WO2012128131A1 - 紫外線吸収剤及びこれを用いた化粧料 - Google Patents

紫外線吸収剤及びこれを用いた化粧料 Download PDF

Info

Publication number
WO2012128131A1
WO2012128131A1 PCT/JP2012/056459 JP2012056459W WO2012128131A1 WO 2012128131 A1 WO2012128131 A1 WO 2012128131A1 JP 2012056459 W JP2012056459 W JP 2012056459W WO 2012128131 A1 WO2012128131 A1 WO 2012128131A1
Authority
WO
WIPO (PCT)
Prior art keywords
intao
ultraviolet absorber
doping
ultraviolet
less
Prior art date
Application number
PCT/JP2012/056459
Other languages
English (en)
French (fr)
Inventor
江口 晴樹
渕上 健児
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to US14/006,748 priority Critical patent/US20140112876A1/en
Priority to EP12760163.1A priority patent/EP2689769A1/en
Priority to CN201280014745.2A priority patent/CN103547248A/zh
Publication of WO2012128131A1 publication Critical patent/WO2012128131A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to a cosmetic having ultraviolet absorption characteristics and a method for producing the cosmetic.
  • ultraviolet rays are known to cause various changes in the skin. Dermatologically, the working wavelength of ultraviolet rays is classified into long-wavelength ultraviolet rays of 400 nm to 320 nm, medium-wavelength ultraviolet rays of 320 nm to 290 nm, and short-wavelength ultraviolet rays of 290 nm or less, which are respectively UV-A and UV-B. And UV-C.
  • UV-A and UV-B form erythema and water bubbles when the skin is irradiated with a certain amount of light, and the formation of melanin is promoted, resulting in pigmentation. Bring about changes. Therefore, protecting the skin from UV-A and UV-B is extremely important in terms of preventing the promotion of aging of the skin and preventing the occurrence of spots and freckles.
  • UV-A and UV-B absorbers have been developed.
  • UV-B absorber PABA derivatives, cinnamic acid derivatives, salicylic acid derivatives, camphor derivatives, urocanic acid derivatives, benzophenone derivatives and heterocyclic derivatives are known. (For example, refer to Patent Document 2).
  • UV-A and UV-B absorbers are blended and used in skin external preparations such as cosmetics and quasi drugs.
  • fine particle titanium oxide is blended in cosmetics and the like for the purpose of UV protection using its ultraviolet shielding power, but its protective effect is compared with organic ultraviolet absorbers used for the same purpose. Then, it is weak and it is necessary to increase the blending amount in order to have a high UV protection effect. For this reason, there is a risk that unnatural bluishness may occur when an ultraviolet protective cosmetic compounded with finely-divided titanium oxide, which has been commercially available, is applied to the skin. Further, the conventional fine particle titanium oxide shields the wavelength in the UV-B region (320 nm to 290 nm), but is insufficient in shielding the UV-A region (400 nm to 320 nm).
  • a titanium oxide-cerium oxide composite sol has been proposed as a combination of titanium oxide and cerium oxide. (For example, refer to Patent Document 5).
  • ultraviolet absorbers using silicon clusters or germanium clusters have also been proposed. (For example, refer to Patent Document 7).
  • an ultraviolet absorber comprising at least one silicon oligomer having n of 2 to 5 in the formula (I) shown below and an external preparation for skin comprising this ultraviolet absorber are also introduced.
  • an ultraviolet absorber comprising at least one silicon oligomer having n of 2 to 5 in the formula (I) shown below and an external preparation for skin comprising this ultraviolet absorber are also introduced.
  • Japanese Patent Laid-Open No. 5-247063 Japanese Patent Laid-Open No. 2003-212711 JP-A-5-330825 JP 7-69636 A Japanese Patent Publication No. 6-650 JP-A-60-245671 JP-A-2005-314408 Japanese Laid-Open Patent Publication No. 11-180829 JP 2006-27917 PR
  • iron-containing titanium oxide is excellent in suppressing whitening of titanium oxide and shielding properties in the UV-A region, the redness due to iron oxide is strong and it is difficult to adjust the color tone.
  • the color becomes orange and the color tone of the foundation is closer than that of general emulsions.
  • the color tone of the foundation may be affected, and there may be a feeling of difficulty during makeup.
  • titanium oxide-cerium oxide composite sol is in the form of sol, there are restrictions on blending into cosmetics, and there is room for improvement in terms of durability.
  • titanium oxide and cerium oxide is low-order titanium oxide is a black pigment
  • the ultraviolet absorber by silicon cluster or germanium cluster is intended for coloring because the silicon cluster and germanium cluster are black pigments. In fact, it is not used in cosmetics that do not.
  • these black pigments do not sufficiently absorb light in the UV-A region (400 nm to 320 nm) in light absorption spectrum.
  • the cosmetic according to Patent Document 8 does not float white after being applied to the skin, and is not naturally colored according to the color of the skin. In addition, a sufficient ultraviolet absorption effect cannot be obtained.
  • the UV absorber according to Patent Document 9 is black and is not suitable for cosmetics.
  • the present invention has been made in view of such circumstances, and has a sufficient blocking effect against UV-A and UV-B, and when applied to the skin, natural coloring that matches the skin color is achieved.
  • An object of the present invention is to provide an ultraviolet absorber that can be suitably applied even to races with dark skin color and a cosmetic using the same.
  • the present invention has a general formula ABO 4 (where A is In (indium), Bi (bismuth), Ga (gallium) or Gd (gadolinium), B is Ta (tantalum), Nb (niobium)).
  • V vanadium
  • the ultraviolet absorber which becomes becomes.
  • the white compound is colored by introducing 10% or less of at least one of the groups into one or both of A and B of the compound represented by the general formula ABO 4 described above. Therefore, it is possible to provide an ultraviolet absorber that has a sufficient blocking effect against UV-A and UV-B and can be naturally colored according to the color of the skin when applied to the skin.
  • the ultraviolet absorber according to the present invention can introduce 1% or more of at least one of the above groups.
  • the present invention relates to a compound represented by the general formula ABO 4 (where A is In, Bi, Ga or Gd, and B is Ta, Nb or V). ) Is introduced in an amount of 1% or more and 10% or less, and Zn is introduced in an amount of 1% or more and 10% or less.
  • this ultraviolet absorber since the white compound turns brown, it has a sufficient blocking effect against UV-A and UV-B, and can be naturally colored to match the brown skin color. Moreover, it is more preferable that this ultraviolet absorber introduce 5% Fe and 5% Zn.
  • the present invention relates to a compound represented by the general formula ABO 4 (wherein A is In, Bi, Ga or Gd, B is Ta, Nb or V), and Fe or 1% is added to each or both of A and B.
  • the present invention provides an ultraviolet absorber introduced at 10% or less. In this ultraviolet absorber, since the white compound turns light brown, it has a sufficient blocking effect on UV-A and UV-B, and can be naturally colored to match the light brown skin color. Moreover, it is more preferable that this ultraviolet absorber introduce 10% of Fe.
  • the present invention relates to a compound represented by the general formula ABO 4 (wherein A is In, Bi, Ga or Gd, and B is Ta, Nb or V). ) Is introduced at 1% or more and 10% or less.
  • This ultraviolet absorber has a sufficient blocking effect against UV-A and UV-B since the white compound turns yellow, and can be naturally colored to match the yellow skin color. Further, it is more preferable that this ultraviolet absorber introduces 10% of Zn.
  • the present invention relates to a compound represented by the general formula ABO 4 (where A is In, Bi, Ga or Gd, B is Ta, Nb or V), and each of one or both of A or B has Ni (nickel)
  • ABO 4 where A is In, Bi, Ga or Gd, B is Ta, Nb or V
  • Ni nickel
  • the present invention provides an ultraviolet absorber that is introduced at 1% or more and 10% or less. In this ultraviolet absorber, since the white compound turns pale yellow, it has a sufficient blocking effect on UV-A and UV-B, and can be naturally colored to match the pale yellow skin color. Moreover, it is more preferable that this ultraviolet absorber introduce 10% of Ni.
