WO2012131851A1 - Image display device, image transmission device, image display system, image transmission method, and program - Google Patents

Image display device, image transmission device, image display system, image transmission method, and program Download PDF

Info

Publication number
WO2012131851A1
WO2012131851A1 PCT/JP2011/057430 JP2011057430W WO2012131851A1 WO 2012131851 A1 WO2012131851 A1 WO 2012131851A1 JP 2011057430 W JP2011057430 W JP 2011057430W WO 2012131851 A1 WO2012131851 A1 WO 2012131851A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
viewpoint
unit
viewpoints
image display
Prior art date
Application number
PCT/JP2011/057430
Other languages
French (fr)
Japanese (ja)
Inventor
田中 達也
知也 児玉
古藤 晋一郎
央 小暮
浅野 渉
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2011/057430 priority Critical patent/WO2012131851A1/en
Publication of WO2012131851A1 publication Critical patent/WO2012131851A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/12Synchronisation between the display unit and other units, e.g. other display units, video-disc players
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/158Switching image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/194Transmission of image signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/04Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with cameras or projectors providing touching or overlapping fields of view
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/04Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller
    • G09G2370/045Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller using multiple communication channels, e.g. parallel and serial
    • G09G2370/047Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller using multiple communication channels, e.g. parallel and serial using display data channel standard [DDC] communication
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/12Use of DVI or HDMI protocol in interfaces along the display data pipeline
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity

