コンデンサ7の両端電圧Vcfが出力電圧Voutから第1の出力側平滑コンデンサの両端電圧Vco1とあらかじめ保持しているツェナーダイオード9の逆方向電圧Vdzとを減算した所定値未満である場合、つまり、下記の(1)式を満たす場合に、充放電コンデンサ7の充電が必要であると判定して、充電駆動制御指令を出力する。 The charge necessity determination unit 13 receives the output voltage Vout, the voltage Vco1 across the first output-side smoothing capacitor, and the voltage Vcf across the charge / discharge capacitor 7, and is charged / discharged before or after the start of normal drive control. When the voltage Vcf across the capacitor 7 is less than a predetermined value obtained by subtracting the voltage Vco1 across the first output-side smoothing capacitor from the output voltage Vout and the reverse voltage Vdz of the Zener diode 9 held in advance, that is, When the expression (1) is satisfied, it is determined that the charge / discharge capacitor 7 needs to be charged, and a charge drive control command is output.
 Vcf<Vout-Vco1-Vdz …(1) Vcf <Vout-Vco1-Vdz (1)
 また、充放電コンデンサ7の両端電圧Vcfが出力電圧Voutから第1の出力側平滑コンデンサの両端電圧Vco1とあらかじめ保持しているツェナーダイオードの逆方向電圧Vdzとを減算した所定値以上である場合、つまり、下記の(2)式を満たす場合に、通常駆動制御指令を出力する。 When the voltage Vcf across the charge / discharge capacitor 7 is equal to or higher than a predetermined value obtained by subtracting the voltage Vco1 across the first output-side smoothing capacitor from the output voltage Vout and the reverse voltage Vdz of the Zener diode held in advance. That is, when the following equation (2) is satisfied, a normal drive control command is output.
 Vcf≧Vout-Vco1-Vdz …(2) Vcf ≧ Vout−Vco1−Vdz (2)
 駆動パルス生成部14は、入力電圧Vin、充放電コンデンサの両端電圧Vcf、および、通常駆動制御指令あるいは充電駆動制御指令のいずれか一方が入力され、充電駆動制御指令が入力された場合には、充電駆動パルス生成部142に充電駆動制御用の各駆動パルスを生成させ、第1のスイッチング素子51および第2のスイッチング素子52にそれぞれ出力し、充電駆動制御を開始する。 The drive pulse generator 14 receives the input voltage Vin, the voltage Vcf across the charge / discharge capacitor, and either the normal drive control command or the charge drive control command, and when the charge drive control command is input, The charge drive pulse generator 142 generates each drive pulse for charge drive control, outputs the drive pulses to the first switching element 51 and the second switching element 52, and starts charge drive control.
 図5は、実施の形態にかかる直流電圧変換部の充電駆動制御における各スイッチング状態の一例を示す図である。 FIG. 5 is a diagram illustrating an example of each switching state in the charge drive control of the DC voltage converter according to the embodiment.
 図5に示すように、充電駆動制御における直流電圧変換部1のスイッチング状態としては、状態1~状態3の3つがある。状態1では、第1のスイッチング素子51がオン、第2のスイッチング素子52がオフとなり、充放電コンデンサ7を介してリアクトル4に電流が流れ、リアクトル4にエネルギーを蓄積する。状態2では、第1のスイッチング素子51と第2のスイッチング素子52が共にオフとなり、リアクトル4に蓄積されたエネルギーが充放電コンデンサ7および充電補助コンデンサ10に移行する。状態3では、第1のスイッチング素子51と第2のスイッチング素子52が共にオンとなり、リアクトル4に流れる電流が増加し、リアクトル4にエネルギーを蓄積する。これらの各スイッチング状態における第1のスイッチング素子51と第2のスイッチング素子52の通流比を適宜設定して各スイッチング状態を遷移させることにより、充放電コンデンサ7の両端電圧Vcfを充電する。 As shown in FIG. 5, there are three switching states of state 1 to state 3 as the switching state of the DC voltage conversion unit 1 in the charge drive control. In the state 1, the first switching element 51 is turned on, the second switching element 52 is turned off, a current flows through the reactor 4 through the charge / discharge capacitor 7, and energy is stored in the reactor 4. In the state 2, both the first switching element 51 and the second switching element 52 are turned off, and the energy accumulated in the reactor 4 is transferred to the charge / discharge capacitor 7 and the charge auxiliary capacitor 10. In the state 3, both the first switching element 51 and the second switching element 52 are turned on, the current flowing through the reactor 4 is increased, and energy is stored in the reactor 4. The both-ends voltage Vcf of the charge / discharge capacitor 7 is charged by appropriately setting the conduction ratio of the first switching element 51 and the second switching element 52 in each of these switching states and transitioning each switching state.
