WO2012134502A1 - Glucosyl stevia composition - Google Patents
Glucosyl stevia composition Download PDFInfo
- Publication number
- WO2012134502A1 WO2012134502A1 PCT/US2011/033737 US2011033737W WO2012134502A1 WO 2012134502 A1 WO2012134502 A1 WO 2012134502A1 US 2011033737 W US2011033737 W US 2011033737W WO 2012134502 A1 WO2012134502 A1 WO 2012134502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rebaudioside
- process according
- amylase
- cgtase
- steviol glycosides
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/13—Fermented milk preparations; Treatment using microorganisms or enzymes using additives
- A23C9/1307—Milk products or derivatives; Fruit or vegetable juices; Sugars, sugar alcohols, sweeteners; Oligosaccharides; Organic acids or salts thereof or acidifying agents; Flavours, dyes or pigments; Inert or aerosol gases; Carbonation methods
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
- A21D2/00—Treatment of flour or dough by adding materials thereto before or during baking
- A21D2/08—Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
- A21D2/14—Organic oxygen compounds
- A21D2/18—Carbohydrates
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
- A21D2/00—Treatment of flour or dough by adding materials thereto before or during baking
- A21D2/08—Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
- A21D2/36—Vegetable material
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/02—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
- A23L2/60—Sweeteners
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/33—Artificial sweetening agents containing sugars or derivatives
- A23L27/36—Terpene glycosides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/20—Reducing nutritive value; Dietetic products with reduced nutritive value
Definitions
- the invention relates to a process for producing a highly purified food ingredient from the extract of the Stevia rebaudiana Bertoni plant and its use in various food products and beverages. Description Of The Related Art
- sweeteners such as dulcin, sodium cyclamate and saccharin were banned or restricted in some countries due to concerns on their safety. Therefore non- caloric sweeteners of natural origin are becoming increasingly popular.
- the sweet herb Stevia rebaudiana Bertoni produces a number of diterpene glycosides which feature high intensity sweetness and sensory properties superior to those of many other high potency sweeteners.
- the above-mentioned sweet glycosides have a common aglycon, steviol, and differ by the number and type of carbohydrate residues at the C 13 and C19 positions.
- the leaves of Stevia are able to accumulate up to 10-20% (on dry weight basis) steviol glycosides.
- the major glycosides found in Stevia leaves are Rebaudioside A (2-10%), Stevioside (2-10%), and Rebaudioside C (1-2%).
- Other glycosides such as Rebaudioside B, D, E, and F, Steviolbioside and Rubusoside are found at much lower levels (approx. 0- 0.2%).
- Steviol glycosides differ from each other not only by molecular structure, but also by their taste properties. Usually stevioside is found to be 1 10-270 times sweeter than sucrose, Rebaudioside A between 150 and 320 times, and Rebaudioside C between 40-60 times sweeter than sucrose. Dulcoside A is 30 times sweeter than sucrose. Rebaudioside A has the least astringent, the least bitter, and the least persistent aftertaste thus possessing the most favorable sensory attributes in major steviol glycosides (Tanaka O. (1987) Improvement of taste of natural sweetners. Pure Appl. Chem. 69:675-683; Phillips K.C. (1989) Stevia: steps in developing a new sweetener. In: Grenby T.H. ed. Developments in sweeteners, vol. 3. Elsevier Applied Science, London. 1-43.)
- the transglucosylation of steviol glycosides was also performed by action of cyclodextrin glucanotransferases (CGTase) produced by Bacillus stearothermophilus (U.S. Patent Numbers 4,219,571, and 7,807,206) as a result cc-l,4-glucosyl derivatives were formed with degree of polymerization up to 10.
- CCTase cyclodextrin glucanotransferases
- glucosyl derivatives are largely dependent on number of additional glucosyl derivatives, i.e. the degree of polymerization of the ct-l,4-glucosyl chain.
- the increase in number of ot-l,4-glucosyl residues improved the taste quality but at the same time reduced the sweetness level.
- the treatment of transglucosylated stevioside with / ⁇ -amylase resulted in a product consisting of mono- or di- -l,4-glucosyl derivatives with better taste profile and optimal sweetness level (Tanaka, 1987).
- the resulting product contains high level of initial unreacted (unmodified) glycosides (generally >20%) which makes it not compliant with regulatory requirements of less than 15% unreacted glycosides ( - Glucosyltransferase Treated Stevia, Japan 's Specifications and Standards for Food Additives, VIII edition, 2009, p.257). Therefore additional steps for chromatographic separation of unreacted steviol glycosides are used to reduce initial unreacted (unmodified) glycosides' content.