Definitions

  • Embodiments described herein relate generally to an image display device, an image transmission device, an image display system, an image transmission method, and a program.
  • a stereoscopic image There are various methods for displaying a stereoscopic image, such as a method that uses viewpoints for two left and right eyes, and a naked eye method that requires more viewpoint images than two eyes.
  • a general-purpose stereoscopic image it is desired to prepare a multi-viewpoint image having more viewpoints in advance.
  • JP 2008-289064 A Japanese Patent No. 4346548
  • the problem to be solved by the present invention is an image display device, an image transmission device, an image display system, and an image transmission capable of suppressing an increase in storage capacity on the image display device side while improving the transmission efficiency of image data. It is to provide a method and program.
  • the image display device is an image display device connected to the image transmission device, and includes a transmission unit, a reception unit, and a display unit.
  • the transmission unit transmits the number of viewpoints necessary for displaying a stereoscopic image that can be stereoscopically viewed from a plurality of viewpoints to the image transmission apparatus.
  • the reception unit receives the stereoscopic image extracted based on the number of viewpoints from the image transmission device.
  • the display unit displays the received stereoscopic image.
  • FIG. 1 is a diagram of an image display system according to a first embodiment.
  • FIG. 3 is a diagram illustrating a connection example between the image display device and the image transmission device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of viewpoint information according to the first embodiment.
  • FIG. 4 shows an example of a transmission format in the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a viewpoint position according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of parallax correction according to the first embodiment.
  • 5 is a flowchart of image display processing according to the first embodiment. 5 is a flowchart of interrupt processing according to the first embodiment.
  • 3 is a flowchart of a stereoscopic image extraction / transmission process according to the first embodiment.
  • FIG. FIG. 6 is a diagram illustrating an example of the number of viewpoints and viewpoint positions according to the second embodiment.
  • 10 is a flowchart of image display processing according to the second embodiment.
  • 10 is a flowchart of interrupt processing according to the second embodiment.
  • FIG. 4 is a diagram of an image display system according to a third embodiment.
  • FIG. 10 is a diagram illustrating a connection example between the image display device and the image transmission device according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of viewpoint information according to the third embodiment. 10 is a flowchart of stereoscopic image extraction / transmission processing according to the third embodiment.
  • FIG. 1 is a block diagram illustrating a configuration of an image display system according to Embodiment 1, and a functional configuration of an image display device and an image transmission device.
  • an image display device 100 that displays a stereoscopic image that is a multi-viewpoint image and an image transmission device 200 that transmits the stereoscopic image to the image display device 100 are connected. It has been configured.
  • FIG. 2 is a schematic diagram illustrating an example of connection between the image display device 100 and the image transmission device 200.
  • the image display device 100 and the image transmission device 200 are connected by an HDMI (High-Definition Multimedia Interface) cable.
  • the image transmission apparatus 200 corresponds to, for example, a DVD player, a hard disk player, a tuner, a set top box, and the like
  • the image display apparatus 100 corresponds to a display apparatus, a television apparatus, or the like, but is not limited thereto. It is not a thing.
  • the image display apparatus 100 and the image transmission apparatus 200 are connected by an HDMI cable, a connection by other wires such as a DVI (Digital Visual Interface) cable, or a wireless communication method such as Wireless HD (High Definition). You may comprise.
  • the image transmission device 200 corresponds to an image distribution server
  • the image display device 100 corresponds to a PC (Personal Computer), a television device, or the like, but is not limited thereto.
  • the image display apparatus 100 transmits the viewpoint information regarding the viewpoints necessary for displaying the multi-viewpoint image, that is, the stereoscopic image in the self-image display apparatus 100, to the image transmission apparatus 200, and the stereoscopic image extracted by the image transmission apparatus 200 is transmitted. , Received from the image transmitting apparatus 200 and displayed.
  • the image transmission device 200 receives viewpoint information from the image display device 100, extracts a stereoscopic image of the viewpoint set by the received viewpoint information, and transmits the extracted stereoscopic image of the viewpoint to the image display device 100. It is.
  • the image display device 100 transmits a request for multi-viewpoint image transmission together with viewpoint information to the image transmission device 200, and the image transmission.
  • a configuration in which the device 200 responds to the request may be employed.
  • the recording medium in which the multi-viewpoint image is stored is used as the image transmission apparatus 200, and the image display apparatus 100 accesses the recording medium and acquires the multi-viewpoint image based on the viewpoint information from the recording medium. May be.
  • the image display apparatus 100 mainly includes an information transmission unit 101, an extraction result reception unit 105, a parallax correction unit 106, a viewpoint / parallax correction amount switching unit 103, and an image display unit 102. I have. Note that when the parallax correction is performed on the image transmission device 200 side, the image display device 100 may not include the parallax correction unit 106.
  • the image display unit 102 corresponds to a display device such as a display for displaying a multi-viewpoint image, that is, a stereoscopic image, and a device driver thereof.
  • the information transmission unit 101 acquires each parameter included in the viewpoint information from setting information that is set in advance in a storage unit (not shown) such as a memory or that is stored in the storage unit by an input from the user, Generate viewpoint information. Then, the information transmission unit 101 transmits the generated viewpoint information to the image transmission apparatus 200 via a DDC (Display Data Channel) channel or a CEC (Consumer Electronics Control) channel via an HDMI cable.
  • a storage unit not shown
  • a storage unit such as a memory or that is stored in the storage unit by an input from the user
  • the information transmission unit 101 transmits the generated viewpoint information to the image transmission apparatus 200 via a DDC (Display Data Channel) channel or a CEC (Consumer Electronics Control) channel via an HDMI cable.
  • DDC Display Data Channel
  • CEC Consumer Electronics Control
  • the viewpoint information is information relating to viewpoints necessary for displaying a stereoscopic image on the image display apparatus 100, and includes the number of viewpoints necessary for displaying the stereoscopic image.
  • FIG. 3 is an explanatory diagram illustrating an example of viewpoint information. As shown in FIG. 3, the viewpoint information includes the transmission format, the number of viewpoints, the viewpoint position, the display width, the display height, the screen width, the screen height, the viewing distance, the jump distance, and the real space. The depth size is set.
  • the setting items and format of the viewpoint information shown in FIG. 3 are examples, and the present invention is not limited to this.
  • other parameters such as a frame rate may be added to the viewpoint information, or they may be set in other expression formats.
  • the image transmission apparatus 200 and the image display apparatus 100 are connected by a network such as the Internet, information regarding a transmission band, information regarding a bit rate of an image to be transmitted, and the like are set as viewpoint information, and image transmission is performed. It can also be configured to transmit to the device 200.
  • the transmission format is a format that can be received by the image display apparatus 100.
  • Examples of the transmission format include a multicast method, a side-by-side method, a top-and-bottom method, a 2D + depth method, and a tile format method. Etc. can be set.
  • FIG. 4 is a diagram schematically showing a display form of each method that can be designated as a transmission format.
  • the number of viewpoints (NumViewPoint) in the viewpoint information is the number of viewpoints necessary for displaying a stereoscopic image in the image display apparatus 100.
  • a desired number of viewpoints is set by an instruction from the user.
  • the number of viewpoints can be set as 1 or 2 or more.
  • the horizontal screen size of the image display unit 102 is set. Further, the vertical screen size of the image display unit 102 is set as the display height (DisplayHeight).
  • the screen width is the horizontal resolution of the stereoscopic image
  • the screen height is the vertical resolution of the stereoscopic image. For each of the screen width and the screen height, a desired screen resolution is set by the viewing environment or the user.
  • the viewing distance (Viewing Distance), the pop-up distance (3D Position), and the depth size (Real Depth) in the real space are parallax correction information for parallax correction for enabling effective stereoscopic viewing on the image display device 100. is there.
  • As the viewing distance a distance from the user to the image display unit 102 is set by an instruction from the user.
  • As the pop-out distance a desired pop-out distance of the stereoscopic image is set.
  • a desired depth size for adjusting the depth is set.
  • parallax correction is performed on the stereoscopic image extracted based on the viewpoint information on the image transmission device 200 side.
  • the information transmission unit 101 displays the parallax correction information in the viewpoint information.
  • the parallax correction is performed on the image display apparatus 100 side. In this case, parallax correction is not performed on the image transmission device 200 side, and parallax correction is performed on the stereoscopic image received from the image transmission device 200 by the parallax correction unit 106 of the image display device 100.
  • the information transmission unit 101 is configured to set the parallax correction to be executed on the image display device 100 side in the viewpoint information regardless of a user instruction. May be.
  • the viewpoint position is the position of the viewpoint of the stereoscopic image displayed on the image display apparatus 100 among the multiple viewpoints of the stereoscopic image, and is information necessary for determining the viewpoint in the image transmission apparatus 200.
  • the viewpoint position is composed of one or a plurality of parameters.
  • the viewpoint position is set in the viewpoint information by the same number as the number set in the viewpoint number.
  • the viewpoint number is set in the viewpoint position.
  • it is not limited to the viewpoint number, and can be set as the viewpoint position as long as the viewpoint can be determined. Examples of such viewpoint positions include the following.
  • FIG. 5A and FIG. 5B are diagrams for explaining examples of viewpoint positions.
  • an index indicating a desired viewpoint is set as the viewpoint position in the viewpoint information.
  • the viewpoint position is designated by transmitting to the image transmitting apparatus 200.
  • FIG. 5A an example in the case of extracting a stereoscopic image from the viewpoint of the camera 2 is shown.
  • the viewpoint information as described above is transmitted to the image transmission apparatus 200, and a stereoscopic image such as the viewpoint position and the number of viewpoints specified by the viewpoint information on the image transmission apparatus 200 side is extracted and transmitted to the image display apparatus 100. It will be.
  • the extraction result receiving unit 105 receives an extraction result including a stereoscopic image extracted based on the viewpoint information from the image transmission device 200.
  • the parallax correction unit 106 does not set the parallax correction information in the viewpoint information, sets that the parallax correction is performed on the image display apparatus 100 side, transmits the parallax correction information to the image transmission apparatus 200, and extracts the extraction result from the image transmission apparatus 200.
  • parallax correction is performed.
  • the parallax correction unit 106 for the stereoscopic image included in the extraction result, the viewing distance specified by the user, the pop-up distance, the depth size in the real space, and the parallax correction parameter (described later) included in the extraction result. Based on the above, parallax correction is performed.
  • the content of the parallax correction processing in the parallax correction unit 106 is the same as the parallax correction processing by the parallax correction unit 205 of the image transmission device 200, and details of the parallax correction processing by the parallax correction unit 205 of the image transmission device 200 will be described later. To do.
  • the viewpoint / parallax correction amount switching unit 103 is operated by a user operation unit (not shown) such as a remote controller or the like, and a parallax correction amount such as a viewpoint and a parallax correction amount (viewing distance, pop-out distance, depth size in real space, etc.) Accept the change command of the screen size, screen resolution, etc.) and change the number of viewpoints, viewpoint position, parallax correction information, screen size (screen width, screen height), screen resolution (display width, display height), etc. change.
  • the changed viewpoint information is transmitted again to the image transmission apparatus 200 by the information transmission unit 101.
  • the image transmission apparatus 200 includes an information reception unit 202, a viewpoint determination unit 201, a stereoscopic image recording unit 203, a viewpoint extraction unit 204, a format conversion unit 206, and an extraction result transmission unit 207. It is mainly equipped with.
  • the stereoscopic image recording unit 203 is, for example, a storage medium such as a hard disk drive (HDD), and records stereoscopic image data compressed by MVC (Multi-view Video Coding) or the like.
  • HDD hard disk drive
  • MVC Multi-view Video Coding
  • the information receiving unit 202 receives the viewpoint information transmitted from the image display device 100.
  • the viewpoint determination unit 201 determines viewpoints to be extracted based on the number of viewpoints, viewpoint positions, and the like included in the received viewpoint information.
  • the viewpoint positions for the number of viewpoints are set, so the viewpoint determination unit 201 specifies and specifies viewpoints from the viewpoint positions for the set number of viewpoints.
  • the viewpoints are extracted as many viewpoints as the number of viewpoints. For example, when the viewpoint number is set at the viewpoint position of the viewpoint information, the viewpoint determination unit 201 determines the viewpoint with the set number as a viewpoint to be extracted.
  • the viewpoint determination unit 201 specifies the viewpoint corresponding to the camera ID specified by the viewpoint position. Then, the identified viewpoint is determined as a viewpoint to be extracted. Further, the viewpoint determination unit 201 designates the rotation angle and the translation distance in the horizontal, vertical, and depth directions from the reference viewpoint shown in the example of FIG. 5B in the viewpoint information. First, the viewpoint is specified from the rotation angle and the translation distance from the reference viewpoint, and the identified viewpoint is determined as a viewpoint to be extracted.
  • the viewpoint extraction unit 204 decrypts the encrypted image data recorded in the stereoscopic image recording unit 203. Note that when the stereoscopic image data is recorded in the stereoscopic image recording unit 203 without being compressed, the decoding process is not necessary.
  • the viewpoint extraction unit 204 extracts a stereoscopic image of the viewpoint specified by the number of viewpoints, the viewpoint position, etc. set in the viewpoint information and determined by the viewpoint determination unit 201. For example, when the viewpoint position is set in the viewpoint information in the example of FIG. 5A, the viewpoint from the viewpoint of the camera 2 is selected from the recorded multi-viewpoint images recorded in the stereoscopic image recording unit 203. A stereoscopic image is extracted. If the viewpoint position is set in the viewpoint information in the example of FIG. 5B, a stereoscopic image of the viewpoint captured from the specified position and angle is extracted.
  • a stereoscopic image from the specified viewpoint position may be generated by image processing using a technique such as 3D Warping.
  • a technique such as 3D Warping
  • the technical literature “Yuji Mori, et.al .: View Generation with 3D Warping Usage Depth Information for FTV, Signal Processing: Image Communication, 24. 65-72, 2009. ”may be used.
  • the parallax correction unit 205 when the parallax correction information is set in the viewpoint information received from the image display device 100, that is, when it is not set in the viewpoint information that the parallax correction is performed on the image display device side. Based on the parallax correction information set in the viewpoint information and the parallax correction parameters held by the image transmission apparatus 200, parallax correction is performed on the stereoscopic image of the viewpoint extracted by the viewpoint extraction unit 204. That is, the conditions such as the viewing distance are different between when viewing the real object and when viewing the stereoscopic image on the image display unit 102 of the image display apparatus 100, and therefore, parallax correction is performed according to the image display apparatus 100.
  • FIG. 6 is an explanatory diagram showing an example of parallax correction.
  • depth information (depth) Z can be acquired by a sensor such as a range finder or a method of performing matching between images taken by a multi-viewpoint camera, as shown in FIG.
  • the disparity vector d is obtained by using two similarities of the left eye / object triangle and the right viewpoint / left viewpoint / object triangle on the screen.
  • the viewing distance Z S [cm] from the user's viewing position to the screen the pop-out distance Z 0 [cm] for adjusting the pop-out amount, real space
  • the depth size L Z above is obtained.
  • the screen size (cm) is obtained from the screen width and the screen height designated by the viewpoint information
  • the screen resolution (pixel) is obtained from the display width and the display height designated by the viewpoint information.
  • depth information (depth) Z and Z max which are known values acquired by a sensor or the like, and an average distance between the right eye and the left eye. There is an interocular distance b.
  • the parallax correction unit 205 first calculates Z ′ from the screen to the target object using Equation (1).
  • the coefficient ⁇ is a parameter for converting the depth information Z normalized by a certain range to the depth size L z in the real space, which is expressed by the equation (2).
  • the depth information Z is expressed as 8-bit data
  • the depth distance is expressed by a value normalized to a range of [0, 255].
  • a coefficient ⁇ is used.
  • Z max 255.
  • Equation (3) is established from two similarities of the right eye / left eye / object triangle shown in FIG. 6 and the right viewpoint / left viewpoint / object triangle on the screen.
  • the equation for calculating the parallax vector d is expressed by equation (4).
  • the parallax correction unit 205 calculates the parallax vector d using equation (4).
  • the parallax correction unit 205 performs parallax correction by shifting the pixels of the right-eye image and the left-eye image according to the calculated parallax vector d according to equation (5).
  • the format conversion unit 206 of the image transmission apparatus 200 converts the extracted viewpoint stereoscopic image or the stereoscopic image subjected to further parallax correction into the format of the transmission format specified by the viewpoint information (that is, The image display apparatus 100 can receive).
  • a multicast format obtained by decoding stereoscopic image data compressed by MVC
  • a stereo image for two viewpoints is extracted from the multi-view image (stereo image)
  • the format conversion unit 206 converts the extracted stereo image into a side-by-side format shown in FIG.
  • the format is not particularly limited, and is converted into a format suitable for the desired image display apparatus 100. do it.
  • the extraction result transmission unit 207 outputs a stereoscopic image after the format conversion of the extracted viewpoint (a stereoscopic image after the parallax correction is performed when the parallax correction is performed), and various parameters (three-dimensional images (three-dimensional image after the format conversion)) ( The transmission format, the image size, the frame rate, and the like) are transmitted to the image display apparatus 100 as an extraction result via a HDMI DC (Transition Minimized Differential Signaling) channel or the like.
  • HDMI DC Transition Minimized Differential Signaling
  • the extraction result transmission unit 207 further adds the above-described extraction result to the above-described extraction result.
  • Including the parallax correction parameters depth information Z, Z max , interocular distance b) are transmitted to the image display apparatus 100.
  • the extraction result transmission unit 207 includes the extracted viewpoint stereoscopic image and various parameters in the same extraction result, and transmits them to the image display device 100.
  • the present invention is not limited to this. It is not something.
  • the extraction result transmission unit 207 can be configured to transmit various parameters to the image display apparatus 100 via a DDC channel or a CEC channel prior to transmission of a stereoscopic image.
  • uncompressed data can be transmitted by connection using an HDMI cable as in the present embodiment.
  • the image display apparatus 100 and the image transmission apparatus 200 can be connected to a network such as the Internet, or connected by wireless communication.
  • a method of transmitting compressed stereoscopic image data can be adopted.
  • the data compression method of the stereoscopic image to be transmitted considering that an image is supplied to an arbitrary image display device 100, the H.264 format is H.264.
  • a standardized method such as H.264 is preferable, but compression may be performed by a nonstandard method as long as the image display apparatus 100 is assumed to be compatible.
  • a compression method that can be handled on the image display apparatus 100 side may be set in the viewpoint information and transmitted to the image transmission apparatus 200.
  • FIG. 7 is a flowchart illustrating a procedure of image display processing according to the first embodiment.
  • the information transmitting unit 101 acquires each parameter included in the viewpoint information from the setting information such as a memory, and generates viewpoint information based on the acquired parameters (step S11). And it is judged from the setting information memorize
  • the information transmission unit 101 determines that the parallax correction is performed on the image display apparatus 100 side. (Step S20). On the other hand, when it is not instructed to execute the parallax correction on the image display device 100 side (step S12: No), the information transmission unit 101 specifies the parallax correction information (from the setting information such as the memory) specified by the user ( (Viewing distance, pop-out distance, depth size in real space) is acquired, and this parallax correction information is set as viewpoint information (step S13).
  • the information transmission unit 101 transmits the viewpoint information to the image transmission device 200 (step S14). Thereafter, the image display device 100 waits to receive an extraction result from the image transmission device 200 (steps S15 and S15: No).
  • the extraction result reception unit 105 receives the extraction result from the image transmission device 200 (step S15: Yes)
  • the extraction result indicates whether or not the extraction result includes a notification indicating that the extraction of the stereoscopic image at the specified viewpoint is not included. Judgment is made (step S16). If the notification is included in the extraction result (step S16: Yes), the process returns to step S11 to acquire the viewpoint information parameters. Note that if the extraction failure notification is included in the extraction result, a message indicating the extraction failure may be displayed on the image display unit 102 and the process may be terminated.
  • the extraction result includes a stereoscopic image composed of parallax images for the number of viewpoints set in the viewpoint information. Whether the stereoscopic image is subjected to the parallax correction by the image transmission device 200 by determining whether or not the extraction result includes the parallax correction parameters (depth information Z, Z max , interocular distance b). Is determined (step S17).
  • the parallax correction unit 106 sets the parallax correction parameter and the parallax correction parameter on the image display device 100 side for the stereoscopic image included in the extraction result.
  • the parallax correction is performed using the information such as the viewing distance, the pop-out distance, the depth size in real space, the screen size, and the screen resolution (step S18).
  • the image display unit 102 displays the stereoscopic image that has been subjected to parallax correction (step S19).
  • step S17 when the parallax correction parameter is not included in the extraction result in step S17 (step S17: No), since the parallax correction has already been performed on the image transmitting apparatus 200 side, the parallax correction is not performed and the image display is performed.
  • the unit 102 displays a stereoscopic image (step S19).
  • step S17 whether or not the stereoscopic image is subjected to the parallax correction in the image transmission device 200 based on the parameter determined in step S12 whether or not the parallax correction is performed on the image display device 100 side. It may be configured to determine. Also, whether the stereoscopic image is subjected to the parallax correction in the image transmission apparatus 200 by the notification on the image display apparatus 100 side, including a notification indicating whether or not the parallax correction has been performed on the extraction result on the image transmission apparatus 200 side. It may be configured to determine whether or not.
  • the parallax correction information is not included in the viewpoint information and is not performed on the image transmission apparatus 200 side.
  • the image transmission device 200 may be configured to determine whether or not the stereoscopic image has been subjected to parallax correction.
  • the user operates the operation unit (not shown) or the like, the parallax correction amount such as the viewpoint, the parallax correction amount, the viewing distance, the pop-out distance, the depth size in the real space, the screen size, the screen resolution, and the like.
  • the parallax correction amount such as the viewpoint, the parallax correction amount, the viewing distance, the pop-out distance, the depth size in the real space, the screen size, the screen resolution, and the like.
  • Change instructions When the user gives an instruction to change the viewpoint or parallax correction amount, an interrupt process by the viewpoint / parallax correction amount switching unit 103 is executed.
  • FIG. 8 is a flowchart showing the procedure of interrupt processing.
  • the viewpoint / parallax correction amount switching unit 103 receives an instruction to change the viewpoint and the parallax correction amount from the user (step S31). Then, the viewpoint / parallax correction amount switching unit 103 determines whether or not the change instruction is a viewpoint change instruction based on an input event or the like (step S32). If the change instruction is a viewpoint change (step S32: Yes), the viewpoint / parallax correction amount switching unit 103 changes parameters such as the viewpoint position and the number of viewpoints of the viewpoint information according to the change instruction (step S33). .
  • step S32 if the change instruction is not a viewpoint change in step S32 (step S32: No), parameters such as the viewpoint position and the number of viewpoints of the viewpoint information are not changed.
  • the viewpoint / parallax correction amount switching unit 103 determines whether or not the change instruction is a parallax correction amount change instruction from an input event or the like (step S34). If the change instruction is not a parallax correction amount change instruction (step S34: No), the viewpoint / parallax correction amount switching unit 103 ends the interrupt process.
  • step S34 when the change instruction is an instruction to change the parallax correction amount (step S34: Yes), the viewpoint / parallax correction amount switching unit 103 executes the parallax correction from the setting information such as the memory on the image display apparatus side. It is determined whether or not (step S35).
  • step S35: Yes When the parallax correction is executed on the image display device side (step S35: Yes), the process proceeds to step S18 in FIG. 7, and the parallax correction is performed with the parallax correction amount after the change instruction.
  • step S35: No when the parallax correction is not executed on the image display device side in step S35 (step S35: No), the viewpoint / parallax correction amount switching unit 103 changes the parallax correction information of the viewpoint information according to the change instruction (step S35). S36). Then, the process proceeds to step S ⁇ b> 14 in FIG. 7, and the information transmission unit 101 transmits the changed viewpoint information to the image transmission apparatus 200.
  • the image transmission device 200 extracts the stereoscopic image of the changed viewpoint, performs the parallax correction with the changed parallax correction amount, and transmits the extraction result to the image display device 100.
  • FIG. 9 is a flowchart illustrating a procedure of the processing for extracting and transmitting a stereoscopic image according to the first embodiment.
  • the image transmitting apparatus 200 is in a state of waiting for receiving viewpoint information from the image display apparatus 100 (steps S51 and S51: No).
  • the viewpoint determining unit 201 determines the viewpoint according to the setting content of the viewpoint information (step S52). That is, the viewpoint determination unit 201 determines viewpoints from viewpoint positions corresponding to the number of viewpoints set in the viewpoint information.
  • the viewpoint extraction unit 204 extracts a stereoscopic image of the viewpoint determined by the viewpoint determination unit 201, that is, a stereoscopic image that is a parallax image at each viewpoint position for the number of viewpoints from the stereoscopic image recording unit 203 (step S53). .
  • the viewpoint extraction unit 204 determines whether or not the stereoscopic image of the determined viewpoint has been successfully extracted (step S54). If the extraction has failed (step S54: No), the extraction result transmission unit 207 is designated. A notification of failure to extract the stereoscopic image of the selected viewpoint is included in the extraction result (step S55), and the extraction result is transmitted to the image display device 100 (step S62).
  • step S54 when the stereo image of the determined viewpoint is successfully extracted in step S54 (step S54: Yes), the parallax correction unit 205 performs parallax correction on the viewpoint information on the image display device 100 side. Is determined (step S57). If it is set in the viewpoint information that parallax correction is to be performed on the image display apparatus 100 side (step S57: Yes), the parallax correction unit 205 holds the parallax correction parameter held on the image transmission apparatus 200 side. (Depth information Z, Z max , interocular distance b) is included in the extraction result (step S58).
  • the parallax correction unit 205 includes the parallax correction information, the screen size (screen width, screen height) and screen resolution (display width, display height) set in the viewpoint information, and the parallax correction parameters held by the image transmission device 200. From the above, the above-described parallax correction is performed on the extracted stereoscopic image of the viewpoint (step S59).
  • the format conversion unit 206 converts the extracted stereoscopic image of the viewpoint into a transmission format set by the viewpoint information (step S60).
  • the extraction result transmission unit 207 includes the stereoscopic image and various parameters in the extraction result (step S61), and transmits the extraction result to the image display device 100 (step S62).
  • the stereoscopic image of the viewpoint designated on the image display apparatus 100 side is transmitted to the image display apparatus 100 from among the stereoscopic images of the multiple viewpoints.
  • the image display apparatus 100 transmits viewpoint information including the number of viewpoints necessary for display to the image transmission apparatus 200, and the image transmission apparatus 200 has a stereoscopic image with the number of viewpoints specified by the viewpoint information.
  • viewpoint information including the number of viewpoints necessary for display to the image transmission apparatus 200
  • the image transmission apparatus 200 has a stereoscopic image with the number of viewpoints specified by the viewpoint information.
  • unnecessary viewpoint stereoscopic image data is not transmitted by the reproduction method or the like on the image display apparatus 100 side. Therefore, according to the present embodiment, it is possible to improve the transmission efficiency of stereoscopic image data and to prevent an increase in storage capacity on the image display device 100 side.
  • the viewpoint position set in the viewpoint information is determined by the change instruction by the operation of the user's remote controller or the like as the viewer, but in the second embodiment, the viewer The viewing position with respect to the image display apparatus is detected, and the viewpoint position of the number of viewpoints is determined based on the detected viewing position and set in the viewpoint information.
  • FIG. 10 is a block diagram illustrating the configuration of the image display system, the functional configuration of the image display device, and the image transmission device according to the second embodiment.
  • an image display apparatus 1000 that displays a stereoscopic image that is a multi-viewpoint image and an image transmission apparatus 200 that transmits the stereoscopic image to the image display apparatus 1000 are connected. It has been configured.
  • the configuration and functions of the image transmission apparatus of the present embodiment are the same as those of the first embodiment.
  • the image display apparatus 1000 includes an information transmission unit 1001, an extraction result reception unit 105, a parallax correction unit 106, a viewpoint / parallax correction amount switching unit 1003, and a viewing position detection. It mainly includes a unit 1007 and an image display unit 102.
  • the functions of the extraction result reception unit 105, the parallax correction unit 106, and the image display unit 102 are the same as those of the image display device 100 of the first embodiment.
  • the viewing position detection unit 1007 detects the viewing position of the viewer who is the user with respect to the image display device 1000, and outputs information on the detected viewing position to the information transmission unit 1001 and the viewpoint / parallax correction amount switching unit 1003.
  • the viewing position detection unit 1007 uses a head tracking or a sensor using a video camera, obtains the current position and direction of the viewer from the image captured by the video camera or the detection signal from the sensor, and this current From the position and direction, the viewer's viewpoint position with respect to the display surface of the image display unit 102 is detected as the viewing position.
  • the present invention is not limited to head tracking or a sensor using a video camera.
  • the information transmission unit 1001 determines the number of viewpoints and the viewpoint position based on the viewing position detected by the viewing position detection unit 1007, and transmits the viewpoint information including the determined number of viewpoints and the viewpoint position to the image transmission apparatus. 200.
  • the viewpoint information other than the number of viewpoints and the viewpoint position is set in advance in each storage unit (not shown) such as a memory, or from the setting information stored in the storage unit by input from the user. To generate viewpoint information.
  • the viewpoint / parallax correction amount switching unit 1003 determines the number of viewpoints and the viewpoint position based on the viewing position detected by the viewing position detection unit 1007, and the viewpoint information is determined based on the determined number of viewpoints and the viewpoint position. change. Note that the viewpoint / parallax correction amount switching unit 1003 changes the viewpoint information with the parallax correction amount input by the user, as in the first embodiment.
  • the viewpoint / parallax correction amount switching unit 1003 is configured to change the viewpoint information according to the input number of viewpoints and viewpoint positions even when the number of viewpoints and viewpoint positions are input by the user. May be.
  • FIG. 11A and FIG. 11B are explanatory diagrams for the detection of the viewer's viewing position and the determination of the number of viewpoints and the viewpoint position.
  • the information transmission unit 1001 and the viewpoint / parallax correction amount switching unit 1003 calculate the number of viewpoints from the viewing position output from the viewing position detection unit 107. 2 is determined.
  • the number of viewpoints and the viewpoint position are determined by the information transmission unit 1001 when the image display apparatus 1000 is activated or when a viewer starts viewing a stereoscopic image.
  • the number of viewpoints and the viewpoint position are determined by the viewpoint / parallax correction amount switching unit 1003 when the viewer is viewing a stereoscopic image on the image display apparatus 1000, and the viewer moves and the necessary number of viewpoints and viewpoint positions change.
  • the information transmission unit 1001 transmits the changed viewpoint information to the image transmission device 200 again.
  • FIG. 12 is a flowchart illustrating a procedure of image display processing according to the second embodiment.
  • the viewing position detection unit 1007 detects the viewing position of the viewer by the above-described method (step S1201).
  • the information transmitting unit 1001 determines the number of viewpoints and the viewpoint position from the viewing position by the above-described method (step 1202).
  • the information transmission unit 1001 acquires parameters other than the number of viewpoints and the viewpoint position in the same manner as in the first embodiment, and generates viewpoint information including the number of viewpoints, the viewpoint position, and the like (step S11).
  • the subsequent processing (steps S12 to S19) is performed in the same manner as in the first embodiment. Thereby, the number of viewpoints corresponding to the viewing position of the viewer and the stereoscopic image at the viewpoint position can be transmitted from the image transmission apparatus 200 and displayed.
  • FIG. 13 is a flowchart illustrating a procedure of interrupt processing according to the second embodiment.
  • the viewing position detection unit 1007 detects that the viewer has moved, the viewing position of the viewer after the movement is detected by the above-described method (step S1301).
  • the viewpoint / parallax correction amount switching unit 1003 determines whether or not the viewing position after movement is changed from the viewing position before movement stored in the memory or the like based on the coordinate value or the like (step S1302). ). If the viewing position has not been changed (step S1302: No), the interrupt process is terminated.
  • step S1302 when the viewing position has been changed (step S1302: Yes), the viewpoint / parallax correction amount switching unit 1003 determines the number of viewpoints and the viewpoint position from the viewing position by the above-described method (step 1303).
  • the viewpoint / parallax correction amount switching unit 1003 changes the number of viewpoints and the viewpoint position of the viewpoint information with the number of viewpoints and the viewpoint position determined in step S1303 (step S1304). Then, the process proceeds to step S ⁇ b> 14 in FIG. 12, and the information transmission unit 1001 transmits the changed viewpoint information to the image transmission apparatus 200. As a result, the image transmission device 200 extracts a stereoscopic image of the changed number of viewpoints and viewpoint positions, and the extraction result is transmitted to the image display device 1000.
  • the viewer's viewing position is detected, the number of viewpoints and the viewpoint position are determined, and are included in the viewpoint information and transmitted to the image transmitting apparatus 200.
  • 3D image suitable for the image can be displayed.
  • the viewing position of the viewer after the movement is detected, the number of viewpoints and the viewpoint position are determined, and included in the viewpoint information again. Since the image is transmitted to the image transmission apparatus 200, the received stereoscopic image can be dynamically changed, and a stereoscopic image more suitable for the viewer's actual viewpoint position can be displayed.
  • the viewpoint priority is set as viewpoint information on the image display apparatus side and transmitted to the image transmission apparatus, and the specified viewpoint is set according to the priority set in the viewpoint information on the image transmission apparatus side.
  • a stereoscopic image is extracted and transmitted to the image display device.
  • FIG. 14 is a block diagram illustrating the configuration of the image display system, the functional configuration of the image display device, and the image transmission device according to the third embodiment.
  • an image display device 1100 that displays a stereoscopic image that is a multi-viewpoint image and an image transmission device 1200 that transmits a stereoscopic image to the image display device 1100 are connected. It has been configured.
  • FIG. 15 is a schematic diagram showing an example of connection between the image display device 1100 and the image transmission device 1200.
  • the image display device 1100 and the image transmission device 1200 are connected via a network such as the Internet.
  • the image transmission device 1200 corresponds to, for example, an image distribution server
  • the image display device 1100 corresponds to a PC, a television device, a display device, or the like, but is not limited thereto.
  • the image display device 1100 and the image transmission device 1200 are connected by an HDMI cable, connected by another wire such as a DVI cable, or wireless HD, etc. You may comprise so that it may connect by the system by wireless communication.
  • the image display apparatus 1100 transmits to the image transmission apparatus 1200 viewpoint information including a multi-viewpoint image in its own image display apparatus 1100, that is, viewpoints necessary for displaying a stereoscopic image and priority of viewpoints.
  • the extracted stereoscopic image is received from the image transmission device 1200 and displayed.
  • the image transmission device 1200 receives the viewpoint information from the image display device 1100, determines the viewpoint according to the priority in the received viewpoint information, extracts a stereoscopic image of the determined viewpoint, and displays the extracted stereoscopic image as an image display To the device 1100.
  • the image display apparatus 1100 mainly includes an information transmission unit 1101, an extraction result reception unit 105, a parallax correction unit 106, a viewpoint / parallax correction amount switching unit 103, and an image display unit 102.
  • the functions of the extraction result receiving unit 105, the parallax correction unit 106, the viewpoint / parallax correction amount switching unit 103, and the image display unit 102 are the same as those of the image display device 100 of the first embodiment.
  • the information transmission unit 1101 sets viewpoint priority in the viewpoint information, and transmits this viewpoint information to the image transmission apparatus 1200.
  • FIG. 16 is an explanatory diagram illustrating an example of viewpoint information according to the third embodiment.
  • the priorities of viewpoints 0 to 4 are set as shown in FIG.
  • the priority in the viewpoint information indicates that the smaller the value set for the priority is, the higher the priority is, and transmission is performed with priority.
  • the method of assigning priority by the information transmission unit 1101 of the image display device 1100 can be determined by the method described in Japanese Patent Laid-Open No. 2009-238117, for example.
  • the priority is determined based on the viewpoint position of the user measured using a video camera or the like and viewing area priority information that defines an area where the user wants to observe an image with high resolution.
  • a viewpoint position of the user with respect to the display surface of the image display unit 102 is acquired by a video camera, a head tracking sensor, or the like, the viewpoint at the position is set to the highest priority (minimum value), and the viewpoint is the current viewpoint of the user.
  • the viewpoint priority can be set so that the priority is higher (larger value) as the position is farther from the position.
  • the viewpoint information with priority given to the viewpoint to be transmitted is transmitted to the image transmission apparatus 1200, so that the image transmission apparatus 1200 side extracts a stereoscopic image with a high priority viewpoint.
  • the image display apparatus 1100 As a result, it is possible to realize image transmission that is resistant to fluctuations in transmission load and transmission errors in a network or the like.
  • the image transmission device 1200 includes an information reception unit 202, a viewpoint determination unit 1201, a stereoscopic image recording unit 203, a viewpoint extraction unit 204, a parallax correction unit 205, a format conversion unit 206, and an extraction result.
  • a transmission unit 207 is mainly provided.
  • the functions of the information reception unit 202, the stereoscopic image recording unit 203, the viewpoint extraction unit 204, the parallax correction unit 205, the format conversion unit 206, and the extraction result transmission unit 207 are the same as those of the image transmission apparatus 200 of the first embodiment. is there.
  • the viewpoint determination unit 1201 preferentially determines a viewpoint with a low priority, that is, a stereoscopic image with a high priority, based on the number of viewpoints and viewpoint positions included in the received viewpoint information. To do.
  • FIG. 17 is a flowchart showing the procedure of the extraction and transmission processing of the stereoscopic image of the third embodiment.
  • the viewpoint determination unit 1201 determines viewpoints to be extracted in order of priorities set in the viewpoint information (in order of decreasing priority values).
  • the other steps are the same as those of the first embodiment.
  • the viewpoint determination unit 1201 detects the transmission state of the network and the like, and when the network is congested or there is a bandwidth limitation, the priority is a value below a certain value, that is, the priority is higher than a certain value.
  • the viewpoint extraction unit 204 determines that the viewpoint is to be extracted, and the viewpoint extraction unit 204 extracts a stereoscopic image of the determined viewpoint with a high priority from the stereoscopic image recording unit 203, and the extraction result transmission unit 207 transmits it to the image display device 1100. .
  • the image transmission apparatus 1200 encodes an image from a viewpoint with a high priority in the image display apparatus 1100 by encoding the viewpoint according to a compression method that is scalable to the viewpoint according to the priority of the viewpoint information.
  • a compression method that is scalable to the viewpoint according to the priority of the viewpoint information.
  • the viewpoint priority is set in the viewpoint information.
  • a priority such as a frame rate or a resolution is set and scalability is provided in the time direction or the spatial direction. It is also possible to adopt a configuration for transmitting a stereoscopic image.
  • a viewing position detection unit 1007 is provided as in the first embodiment, and the number of viewpoints and the viewpoint position are determined based on the viewing positions detected by the viewing position detection unit 1007.
  • the viewpoint information may be set.
  • the image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments and the image transmission program executed by the image transmission apparatuses 200 and 1200 according to the first and second embodiments are incorporated in advance in a ROM or the like. Provided.
  • the image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments and the image transmission program executed by the image transmission apparatuses 200 and 1200 according to the first and second embodiments are installable or executable.
  • Various types of files may be recorded and provided on a computer-readable recording medium such as a CD-ROM, a flexible disk (FD), a CD-R, a DVD (Digital Versatile Disk), or the like.
  • the image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments and the image transmission program executed by the image transmission apparatuses 200 and 1200 according to the first and second embodiments are transferred to a network such as the Internet. It may be configured to be provided by being stored on a connected computer and downloaded via a network.
  • the image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments and the image transmission program executed by the image transmission apparatuses 200 and 1200 according to the first and second embodiments are transmitted via a network such as the Internet. It may be configured to be provided or distributed.
  • the image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments includes the above-described units (the information transmission units 101 and 1101, the extraction result reception unit 105, the parallax correction unit 106, the viewpoint and parallax.
  • the module configuration includes a correction amount switching unit 103 and an image display unit 102).
  • the CPU processor
  • the CPU reads out and executes an image display program from the ROM, and each unit stores the main memory.
  • the information transmitting units 101 and 1101, the extraction result receiving unit 105, the parallax correction unit 106, the viewpoint / parallax correction amount switching unit 103, and the image display unit 102 are generated on the main storage device. It is like that.
  • the image transmission apparatuses 200 and 1200 include the above-described units (the information reception unit 202, the viewpoint determination units 201 and 1201, the stereoscopic image recording unit 203, the viewpoint extraction unit 204, and the parallax correction.
  • Unit 205 the format conversion unit 206, and extraction result transmission unit 207).
  • the CPU reads out and executes the image transmission program from the ROM.
  • Each unit is loaded on the main storage device, and the information receiving unit 202, the viewpoint determining units 201 and 1201, the stereoscopic image recording unit 203, the viewpoint extracting unit 204, the parallax correcting unit 205, the format converting unit 206, and the extraction
  • the result transmission unit 207 is generated on the main storage device.