 実施の形態にかかる直流電圧変換部1の充電駆動制御では、入力電圧Vinと充放電コンデンサ7の両端電圧Vcfとの電圧差が100Vより大きい場合(Vin-Vcf>100V)と、100V以下である場合(Vin-Vcf≦100V)とで、スイッチングパターンが異なっている。つまり、入力電圧Vinと充放電コンデンサ7の両端電圧Vcfとの電圧差が100Vより大きい場合には、まず、充放電コンデンサ7を充電し、入力電圧Vinと充放電コンデンサ7の両端電圧Vcfとの電圧差が100V以下となった場合に、スイッチングパターンを切り換えて、充放電コンデンサ7の両端電圧がVin/2となるまで充電する。 In the charge drive control of the DC voltage conversion unit 1 according to the embodiment, when the voltage difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor 7 is larger than 100V (Vin−Vcf> 100V), it is 100V or less. In the case (Vin−Vcf ≦ 100 V), the switching pattern is different. That is, when the voltage difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor 7 is greater than 100V, the charge / discharge capacitor 7 is first charged, and the input voltage Vin and the voltage Vcf across the charge / discharge capacitor 7 are When the voltage difference is 100 V or less, the switching pattern is switched and charging is performed until the voltage across the charge / discharge capacitor 7 becomes Vin / 2.
 まず、入力電圧Vinと充放電コンデンサ7の両端電圧Vcfとの電圧差が100Vより大きい場合、つまり、Vin-Vcf>100Vである場合のスイッチングパターンについて説明する。この場合のスイッチングパターンでは、Vcf≒Vin-100Vとなるまで、さらに、入力電圧Vinから100Vを減算した値が出力電圧Voutの1/2より大きい場合、つまり、Vin-100V>Vout/2である場合には、Vcf≒Vout/2となるまで、充放電コンデンサ7を充電する。 First, the switching pattern when the voltage difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor 7 is larger than 100V, that is, when Vin−Vcf> 100V will be described. In the switching pattern in this case, the value obtained by subtracting 100V from the input voltage Vin is larger than half of the output voltage Vout until Vcf≈Vin-100V, that is, Vin-100V> Vout / 2. In this case, the charge / discharge capacitor 7 is charged until Vcf≈Vout / 2.
 まず、状態1において、第1のスイッチング素子51がオン、第2のスイッチング素子52がオフとなるため、以下の経路で電流が流れ、リアクトル4にエネルギーが蓄積される(図5(a)の破線矢印)。 First, in state 1, since the first switching element 51 is turned on and the second switching element 52 is turned off, current flows through the following path, and energy is accumulated in the reactor 4 (in FIG. 5A). Dashed arrows).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →充放電コンデンサ7→第1のスイッチング素子51
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
→ Charging / discharging capacitor 7 → first switching element 51
 つぎに、状態2に遷移し、第1のスイッチング素子51がオフ、第2のスイッチング素子52がオフとなるため、以下の経路で電流が流れ、リアクトル4に蓄積されたエネルギーが充放電コンデンサ7および充電補助コンデンサ10に移行する(図5(b)の破線矢印)。 Next, a transition is made to state 2, and the first switching element 51 is turned off and the second switching element 52 is turned off. Therefore, current flows through the following path, and the energy accumulated in the reactor 4 is transferred to the charge / discharge capacitor 7. And it transfers to the charge auxiliary capacitor 10 (broken line arrow of FIG.5 (b)).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →充放電コンデンサ7→逆流防止ダイオード8→充電補助コンデンサ10
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
→ Charging / discharging capacitor 7 → Backflow prevention diode 8 → Charging auxiliary capacitor 10
 その後、リアクトル4に流れるリアクトル電流がゼロになると、状態1に遷移して、上述した状態1→状態2を1周期とする一連の状態遷移(スイッチングパターン)を繰り返すことにより、Vcf≒Vin-100VあるいはVcf≒Vout/2となるまで、充放電コンデンサ7が充電される。なお、充電補助コンデンサ10の両端電圧は、ツェナーダイオード9により、Vco2~Vco2+Vdzに保たれる。 After that, when the reactor current flowing through the reactor 4 becomes zero, the state transitions to the state 1, and Vcf≈Vin−100V by repeating a series of state transitions (switching patterns) with the state 1 → the state 2 as one cycle described above. Alternatively, the charge / discharge capacitor 7 is charged until Vcf≈Vout / 2. Note that the voltage across the charging auxiliary capacitor 10 is maintained at Vco2 to Vco2 + Vdz by the Zener diode 9.
 つぎに、入力電圧Vinと充放電コンデンサ7の両端電圧Vcfとの電圧差が100V以下である場合、つまり、Vin-Vcf≦100Vである場合のスイッチングパターンについて説明する。この場合のスイッチングパターンでは、Vcf≒Vout/2となるまで、充放電コンデンサ7を充電する。 Next, a switching pattern when the voltage difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor 7 is 100 V or less, that is, when Vin−Vcf ≦ 100 V is described. In the switching pattern in this case, the charge / discharge capacitor 7 is charged until Vcf≈Vout / 2.