  • the present invention provides a compound represented by the general formula ABO 4 (where A is In, Bi, Ga or Gd, and B is Ta, Nb or V), and In is excessively introduced at 1% or more and 10% or less.
  • the ultraviolet absorber formed is provided.
  • This ultraviolet absorber has a sufficient blocking effect against UV-A and UV-B since the white compound turns yellow, and can be naturally colored to match the yellow skin color. Further, it is more preferable that this ultraviolet absorber introduces In in excess of 10%.
  • the present invention can provide a cosmetic containing the aforementioned ultraviolet absorber.
  • ABO 4 (where A is In (indium), Bi (bismuth), Ga (gallium) or Gd (gadolinium), B is Ta (tantalum), Nb (niobium) or V (vanadium))
  • Examples of the compound to be used include InTaO 4 (indium tantalum oxide), InNbO 4 (indium niobium oxide), BiTaO 4 (bismuth tantalum oxide), BiNbO 4 (bismuth niobium oxide), BiVO 4 (bismuth vanadium oxide), and GaTaO 4 ( Gallium tantalum oxide), GdTaO 4 (gadolinium tantalum oxide), and the like.
  • the ultraviolet absorbent and the cosmetic according to the present invention can effectively absorb UV-A and UV-B, they can exhibit a sufficient blocking effect against UV-A and UV-B.
  • natural coloring that matches the color of the skin when applied to the skin is possible, and it can be suitably applied to races with dark skin color.
  • it is a figure which shows the relationship between the doving element (element which can be substituted) derived
  • it is a diagram showing a relationship between an electron energy and the electron density when substituted with the doping element part of InTaO 4.
  • it is a diagram showing a relationship between an electron energy and the electron density when substituted with the doping element part of InTaO 4.
  • it is a diagram showing a relationship between an electron energy and the electron density when substituted with the doping element part of InTaO 4.
  • it is a diagram showing a relationship between an electron energy and the electron density when substituted with the doping element part of InTaO 4. It is a figure which shows the absorption spectrum by the diffuse reflection spectroscopy of the ultraviolet absorber (sample) created in Example 1 in embodiment of this invention. In an embodiment of the present invention, it is a diagram showing a relationship between an electron energy and the electron density when substituted with the doping element part of InTaO 4. It is a figure which shows the absorption spectrum by the diffuse reflection spectroscopy of the ultraviolet absorber (sample) created in Example 2 in embodiment of this invention. It is a flowchart which shows the process at the time of manufacturing the ultraviolet absorber of this invention by the sol gel method.
  • the ultraviolet absorbent according to the embodiment of the present invention will be described in detail.
  • a case where InTaO 4 is used as the compound represented by the general formula ABO 4 (where A is In, Bi, Ga, or Gd, and B is Ta, Nb, or V) will be described.
  • an element into InTaO 4 referred to as "doping”
  • at least a portion of InTaO 4 substituents Such an element may be referred to as a “doping element”.
  • the ultraviolet absorber according to the embodiment of the present invention includes Sc, Ti, V, Cr, Mn, Co, Cu, Ga, Ge, As, Y, a part of each one of In or Ta of InTaO 4 or both.
  • This ultraviolet absorber may be one in which only a part of In in InTaO 4 is substituted with the doping element, or one in which only a part of Ta is substituted with the doping element. Further, a part of both In and Ta may be substituted with the doping element. Further, the doping element that substitutes a part of InTaO 4 may be one kind or plural kinds.
  • the ultraviolet absorbent according to the present invention is one in which In is introduced excessively into InTaO 4 and a part of Ta is substituted with In.
  • a doping element is selected by performing a simulation based on the first principle calculation from a large number of elements existing on the earth.
  • the analysis methods used in this analysis are all based on the density functional method.
  • a norm-conserving pseudopotential using the Kleinman-Bylander format (L. Kleinmanand D. M. Bylander, Phys. Rev. Lett. 48 (1982) 425) is used.
  • Pseudowave functions and pseudopotentials use the method of Troullier and Martins (N. Trooullier and JL Martins, Phys. Rev. B. 43 (1991) 1993), and the exchange mutual energy is Perdew and Zunger (JP Perdewand A. Zunger, Phys. Rev. B. 23 (1981) 5048) is used.
  • the cut-off energy due to plane wave energy is within 5% of the error of the lattice constant corresponding to the minimum value of the total energy when the total energy of the electron system is calculated using the lattice constant as a function. It is set to be.
  • a method of selecting samples by trial and error by repeatedly performing sample preparation and evaluation experiments may be considered.
  • Second step First, from among the large number of elements that are considered usable as Dobingu element doped InTaO 4, molecules formed after doping the InTaO 4 is (whether stable molecule) whether established as molecular Was determined based on the first principle calculation. Based on the discrimination result, elements that can be used as doping elements were selected (screened). Whether the molecule formed after doping is a stable molecule was determined in consideration of the binding energy of the formed molecule. Specifically, an allowable value for the binding energy is set in advance, and whether or not the binding energy of molecules generated when at least a part of InTaO 4 is substituted with a predetermined element is equal to or less than the allowable value. Judged. First-principles calculations are used to derive this binding energy.
  • the derived binding energy is less than the above allowable value, it is established as a numerator (is a stable molecule).
  • a numerator is a stable molecule. That is, among the elements present on the earth, an element whose molecule after being doped into InTaO 4 is a stable molecule was selected as an element (doping element) that can be doped into InTaO 4 .
  • FIG. 1 is a diagram showing the relationship between the doving element derived from the first principle calculation and the binding energy.
  • the horizontal axis of the graph shown in FIG. 1 shows an element doped with InTaO 4
  • the vertical axis shows a binding energy value of molecules generated after doping the element shown on the horizontal axis with InTaO 4. Is normalized with the binding energy value of undoped InTaO 4 .
  • These bond energy values are derived based on the first principle calculation.
  • the binding energy value is derived based on the first principle calculation, the binding energy is equal to or higher than that of the starting material, InTaO 4 (undoped InTaO 4 ). It was confirmed to have. From this, InTaO 4 is added to Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag. , Cd, Sn, Sb, Hf, W, Re, Os, Ir, Pt, Au, Hg, La, and In, each of the elements formed after doping is a stable molecule. 4 is a doping element that can be doped.
  • 2 to 5 are diagrams showing the relationship between electron energy and electron density when a part of InTaO 4 is substituted with a doping element. 2 to 5, the horizontal axis represents electron energy, and the vertical axis represents electron density.
  • FIG. 2A shows data on InTaO 4 not doped with a doping element.
  • FIGS. 2B to 2E show data in the case where 6.25% of InTaO 4 is replaced with Cu, Ni, Fe, and Zn, respectively.
  • 3A and 3B show data when 1% of InTaO 4 is replaced with V and Cr, respectively.
  • FIG. 4A and FIG. 4B show data when 1% of InTaO 4 is replaced with Mn and Co, respectively.
  • 5A and 5B show data in the case where 1% of InTaO 4 is replaced with Ti and Ga, respectively.
  • the size of the band gap that affects the light absorption characteristics, the electron density, and the like greatly change depending on the type of the doping element that substitutes a part of InTaO 4 .