Abstract

This image display device is provided with a transmission unit which transmits to an image transmission device the number of viewpoints necessary to display a stereoscopic image which can be viewed stereoscopically from multiple viewpoints, a receiving unit which receives from the image transmission device a stereoscopic image extracted on the basis of the aforementioned number of viewpoints, and a display unit which displays the received stereoscopic image.

Description

画像表示装置、画像送信装置、画像表示システム、画像送信方法およびプログラムImage display device, image transmission device, image display system, image transmission method and program
 本発明の実施形態は、画像表示装置、画像送信装置、画像表示システム、画像送信方法およびプログラムに関する。 Embodiments described herein relate generally to an image display device, an image transmission device, an image display system, an image transmission method, and a program.
 立体画像を表示する方式には、左右2眼分の視点を利用する方式や、2眼よりも多くの視点画像を必要とする裸眼方式など、多様な方式が存在する。汎用的な立体画像として、予め、より多くの視点からなる多視点画像を用意しておくことが望まれる。 There are various methods for displaying a stereoscopic image, such as a method that uses viewpoints for two left and right eyes, and a naked eye method that requires more viewpoint images than two eyes. As a general-purpose stereoscopic image, it is desired to prepare a multi-viewpoint image having more viewpoints in advance.
 しかしながら、画像送信装置側で、視点数が多数の画像データを予め保存しておき、画像表示装置に送信する場合には、画像表示装置側における所望の再生方式が必要としない視点からの多視点画像も送信されてしまうことになり、画像データの伝送効率が悪く、また、画像表示装置側での記憶容量が増大する。 However, when image data having a large number of viewpoints is stored in advance on the image transmission apparatus side and transmitted to the image display apparatus, a multi-viewpoint from a viewpoint that does not require a desired reproduction method on the image display apparatus side. The image is also transmitted, the transmission efficiency of the image data is poor, and the storage capacity on the image display device side increases.
特開2008-289064号公報JP 2008-289064 A 特許第4346548号公報Japanese Patent No. 4346548
 本発明が解決しようとする課題は、画像データの伝送効率を向上させつつ、画像表示装置側での記憶容量の増大を抑制することができる画像表示装置、画像送信装置、画像表示システム、画像送信方法およびプログラムを提供することである。 The problem to be solved by the present invention is an image display device, an image transmission device, an image display system, and an image transmission capable of suppressing an increase in storage capacity on the image display device side while improving the transmission efficiency of image data. It is to provide a method and program.
 実施形態の画像表示装置は、画像送信装置に接続される画像表示装置であって、送信部と、受信部と、表示部とを備える。 The image display device according to the embodiment is an image display device connected to the image transmission device, and includes a transmission unit, a reception unit, and a display unit.
 送信部は、複数の視点から立体視可能な立体画像の表示に必要な視点数を、前記画像送信装置に送信する。受信部は、前記画像送信装置から、前記視点数に基づいて抽出された前記立体画像を受信する。表示部は、受信した前記立体画像を表示する。 The transmission unit transmits the number of viewpoints necessary for displaying a stereoscopic image that can be stereoscopically viewed from a plurality of viewpoints to the image transmission apparatus. The reception unit receives the stereoscopic image extracted based on the number of viewpoints from the image transmission device. The display unit displays the received stereoscopic image.
実施の形態1の画像表示システムの図。1 is a diagram of an image display system according to a first embodiment. 実施の形態1の画像表示装置と画像送信装置の接続例の図。FIG. 3 is a diagram illustrating a connection example between the image display device and the image transmission device according to the first embodiment. 実施の形態1の視点情報の例を示す図。FIG. 3 is a diagram illustrating an example of viewpoint information according to the first embodiment. 実施の形態1の伝送フォーマットの例を示す図。FIG. 4 shows an example of a transmission format in the first embodiment. 実施の形態1の視点位置の例の図。FIG. 4 is a diagram illustrating an example of a viewpoint position according to the first embodiment. 実施の形態1の視差補正の例の図。FIG. 4 is a diagram illustrating an example of parallax correction according to the first embodiment. 実施の形態1の画像表示処理のフローチャート。5 is a flowchart of image display processing according to the first embodiment. 実施の形態1の割り込み処理のフローチャート。5 is a flowchart of interrupt processing according to the first embodiment. 実施の形態1の立体画像の抽出・送信処理のフローチャート。3 is a flowchart of a stereoscopic image extraction / transmission process according to the first embodiment. 実施の形態2の画像表示システムの図。The figure of the image display system of Embodiment 2. FIG. 実施の形態2の視点数、視点位置の例の図。FIG. 6 is a diagram illustrating an example of the number of viewpoints and viewpoint positions according to the second embodiment. 実施の形態2の画像表示処理のフローチャート。10 is a flowchart of image display processing according to the second embodiment. 実施の形態2の割り込み処理のフローチャート。10 is a flowchart of interrupt processing according to the second embodiment. 実施の形態3の画像表示システムの図。FIG. 4 is a diagram of an image display system according to a third embodiment. 実施の形態3の画像表示装置と画像送信装置の接続例の図。FIG. 10 is a diagram illustrating a connection example between the image display device and the image transmission device according to the third embodiment. 実施の形態3の視点情報の例の図。FIG. 10 is a diagram illustrating an example of viewpoint information according to the third embodiment. 実施の形態3の立体画像抽出・送信処理のフローチャート。10 is a flowchart of stereoscopic image extraction / transmission processing according to the third embodiment.
 以下、実施の形態の画像表示装置、画像送信装置、画像表示システム、画像送信方法およびプログラムについて説明する。 Hereinafter, an image display device, an image transmission device, an image display system, an image transmission method, and a program according to an embodiment will be described.
(実施の形態1)
 図1は、実施の形態1の画像表示システムの構成、画像表示装置および画像送信装置の機能的構成を示すブロック図である。図1に示すように、本実施の形態の画像表示システムは、多視点画像である立体画像を表示する画像表示装置100と、立体画像を画像表示装置100に送信する画像送信装置200とが接続された構成となっている。
(Embodiment 1)
FIG. 1 is a block diagram illustrating a configuration of an image display system according to Embodiment 1, and a functional configuration of an image display device and an image transmission device. As shown in FIG. 1, in the image display system according to the present embodiment, an image display device 100 that displays a stereoscopic image that is a multi-viewpoint image and an image transmission device 200 that transmits the stereoscopic image to the image display device 100 are connected. It has been configured.
 図2は、画像表示装置100と画像送信装置200の接続例を示す模式図である。本実施の形態では、図2に示すように、画像表示装置100と画像送信装置200とは、HDMI(High-Definition Multimedia Interface)ケーブルで接続されている。ここで、画像送信装置200は、例えば、DVDプレーヤ、ハードディスクプレーヤ、チューナ、セットトップボックス等が該当し、画像表示装置100は、ディスプレイ装置、テレビジョン装置等が該当するが、これらに限定されるものではない。 FIG. 2 is a schematic diagram illustrating an example of connection between the image display device 100 and the image transmission device 200. In the present embodiment, as shown in FIG. 2, the image display device 100 and the image transmission device 200 are connected by an HDMI (High-Definition Multimedia Interface) cable. Here, the image transmission apparatus 200 corresponds to, for example, a DVD player, a hard disk player, a tuner, a set top box, and the like, and the image display apparatus 100 corresponds to a display apparatus, a television apparatus, or the like, but is not limited thereto. It is not a thing.
 また、画像表示装置100と画像送信装置200は、HDMIケーブルで接続する他、DVI(Digital Visual Interface)ケーブル等の他の有線による接続や、WirelessHD(High Definition)等の無線通信による方式で接続されるよう構成してもよい。 Further, the image display apparatus 100 and the image transmission apparatus 200 are connected by an HDMI cable, a connection by other wires such as a DVI (Digital Visual Interface) cable, or a wireless communication method such as Wireless HD (High Definition). You may comprise.
 また、後述する実施の形態2のように、インターネットや無線LAN等のネットワークで接続される構成としてもよい。この場合、画像送信装置200は、画像配信サーバ等が該当し、画像表示装置100は、PC(Personal Computer)やテレビジョン装置等が該当するが、これらに限定されるものではない。 Further, as in the second embodiment to be described later, it may be configured to be connected via a network such as the Internet or a wireless LAN. In this case, the image transmission device 200 corresponds to an image distribution server, and the image display device 100 corresponds to a PC (Personal Computer), a television device, or the like, but is not limited thereto.
 画像表示装置100は、自己の画像表示装置100における多視点画像、すなわち立体画像の表示に必要な視点に関する視点情報を、画像送信装置200に送信し、画像送信装置200により抽出された立体画像を、画像送信装置200から受信して表示するものである。 The image display apparatus 100 transmits the viewpoint information regarding the viewpoints necessary for displaying the multi-viewpoint image, that is, the stereoscopic image in the self-image display apparatus 100, to the image transmission apparatus 200, and the stereoscopic image extracted by the image transmission apparatus 200 is transmitted. , Received from the image transmitting apparatus 200 and displayed.
 画像送信装置200は、画像表示装置100から視点情報を受信して、受信した視点情報で設定された視点の立体画像を抽出して、抽出した視点の立体画像を画像表示装置100に送信するものである。 The image transmission device 200 receives viewpoint information from the image display device 100, extracts a stereoscopic image of the viewpoint set by the received viewpoint information, and transmits the extracted stereoscopic image of the viewpoint to the image display device 100. It is.
 画像表示装置100と画像送信装置200との関係については、サーバ・クライアントシステムのように、画像表示装置100が視点情報と共に多視点画像伝送のリクエストを画像送信装置200に対して送信し、画像送信装置200が当該リクエストに応答するという構成を採用してもよい。また、多視点画像が保存された記録媒体を、画像送信装置200として、この記録媒体に対して画像表示装置100がアクセスし、視点情報に基づく多視点画像を記録媒体から取得する構成を採用してもよい。 Regarding the relationship between the image display device 100 and the image transmission device 200, as in a server / client system, the image display device 100 transmits a request for multi-viewpoint image transmission together with viewpoint information to the image transmission device 200, and the image transmission. A configuration in which the device 200 responds to the request may be employed. Further, the recording medium in which the multi-viewpoint image is stored is used as the image transmission apparatus 200, and the image display apparatus 100 accesses the recording medium and acquires the multi-viewpoint image based on the viewpoint information from the recording medium. May be.
 図1に戻り、画像表示装置100の詳細について説明する。画像表示装置100は、図1に示すように、情報送信部101と、抽出結果受信部105と、視差補正部106と、視点・視差補正量切替部103と、画像表示部102とを主に備えている。なお、視差補正を画像送信装置200側で実行させる場合には、画像表示装置100は視差補正部106を備えていない構成としてもよい。 Referring back to FIG. 1, details of the image display device 100 will be described. As shown in FIG. 1, the image display apparatus 100 mainly includes an information transmission unit 101, an extraction result reception unit 105, a parallax correction unit 106, a viewpoint / parallax correction amount switching unit 103, and an image display unit 102. I have. Note that when the parallax correction is performed on the image transmission device 200 side, the image display device 100 may not include the parallax correction unit 106.
 画像表示部102は、多視点画像、すなわち立体画像を表示するためのディスプレイ等の表示デバイスとそのデバイスドライバ等が該当する。 The image display unit 102 corresponds to a display device such as a display for displaying a multi-viewpoint image, that is, a stereoscopic image, and a device driver thereof.
 情報送信部101は、メモリ等の記憶部(不図示)に予め設定されたり、ユーザからの入力により記憶部に記憶された設定情報から視点情報に含める各パラメータを取得し、取得した各パラメータにより視点情報を生成する。そして、情報送信部101は、生成された視点情報を、HDMIケーブルを介して、DDC(Display Data Channel)チャネルまたはCEC(Consumer Electronics Control)チャネルで画像送信装置200に送信する。 The information transmission unit 101 acquires each parameter included in the viewpoint information from setting information that is set in advance in a storage unit (not shown) such as a memory or that is stored in the storage unit by an input from the user, Generate viewpoint information. Then, the information transmission unit 101 transmits the generated viewpoint information to the image transmission apparatus 200 via a DDC (Display Data Channel) channel or a CEC (Consumer Electronics Control) channel via an HDMI cable.
 ここで、視点情報は、画像表示装置100における立体画像の表示に必要な視点に関する情報であり、立体画像の表示に必要な視点数を含んでいる。図3は、視点情報の一例を示す説明図である。視点情報は、図3に示すように、伝送フォーマットと、視点数と、視点位置と、表示幅と、表示高さと、画面幅と、画面高さと、視認距離と、飛び出し距離と、実空間上の奥行きサイズとを含んで設定される。 Here, the viewpoint information is information relating to viewpoints necessary for displaying a stereoscopic image on the image display apparatus 100, and includes the number of viewpoints necessary for displaying the stereoscopic image. FIG. 3 is an explanatory diagram illustrating an example of viewpoint information. As shown in FIG. 3, the viewpoint information includes the transmission format, the number of viewpoints, the viewpoint position, the display width, the display height, the screen width, the screen height, the viewing distance, the jump distance, and the real space. The depth size is set.
 なお、図3に示す視点情報の設定項目および形式は一例であり、これに限定されるものではない。例えば、視点情報には、フレームレート等の他のパラメータを追加したり、それらを他の表現形式で設定してもよい。また、画像送信装置200と画像表示装置100がインターネット等のネットワークにより接続されている場合には、伝送帯域に関する情報や、伝送する画像のビットレートに関する情報等を視点情報に設定して、画像送信装置200に送信するように構成することもできる。 Note that the setting items and format of the viewpoint information shown in FIG. 3 are examples, and the present invention is not limited to this. For example, other parameters such as a frame rate may be added to the viewpoint information, or they may be set in other expression formats. Further, when the image transmission apparatus 200 and the image display apparatus 100 are connected by a network such as the Internet, information regarding a transmission band, information regarding a bit rate of an image to be transmitted, and the like are set as viewpoint information, and image transmission is performed. It can also be configured to transmit to the device 200.
 視点情報のうち、伝送フォーマット(3D Format)は、画像表示装置100が受信可能なフォーマットであり、伝送フォーマットとしては、例えば、マルチキャスト方式、サイドバイサイド方式、トップアンドボトム方式、2D+奥行き方式、タイルフォーマット方式等が設定可能である。図4は、伝送フォーマットに指定可能な各方式の表示形態を模式的に示す図である。 Of the viewpoint information, the transmission format (3D Format) is a format that can be received by the image display apparatus 100. Examples of the transmission format include a multicast method, a side-by-side method, a top-and-bottom method, a 2D + depth method, and a tile format method. Etc. can be set. FIG. 4 is a diagram schematically showing a display form of each method that can be designated as a transmission format.
 図3に戻り、視点情報における視点数(NumViewPoint)は、画像表示装置100における立体画像の表示において必要な視点数である。視点数には、ユーザからの指示により所望の視点数が設定される。視点数は、1または2以上として設定可能である。 Returning to FIG. 3, the number of viewpoints (NumViewPoint) in the viewpoint information is the number of viewpoints necessary for displaying a stereoscopic image in the image display apparatus 100. As the number of viewpoints, a desired number of viewpoints is set by an instruction from the user. The number of viewpoints can be set as 1 or 2 or more.
 表示幅(DisplayWidth)には、画像表示部102の水平画面サイズが設定される。また、表示高さ(DisplayHeight)には、画像表示部102の垂直画面サイズが設定される。 In the display width (DisplayWidth), the horizontal screen size of the image display unit 102 is set. Further, the vertical screen size of the image display unit 102 is set as the display height (DisplayHeight).
 画面幅(ImageWidth)は立体画像の水平解像度であり、画面高さ(ImageHeight)は立体画像の垂直解像度である。画面幅、画面高さのそれぞれには、視聴環境あるいはユーザにより所望の画面解像度が設定される。 The screen width (ImageWidth) is the horizontal resolution of the stereoscopic image, and the screen height (ImageHeight) is the vertical resolution of the stereoscopic image. For each of the screen width and the screen height, a desired screen resolution is set by the viewing environment or the user.
 視認距離(ViewingDistance)、飛び出し距離(3D Position)および実空間上での奥行きサイズ(RealDepth)は、画像表示装置100で効果的な立体視を可能とするための視差補正のための視差補正情報である。視認距離には、ユーザからの指示により、ユーザから画像表示部102までの距離が設定される。飛び出し距離には、立体画像の所望の飛び出し距離が設定される。実空間上での奥行きサイズには、奥行きの深さを調整するための所望の奥行きサイズが設定される。 The viewing distance (Viewing Distance), the pop-up distance (3D Position), and the depth size (Real Depth) in the real space are parallax correction information for parallax correction for enabling effective stereoscopic viewing on the image display device 100. is there. As the viewing distance, a distance from the user to the image display unit 102 is set by an instruction from the user. As the pop-out distance, a desired pop-out distance of the stereoscopic image is set. As the depth size in the real space, a desired depth size for adjusting the depth is set.
 視点情報にこれらの視差補正情報が設定される場合には、画像送信装置200側で視点情報に基づいて抽出された立体画像に対し視差補正が施される。 When these pieces of parallax correction information are set in the viewpoint information, parallax correction is performed on the stereoscopic image extracted based on the viewpoint information on the image transmission device 200 side.
 一方、画像表示装置100側に視差補正部106があり、視差補正を画像表示装置100側で行う旨がユーザから指示された場合には、情報送信部101は、視点情報に、上記視差補正情報の代わりに、視差補正を画像表示装置100側で実行する旨を設定する。この場合には、画像送信装置200側で視差補正は行われず、画像表示装置100の視差補正部106により画像送信装置200から受信した立体画像に対し、視差補正が行われる。 On the other hand, when the parallax correction unit 106 is provided on the image display device 100 side and the user instructs the parallax correction to be performed on the image display device 100 side, the information transmission unit 101 displays the parallax correction information in the viewpoint information. Instead of this, it is set that the parallax correction is performed on the image display apparatus 100 side. In this case, parallax correction is not performed on the image transmission device 200 side, and parallax correction is performed on the stereoscopic image received from the image transmission device 200 by the parallax correction unit 106 of the image display device 100.
 なお、視差補正部106等の視差補正機能を有する場合に、ユーザの指示によらず、視点情報に、視差補正を画像表示装置100側で実行する旨を設定するように情報送信部101を構成してもよい。 In addition, when having a parallax correction function such as the parallax correction unit 106, the information transmission unit 101 is configured to set the parallax correction to be executed on the image display device 100 side in the viewpoint information regardless of a user instruction. May be.
 視点位置(PosViewPoint)は、立体画像の多視点のうち画像表示装置100で表示する立体画像の視点の位置であり、画像送信装置200における視点決定に必要な情報である。視点位置は、一または複数のパラメータから構成される。視点位置は、視点数で設定された数と同じ数だけ視点情報に設定される。 The viewpoint position (PosViewPoint) is the position of the viewpoint of the stereoscopic image displayed on the image display apparatus 100 among the multiple viewpoints of the stereoscopic image, and is information necessary for determining the viewpoint in the image transmission apparatus 200. The viewpoint position is composed of one or a plurality of parameters. The viewpoint position is set in the viewpoint information by the same number as the number set in the viewpoint number.
 視点位置には、視点の番号が設定される。ただし、視点の番号に限定されるものではなく、視点を決定できるものであれば視点位置として設定することができる。このような視点位置としては以下の例がある。 The viewpoint number is set in the viewpoint position. However, it is not limited to the viewpoint number, and can be set as the viewpoint position as long as the viewpoint can be determined. Examples of such viewpoint positions include the following.
 図5(a)、図5(b)は、視点位置の例を説明するための図である。図5(a)の例では、画像表示装置100側で、多視点画像(立体画像)におけるカメラの配置について既知である場合には、所望の視点を示すIndexを視点位置として視点情報に設定して画像送信装置200に送信することにより、視点位置を指定する。図5(a)の例では、カメラ2の視点からの立体画像を抽出する場合の例を示しており、この場合にはカメラID=2という視点位置を視点情報に設定して画像送信装置200に送信する。 FIG. 5A and FIG. 5B are diagrams for explaining examples of viewpoint positions. In the example of FIG. 5A, when the camera arrangement in the multi-viewpoint image (stereoscopic image) is known on the image display apparatus 100 side, an index indicating a desired viewpoint is set as the viewpoint position in the viewpoint information. The viewpoint position is designated by transmitting to the image transmitting apparatus 200. In the example of FIG. 5A, an example in the case of extracting a stereoscopic image from the viewpoint of the camera 2 is shown. In this case, the viewpoint position of camera ID = 2 is set as the viewpoint information, and the image transmission apparatus 200. Send to.
 なお、図5(a)では、視点数=1を例にあげて説明しているが、視点数が2以上の場合には、視点位置は視点数分のカメラIDが視点情報に設定される(後述の図11(a)、図11(b)参照)。 In FIG. 5A, the number of viewpoints = 1 is described as an example. However, when the number of viewpoints is two or more, camera IDs corresponding to the number of viewpoints are set as viewpoint information in the viewpoint information. (See FIGS. 11A and 11B described later).
 図5(b)の例では、例えば、コンテンツ制作者やアプリケーション等によって予め設定された、基準となる視点からの水平・垂直・奥行きの各方向についての回転角度と並進距離とを視点位置として視点情報に指定している。これにより、どの視点から、どの角度で見た視点であるかを指定することができる。 In the example of FIG. 5B, for example, a viewpoint that is set in advance by a rotation angle and a translation distance in each of the horizontal, vertical, and depth directions from a reference viewpoint, which is set in advance by a content creator, an application, or the like. It is specified in the information. Thereby, it can be specified from which viewpoint from which angle the viewpoint is viewed.
 なお、図5(b)では、視点数=1を例にあげて説明しているが、視点数が2以上の場合には、図5(b)に示す視点位置のパラメータ群が視点数分の視点情報に設定される。 In FIG. 5B, the number of viewpoints = 1 is described as an example. However, when the number of viewpoints is two or more, the parameter group of viewpoint positions shown in FIG. Is set to the viewpoint information.
 以上のような視点情報が画像送信装置200に送信されて、画像送信装置200側で視点情報で指定された視点位置、視点数等の立体画像が抽出されて、画像表示装置100に送信されることになる。 The viewpoint information as described above is transmitted to the image transmission apparatus 200, and a stereoscopic image such as the viewpoint position and the number of viewpoints specified by the viewpoint information on the image transmission apparatus 200 side is extracted and transmitted to the image display apparatus 100. It will be.
 図1に戻り、抽出結果受信部105は、画像送信装置200から、視点情報に基づいて抽出された立体画像を含む抽出結果を受信する。 Returning to FIG. 1, the extraction result receiving unit 105 receives an extraction result including a stereoscopic image extracted based on the viewpoint information from the image transmission device 200.