 まず、状態1において、第1のスイッチング素子51がオン、第2のスイッチング素子52がオフとなるため、リアクトル4の高圧側の端子電圧が充放電コンデンサ7の両端電圧Vcfよりも大きい場合には、以下の経路で電流が流れ、リアクトル4にエネルギーが蓄積される(図5(a)の破線矢印)。 First, in state 1, since the first switching element 51 is turned on and the second switching element 52 is turned off, when the terminal voltage on the high voltage side of the reactor 4 is larger than the voltage Vcf across the charge / discharge capacitor 7, Then, a current flows through the following path, and energy is accumulated in the reactor 4 (broken arrows in FIG. 5A).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →充放電コンデンサ7→第1のスイッチング素子51
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
→ Charging / discharging capacitor 7 → first switching element 51
 つぎに、状態3に遷移し、第1のスイッチング素子51がオン、第2のスイッチング素子52がオンとなるため、以下の経路で電流が流れ、リアクトル4に流れる電流が増加し、リアクトル4にエネルギーが蓄積される(図5(c)の破線矢印)。 Next, a transition is made to state 3, and the first switching element 51 is turned on and the second switching element 52 is turned on. Therefore, a current flows through the following path, and a current flowing through the reactor 4 increases. Energy is accumulated (broken line arrow in FIG. 5C).
 入力側平滑コンデンサ3→リアクトル4→第2のスイッチング素子52
  →第1のスイッチング素子51
Input-side smoothing capacitor 3 → reactor 4 → second switching element 52
first switching element 51
 つぎに、状態1に遷移し、第1のスイッチング素子51がオン、第2のスイッチング素子52がオフとなるため、モード3においてリアクトル4に蓄積されたエネルギーが大きくなり、リアクトル4の高圧側の端子電圧が充放電コンデンサ7の両端電圧Vcfよりも大きくなった場合には、以下の経路で電流が流れ、リアクトル4にエネルギーがさらに蓄積される(図5(a)の破線矢印)。 Next, a transition is made to state 1, and the first switching element 51 is turned on and the second switching element 52 is turned off, so that the energy accumulated in the reactor 4 in mode 3 is increased, and the high-pressure side of the reactor 4 is increased. When the terminal voltage becomes larger than the voltage Vcf across the charge / discharge capacitor 7, current flows through the following path, and energy is further accumulated in the reactor 4 (broken arrows in FIG. 5A).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →充放電コンデンサ7→第1のスイッチング素子51
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
→ Charging / discharging capacitor 7 → first switching element 51
 つぎに、状態2に遷移し、第1のスイッチング素子51がオフ、第2のスイッチング素子52がオフとなるため、以下の経路で電流が流れ、リアクトル4に蓄積されたエネルギーが充放電コンデンサ7および充電補助コンデンサ10に移行する(図5(b)の破線矢印)。 Next, a transition is made to state 2, and the first switching element 51 is turned off and the second switching element 52 is turned off. Therefore, current flows through the following path, and the energy accumulated in the reactor 4 is transferred to the charge / discharge capacitor 7. And it transfers to the charge auxiliary capacitor 10 (broken line arrow of FIG.5 (b)).
 入力側平滑コンデンサ3→リアクトル4→第1のダイオード61
  →充放電コンデンサ7→逆流防止ダイオード8→充電補助コンデンサ10
Input-side smoothing capacitor 3 → reactor 4 → first diode 61
→ Charging / discharging capacitor 7 → Backflow prevention diode 8 → Charging auxiliary capacitor 10
 その後、リアクトル4に流れるリアクトル電流がゼロになると、状態1に遷移して、上述した状態1→状態3→状態1→状態2を1周期とする一連の状態遷移(スイッチングパターン)を繰り返すことにより、Vcf≒Vout/2となるまで、充放電コンデンサ7が充電される。 After that, when the reactor current flowing through the reactor 4 becomes zero, the state transitions to the state 1, and the above-described series of state transitions (switching patterns) with the state 1 → the state 3 → the state 1 → the state 2 as one cycle are repeated. The charge / discharge capacitor 7 is charged until Vcf≈Vout / 2.
 なお、上述した状態1、状態3における第1のスイッチング素子51の通流比は、例えば、10/(Vin-Vcf)とし、第2のスイッチング素子52の通流比は、例えば、10/Vinとすればよい。なお、これら第1および第2のスイッチング素子51,52の通流比は一例であり、各直流電圧変換部1の入力電圧差等の条件に応じて、適切な比率に設定すればよい。 In addition, the conduction ratio of the first switching element 51 in the above-described state 1 and state 3 is, for example, 10 / (Vin−Vcf), and the conduction ratio of the second switching element 52 is, for example, 10 / Vin. And it is sufficient. The flow ratio of the first and second switching elements 51 and 52 is an example, and may be set to an appropriate ratio according to conditions such as the input voltage difference of each DC voltage conversion unit 1.