  • a doping element Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Y, Zr, Nb, Mo, Tc , Ru, Rh, Pd, Ag, Cd, Sn, Sb, Hf, W, Re, Os, Ir, Pt, Au, Hg, La, In can be used, and in particular, as an ultraviolet absorber, It can be seen that it is preferable to use Ni, Fe, Zn, Ti, and Ga as doping elements, and among these, it is preferable to use Zn, Ti, and Ga.
  • Example 1 Experiments were performed on Zn, Fe, and Ni among a plurality of doping elements selected based on the first principle calculation including the first step and the second step described above. That is, the following experiments were conducted using InTaO 4 doped with Zn, Fe, and Ni as the test object. For comparison, the same experiment was performed for undoped InTaO 4 and TiO 2 .
  • the ultraviolet absorber according to the present embodiment can be synthesized by a normal solid phase reaction method, that is, by mixing each metal component as a raw material at a ratio of a target composition and baking it in air at normal pressure.
  • a solid-phase reaction method was used for preparing a sample of the ultraviolet absorber.
  • the amount of the doping element was set to 10% substitution with respect to In and Ta, and calcination was performed at 1150 ° C. for 48 hours.
  • FIG. 6 is a diagram showing an absorption spectrum of the ultraviolet absorbent (sample) prepared in Example 1 by diffuse reflection spectroscopy. From this, it can be seen that when Fe is used as the doping element, the ultraviolet absorber exhibits a particularly large absorbance in the ultraviolet region. In addition, as a shape of the ultraviolet absorber which concerns on this invention, in order to absorb light effectively, it is desirable that it is a microparticle and has a large surface area. Although the oxide prepared by the solid-phase reaction method has large particles and a small surface area, the particle size can be reduced by grinding with a ball mill or the like. Further, the fine particles can be used after being molded into a desired shape.
  • non is a sample of InTaO 4 that is not doped with a doping element
  • TiO 2 is a sample of titanium oxide having an anatase structure
  • Fe is 10% introduced into InTaO 4 using Fe as a substitution element
  • Zn is a sample obtained by introducing 10% of Zn into InTaO 4 as a substitution element
  • Ni is a sample obtained by introducing 10% of Ni as a substitution element into InTaO 4 .
  • FIG. 6 shows that “non” and “TiO 2 ” absorb light having a wavelength of 400 nm or less, but hardly absorb light having a wavelength of 400 nm or more.
  • “Fe”, “Zn”, and “Ni” absorb both light with a wavelength of 400 nm or less and light with a wavelength of 400 nm or more that causes coloring. “Fe” was light brown, “Zn” was yellow, and “Ni” was light yellow.
  • FIG. 7 is a diagram showing the relationship between the electron state density and the electron energy by the first principle calculation corresponding to “non”, “Ni”, “Fe”, and “Zn”. “Non” has a wide band gap because no doping element is added to InTaO 4 , but “Ni”, “Fe”, and “Zn” have a narrow band gap as a result of coloring the sample. .
  • Example 2 Next, in the same manner as in Example 1, the InTaO 4 doped with Mo and La, the InTaO 4 doped with Zn and Fe, and the InTaO 4 doped with Zn and In were tested. The experiment was conducted. For comparison, a similar experiment was conducted for undoped InTaO 4 . The doping element was introduced at 10%.
  • FIG. 8 is a diagram showing an absorption spectrum of the ultraviolet absorbent (sample) prepared in Example 2 by diffuse reflection spectroscopy.
  • “non” is a sample of InTaO 4 that is not doped with a doping element
  • “Mo” is a sample in which Mo is substituted into InTaO 4 as a replacement element
  • “La” is a sample of InTaO 4 with La as a substitution element.
  • Zn + in is the sample which were each 5% introduced as a substitution element of Zn and in in InTaO 4.
  • FIG. 8 shows that “non” absorbs light with a wavelength of 400 nm or less, but hardly absorbs light with a wavelength of 400 nm or more.
  • “Mo”, “La”, “Zn + Fe”, and “Zn + In” absorb both light having a wavelength of 400 nm or less and light having a wavelength of 400 nm or more. “Mo” was light brown, “La” was gray, “Zn + Fe” was gray, and “Zn + In” was light gray.
  • Example 2 when an experiment was performed using InTaO 4 doped with In (10% excess introduced) by the same method as in Example 1 and Example 2, light having a wavelength of 400 nm or less and It was found that both lights with wavelengths of 400 nm or longer were absorbed. This sample was light yellow.
  • a sunscreen cream formulation example is shown below.
  • ⁇ Examples of sunscreen cream> Cetanol 1.0% by weight Stearic acid 2.0% by weight Cholesterol 1.0% by weight Squalane 5.0% by weight Jojoba oil 4.0 wt% Octyl paramethoxycinnamate 4.0% by weight Polyoxyethylene (40) hydrogenated castor oil 1.0% by weight Sorbitan monostearate 2.0% by weight Product of the present invention 7.0% by weight Butylparaben 0.1% by weight Methylparaben 0.1% by weight Ethanol 3.0% by weight Glycerin 10.0% by weight Bovine placenta extract 1.0% by weight Perfume 0.05% by weight Purified water balance
  • This cosmetic also absorbs both light with a wavelength of 400 nm or less and light with a wavelength of 400 nm or more, has a sufficient blocking effect on UV-A and UV-B as a sunscreen, When the skin color was used on a black race, natural coloration corresponding to the skin color was achieved.
  • the ultraviolet absorbent according to this embodiment can also be manufactured by various sol-gel methods.
  • this sol-gel method for example, as shown in FIG. 9, a tantalum sol formation step S1, an indium sol formation step S2, a doping element doping step S3, a mixed liquid formation step S4, a PH adjustment step S5, a gel formation step S6, What consists of drying step S7 and oxidation reaction step S8 is mentioned.
  • a tantalum sol containing fine tantalum particles in a colloidal state is synthesized by a chemical reaction.
  • 0 to 10 mol of acetylacetone and 0 to 10 mol of acetic acid are mixed with 1 mol of tantalum. More specifically, a tantalum oxide sol (0.005 mol of tantalum ethoxide + 10 ml of acetic acid + 10 ml of acetylacetone) was first prepared by stirring overnight with a stirrer.
  • an indium sol containing fine indium particles in a colloidal state is synthesized by a chemical reaction.
  • 0.1 to 10 mol of absolute ethanol, 0.1 to 10 mol of nitric acid, and 0.1 to 10 mol of ammonia are mixed with respect to 1 mol of indium.
  • the mixed liquid forming step S4 tantalum sol, indium sol, and a doping element are mixed to form a mixed liquid.
  • nitric acid is appropriately added to the mixed solution obtained in the mixed solution forming step S4, and the pH of the mixed solution is adjusted to 6-7.
  • the mixed solution obtained in the PH adjustment step S5 is stirred overnight with a stirrer while being kept at 50 to 70 ° C., and gradually evaporated to a gel state.
  • the gel-like precursor obtained in the gel forming step S6 is further dried at 120 ° C. overnight.
  • the gel dried in the heating / drying step S7 is subjected to an oxidation reaction between 500-1000 ° C. to form solid InTaO 4 . In this way, an ultraviolet absorber is obtained.
  • the sol-gel method by increasing the specific surface area of the particles by atomizing the particles from the tantalum sol containing colloidal tantalum particles, indium sol containing colloidal fine indium particles, and doping elements by the sol-gel method. It is possible to manufacture (synthesize) a cosmetic material having a nano-order particle size. Cosmetics obtained using the sol-gel method were able to absorb ultraviolet light well. Further, this cosmetic has a uniform particle size, and has an effect that, when applied to (fitted with) the bare skin, the skin is fine, transparent, and looks natural and beautiful.
  • the ultraviolet absorber which concerns on this invention can exhibit the color tone corresponding to the skin color of all the races by selecting a doping element and its substitution rate (introduction rate). For example, by introducing (substituting) Fe into one or both of InTaO 4 and In or Ta in a range of 1% to 10%, a color tone close to ocher, brown, or black can be obtained.
  • InTaO 4 is used as the compound represented by the general formula ABO 4 .
  • the present invention is not limited to this, and the compounds represented by the general formula ABO 4 include InNbO 4 , BiTaO 4 , BiNbO.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

