WO2012126884A2 - Régulateur de tension série à électronique protégée des courts-circuits par un découplage par circuit magnétique à trous et fenêtres - Google Patents

Régulateur de tension série à électronique protégée des courts-circuits par un découplage par circuit magnétique à trous et fenêtres Download PDF

Info

Publication number
WO2012126884A2
WO2012126884A2 PCT/EP2012/054806 EP2012054806W WO2012126884A2 WO 2012126884 A2 WO2012126884 A2 WO 2012126884A2 EP 2012054806 W EP2012054806 W EP 2012054806W WO 2012126884 A2 WO2012126884 A2 WO 2012126884A2
Authority
WO
WIPO (PCT)
Prior art keywords
core
coil
regulator
voltage
converter
Prior art date
Application number
PCT/EP2012/054806
Other languages
English (en)
Other versions
WO2012126884A3 (fr
Inventor
Philippe Guuinic
Jean-François BRUDNY
Valentin Costan
Maxime DESSOUDE
Original Assignee
Electricite De France
Universite D'artois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France, Universite D'artois filed Critical Electricite De France
Priority to PL12709635T priority Critical patent/PL2686746T3/pl
Priority to ES12709635.2T priority patent/ES2543310T3/es
Priority to EP20120709635 priority patent/EP2686746B1/fr
Publication of WO2012126884A2 publication Critical patent/WO2012126884A2/fr
Publication of WO2012126884A3 publication Critical patent/WO2012126884A3/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/32Regulating voltage or current wherein the variable actually regulated by the final control device is ac using magnetic devices having a controllable degree of saturation as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/32Regulating voltage or current wherein the variable actually regulated by the final control device is ac using magnetic devices having a controllable degree of saturation as final control devices
    • G05F1/325Regulating voltage or current wherein the variable actually regulated by the final control device is ac using magnetic devices having a controllable degree of saturation as final control devices with specific core structure, e.g. gap, aperture, slot, permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias

Definitions

  • the present invention relates to a voltage regulator adapted to be connected in series between, on the one hand, an alternating source and, on the other hand, a load, comprising a magnetic circuit comprising a first core and a second core parallel to each other, at least one first inductive coil wound around the first core and connected on the one hand to the alternative source and on the other hand to the load, and at least one voltage converter having a second coil wound around the second core.
  • alternative electrical networks for example high-voltage, low-voltage and medium-voltage distribution networks, as well as the industrial plants' internal power supply networks
  • which comprise at least one regulator 10.
  • voltage adapted to be connected in series between an alternating source S and a load C.
  • the voltage of the networks is frequently degraded, especially as one moves away from the source (such as for example a mean voltage drop, a flicker, a generation of harmonics or voltage dips), and the known regulator 10 allows voltage regulation, in order to correct the voltage of the connected loads at the end of the network.
  • the known regulator 10 comprises a magnetic circuit 2 comprising a first core 21 and a second core 22, parallel to each other. It also comprises at least a first inductive coil 1 wound around the first core 21 and connected on the one hand to the source S and on the other hand to the load C. It finally comprises at least one electronic voltage converter 4 comprising a second coil 7 wound around the second core 22.
  • the converter 4 makes it possible to regulate the voltage at the terminals Bc of the load when it is coupled, via the second coil 7, to the first coil 1 which has an inductance L.
  • the magnetic flux F A of the first coil 1 closes in the circuit 2 on the first core 21 and the second core 22.
  • the assembly formed by the first coil 1, the circuit 2 and the second coil 7 constitutes a voltage transformer which couples the converter 4 with the first coil 1 in series and upstream of the charge e.
  • the converter 4 can therefore regulate the voltage at the terminals Bc of the load C.
  • the aforementioned electrical networks are inevitably subject to defects D (accident, equipment failure, lightning ... and in general any overcurrent (short-circuit) that can cross the regulator), especially since a dozen years, the risks of default increase due to aging networks.
  • the connection to the networks of new types of installations increases the power of the short circuits in the networks in the event of a fault.
  • the amplitude of the short-circuit currents is thus of the order of a few kA up to several tens or hundreds of kA, depending on the types of networks. Currents of high amplitude can damage the networks, and in particular the converter 4.
  • a known solution consists in providing an electromechanical decoupling device for the converter 4 and the first coil 1.
  • the converter must therefore be decoupled by switches. Take, for example, a known three-phase network of 20 kV, with a single-phase voltage of the order of 1 1, 5 kV.
  • the nominal current corresponding to a three-phase load C of 1 MVA is of the order of 30A, while the amplitude of the short-circuit can reach several hundred amperes (10 times the nominal current), or even several thousand of amps.
  • a voltage regulation of plus or minus 10% corresponds to a single-phase voltage variation of the order of 1 kV, a permanent power of the converter 4 of the order of 30kVA.
  • the characteristics of the switches of the converter must be such that they can convey a single-phase power of about 300 kVA, or more in case short circuits of several thousand amperes. Such switches are consequently very expensive.
  • the invention proposes to overcome at least one of these disadvantages.
  • the invention proposes a voltage regulator adapted to be connected in series between an alternating source and a load, comprising
  • a magnetic circuit comprising a first core and a second core
  • the first winding is wound partly around the first nucleus and connected on the one hand to the alternative source and on the other hand to the load, and
  • At least one voltage converter having a second coil wound around the second core
  • the circuit comprises
  • the virtual gap including
  • the regulator operating between at least two states, namely:
  • the regulator is further adapted to operate in a third state in which the virtual air gap is partially open by partially desaturating the third core, so that the converter is partially decoupled from the first coil;
  • the passive control comprises a permanent connection between the DC power source and the winding
  • the active control comprises a switch controlled by a detector between the direct current source and the winding;
  • the intelligent control controls a DC power source comprising a dimmer connected to the winding;
  • the first core comprises
  • the first coil consists of a first part, wrapping around the first core, and a second part, wrapping around a part circuitry between the first core and the third core, the controller thus also having a current limiting function;
  • the circuit comprises an auxiliary magnetic circuit comprising a frame comprising at least one core and a mechanical air gap, the first coil winding around the first core and the core of the frame, the regulator thus also having a current limiting function ,
  • the regulator is adapted to be put in series with a current limiting coil.
  • the invention has many advantages.
  • the invention provides a voltage regulator for regulating a voltage across a load on the grid in normal operation, and for decoupling a regulator converter from the mains and a control source of the regulator, to protect them from voltage currents. short circuit in the event of a fault.
  • the regulator of the invention finds its voltage regulation function, without any maintenance, while network returns to its normal regime.
  • the high performance of the regulator of the invention makes it possible to reduce all the performance of the breaking devices associated with it in the network.
  • the invention therefore makes it possible to provide an inexpensive network protection device, especially since it may not comprise superconducting material.
  • the controller can include a passive or active control, even intelligent, depending on the type of network, the type of protection device and the amplitude of the normal, transient and fault currents. This control is performed from a direct current injected into a specific winding for magnetically saturating, locally, the magnetic circuit.
  • the invention is such that the continuous ampere-turns supplying the saturation winding of the magnetic circuit of the regulator are small, since the local saturation of the magnetic circuit (to form a virtual air gap EV) is obtained easily (the perimeter of the holes on which the winding is coiled is weak).
  • a superconducting material may be used for the auxiliary winding, but it is not essential.
  • the saturation auxiliary winding time constant may be low to quickly shut off the DC current and change the state of the Virtual Gap quickly.
  • the advantage of the invention is that the voltage converter and the DC source of the air gap EV are magnetically decoupled, as long as the fault lasts.
  • FIGS. 2A, 2B and 2C schematically represent a possible embodiment of a regulator according to the invention, in a network, with the magnetic flux corresponding to the different states of the airgap EV;
  • FIGS. 3A and 3B schematically represent the coupling principles of a possible embodiment of a regulator according to the invention, in a network;
  • FIG. 4 schematically represents an active control of a regulator according to the invention
  • FIG. 5 schematically represents an intelligent control of a regulator according to the invention
  • FIG. 6A represents the evolution of the effective voltage of the source-side network as a function of time
  • FIG. 6B shows the evolution of the effective voltage of the load-side network as a function of the effective network current
  • FIG. 7 schematically represents a control of a regulator according to the invention
  • FIGS. 8A to 8C schematically represent different cases of variation of the instantaneous current as a function of time;
  • FIGS. 9A and 9B schematically represent magnetic circuits according to the invention.
  • FIGS. 10A to 10D diagrammatically represent equivalent diagrams of a regulator according to the invention, as a function of the current in the network;
  • FIG. 1 schematically shows a circuit according to the invention composed by a superposition of magnetic sheets
  • FIG. 12 schematically shows a first variant of an embodiment of a regulator according to the invention, thus having a current limiting function
  • FIG. 13 schematically shows a second variant of an embodiment of a regulator according to the invention, thus having a current limiting function
  • FIG. 14 diagrammatically represents a voltage regulator also comprising a current limiter
  • FIG. 15 represents the limitation of the current on a curve of the evolution of the effective voltage of the load-side network as a function of the effective network current.
  • FIGS. 2A, 2B, 2C, 3A and 3B show schematically a possible embodiment of a voltage regulator 10 according to the invention.
  • the regulator 1 0 is adapted to be connected in series between an alternating source S and a charge C.
  • the assembly formed by the source S, the regulator 10 and the load C thus forms an electrical network.
  • the return of the current (normal or fault) to the source S is not shown in the simplified diagrams.
  • the present invention thus relates to an alternating network, powered by a source S of voltage regulated power.
  • the voltage regulator 1 adapted to be connected in series, makes it possible to correct the voltage of the load C connected at the end of the network.
  • the regulator 10 which is the subject of the invention is located between an upstream network which includes the source S of power (and which may comprise charges not represented on FIG. the figures) and a downstream network which includes the charge C.
  • the regulator 10 serves to regulate the voltage downstream, that is to say and for simplicity, at the terminals Bc of a load C.
  • the regulator 10 comprises a magnetic circuit 2 embodied by a plate.
  • the plate may be one-piece, or may comprise a superposition of magnetic sheets 28.
  • the plate has external peripheral outlines, and includes a first window 23 defining internal peripheral contours 26 of the plate, and a second window 24 defining internal peripheral contours 27 of the plate.
  • the circuit 2 also comprises a first core 21, delimited by the contours 26 and 27 of the plate, and a second core 22, delimited by the contours 25 and 26 of the plate, the first core 21 and the second core 22 being preferentially but not limitatively parallel to each other.
  • It also comprises at least a first inductive coil 1 wound around the first core 21 and connected on the one hand to the source S and on the other hand to the load C.
  • At least one electronic voltage converter 4 comprising a second coil 7 wound around the second core 22.
  • the converter 4 is known to those skilled in the art and is not described in detail later in this description.
  • the converter 4 is preferably an electronic switching converter, with components supporting a large power (including insulated gate bipolar transistors or "IGBT, insulated gate bipolar transistors" according to the terminology of the skilled person) and switching frequencies greater than 1 kHz.
  • the circuit 2 comprises a third decoupling core 3.
  • the third core 3 extends at least partially on a side opposite the second core 22 with respect to the first core 21.
  • the first core 21 is located between the second core 22 and the third decoupling core 3.
  • the third core 3 may however be located in any way with respect to the first core 21 and the second core 22.
  • Circuit 2 also has a virtual gap EV.
  • the virtual airgap EV has
  • the coil 1 Due to its winding around the first core 21 and the fact that it can be traversed by an alternating current, the coil 1 can create in the circuit 2 a magnetomotive force referenced by FAt a corresponding to alternating ampere-turns.
  • the magnetomotive force FAt a is of an intensity equal to the product of the number of turns of the coil 1 by the alternating current in amperes which passes through them.
  • the auxiliary winding 6 can create a non-conductive force. c corresponding to continuous ampere-turns.
  • the magnetomotive force FAt c is equal to the product of the number of turns of the winding 6 by the continuous current in amperes which passes through them.
  • the magnetomotive force FAt c thus created by the winding 6 can magnetically saturate the third core 3, locally at the air gap EV.
  • the continuous ampere-turns (At) at the winding 6 are relatively small. They are between 500 At and several thousand At, depending on the diameter of the holes 5 and according to the characteristic of variation of the magnetic induction B as a function of the magnetic field H in the circuit 2.
  • the winding 6 may be of superconductive material, but this is not essential.
  • the virtual dimension of the air gap EV increases with the value of ampere-turns.
  • the core 3 may in particular comprise a plurality of virtual gaps EV), and, within each pair 50, to modify the shape, the diameter, and the position of the holes 5.
  • the increase in the number of holes does not significantly modify the impedance values of the coil 1 or the coil 6, nor the order of magnitude of the total number of At necessary to saturate the air gap EV during normal operation.
  • the preference may respond to manufacturing facilities of circuit 2 or coil 1 or winding 6 or control functions of source 8.
  • Rectangular shapes of holes tend to increase harmonic currents. Here again, preference will be able to respond to manufacturing facilities.
  • the regulator 10 according to the invention operates between at least two states.
  • a first state is diagrammatically represented in FIGS. 2A and 3A, and is a state in which the virtual gap EV is open and magnetically opens the magnetic circuit 2 by magnetically saturating the third decoupling core 3 locally.
  • the magnetic flux in the third core 3 is low (leakage flow) because it is interrupted by the virtual gap EV.
  • the auxiliary winding 6 is supplied with direct current to saturate the periphery of the holes 5 arranged inside the third core 3. This local saturation is equivalent to the opening of the core 3 by a mechanical gap.