 そして、充電要否判定部13は、上述した(2)式を満たす場合に、通常駆動制御指令を出力し、駆動パルス生成部14は、通常駆動制御指令が入力された場合には、通常駆動パルス生成部141に通常駆動制御用の各駆動パルスを生成させ、第1のスイッチング素子51および第2のスイッチング素子52にそれぞれ出力し、通常駆動制御を開始する。 The charge necessity determination unit 13 outputs a normal drive control command when the above-described expression (2) is satisfied, and the drive pulse generation unit 14 performs normal drive when the normal drive control command is input. The pulse generator 141 generates each drive pulse for normal drive control, outputs it to each of the first switching element 51 and the second switching element 52, and starts normal drive control.
 したがって、入力電圧Vin>Voutである場合(例えば、図1における直流電圧変換部1b)には、制御停止状態から充電駆動制御を行うことにより充放電コンデンサ7を充電し、充放電コンデンサ7が充電された状態で通常駆動制御を行うことにより、定常状態に移行することができる。 Therefore, when the input voltage Vin> Vout (for example, the DC voltage converter 1b in FIG. 1), the charge / discharge capacitor 7 is charged by performing the charge drive control from the control stop state, and the charge / discharge capacitor 7 is charged. By performing normal drive control in the state that has been achieved, it is possible to shift to a steady state.
 以上説明したように、実施の形態のDC/DC電力変換装置によれば、複数並列に接続された各直流電圧変換部において、第1および第2のスイッチング素子51,52のオフにより充放電コンデンサ7と直列に接続され、リアクトル4に蓄えられたエネルギーにより、充放電コンデンサ7と共に充電される充電補助コンデンサ10と、充電補助コンデンサ10に蓄えられた電荷の逆流を防止する逆流防止ダイオード8と、逆流防止ダイオード8に対して逆直列に接続され、充電補助コンデンサ10の電圧値を第1および第2の出力用平滑コンデンサ11,12の接続点に対して一定の範囲内に保つツェナーダイオード9とを備え、入力電圧を所望の出力電圧に変換する通常駆動制御を行うと共に、充放電コンデンサ10の両端電圧が所定電圧未満である場合に、第2のスイッチング素子52、あるいは第1のスイッチング素子51および第2のスイッチング素子52の両方をオンして、リアクトル4にエネルギーを蓄積した後に、第1のスイッチング素子51および第2のスイッチング素子52をオフして、リアクトル4に蓄積されたエネルギーを充放電コンデンサ7および充電補助コンデンサ10に移行させるスイッチングパターンを有する充電駆動制御を実施するようにしたので、各直流電圧変換部に複数の出力電圧の異なる直流電源を接続する場合でも、それぞれの直流電源の出力電圧を所望の直流電圧に昇圧することができる。 As described above, according to the DC / DC power converter of the embodiment, in each of the DC voltage converters connected in parallel, the charge / discharge capacitor is turned off by turning off the first and second switching elements 51 and 52. 7 is connected in series to the charging auxiliary capacitor 10 that is charged together with the charging / discharging capacitor 7 by the energy stored in the reactor 4, and the backflow preventing diode 8 that prevents the reverse flow of the charge stored in the charging auxiliary capacitor 10; A Zener diode 9 connected in reverse series to the backflow prevention diode 8 and maintaining the voltage value of the auxiliary charging capacitor 10 within a certain range with respect to the connection point of the first and second output smoothing capacitors 11 and 12; And a normal drive control for converting the input voltage into a desired output voltage, and the voltage across the charge / discharge capacitor 10 is predetermined. When the pressure is less than the pressure, the first switching element 51 is turned on after the second switching element 52 or both the first switching element 51 and the second switching element 52 are turned on to accumulate energy in the reactor 4. And the second switching element 52 is turned off, and the charge drive control having the switching pattern for transferring the energy stored in the reactor 4 to the charge / discharge capacitor 7 and the charge auxiliary capacitor 10 is performed. Even when a plurality of DC power supplies having different output voltages are connected to the converter, the output voltage of each DC power supply can be boosted to a desired DC voltage.
 なお、上述した実施の形態では、制御停止状態から定常状態に移行するまでに、つまり、通常駆動制御を開始する前に、充電駆動制御を行う例について説明したが、通常駆動制御を開始した後に、充電駆動制御を行うことも可能である。つまり、通常駆動制御の実施中において、充放電コンデンサの充電が不十分であると判定した場合には、充電駆動制御に移行して、充放電コンデンサの充電を行うことも可能である。 In the above-described embodiment, the example in which the charge drive control is performed before the transition from the control stop state to the steady state, that is, before the normal drive control is started, has been described. It is also possible to perform charge drive control. That is, when it is determined that the charging / discharging capacitor is insufficiently charged during the normal driving control, the charging / discharging capacitor can be charged by shifting to the charging driving control.
 また、上述した実施の形態では、充電駆動制御を実施する際に、2つスイッチングパターンを設け、入力電圧Vinと充放電コンデンサの両端電圧Vcfとの電圧差が100Vより大きいか100V以下であるかによりスイッチングパターンを切り換えるようにしたが、このスイッチングパターンを切り換える際の入力電圧Vinと充放電コンデンサの両端電圧Vcfとの電位差は、DC/DC電力変換装置が適用されるシステムの条件に応じて設定すればよい。あるいは、条件によっては、2つのスイッチングパターンのうちの一方のみで運用することも可能である。 In the embodiment described above, when the charge drive control is performed, two switching patterns are provided, and whether the voltage difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor is greater than 100V or less than 100V. However, the potential difference between the input voltage Vin and the voltage Vcf across the charge / discharge capacitor when switching the switching pattern is set according to the conditions of the system to which the DC / DC power converter is applied. do it. Or depending on conditions, it is also possible to operate with only one of the two switching patterns.
 また、実施の形態にかかるDC/DC電力変換装置は、複数の太陽電池モジュール群を備えた太陽光発電システムに用いて好適である。太陽電池モジュール群は、例えば太陽電池モジュール群を設置する屋根の条件等により、太陽電池モジュールの直列枚数が異なるため、各太陽電池モジュール群毎に出力電圧が異なる。実施の形態にかかるDC/DC電力変換装置では、各直流電圧変換部毎に独立して動作するため、各太陽電池モジュール群毎に最適な昇圧動作を行うことができる。 Also, the DC / DC power conversion device according to the embodiment is suitable for use in a solar power generation system including a plurality of solar cell module groups. Since the number of solar cell modules in series varies depending on, for example, the condition of the roof on which the solar cell module group is installed, the output voltage differs for each solar cell module group. Since the DC / DC power converter according to the embodiment operates independently for each DC voltage converter, an optimum boosting operation can be performed for each solar cell module group.
 また、一般的なスイッチング素子は、珪素(シリコン:Si)系半導体によって形成されるが、実施の形態において説明したDC/DC電力変換装置の各直流電圧変換部の第1および第2のスイッチング素子としては、Si系半導体と比較して、大きなエネルギーバンド幅を持つワイドバンドギャップ(WBG)半導体によって形成されていることが好ましい。このWBG半導体としては、例えば、炭化珪素(SiC)や窒化ガリウム(GaN)系材料、またはダイヤモンド等がある。 In addition, a general switching element is formed of a silicon (silicon: Si) -based semiconductor, and the first and second switching elements of each DC voltage conversion unit of the DC / DC power conversion device described in the embodiment. As for, it is preferable that it is formed of a wide band gap (WBG) semiconductor having a large energy bandwidth compared to a Si-based semiconductor. Examples of the WBG semiconductor include silicon carbide (SiC), gallium nitride (GaN) -based materials, and diamond.
 入力電圧と昇圧後の出力電圧との差が大きい直流電圧変換部では、第1および第2のスイッチング素子のスイッチング動作頻度が多くなり、スイッチング損失および導通損失も大きくなり、これに伴って各スイッチング素子の発熱量も多くなる。したがって、設計段階において、DC/DC電力変換装置が適用されるシステム等における最大発熱条件、つまり、最もスイッチング動作頻度が多くなる条件をあらかじめ想定し、その条件下においてスイッチング素子の限界温度を超えないように、スイッチング素子に接続するヒートシンクの大きさが決められる。 In the DC voltage converter where the difference between the input voltage and the boosted output voltage is large, the switching operation frequency of the first and second switching elements increases, and the switching loss and conduction loss also increase. The amount of heat generated by the element also increases. Therefore, in the design stage, a maximum heat generation condition in a system or the like to which the DC / DC power converter is applied, that is, a condition that causes the highest switching operation frequency is assumed in advance, and the limit temperature of the switching element is not exceeded under the condition. Thus, the size of the heat sink connected to the switching element is determined.
 また、入力電圧と昇圧後の出力電圧との差が小さい直流電圧変換部では、第1および第2のスイッチング素子のスイッチング動作頻度が少なくなり、スイッチング損失および導通損失も小さくなり、これに伴って各スイッチング素子の発熱量も少なくなる。このため、上述した最大発熱条件を想定して設計されたヒートシンクの大きさでは、スイッチング素子の限界温度に対する裕度が大きく、無駄に広い設置スペースが必要となり、DC/DC電力変換装置が大型化する。また、ヒートシンクのコスト、およびDC/DC電力変換装置のコストが上昇する。 In addition, in the DC voltage converter where the difference between the input voltage and the boosted output voltage is small, the switching operation frequency of the first and second switching elements is reduced, and the switching loss and conduction loss are also reduced. The amount of heat generated by each switching element is also reduced. For this reason, the size of the heat sink designed assuming the above-mentioned maximum heat generation condition has a large tolerance for the limit temperature of the switching element, and a large installation space is required, and the DC / DC power converter is enlarged. To do. In addition, the cost of the heat sink and the cost of the DC / DC power converter increase.