 UV-A及びUV-Bに対し十分な遮断効果を有し、肌に塗布した際に当該肌の色に合った自然な着色が可能であり、肌の色が濃い人種に対しても好適に適用可能な紫外線吸収剤及びこれを用いた化粧料を提供する。一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hg、La、Inからなる群のうちの少なくとも1つを10%以下で導入してなる紫外線吸収剤である。

Description

紫外線吸収剤及びこれを用いた化粧料
 本発明は、紫外線吸収特性を有する化粧料及び該化粧料の製造方法に関する。
 従来から、紫外線は、皮膚に様々な変化をもたらすことが知られている。皮膚科学的には、紫外線の作用波長を、400nm~320nmの長波長紫外線、320nm~290nmの中波長紫外線、及び290nm以下の短波長紫外線に分類し、これらはそれぞれ、UV-A、UV-B及びUV-Cと呼ばれている。
 通常、人間が晒される紫外線の大部分は太陽光線であるが、この紫外線のうち、地上に届く紫外線は、UV-A及びUV-Bであり、UV-Cは、オゾン層において吸収されるので地上にほとんど到達しない。地上まで到達する紫外線の中で、UV-A及びUV-Bは、ある一定以上の光量が皮膚に照射されると紅斑や水泡を形成し、またメラニンの形成が促進され、色素沈着を生じる等の変化をもたらす。したがって、UV-A及びUV-Bから皮膚を保護することは、皮膚の老化促進を予防し、シミ、ソバカスの発生を防ぐ意味においてきわめて重要であり、かかる観点から、これまでに、種々のUV-A及びUV-B吸収剤が開発されてきた。
 既存のUV-A吸収剤としては、ジベンゾイルメタン誘導体が知られている。(例えば、特許文献1参照)。
 また、UV-B吸収剤としては、PABA誘導体、桂皮酸誘導体、サリチル酸誘導体、カンファー誘導体、ウロカニン酸誘導体、ベンゾフェノン誘導体及び複素環誘導体が知られている。(例えば、特許文献2参照)。
 これらのUV-A及びUV-B吸収剤は、化粧料、医薬部外品等の皮膚外用剤に配合され、利用されている。
 一方、微粒子酸化チタンは、その紫外線遮蔽力を利用し、UV防御を目的とした化粧料等に配合されているが、その防御効果は、同様な目的で使用されている有機紫外線吸収剤に比較すると弱く、高い紫外線防御効果を持たせるためには配合量を多くする必要がある。このため、従来から市販されている微粒子酸化チタンを配合した紫外線防御化粧料を肌に塗布すると、不自然な青白さを生じる等の虞がある。また、従来の微粒子酸化チタンは、UV-B領域(320nm~290nm)の波長は遮蔽するものの、UV-A領域(400nm~320nm)の遮蔽は不十分である。
 そこで、紫外線遮蔽効果に優れ、不自然な白さを与えない酸化チタンとして、例えば、鉄含有超微粒子ルチル型酸化チタンや、鉄含有二酸化チタン等が提案されている。(例えば、特許文献3及び4参照)。
 また、酸化チタンと酸化セリウムとの組み合わせとして酸化チタン-酸化セリウム複合系ゾルも提案されている。(例えば、特許文献5参照)。
 そしてまた、低次酸化チタン顔料に酸化チタンとセリウム酸化物との組み合わせも提案されている。(例えば、特許文献6参照)。
 さらにまた、シリコンクラスターまたはゲルマニウムクラスターによる紫外線吸収剤も提案されている。(例えば、特許文献7参照)。
 また、UV-A及びUV-B遮断効果を有し、化粧料中に配合しても着色しない化粧料も提案されている。(例えば、特許文献8参照)。
 そしてまた、下記に示す式(I)においてnが2~5の少なくとも一種のシリコンオリゴマーを含んでなる紫外線吸収剤及びこの紫外線吸収剤を配合してなる皮膚外用剤も紹介されている。(例えば、特許文献9参照)。
  式(I)
-(Si)n-N< 
特開平5-247063号公報 特開2003-212711号公報 特開平5-330825号公報 特開平7-69636号公報 特公平6-650号公報 特開昭60-245671号公報 特開2005-314408号公報 特開平11-180829号広報 特開2006-27917号広報
 しかしながら、鉄含有酸化チタンは、酸化チタンの白浮きの抑えやUV-A領域の遮蔽性には優れているものの、酸化鉄による赤みが強く、色調の調整が困難である。化粧料に配合するとオレンジ色となり、一般的な乳液よりもファンデーションに色調が近く、化粧下地として使用すると、ファンデーションの色調に影響を与えたり、化粧時に重苦しさを感じさせる等の虞がある。
 また、酸化チタン-酸化セリウム複合系ゾルは、形態がゾルであるため、化粧料への配合に制約があり、耐久性の点でも改良の余地がある。
 そしてまた、酸化チタンとセリウム酸化物との組み合わせは、低次酸化チタンが黒色顔料であり、シリコンクラスターまたはゲルマニウムクラスターによる紫外線吸収剤は、シリコンクラスター及びゲルマニウムクラスターが黒色顔料でるため、着色を目的としない化粧料には使用されていないのが実情である。また、これら黒色顔料は、光の吸収スペクトルをみると、UV-A領域(400nm~320nm)の光の吸収は十分ではない。
 さらにまた、特許文献8に係る化粧料は、肌に塗布した後に白浮きしないものであり、肌の色に合った自然な着色がなされるものではない。また、十分な紫外線吸収効果を得ることができない。
 また、特許文献9に係る紫外線吸収剤は、黒色となり、化粧料には適さないのが実情である。
 本発明は、このような事情に鑑みなされたものであり、UV-A及びUV-Bに対し十分な遮断効果を有し、肌に塗布した際に当該肌の色に合った自然な着色が可能であり、肌の色が濃い人種に対しても好適に適用可能な紫外線吸収剤及びこれを用いた化粧料を提供することを目的とする。
 この目的を達成するため本発明は、一般式ABO(但し、AはIn(インジウム)、Bi(ビスマス)、Ga(ガリウム)またはGd(ガドリニウム)、BはTa(タンタル)、Nb(ニオブ)またはV(バナジウム))で示される化合物のAまたはBのそれぞれ一方または双方に、Sc(スカンジウム)、Ti(チタン)、V、Cr(クロム)、Mn(マンガン)、Co(コバルト)、Cu(銅)、Ga、Ge(ゲルマニウム)、As(砒素)、Y(イットリウム)、Zr(ジルコニウム)、Nb、Mo(モリブデン)、Tc(テクネチウム)、Ru(ルビジウム)、Rh(ロジウム)、Pd(パラジウム)、Ag(銀)、Cd(カドミウム)、Sn(スズ)、Sb(アンチモン)、Hf(ハフニウム)、W(タングステン)、Re(レニウム)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)、Au(金)、及びHg(水銀)、La(ランタン)からなる群のうちの少なくとも1つを10%以下で導入してなる紫外線吸収剤を提供するものである。
 このように、前述した一般式ABOで示される化合物のAまたはBのそれぞれ一方または双方に、前記群のうちの少なくとも1つを10%以下で導入することで、白色の化合物を着色することができるため、UV-A及びUV-Bに対し十分な遮断効果を有すると共に、肌に塗布した際に当該肌の色に合った自然な着色が可能な紫外線吸収剤を提供することができる。
 また、本発明に係る紫外線吸収剤は、前記群のうちの少なくとも1つを1%以上導入することができる。
 そしてまた、本発明は、一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Fe(鉄)を1%以上、10%以下、Znを1%以上、10%以下で導入してなる紫外線吸収剤を提供するものである。この紫外線吸収剤は、白色の化合物が茶色になるため、UV-A及びUV-Bに対し十分な遮断効果を有すると共に、茶色の肌の色に合った自然な着色が可能となる。また、この紫外線吸収剤は、Feを5%、Znを5%導入することがより好ましい。
 また、本発明は、一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Feを1%以上、10%以下で導入してなる紫外線吸収剤を提供するものである。この紫外線吸収剤は、白色の化合物が薄茶色になるため、UV-A及びUV-Bに対し十分な遮断効果を有すると共に、薄茶色の肌の色に合った自然な着色が可能となる。また、この紫外線吸収剤は、Feを10%導入することがより好ましい。
 さらにまた、本発明は、一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Zn(亜鉛)を1%以上、10%以下で導入してなる紫外線吸収剤を提供するものである。この紫外線吸収剤は、白色の化合物が黄色になるため、UV-A及びUV-Bに対し十分な遮断効果を有すると共に、黄色の肌の色に合った自然な着色が可能となる。また、この紫外線吸収剤は、Znを10%導入することがより好ましい。
 また、本発明は、一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Ni(ニッケル)を1%以上、10%以下で導入してなる紫外線吸収剤を提供するものである。この紫外線吸収剤は、白色の化合物が薄い黄色になるため、UV-A及びUV-Bに対し十分な遮断効果を有すると共に、薄い黄色の肌の色に合った自然な着色が可能となる。また、この紫外線吸収剤は、Niを10%導入することがより好ましい。
 そしてまた、本発明は、一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物にInを1%以上、10%以下で過剰に導入してなる紫外線吸収剤を提供するものである。この紫外線吸収剤は、白色の化合物が黄色になるため、UV-A及びUV-Bに対し十分な遮断効果を有すると共に、黄色の肌の色に合った自然な着色が可能となる。また、この紫外線吸収剤は、Inを10%過剰に導入することがより好ましい。
 さらにまた、本発明は、前述した紫外線吸収剤を含有してなる化粧料を提供することができる。
 なお、一般式ABO(但し、AはIn(インジウム)、Bi(ビスマス)、Ga(ガリウム)またはGd(ガドリニウム)、BはTa(タンタル)、Nb(ニオブ)またはV(バナジウム))で示される化合物としては、例えば、InTaO(インジウムタンタルオキサイド)、InNbO(インジウムニオブオキサイド)、BiTaO(ビスマスタンタルオキサイド)、BiNbO(ビスマスニオブオキサイド)、BiVO(ビスマスバナジウムオキサイド)、GaTaO(ガリウムタンタルオキサイド)、GdTaO(ガドリニウムタンタルオキサイド)等が挙げられる。
 本発明に係る紫外線吸収剤及び化粧料は、UV-A及びUV-Bを効果的に吸収することができるため、UV-A及びUV-Bに対し十分な遮断効果を発揮することができる。また、肌に塗布した際に当該肌の色に合った自然な着色が可能であり、肌の色が濃い人種に対しても好適に適用することができる。