 視差補正部106は、視点情報に視差補正情報を設定せず、視差補正を画像表示装置100側で実行する旨を設定して画像送信装置200に送信して、画像送信装置200から抽出結果を受信した場合に、視差補正を行う。この場合、視差補正部106は、抽出結果に含まれる立体画像に対して、ユーザにより指定された視認距離、飛び出し距離、実空間上の奥行きサイズと、抽出結果に含まれる視差補正パラメータ(後述)とに基づいて視差補正を行う。 The parallax correction unit 106 does not set the parallax correction information in the viewpoint information, sets that the parallax correction is performed on the image display apparatus 100 side, transmits the parallax correction information to the image transmission apparatus 200, and extracts the extraction result from the image transmission apparatus 200. When received, parallax correction is performed. In this case, the parallax correction unit 106, for the stereoscopic image included in the extraction result, the viewing distance specified by the user, the pop-up distance, the depth size in the real space, and the parallax correction parameter (described later) included in the extraction result. Based on the above, parallax correction is performed.
 なお、視差補正部106における視差補正処理の内容は、画像送信装置200の視差補正部205による視差補正処理と同様であり、画像送信装置200の視差補正部205による視差補正処理の詳細については後述する。 The content of the parallax correction processing in the parallax correction unit 106 is the same as the parallax correction processing by the parallax correction unit 205 of the image transmission device 200, and details of the parallax correction processing by the parallax correction unit 205 of the image transmission device 200 will be described later. To do.
 視点・視差補正量切替部103は、ユーザによるリモートコントローラ等の操作部(不図示)等により視点や視差補正量(視認距離、飛び出し距離、実空間上での奥行きサイズ等の視差補正量と、画面サイズ、画面解像度等)の変更指令を受け付けて、視点情報において視点数、視点位置、視差補正情報、画面サイズ(画面幅、画面高さ)、画面解像度(表示幅、表示高さ)等を変更する。変更された視点情報は、情報送信部101によって、再度、画像送信装置200に送信される。 The viewpoint / parallax correction amount switching unit 103 is operated by a user operation unit (not shown) such as a remote controller or the like, and a parallax correction amount such as a viewpoint and a parallax correction amount (viewing distance, pop-out distance, depth size in real space, etc.) Accept the change command of the screen size, screen resolution, etc.) and change the number of viewpoints, viewpoint position, parallax correction information, screen size (screen width, screen height), screen resolution (display width, display height), etc. change. The changed viewpoint information is transmitted again to the image transmission apparatus 200 by the information transmission unit 101.
 次に、画像送信装置200の詳細について説明する。画像送信装置200は、図1に示すように、情報受信部202と、視点決定部201と、立体画像記録部203と、視点抽出部204と、フォーマット変換部206と、抽出結果送信部207とを主に備えている。 Next, details of the image transmission apparatus 200 will be described. As shown in FIG. 1, the image transmission apparatus 200 includes an information reception unit 202, a viewpoint determination unit 201, a stereoscopic image recording unit 203, a viewpoint extraction unit 204, a format conversion unit 206, and an extraction result transmission unit 207. It is mainly equipped with.
 立体画像記録部203は、例えば、ハードディスクドライブ装置(HDD)等の記憶媒体であり、MVC(Multi-view Video Coding)等で圧縮された立体画像のデータが記録されている。 The stereoscopic image recording unit 203 is, for example, a storage medium such as a hard disk drive (HDD), and records stereoscopic image data compressed by MVC (Multi-view Video Coding) or the like.
 情報受信部202は、画像表示装置100から送信された視点情報を受信する。視点決定部201は、受信した視点情報に含まれる視点数や視点位置等に基づいて、抽出する視点を決定する。視点情報に視点数が設定されている場合には、視点数分の視点位置が設定されているため、視点決定部201は、設定された視点数分、視点位置から視点を特定して、特定された視点数分の視点を抽出する視点として決定する。例えば、視点情報の視点位置に視点の番号が設定されている場合には、視点決定部201は設定された番号の視点を抽出する視点として決定する。 The information receiving unit 202 receives the viewpoint information transmitted from the image display device 100. The viewpoint determination unit 201 determines viewpoints to be extracted based on the number of viewpoints, viewpoint positions, and the like included in the received viewpoint information. When the number of viewpoints is set in the viewpoint information, the viewpoint positions for the number of viewpoints are set, so the viewpoint determination unit 201 specifies and specifies viewpoints from the viewpoint positions for the set number of viewpoints. The viewpoints are extracted as many viewpoints as the number of viewpoints. For example, when the viewpoint number is set at the viewpoint position of the viewpoint information, the viewpoint determination unit 201 determines the viewpoint with the set number as a viewpoint to be extracted.
 また、視点決定部201は、視点情報に、図5(a)の例で示すカメラIDにより視点位置が設定されている場合には、視点位置で指定されたカメラIDに相当する視点を特定し、特定した視点を抽出する視点として決定する。また、視点決定部201は、視点情報に、図5(b)の例で示す、基準となる視点からの水平・垂直・奥行きの各方向についての回転角度と並進距離とが指定されている場合には、基準となる視点からの回転角度および並進距離から視点を特定し、特定した視点を抽出する視点として決定する。 In addition, when the viewpoint position is set in the viewpoint information by the camera ID illustrated in the example of FIG. 5A, the viewpoint determination unit 201 specifies the viewpoint corresponding to the camera ID specified by the viewpoint position. Then, the identified viewpoint is determined as a viewpoint to be extracted. Further, the viewpoint determination unit 201 designates the rotation angle and the translation distance in the horizontal, vertical, and depth directions from the reference viewpoint shown in the example of FIG. 5B in the viewpoint information. First, the viewpoint is specified from the rotation angle and the translation distance from the reference viewpoint, and the identified viewpoint is determined as a viewpoint to be extracted.
 視点抽出部204は、立体画像記録部203に記録されている暗号化画像データを復号化する。なお、立体画像記録部203に立体画像データが非圧縮で記録されている場合、復号化処理は不要となる。 The viewpoint extraction unit 204 decrypts the encrypted image data recorded in the stereoscopic image recording unit 203. Note that when the stereoscopic image data is recorded in the stereoscopic image recording unit 203 without being compressed, the decoding process is not necessary.
 そして、視点抽出部204は、視点情報で設定されている視点数、視点位置等で指定され、視点決定部201で決定された視点の立体画像を抽出する。例えば、図5(a)の例で視点位置が視点情報に設定されている場合には、立体画像記録部203に記録されている記録された多視点画像の中から、カメラ2の視点からの立体画像が抽出される。また、図5(b)の例で視点位置が視点情報に設定されている場合には、指定された位置、角度から撮影された視点の立体画像が抽出される。 Then, the viewpoint extraction unit 204 extracts a stereoscopic image of the viewpoint specified by the number of viewpoints, the viewpoint position, etc. set in the viewpoint information and determined by the viewpoint determination unit 201. For example, when the viewpoint position is set in the viewpoint information in the example of FIG. 5A, the viewpoint from the viewpoint of the camera 2 is selected from the recorded multi-viewpoint images recorded in the stereoscopic image recording unit 203. A stereoscopic image is extracted. If the viewpoint position is set in the viewpoint information in the example of FIG. 5B, a stereoscopic image of the viewpoint captured from the specified position and angle is extracted.
 なお、指定された視点位置からの立体画像が立体画像記録部203に存在しない場合には、例えば、3D Warping等の手法により、指定された視点位置からの立体画像を画像処理によって生成してもよい。ここで、3D Warping等の手法としては、技術文献「Yuji Mori,et.al.:View Generation with 3D Warping Using Depth Information for FTV,Signal Processing:Image Communication,vol.24,issues 1-2,pp.65-72,2009.」に記載された手法を用いればよい。 If a stereoscopic image from the specified viewpoint position does not exist in the stereoscopic image recording unit 203, a stereoscopic image from the specified viewpoint position may be generated by image processing using a technique such as 3D Warping. Good. Here, as a technique such as 3D Warping, the technical literature “Yuji Mori, et.al .: View Generation with 3D Warping Usage Depth Information for FTV, Signal Processing: Image Communication, 24. 65-72, 2009. ”may be used.
 視差補正部205は、画像表示装置100から受信した視点情報に視差補正情報が設定されている場合、すなわち、視点情報に視差補正を画像表示装置側で実行する旨が設定されていない場合に、視点情報で設定された視差補正情報と、画像送信装置200が保持する視差補正パラメータとに基づいて、視点抽出部204により抽出された視点の立体画像に対して視差補正を行う。すなわち、実物を見る場合と、画像表示装置100の画像表示部102で立体画像を見る場合とでは、視距離等の条件が異なるため、画像表示装置100に合わせて視差補正を行う。 The parallax correction unit 205, when the parallax correction information is set in the viewpoint information received from the image display device 100, that is, when it is not set in the viewpoint information that the parallax correction is performed on the image display device side. Based on the parallax correction information set in the viewpoint information and the parallax correction parameters held by the image transmission apparatus 200, parallax correction is performed on the stereoscopic image of the viewpoint extracted by the viewpoint extraction unit 204. That is, the conditions such as the viewing distance are different between when viewing the real object and when viewing the stereoscopic image on the image display unit 102 of the image display apparatus 100, and therefore, parallax correction is performed according to the image display apparatus 100.
 図6は、視差補正の一例を示す説明図である。例えば、レンジファインダなどのセンサや、多視点カメラで撮影した画像間でマッチングを行う方法などにより、奥行き情報(デプス)Zが取得できている場合には、図6に示すように、右眼・左眼・対象物の三角形と、画面上での右視点・左視点・対象物の三角形の二つの相似性を利用して、視差ベクトルdを求める。 FIG. 6 is an explanatory diagram showing an example of parallax correction. For example, when depth information (depth) Z can be acquired by a sensor such as a range finder or a method of performing matching between images taken by a multi-viewpoint camera, as shown in FIG. The disparity vector d is obtained by using two similarities of the left eye / object triangle and the right viewpoint / left viewpoint / object triangle on the screen.
 ここで、画像表示装置100から受信した視点情報から、視差補正情報として、ユーザの視聴位置から画面までの視認距離ZS[cm]、飛び出し量を調整する飛び出し距離Z0[cm]、実空間上での奥行きサイズLZが得られる。また、視点情報で指定された画面幅、画面高さから、画面サイズ(cm)が得られ、視点情報で指定された表示幅、表示高さから画面解像度(pixel)が得られる。 Here, from the viewpoint information received from the image display device 100, as the parallax correction information, the viewing distance Z S [cm] from the user's viewing position to the screen, the pop-out distance Z 0 [cm] for adjusting the pop-out amount, real space The depth size L Z above is obtained. Further, the screen size (cm) is obtained from the screen width and the screen height designated by the viewpoint information, and the screen resolution (pixel) is obtained from the display width and the display height designated by the viewpoint information.
 一方、画像送信装置200が保持している視差補正パラメータとして、センサ等により取得した既知の値である奥行き情報(デプス)Z、Zmax、右眼と左眼の間の平均的な距離である眼間距離bがある。 On the other hand, as parallax correction parameters held by the image transmission apparatus 200, depth information (depth) Z and Z max which are known values acquired by a sensor or the like, and an average distance between the right eye and the left eye. There is an interocular distance b.
 図6において、視差補正部205は、まず、(1)式により、画面から対象物までのZ’を算出する。 In FIG. 6, the parallax correction unit 205 first calculates Z ′ from the screen to the target object using Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、係数γは、(2)式で示され、ある値域に正規化された奥行き情報Zを、実空間での奥行きサイズLzに変換するためのパラメータである。例えば、奥行き情報Zが8bitデータとして表現される場合、奥行き距離が[0,255]の範囲に正規化された値で表現されるが、これを実空間での奥行きサイズに変換するために、係数γが用いられる。また、Zが8bitである場合、Zmax=255となる。 Here, the coefficient γ is a parameter for converting the depth information Z normalized by a certain range to the depth size L z in the real space, which is expressed by the equation (2). For example, when the depth information Z is expressed as 8-bit data, the depth distance is expressed by a value normalized to a range of [0, 255]. In order to convert this into a depth size in real space, A coefficient γ is used. When Z is 8 bits, Z max = 255.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図6に示す右眼・左眼・対象物の三角形と、画面上での右視点・左視点・対象物の三角形の二つの相似性から(3)式が成立し、この(3)式から、視差ベクトルdの算出式が(4)式で示される。このため、視差補正部205は、(4)式を用いて、視差ベクトルdを算出する。 Equation (3) is established from two similarities of the right eye / left eye / object triangle shown in FIG. 6 and the right viewpoint / left viewpoint / object triangle on the screen. The equation for calculating the parallax vector d is expressed by equation (4). For this reason, the parallax correction unit 205 calculates the parallax vector d using equation (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そして、視差補正部205は、(5)式により、算出された視差ベクトルdに従って右目用画像と左目用画像の画素をずらすことで視差補正を行う。 Then, the parallax correction unit 205 performs parallax correction by shifting the pixels of the right-eye image and the left-eye image according to the calculated parallax vector d according to equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図1に戻り、画像送信装置200のフォーマット変換部206は、抽出された視点の立体画像、あるいは、さらに視差補正が行われた立体画像を、視点情報で指定された伝送フォーマットの形式(すなわち、画像表示装置100が受信可能なフォーマットの形式)に変換する。 Returning to FIG. 1, the format conversion unit 206 of the image transmission apparatus 200 converts the extracted viewpoint stereoscopic image or the stereoscopic image subjected to further parallax correction into the format of the transmission format specified by the viewpoint information (that is, The image display apparatus 100 can receive).
 例えば、視点数=2、伝送フォーマット=サイドバイサイド方式が設定された視点情報に基づいて立体画像を抽出した場合には、例えば、MVCで圧縮された立体画像データを復号化して得られたマルチキャスト形式の多視点画像(立体画像)から、2視点分の立体画像が抽出され、その後、フォーマット変換部206は、抽出された立体画像を、図4の(b)に示すサイドバイサイド方式のフォーマットに変換する。 For example, when a stereoscopic image is extracted based on viewpoint information in which the number of viewpoints = 2 and the transmission format = side-by-side method is set, for example, a multicast format obtained by decoding stereoscopic image data compressed by MVC A stereo image for two viewpoints is extracted from the multi-view image (stereo image), and then the format conversion unit 206 converts the extracted stereo image into a side-by-side format shown in FIG.
 なお、伝送する立体画像は少なくとも1以上の視点からなる画像で構成されているものであれば、それらの形式については特に制限されることはなく、所望の画像表示装置100に適した形式に変換すればよい。 Note that, as long as the stereoscopic image to be transmitted is composed of an image composed of at least one or more viewpoints, the format is not particularly limited, and is converted into a format suitable for the desired image display apparatus 100. do it.
 抽出結果送信部207は、抽出された視点のフォーマット変換後の立体画像(視差補正が行われた場合、視差補正がなされ、フォーマット変換後の立体画像)と、伝送する立体画像についての各種パラメータ(伝送フォーマット、画像サイズ、フレームレート等)とを、抽出結果として、HDMIケーブルを介してTMDC(Transition Minimized Differential Signalling)チャネル等で画像表示装置100に伝送する。 The extraction result transmission unit 207 outputs a stereoscopic image after the format conversion of the extracted viewpoint (a stereoscopic image after the parallax correction is performed when the parallax correction is performed), and various parameters (three-dimensional images (three-dimensional image after the format conversion)) ( The transmission format, the image size, the frame rate, and the like) are transmitted to the image display apparatus 100 as an extraction result via a HDMI DC (Transition Minimized Differential Signaling) channel or the like.
 また、抽出結果送信部207は、視差補正が行われていない場合、すなわち、視差補正を画像表示装置100側で実行する旨が視点情報に設定されている場合には、さらに抽出結果に、上述の視差補正パラメータ(奥行き情報Z、Zmax、眼間距離b)を含めて、画像表示装置100に送信する。これにより、画像表示装置100側では、抽出結果に含まれる視差補正パラメータと、画像表示装置100側に設定されている、視認距離ZS、飛び出し距離Z0、実空間上での奥行きサイズLZ、画面サイズ(cm)、画面解像度から、画像送信装置200側で行われる上述した視差補正処理と同様の視差補正処理が、画像送信装置200から受信した立体画像に対して行われることになる。 In addition, when the parallax correction is not performed, that is, when the viewpoint information indicates that the parallax correction is performed on the image display apparatus 100 side, the extraction result transmission unit 207 further adds the above-described extraction result to the above-described extraction result. Including the parallax correction parameters (depth information Z, Z max , interocular distance b) are transmitted to the image display apparatus 100. Thereby, on the image display device 100 side, the parallax correction parameters included in the extraction result, the viewing distance Z S , the pop-out distance Z 0 , and the depth size L Z in real space set on the image display device 100 side. From the screen size (cm) and the screen resolution, the same parallax correction process as the above-described parallax correction process performed on the image transmission apparatus 200 side is performed on the stereoscopic image received from the image transmission apparatus 200.
 なお、本実施の形態では、抽出結果送信部207は、抽出した視点の立体画像と、各種パラメータとを同一の抽出結果に含めて、画像表示装置100に送信しているが、これに限定されるものではない。例えば、各種パラメータを立体画像の送信に先立って、DDCチャネルまたはCECチャネルで画像表示装置100に送信するように抽出結果送信部207を構成することができる。 In the present embodiment, the extraction result transmission unit 207 includes the extracted viewpoint stereoscopic image and various parameters in the same extraction result, and transmits them to the image display device 100. However, the present invention is not limited to this. It is not something. For example, the extraction result transmission unit 207 can be configured to transmit various parameters to the image display apparatus 100 via a DDC channel or a CEC channel prior to transmission of a stereoscopic image.
 また、本実施の形態のようにHDMIケーブルによる接続では非圧縮データの伝送が可能であるが、画像表示装置100と画像送信装置200とをインターネット等のネットワーク接続したり、無線通信による接続等で実現する場合には、圧縮された立体画像のデータを伝送する方式を採用することができる。なお、伝送する立体画像のデータ圧縮方式については、任意の画像表示装置100へ画像を供給することを考慮すると、H.264等の標準化された方式が好ましいが、想定する画像表示装置100が対応している形式であれば、非標準な方式で圧縮を行ってもよい。この場合には、画像表示装置100側で対応可能な圧縮方式を視点情報に設定して、画像送信装置200に送信するように構成すればよい。 In addition, uncompressed data can be transmitted by connection using an HDMI cable as in the present embodiment. However, the image display apparatus 100 and the image transmission apparatus 200 can be connected to a network such as the Internet, or connected by wireless communication. In the case of realization, a method of transmitting compressed stereoscopic image data can be adopted. Regarding the data compression method of the stereoscopic image to be transmitted, considering that an image is supplied to an arbitrary image display device 100, the H.264 format is H.264. A standardized method such as H.264 is preferable, but compression may be performed by a nonstandard method as long as the image display apparatus 100 is assumed to be compatible. In this case, a compression method that can be handled on the image display apparatus 100 side may be set in the viewpoint information and transmitted to the image transmission apparatus 200.
 次に、以上のように構成された本実施の形態の画像表示装置100による画像表示処理について説明する。図7は、実施の形態1の画像表示処理の手順を示すフローチャートである。 Next, image display processing by the image display apparatus 100 of the present embodiment configured as described above will be described. FIG. 7 is a flowchart illustrating a procedure of image display processing according to the first embodiment.
 まず、情報送信部101は、メモリ等の設定情報から視点情報に含める各パラメータを取得し、取得した各パラメータにより視点情報を生成する(ステップS11)。そして、ユーザから視差補正を画像表示装置100側で実行する旨が指示されているか否かをメモリ等に記憶されている設定情報から判断する(ステップS12)。 First, the information transmitting unit 101 acquires each parameter included in the viewpoint information from the setting information such as a memory, and generates viewpoint information based on the acquired parameters (step S11). And it is judged from the setting information memorize | stored in memory etc. whether the instruction | indication to perform parallax correction by the image display apparatus 100 side is given from the user (step S12).
 そして、視差補正を画像表示装置100側で実行する旨が指示されている場合には(ステップS12:Yes)、情報送信部101は、視差補正を画像表示装置100側で実行する旨を視点情報に設定する(ステップS20)。一方、視差補正を画像表示装置100側で実行する旨が指示されていない場合には(ステップS12:No)、情報送信部101は、メモリ等の設定情報からユーザから指定された視差補正情報(視認距離、飛び出し距離、実空間上での奥行きサイズ)を取得して、この視差補正情報を視点情報に設定する(ステップS13)。 When it is instructed to execute the parallax correction on the image display apparatus 100 side (step S12: Yes), the information transmission unit 101 determines that the parallax correction is performed on the image display apparatus 100 side. (Step S20). On the other hand, when it is not instructed to execute the parallax correction on the image display device 100 side (step S12: No), the information transmission unit 101 specifies the parallax correction information (from the setting information such as the memory) specified by the user ( (Viewing distance, pop-out distance, depth size in real space) is acquired, and this parallax correction information is set as viewpoint information (step S13).
 そして、情報送信部101は、視点情報を画像送信装置200に伝送する(ステップS14)。この後、画像表示装置100は、画像送信装置200からの抽出結果の受信待ち状態となる(ステップS15、S15:No)。 Then, the information transmission unit 101 transmits the viewpoint information to the image transmission device 200 (step S14). Thereafter, the image display device 100 waits to receive an extraction result from the image transmission device 200 (steps S15 and S15: No).
 抽出結果受信部105は、画像送信装置200から抽出結果を受信すると(ステップS15:Yes)、抽出結果に、指定された視点の立体画像の抽出失敗の旨の通知が含まれているか否かを判断する(ステップS16)。そして、かかる通知が抽出結果に含まれている場合には(ステップS16:Yes)、ステップS11へ戻り視点情報のパラメータの取得を行う。なお、抽出失敗の通知が抽出結果に含まれている場合には、画像表示部102に抽出失敗の旨のメッセージを表示して処理を終了するように構成してもよい。 When the extraction result reception unit 105 receives the extraction result from the image transmission device 200 (step S15: Yes), the extraction result indicates whether or not the extraction result includes a notification indicating that the extraction of the stereoscopic image at the specified viewpoint is not included. Judgment is made (step S16). If the notification is included in the extraction result (step S16: Yes), the process returns to step S11 to acquire the viewpoint information parameters. Note that if the extraction failure notification is included in the extraction result, a message indicating the extraction failure may be displayed on the image display unit 102 and the process may be terminated.
 抽出結果に抽出失敗の通知が含まれていない場合には(ステップS16:No)、抽出結果には、視点情報で設定した視点数分の視差画像からなる立体画像が含まれているが、さらに、抽出結果に、視差補正パラメータ(奥行き情報Z、Zmax、眼間距離b)が含まれているか否かを判断することにより、画像送信装置200で立体画像に視差補正が施されているか否かを判断する(ステップS17)。 When an extraction failure notification is not included in the extraction result (step S16: No), the extraction result includes a stereoscopic image composed of parallax images for the number of viewpoints set in the viewpoint information. Whether the stereoscopic image is subjected to the parallax correction by the image transmission device 200 by determining whether or not the extraction result includes the parallax correction parameters (depth information Z, Z max , interocular distance b). Is determined (step S17).
 抽出結果に視差補正パラメータが含まれている場合には(ステップS17:Yes)、視差補正部106は、抽出結果に含まれる立体画像に対して、視差補正パラメータと、画像表示装置100側で設定されている視認距離、飛び出し距離、実空間上での奥行きサイズ、画面サイズ、画面解像度等の情報とを用いて視差補正を行う(ステップS18)。そして、画像表示部102は、視差補正が行われた立体画像を表示する(ステップS19)。 When the parallax correction parameter is included in the extraction result (step S17: Yes), the parallax correction unit 106 sets the parallax correction parameter and the parallax correction parameter on the image display device 100 side for the stereoscopic image included in the extraction result. The parallax correction is performed using the information such as the viewing distance, the pop-out distance, the depth size in real space, the screen size, and the screen resolution (step S18). Then, the image display unit 102 displays the stereoscopic image that has been subjected to parallax correction (step S19).