  • the magnetic flux F A in the second core 22 is important: the converter 4 is then magnetically coupled to the first coil 1, via the second coil 7, so that the regulator 10 can regulate a voltage in the load C.
  • a second state is shown diagrammatically in FIGS. 2B and 3B, and is a state in which the virtual gap EV is closed and magnetically closes the magnetic circuit 2 at the third decoupling core 3.
  • the magnetic flux Fc in the third core 3 is important because the virtual gap EV is closed, whereas the flux embraced by the coil 6 is negligible, because of the symmetrical arrangement of the holes 5.
  • the magnetic flux (leak flow) in the second core 22 is small: as shown in FIG. 3B, the converter 4 is then decoupled from the first coil 1, so that the regulator 10 no longer regulates the voltage in the second core 22. load C, but is not damaged by a fault in the network.
  • the second coil 7 is short-circuited to obtain equivalence to the opening 70 of the core 22.
  • the current flowing through the winding 6 is zero (then FAt c is equal to 0).
  • the air gap EV is again open, without special maintenance, and the regulator 10 can again regulate the voltage on the network. And in case of new fault short circuit, the circuit 2 is again closed magnetically by the rapid closing of the air gap EV, and so on.
  • the decoupling of the converter 4 and the coil 1 can take place in a time of the order of 1 ms, which allows:
  • the regulator 10 is then adapted to the needs of the network (transmission network, distribution network or industrial network) and the variety of power ranges (normal and short-circuit power).
  • the third state corresponds to an intermediate regime of the network, in which the alternating current is slightly greater than the current nominal load.
  • the intermediate regime we therefore have the following condition:
  • the circuit 2 in the third state, which can be established and permanent (that is to say non-transient), the circuit 2 is then partially desaturated at the gap VE of the third core 3, and a part of the alternating magnetic flux F A (imposed by FAt a ) flows in the third core 3 in combination with the continuous flow Fc (imposed by FAt c ). All the windings are then magnetically coupled.
  • the opening of the air gap EV in normal network or the closing of the air gap EV during a fault on the network can be passive or active or so-called intelligent.
  • a first step is a passive com m eration of the opening and closing of the air gap EV.
  • the limiter 10 comprises a passive control 60 of the opening and closing of the air gap EV.
  • the passive control 60 comprises a permanent connection between the source 8 and the coil 6, in accordance with FIGS. 2A, 2B and 2C.
  • the passive control 60 uses the closing of the air gap EV, by desaturation of the circuit 2 at the air gap EV due to the fact that the force FAt a is very high compared to the force FAt c , because of the defect at the the network and the strong current flowing through the coil 1.
  • the intensity of the direct current flowing through the coil 6, fixed prior to the fault, is the only parameter for adjusting the level of desaturation of the third core 3 .
  • the source 8 is in a manner known to those skilled in the art protected against overcurrents and overvoltages that develop during transient network conditions and during defects.
  • a second command 60 describes an active control of the opening and closing of the air gap EV, shown in FIG. 4.
  • the regulator 10 comprises an active control 60 of the opening and closing of the air gap EV.
  • the active control 60 comprises a switch 61 between the source 8 and the coil 6.
  • the switch 61 can
  • the control 60 comprises a detector 62 which defines the opening criterion of the switch 61.
  • the detector 62 compares the amplitude of the fault current with that of a setting threshold.
  • the switch 61 opens and the regulator 10 passes in a few milliseconds in its second state (closed EV).
  • the active control 60 advantageously comprises an inductive current cutout overvoltage limiter 63, connected in parallel with the source 8, for example a zinc oxide arrester (ZnO), and / or a freewheeling diode in series with a resistor both known to those skilled in the art.
  • ZnO zinc oxide arrester
  • a freewheeling diode in series with a resistor both known to those skilled in the art.
  • a third command describes an intelligent command, shown diagrammatically in FIG. 5, in which the command 60 is connected to a source 8 comprising a variator 81 of the intensity of the current in the winding 6.
  • the drive 81 is an electronic power converter, known to those skilled in the art, which delivers a current comprising a component continuous, but may also have alternative components, especially at twice the frequency of the network.
  • the command 60 controls the drive 81 which then makes the regulator 10 pass through.
  • the magnetic operating state 1, 2 or 3 most adapted to the context.
  • the command 60 can also be remotely controlled to take into account the operation of the protection devices of the network, or even modify its adjustment thresholds as needed.
  • FIGS. 6A and 6B schematically represent functions of a regulator according to the invention, with reference to the three magnetic states of the airgap EV.
  • the winding 7 of the converter 4 can remain open for the duration of the fault or, preferably, be short-circuited to help push the magnetic flux to the air gap EV.
  • This short-circuiting is equivalent to an opening of the magnetic circuit 70, as shown in FIG. 3B. It can be provided by the converter 4 itself or by additional components, including the protections of the converter known to those skilled in the art.
  • the converter 4 is also in an intermediate state of partial decoupling during the normal transient period.
  • Table 1 summarizes the magnetic states of the air gap EV and those of the voltage converter 4.
  • the three-speed device is desirable.
  • a passive command 60 of the air gap EV can be interesting.
  • the control 60 controls the DC source 8 and the voltage converter 4 in a coordinated manner.
  • control 60 sends a voltage regulation setpoint 601 to the electronic converter 4, and a regulation setpoint 602 to the source 8.
  • the control of the intermediate state of the air gap EV is done by the variation of current in the winding 6, the com current carrying a DC component and harmonic components.
  • the source 8 may also advantageously comprise a current converter.
  • the converter 4 must be decoupled quickly from the network when a fault arises.
  • all the protection devices face the same difficulty in predicting the evolution of the current, based on a significant current variation di / dt in a relatively short time, typically of the order of 1 ms. It is necessary to decouple the voltage converter in 1 ms, otherwise it is destroyed by the short circuit.
  • FIG. 8B shows that it can be a normal transient regime (network operation, load variation, etc.), and in this case there is a return to a normal regime in a time typically of the order of a few milliseconds.
  • a regulator 10 according to the invention is to size the power of the voltage converter for the purpose of regulation only, whatever the amplitude and the duration of the defects, in particular to reduce the fluctuations of the voltage. tensions, distortions harmonics, the effects of "flicker", and even offset all or part of the voltage dips.
  • the source 8 is sized to provide the permanent ohmic losses of the coil 6 and to hold the transient fast switching of the air gap EV transient situation which is also shown in Figure 2C.
  • the choice of the ratio of the number of turns of the first coil 1 to the number of turns of the second coil 7 makes it possible to optimize the cost of the voltage converter 4 by adapting to the performance of the electronic equipment on the market, but also by benefiting from advances in switching speed (> kHz), withstand voltage (> kV) and withstand current (> kA).
  • the number of turns of the winding 6 is related to the characteristics of the circuit 2 to obtain a speed of control of the air gap EV of the order of one millisecond for a 50 Hz or 60 Hz industrial network.
  • Thickness of the third core 3 10 to 30cm As the size of the magnetic circuit 2 increases, the area of a hole 5 increases faster than its perimeter. This results in the advantage of being able to choose a current density in the winding 6 sufficiently small to reduce the permanent ohmic losses, when the airgap EV is open.
  • FIG. 9A and FIG. 9B specify some characteristics of the first core 21 (also referenced by N R ), the second core 22 (also referenced by Nu) and the third core 3 (also referenced by N E v).
  • FIG. 9A in the normal regulation regime, the first core 21, a possible section reduction 210 and the second core 22 must not be magnetically saturated.
  • the magnetic circuit 2 must be closed to ensure good coupling between the second coil 7 of the converter 4 and the first coil 1. It is therefore necessary to avoid mechanical gaps along the flow path F A
  • the first core 21 may be saturated to limit the magnetic flux.
  • the first core 21 may include a section reduction 210.
  • FIG. 10A represents an equivalent electrical diagram of the regulator 10, with impedances L N EV , L N U and L N R respectively representative of the nuclei N E v (3), Nu (22) and N R (21) of FIG. 9A.
  • the inductance L N EV of the third core 3 is of small value.
  • the voltage converter 4 regulates the voltage U by compensating for the voltage drop in the inductance L N EV-
  • the air gap EV in the intermediate regime, the air gap EV is not completely closed.
  • the current of the network (of intensity between 1 to 3 In) flows partly by the saturable inductance L N R and partly in the branch composed of the inductance L N EV (controlled by the source 8 of current continuous I), in series with the converter 4 delivering the voltage U (for an intensity of 0 to 2 In, depending on the performance of the source 8 and the converter 4).
  • the air gap EV is closed and the inductance L N EV limits the current in the voltage converter 4. This current is then lower than In, or very low, depending on the sizing and operating choices of the regulator.
  • the second coil is short-circuited to contribute to the opening 70 of the core 22 (as shown schematically in FIG. 3B): the voltage U represented in FIG. 10D is then zero.
  • the plate can also provide this energy dissipative function by electromagnetic losses using suitable materials.
  • the regulator 10 thus comprises a function for limiting the fault current.
  • FIG. 12 shows that according to a first embodiment, the first coil 1 consists of a first part 1a, wrapping around the first core 21, and a second part 1b, winding in the same direction of winding, around a part of the circuit 2, called the yoke, between the first core 21 and the third core 3, for example in the vicinity of the holes 5.
  • the third core 3 is opened by the air gap EV, and the inductance L1b of the second part 1b of the first coil 1 is of low value. It introduces a low voltage fall AVcc which can be compensated by the voltage converter 4.
  • the inductances Li a and L1 b of the parts 1 a and 1 b of the coil 1 are traversed by the same flux F c which closes by the third core 3.
  • the voltage drops AVcc depend on the number of turns parts 1a and 1b of the first coil 1 and are added in parts 1a and 1b according to the square of the numbers N1a and N1b of turns, namely
  • FIG. 13 representing a longitudinal section, viewed from above, of the circuit 2, shows that according to a second embodiment, in order to increase the voltage drop AVcc without changing the number of turns, it is necessary to increase the flux F c , in particular by increasing the section of the first core 21.
  • the circuit 2 comprises an auxiliary magnetic circuit 200 comprising a frame comprising a core 212 and a core NF, parallel to each other and to the first core 21, and a mechanical air gap EM.
  • the first reel 1 wraps around
  • the first core 21 of similar section to the first core 21 described so far, and
  • the increase in flux F c in the first coil 1 does not therefore require increasing the section of the first core.
  • the voltage drop AVcd, due to the first core 21, is increased by AVcc2, due to the auxiliary circuit 200 (AVcc2 is adjustable by the mechanical gap EM).
  • Another embodiment which also makes it possible to limit the fault current consists in adding in series with the regulator a separate inductance of the latter.
  • the voltage regulator in normal operation, can compensate for the voltage drop in this series inductance.
  • Figure 15 shows the relationship between the effective voltage across the load and the effective regulator current when a limiting function is provided by the regulator or a separate inductor.
  • the skilled person may prefer another arrangement of the windows 23 and 24 made with the cores and yokes, to facilitate for example the connection to the output terminals, or to meet the requirement of resistance to dielectric tests (lightning shock).
  • a multiphase regulator or regulator-limiter and in particular three-phase, can be based on the grouping of several identical single-phase units or on the design of a multi-phase magnetic circuit, in the rules of the art known to those skilled in the art.
  • One of the aims of such an embodiment is to reduce the mass and bulk of the magnetic circuit.
  • Another goal it may be to obtain different performances in direct mode and in zero sequence mode, in particular when the sources of voltage disturbances and / or the faults are different in these modes, in particular because of the types of grounding of the alternative network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Ac-Ac Conversion (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Régulateur (10) de tension, adapté pour être branché en série entre d'une part une source (S) alternative et d'autre part une charge (C), comportant un circuit magnétique (2) comportant un premier noyau (21) et un deuxième noyau (22), a u moins une première bobine (1) inductive bobinée au moins partiellement autour du premier noyau (21) et reliée d'une part à la source (S) alternative et d'autre part à la charge (C), et au moins un convertisseur (4) de tension comportant une deuxième bobine (7) bobinée autour du deuxième noyau (22), le régulateur (10) étant caractérisé en ce que le circuit (2) comporte un troisième noyau (3) de découplage, et un entrefer virtuel (EV), l'entrefer virtuel (EV) comportant au moins une paire (50) de trous (5) dans le troisième noyau (3) de découplage, et un bobinage (6) se bobinant entre les trous (5) de chaque paire (50) de trous (5), et relié à une source (8) de courant continu, le régulateur (10) fonctionnant entre au moins deux états.