- chromatographic separation techniques generally involve high cost and are not suitable for large scale production.
- glucosyl stevia products contain up to 20% residual dextrins which do not possess significant functional properties and reduce the content of steviol glycosides in the product.
- the present invention is aimed to overcome the disadvantages of existing Stevia sweeteners.
- the invention describes a process for producing a high purity food ingredient from the extract of the Stevia rebaudiana Bertoni plant and use thereof in various food products and beverages as a sweetness and flavor modifier.
- the invention in part, pertains to an ingredient comprising glucosylated derivatives of steviol glycosides of Stevia rebaudiana Bertoni plant.
- the steviol glycodsides are selected from the group consisting of stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant and mixtures thereof.
- the invention in part, pertains to a process for producing an ingredient containing glucosylated forms of stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant.
- the process can be an enzymatic transglucosylating process using CGTases produced by cultures of Bacillus stearothermophilus.
- the process may include the step of shortening glucosyl chains by ⁇ -amylase.
- the process can also have the steps of decolorizing, desalting and removing maltooligosaccharides and unmodified (unreacted) steviol glycosides.
- the decolorizing can be performed using activated carbon.
- the desalting can be performed by passing through ion exchange resins and/or membrane filters. Removing the maltooligosaccharides can be performed by passing through macroporuos polymeric resin. Removing unmodified (unreacted) steviol glycosides can be performed by suspending the product in aqueous alcohol.
- Stevia extract commercialized by PureCircle (JiangXi) Co., Ltd. (China), containing stevioside (28-30%), Rebaudioside A (50-55%), Rebaudioside C (9- 12%), Rebaudioside F (1-3%) and other glycosides amounting to total steviol glycosides' content of at least 95%, was used as a starting material.
- stevia extracts with different ratio of steviol glycosides as well as highly purified steviol glycosides such as Rebaudioside A, stevioside, Rebaudioside D, rubusoside etc, may be used as starting materials.
- the starting material was subjected to the enzymatic transglucosylation by action of cyclodextrin glycosyltransferase (CGTase) in the presence of starch as a glucose donor.
- CGTase cyclodextrin glycosyltransferase
- a-l,4-glucosyl derivatives were formed with degree of polymerization up to 10.
- the formed derivatives were subjected to treatment with / ⁇ -amylase to produce a- 1 ,4-glucosyl derivatives possessing a degree of polymerization up to 2.
- the oligosaccharides from obtained reaction mixture were removed by Amberlite XAD7 HP resin, and then decolorized, deionized, concentrated and spray dried.
- the unreacted steviol glycosides were subsequently removed by suspending the dried product in organic solvent and separating the suspended solids containing decreased level of unreacted steviol glycosides.
- the obtained products were applied in various foods and beverages as sweeteners, sweetener enhancers and flavor modifiers, including ice cream, cookies, bread, fruit juices, milk products, baked goods and confectionary products.
- FIG. 1 shows a high-performance liquid chromatographic chromatogram of purified transglucosylated Stevia extract without / ⁇ -amylase treatment containing long- chain c -l,4-glucosyl-derivatives with up to nine a-l,4-glucosyl residues;
- FIG. 2 shows a high-performance liquid chromatographic (HPLC) chart of ⁇ - amylase treated product containing mono- and di-cc-l,4-glucosyl-derivatives of steviol glycosides, as well as high level of unreacted steviol glycoside;
- HPLC high-performance liquid chromatographic
- FIG. 3 shows a high-performance liquid chromatographic (HPLC) chart of ⁇ - amylase treated product containing mono- and di-a-l,4-glucosyl-derivatives of steviol glycosides, as well as low level of unreacted steviol glycosides.
- stevia extracts with different ratio of steviol glycosides as well as highly purified steviol glycosides such as Rebaudioside A, stevioside, Rebaudioside D, rubusoside etc, may be used as starting materials.
- the HPLC analysis of the raw materials and products was performed on Agilent Technologies 1200 Series (USA) liquid chromarograph, equipped with Zorbax-NH2 (4.6X250mm) column.
- the mobile phase was acetonitrile-water gradient from 80:20, v/v (0-2 min) to 50:50, v/v (2-70 min).
- a diode array detector set at 210 nm was used as the detector.
- the transglucosylation was accomplished by cyclomaltodextrin glucanotransferases (CGTases; EC 2.4.1.19) produced by Bacillus stearothermophilus St- 100 (PureCircle Sdn Bhd Collection of Industrial Microorganisms - Malaysia).