 一方、ステップS17において、抽出結果に視差補正パラメータが含まれていない場合には(ステップS17:No)、視差補正は画像送信装置200側で実行済みであるため、視差補正は行わず、画像表示部102は、立体画像を表示する(ステップS19)。 On the other hand, when the parallax correction parameter is not included in the extraction result in step S17 (step S17: No), since the parallax correction has already been performed on the image transmitting apparatus 200 side, the parallax correction is not performed and the image display is performed. The unit 102 displays a stereoscopic image (step S19).
 なお、ステップS17の判断の代わりに、ステップS12で判断した、視差補正を画像表示装置100側で実行するか否かのパラメータによって画像送信装置200で立体画像に視差補正が施されているか否かを判断するように構成してもよい。また、画像送信装置200側で抽出結果に視差補正が実行済みか否かを示す通知を含め、画像表示装置100側でかかる通知により、画像送信装置200で立体画像に視差補正が施されているか否かを判断するように構成してもよい。 It should be noted that, instead of the determination in step S17, whether or not the stereoscopic image is subjected to the parallax correction in the image transmission device 200 based on the parameter determined in step S12 whether or not the parallax correction is performed on the image display device 100 side. It may be configured to determine. Also, whether the stereoscopic image is subjected to the parallax correction in the image transmission apparatus 200 by the notification on the image display apparatus 100 side, including a notification indicating whether or not the parallax correction has been performed on the extraction result on the image transmission apparatus 200 side. It may be configured to determine whether or not.
 さらに、画像表示装置100側で視差補正機能を有する場合には、視差補正情報を視点情報に含めず、画像送信装置200側でおこなわないように構成されている場合には、視差補正機能の有無により、画像送信装置200で立体画像に視差補正が施されているか否かを判断するように構成してもよい。 Further, when the image display apparatus 100 has a parallax correction function, the parallax correction information is not included in the viewpoint information and is not performed on the image transmission apparatus 200 side. Thus, the image transmission device 200 may be configured to determine whether or not the stereoscopic image has been subjected to parallax correction.
 画像表示装置100では、ユーザが操作部(図示せず)等により、視点や視差補正量、視認距離、飛び出し距離、実空間上での奥行きサイズ等の視差補正量と、画面サイズ、画面解像度等)の変更指示を行うことができる。ユーザが視点や視差補正量の変更指示を行った場合、視点・視差補正量切替部103による割り込み処理が実行される。図8は、割り込み処理の手順を示すフローチャートである。 In the image display apparatus 100, the user operates the operation unit (not shown) or the like, the parallax correction amount such as the viewpoint, the parallax correction amount, the viewing distance, the pop-out distance, the depth size in the real space, the screen size, the screen resolution, and the like. ) Change instructions. When the user gives an instruction to change the viewpoint or parallax correction amount, an interrupt process by the viewpoint / parallax correction amount switching unit 103 is executed. FIG. 8 is a flowchart showing the procedure of interrupt processing.
 視点・視差補正量切替部103は、ユーザから視点や視差補正量の変更指示を受け付ける(ステップS31)。そして、視点・視差補正量切替部103は、変更指示が視点変更の指示か否かを入力イベント等により判断する(ステップS32)。そして、変更指示が視点変更である場合には(ステップS32:Yes)、視点・視差補正量切替部103は、視点情報の視点位置、視点数等のパラメータを変更指示に従って変更する(ステップS33)。 The viewpoint / parallax correction amount switching unit 103 receives an instruction to change the viewpoint and the parallax correction amount from the user (step S31). Then, the viewpoint / parallax correction amount switching unit 103 determines whether or not the change instruction is a viewpoint change instruction based on an input event or the like (step S32). If the change instruction is a viewpoint change (step S32: Yes), the viewpoint / parallax correction amount switching unit 103 changes parameters such as the viewpoint position and the number of viewpoints of the viewpoint information according to the change instruction (step S33). .
 一方、ステップS32において、変更指示が視点変更でない場合(ステップS32:No)、視点情報の視点位置、視点数等のパラメータ変更は行われない。 On the other hand, if the change instruction is not a viewpoint change in step S32 (step S32: No), parameters such as the viewpoint position and the number of viewpoints of the viewpoint information are not changed.
 次に、視点・視差補正量切替部103は、変更指示が視差補正量の変更指示であるか否かを入力イベント等から判断する(ステップS34)。そして、変更指示が視差補正量の変更指示でない場合には(ステップS34:No)、視点・視差補正量切替部103は、割り込み処理を終了する。 Next, the viewpoint / parallax correction amount switching unit 103 determines whether or not the change instruction is a parallax correction amount change instruction from an input event or the like (step S34). If the change instruction is not a parallax correction amount change instruction (step S34: No), the viewpoint / parallax correction amount switching unit 103 ends the interrupt process.
 一方、変更指示が視差補正量の変更指示である場合には(ステップS34:Yes)、視点・視差補正量切替部103は、メモリ等の設定情報から視差補正を画像表示装置側で実行するか否かを判断する(ステップS35)。 On the other hand, when the change instruction is an instruction to change the parallax correction amount (step S34: Yes), the viewpoint / parallax correction amount switching unit 103 executes the parallax correction from the setting information such as the memory on the image display apparatus side. It is determined whether or not (step S35).
 そして、視差補正を画像表示装置側で実行する場合には(ステップS35:Yes)、図7のステップS18へ進み、変更指示後の視差補正量で視差補正を行う。一方、ステップS35で、視差補正を画像表示装置側で実行しない場合には(ステップS35:No)、視点・視差補正量切替部103は、視点情報の視差補正情報を変更指示に従い変更する(ステップS36)。そして、図7のステップS14へ進み、情報送信部101は、変更後の視点情報を画像送信装置200に送信する。これにより、画像送信装置200で、変更後の視点の立体画像を抽出し、変更後の視差補正量により視差補正が行われて、抽出結果が画像表示装置100に送信されることになる。 When the parallax correction is executed on the image display device side (step S35: Yes), the process proceeds to step S18 in FIG. 7, and the parallax correction is performed with the parallax correction amount after the change instruction. On the other hand, when the parallax correction is not executed on the image display device side in step S35 (step S35: No), the viewpoint / parallax correction amount switching unit 103 changes the parallax correction information of the viewpoint information according to the change instruction (step S35). S36). Then, the process proceeds to step S <b> 14 in FIG. 7, and the information transmission unit 101 transmits the changed viewpoint information to the image transmission apparatus 200. As a result, the image transmission device 200 extracts the stereoscopic image of the changed viewpoint, performs the parallax correction with the changed parallax correction amount, and transmits the extraction result to the image display device 100.
 次に、画像送信装置200で実行される立体画像の抽出および送信処理について説明する。図9は、実施の形態1の立体画像の抽出および送信処理の手順を示すフローチャートである。 Next, the stereoscopic image extraction and transmission process executed by the image transmission apparatus 200 will be described. FIG. 9 is a flowchart illustrating a procedure of the processing for extracting and transmitting a stereoscopic image according to the first embodiment.
 画像送信装置200は、画像表示装置100から視点情報の受信待ち状態にある(ステップS51、S51:No)。そして、情報受信部202が画像表示装置100から視点情報を受信したら(ステップS51:Yes)、視点決定部201は、視点情報の設定内容に従って、視点の決定を行う(ステップS52)。すなわち、視点決定部201は、視点情報で設定された視点数分の視点位置から視点を決定する。 The image transmitting apparatus 200 is in a state of waiting for receiving viewpoint information from the image display apparatus 100 (steps S51 and S51: No). When the information receiving unit 202 receives the viewpoint information from the image display device 100 (step S51: Yes), the viewpoint determining unit 201 determines the viewpoint according to the setting content of the viewpoint information (step S52). That is, the viewpoint determination unit 201 determines viewpoints from viewpoint positions corresponding to the number of viewpoints set in the viewpoint information.
 そして、視点抽出部204は、視点決定部201で決定された視点の立体画像、すなわち、視点数分の各視点位置における視差画像である立体画像を立体画像記録部203から抽出する(ステップS53)。視点抽出部204は、決定された視点の立体画像の抽出に成功したか否かを判断し(ステップS54)、失敗した場合には(ステップS54:No)、抽出結果送信部207は、指定された視点の立体画像の抽出失敗の通知を抽出結果に含め(ステップS55)、抽出結果を画像表示装置100に伝送する(ステップS62)。 Then, the viewpoint extraction unit 204 extracts a stereoscopic image of the viewpoint determined by the viewpoint determination unit 201, that is, a stereoscopic image that is a parallax image at each viewpoint position for the number of viewpoints from the stereoscopic image recording unit 203 (step S53). . The viewpoint extraction unit 204 determines whether or not the stereoscopic image of the determined viewpoint has been successfully extracted (step S54). If the extraction has failed (step S54: No), the extraction result transmission unit 207 is designated. A notification of failure to extract the stereoscopic image of the selected viewpoint is included in the extraction result (step S55), and the extraction result is transmitted to the image display device 100 (step S62).
 一方、ステップS54で、決定された視点の立体画像の抽出に成功した場合には(ステップS54:Yes)、視差補正部205は、視点情報に、視差補正を画像表示装置100側で実行する旨が設定されているか否かを判断する(ステップS57)。そして、視点情報に、視差補正を画像表示装置100側で実行する旨が設定されている場合には(ステップS57:Yes)、視差補正部205は、画像送信装置200側で保持する視差補正パラメータ(奥行き情報Z、Zmax、眼間距離b)を抽出結果に含める(ステップS58)。 On the other hand, when the stereo image of the determined viewpoint is successfully extracted in step S54 (step S54: Yes), the parallax correction unit 205 performs parallax correction on the viewpoint information on the image display device 100 side. Is determined (step S57). If it is set in the viewpoint information that parallax correction is to be performed on the image display apparatus 100 side (step S57: Yes), the parallax correction unit 205 holds the parallax correction parameter held on the image transmission apparatus 200 side. (Depth information Z, Z max , interocular distance b) is included in the extraction result (step S58).
 一方、ステップS57において、視点情報に、視差補正を画像表示装置100側で実行する旨が設定されていない場合、すなわち、視差補正情報が設定されている場合には(ステップS57:No)、視差補正部205は、視差補正情報と、視点情報に設定されている画面サイズ(画面幅、画面高さ)および画面解像度(表示幅、表示高さ)と、画像送信装置200で保持する視差補正パラメータとから、抽出された視点の立体画像に対して上述した視差補正を行う(ステップS59)。 On the other hand, when it is not set in step S57 that the parallax correction is performed on the image display device 100 side in the viewpoint information, that is, when the parallax correction information is set (No in step S57), the parallax is set. The correction unit 205 includes the parallax correction information, the screen size (screen width, screen height) and screen resolution (display width, display height) set in the viewpoint information, and the parallax correction parameters held by the image transmission device 200. From the above, the above-described parallax correction is performed on the extracted stereoscopic image of the viewpoint (step S59).
 次に、フォーマット変換部206は、抽出された視点の立体画像を、視点情報で設定された伝送フォーマットの形式に変換する(ステップS60)。 Next, the format conversion unit 206 converts the extracted stereoscopic image of the viewpoint into a transmission format set by the viewpoint information (step S60).
 そして、抽出結果送信部207は、立体画像と、各種パラメータを抽出結果に含め(ステップS61)、抽出結果を画像表示装置100に伝送する(ステップS62)。これにより、多数の視点の立体画像の中から、画像表示装置100側で指定された視点の立体画像が画像表示装置100に伝送されることになる。 Then, the extraction result transmission unit 207 includes the stereoscopic image and various parameters in the extraction result (step S61), and transmits the extraction result to the image display device 100 (step S62). As a result, the stereoscopic image of the viewpoint designated on the image display apparatus 100 side is transmitted to the image display apparatus 100 from among the stereoscopic images of the multiple viewpoints.
 このように本実施の形態では、画像表示装置100が表示に必要な視点数を含む視点情報を画像送信装置200に送信し、画像送信装置200では、視点情報で指定された視点数の立体画像を多数の視点の立体画像の中から抽出して画像表示装置100に伝送するので、画像表示装置100側の再生方式等で不要な視点の立体画像データが送信されない。このため、本実施の形態によれば、立体画像データの伝送効率を向上させることができ、また、画像表示装置100側での記憶容量の増大を防止することができる。 Thus, in the present embodiment, the image display apparatus 100 transmits viewpoint information including the number of viewpoints necessary for display to the image transmission apparatus 200, and the image transmission apparatus 200 has a stereoscopic image with the number of viewpoints specified by the viewpoint information. Are extracted from a large number of viewpoint stereoscopic images and transmitted to the image display apparatus 100. Therefore, unnecessary viewpoint stereoscopic image data is not transmitted by the reproduction method or the like on the image display apparatus 100 side. Therefore, according to the present embodiment, it is possible to improve the transmission efficiency of stereoscopic image data and to prevent an increase in storage capacity on the image display device 100 side.
(実施の形態2)
 実施の形態1では、画像表示装置100において、視点情報に設定する視点位置を視聴者であるユーザのリモートコントローラ等の操作による変更指示により決定していたが、この実施の形態2では、視聴者の画像表示装置に対する視聴位置を検出して、検出された視聴位置に基づいて視点数の視点位置を決定して視点情報に設定する。
(Embodiment 2)
In the first embodiment, in the image display apparatus 100, the viewpoint position set in the viewpoint information is determined by the change instruction by the operation of the user's remote controller or the like as the viewer, but in the second embodiment, the viewer The viewing position with respect to the image display apparatus is detected, and the viewpoint position of the number of viewpoints is determined based on the detected viewing position and set in the viewpoint information.
 図10は、実施の形態2の画像表示システムの構成、画像表示装置および画像送信装置の機能的構成を示すブロック図である。図10に示すように、本実施の形態の画像表示システムは、多視点画像である立体画像を表示する画像表示装置1000と、立体画像を画像表示装置1000に送信する画像送信装置200とが接続された構成となっている。ここで、本実施の形態の画像送信装置の構成および機能は実施の形態1と同様である。 FIG. 10 is a block diagram illustrating the configuration of the image display system, the functional configuration of the image display device, and the image transmission device according to the second embodiment. As shown in FIG. 10, in the image display system according to the present embodiment, an image display apparatus 1000 that displays a stereoscopic image that is a multi-viewpoint image and an image transmission apparatus 200 that transmits the stereoscopic image to the image display apparatus 1000 are connected. It has been configured. Here, the configuration and functions of the image transmission apparatus of the present embodiment are the same as those of the first embodiment.
 本実施の形態の画像表示装置1000は、図10に示すように、情報送信部1001と、抽出結果受信部105と、視差補正部106と、視点・視差補正量切替部1003と、視聴位置検出部1007と、画像表示部102とを主に備えている。ここで、抽出結果受信部105、視差補正部106、画像表示部102の機能については、実施の形態1の画像表示装置100と同様である。 As shown in FIG. 10, the image display apparatus 1000 according to the present embodiment includes an information transmission unit 1001, an extraction result reception unit 105, a parallax correction unit 106, a viewpoint / parallax correction amount switching unit 1003, and a viewing position detection. It mainly includes a unit 1007 and an image display unit 102. Here, the functions of the extraction result reception unit 105, the parallax correction unit 106, and the image display unit 102 are the same as those of the image display device 100 of the first embodiment.
 視聴位置検出部1007は、ユーザである視聴者の画像表示装置1000に対する視聴位置を検出し、検出した視聴位置に関する情報を情報送信部1001と、視点・視差補正量切替部1003に出力する。 The viewing position detection unit 1007 detects the viewing position of the viewer who is the user with respect to the image display device 1000, and outputs information on the detected viewing position to the information transmission unit 1001 and the viewpoint / parallax correction amount switching unit 1003.
 具体的には、視聴位置検出部1007は、ビデオカメラを用いたヘッドトラッキングやセンサ等を用い、ビデオカメラによる撮像画像やセンサからの検知信号から視聴者の現在位置や方向等を求め、この現在位置や方向等から、視聴者の画像表示部102の表示面に対する視点位置を視聴位置として検出する。 Specifically, the viewing position detection unit 1007 uses a head tracking or a sensor using a video camera, obtains the current position and direction of the viewer from the image captured by the video camera or the detection signal from the sensor, and this current From the position and direction, the viewer's viewpoint position with respect to the display surface of the image display unit 102 is detected as the viewing position.
 なお、視聴者の視聴位置を検出可能なものであれば、ビデオカメラを用いたヘッドトラッキングやセンサ等に限定されるものではない。 It should be noted that as long as the viewer's viewing position can be detected, the present invention is not limited to head tracking or a sensor using a video camera.
 本実施の形態の情報送信部1001は、視聴位置検出部1007により検出された視聴位置に基づいて、視点数、視点位置を決定し、決定した視点数、視点位置を含む視点情報を画像送信装置200に送信する。視点数、視点位置以外の視点情報については実施の形態1と同様に、メモリ等の記憶部(不図示)に予め設定されたり、ユーザからの入力により記憶部に記憶された設定情報から各パラメータを取得して視点情報を生成する。 The information transmission unit 1001 according to the present embodiment determines the number of viewpoints and the viewpoint position based on the viewing position detected by the viewing position detection unit 1007, and transmits the viewpoint information including the determined number of viewpoints and the viewpoint position to the image transmission apparatus. 200. As with the first embodiment, the viewpoint information other than the number of viewpoints and the viewpoint position is set in advance in each storage unit (not shown) such as a memory, or from the setting information stored in the storage unit by input from the user. To generate viewpoint information.
 本実施の形態の視点・視差補正量切替部1003は、視聴位置検出部1007により検出された視聴位置に基づいて、視点数、視点位置を決定し、決定した視点数、視点位置で視点情報を変更する。なお、視点・視差補正量切替部1003は、実施の形態1と同様に、ユーザにより入力された視差補正量で視点情報を変更する。 The viewpoint / parallax correction amount switching unit 1003 according to the present embodiment determines the number of viewpoints and the viewpoint position based on the viewing position detected by the viewing position detection unit 1007, and the viewpoint information is determined based on the determined number of viewpoints and the viewpoint position. change. Note that the viewpoint / parallax correction amount switching unit 1003 changes the viewpoint information with the parallax correction amount input by the user, as in the first embodiment.
 なお、実施の形態1と同様に、視点数、視点位置がユーザにより入力された場合も、入力された視点数、視点位置で視点情報を変更するように視点・視差補正量切替部1003を構成してもよい。 As in the first embodiment, the viewpoint / parallax correction amount switching unit 1003 is configured to change the viewpoint information according to the input number of viewpoints and viewpoint positions even when the number of viewpoints and viewpoint positions are input by the user. May be.
 次に、視聴位置検出部1007による視聴位置の検出と、情報送信部1001および視点・視差補正量切替部1003による視点数、視点位置の決定の詳細について説明する。図11(a)および図11(b)は、視聴者の視聴位置の検出と視点数および視点位置の決定についての説明図である。 Next, details of detection of the viewing position by the viewing position detection unit 1007 and determination of the number of viewpoints and the viewpoint position by the information transmission unit 1001 and the viewpoint / parallax correction amount switching unit 1003 will be described. FIG. 11A and FIG. 11B are explanatory diagrams for the detection of the viewer's viewing position and the determination of the number of viewpoints and the viewpoint position.
 図11(a)に示すように、視聴者が一人の場合には、情報送信部1001および視点・視差補正量切替部1003は、視聴位置検出部107から出力された視聴位置から、視点数を2と決定する。 As shown in FIG. 11A, when there is only one viewer, the information transmission unit 1001 and the viewpoint / parallax correction amount switching unit 1003 calculate the number of viewpoints from the viewing position output from the viewing position detection unit 107. 2 is determined.
 また、情報送信部1001および視点・視差補正量切替部1003は、視聴者の左目視点に該当するカメラ2、視聴者の右目視点に該当するカメラ3を視点位置として、視点数=2、カメラID={2,3}を視点情報に設定する。 Also, the information transmission unit 1001 and the viewpoint / parallax correction amount switching unit 1003 have the camera 2 corresponding to the viewer's left eye viewpoint and the camera 3 corresponding to the viewer's right eye viewpoint as the viewpoint position, the number of viewpoints = 2, and the camera ID. = {2, 3} is set as the viewpoint information.
 また、図11(b)に示すように、視聴者が複数人の場合には、視聴者が一人の場合と同様に、情報送信部1001および視点・視差補正量切替部1003は、視聴位置検出部1007から出力された視聴位置から、視点数、視点位置を決定する。図11(b)の例では、情報送信部1001および視点・視差補正量切替部1003はカメラ2~4を選択し、視点数=3、カメラID={2,3,4}を視点情報に設定する。 As shown in FIG. 11B, when there are a plurality of viewers, the information transmission unit 1001 and the viewpoint / parallax correction amount switching unit 1003 detect the viewing position as in the case where there is only one viewer. The number of viewpoints and the viewpoint position are determined from the viewing position output from the unit 1007. In the example of FIG. 11B, the information transmission unit 1001 and the viewpoint / parallax correction amount switching unit 1003 select the cameras 2 to 4 and use the viewpoint number = 3 and the camera ID = {2, 3, 4} as the viewpoint information. Set.
 ここで、情報送信部1001による視点数、視点位置の決定は、画像表示装置1000の起動時、あるいは視聴者による立体画像の視聴開始時に行われる。一方、視点・視差補正量切替部1003による視点数、視点位置の決定は、画像表示装置1000で視聴者が立体画像を視聴中に、視聴者が移動し、必要な視点数、視点位置が変更された場合に行われ、情報送信部1001が変更後の視点情報を再度、画像送信装置200へ送信する。 Here, the number of viewpoints and the viewpoint position are determined by the information transmission unit 1001 when the image display apparatus 1000 is activated or when a viewer starts viewing a stereoscopic image. On the other hand, the number of viewpoints and the viewpoint position are determined by the viewpoint / parallax correction amount switching unit 1003 when the viewer is viewing a stereoscopic image on the image display apparatus 1000, and the viewer moves and the necessary number of viewpoints and viewpoint positions change. The information transmission unit 1001 transmits the changed viewpoint information to the image transmission device 200 again.
 次に、以上のように構成された本実施の形態の画像表示装置100による画像表示処理について説明する。図12は、実施の形態2の画像表示処理の手順を示すフローチャートである。 Next, image display processing by the image display apparatus 100 of the present embodiment configured as described above will be described. FIG. 12 is a flowchart illustrating a procedure of image display processing according to the second embodiment.