 一方、WBG半導体は、Si系半導体と比較して、スイッチング損失および導通損失が小さいと共に、耐熱性が高く、高温動作が可能である。したがって、WBG半導体により形成されたスイッチング素子を用いることにより、Si系半導体により形成されたスイッチング素子を用いる場合よりも、ヒートシンクの大きさを小さくすることができる。 On the other hand, the WBG semiconductor has lower switching loss and conduction loss than the Si-based semiconductor, has high heat resistance, and can operate at a high temperature. Therefore, the size of the heat sink can be reduced by using the switching element formed of the WBG semiconductor as compared with the case of using the switching element formed of the Si-based semiconductor.
 さらに、このようなWBG半導体によって形成されたスイッチング素子は、耐電圧性が高く、許容電流密度も高いため、スイッチング素子自体の小型化も可能である。 Furthermore, since the switching element formed of such a WBG semiconductor has high voltage resistance and high allowable current density, the switching element itself can be downsized.
 したがって、第1および第2のスイッチング素子として、WBG半導体によって形成されたスイッチング素子を用いることにより、上述した最大発熱条件を想定した場合でも、DC/DC電力変換装置の小型化、低コスト化を図ることができる。 Therefore, by using switching elements formed of WBG semiconductors as the first and second switching elements, the DC / DC power converter can be reduced in size and cost even when the above-described maximum heat generation condition is assumed. Can be planned.
 さらに、例えば、各太陽電池モジュール群が接続された各直流電圧変換部のスイッチング動作頻度に大きな差が生じる場合を想定した場合でも、各直流電圧変換部の第1および第2のスイッチング素子を冷却するヒートシンクを過剰な余裕を設けない最適なサイズで構成することができ、延いては、このDC/DC電力変換装置を適用して、さまざまな屋根あるいは住宅等の制約条件に対応可能な太陽光発電システムを構築することができる。 Furthermore, for example, even when assuming a case where a large difference occurs in the switching operation frequency of each DC voltage conversion unit to which each solar cell module group is connected, the first and second switching elements of each DC voltage conversion unit are cooled. The heat sink can be configured with an optimal size that does not provide an excess margin, and by extension, this DC / DC power conversion device can be applied to support various constraints such as roofs or houses. A power generation system can be constructed.
 また、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。 The configurations described in the above embodiments are examples of the configurations of the present invention, and can be combined with other known techniques, and a part of the configurations is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.
 1,1a,1b 直流電圧変換部
 2,2a,2b 直流電源
 3,3a,3b 入力側平滑コンデンサ
 4,4a,4b リアクトル
 7,7a,7b 充放電コンデンサ
 8,8a,8b 逆流防止ダイオード
 9,9a,9b ツェナーダイオード
 10,10a,10b 充電補助コンデンサ
 11 第1の出力側平滑コンデンサ
 12 第2の出力側平滑コンデンサ
 13,13a,13b 充電要否判定部
 14,14a,14b 駆動パルス生成部
 51,51a,51b 第1のスイッチング素子
 52,52a,52b 第2のスイッチング素子
 61,61a,61b 第1のダイオード
 62,62a,62b 第2のダイオード
 100,100a,100b 駆動制御部
 141,141a,141b 通常駆動パルス生成部
 142,142a,142b 充電駆動パルス生成部
1, 1a, 1b DC voltage conversion unit 2, 2a, 2b DC power supply 3, 3a, 3b Input side smoothing capacitor 4, 4a, 4b Reactor 7, 7a, 7b Charge / discharge capacitor 8, 8a, 8b Backflow prevention diode 9, 9a , 9b Zener diode 10, 10a, 10b Charging auxiliary capacitor 11 First output-side smoothing capacitor 12 Second output- side smoothing capacitor 13, 13a, 13b Charging necessity determination unit 14, 14a, 14b Drive pulse generation unit 51, 51a , 51b First switching element 52, 52a, 52b Second switching element 61, 61a, 61b First diode 62, 62a, 62b Second diode 100, 100a, 100b Drive controller 141, 141a, 141b Normal drive Pulse generator 142, 142a, 142b Charging drive Pulse generator

Claims (8)

  1.  直流電源に接続されたリアクトル、前記リアクトルの出力をスイッチングする直列接続された複数のスイッチング素子、複数の前記スイッチング素子のスイッチングにより充放電される充放電コンデンサ、前記充放電コンデンサの充電経路と放電経路とを与える複数のダイオード、および、複数の前記スイッチング素子を駆動制御する駆動制御部を備える複数の直流電圧変換部と、
     複数の前記直流電圧変換部の並列出力を平滑する直列接続された複数の出力用平滑コンデンサと、
     を備え、
     前記直流電圧変換部は、
     複数の前記スイッチング素子のオフにより前記充放電コンデンサと直列に接続され、前記リアクトルに蓄えられたエネルギーにより、前記充放電コンデンサと共に充電される充電補助コンデンサと、
     前記充電補助コンデンサに蓄えられた電荷の逆流を防止する逆流防止ダイオードと、