本発明の実施形態において、第1原理計算に基づいて導出したドービング元素(置換可能な元素)と結合エネルギーとの関係を示す図である。 本発明の実施形態において、InTaOの一部をドーピング元素で置換したときの電子エネルギーと電子密度との関係を示す図である。 本発明の実施形態において、InTaOの一部をドーピング元素で置換したときの電子エネルギーと電子密度との関係を示す図である。 本発明の実施形態において、InTaOの一部をドーピング元素で置換したときの電子エネルギーと電子密度との関係を示す図である。 本発明の実施形態において、InTaOの一部をドーピング元素で置換したときの電子エネルギーと電子密度との関係を示す図である。 本発明の実施形態における実施例1で作成した紫外線吸収剤(サンプル)の拡散反射分光法による吸収スペクトルを示す図である。 本発明の実施形態において、InTaOの一部をドーピング元素で置換したときの電子エネルギーと電子密度との関係を示す図である。 本発明の実施形態における実施例2で作成した紫外線吸収剤(サンプル)の拡散反射分光法による吸収スペクトルを示す図である。 本発明の紫外線吸収剤をゾルゲル法により製造する際の工程を示すフローチャートである。
 次に、本発明の実施形態に係る紫外線吸収剤について詳細に説明する。なお、本実施形態では、一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物として、InTaOを用いた場合について説明する。また、本実施形態では、InTaOに元素を導入してInTaOのInまたはTaのそれぞれ一方または双方の一部を置換することを、「ドープする」と称し、InTaOの少なくとも一部を置換する元素を「ドーピング元素」と称することがある。
 <化粧料>
 本発明の実施形態に係る紫外線吸収剤は、InTaOのInまたはTaのそれぞれ一方または双方の一部に、Sc、Ti、V、Cr、Mn、Co、Cu、Ga、Ge、As、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hg、La、Fe、Zn、Niからなる群のうちの少なくとも1つの元素を導入し、当該元素(ドーピング元素)で置換されたものである。この紫外線吸収剤は、InTaOのうち、Inの一部のみが、前記ドーピング元素で置換されたものでもよいし、Taの一部のみがドーピング元素で置換されたものでもよい。更には、In及びTaの双方の一部が前記ドーピング元素で置換されたものでもよい。また、InTaOの一部を置換するドーピング元素は、1種類であってもよく、複数種類であってもよい。
 また、本発明に係る紫外線吸収剤は、InTaOにInを過剰に導入し、Taの一部がInで置換されたものである。
 <ドーピング元素の選定>
 本実施形態においては、地球上に存在する多数の元素のうちから、第1原理計算に基づくシミュレーションを行って、ドーピング元素を選定した。本解析で用いた解析方法は、全て密度汎関数法によるものである。電子とイオンの相互作用には、Kleinman-Bylander形式(L. Kleinmanand D. M. Bylander、 Phys. Rev. Lett. 48 (1982) 425)を用いたノルム保存型擬ポテンシャルを用いている。擬波動関数と擬ポテンシャルは、TroullierとMartins(N.Troullierand J. L. Martins、 Phys. Rev. B. 43 (1991) 1993)の方法を用い、交換相互エネルギーは、PerdewとZunger(J. P. Perdewand A. Zunger、 Phys. Rev. B. 23 (1981) 5048)によるものを用いている。
 平面波エネルギーによるカットオフエネルギーは、格子定数を関数にして電子系の全エネルギーを計算したときの全エネルギーの最小値に相当する格子定数の値が実験値と比較してその誤差が5%以内になるように設定している。ドーピング元素を選定するにあたり、サンプル作成及び評価実験を繰り返し行って試行錯誤的に選定する方法も考えられる。しかしながら、InTaOの少なくとも一部を置換可能なドーピング元素、及びそれらドーピング元素の組み合わせは非常に多数存在すると考えられるため、ドーピング元素を選定するにあたり、サンプル作成及び評価試験を繰り返す方法は非常に効率が低い。そこで本実施形態においては、ドーピング元素を選定するにあたり、主に以下の2つの工程(第1の工程及び第2の工程)を含む方法で選定を行った。
(第1の工程)
 先ず、InTaOにドープするドービング元素として使用可能と考えられる多数の元素のうちから、InTaOにドープした後に形成される分子が、分子として成立するか否か(安定分子であるか否か)を、第1原理計算に基づいて判別した。そして、その判別結果に基づいて、ドーピング元素として使用可能な元素を選定(スクリーニング)した。ドープした後に形成される分子が安定分子であるか否かの判別は、形成された分子の結合エネルギーを考慮して行った。具体的には、結合エネルギーについての許容値を予め設定しておき、InTaOの少なくとも一部を所定の元素で置換したときに生成された分子の結合エネルギーが、前記許容値以下となるか否かを判断した。この結合エネルギーの導出に第1原理計算が使用されている。そして、第1原理計算に基づくシミュレーション結果に基づいて、導出した結合エネルギーが上記許容値以下の場合、分子として成立する(安定分子である)と判断し、許容値以上の場合、分子として成立しない(不安定分子である)と判断した。即ち、地球上に多数存在する元素のうち、InTaOにドープした後の分子が安定分子となる元素を、InTaOにドープ可能な元素(ドーピング元素)として選定した。
 図1は、第1原理計算に基づいて導出したドービング元素と結合エネルギーとの関係を示す図である。図1に示すグラフの横軸には、InTaOにドープされる元素が示されており、縦軸には、横軸に示した元素をInTaOにドープした後に生成される分子の結合エネルギー値を、ドープされていないInTaOの結合エネルギー値で規格化したものが示されている。なお、これらの結合エネルギー値は、第1原理計算に基づいて導出したものである。また、図1において「In site」として示すデータは、InTaOのうち、In原子をドーピング元素で置換したときのシミュレーション結果、「Ta site」として示すデータは、InTaOのうち、Ta原子をドーピング元素で置換したときのシミュレーション結果である。
 図1から、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hgのいずれの元素をInTaOにドープした場合においても、出発材料であるInTaO(ドープされていないInTaO)と同等、もしくはそれ以上の結合エネルギーを有していることが分かる。また、InTaOのうちIn原子をドーピング元素で置換したときと、Ta原子をドーピング元素で置換したときとで、結合エネルギーに大きな差が生じないことも分かる。そしてまた、La、Inについても同様に、第1原理計算に基づいて結合エネルギー値を導出したところ、出発材料であるInTaO(ドープされていないInTaO)と同等、もしくはそれ以上の結合エネルギーを有していることが確認された。これより、InTaOに、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hg、La、Inのそれぞれをドープした場合においても、ドープ後に形成される分子は安定分子となり、これら元素がInTaOにドープ可能なドーピング元素であることが分かる。
(第2の工程)
 次いで、第1の工程において選定したInTaOにドープ可能なドービング元素のそれぞれについて、そのドービング元素をInTaOにドープした後に形成される分子が紫外線吸収剤として成立するか否かを、第1原理計算に基づいて判別した。そして、その判別結果に基づいて、紫外線吸収剤として使用可能なドーピング元素を選定した。具体的には、第1の工程において選定した複数のドービング元素のうち、ある特定のドーピング元素をInTaOにドープしたとき、そのドープ後に形成される分子が、紫外光を吸収するか否かを、バンドギャップを考慮して選定した。なお、この選定にも第1原理計算を使用した。
 図2~図5は、InTaOの一部をドーピング元素で置換したときの電子エネルギーと電子密度との関係を示す図である。図2~図5のそれぞれのグラフにおいて、横軸は電子エネルギーを示し、縦軸は電子密度を示している。
 具体的には、図2(a)には、ドーピング元素がドープされていないInTaOについてのデータが示されている。図2(b)~図2(e)には、InTaOのうち、6.25%のInが、Cu、Ni、Fe、Znのそれぞれで置換された場合のデータが示されている。また、図3(a)及び図3(b)には、InTaOのうち、1%のInがV、Crのぞれぞれで置換された場合のデータが示されている。さらにまた、図4(a)及び図4(b)には、InTaOのうち、1%のInがMn、Coのぞれぞれで置換された場合のデータが示されている。そしてまた、図5(a)及び図5(b)には、InTaOのうち、1%のInがTi、Gaのぞれぞれで置換された場合のデータが示されている。
 図2(c)~図2(e)から、InTaOにNi、Fe、Znをそれぞれドープすることで、伝導帯が低エネルギー側にシフトし、バンドギャップが縮小したことが分かる。また、伝導帯の電子密度が増加していることが分かる。この結果から、InTaOにNi、Fe、Znをそれぞれドープすることで、効率の良い光吸収を得ることができることが分かる。
 また、特に、図2(e)から、ドーピング元素がZnの場合、価電子帯近傍に新しい電子順位(不純物順位)が形成されていないことが分かる。即ち、ドーピング元素がZnの場合、バンドギャップがドーピング元素をドープしたことによって縮小することに加え、不純物準位が形成されないため、さらに効率の良い光吸収を得ることができることが分かる。そしてまた、図5(a)及び図5(b)から、ドーピング元素としてTi、Ga等を使用した場合にも、Znと同様の結果が得られたことが分かる。
 このように、図2~図5から、InTaOの一部を置換するドーピング元素の種類に応じて、光吸収特性を左右するバンドギャップの大きさ、及び電子密度等が大幅に変化することが分かる。そして、紫外光を吸収するためには、ドーピング元素として、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hg、La、Inのそれぞれが使用可能であり、特に、紫外線吸収剤としては、ドーピング元素として、Ni、Fe、Zn、Ti、Gaを使用することが好ましく、その中でも、Zn、Ti、Gaを使用することが好ましいことが分かる。