- CGTases cyclomaltodextrin glucanotransferases
- Bacillus stearothermophilus St- 100 PureCircle Sdn Bhd Collection of Industrial Microorganisms - Malaysia.
- any other CGTase or enzyme possessing intermolecular transglucosylation activity may be applied as well.
- the enzyme can be in a form of cell-free culture broth, concentrated liquid cell-free culture broth, spray dried or freeze dried cell-free culture broth, or high purity protein. Free and immobilized enzyme preparations can be used.
- CGTase preparations The activity of CGTase preparations was determined according to the procedure described in Hale W.S., Rawlins L.C. (1951) Amylase of Bacillus macerans. Cereal Chem. 28, 49-58.
- Starches of different origin may be used as donors of glucosyl units such as, derived from wheat, corn, potato, tapioca, and sago.
- Starch was subjected to partial hydrolysis (liquefaction) prior to the transglycosylation reaction.
- the dextrose equivalent of the partially hydrolyzed starch can be in the range of about 10-25, preferably about 12-16.
- Any enzyme capable of starch hydrolysis may be used for liquefaction, such as -amylases, ⁇ -amylases etc.
- CGTase and a-amylase mixtures as liquefying enzymes are preferred.
- KNU Kilo Novo a-amylase Units
- the liquefaction mixture contains about 0.001-0.2 KNU, preferably about 0.05-0.1 KNU of ⁇ -amylase per one unit of CGTase.
- ⁇ -amylase in liquefaction allows achieving higher throughputs in further activated carbon filtration.
- CGTase is used as the only liquefying enzyme the filtration rate is approximately 10-15 L/hr per lm 2 of filter surface.
- liquefaction enzyme mixture comprising ⁇ -amylase and CGTase the filtration rate is twice as fast - approximately 20-30 L/hr per lm 2 of filter surface.
- the ratio of starch and CGTase in the liquefaction mixture is about 0.1-0.5 units per one gram of starch, preferably about 0.2-0.4 units per gram.
- the concentration of starch in liquefaction mixture is about 15-40% (wt/wt), preferably about 20-30%.
- the liquefaction is conducted at about 70-90°C during about 0.5-5 hours, preferably about 1-2 hours.
- the reaction mixture is subjected to thermal inactivation of ⁇ -amylase at low pH conditions.
- the preferred pH range for inactivation is about pH 2.5 to pH 3.0 and preferred temperature is about 95-105°C.
- the duration of thermal inactivation is about 5-10 minutes.
- the pH of the reaction mixture is adjusted to about pH 5.5- 6.5 and the steviol glycosides are added to the mixture and dissolved.
- the preferred ratio of steviol glycosides to starch (kg of steviol glycosides per 1 kg of starch) is about 0.5-1.5, preferably about 0.8-1.2.
- a second portion of CGTase preparation is added and the transglucosylation reaction is conducted at about 65°C for about 24-48 hours.
- the amount of the second portion of CGTase is about 0.2-4 units of CGTase per gram of solids, preferably about 0.5-1.2 units per gram of solids.
- ⁇ - Amylase activity unit (1 AUN) is defined as the activity which liberates 100 ⁇ g of reducing sugar (expressed by dextrose equivalent) per minute under the following conditions: lmL of enzyme solution is mixed with 5mL of 1.2% starch solution (pH 5.5, M / 20 Acetate Buffer) and kept for 20 min at 40°C.
- the reaction was stopped by heating at about 95°C for about 15 minutes to inactivate the enzymes, and the solution was treated with activated carbon, to obtain decolorized reaction mixture.
- the amount of activated carbon was about 0.02-0.4 grams per gram of solids, preferably about 0.05-0.2 grams per gram of solids.
- the decolorized reaction mixture was desalted by passing through ion exchange resins, such as Amberlite FPC23 (H + type) and Amberlite FPA51 (OH " type).
- ion exchange resins such as Amberlite FPC23 (H + type) and Amberlite FPA51 (OH " type).
- Other appropriate decolorizing and desalting methods such as membrane filtration, or other methods known in the art can be used.
- the desalted reaction mixture was further concentrated by vacuum evaporator and dried by means of a spray dryer.
- Other appropriate concentrating and drying methods such as membrane filtration, freeze drying, or other methods known to art can be used.
- the dried powder was suspended in aqueous alcohol.
- the powder to aqueous alcohol ratio (wt/vol) was 1: 1 to 1 : 20, preferably 1 :3 to 1 : 10.