 まず、視聴位置検出部1007は、上述の手法で視聴者の視聴位置を検出する(ステップS1201)。次に、情報送信部1001は、視聴位置から上述の手法で、視点数、視点位置を決定する(ステップ1202)。そして、情報送信部1001は、視点数、視点位置以外のパラメータについては、実施の形態1と同様に取得して、視点数、視点位置等を含む視点情報を生成する(ステップS11)。これ以降の処理(ステップS12~S19)は実施の形態1と同様に行われる。これにより、視聴者の視聴位置に応じた視点数、視点位置の立体画像が画像送信装置200から送信されて表示することが可能となる。 First, the viewing position detection unit 1007 detects the viewing position of the viewer by the above-described method (step S1201). Next, the information transmitting unit 1001 determines the number of viewpoints and the viewpoint position from the viewing position by the above-described method (step 1202). Then, the information transmission unit 1001 acquires parameters other than the number of viewpoints and the viewpoint position in the same manner as in the first embodiment, and generates viewpoint information including the number of viewpoints, the viewpoint position, and the like (step S11). The subsequent processing (steps S12 to S19) is performed in the same manner as in the first embodiment. Thereby, the number of viewpoints corresponding to the viewing position of the viewer and the stereoscopic image at the viewpoint position can be transmitted from the image transmission apparatus 200 and displayed.
 画像表示装置1000では、視聴者が移動して視聴位置が変更すると、当該移動を視聴位置検出部1007で検知し、割り込み処理が実行される。図13は、実施の形態2の割り込み処理の手順を示すフローチャートである。 In the image display apparatus 1000, when the viewer moves and the viewing position is changed, the viewing position detection unit 1007 detects the movement, and interrupt processing is executed. FIG. 13 is a flowchart illustrating a procedure of interrupt processing according to the second embodiment.
 視聴位置検出部1007が視聴者が移動したことを検知したら、移動後の視聴者の視聴位置を上述の手法で検出する(ステップS1301)。次に、視点・視差補正量切替部1003は、移動後の視聴位置が、メモリ等に記憶されている移動前の視聴位置から変更されているか否かを、座標値等により判断する(ステップS1302)。そして、視聴位置が変更されていない場合には(ステップS1302:No)、割り込み処理を終了する。 When the viewing position detection unit 1007 detects that the viewer has moved, the viewing position of the viewer after the movement is detected by the above-described method (step S1301). Next, the viewpoint / parallax correction amount switching unit 1003 determines whether or not the viewing position after movement is changed from the viewing position before movement stored in the memory or the like based on the coordinate value or the like (step S1302). ). If the viewing position has not been changed (step S1302: No), the interrupt process is terminated.
 一方、視聴位置が変更されている場合には(ステップS1302:Yes)、視点・視差補正量切替部1003は、視聴位置から上述の手法で、視点数、視点位置を決定する(ステップ1303)。 On the other hand, when the viewing position has been changed (step S1302: Yes), the viewpoint / parallax correction amount switching unit 1003 determines the number of viewpoints and the viewpoint position from the viewing position by the above-described method (step 1303).
 そして、視点・視差補正量切替部1003は、視点情報の視点数、視点位置を、ステップS1303で決定された視点数、視点位置で変更する(ステップS1304)。そして、図12のステップS14へ進み、情報送信部1001は、変更後の視点情報を画像送信装置200に送信する。これにより、画像送信装置200で、変更後の視点数、視点位置の立体画像を抽出し、抽出結果が画像表示装置1000に送信されることになる。 Then, the viewpoint / parallax correction amount switching unit 1003 changes the number of viewpoints and the viewpoint position of the viewpoint information with the number of viewpoints and the viewpoint position determined in step S1303 (step S1304). Then, the process proceeds to step S <b> 14 in FIG. 12, and the information transmission unit 1001 transmits the changed viewpoint information to the image transmission apparatus 200. As a result, the image transmission device 200 extracts a stereoscopic image of the changed number of viewpoints and viewpoint positions, and the extraction result is transmitted to the image display device 1000.
 このように本実施の形態では、視聴者の視聴位置を検出して、視点数、視点位置を決定し視点情報に含めて画像送信装置200に送信しているので、視聴者の実際の視点位置に適した立体画像を表示することができる。 As described above, in the present embodiment, the viewer's viewing position is detected, the number of viewpoints and the viewpoint position are determined, and are included in the viewpoint information and transmitted to the image transmitting apparatus 200. 3D image suitable for the image can be displayed.
 また、本実施の形態では、立体画像の視聴中に視聴者が移動した場合でも、移動後の視聴者の視聴位置を検出して、視点数、視点位置を決定し視点情報に含めて再度、画像送信装置200に送信しているので、受信する立体画像を動的に変更することができ、より視聴者の実際の視点位置に適した立体画像を表示することができる。 Further, in the present embodiment, even when the viewer moves while viewing the stereoscopic image, the viewing position of the viewer after the movement is detected, the number of viewpoints and the viewpoint position are determined, and included in the viewpoint information again. Since the image is transmitted to the image transmission apparatus 200, the received stereoscopic image can be dynamically changed, and a stereoscopic image more suitable for the viewer's actual viewpoint position can be displayed.
(実施の形態3)
 実施の形態3では、画像表示装置側で視点の優先度を視点情報に設定して画像送信装置に送信し、画像送信装置側で、視点情報に設定された優先度に従って、指定された視点の立体画像を抽出して画像表示装置に送信している。
(Embodiment 3)
In the third embodiment, the viewpoint priority is set as viewpoint information on the image display apparatus side and transmitted to the image transmission apparatus, and the specified viewpoint is set according to the priority set in the viewpoint information on the image transmission apparatus side. A stereoscopic image is extracted and transmitted to the image display device.
 図14は、実施の形態3の画像表示システムの構成、画像表示装置および画像送信装置の機能的構成を示すブロック図である。図14に示すように、本実施の形態の画像表示システムは、多視点画像である立体画像を表示する画像表示装置1100と、立体画像を画像表示装置1100に送信する画像送信装置1200とが接続された構成となっている。 FIG. 14 is a block diagram illustrating the configuration of the image display system, the functional configuration of the image display device, and the image transmission device according to the third embodiment. As shown in FIG. 14, in the image display system according to the present embodiment, an image display device 1100 that displays a stereoscopic image that is a multi-viewpoint image and an image transmission device 1200 that transmits a stereoscopic image to the image display device 1100 are connected. It has been configured.
 図15は、画像表示装置1100と画像送信装置1200の接続例を示す模式図である。本実施の形態では、図15に示すように、画像表示装置1100と画像送信装置1200とは、インターネット等のネットワークで接続された構成となっている。ここで、画像送信装置1200は、例えば、画像配信サーバ等が該当し、画像表示装置1100は、PC、テレビジョン装置、ディスプレイ装置等が該当するが、これらに限定されるものではない。 FIG. 15 is a schematic diagram showing an example of connection between the image display device 1100 and the image transmission device 1200. In the present embodiment, as shown in FIG. 15, the image display device 1100 and the image transmission device 1200 are connected via a network such as the Internet. Here, the image transmission device 1200 corresponds to, for example, an image distribution server, and the image display device 1100 corresponds to a PC, a television device, a display device, or the like, but is not limited thereto.
 また、画像表示装置1100と画像送信装置1200とをインターネット等で接続する他、実施の形態1と同様に、HDMIケーブルで接続したり、DVIケーブル等の他の有線で接続したり、WirelessHD等の無線通信による方式で接続するよう構成してもよい。 In addition to connecting the image display device 1100 and the image transmission device 1200 via the Internet or the like, as in the first embodiment, they are connected by an HDMI cable, connected by another wire such as a DVI cable, or wireless HD, etc. You may comprise so that it may connect by the system by wireless communication.
 画像表示装置1100は、自己の画像表示装置1100における多視点画像、すなわち立体画像の表示に必要な視点および視点の優先順位を含む視点情報を、画像送信装置1200に送信し、画像送信装置1200により抽出された立体画像を、画像送信装置1200から受信して表示するものである。 The image display apparatus 1100 transmits to the image transmission apparatus 1200 viewpoint information including a multi-viewpoint image in its own image display apparatus 1100, that is, viewpoints necessary for displaying a stereoscopic image and priority of viewpoints. The extracted stereoscopic image is received from the image transmission device 1200 and displayed.
 画像送信装置1200は、画像表示装置1100から視点情報を受信して、受信した視点情報における優先度に従って視点を決定し、決定された視点の立体画像を抽出して、抽出した立体画像を画像表示装置1100に送信するものである。 The image transmission device 1200 receives the viewpoint information from the image display device 1100, determines the viewpoint according to the priority in the received viewpoint information, extracts a stereoscopic image of the determined viewpoint, and displays the extracted stereoscopic image as an image display To the device 1100.
 図14に戻り、画像表示装置1100の詳細について説明する。画像表示装置1100は、図14に示すように、情報送信部1101と、抽出結果受信部105と、視差補正部106と、視点・視差補正量切替部103と、画像表示部102とを主に備えている。ここで、抽出結果受信部105、視差補正部106、視点・視差補正量切替部103、画像表示部102の機能については、実施の形態1の画像表示装置100と同様である。 Referring back to FIG. 14, the details of the image display device 1100 will be described. As shown in FIG. 14, the image display apparatus 1100 mainly includes an information transmission unit 1101, an extraction result reception unit 105, a parallax correction unit 106, a viewpoint / parallax correction amount switching unit 103, and an image display unit 102. I have. Here, the functions of the extraction result receiving unit 105, the parallax correction unit 106, the viewpoint / parallax correction amount switching unit 103, and the image display unit 102 are the same as those of the image display device 100 of the first embodiment.
 本実施の形態の情報送信部1101は、視点情報に視点の優先順位を設定して、この視点情報を、画像送信装置1200に送信する。 The information transmission unit 1101 according to the present embodiment sets viewpoint priority in the viewpoint information, and transmits this viewpoint information to the image transmission apparatus 1200.
 図16は、実施の形態3の視点情報の一例を示す説明図である。本実施の形態の視点情報は、図16に示すとおり、視点0~視点4のそれぞれの優先度が設定されている。 視点情報における優先度は、優先度に設定する値が小さい程、優先度が高く、優先的に伝送を行うことを示す。 FIG. 16 is an explanatory diagram illustrating an example of viewpoint information according to the third embodiment. In the viewpoint information of the present embodiment, the priorities of viewpoints 0 to 4 are set as shown in FIG. The priority in the viewpoint information indicates that the smaller the value set for the priority is, the higher the priority is, and transmission is performed with priority.
 ここで、画像表示装置1100の情報送信部1101による優先度の付与の手法については、例えば、特開2009-238117号公報に記載されている手法により決定することができる。かかる手法では、ビデオカメラ等を用いて測定したユーザの視点位置およびユーザに解像度の高い画像を観察させたい領域を定義する視域優先度情報に基づいて優先度が決定される。例えば、ビデオカメラやヘッドトラッキングセンサ等によりユーザの画像表示部102の表示面に対する視点位置を取得して、当該位置における視点を最も高い優先度(最小の値)とし、視点がユーザの現在の視点位置から遠くなるほど、低い優先度(大きい値)とするように、視点の優先度を設定することができる。 Here, the method of assigning priority by the information transmission unit 1101 of the image display device 1100 can be determined by the method described in Japanese Patent Laid-Open No. 2009-238117, for example. In this method, the priority is determined based on the viewpoint position of the user measured using a video camera or the like and viewing area priority information that defines an area where the user wants to observe an image with high resolution. For example, a viewpoint position of the user with respect to the display surface of the image display unit 102 is acquired by a video camera, a head tracking sensor, or the like, the viewpoint at the position is set to the highest priority (minimum value), and the viewpoint is the current viewpoint of the user. The viewpoint priority can be set so that the priority is higher (larger value) as the position is farther from the position.
 本実施の形態のように画像表示装置1100と画像送信装置1200とがインターネットを介して接続されている場合や、無線通信により接続されている場合には、ネットワーク等の伝送負荷の変動や伝送誤りに強い画像伝送を実現することが好ましい。このため、本実施の形態では、伝送する視点に対して優先度を付与した視点情報を画像送信装置1200に送信することにより、画像送信装置1200側で優先度の高い視点の立体画像を抽出して画像表示装置1100に送信するようにしている。これにより、ネットワーク等の伝送負荷の変動や伝送誤りに強い画像伝送を実現することが可能となる。 When the image display apparatus 1100 and the image transmission apparatus 1200 are connected via the Internet as in the present embodiment, or when connected by wireless communication, fluctuations in transmission load or transmission errors in the network or the like It is preferable to realize image transmission that is robust to the image. For this reason, in the present embodiment, the viewpoint information with priority given to the viewpoint to be transmitted is transmitted to the image transmission apparatus 1200, so that the image transmission apparatus 1200 side extracts a stereoscopic image with a high priority viewpoint. To the image display apparatus 1100. As a result, it is possible to realize image transmission that is resistant to fluctuations in transmission load and transmission errors in a network or the like.
 次に、画像送信装置1200の詳細について説明する。図14に戻り、画像送信装置1200は、情報受信部202と、視点決定部1201と、立体画像記録部203と、視点抽出部204と、視差補正部205と、フォーマット変換部206と、抽出結果送信部207とを主に備えている。ここで、情報受信部202、立体画像記録部203、視点抽出部204、視差補正部205、フォーマット変換部206、抽出結果送信部207の機能については実施の形態1の画像送信装置200と同様である。 Next, details of the image transmission device 1200 will be described. Returning to FIG. 14, the image transmission device 1200 includes an information reception unit 202, a viewpoint determination unit 1201, a stereoscopic image recording unit 203, a viewpoint extraction unit 204, a parallax correction unit 205, a format conversion unit 206, and an extraction result. A transmission unit 207 is mainly provided. Here, the functions of the information reception unit 202, the stereoscopic image recording unit 203, the viewpoint extraction unit 204, the parallax correction unit 205, the format conversion unit 206, and the extraction result transmission unit 207 are the same as those of the image transmission apparatus 200 of the first embodiment. is there.
 本実施の形態の視点決定部1201は、受信した視点情報に含まれる視点数や視点位置等に基づく他、優先度の小さい値の視点、すなわち優先度が高い視点の立体画像を優先的に決定する。 The viewpoint determination unit 1201 according to the present embodiment preferentially determines a viewpoint with a low priority, that is, a stereoscopic image with a high priority, based on the number of viewpoints and viewpoint positions included in the received viewpoint information. To do.
 図17は、実施の形態3の立体画像の抽出および送信処理の手順を示すフローチャートである。本実施の形態の立体画像の抽出および送信処理では、ステップS82において、視点決定部1201が視点情報に設定された優先度の順(優先度の値の小さい順)に抽出する視点を決定する点が実施の形態1の立体画像の抽出および送信処理と異なり、他のステップは実施の形態1と同様である。 FIG. 17 is a flowchart showing the procedure of the extraction and transmission processing of the stereoscopic image of the third embodiment. In the three-dimensional image extraction and transmission process according to the present embodiment, in step S82, the viewpoint determination unit 1201 determines viewpoints to be extracted in order of priorities set in the viewpoint information (in order of decreasing priority values). However, unlike the stereoscopic image extraction and transmission process of the first embodiment, the other steps are the same as those of the first embodiment.
 例えば、視点決定部1201は、ネットワークの伝送状態等を検知して、ネットワーク混雑している場合や、帯域制限がある場合には、優先度が一定値以下の値、すなわち優先度が一定以上高い視点を抽出する視点と決定し、視点抽出部204は、決定された優先度の高い視点の立体画像を立体画像記録部203から抽出して、抽出結果送信部207が画像表示装置1100に送信する。 For example, the viewpoint determination unit 1201 detects the transmission state of the network and the like, and when the network is congested or there is a bandwidth limitation, the priority is a value below a certain value, that is, the priority is higher than a certain value. The viewpoint extraction unit 204 determines that the viewpoint is to be extracted, and the viewpoint extraction unit 204 extracts a stereoscopic image of the determined viewpoint with a high priority from the stereoscopic image recording unit 203, and the extraction result transmission unit 207 transmits it to the image display device 1100. .
 このように本実施の形態では、画像送信装置1200は、視点情報の優先度に従い、視点にスケーラブルな圧縮方式によって符号化することで、画像表示装置1100では、優先度の高い視点からの画像を優先的に受信し、帯域制限等によって受信できない視点からの画像については、画像合成等の技術によって補間するといった処理を行うことが可能となる。これにより、本実施の形態では、実施の形態1の効果に加え、伝送負荷の変動や伝送誤りに対する耐性を向上させることが可能となる。 As described above, according to the present embodiment, the image transmission apparatus 1200 encodes an image from a viewpoint with a high priority in the image display apparatus 1100 by encoding the viewpoint according to a compression method that is scalable to the viewpoint according to the priority of the viewpoint information. For an image from a viewpoint that is preferentially received and cannot be received due to band limitation or the like, it is possible to perform processing such as interpolation by a technique such as image synthesis. As a result, in this embodiment, in addition to the effects of the first embodiment, it is possible to improve resistance to transmission load fluctuations and transmission errors.
 なお、本実施の形態では、視点情報に視点の優先度を設定したが、視点ではなく、例えば、フレームレートや解像度等の優先度を設定し、時間方向もしくは空間方向にスケーラビリティをもたせた方式によって立体画像を伝送する構成とすることもできる。 In this embodiment, the viewpoint priority is set in the viewpoint information. However, instead of the viewpoint, for example, a priority such as a frame rate or a resolution is set and scalability is provided in the time direction or the spatial direction. It is also possible to adopt a configuration for transmitting a stereoscopic image.
 また、本実施の形態の画像表示装置1100において、実施の形態1と同様に、視聴位置検出部1007を設け、視聴位置検出部1007で検出された視聴位置に基づいて視点数、視点位置を決定して視点情報に設定するように構成してもよい。 Also, in the image display apparatus 1100 of the present embodiment, a viewing position detection unit 1007 is provided as in the first embodiment, and the number of viewpoints and the viewpoint position are determined based on the viewing positions detected by the viewing position detection unit 1007. The viewpoint information may be set.
 なお、実施の形態1、2の画像表示装置100,1100で実行される画像表示プログラム、実施の形態1、2の画像送信装置200,1200で実行される画像送信プログラムは、ROM等に予め組み込まれて提供される。 The image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments and the image transmission program executed by the image transmission apparatuses 200 and 1200 according to the first and second embodiments are incorporated in advance in a ROM or the like. Provided.
 実施の形態1、2の画像表示装置100,1100で実行される画像表示プログラム、実施の形態1、2の画像送信装置200,1200で実行される画像送信プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。 The image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments and the image transmission program executed by the image transmission apparatuses 200 and 1200 according to the first and second embodiments are installable or executable. Various types of files may be recorded and provided on a computer-readable recording medium such as a CD-ROM, a flexible disk (FD), a CD-R, a DVD (Digital Versatile Disk), or the like.
 さらに、実施の形態1、2の画像表示装置100,1100で実行される画像表示プログラム、実施の形態1、2の画像送信装置200,1200で実行される画像送信プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、実施の形態1、2の画像表示装置100,1100で実行される画像表示プログラム、実施の形態1、2の画像送信装置200,1200で実行される画像送信プログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。 Further, the image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments and the image transmission program executed by the image transmission apparatuses 200 and 1200 according to the first and second embodiments are transferred to a network such as the Internet. It may be configured to be provided by being stored on a connected computer and downloaded via a network. The image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments and the image transmission program executed by the image transmission apparatuses 200 and 1200 according to the first and second embodiments are transmitted via a network such as the Internet. It may be configured to be provided or distributed.
 実施の形態1、2の画像表示装置100,1100で実行される画像表示プログラムは、上述した各部(情報送信部101,1101と、抽出結果受信部105と、視差補正部106と、視点・視差補正量切替部103と、画像表示部102)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(プロセッサ)が上記ROMから画像表示プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、情報送信部101,1101と、抽出結果受信部105と、視差補正部106と、視点・視差補正量切替部103と、画像表示部102が主記憶装置上に生成されるようになっている。 The image display program executed by the image display apparatuses 100 and 1100 according to the first and second embodiments includes the above-described units (the information transmission units 101 and 1101, the extraction result reception unit 105, the parallax correction unit 106, the viewpoint and parallax. The module configuration includes a correction amount switching unit 103 and an image display unit 102). As actual hardware, the CPU (processor) reads out and executes an image display program from the ROM, and each unit stores the main memory. The information transmitting units 101 and 1101, the extraction result receiving unit 105, the parallax correction unit 106, the viewpoint / parallax correction amount switching unit 103, and the image display unit 102 are generated on the main storage device. It is like that.
 また、 実施の形態1、2の画像送信装置200,1200は、上述した各部(情報受信部202と、視点決定部201,1201と、立体画像記録部203と、視点抽出部204と、視差補正部205と、フォーマット変換部206と、抽出結果送信部207)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(プロセッサ)が上記ROMから画像送信プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、情報受信部202と、視点決定部201,1201と、立体画像記録部203と、視点抽出部204と、視差補正部205と、フォーマット変換部206と、抽出結果送信部207が主記憶装置上に生成されるようになっている。 In addition, the image transmission apparatuses 200 and 1200 according to the first and second embodiments include the above-described units (the information reception unit 202, the viewpoint determination units 201 and 1201, the stereoscopic image recording unit 203, the viewpoint extraction unit 204, and the parallax correction. Unit 205, format conversion unit 206, and extraction result transmission unit 207). As actual hardware, the CPU (processor) reads out and executes the image transmission program from the ROM. Each unit is loaded on the main storage device, and the information receiving unit 202, the viewpoint determining units 201 and 1201, the stereoscopic image recording unit 203, the viewpoint extracting unit 204, the parallax correcting unit 205, the format converting unit 206, and the extraction The result transmission unit 207 is generated on the main storage device.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 100,1000,1100 画像表示装置
 101,1001,1101 情報送信部
 102 画像表示部
 103,1003 視点・視差補正量切替部
 105 抽出結果受信部
 106 視差補正部
 200,1200 画像送信装置
 201 視点決定部
 202 情報受信部
 203 立体画像記録部
 204 視点抽出部
 205 視差補正部
 206 フォーマット変換部
 207 抽出結果送信部
 1007 視聴位置検出部
100, 1000, 1100 Image display device 101, 1001, 1101 Information transmission unit 102 Image display unit 103, 1003 Viewpoint / parallax correction amount switching unit 105 Extraction result reception unit 106 Parallax correction unit 200, 1200 Image transmission device 201 Viewpoint determination unit 202 Information receiving unit 203 Stereoscopic image recording unit 204 View point extracting unit 205 Parallax correcting unit 206 Format converting unit 207 Extraction result transmitting unit 1007 Viewing position detecting unit