(実施例1)
 上述した第1の工程と第2の工程を含む第1原理計算に基づいて選定した複数のドーピング元素のうち、Zn、Fe、Niについて実験を行った。即ち、InTaOに、Zn、Fe、Niのそれぞれをドープしたものを実験対象とし、以下に示す実験を行った。また、比較として、ドープされていないInTaO及びTiOついて、同様の実験を行った。
 本実施形態に係る紫外線吸収剤は、通常の固相反応法、即ち、原料となる各金属成分を目的組成の比率で混合し、空気中常気圧下で焼成することで合成することができる。また、金属アルコキシドや金属塩を原料とした各種ゾルゲル法、錯体重合法など様々な方法も用いられる。ここでは、紫外線吸収剤のサンプル作成に固相反応法を用いた。ドーピング元素の量は、In、Taに対して10%置換となるように設定し、1150℃にて48時間焼成した。
 図6は、実施例1で作成した紫外線吸収剤(サンプル)の拡散反射分光法による吸収スペクトルを示す図である。これより、ドーピング元素としてFeを用いた場合には、紫外線吸収剤は紫外光領域で特に大きな吸光度を示すことが分かる。なお、本発明に係る紫外線吸収剤の形状としては、光を有効に吸収するために微粒子で且つ表面積が大きいことが望ましい。固相反応法で調製した酸化物は粒子が大きく表面積が小さいが、ボールミルなどの粉砕を行うことで粒子径を小さくできる。また、微粒子を所望の形状に成型して使用することもできる。
 また、図6において、「non」はドーピング元素がドープされていないInTaOのサンプル、「TiO」はアナターゼ構造の酸化チタンのサンプル、「Fe」はInTaOにFeを置換元素として10%導入したサンプル、「Zn」はInTaOにZnを置換元素として10%導入したサンプル、「Ni」はInTaOにNiを置換元素として10%導入したサンプルである。
 図6から、「non」及び「TiO」は400nm以下の波長の光を吸収しているが、400nm以上の波長の光は殆ど吸収していないことが分かる。これに対し、「Fe」、「Zn」、「Ni」については、400nm以下の波長の光と、着色の原因となる400nm以上の波長の光の両方を吸収していることが分かる。なお、「Fe」は薄茶色、「Zn」は黄色、「Ni」は薄い黄色であった。
 また、図7は、「non」、「Ni」、「Fe」、「Zn」に対応する第1原理計算による電子状態密度と電子エネルギーとの関係を示す図である。「non」はInTaOにドーピング元素を入れていないため広いバンドギャップをもっているが、「Ni」、「Fe」、「Zn」についてはサンプルが着色した結果、バンドギャップが狭くなっていることが分かる。
(実施例2)
 次に、実施例1と同様の方法で、InTaOにMo、Laを各々ドープしたもの、InTaOにZn及びFeをドープしたもの、InTaOにZn及びInをドープしたものを実験対象とした実験を行った。また、比較として、ドープされていないInTaOついて同様の実験を行った。なお、ドーピング元素は10%導入した。
 図8は、実施例2で作成した紫外線吸収剤(サンプル)の拡散反射分光法による吸収スペクトルを示す図である。図8において、「non」はドーピング元素がドープされていないInTaOのサンプル、「Mo」はInTaOにMoを置換元素として10%導入したサンプル、「La」はInTaOにLaを置換元素として10%導入したサンプル、「Zn+Fe」はInTaOにZn及びFeを置換元素として各々5%導入したサンプル、「Zn+In」はInTaOにZn及びInを置換元素として各々5%導入したサンプルである。
 図8から、「non」は400nm以下の波長の光を吸収しているが、400nm以上の波長の光は殆ど吸収していないことが分かる。これに対し、「Mo」、「La」、「Zn+Fe」、「Zn+In」については、400nm以下の波長の光及び400nm以上の波長の光の両方を吸収していることが分かる。なお、「Mo」は薄茶色、「La」は灰色、「Zn+Fe」は灰色、「Zn+In」は薄灰色であった。
 また、実施例1及び実施例2と同様の方法で、InTaOにInをドープしたもの(10%過剰に導入したもの)を実験対象とした実験を行ったところ、400nm以下の波長の光及び400nm以上の波長の光の両方を吸収していることが分かった。なお、このサンプルは、薄黄色であった。
 次に、本発明に係る紫外線吸収剤としてInTaOにFeを置換元素として10%導入したサンプルを用いた化粧料の一例として、日焼け止めクリームの配合例を以下に示す。
<日焼け止めクリームの配合例>
  セタノール  1.0重量%
  ステアリン酸  2.0重量%
  コレステロール  1.0重量%
  スクワラン  5.0重量%
  ホホバ油  4.0重量%
  パラメトキシ桂皮酸オクチル  4.0重量%
  ポリオキシエチレン(40)硬化ヒマシ油  1.0重量%
  モノステアリン酸ソルビタン  2.0重量%
  本発明品  7.0重量%
  ブチルパラベン  0.1重量%
  メチルパラベン  0.1重量%
  エタノール  3.0重量%
  グリセリン  10.0重量%
  牛胎盤抽出液  1.0重量%
  香料  0.05重量%
  精製水  バランス
 この化粧料についても、400nm以下の波長の光及び400nm以上の波長の光の両方を吸収し、日焼け止めクリームとしてUV-A及びUV-Bに対し十分な遮断効果を有し、且つ、比較的肌の色が黒い人種に使用すると当該肌の色に合った自然な着色がなされた。
 なお、前述したように、本実施形態に係る紫外線吸収剤は、各種ゾルゲル法により製造することもできる。このゾルゲル法としては、例えば、図9に示すように、タンタルゾル形成ステップS1、インジウムゾル形成ステップS2、ドーピング元素ドープステップS3、混合液形成ステップS4、PH調整ステップS5、ゲル形成ステップS6、加熱・乾燥ステップS7、酸化反応ステップS8からなるものが挙げられる。
 タンタルゾル形成ステップS1では、化学反応により微細なタンタル粒子をコロイド状態で含むタンタルゾルを合成する。このタンタルゾル合成ステップS1において、タンタル粒子源として、例えば、タンタルエトキシド(Ta(OC)、タンタルメトキシド(Ta(OCH)、又はタンタルアルコキシド(Ta(OC2n+1、n=1~6)を用いる。また、このタンタルゾル形成ステップS1において、タンタル1モルに対し、0~10モルのアセチルアセトンと、0~10モルの酢酸を混合する。より具体的には、最初に酸化タンタルのゾル(タンタルエトキシド0.005mol+酢酸10ml+アセチルアセトン10ml)を一晩スターラーで攪拌して準備した。
 次に、インジウムゾル形成ステップS2では、化学反応により微細なインジウム粒子をコロイド状態で含むインジウムゾルを合成する。このインジウムゾル形成ステップS2において、インジウム粒子源として、硝酸インジウム(In(NO・nHO、n=0~6)、又はインジウムアルコキシド(In(OC2n+1、n=1~6)を用いる。また、このインジウムゾル形成ステップS2において、インジウム1モルに対し、0.1~10モルの無水エタノールと、0.1~10モルの硝酸と、0.1~10モルのアンモニアとを混合する。より具体的には、硝酸インジウム0.005mol+無水エタノール20mlを用意し、次に掻き混ぜながらゆっくり1.5mlの
25% NH-HO(約0.01mol)を加えた後、HNO溶液(約0.2ml)を加え透明なゾルを合成した。
 次いで、ドーピング元素ドープステップS3では、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hg、La、Inの少なくとも1つの元素をドープする。
 次に、混合液形成ステップS4では、タンタルゾル、インジウムゾル、ドーピング元素を混合し混合液を形成する。
 次いで、PH調整ステップS5では、混合液形成ステップS4で得られた混合液に硝酸を適宜加え、混合液のPHが6~7となるように調整する。
 次に、ゲル形成ステップS6では、PH調整ステップS5で得られた混合液を50~70℃で保温しながら一晩スターラーで攪拌させ、徐々に蒸発させゲルの状態にする。
 次いで、加熱・乾燥ステップS7では、ゲル形成ステップS6で得られたゲル状の前駆体をさらに120℃で一晩乾燥させる。
 その後、酸化反応ステップS8では、加熱・乾燥ステップS7で乾燥されたゲルに対し酸化反応を500~1000℃の間で行い、固形のInTaOを形成する。このようにして紫外線吸収剤を得る。
 このように、タンタル粒子をコロイド状態で含むタンタルゾルと、微細なインジウム粒子をコロイド状態で含むインジウムゾルと、ドーピング元素とからゾルゲル法で粒子を微粒化することにより、粒子の比表面積を大きくすることができ、ナノオーダーの粒径の化粧料を製造(合成)することができる。ゾルゲル法を用いて得られた化粧料も、紫外光を良好に吸収することができた。また、この化粧料は、粒径が均一であり、素肌に付けた(フィットさせた)際に、肌のきめが細かく、透明感があり、自然で美しく見えるという効果も有する。
 なお、本発明に係る紫外線吸収剤は、ドーピング元素及びその置換率(導入率)を選択することで、全人種の肌色に対応する色調を呈することができる。例えば、InTaOのInまたはTaのそれぞれ一方または双方にFeを1%~10%の範囲で導入する(置換する)ことで、オークル、褐色系、黒に近い色調を呈することができる。
 また、本実施形態では、InTaOに、Cu、Ni、Fe、Zn、V、Cr、Ti、Ga、Mn、Co、Mo、La、Zn+Fe、Zn+Inを導入したサンプルについて評価を行った場合について説明したが、InTaOに、Sc、Ge、As、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hg、Inからなる群のうちの少なくとも1つを、1%以上、10%以下の範囲で導入したサンプルも同様に評価したところ、400nm以下の波長の光及び400nm以上の波長の光の両方を吸収し、且つ、これらのサンプルは、ドーピング元素の種類及びその配合量により着色がなされていた。
 また、本実施形態では、一般式ABOで示される化合物として、InTaOを用いた場合について説明したが、これに限らず、一般式ABOで示される化合物として、InNbO、BiTaO、BiNbO、BiVO、GaTaO、GdTaO等を用いて、これらの各々に、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hg、La、Inからなる群のうちの少なくとも1つを、1%以上、10%以下の範囲で導入したサンプルも同様に評価したところ、400nm以下の波長の光及び400nm以上の波長の光の両方を吸収し、且つ、これらのサンプルは、ドーピング元素の種類及びその配合量により着色がなされていた。