Description

Régulateur de tension série à électronique protégée des courts-circuits par un découplage par circuit magnétique à trous et fenêtres
DOMAINE TECHNIQUE GENERAL
La présente invention concerne un régulateur de tension, adapté pour être branché en série entre d'une part une source alternative et d'autre part une charge, comportant un circuit magnétique comportant un premier noyau et un deuxième noyau parallèles entre eux, au moins une première bobine inductive bobinée autour du premier noyau et reliée d'une part à la source alternative et d'autre part à la charge, et au moins un convertisseur de tension comportant une deuxième bobine bobinée autour du deuxième noyau.
ETAT DE L'ART
Comme le montre la figure 1 , on connaît des réseaux électriques alternatifs (par exemple de transport en haute tension, de distribution en moyenne et basse tensions, ainsi que les réseaux industriels d'alimentation interne des usines) qui comportent au moins un régulateur 10 de tension, adapté pour être branché en série entre d'une part une source S alternative et d'autre part une charge C.
En effet, la tension des réseaux est fréquemment dégradée, d'autant plus que l'on s'éloigne de la source (comme par exemple une chute de tension moyenne, un papillotement (« flicker » en anglais), une génération d'harmoniques ou des creux de tension), et le régulateur 10 connu permet une régu lation de tension , afin de corriger la tension des charges raccordées en bout de réseau.
A cet effet, le régulateur 10 connu comporte un circuit magnétique 2 comportant un premier noyau 21 et un deuxième noyau 22, parallèles entre eux. Il comporte également au moins une prem ière bobine 1 inductive bobinée autour du premier noyau 21 et reliée d'une part à la source S et d'autre part à la charge C. Il comporte enfin au moins un convertisseur 4 électronique de tension comportant une deuxième bobine 7 bobinée autour du deuxième noyau 22. Le convertisseur 4 permet de réguler la tension aux bornes Bc de la charge lorsqu'il est couplé, via la deuxième bobine 7, à la première bobine 1 qui présente une inductance L.
En régime normal, c'est-à-dire sans défaut dans le réseau, le flux magnétique FA de la prem ière bobine 1 se ferme dans le circuit 2 sur le premier noyau 21 et le deuxième noyau 22.
Dans ce cas, l'ensemble formé par la première bobine 1 , le circuit 2 et la deuxième bobine 7 constitue un transformateur de tension qui couple le convertisseur 4 avec la première bobine 1 en série et en amont de la chargé e.
Le convertisseur 4 peut donc réguler la tension aux bornes Bc de la charge C.
Les réseaux électriques précités sont inévitablement l'objet de défauts D (accident, défaillance de matériel, foudre... et d'une manière générale toute surintensité (court-circuit) qui peut traverser le régulateur), d'autant que depuis une dizaine d'années, les risques de défaut augmentent du fait du vieillissement des réseaux.
Simultanément, le raccordement aux réseaux de nouveaux types d' installations, comme des installations décentralisées de production d'énergie (les fermes éoliennes par exemple), fait augmenter la puissance des courts-circuits dans les réseaux en cas de défaut. L'amplitude des courants de court-circuit est ainsi de l'ordre de quelques kA jusqu'à plusieurs dizaines ou centaines de kA, selon les types de réseaux. Les courants de forte amplitude peuvent endommager les réseaux, et notamment le convertisseur 4.
Une solution connue consiste à prévoir un dispositif de découplage électromécanique du convertisseur 4 et de la première bobine 1 .
Cette solution n'est cependant pas optimale. En effet dans le cas d'un convertisseur de tension raccordé en série à l'aide d'un transformateur connu, la pleine tension de défaut apparaît très rapidement à ses bornes, en cas de défaut, ce qui peut l'endommager.
Le convertisseur doit donc être découplé par des interrupteurs. Prenons, à titre d'exemple, un réseau connu triphasé de 20 kV, avec une tension monophasée de l'ordre de 1 1 , 5 kV. Le courant nom inal correspondant à une charge C triphasée de 1 MVA est de l'ordre de 30A, tandis que l'amplitude du court-circuit peut atteindre plusieurs centaines d'Ampères (10 fois le courant nominal), voire plusieurs milliers d'Ampères.
Or une régulation de tension de plus ou moins 10% correspond à une variation de tension monophasée de l'ordre de 1 kV, soit une puissance permanente du convertisseur 4 de l'ordre de 30kVA.
Pour être opérationnels pendant toute la durée d'un défaut de l'ordre de dix fois le courant nom inal, les caractéristiques des interrupteurs du convertisseur doivent être telles qu'ils puissent véhiculer une puissance monophasée de l'ordre 300kVA, voire plus en cas de courts-circuits de plusieurs milliers d'Ampères. De tels interrupteurs sont par conséquents très onéreux.
PRESENTATION DE L'INVENTION
L'invention propose de pallier au moins un de ces inconvénients.
A cet effet, l'invention propose un régulateur de tension, adapté pour être branché en série entre d'une part une source alternative et d'autre part une charge, comportant
un circuit magnétique comportant un premier noyau et un deuxième noyau,
au m o i ns u ne prem ière bob i ne i nd uctive bob i née au m o i ns partiellement autour du prem ier noyau et reliée d'une part à la source alternative et d'autre part à la charge, et
au moins un convertisseur de tension comportant une deuxième bobine bobinée autour du deuxième noyau,
le régulateur étant caractérisé en ce que
le circuit comporte
un troisième noyau de découplage, et
un entrefer virtuel, l'entrefer virtuel comportant
au moins une paire de trous dans le troisième noyau de découplage, et un bobinage se bobinant entre les trous de chaque paire de trous, et relié à une source de courant continu,
le régulateur fonctionnant entre au moins deux états, à savoir :
un premier état dans lequel l'entrefer virtuel est ouvert en saturant magnétiquement le troisième noyau de découplage, le flux magnétique dans le troisième noyau étant faible, et la deuxième bobine du convertisseur étant couplée à la prem ière bobine, de sorte que le régulateur puisse réguler une tension dans la charge, et
un deuxième état dans lequel l'entrefer virtuel est fermé, le flux magnétique dans l'entrefer virtuel du troisième noyau étant important, de sorte que le convertisseur soit découplé de la première bobine.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :
- le régulateur est en outre adapté pour fonctionner selon un troisième état dans lequel l'entrefer virtuel est partiel lement ouvert en désaturant partiellement le troisième noyau, de sorte que le convertisseur soit partiellement découplé de la première bobine ;
- il comporte une commande passive ou active ou intelligente de l'ouverture, totale ou partielle, ou de la fermeture, totale ou partielle, de l'entrefer virtuel ;
- la commande passive comporte une liaison permanente entre la source de courant continu et le bobinage ;
- la commande active comporte un interrupteur commandé par un détecteur entre la source de courant continu et le bobinage ;
- la commande intelligente commande une source de courant continu comportant un variateur relié au bobinage ;
- le premier noyau comporte
- une réduction de section, ou
- un noyau complémentaire relié par un entrefer mécanique au circuit magnétique ;
- la première bobine se compose d'une première partie, s'enroulant autour du premier noyau, et d'une deuxième partie, s'enroulant autour d'une partie du circuit com prise entre le prem ier noyau et le troisième noyau, le régulateur présentant ainsi également une fonction de limiteur de courant ;
- le circuit comporte un circuit magnétique auxiliaire comportant un cadre comportant au moins un noyau et un entrefer mécanique, la prem ière bobine s'enroulant autour du prem ier noyau et du noyau du cadre, le régulateur présentant ainsi également une fonction de limiteur de courant,
- le régulateur est adapté pour être mis en série avec une bobine limitatrice de courant.
L'invention présente de nombreux avantages.
L'invention fournit un régulateur de tension permettant de réguler une tension aux bornes d'une charge sur le réseau en régime normal, et permettant de découpler du réseau un convertisseur du régulateur et une source de commande du régulateur, pour les protéger des courants de court-circuit en cas de défaut. Le régulateur de l' invention retrouve cependant sa fonction de régulation de tension, sans aucune maintenance, alors que réseau revient à son régime normal.
Dans le cas où il comporte de plus une fonction de lim itation de courant de défaut, les grandes performances du régulateur de l'invention permettent de réduire d'autant les performances des organes de coupure qui lui sont associés dans le réseau. L'invention permet donc de fournir un dispositif de protection des réseaux peu onéreux, notamment car il peut ne pas comporter de matériau supraconducteur.
Le régulateur peut comporter une commande passive ou active, voire intelligente, selon le type de réseau, le type de dispositif de protection et l'amplitude des courants alternatifs normaux, transitoires et de défauts. Cette commande est réalisée à partir d'un courant continu injecté dans un bobinage spécifique destiné à saturer magnétiquement, de manière locale, le circuit magnétique.
L' invention est telle que les ampères-tours continus alimentant le bobinage de saturation du circuit magnétique du régulateur soient faibles, puisque la saturation locale du circuit magnétique (pour former un Entrefer Virtuel EV) est obtenue facilement (le périmètre des trous sur lesquels le bobinage est bobiné est faible). A cet égard, un matériau supraconducteur peut être utilisé pour le bobinage auxiliaire, mais il n'est pas indispensable.
La constante de temps du bobinage auxiliaire de saturation peut être faible pour couper rapidement le courant continu et changer l'état de l'Entrefer Virtuel rapidement.
L'avantage de l'invention est que le convertisseur de tension et la source de courant continu de l'entrefer EV sont magnétiquement découplés, aussi longtemps que dure le défaut.
Lorsque l'Entrefer Virtuel est dans son état intermédiaire, tous les bobinages sont couplés.
PRESENTATION DES FIGURES
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
- la figure 1 , déjà commentée, représente schématiquement un réseau connu comportant un régulateur de tension ;
- les figures 2A, 2B et 2C représentent schématiquement un mode de réalisation possible d'un régulateur selon l'invention, dans un réseau, avec les flux magnétiques correspondants aux différents états de l'entrefer EV ; - les figures 3A et 3B représentent schématiquement les principes de couplage d'un mode de réalisation possible d'un régulateur selon l'invention, dans un réseau ;
- la figure 4 représente schématiquement une commande active d'un régulateur selon l'invention ;
- la figure 5 représente schématiquement une commande intelligente d'un régulateur selon l'invention ;
- la figure 6A représente l'évolution de la tension efficace du réseau côté source en fonction du temps ;
- la figure 6B représente l'évolution de la tension efficace du réseau côté charge en fonction du courant efficace de réseau ;
- la figure 7 représente schématiquement une commande d'un régulateur selon l'invention ; - les figures 8A à 8C représentent schématiquement différents cas de variation du courant instantané en fonction du temps ;
- les figures 9A et 9B représentent schématiquement des circuits magnétiques selon l'invention ;
- les figures 1 0A à 1 0D représentent schématiquement des schémas équivalents d'un régulateur selon l'invention, en fonction du courant dans le réseau ;
- la figure 1 1 représente schématiquement un circuit selon l'invention composé par une superposition de tôles magnétiques ;
- la figure 12 représente schématiquement une première variante d'un mode de réalisation d'un régulateur selon l'invention, présentant ainsi une fonction de limitation du courant ;
- la figure 13 représente schématiquement une deuxième variante d'un mode de réalisation d'un régulateur selon l'invention, présentant ainsi une fonction de limitation du courant ;
- la figure 14 représente schématiquement un régulateur de tension comportant également un limiteur de courant ; et
- la figure 1 5 représente la lim itation du courant sur une courbe de l'évolution de la tension efficace du réseau côté charge en fonction du courant efficace de réseau.
Sur l'ensemble des figures, les éléments sim ilaires portent des références numériques identiques.
DESCRIPTION DETAILLEE
Les figures 2A, 2B, 2C, 3A et 3B représentent schématiquement un mode de réalisation possible d'un régulateur 10 de tension selon l'invention.
Le régulateur 1 0 est adapté pour être branché en série entre d'une part une source S alternative et d'autre part une charge C.
L'ensemble formé par la source S, le régulateur 10 et la charge C forme donc un réseau électrique. Le retour du courant (normal ou de défaut) vers la source S n'est pas représenté sur les schémas simplifiés. La présente invention concerne donc un réseau alternatif, alimenté par une source S de puissance régulée en tension. Le régulateur 1 0 de tension, adapté pour être branché en série, permet de corriger la tension de la charge C raccordée en bout de réseau.
Dans les développements qui suivent, pour des raisons de clarté et de simplicité d'explication, le régulateur 10 objet de l'invention se trouve entre un réseau amont qui com porte la source S de puissance (et qui peut comporter des charges non représentées sur les figures) et un réseau aval qui comporte la charge C.
Le régulateur 10 a pour fonction de réguler la tension en aval, c'est à dire et pour simplifier, aux bornes Bc d'une charge C.
On comprend que l'invention s'applique bien entendu à des réseaux réels, et notamment triphasés, où les défauts (toute surintensité ou court- circuit pouvant traverser le régulateur) se produisent entre phases et/ou entre phase et terre.
De manière classique, le régulateur 10 comporte un circuit magnétique 2 matérialisé par une plaque. La plaque peut être monobloc, ou peut comporter une superposition de tôles 28 magnétiques.
La plaque comporte des contours 25 périphériques externes, et comporte une première fenêtre 23 délimitant des contours 26 périphériques internes de la plaque, et une deuxième fenêtre 24 délimitant des contours 27 périphériques internes de la plaque.
Le circuit 2 comporte également un premier noyau 21 , délimité par les contours 26 et 27 de la plaque, et un deuxième noyau 22, délimité par les contours 25 et 26 de la plaque, le premier noyau 21 et le deuxième noyau 22 étant préférentiellement mais non limitativement parallèles entre eux.
II comporte également au moins une prem ière bobine 1 inductive bobinée autour du premier noyau 21 et reliée d'une part à la source S et d'autre part à la charge C.
Enfin il comporte au moins un convertisseur 4 électronique de tension comportant une deuxième bobine 7 bobinée autour du deuxième noyau 22.
Le convertisseur 4 est connu de l'homme du métier et n'est pas décrit en détail dans la suite de la présente description.
On précise cependant que le convertisseur 4 est préférentiellement un convertisseur électron ique à découpage, avec des com posants supportant une grande puissance (notamment des transistors bipolaires à porte isolée ou « IGBT, insulated gâte bipolar transistors » selon la term inologie de l'homme du métier) et des fréquences de découpage supérieures à 1 kHz.
Le circuit 2 comporte un troisième noyau 3 de découplage.
Sur un mode de réalisation particulier mais non limitatif, le troisième noyau 3 s'étend au moins partiellement d'un côté opposé au deuxième noyau 22 par rapport au premier noyau 21 . Ainsi, le premier noyau 21 est situé entre le deuxième noyau 22 et le troisième noyau 3 de découplage.
Le troisième noyau 3 peut cependant se situer de manière quelconque par rapport au premier noyau 21 et au deuxième noyau 22.
Le circuit 2 comporte également un entrefer virtuel EV.
L'entrefer virtuel EV comporte
au moins une paire 50 de trous 5 dans le troisième noyau 3 de découplage, et
un bobinage 6 auxiliaire se bobinant entre les trous 5 de chaque paire 50 de trous 5, et relié à une source 8 de courant continu.
Du fait de son bobinage autour du premier noyau 21 et du fait qu'elle peut être parcourue par un courant alternatif, la bobine 1 peut créer dans le circuit 2 une force magnétomotrice référencée par FAta correspondant à des ampères-tours alternatifs. La force magnétomotrice FAta est d'une intensité égale au produit du nombre de spires de la bobine 1 par le courant alternatif en ampères qui les traverse.
De même, du fait de son bobinage autour du troisième noyau 3 entre les trous 5 et du fait qu'il peut être parcouru par un courant continu, le bob i nage 6 auxi l iai re peut créer u ne force m ag nétom otrice FAtc correspondant à des ampères-tours continus. La force magnétomotrice FAtc est égale au produit du nombre de spires du bobinage 6 par le courant continu en ampères qui les parcourt. La force magnétomotrice FAtc ainsi créée par le bobinage 6 peut saturer magnétiquement le troisième noyau 3, localement au niveau de l'entrefer EV. Les ampères-tours (At) continus al imentant le bobinage 6 sont relativement faibles. Ils sont compris entre 500 At et plusieurs milliers d'At, selon le diamètre des trous 5 et en fonction de la caractéristique de variation de l'induction magnétique B en fonction du champ magnétique H dans le circuit 2.
Il y a donc des pertes et des échauffements relativement faibles dans le bobinage 6. Si des courants beaucoup plus importants sont souhaités, le bobinage 6 peut être en matériau supraconducteur, mais cela n'est pas indispensable.
La dimension virtuelle de l'entrefer EV augmente avec la valeur des ampères-tours.
D'une manière générale, il est possible de modifier le nombre de paires 50 sur le noyau 3 (le noyau 3 peut notamment comporter une pluralité d'entrefers virtuels EV), et, au sein de chaque paire 50, de modifier la forme, le diamètre, et la position des trous 5.
L'augmentation du nombre de trous ne modifie pas considérablement les valeurs des impédances de la bobine 1 ou du bobinage 6, ni l'ordre de grandeur du nombre d'At total nécessaire à la saturation de l'entrefer EV en fonctionnement normal. La préférence pourra répondre à des facilités de fabrication du circuit 2 ou de la bobine 1 ou du bobinage 6 ou des fonctionnalités de commande de la source 8.
Des formes rectangulaires des trous ont tendance à augmenter les courants harmoniques. Là encore, la préférence pourra répondre à des facilités de fabrication.
Le régulateur 10 selon l'invention fonctionne entre au moins deux états.
Un premier état est représenté schématiquement sur les figures 2A et 3A, et est un état dans lequel l'entrefer virtuel EV est ouvert et ouvre magnétiquement le circuit magnétique 2 en saturant magnétiquement localement le troisième noyau 3 de découplage.
Comme le montre la figure 2A, le flux magnétique dans le troisième noyau 3 est faible (flux de fuites), car il est interrompu par l'entrefer virtuel EV. Pour réaliser la saturation locale, le bobinage auxiliaire 6 est alimenté en courant continu pour saturer le pourtour des trous 5 aménagés à l'intérieur du troisième noyau 3. Cette saturation locale est équivalente à l'ouverture du noyau 3 par un entrefer mécanique.
Au contraire, le flux magnétique FA dans le deuxième noyau 22 est important : le convertisseur 4 est alors magnétiquement couplé à la première bobine 1 , via la deuxième bobine 7, de sorte que le régulateur 10 puisse réguler une tension dans la charge C.
Dans le premier état, on a donc :
FAtc > FAta .
Un deuxième état est représenté schématiquement sur les figures 2B et 3B, et est un état dans lequel l'entrefer virtuel EV est fermé et ferme magnétiquement le circuit magnétique 2 au niveau du troisième noyau 3 de découplage.
Comme le montre la figure 2B, le flux magnétique Fc dans le troisième noyau 3 est important, car l'entrefer virtuel EV est fermé, alors que le flux embrassé par la bobine 6 est négligeable, en raison de la disposition symétrique des trous 5.
Au contraire, le flux magnétique (flux de fuites) dans le deuxième noyau 22 est faible : comme le montre la figure 3B, le convertisseur 4 est alors découplé de la première bobine 1 , de sorte que le régulateur 10 ne régule plus la tension dans la charge C, mais ne soit pas endommagé par un défaut dans le réseau. De préférence, la deuxième bobine 7 est mise en court-circuit pour obtenir une équivalence à l'ouverture 70 du noyau 22.
Dans le deuxième état, on a donc :
FAtc « FAta
Pour avoir cette situation, il faut
qu'il y ait un courant de court-circuit de grande amplitude dans le réseau (FAta est donc très importante), et/ou
- que le courant traversant le bobinage 6 soit nul (on a alors FAtc égale à 0). Après l'élimination du défaut sur le réseau et la fin du régime transitoire électrique (c'est-à-d i re les osci l lations de la tens ion transitoi re de rétablissement sur les organes de coupure), l'entrefer EV est de nouveau ouvert, sans maintenance particulière, et le régulateur 10 peut de nouveau réguler la tension sur le réseau. Et en cas de nouveau de court-circuit de défaut, le circuit 2 est de nouveau fermé magnétiquement par la fermeture rapide de l'entrefer EV, et ainsi de suite.