- the aqueous alcohol contained 0-50% (vol), preferably 1-10% water.
- the suspension is agitated at 30-100°C, preferably 50-85°C during 1-24 hours, preferably 2-15 hours.
- the suspended solids are separated by means of filtration. Any other technique known in the art suitable for separating suspended solids from liquid such as centrifugation, decanting, etc. can be used.
- the obtained solids are dried in rotary drum vacuum drier. Any other dryer known t in the art may be used as well.
- the separated solids may be dissolved in water, evaporated from traces of alcohol and spray dried.
- the alcohols employed in the invention may be selected from the group consisting of alkanols, and are preferably selected from the group including methanol, ethanol, n- propanol, 2-propanol, 1-butanol, and 2-butanol.
- the resulting product contains low level non-modified glycosides, short-chain (containing two or less a-l,4-glucosyl residues) derivatives and a mixture of maltooligosaccharides (Sample 1).
- low level non-modified glycosides or “low level unreacted glycosides” shall refer to glycoside levels of less than about 20%, and preferably less than about 15%, on an anhydrous basis. In some embodiments, an unreacted glycoside level of about 12%, about 10% or even lower can be attained using this method.
- a product with higher content of total sweet glycosides (the sum of glycosylated and non-glycosylated glycosides)
- the maltooligosaccharides were removed using Amberlite XAD7 HP prior to the desalting treatment.
- the steviol glycosides and their glucosylated derivatives were adsorbed on the resin and subsequently eluted by aqueous ethanol.
- the dried powder was suspended in aqueous alcohol and processed as described above to remove unmodified (unreacted) steviol glycosides.
- the resulting product contains low level non-modified glycosides, and short-chain (containing two or less -l,4-glucosyl residues) derivatives (Sample 2).
- the embodiments of the invention exemplified by Samples 1 and 2 are free or substantially free of higher glucosylated derivatives having more than 2 glucosyl residues.
- the highly purified glucosyl stevia composition preferably comprises greater than about 50% by weight mono-, and diglucosyl steviol glycosides.
- Example 4 Using a similar process as for sample 2, with exclusion of the aqueous alcohol treatment stage, a product containing high level non-modified glycosides, and short-chain derivatives (containing two or less -l,4-glucosyl residues) was prepared (Sample 4).
- the composition of the samples is summarized in Table 1.
- Samples 1 and 2 show comparable sweetness power (150-160 times sweeter compared to a 5% sucrose solution) with control Sample 4 (160 times); however their flavor profile was clearly superior to the control Sample 4.
- compositions can be used as sweetness enhancers, flavor enhancers and sweeteners in various food and beverage products.
- food and beverage products include carbonated soft drinks, ready to drink beverages, energy drinks, isotonic drinks, low-calorie drinks, zero-calorie drinks, sports drinks, teas, fruit and vegetable juices, juice drinks, dairy drinks, yoghurt drinks, alcohol beverages, powdered beverages, bakery products, cookies, biscuits, baking mixes, cereals, confectioneries, candies, toffees, chewing gum, dairy products, flavored milk, yoghurts, flavored yoghurts, cultured milk, soy sauce and other soy base products, salad dressings, mayonnaise, vinegar, frozen-desserts, meat products, fish-meat products, bottled and canned foods, tabletop sweeteners, fruits and vegetables.
- compositions can be used in drug or pharmaceutical preparations and cosmetics, including but not limited to toothpaste, mouthwash, cough syrup, chewable tablets, lozenges, vitamin preparations, and the like.
- compositions can be used "as-is” or in combination with other sweeteners, flavors and food ingredients.
- Non-limiting examples of sweeteners include steviol glycosides, stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant and mixtures thereof, stevia extract, Luo Han Guo extract, mogrosides, high-fructose corn syrup, corn syrup, invert sugar, fructooligosaccharides, inulin, inulooligosaccharides, coupling sugar, maltooligosaccharides, maltodextins, corn syrup solids, glucose, maltose, sucrose, lactose, aspartame, saccharin, sucralose, sugar alcohols.
- Non-limiting examples of flavors include lemon, orange, fruity, banana, grape, pear, pineapple, bitter almond, cola, cinnamon, sugar, cotton candy, vanilla flavors.
- Non-limiting examples of other food ingredients include flavors, acidulants, organic and amino acids, coloring agents, bulking agents, modified starches, gums, texturizers, preservatives, antioxidants, emulsifiers, stabilisers, thickeners, gelling agents.
- a strain of Bacillus stearothermophilus St- 100 was inoculated in 2,000 liters of sterilized culture medium containing 1.0% starch, 0.25% corn extract, 0.5% (NH 4 ) 2 S0 4 , and 0.2% CaC0 3 (pH 7.0-7.5) at 56°C for 24 hrs with continuous aeration (2,000 L/min) and agitation (150rpm).
- the obtained culture broth was filtered using Kerasep 0.1 ⁇ ceramic membrane (Novasep, France) to separate the cells.
- the cell-free permeate was further concentrated 2-fold on Persep lOkDa ultrafilters (Orelis, France).
- the activity of the enzyme was determined according to Hale, Rawlins (1951). A crude enzyme preparation with activity of about 2 unit/mL was obtained.
- a strain of Bacillus polymyxa St-3504 was inoculated in 2,000 liters of sterilized culture medium containing 1.0% starch, 0.5% peptone, 0.5% corn extract, 0.5% NaCl, 0.02% MnS0 4 and 0.1% CaC0 3 (pH 7.0-7.5) at 32°C for 24 hrs with continuous aeration (2,000 L/min) and agitation (150rpm).
- the obtained culture broth was filtered using Kerasep 0.1 ⁇ ceramic membrane (Novasep, France) to separate the cells.
- ⁇ -Amylase activity unit (1 AUN) was defined as the activity which liberates 100 ⁇ g of reducing sugar (expressed by dextrose equivalent) per minute under the following conditions: lmL of enzyme solution is mixed with 5mL of 1.2% starch solution (pH 5.5, M / 20 Acetate Buffer) and kept for 20 min at 40°C.
- the dried powder was suspended in 5 volumes of 95% aqueous ethanol. The suspension was agitated at 80°C, during 12 hours. Then the suspended solids were separated by filtration. The obtained solids were dried in vacuum dryer at 90°C during 5 hours. 121 grams of product was obtained (Sample 2).
- Glucosyl stevia compositions were represented by Samples 1, 2, 3 and 4, obtained according to EXAMPLES 3, 4, 5 and 6, respectively.
- Example 3 The sensory evaluations of the samples are summarized in Table 3. The data show that the best results can be obtained by using the high purity short-chain glucosyl stevia compositions (containing two or less a-l,4-glucosyl residues and low unreacted steviol glycosides) (Samples 1 and 2). Particularly the drinks prepared with Samples 1 and 2 exhibited a rounded and complete flavor profile and mouthfeel.
- the same method can be used to prepare juices and juice drinks from other fruits, such as apples, lemons, apricots, cherries, pineapples, mangoes, etc.
- a carbonated beverage according to formula presented below was prepared.
- Glucosyl stevia compositions were represented by Samples 1, 2, 3 and 4, obtained according to EXAMPLES 3, 4, 5 and 6, respectively. After pasteurizing at 82°C for 20 minutes, the milk was cooled to 37°C. A starter culture (3%) was added and the mixture was incubated at 37°C for 6 hours then at 5°C for 12 hours.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Seasonings (AREA)
- Saccharide Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2013011076A MX351897B (en) | 2011-03-29 | 2011-04-25 | Glucosyl stevia composition. |
BR112013024757-6A BR112013024757B1 (en) | 2011-03-29 | 2011-04-25 | process to produce a highly purified stevia glycosyl composition |
EP11862580.5A EP2690972B1 (en) | 2011-03-29 | 2011-04-25 | Process for producing a glucosyl stevia composition |
EP16187341.9A EP3123873B1 (en) | 2011-03-29 | 2011-04-25 | Process for producing a glucosyl stevia composition |
EP19209720.2A EP3653064A1 (en) | 2011-03-29 | 2011-04-25 | Glucosyl stevia composition |
PL16187341T PL3123873T3 (en) | 2011-03-29 | 2011-04-25 | Process for producing a glucosyl stevia composition |
ES11862580.5T ES2604491T3 (en) | 2011-03-29 | 2011-04-25 | Process to produce a stevia glucosil composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/074,179 US8318459B2 (en) | 2011-02-17 | 2011-03-29 | Glucosyl stevia composition |
US13/074,179 | 2011-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012134502A1 true WO2012134502A1 (en) | 2012-10-04 |