     前記逆流防止ダイオードに対して逆直列に接続され、充電補助コンデンサの電圧値を複数の前記出力用平滑コンデンサの接続点に対して一定の範囲内に保つツェナーダイオードと、
     を備え、
     前記駆動制御部は、入力電圧を所望の出力電圧に変換する通常駆動制御を行うと共に、前記充放電コンデンサの両端電圧が所定電圧未満である場合に、前記充放電コンデンサを充電する充電駆動制御を行うことを特徴とするDC/DC電力変換装置。
    A reactor connected to a DC power source, a plurality of switching elements connected in series for switching the output of the reactor, a charge / discharge capacitor charged / discharged by switching of the plurality of switching elements, a charge path and a discharge path of the charge / discharge capacitor A plurality of diodes, and a plurality of DC voltage converters including a drive control unit that drives and controls the plurality of switching elements,
    A plurality of output smoothing capacitors connected in series to smooth parallel outputs of the plurality of DC voltage converters;
    With
    The DC voltage converter is
    A charge auxiliary capacitor that is connected in series with the charge / discharge capacitor by turning off the plurality of switching elements, and that is charged together with the charge / discharge capacitor by the energy stored in the reactor,
    A backflow prevention diode for preventing a backflow of charges stored in the charging auxiliary capacitor;
    A Zener diode connected in anti-series with respect to the backflow prevention diode, and maintaining a voltage value of a charging auxiliary capacitor within a certain range with respect to a connection point of the plurality of smoothing capacitors for output;
    With
    The drive control unit performs normal drive control for converting an input voltage into a desired output voltage, and performs charge drive control for charging the charge / discharge capacitor when a voltage across the charge / discharge capacitor is less than a predetermined voltage. DC / DC power converter characterized by performing.
  2.  前記駆動制御部は、前記通常駆動制御の開始前に、前記充電駆動制御を実施することを特徴とする請求項1に記載のDC/DC電力変換装置。 The DC / DC power converter according to claim 1, wherein the drive control unit performs the charge drive control before the start of the normal drive control.
  3.  前記駆動制御部は、前記通常駆動制御の開始後に、前記充電駆動制御を実施することを特徴とする請求項1に記載のDC/DC電力変換装置。 The DC / DC power converter according to claim 1, wherein the drive control unit performs the charge drive control after the start of the normal drive control.
  4.  前記スイッチング素子は、ワイドバンドギャップ半導体によって形成されていることを特徴とする請求項1に記載のDC/DC電力変換装置。 The DC / DC power converter according to claim 1, wherein the switching element is formed of a wide band gap semiconductor.
  5.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料、またはダイヤモンドであることを特徴とする請求項4に記載のDC/DC電力変換装置。 The DC / DC power converter according to claim 4, wherein the wide band gap semiconductor is silicon carbide, a gallium nitride-based material, or diamond.
  6.  複数系列の太陽電池モジュール群と、
     前記複数系列の太陽電池モジュール群の各出力電圧がそれぞれ前記各直流電圧変換部に入力される請求項1に記載のDC/DC電力変換装置と、
     前記DC/DC電力変換装置から供給された直流電圧を交流電圧に変換するインバータと、
     を備えることを特徴とする太陽光発電システム。
    A plurality of solar cell module groups;
    The DC / DC power converter according to claim 1, wherein each output voltage of the plurality of series of solar cell module groups is input to each of the DC voltage converters.
    An inverter that converts a DC voltage supplied from the DC / DC power converter to an AC voltage;
    A photovoltaic power generation system comprising:
  7.  前記スイッチング素子は、ワイドバンドギャップ半導体によって形成されていることを特徴とする請求項6に記載の太陽光発電システム。 The solar power generation system according to claim 6, wherein the switching element is formed of a wide band gap semiconductor.
  8.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料、またはダイヤモンドであることを特徴とする請求項7に記載の太陽光発電システム。 The solar power generation system according to claim 7, wherein the wide band gap semiconductor is silicon carbide, a gallium nitride-based material, or diamond.
PCT/JP2011/059441 2011-04-15 2011-04-15 Dc/dc power conversion device and photovoltaic power generation system WO2012140781A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/059441 WO2012140781A1 (en) 2011-04-15 2011-04-15 Dc/dc power conversion device and photovoltaic power generation system
JP2013509725A JP5528622B2 (en) 2011-04-15 2011-04-15 DC / DC power converter and solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059441 WO2012140781A1 (en) 2011-04-15 2011-04-15 Dc/dc power conversion device and photovoltaic power generation system

Publications (1)

Publication Number Publication Date
WO2012140781A1 true WO2012140781A1 (en) 2012-10-18

Family

ID=47008983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059441 WO2012140781A1 (en) 2011-04-15 2011-04-15 Dc/dc power conversion device and photovoltaic power generation system

Country Status (2)

Country Link
JP (1) JP5528622B2 (en)
WO (1) WO2012140781A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165888A (en) * 2019-06-11 2019-08-23 阳光电源股份有限公司 Three level Boost circuits, multiple-channel output parallel system
JP2021035326A (en) * 2019-08-28 2021-03-01 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Flying capacitor converter
US11539284B2 (en) 2020-06-02 2022-12-27 Delta Electronics (Shanghai) Co., Ltd. DC conversion system and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139734A1 (en) * 2015-03-02 2016-09-09 三菱電機株式会社 Power conversion device and refrigeration cycle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192162A (en) * 1984-10-08 1986-05-10 Sharp Corp Dc/dc converter
JP2004147472A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Direct current-to-alternating current converter for photovoltaic power generation
JP2004194500A (en) * 2004-03-25 2004-07-08 Sharp Corp Power conversion apparatus for solar power generation
JP2005224060A (en) * 2004-02-06 2005-08-18 Honda Motor Co Ltd Dc/dc converter and program
US20090033289A1 (en) * 2007-08-01 2009-02-05 Intersil Americas Inc. Voltage converter with combined buck converter and capacitive voltage divider
WO2011016199A1 (en) * 2009-08-05 2011-02-10 三菱電機株式会社 Dc/dc power converter
JP2011078194A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Electronic circuit device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192162A (en) * 1984-10-08 1986-05-10 Sharp Corp Dc/dc converter
JP2004147472A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Direct current-to-alternating current converter for photovoltaic power generation
JP2005224060A (en) * 2004-02-06 2005-08-18 Honda Motor Co Ltd Dc/dc converter and program
JP2004194500A (en) * 2004-03-25 2004-07-08 Sharp Corp Power conversion apparatus for solar power generation
US20090033289A1 (en) * 2007-08-01 2009-02-05 Intersil Americas Inc. Voltage converter with combined buck converter and capacitive voltage divider
WO2011016199A1 (en) * 2009-08-05 2011-02-10 三菱電機株式会社 Dc/dc power converter
JP2011078194A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Electronic circuit device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165888A (en) * 2019-06-11 2019-08-23 阳光电源股份有限公司 Three level Boost circuits, multiple-channel output parallel system
JP2022528335A (en) * 2019-06-11 2022-06-10 陽光電源股▲ふん▼有限公司 3-level boost circuit, multi-output parallel system
EP3985853A4 (en) * 2019-06-11 2023-01-25 Sungrow Power Supply Co., Ltd. Three-level boost circuit and multi-output parallel system
JP7266703B2 (en) 2019-06-11 2023-04-28 陽光電源股▲ふん▼有限公司 3-level boost circuit, multi-output parallel system
US11671015B2 (en) 2019-06-11 2023-06-06 Sungrow Power Supply Co., Ltd. Three-level boost circuit and multiple-output parallel system
JP2021035326A (en) * 2019-08-28 2021-03-01 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Flying capacitor converter
CN112448580A (en) * 2019-08-28 2021-03-05 台达电子工业股份有限公司 Flying capacitor converter
JP7026737B2 (en) 2019-08-28 2022-02-28 台達電子工業股▲ふん▼有限公司 Flying capacitor converter
US11362589B2 (en) 2019-08-28 2022-06-14 Delta Electronics, Inc. Flying capacitor converter
US11539284B2 (en) 2020-06-02 2022-12-27 Delta Electronics (Shanghai) Co., Ltd. DC conversion system and control method thereof
TWI797632B (en) * 2020-06-02 2023-04-01 大陸商台達電子企業管理(上海)有限公司 Dc conversion system and control method thereof

Also Published As

Publication number Publication date
JPWO2012140781A1 (en) 2014-07-28
JP5528622B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
Chen et al. A boost converter with capacitor multiplier and coupled inductor for AC module applications
US7948221B2 (en) Electric power converter
KR100809269B1 (en) Control circuit of dc-dc convertor
US9602020B2 (en) Power conversion device
US7719865B2 (en) Power conversion apparatus
JP5049637B2 (en) DC / DC power converter
WO2015004825A1 (en) Dc-dc converter
US20060087295A1 (en) Non-isolated power conversion system having multiple switching power converters
JP5631499B2 (en) Power converter
WO2011092932A1 (en) Dc/dc power conversion device
EP2994986A1 (en) Buck-boost converter with buck-boost transition switching control
JP5400961B2 (en) Power converter
JP2006296098A (en) Ac-ac converter
WO2021033412A1 (en) Dc/dc converting device
JPWO2005041384A1 (en) Power supply
JP5528622B2 (en) DC / DC power converter and solar power generation system
US20130241290A1 (en) Filter circuit and bidirectional power conversion apparatus including thereof
US20160261123A1 (en) Charging circuit for an energy storage device and method for charging an energy storage device
JP2014036491A (en) Dc/dc power conversion device, and power conditioner for photovoltaic system
US7741893B2 (en) Dual mode clock generator
KR101005463B1 (en) Dc/dc converter and driving method thereof
JP4370965B2 (en) Power converter
JP4119985B2 (en) Series electric double layer capacitor device
JP4768535B2 (en) Power converter
JP2005245160A (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863553

Country of ref document: EP

Kind code of ref document: A1