Dans une conception optimale du régulateur, le découplage du convertisseur 4 et de la bobine 1 peut s'effectuer en un temps de l'ordre de 1 ms, ce qui permet :
- de mettre en sécurité le convertisseur 4 et la source 8 de l'entrefer EV (découplage magnétique),
- de réduire l'énergie des courants transitoires de commutation du convertisseur et des dispositifs de commande et de protection, - de revenir rapidement en mode de régulation normal, si la variation de courant est due à un transitoire comme, par exemple, une impulsion haute fréquence.
Il est souvent préférable de ne pas découpler le régulateur 10 de tension lors des régimes transitoires, dits normaux, du courant de charge sur le réseau (sauf bien entendu si leur durée excessive est un signe de défaut sur le réseau). Les régimes transitoires normaux sont en effet dus par exemple :
à l'enclenchement sur le réseau de transformateurs, - au démarrage de moteurs sur le réseau,
etc.
Le régulateur 10 est alors adapté aux besoins du réseau (réseau de transport, réseau de distribution ou réseau industriel) et à la variété des gammes de puissance (régime normal et puissance de court-circuit).
C'est pour cette raison qu'il existe un troisième état de fonctionnement, en variante optionnelle.
Le troisième état correspond à un régime intermédiaire du réseau, dans lequel le courant alternatif est légèrement supérieur au courant nominal de la charge. Dans le régime intermédiaire, on a donc la condition suivante :
Ata>Atc.
Comme le montre la figure 2C, dans le troisième état, qui peut être établi et permanent (c'est-à-dire non transitoire), le circuit 2 est alors désaturé partiellement au niveau de l'entrefer EV du troisième noyau 3, et une partie du flux magnétique alternatif FA (imposé par FAta) circule dans le troisième noyau 3 en combinaison avec le flux continu Fc (imposé par FAtc). Tous les bobinages sont alors magnétiquement couplés.
L'ouverture de l'entrefer EV en régime normal du réseau ou la fermeture de l'entrefer EV lors d'un défaut sur le réseau peut être passive ou active ou dite intelligente.
On décrit dans un prem ier tem ps une com m ande passive de l'ouverture et de la fermeture de l'entrefer EV.
Dans ce cas, le limiteur 10 comporte une commande 60 passive de l'ouverture et de la fermeture de l'entrefer EV.
La commande 60 passive comporte une liaison permanente entre la source 8 et le bobinage 6, conforme aux figures 2A, 2B et 2C.
La commande passive 60 utilise la fermeture de l'entrefer EV, par désaturation du circuit 2 au niveau de l'entrefer EV due au fait que la force FAta est très élevée par rapport à la force FAtc, en raison du défaut au niveau du réseau et du fort courant qui traverse la bobine 1 .
Il s'agit d'un fonctionnement passif, sans besoin de contrôle de la commande passive 60. L'intensité du courant continu traversant le bobinage 6, fixée préalablement au défaut, est le seul paramètre de réglage du niveau de désaturation du troisième noyau 3.
La source 8 est de manière connue de l'homme du métier protégée contre les surintensités et les surtensions qui se développent pendant les régimes transitoires du réseau et pendant les défauts.
On décrit dans un deuxième tem ps une com mande 60 active de l'ouverture et de la fermeture de l'entrefer EV, représentée sur la figure 4. Dans ce cas, le régulateur 10 comporte une commande 60 active de l'ouverture et de la fermeture de l'entrefer EV.
La commande 60 active comporte un interrupteur 61 entre la source 8 et le bobinage 6.
L'interrupteur 61 peut
jouer le rôle d'une liaison entre la source 8 et le bobinage 6 (on est alors dans premier état de fonctionnement du régulateur), ou
annuler le courant continu dans le bobinage 6 (FAtc est alors d'intensité nulle, et on est alors dans le deuxième état de fonctionnement du régulateur par exemple).
La commande 60 comporte un détecteur 62 qui définit le critère d'ouverture de l'interrupteur 61 .
Le détecteur 62 compare l'amplitude du courant de défaut à celui d'un seuil de réglage.
Il est ainsi possible de faire fonctionner le régulateur 1 0 dans le troisième état, dans une plage de courant de défaut légèrement supérieur au courant en régime normal, mais inférieur au seuil. Au-delà du seuil, l'interrupteur 61 s'ouvre et le régulateur 10 passe en quelques millisecondes dans son deuxième état (EV fermé).
Lorsque le défaut est éliminé, le détecteur 62 referme l'interrupteur 61 . La commande 60 active comporte avantageusement un limiteur 63 de surtension de coupure de courant inductif, branché en parallèle de la source 8, par exemple un parafoudre à oxyde de zinc (ZnO), et/ou une diode de roue libre en série avec une résistance, tous deux connus de l'homme du métier.
On décrit dans un troisième tem ps une com mande intelligente, représentée schématiquement sur la figure 5, dans laquelle la commande 60 est reliée à une source 8 comportant un variateur 81 de l'intensité du courant dans le bobinage 6.
Le variateur 81 est un variateur électronique de puissance, connu de l'homme du métier, qui délivre un courant comportant une composante continue, mais peut aussi com porter des com posantes alternatives, notamment au double de la fréquence du réseau.
Selon la valeur du courant du réseau mesurée par la commande 60 (régime normal, ou intensité du courant légèrement supérieure au courant en régime normal, ou enfin court-circuit), la commande 60 commande le variateur 81 qui fait alors passer le régulateur 10 dans l'état magnétique de fonctionnement 1 , 2 ou 3 le plus adapté au contexte.
La commande 60 peut aussi être télécommandée pour prendre en compte le fonctionnement des dispositifs de protection du réseau, voire modifier ses seuils de réglage selon les besoins.
Le variateur 81 est avantageusement pourvu de dispositifs de protection, connu de l'hom me du métier, contre les surintensités et surtensions. Les figures 6A et 6B représentent schématiquement des fonctions d'un régu lateur selon l' i nvention , en faisant référence aux tro is états magnétiques de l'entrefer EV.
Pour les défauts d'amplitude extrême (ici très élevé, typiquement de 5 à 1 0 fois le courant nom inal dans le réseau, référencé par ln), il faut découpler rapidement le convertisseur 4 de tension en fermant magnétiquement l'entrefer EV. Le flux généré par le courant de défaut se referme principalement par le troisième noyau 3 au niveau de l'entrefer EV.
Le bobinage 7 du convertisseur 4 peut rester ouvert pendant la durée du défaut ou, de préférence, être mis en court-circuit pour contribuer à repousser le flux magnétique vers l'entrefer EV. Cette mise en court-circuit est équivalente à une ouverture du circuit magnétique 70, comme le montre la figure 3B. Elle peut être assurée par le convertisseur 4 lui-même ou par des com posants com plém entaires, notam m ent les protections du convertisseur connues de l'homme du métier.
Pour les régimes transitoires normaux (avec un courant légèrement supérieur à un courant nom inal, typiquement de 2 à 3 fois le courant nominal In dans le réseau) deux options sont possibles : - découpler totalement et rapidement le convertisseur 4 comme dans le cas des courants de court-circuit, référencés par lcc, extrêmes,
- maintenir l'entrefer EV dans un état intermédiaire.
Le flux généré par le courant transitoire se referme alors en partie du côté de l'entrefer EV (proportion X%) et pour l'autre partie (proportion 100- X%) du côté du convertisseur 4.
Ceci demande des performances sensiblement supérieures pour le convertisseur 4 et pour la source 8, mais la régulation présente alors l'avantage de répondre aux régimes transitoires normaux sans de brusques sauts de tension. Le convertisseur 4 se trouve aussi dans un état intermédiaire de découplage partiel pendant la durée du régime transitoire normal.
Le tableau 1 ci-dessous résume les états magnétiques de l'entrefer EV et ceux du convertisseur 4 de tension.
Amplitude du Régime transitoire Défaut
Régime normal
courant alternatif normal (5 à 10 In,
(In)
du réseau (2 à 3 In) voire plus)
Deux régimes de
fonctionnement,
Tension régulée Convertisseur découplé totalement avec l'entrefer EV
Entrefer EV ouvert Entrefer EV fermé
en commande
active
Deux régimes de
Tension partiellement régulée, selon fonctionnement,
Tension régulée conception et commande du convertisseur avec l'entrefer EV
Entrefer EV ouvert Convertisseur découplé partiellement en commande
Entrefer EV en état intermédiaire passive
Tension
partiellement
régulée, selon
Trois régimes de
conception et
fonctionnement,
commande du Convertisseur avec l'entrefer EV Tension régulée
convertisseur découplé totalement dans trois états Entrefer EV ouvert
Convertisseur Entrefer EV fermé magnétiques
partiellement
possibles
découplé
Entrefer EV en état
intermédiaire
Tableau 1
Le choix de réalisation d'un régulateur à deux ou trois régimes de fonctionnement dépend du contexte.
Ainsi, pour un réseau affecté de régimes transitoires normaux très fréquents et dont la charge est sensible aux variations de tension, le dispositif à trois régimes est souhaitable.
Inversement, si les régimes transitoires sont rares, le surcoût de conception du régulateur n'est pas justifié.
De même, dans le cas où les défauts extrêmes n'existent pas, en raison de la faiblesse du réseau, une commande 60 passive de l'entrefer EV peut être intéressante. De manière préférentielle, la commande 60 commande la source continue 8 et le convertisseur 4 de tension de manière coordonnée.
Comme le montre schématiquement la figure 7, la commande 60 envoie une consigne 601 de régulation de tension vers le convertisseur 4 électronique, et une consigne 602 de régulation vers la source 8.
Le contrôle de l'état intermédiaire de l'entrefer EV se fait par la variation de courant dans le bobinage 6, le courant com portant une composante continue et des composantes harmoniques. La source 8 peut également comporter avantageusement un convertisseur de courant.
Le cas de la réalisation du dispositif par un ensemble ayant trois régimes de fonctionnement peut donc se faire avec une commande 60 intelligente qui gère les fonctionnements d'un convertisseur de tension et d'un convertisseur de courant.
Dans tous les cas, il faut découpler rapidement le convertisseur 4 du réseau à l'apparition d'un défaut.
Comme le montre la figure 8A, tous les dispositifs de protection sont confrontés à la même difficulté de prédire l'évolution du courant, à partir d'une variation de courant di/dt importante en un temps relativement court, typiquement de l'ordre de 1 ms. Il faut en effet découpler le convertisseur de tension en 1 ms, sinon il est détruit par le court-circuit.
La figure 8B montre en effet qu'il peut s'agir d'un régime transitoire normal (manœuvre en réseau, variation de charge, etc.), et dans ce cas il y a retour à un régime normal en un tem ps typiquement de l'ordre de quelques millisecondes.
Au contraire, la figure 8C montre que l'intensité peut être extrême (de
5 à 1 0 In, voire plus) et alternative avec une période correspondant à la période de la tension du réseau, par exemple 20ms, et donc correspondre à un défaut. Un des avantages d'un régulateur 10 selon l'invention est de dimensionner la puissance du convertisseur de tension pour les besoins de régulation uniquement, quelles que soient l'am plitude et la durée des défauts, notam m ent pour rédu ire les fluctuations de tensions, les distorsions harmoniques, les effets du "flicker", et voire compenser en tout ou partie les creux de tension.
La source 8 est dimensionnée pour fournir les pertes ohm iques permanentes du bobinage 6 et pour tenir le transitoire de commutation rapide de l'entrefer EV, situation transitoire qui est également représentée sur la figure 2C.
Le choix du rapport du nombre de spires de la première bobine 1 sur le nombre de spires de la deuxième bobine 7, permet d'optimiser le coût du convertisseur 4 de tension en s'adaptant aux performances des matériels électroniques du marché, mais aussi en bénéficiant des progrès en matière de rapidité de commutation (>kHz), de tenue en tension (>kV) et de tenue en courant (>kA).
Le nombre de spires du bobinage 6 est lié aux caractéristiques du circuit 2 pour obtenir une rapidité de commande de l'entrefer EV de l'ordre de la milliseconde pour un réseau industriel 50 Hz ou 60 Hz.
A titre d'exemple :
Performance du régulateur monophasé
Tension monophasée réseau 1 1 ,5kV
Régulation de tension série + ou - 10%
Courant nominal 30A
Puissance équivalente triphasée 1 MVA
Convertisseurs électroniques
Caractéristique des interrupteurs IGBT 1200A , 2500V
Constante de temps de commande EV 1 ms
Exemples de dimensionnements du régulateur
Diamètre de trou 5 10 à 25cm
Nbre de spires du bobinage 6 5 à 20
Nbre de spires de la première bobine (alternative) 1 150 à 200
Nbre de spires de la deuxième bobine (convertisseur) 7 20 à 40
Epaisseur du troisième noyau 3 10 à 30cm Lorsque la dimension du circuit magnétique 2 augmente, la surface d'un trou 5 augmente plus vite que son périmètre. Il en résulte l'avantage de pouvoir choisir une densité de courant dans le bobinage 6 suffisamment faible pour y réduire les pertes ohmiques permanentes, quand l'entrefer EV est ouvert.
La figure 9A et la figure 9B précisent quelques caractéristiques du premier noyau 21 (également référencé par NR), du deuxième noyau 22 (également référencé par Nu) et du troisième noyau 3 (également référencé par NEv)- Comme le montre la figure 9A, en régime normal de régulation, le premier noyau 21 , une éventuelle réduction 210 de section et le deuxième noyau 22 ne doivent pas être saturés magnétiquement.
Le circuit magnétique 2 doit être fermé pour assurer un bon couplage entre la deuxième bobine 7 du convertisseur 4 et la première bobine 1 . Il faut donc éviter les entrefers mécaniques le long du trajet de flux FA
(comme représenté également sur la figure 2A).
En régime transitoire, et a fortiori pendant les défauts extrêmes, il faut absolument éviter les entrefers mécaniques le long du trajet de flux Fc
(comme représenté sur la figure 2B), afin de protéger le convertisseur 4 de tension. Le troisième noyau 3 ne doit donc jamais être saturé pendant ces défauts.
Cependant, en régime transitoire et a fortiori pendant les défauts extrêmes, le prem ier noyau 21 peut être saturé afin de lim iter le flux magnétique. A cet effet, le premier noyau 21 peut comporter une réduction 210 de section.
Dans un autre mode de réalisation représenté sur la figure 9B , l'excédent de flux consécutif au régime transitoire ou au défaut peut être canalisé par un noyau complémentaire 220 raccordé par au moins un entrefer 221 au circuit magnétique 2. La première bobine 1 entoure alors les noyaux 21 et 220. La figure 10A représente un schéma électrique équivalent du régulateur 10, avec des impédances LNEV, LNU et LNR respectivement représentatives des noyaux NEv (3), Nu (22) et NR (21 ) de la figure 9A.
Comme le montre la figure 10B, en régime normal, l'entrefer EV est ouvert, l'inductance LNEV du troisième noyau 3 est de faible valeur. Le convertisseur 4 de tension régule la tension U en compensant la chute de tension dans l'inductance LNEV-
Comme le montre la figure 10C, en régime intermédiaire, l'entrefer EV n'est pas complètement fermé. Le courant du réseau (d'intensité comprise entre 1 à 3 In) s'écoule en partie par l'inductance saturable LNR et en partie dans la branche composée de l'inductance LNEV (commandée par la source 8 de courant continu I), en série avec le convertisseur 4 délivrant la tension U (pour une intensité de 0 à 2 In, en fonction des performances de la source 8 et du convertisseur 4).
Comme le montre la figure 1 0D, en régime de défaut (l'intensité du courant dans le réseau est comprise entre 3 à 10 In par exemple), l'entrefer EV est fermé et l'inductance LNEV limite le courant dans le convertisseur 4 de tension. Ce courant est alors inférieur à In, voire très faible, selon les choix de dimensionnement et de fonctionnement du régulateur. De préférence, la deuxième bobine est mise en court-circuit pour contribuer à l'ouverture 70 du noyau 22 (comme représenté schématiquement sur la figure 3B) : la tension U représentée sur la figure 10D est alors nulle.
Comme le montre la figure 1 1 , pour les régimes où le premier noyau 21 est saturé, et pour éviter que la chute AVcc de tension de court-circuit ne soit trop importante et/ou trop non linéaire, il est possible de réaliser la réduction 210 de section du premier noyau 21 d'une manière qui favorise les pertes 30 par courants de Foucault, c'est-à-dire des courants induits par des variations d'induction magnétique, en fabriquant la plaque du circuit 2 par une superposition de tôles magnétiques 28. Dans un autre mode de réalisation, la plaque peut également assurer cette fonction dissipative d'énergie par des pertes électro-magnétiques à l'aide de matériaux adaptés. Inversement, on peut souhaiter augmenter la chute de tension ΔΝ/cc, car l'augmentation de AVcc permet de limiter le courant de défaut. Le régulateur 10 comporte ainsi une fonction de limitation du courant de défaut.
On présente ici deux modes de réalisation pour obtenir ce résultat. La figure 12 montre que selon un premier mode de réalisation, la première bobine 1 se compose d'une première partie 1 a, s'enroulant autour du premier noyau 21 , et d'une deuxième partie 1 b, s'enroulant dans le même sens de bobinage, autour d'une partie du circuit 2, appelée culasse, comprise entre le premier noyau 21 et le troisième noyau 3, par exemple au voisinage des trous 5.
En régime normal, le troisième noyau 3 est ouvert par l'entrefer EV, et l'inductance L1 b de la deuxième partie 1 b de la première bobine 1 est de faible valeur. Elle introduit une chute AVcc de tension faible qui peut être compensée par le convertisseur 4 de tension.
En régime de défaut, les inductances Li a et L1 b des parties 1 a et 1 b de la bobine 1 sont parcourues par le même flux Fc qui se referme par le troisième noyau 3. Les chutes AVcc de tension dépendent du nombre de spires des parties 1 a et 1 b de la première bobine 1 et s'ajoutent dans les parties 1 a et 1 b selon le carré des nombres N1 a et N1 b de spires, à savoir
(N1 a+N1 b)2.
La figure 13, représentant une coupe longitudinale, vue de dessus, du circuit 2, montre que selon un deuxième m ode de réal isation , pour augmenter la chute AVcc de tension sans changer le nombre de spires, il faut augmenter le flux Fc, notamment en augmentant la section du premier noyau 21 .
A cet effet, le circuit 2 comporte un circuit 200 magnétique auxiliaire comportant un cadre comportant un noyau 212 et un noyau NF, parallèles entre eux et au premier noyau 21 , et un entrefer mécanique EM.
La première bobine 1 s'enroule autour
- du premier noyau 21 , de section similaire au premier noyau 21 décrit jusqu'à présent, et
- du noyau 212. L'augmentation de flux Fc dans la première bobine 1 ne demande donc pas d'augmenter la section du premier noyau.
En régime normal, le flux FA est négligeable dans le circuit 200, en raison de l'entrefer mécanique EM.
En rég ime de défaut, le flux Fc en dépassement du niveau de saturation du premier noyau 21 se referme dans le circuit 200.
La chute de tension AVcd , due au premier noyau 21 , est augmentée de AVcc2, due au circuit auxiliaire 200 (AVcc2 est ajustable par l'entrefer mécanique EM).
Un autre mode de réalisation permettant également de lim iter le courant de défaut consiste à ajouter en série avec le régulateur une inductance séparée de celui-ci.
Comme le montre la figure 14, en régime normal, le régulateur de tension peut compenser la chute de tension dans cette inductance série.
La figure 15 montre la relation entre la tension efficace aux bornes de la charge et le courant efficace du régulateur, quand une fonction de limitation est assurée par le régulateur ou par une inductance séparée.
On comprend que pour optimiser la construction du régulateur, l'homme du métier peut préférer une autre disposition des fenêtres 23 et 24 réalisées avec les noyaux et culasses, afin de faciliter par exemple le raccordement aux bornes de sortie, ou encore répondre à l'exigence de tenue aux essais diélectriques (choc de foudre).
De même, le choix d'une isolation sèche (par exemple par une résine époxy) ou d'une isolation à huile (par papier imprégné) peut conduire à disposer les fenêtres 23 ou 24 d'une autre manière que celle présentée schématiquement dans les figures.
Enfin, on com prend que la réalisation d'un régulateur ou d' un régulateur-limiteur multiphasé, et notamment triphasé, peut être basée sur le regroupement de plusieurs unités monophasées identiques ou sur la conception d'un circuit magnétique multiphasé, dans les règles de l'art connues de l'homme du métier. Un des buts d'une telle réalisation est de réduire la masse et l'encombrement du circuit magnétique. Un autre but peut être d'obtenir des performances différentes en mode direct et en mode homopolaire, notamment quand les sources de perturbations de tension et/ou les défauts sont différents selon ces modes, notamment en raison des types de mise à la terre du réseau alternatif.

Claims

REVENDICATIONS
1 . Régulateur (1 0) de tension, adapté pour être branché en série entre d'une part une source (S) alternative et d'autre part une charge (C), comportant
un circuit magnétique (2) comportant un premier noyau (21 ) et un deuxième noyau (22),
au moins une prem ière bobine ( 1 ) inductive bobinée au moins partiellement autour du premier noyau (21 ) et reliée d'une part à la source (S) alternative et d'autre part à la charge (C), et
au moins un convertisseur (4) de tension comportant une deuxième bobine (7) bobinée autour du deuxième noyau (22),
le régulateur (10) étant caractérisé en ce que
le circuit (2) comporte
un troisième noyau (3) de découplage, et
un entrefer virtuel (EV), l'entrefer virtuel (EV) comportant
au moins une paire (50) de trous (5) dans le troisième noyau (3) de découplage, et
un bobinage (6) se bobinant entre les trous (5) de chaque paire (50) de trous (5), et relié à une source (8) de courant continu, le régulateur (10) fonctionnant entre au moins deux états, à savoir :
un prem ier état dans lequel l'entrefer virtuel (EV) est ouvert en saturant magnétiquement le troisième noyau (3) de découplage, le flux magnétique dans le troisième noyau (3) étant faible, et la deuxième bobine (7) du convertisseur (4) étant couplée à la première bobine (1 ), de sorte que le régulateur puisse réguler une tension dans la charge (C), et
un deuxième état dans lequel l'entrefer virtuel (EV) est fermé, le flux magnétique dans l'entrefer virtuel (EV) du troisième noyau (3) étant important, de sorte que le convertisseur (4) soit découplé de la première bobine (1 ).
2. Régulateur selon la revendication 1 , en outre adapté pour fonctionner selon un troisième état dans lequel l'entrefer virtuel (EV) est partiellement ouvert en désaturant partiellement le troisième noyau (3), de sorte que le convertisseur (4) soit partiellement découplé de la première bobine (1 ).
3. Régulateur selon l'une des revendications 1 ou 2, comportant une commande (60) passive ou active ou intelligente de l'ouverture, totale ou partielle, ou de la fermeture, totale ou partielle, de l'entrefer virtuel (EV).
4. Régulateur selon la revendication 3, dans lequel la commande (60) passive comporte une liaison permanente entre la source (8) de courant continu et le bobinage (6).
5. Régulateur selon la revendication 3, dans lequel la commande (60) active comporte un interrupteur (61 ) commandé par un détecteur (62) entre la source (8) de courant continu et le bobinage (6).
6. Régulateur selon la revendication 3, dans lequel la com mande (60) intelligente commande une source (8) de courant continu comportant un variateur (81 ) relié au bobinage (6).
7. Régulateur selon l'une des revendications 1 à 6, dans lequel le premier noyau (21 ) comporte
- une réduction (210) de section, ou
- un noyau complémentaire (220) relié par un entrefer mécanique (221 ) au circuit magnétique (2).
8. Régulateur selon l'une des revendications 1 à 7, dans lequel la première bobine (1 ) se compose d'une première partie (1 a), s'enroulant autour du premier noyau (21 ), et d'une deuxième partie (1 b), s'enroulant autour d'une partie du circuit (2) comprise entre le premier noyau (21 ) et le troisième noyau (3), le régulateur présentant ainsi également une fonction de limiteur de courant.
9. Régulateur selon l'une des revendications 1 à 7, dans lequel le circuit (2) comporte un circuit (200) magnétique auxiliaire comportant un cadre comportant au moins un noyau (212) et un entrefer mécanique (EM), la première bobine (1 ) s'enroulant autour du premier noyau (21 ) et du noyau (212) du cadre, le régulateur présentant ainsi également une fonction de limiteur de courant.
10. Régulateur selon l'une des revendications 1 à 9, adapté pour être mis en série avec une bobine limitatrice de courant.
PCT/EP2012/054806 2011-03-18 2012-03-19 Régulateur de tension série à électronique protégée des courts-circuits par un découplage par circuit magnétique à trous et fenêtres WO2012126884A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL12709635T PL2686746T3 (pl) 2011-03-18 2012-03-19 Szeregowy regulator napięcia z układem elektronicznym zabezpieczonym przed zwarciami za pomocą odsprzęgania opartego na obwodzie magnetycznym z wykorzystaniem otworów i okien
ES12709635.2T ES2543310T3 (es) 2011-03-18 2012-03-19 Regulador de tensión en serie con electrónica protegida frente a los cortocircuitos mediante un desacoplamiento por circuito magnético con orificios y ventanas
EP20120709635 EP2686746B1 (fr) 2011-03-18 2012-03-19 Régulateur de tension série à électronique protégée des courts-circuits par un découplage par circuit magnétique à trous et fenêtres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1152235 2011-03-18
FR1152235A FR2972865B1 (fr) 2011-03-18 2011-03-18 Regulateur de tension serie a electronique protegee des courts-circuits par un decouplage par circuit magnetique a trous et fenetres

Publications (2)

Publication Number Publication Date
WO2012126884A2 true WO2012126884A2 (fr) 2012-09-27
WO2012126884A3 WO2012126884A3 (fr) 2013-07-25

Family

ID=45855795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/054806 WO2012126884A2 (fr) 2011-03-18 2012-03-19 Régulateur de tension série à électronique protégée des courts-circuits par un découplage par circuit magnétique à trous et fenêtres

Country Status (5)

Country Link
EP (1) EP2686746B1 (fr)
ES (1) ES2543310T3 (fr)
FR (1) FR2972865B1 (fr)
PL (1) PL2686746T3 (fr)
WO (1) WO2012126884A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505238A (zh) * 2015-01-14 2015-04-08 东南大学 一种等效气隙可调电抗器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021205817A1 (de) * 2021-06-09 2022-12-15 Siemens Aktiengesellschaft Ladestation für ein elektrisch antreibbares Fahrzeug
CN114974830B (zh) * 2022-06-10 2024-05-14 武汉大学 磁集成解耦绕组的高压磁饱和限流器及绕组电感计算方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523673A (en) * 1994-03-04 1996-06-04 Marelco Power Systems, Inc. Electrically controllable inductor
US6933822B2 (en) * 2000-05-24 2005-08-23 Magtech As Magnetically influenced current or voltage regulator and a magnetically influenced converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505238A (zh) * 2015-01-14 2015-04-08 东南大学 一种等效气隙可调电抗器

Also Published As

Publication number Publication date
ES2543310T3 (es) 2015-08-18
WO2012126884A3 (fr) 2013-07-25
EP2686746B1 (fr) 2015-04-22
FR2972865A1 (fr) 2012-09-21
FR2972865B1 (fr) 2013-04-12
EP2686746A2 (fr) 2014-01-22
PL2686746T3 (pl) 2015-10-30

Similar Documents

Publication Publication Date Title
EP3230999B1 (fr) Dispositif de coupure de courant continu haute tension
EP1974362B1 (fr) Disjoncteur de générateur avec résistance insérée
FR3062512A1 (fr) Dispositif de coupure de courant continu haute tension
EP3903334B1 (fr) Dispositif de coupure de courant pour courant continu haute tension avec circuit d'oscillation adaptatif et procédé de pilotage
FR2618276A1 (fr) Dispositif de commutation electronique.
EP3942585B1 (fr) Dispositif de coupure de courant pour courant continu haute tension avec résonateur et commutation
EP2686746B1 (fr) Régulateur de tension série à électronique protégée des courts-circuits par un découplage par circuit magnétique à trous et fenêtres
EP3903333B1 (fr) Dispositif de coupure de courant pour courant continu haute tension avec circuit capacitif tampon et procédé de pilotage
EP2686931B1 (fr) Limiteur série de courant par circuit magnétique à trous et fenêtres
EP3378083B1 (fr) Disjoncteur pour un réseau à courant continu haute tension, avec oscillation forcée de courant
CA2912175C (fr) Organe hybride de coupure pour circuit electrique
EP2842151B1 (fr) Circuit actionneur de commande de disjoncteur
WO2014064000A1 (fr) Circuit de test de disjoncteur haute tension a courant continu
FR2898213A1 (fr) Disjoncteur de fuites a la terre.
FR3067165A1 (fr) Systeme d'hybridation pour courant continu haute tension
FR2981786A1 (fr) Procede de coupure d'un arc electrique, procede et dispositif de protection d'une installation contre les surtensions
EP3682521B1 (fr) Système de protection pour limiter l'impact des perturbations d'un réseau électrique externe sur le réseau local d'un site branché sur le réseau externe
EP4078755B1 (fr) Convertisseur de tension dc/dc muni d'un dispositif coupe-circuit
EP3251190B1 (fr) Dispositif de réglage dynamique de la tension d'un réseau électrique, ensemble et réaseau électrique comprenant un tel dispositif
EP4385107A1 (fr) Dispositif et procede de coupure de courant électrique sous haute tension continue avec fusible et système de surcharge à courant oscillant
WO2022029379A2 (fr) Dispositif de coupure de courant pour courant électrique sous haute tension continue, installation avec un tel dispositif, procede de pilotage, et processus d'evaluation de l'integrite d'un conducteur electrique
BE380109A (fr)
WO2023083761A1 (fr) Booster de courant de court-circuit dc
BE506729A (fr)
FR3038151A1 (fr) Alimentation electrique d'une charge avec barre de distribution segmentee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12709635

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012709635

Country of ref document: EP