Family
ID=46931809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/033737 WO2012134502A1 (en) | 2011-03-29 | 2011-04-25 | Glucosyl stevia composition |
Country Status (6)
Country | Link |
---|---|
EP (3) | EP3653064A1 (en) |
BR (1) | BR112013024757B1 (en) |
ES (2) | ES2784791T3 (en) |
MX (1) | MX351897B (en) |
PL (2) | PL2690972T3 (en) |
WO (1) | WO2012134502A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9131718B2 (en) | 2009-06-16 | 2015-09-15 | Epc (Beijing) Natural Products Co., Ltd. | Process for rebaudioside D |
US9578895B2 (en) | 2010-08-23 | 2017-02-28 | Epc (Beijing) Natural Products Co., Ltd. | Rebaudioside A and stevioside compositions |
US9795156B2 (en) | 2011-03-17 | 2017-10-24 | E.P.C (Beijing) Plant Pharmaceutical Technology Co., Ltd | Rebaudioside B and derivatives |
US10264811B2 (en) | 2014-05-19 | 2019-04-23 | Epc Natural Products Co., Ltd. | Stevia sweetener with improved solubility |
US10357052B2 (en) | 2014-06-16 | 2019-07-23 | Sweet Green Fields USA LLC | Rebaudioside A and stevioside with improved solubilities |
US10485256B2 (en) | 2014-06-20 | 2019-11-26 | Sweet Green Fields International Co., Limited | Stevia sweetener with improved solubility with a cyclodextrin |
EP3524065A4 (en) * | 2017-09-05 | 2019-12-04 | Kyung-Jae Kim | Sweetener containing enzyme-treated stevia composition and having improved sweetness |
EP3003058B1 (en) | 2013-06-07 | 2020-04-08 | Purecircle Usa Inc. | Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3653064A1 (en) | 2011-03-29 | 2020-05-20 | Purecircle USA | Glucosyl stevia composition |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4082858A (en) | 1975-06-04 | 1978-04-04 | F. K. Suzuki International, Inc. | Sweetening compound, method of recovery, and use thereof |
US4219571A (en) | 1978-06-15 | 1980-08-26 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Process for producing a sweetener |
US4361697A (en) | 1981-05-21 | 1982-11-30 | F. K. Suzuki International, Inc. | Extraction, separation and recovery of diterpene glycosides from Stevia rebaudiana plants |
US4892938A (en) | 1987-07-21 | 1990-01-09 | Giovanetto Roger H | Method for the recovery of steviosides from plant raw material |
US4917916A (en) * | 1981-02-12 | 1990-04-17 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Food containing anhydrous crystals of maltitol and the whole crystalline hydrogenated starch hydrolisate |
US5962678A (en) | 1996-09-13 | 1999-10-05 | Alberta Research Council | Method of extracting selected sweet glycosides from the Stevia rebaudiana plant |
US5972120A (en) | 1997-07-19 | 1999-10-26 | National Research Council Of Canada | Extraction of sweet compounds from Stevia rebaudiana Bertoni |
US20070082102A1 (en) * | 2005-10-11 | 2007-04-12 | Stevian Biotechnology Corporation Sdn. Bhd | Sweetner and use |
US20080102497A1 (en) * | 2006-10-31 | 2008-05-01 | Dominic Wong | Enzymatic hydrolysis of starch |
US20090142817A1 (en) * | 2002-02-14 | 2009-06-04 | Novozymes A/S | Process for hydrolysis of starch |
US7838044B2 (en) | 2004-12-21 | 2010-11-23 | Purecircle Sdn Bhd | Extraction, separation and modification of sweet glycosides from the Stevia rebaudiana plant |
US7862845B2 (en) | 2005-10-11 | 2011-01-04 | Purecircle Sdn Bhd | Process for manufacturing a sweetener and use thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2798433B2 (en) * | 1989-08-25 | 1998-09-17 | 日本製紙株式会社 | Highly sweetened sugar-added stevia sweetener and process for producing the same |
US8257948B1 (en) | 2011-02-17 | 2012-09-04 | Purecircle Usa | Method of preparing alpha-glucosyl Stevia composition |
US8318232B2 (en) * | 2005-10-11 | 2012-11-27 | Purecircle Sdn Bhd | Sweetner and use |
KR100888694B1 (en) * | 2008-09-01 | 2009-03-16 | 김경재 | Method for production sweet-improved enzymatically modified stevia |
EP3653064A1 (en) | 2011-03-29 | 2020-05-20 | Purecircle USA | Glucosyl stevia composition |
-
2011
- 2011-04-25 EP EP19209720.2A patent/EP3653064A1/en active Pending
- 2011-04-25 WO PCT/US2011/033737 patent/WO2012134502A1/en active Application Filing
- 2011-04-25 MX MX2013011076A patent/MX351897B/en active IP Right Grant
- 2011-04-25 PL PL11862580T patent/PL2690972T3/en unknown
- 2011-04-25 BR BR112013024757-6A patent/BR112013024757B1/en active IP Right Grant
- 2011-04-25 EP EP16187341.9A patent/EP3123873B1/en active Active
- 2011-04-25 PL PL16187341T patent/PL3123873T3/en unknown
- 2011-04-25 ES ES16187341T patent/ES2784791T3/en active Active
- 2011-04-25 ES ES11862580.5T patent/ES2604491T3/en active Active
- 2011-04-25 EP EP11862580.5A patent/EP2690972B1/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4082858A (en) | 1975-06-04 | 1978-04-04 | F. K. Suzuki International, Inc. | Sweetening compound, method of recovery, and use thereof |
US4219571A (en) | 1978-06-15 | 1980-08-26 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Process for producing a sweetener |
US4917916A (en) * | 1981-02-12 | 1990-04-17 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Food containing anhydrous crystals of maltitol and the whole crystalline hydrogenated starch hydrolisate |
US4361697A (en) | 1981-05-21 | 1982-11-30 | F. K. Suzuki International, Inc. | Extraction, separation and recovery of diterpene glycosides from Stevia rebaudiana plants |
US4892938A (en) | 1987-07-21 | 1990-01-09 | Giovanetto Roger H | Method for the recovery of steviosides from plant raw material |
US5962678A (en) | 1996-09-13 | 1999-10-05 | Alberta Research Council | Method of extracting selected sweet glycosides from the Stevia rebaudiana plant |
US5972120A (en) | 1997-07-19 | 1999-10-26 | National Research Council Of Canada | Extraction of sweet compounds from Stevia rebaudiana Bertoni |
US20090142817A1 (en) * | 2002-02-14 | 2009-06-04 | Novozymes A/S | Process for hydrolysis of starch |
US7838044B2 (en) | 2004-12-21 | 2010-11-23 | Purecircle Sdn Bhd | Extraction, separation and modification of sweet glycosides from the Stevia rebaudiana plant |
US20070082102A1 (en) * | 2005-10-11 | 2007-04-12 | Stevian Biotechnology Corporation Sdn. Bhd | Sweetner and use |
US7807206B2 (en) | 2005-10-11 | 2010-10-05 | Purecircle Sdn Bhd | Sweetner and use |
US7862845B2 (en) | 2005-10-11 | 2011-01-04 | Purecircle Sdn Bhd | Process for manufacturing a sweetener and use thereof |
US20080102497A1 (en) * | 2006-10-31 | 2008-05-01 | Dominic Wong | Enzymatic hydrolysis of starch |
Non-Patent Citations (10)
Title |
---|
"Japan 's Specifications and Standards for Food Additives", 2009, pages: 257 |
CHANG S.S.; COOK, J.M.: "Stability studies of stevioside and Rebaudioside A in carbonated beverages", J. AGRIC. FOOD CHEM., vol. 31, 1983, pages 409 - 412, XP055013770 |
HALE W.S.; RAWLINS L.C.: "Amylase of Bacillus macerans", CEREAL CHEM., vol. 28, 1951, pages 49 - 58 |
KITAHATA S.; ISHIKAWA S.; MIYATA T.; TANAKA O: "Production of rubusoside derivatives by transglycosylation of various 8-galactosidase", AGRIC. BIOL. CHEM., vol. 53, 1989, pages 2923 - 2928 |
LOBOV S.V.; JASAI R.; OHTANI K.; TANAKA O; YAMASAKI K: "Enzymatic production of sweet stevioside derivatives: transglycosylation by glucosidases", AGRIC. BIOL. CHEM., vol. 55, 1991, pages 2959 - 2965 |
PHILLIPS K.C.: "Developments in sweeteners", vol. 3, 1989, ELSEVIER APPLIED SCIENCE, article "Stevia: steps in developing a new sweetener" |
PRAKASH I.; DUBOIS G.E.; CLOS J.F.; WILKENS K.L.; FOSDICK L.E.: "Development of rebiana, a natural, non-caloric sweetener", FOOD CHEM. TOXICOL., vol. 46, 2008, pages S75 - S82 |
See also references of EP2690972A4 * |
TANAKA O.: "Improvement of taste of natural sweetners", PURE APPI. CHEM., vol. 69, 1987, pages 675 - 683, XP008144245 |
YAMAMOTO K.; YOSHIKAWA K.; OKADA S: "Effective production of glucosyl-stevioside by a-1,6-transglucosylation of dextran dextranase", BIOSCI. BIOTECH. BIOCHEM., vol. 58, 1994, pages 1657 - 1661 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9635878B2 (en) | 2009-06-16 | 2017-05-02 | Epc (Beijing) Natural Products Co., Ltd. | Process for rebaudioside D |
US9131718B2 (en) | 2009-06-16 | 2015-09-15 | Epc (Beijing) Natural Products Co., Ltd. | Process for rebaudioside D |
US9578895B2 (en) | 2010-08-23 | 2017-02-28 | Epc (Beijing) Natural Products Co., Ltd. | Rebaudioside A and stevioside compositions |
US10285425B2 (en) | 2010-08-23 | 2019-05-14 | Epc Natural Products Co. Ltd | Rebaudioside A and stevioside compositions |
US11202462B2 (en) | 2010-08-23 | 2021-12-21 | Sweet Green Fields International Co., Limited | Rebaudioside A and stevioside compositions |
US9795156B2 (en) | 2011-03-17 | 2017-10-24 | E.P.C (Beijing) Plant Pharmaceutical Technology Co., Ltd | Rebaudioside B and derivatives |
US11510428B2 (en) | 2011-03-17 | 2022-11-29 | Sweet Green Fields International Co., Limited | Rebaudioside B and derivatives |
EP3003058B1 (en) | 2013-06-07 | 2020-04-08 | Purecircle Usa Inc. | Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier |
EP3003058B2 (en) † | 2013-06-07 | 2023-06-28 | Purecircle Usa Inc. | Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier |
US10264811B2 (en) | 2014-05-19 | 2019-04-23 | Epc Natural Products Co., Ltd. | Stevia sweetener with improved solubility |
US10561165B2 (en) | 2014-05-19 | 2020-02-18 | Sweet Green Fields International Co., Limited | Stevia sweetener with improved solubility |
US11206857B2 (en) | 2014-05-19 | 2021-12-28 | Sweet Green Fields International Co., Limited | Stevia sweetener with improved solubility |
US10568351B2 (en) | 2014-06-16 | 2020-02-25 | Sweet Green Fields USA LLC | Rebaudioside A and stevioside with improved solubilities |
US11241031B2 (en) | 2014-06-16 | 2022-02-08 | Sweet Green Fields Usa, Llc | Rebaudioside A and stevioside with improved solubilities |
US10357052B2 (en) | 2014-06-16 | 2019-07-23 | Sweet Green Fields USA LLC | Rebaudioside A and stevioside with improved solubilities |
US10485256B2 (en) | 2014-06-20 | 2019-11-26 | Sweet Green Fields International Co., Limited | Stevia sweetener with improved solubility with a cyclodextrin |
EP3524065A4 (en) * | 2017-09-05 | 2019-12-04 | Kyung-Jae Kim | Sweetener containing enzyme-treated stevia composition and having improved sweetness |
Also Published As
Publication number | Publication date |
---|---|
BR112013024757A2 (en) | 2017-07-04 |
EP3123873B1 (en) | 2019-11-20 |
ES2604491T3 (en) | 2017-03-07 |
EP2690972A4 (en) | 2014-11-26 |
EP3653064A1 (en) | 2020-05-20 |
BR112013024757B1 (en) | 2019-11-12 |
ES2784791T3 (en) | 2020-09-30 |
EP2690972B1 (en) | 2016-09-07 |
MX351897B (en) | 2017-11-01 |
EP2690972A1 (en) | 2014-02-05 |
PL3123873T3 (en) | 2020-09-21 |
PL2690972T3 (en) | 2017-03-31 |
EP3123873A1 (en) | 2017-02-01 |
MX2013011076A (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240148036A1 (en) | Glucosyl stevia composition | |
US11844365B2 (en) | Glucosyl Stevia composition | |
US8735101B2 (en) | Glucosyl stevia composition | |
US8257948B1 (en) | Method of preparing alpha-glucosyl Stevia composition | |
US20140030381A1 (en) | Glucosyl stevia composition | |
WO2015048383A1 (en) | Glucosyl stevia composition | |
EP2690972B1 (en) | Process for producing a glucosyl stevia composition | |
WO2013058871A1 (en) | Glucosyl stevia composition | |
US20200359668A1 (en) | Glucosyl stevia composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11862580 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/011076 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011862580 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011862580 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013024757 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013024757 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130926 |