Claims (13)

  1.  一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Sc、Ti、V、Cr、Mn、Co、Cu、Ga、Ge、As、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Hf、W、Re、Os、Ir、Pt、Au、Hg、Laからなる群のうちの少なくとも1つを10%以下で導入してなる紫外線吸収剤。
  2.  前記群のうちの少なくとも1つを1%以上で導入してなる請求項1記載の紫外線吸収剤。
  3.  一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Feを1%以上、10%以下、Znを1%以上、10%以下で導入してなる紫外線吸収剤。
  4.  Feを5%、Znを5%で導入してなる請求項3記載の紫外線吸収剤。
  5.  一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Feを1%以上、10%以下で導入してなる紫外線吸収剤。
  6.  Feを10%導入してなる請求項5記載の紫外線吸収剤。
  7.  一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Znを1%以上、10%以下で導入してなる紫外線吸収剤。
  8.  Znを10%導入してなる請求項7記載の紫外線吸収剤。
  9.  一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物のAまたはBのそれぞれ一方または双方に、Niを1%以上、10%以下で導入してなる紫外線吸収剤。
  10.  Niを10%導入してなる請求項9記載の紫外線吸収剤。
  11.  一般式ABO(但し、AはIn、Bi、GaまたはGd、BはTa、NbまたはV)で示される化合物にInを1%以上、10%以下で過剰に導入してなる紫外線吸収剤。
  12.  Inを10%過剰に導入してなる請求項11記載の紫外線吸収剤。
  13.  請求項1ないし請求項12のいずれか一項に記載された紫外線吸収剤を含有してなる化粧料。
PCT/JP2012/056459 2011-03-23 2012-03-13 紫外線吸収剤及びこれを用いた化粧料 WO2012128131A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/006,748 US20140112876A1 (en) 2011-03-23 2012-03-13 Ultraviolet light absorber and cosmetic material using the same
EP12760163.1A EP2689769A1 (en) 2011-03-23 2012-03-13 Ultraviolet absorbent and cosmetic preparation using same
CN201280014745.2A CN103547248A (zh) 2011-03-23 2012-03-13 紫外线吸收剂及使用其的化妆品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011063542A JP2012197255A (ja) 2011-03-23 2011-03-23 紫外線吸収剤及びこれを用いた化粧料
JP2011-063542 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012128131A1 true WO2012128131A1 (ja) 2012-09-27

Family

ID=46879283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056459 WO2012128131A1 (ja) 2011-03-23 2012-03-13 紫外線吸収剤及びこれを用いた化粧料

Country Status (5)

Country Link
US (1) US20140112876A1 (ja)
EP (1) EP2689769A1 (ja)
JP (1) JP2012197255A (ja)
CN (1) CN103547248A (ja)
WO (1) WO2012128131A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643228A (zh) * 2017-08-31 2018-01-30 中国船舶重工集团公司第七〇九研究所 测量汞蒸气的芯片及其制备方法、传感器及其使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151537A1 (en) * 2015-03-24 2016-09-29 Landa Labs (2012) Ltd. Uv-protective compositions and their use
US9570392B2 (en) 2015-04-30 2017-02-14 Kabushiki Kaisha Toshiba Memory device and method for manufacturing the same
KR101835214B1 (ko) 2016-05-11 2018-03-06 전인덕 자외선 차단제 조성물, 화장료 조성물 및 자외선 차단제 조성물의 제조 방법
CN117363350A (zh) * 2023-10-24 2024-01-09 昆明理工大学 一种钽酸盐近红外荧光材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245671A (ja) 1984-05-21 1985-12-05 Ishihara Sangyo Kaisha Ltd 低次酸化チタン顔料
JPH05247063A (ja) 1990-10-01 1993-09-24 Shiseido Co Ltd ジベンゾイルメタンシリコ−ン誘導体及びそれを配合した皮膚外用剤
JPH05330825A (ja) 1992-06-04 1993-12-14 Ishihara Sangyo Kaisha Ltd 鉄含有超微粒子ルチル型二酸化チタン及びその製造方法
JPH06650B2 (ja) 1991-01-29 1994-01-05 触媒化成工業株式会社 酸化チタン・酸化セリウム複合系ゾルおよびこのゾルから形成された透明薄膜
JPH0769636A (ja) 1993-08-24 1995-03-14 Ishihara Sangyo Kaisha Ltd 鉄含有二酸化チタン及びその製造方法
JPH11180829A (ja) 1997-12-19 1999-07-06 Kao Corp 酸化チタン−酸化セリウム複合粉体及びこれを含有する化粧料
JP2003019437A (ja) * 2001-07-10 2003-01-21 National Institute Of Advanced Industrial & Technology 光触媒およびこれを用いた水素の製造方法ならびに有害物質の分解方法
JP2003212711A (ja) 2002-01-24 2003-07-30 Shiseido Co Ltd メーキャップ化粧料
JP2005126296A (ja) * 2003-10-24 2005-05-19 National Institute For Materials Science インジウム含有半導体金属酸化物とその製造方法
JP2005314408A (ja) 2004-03-31 2005-11-10 Shiseido Co Ltd シリコンクラスター又はゲルマニウムクラスターを含む紫外線吸収剤及び発光剤並びにそのクラスターを用いた皮膚外用剤
JP2006027917A (ja) 2004-07-12 2006-02-02 Shiseido Co Ltd Sp2混成軌道からなるシリコンオリゴマー
JP2006122777A (ja) * 2004-10-27 2006-05-18 Ishikawajima Harima Heavy Ind Co Ltd 光触媒、水素の製造方法、有害物質の処理方法、光触媒の製造方法
JP2010095481A (ja) * 2008-10-17 2010-04-30 Ihi Corp 化粧料及び化粧料の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245671A (ja) 1984-05-21 1985-12-05 Ishihara Sangyo Kaisha Ltd 低次酸化チタン顔料
JPH05247063A (ja) 1990-10-01 1993-09-24 Shiseido Co Ltd ジベンゾイルメタンシリコ−ン誘導体及びそれを配合した皮膚外用剤
JPH06650B2 (ja) 1991-01-29 1994-01-05 触媒化成工業株式会社 酸化チタン・酸化セリウム複合系ゾルおよびこのゾルから形成された透明薄膜
JPH05330825A (ja) 1992-06-04 1993-12-14 Ishihara Sangyo Kaisha Ltd 鉄含有超微粒子ルチル型二酸化チタン及びその製造方法
JPH0769636A (ja) 1993-08-24 1995-03-14 Ishihara Sangyo Kaisha Ltd 鉄含有二酸化チタン及びその製造方法
JPH11180829A (ja) 1997-12-19 1999-07-06 Kao Corp 酸化チタン−酸化セリウム複合粉体及びこれを含有する化粧料
JP2003019437A (ja) * 2001-07-10 2003-01-21 National Institute Of Advanced Industrial & Technology 光触媒およびこれを用いた水素の製造方法ならびに有害物質の分解方法
JP2003212711A (ja) 2002-01-24 2003-07-30 Shiseido Co Ltd メーキャップ化粧料
JP2005126296A (ja) * 2003-10-24 2005-05-19 National Institute For Materials Science インジウム含有半導体金属酸化物とその製造方法
JP2005314408A (ja) 2004-03-31 2005-11-10 Shiseido Co Ltd シリコンクラスター又はゲルマニウムクラスターを含む紫外線吸収剤及び発光剤並びにそのクラスターを用いた皮膚外用剤
JP2006027917A (ja) 2004-07-12 2006-02-02 Shiseido Co Ltd Sp2混成軌道からなるシリコンオリゴマー
JP2006122777A (ja) * 2004-10-27 2006-05-18 Ishikawajima Harima Heavy Ind Co Ltd 光触媒、水素の製造方法、有害物質の処理方法、光触媒の製造方法
JP2010095481A (ja) * 2008-10-17 2010-04-30 Ihi Corp 化粧料及び化粧料の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. P. PERDEW; A. ZUNGER, PHYS. REV. B., vol. 23, 1981, pages 5048
L. KLEINMAN; D. M. BYLANDER, PHYS. REV. LETT., vol. 48, 1982, pages 425
N. TROULLIER; J. L. MARTINS, PHYS. REV. B., vol. 43, 1991, pages 1993

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643228A (zh) * 2017-08-31 2018-01-30 中国船舶重工集团公司第七〇九研究所 测量汞蒸气的芯片及其制备方法、传感器及其使用方法
CN107643228B (zh) * 2017-08-31 2021-04-27 中国船舶重工集团公司第七一九研究所 一种测量汞蒸气的芯片的制备方法及其传感器的使用方法

Also Published As

Publication number Publication date
CN103547248A (zh) 2014-01-29
JP2012197255A (ja) 2012-10-18
EP2689769A1 (en) 2014-01-29
US20140112876A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
WO2012128131A1 (ja) 紫外線吸収剤及びこれを用いた化粧料
KR100797745B1 (ko) 산화아연-산화세륨 복합 입자
US20060104925A1 (en) Particle comprising a host lattice and a guest, its preparation and use in ultraviolet light screening compositions
TW301609B (ja)
Sato et al. Synthesis and UV-shielding properties of calcia-doped ceria nanoparticles coated with amorphous silica
KR102074136B1 (ko) 백화현상 억제가 가능한 피부색 맞춤형 기능성 티타늄산화물 나노입자 및 그 제조방법
JP4890251B2 (ja) 金属酸化物の分散方法
CN110697769A (zh) 一种锐钛矿/板钛矿复相二氧化钛紫外屏蔽剂及其制备方法
JP2007512216A (ja) 耐紫外線ナノ複合材料を主材料とするモレキュラーシーブとその調合方法、およびその利用方法
WO2012090593A1 (ja) 化粧料及びその製造方法
KR102128326B1 (ko) 자외선 차단제 및 그 제조방법
Molea et al. Effects of I-doping content on the structural, optical and photocatalytic activity of TiO2 nanocrystalline powders
KR102037058B1 (ko) 가시광 응답형 이산화티타늄의 제조방법
Ananth et al. Enhanced photovoltaic behavior of dye sensitized solar cells fabricated using pre dye treated titanium dioxide nanoparticles
KR100339778B1 (ko) 산화아연-코팅된 이산화티탄 복합 미립자를 함유하는자외선 차단 조성물
JP4100898B2 (ja) 二酸化チタン酸化セリウムコンポジットの製造方法
KR101792070B1 (ko) 티타늄디옥사이드 중형기공성 무기 복합분체
JP2000086210A (ja) 窒化ホウ素・酸化物複合粒子とその製造方法、及びそれを用いた紫外線遮断剤
KR101937944B1 (ko) 판상형 이산화티타늄-망간 복합체, 이의 제조방법 및 이를 포함하는 자외선 및 가시광선 차단 재료
JPH11166173A (ja) 紫外線吸収剤およびそれを含有する組成物
Casey et al. Controlling the photoactivity of nanoparticles
US20220142889A1 (en) Topical composition
KR101806845B1 (ko) 자외선 차단 및 미백 효과를 가지는 이산화티탄-페닐에칠레조시놀 복합체, 이의 제조방법 및 이의 용도
KR20140096779A (ko) 헥사고날 층상 구조를 갖는 ZnTiO3 나노입자 및 이를 이용한 자외선 차단용 화장료 조성물
KR100654331B1 (ko) 천이금속을 포함하는 이산화티타늄 나노분말 및 그제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012760163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14006748

Country of ref document: US