Claims (11)

  1.  画像送信装置に接続される画像表示装置であって、
     複数の視点から立体視可能な立体画像の表示に必要な視点数を、前記画像送信装置に送信する送信部と、
     前記画像送信装置から、前記視点数に基づいて抽出された前記立体画像を受信する受信部と、
     受信した前記立体画像を表示する表示部と、
    を備える、画像表示装置。
    An image display device connected to the image transmission device,
    A transmission unit that transmits the number of viewpoints necessary for displaying a stereoscopic image stereoscopically viewable from a plurality of viewpoints to the image transmission device;
    A reception unit that receives the stereoscopic image extracted based on the number of viewpoints from the image transmission device;
    A display unit for displaying the received stereoscopic image;
    An image display device comprising:
  2.  前記送信部は、前記必要な視点の視点位置をさらに送信し、
     前記受信部は、前記視点数と前記視点位置とに基づいて抽出された前記立体画像を受信する、
    請求項1に記載の画像表示装置。
    The transmitter further transmits a viewpoint position of the required viewpoint;
    The receiving unit receives the stereoscopic image extracted based on the number of viewpoints and the viewpoint position;
    The image display device according to claim 1.
  3.  前記送信部は、前記立体画像の視差を補正するための視差補正情報をさらに送信し、
     前記受信部は、さらに前記視差補正情報に基づいて視差補正が施された前記立体画像を受信する、
    請求項2に記載の画像表示装置。
    The transmission unit further transmits parallax correction information for correcting parallax of the stereoscopic image;
    The receiving unit further receives the stereoscopic image that has been subjected to parallax correction based on the parallax correction information.
    The image display device according to claim 2.
  4.  前記立体画像に対し視差補正を行う視差補正部をさらに備え、
     前記送信部は、視差補正を画像表示装置側で実行することを示す実行情報をさらに送信し、
     前記受信部は、視差補正が施されていない前記立体画像と、視差補正に必要な視差パラメータとを、前記画像送信装置から受信し、
     前記視差補正部は、視差補正に関する視差補正情報と前記視差パラメータとに基づいて、受信した前記立体画像に対して視差補正を行い、
     前記表示部は、視差補正が施された立体画像を表示する、
    請求項2に記載の画像表示装置。
    A parallax correction unit that performs parallax correction on the stereoscopic image;
    The transmission unit further transmits execution information indicating that the parallax correction is performed on the image display device side,
    The receiving unit receives the stereoscopic image that has not been subjected to parallax correction and the parallax parameters necessary for parallax correction from the image transmission device,
    The parallax correction unit performs parallax correction on the received stereoscopic image based on parallax correction information on the parallax correction and the parallax parameter,
    The display unit displays a stereoscopic image subjected to parallax correction;
    The image display device according to claim 2.
  5.  視聴者の位置を検出する視聴位置検出部と、
     前記視聴者の位置に基づいて、前記視点位置を変更する変更部と、をさらに備える、
    請求項2に記載の画像表示装置。
    A viewing position detector for detecting the position of the viewer;
    A changing unit that changes the viewpoint position based on the position of the viewer;
    The image display device according to claim 2.
  6.  画像表示装置に接続される画像送信装置であって、
     複数の視点から立体視可能な立体画像の表示に必要な視点数を、前記画像表示装置から受信する受信部と、
     前記視点数の前記立体画像を抽出する抽出部と、
     抽出された前記視点数の前記立体画像を、前記画像表示装置に送信する送信部と、
    を備える、画像送信装置。
    An image transmission device connected to an image display device,
    A receiving unit that receives the number of viewpoints necessary for displaying a stereoscopic image that can be stereoscopically viewed from a plurality of viewpoints from the image display device;
    An extraction unit for extracting the stereoscopic image of the number of viewpoints;
    A transmission unit that transmits the extracted three-dimensional image of the number of viewpoints to the image display device;
    An image transmission device comprising:
  7.  前記受信部は、前記立体画像の表示に必要な視点位置をさらに受信し、
     前記抽出部は、前記視点数と前記視点位置とに基づいて前記視点を抽出する、
    請求項6に記載の画像送信装置。
    The receiving unit further receives a viewpoint position necessary for displaying the stereoscopic image;
    The extraction unit extracts the viewpoint based on the number of viewpoints and the viewpoint position;
    The image transmission device according to claim 6.
  8.  前記立体画像に対して視差補正を行う視差補正部をさらに備え、
     前記受信部は、さらに視差補正に関する補正情報を受信し、
     前記視差補正部は、抽出された視点の前記立体画像に対して、視差補正に必要な視差補正パラメータと前記補正情報とに基づいて視差補正を行い、
     前記送信部は、視差補正が施された立体画像を送信する、
    請求項7に記載の画像送信装置。
    A parallax correction unit that performs parallax correction on the stereoscopic image;
    The receiver further receives correction information related to parallax correction,
    The parallax correction unit performs parallax correction on the extracted stereoscopic image of the viewpoint based on parallax correction parameters necessary for parallax correction and the correction information,
    The transmission unit transmits a stereoscopic image subjected to parallax correction;
    The image transmission device according to claim 7.
  9.  画像送信装置と、画像表示装置とを備えた画像表示システムであって、
     前記画像表示装置は、
     複数の視点から立体視可能な立体画像の表示に必要な視点数を前記画像送信装置に送信する第1送信部と、
     前記画像送信装置から、前記視点数に基づいて抽出された前記立体画像を受信する第1受信部と、
     受信した前記立体画像を表示する表示部と、を備え、
     前記画像送信装置は、
     前記画像表示装置から、前記視点数を受信する第2受信部と、
     前記視点数の前記立体画像を抽出する抽出部と、
     抽出された前記視点数の前記立体画像を、前記画像表示装置に送信する第2送信部と、
    を備えた、画像表示システム。
    An image display system including an image transmission device and an image display device,
    The image display device includes:
    A first transmission unit that transmits the number of viewpoints necessary for displaying a stereoscopic image stereoscopically viewable from a plurality of viewpoints to the image transmission device;
    A first receiving unit that receives the stereoscopic image extracted based on the number of viewpoints from the image transmitting device;
    A display unit for displaying the received stereoscopic image,
    The image transmission device includes:
    A second receiver for receiving the number of viewpoints from the image display device;
    An extraction unit for extracting the stereoscopic image of the number of viewpoints;
    A second transmission unit that transmits the extracted three-dimensional images of the number of viewpoints to the image display device;
    An image display system comprising:
  10.  複数の視点から立体視可能な立体画像の表示に必要な視点数を、画像表示装置から受信し、
     前記視点数の前記立体画像を抽出し、
     抽出された前記視点数の前記立体画像を、前記画像表示装置に送信する、
    画像送信方法。
    The number of viewpoints necessary for displaying a stereoscopic image that can be stereoscopically viewed from a plurality of viewpoints is received from the image display device,
    Extracting the stereoscopic image of the number of viewpoints;
    Transmitting the extracted stereoscopic image of the number of viewpoints to the image display device;
    Image transmission method.
  11.  コンピュータを、
     複数の視点から立体視可能な立体画像の表示に必要な視点数を画像表示装置から受信する手段と、
     前記視点数の前記立体画像を抽出する手段と、
     抽出された前記視点数の前記立体画像を、前記画像表示装置に送信する手段と
    して機能させるためのプログラム。
    Computer
    Means for receiving from the image display device the number of viewpoints necessary for displaying a stereoscopic image that can be stereoscopically viewed from a plurality of viewpoints;
    Means for extracting the stereoscopic image of the number of viewpoints;
    The program for functioning as a means to transmit the extracted three-dimensional image of the number of viewpoints to the image display device.
PCT/JP2011/057430 2011-03-25 2011-03-25 Image display device, image transmission device, image display system, image transmission method, and program WO2012131851A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057430 WO2012131851A1 (en) 2011-03-25 2011-03-25 Image display device, image transmission device, image display system, image transmission method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057430 WO2012131851A1 (en) 2011-03-25 2011-03-25 Image display device, image transmission device, image display system, image transmission method, and program

Publications (1)

Publication Number Publication Date
WO2012131851A1 true WO2012131851A1 (en) 2012-10-04

Family

ID=46929693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057430 WO2012131851A1 (en) 2011-03-25 2011-03-25 Image display device, image transmission device, image display system, image transmission method, and program

Country Status (1)

Country Link
WO (1) WO2012131851A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089421A (en) * 1994-06-20 1996-01-12 Sanyo Electric Co Ltd Stereoscopic video equipment
JPH09200715A (en) * 1996-01-19 1997-07-31 Canon Inc Equipment, method and system for communication
JP2010088092A (en) * 2008-09-02 2010-04-15 Panasonic Corp Three-dimensional video transmission system, video display device and video output device
JP2010273013A (en) * 2009-05-20 2010-12-02 Sony Corp Stereoscopic display device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089421A (en) * 1994-06-20 1996-01-12 Sanyo Electric Co Ltd Stereoscopic video equipment
JPH09200715A (en) * 1996-01-19 1997-07-31 Canon Inc Equipment, method and system for communication
JP2010088092A (en) * 2008-09-02 2010-04-15 Panasonic Corp Three-dimensional video transmission system, video display device and video output device
JP2010273013A (en) * 2009-05-20 2010-12-02 Sony Corp Stereoscopic display device and method

Similar Documents

Publication Publication Date Title
US10080010B2 (en) Method of encoding a video data signal for use with a multi-view rendering device
JP6406327B2 (en) Receiving apparatus and receiving method
JP4952657B2 (en) Pseudo stereoscopic image generation apparatus, image encoding apparatus, image encoding method, image transmission method, image decoding apparatus, and image decoding method
KR101863767B1 (en) Pseudo-3d forced perspective methods and devices
US20110298795A1 (en) Transferring of 3d viewer metadata
US20160198140A1 (en) System and method for preemptive and adaptive 360 degree immersive video streaming
US20060279750A1 (en) Apparatus and method for converting image display mode
EP2384009A2 (en) Display device and method of outputting audio signal
JP2010258583A (en) 3d image display apparatus, 3d image playback apparatus, and 3d image viewing system
AU2012232423A1 (en) Image processing device and image processing method
KR20110114670A (en) Transferring of 3d image data
KR101457893B1 (en) Method and apparatus for reducing fatigue resulting from three dimensional display, and method and apparatus for generating data stream for low-fatigue three dimensional images
EP2834982B1 (en) Depth helper data
US20160021354A1 (en) Adaptive stereo scaling format switch for 3d video encoding
US9118895B2 (en) Data structure, image processing apparatus, image processing method, and program
WO2013025149A1 (en) Encoder, method in an encoder, decoder and method in a decoder for providing information concerning a spatial validity range
US9762884B2 (en) Encoding device, encoding method, decoding device, and decoding method for encoding multiple viewpoints for compatibility with existing mode allowing fewer viewpoints
US9549167B2 (en) Data structure, image processing apparatus and method, and program
US9106894B1 (en) Detection of 3-D videos
TWI824016B (en) Apparatus and method for generating and rendering a video stream
US20120224035A1 (en) Electronic apparatus and image processing method
WO2012131851A1 (en) Image display device, image transmission device, image display system, image transmission method, and program
US8416288B2 (en) Electronic apparatus and image processing method
US20140072271A1 (en) Recording apparatus, recording method, reproduction apparatus, reproduction method, program, and recording reproduction apparatus
US20130266287A1 (en) Reproduction device and reproduction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP