WO2012126665A1 - Dye polymer - Google Patents

Dye polymer Download PDF

Info

Publication number
WO2012126665A1
WO2012126665A1 PCT/EP2012/051848 EP2012051848W WO2012126665A1 WO 2012126665 A1 WO2012126665 A1 WO 2012126665A1 EP 2012051848 W EP2012051848 W EP 2012051848W WO 2012126665 A1 WO2012126665 A1 WO 2012126665A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactive
dye
selected
treatment composition
laundry treatment
Prior art date
Application number
PCT/EP2012/051848
Other languages
French (fr)
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP11158985 priority Critical
Priority to EP11158985.9 priority
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited filed Critical Unilever Plc
Publication of WO2012126665A1 publication Critical patent/WO2012126665A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/106Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an azo dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines, polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3788Graft polymers

Abstract

The present invention relates to polymeric dye and their use.

Description

DYE POLYMER

FIELD OF INVENTION

The present invention relates to reactive dyes bound to polymers.

BACKGROUND OF THE INVENTION

WO2006/055787 (Procter & Gamble) discloses laundry formulations containing a cellulose ether polymer covalently bound to a reactive dye for whitening the fabric. Such polymers provide poor performance on polyester fabrics.

A negative in the dye polymers disclosed in WO2006/055787 is the formation of hydrolysed reactive dyes during formation of the dye polymer.

WO 2010/151906 (D1 ) (Milliken) discloses a polymeric bis-azo bluing agent which contain one polymeric component or substituted sulphonamide component. The dyes disclosed are not obtainable by reacting a reactive dye with a polyether amine; the remnants of a reactive group are not present in the dyes disclosed in WO 2010/151906. US 5976197 (D2) discloses an industrial process for dye houses in which cellulose is treated with a reactive dye having at least two unreacted electrophilic groups in the presence of a nucleophilic agent. SUMMARY OF THE INVENTION

The dye polymers of the present invention are substantive over a wide range of differing fabrics. They are easy to synthesis with minimal levels of hydrolysed dye and provide benefits to cotton and polyester fabrics.

In one aspect the present invention provides a dye polymer, the dye polymer comprising a core polyetheramine wherein at least one amine of the

polyetheramine is covalently bound to a reactive dye.

In another aspect the present invention provides a laundry treatment composition comprising:

(i) from 2 to 70 wt% of a surfactant; and, (ii) from 0.01 to 20.0 wt%, preferably 0.1 to 5 wt% of a dye polymer, the dye polymer obtainable by reacting a reactive dye with a polyetheramine.

In further aspect the present invention provides a domestic method of treating a textile, the method comprising the steps of:

(i) treating a textile with an aqueous solution of the laundry treatment composition, the aqueous solution comprising from 10 ppb to 5000 ppm, of the dye polymer; and, from 0.0 g/L to 3 g/L of a surfactant, preferably 0.2 g/L to 3 g/L; and, (ii) optionally rinsing and drying the textile.

DETAILED DESCRIPTION The Dye Polymer

The dye polymer is a polyetheramine, wherein the polyetheramine has at least one amine group which is covalently bound to a reactive dye. The polyetheramine is the core part of the dye polymer and the chromophore of the reactive dye is pendent to the core polyetheramine and feathered via the amine groups of the core polyetheramine. The dye polymer may be any colour.

The dye polymer is preferably blue or violet in colour. In this regard, a blue or violet colour is provided to the cloth to give a hue angle of 230 to 345, more preferably 265 to 330, most preferably 270 to 300. The cloth used is white bleached non-mercerised woven cotton sheeting.

The dye polymer may be formed by reacting a reactive dye with a polytheramine. The reaction is preferably conducted in an aqueous solution. The reactive dye is tethered to the polytheramine by a covalent bond.

Preferably the weight average molecular weight of the dye polymer is from 500 to 20 000, more preferably 1000 to 4000.

Where exact formula cannot be determined, the molecular weights are

determined by dynamic light scattering using a Zetasizer Nano (Malvern).

In the reaction the reactive dye is preferably selected from: reactive blue; reactive black; reactive red; and, reactive violet dyes. Preferably, the reactive dyes are selected from mixtures of: reactive black and reactive red; reactive blue and reactive red; reactive black and reactive violet; and, reactive blue and reactive violet, wherein the number of blue or black dye moieties is in excess of the red or violet dye moieties. Preferably, the reactive dye is negatively charged and is selected from a chromophore selected from the group comprising of: azo;

anthraquinone; phthalocyanine; and, triphendioxazine. Preferably, the reactive dye has a reactive group selected from the group comprising: dichlorotriazinyl; difluorochloropyrimidine; monofluorotrazinyl; dichloroquinoxaline; vinylsulfone; difluorotriazine; monochlorotriazinyl; bromoacrlyamide; and, trichloropyrimidine.

When polyetheramine is referred to as being covalently bound to a reactive dye one skilled in the art will understand that the reactive group is no longer present ' the dye polymer. This is exemplified below for three reactive groups:

O O H2N— polymer 0 NHpolymer

II H2 H2 II II H2 I

-S— C— C— OS03Na dye— S— C=CH2 *~ dye— S— C— CH2

II alkali II H alkali \\

o o o

Figure imgf000005_0001

When detergent products are in neat contact with textiles, unwanted staining of the textile may result due to the presence of dyes. This staining is increased when hydrolysed reactive dyes are present. The dye polymers per se show low staining on neat contact. POLYETHERAMINE

A polyetheramine is an organic compound that comprises an ether chain, wherein at least one chain end is terminated by a primary amine. Preferably all chain ends are terminated by a primary amine. The polyetheramine is the core part of the dye polymer and the chromophore of the reactive dye is pendent to the core polyetheramine and feathered via the amine groups of the core polyetheramine. Preferably the polyether chain is linear.

Preferably the polyether chain is selected from ethylene oxide (EO), propylene oxide (PO). Preferred examples of polyetheramines are as follows:

Figure imgf000006_0001

Where preferably y = 2 to 100 and (x + z) = 1 to 20, most preferably y and (x + z) = 4 to 10.

Figure imgf000006_0002

Where R = H or CH3 and (y + z) = 3 to 100 and y/z varies from 0.1 to 20.

Figure imgf000006_0003

Where x = 2 to 200

Figure imgf000007_0001

R2 = methyl ethyl or H and (x + y + z) = 5 to 200, n = 0 to 5, and x, y and z are all greater than 1 .

Reactive Dyes

Reactive dyes are described in Industrial Dyes (K. Hunger ed, Wiley VCH 2003). Many Reactive dyes are listed in the colour index (Society of Dyers and Colourists and American Association of Textile Chemists and Colorists).

Reactive dyes consist of a dye chromophore covalently bound to a reactive group. Reactive groups react with primary and secondary amines to form a covalent bound, preferably by a substitution or addition reaction.

Reactive yellow and reactive Orange dyes are preferably chosen from mono-azo and bis-azo compounds, most preferably mono-azo.

Blue and violet dye chromophores are preferably selected from anthraquinone, bis-azo, triphenodioxazine, and phthalocyanine, more preferably anthraquinone, bis-azo, and triphenodioxazine, most preferably bis-azo and triphenodioxazine.

Red and violet reactive dyes may be mixed with the blue and violet reactive dyes to provide the correct hue. Reactive red dye chromophores are preferably selected from mono and bis-azo dyes. A preferred blue bis-azo dye is of the form:

Figure imgf000008_0001
Where one or both of the A and B rings are substituted by a reactive group.

The A and B rings may be further substituted by sulphonate groups (SOsNa).

The A and B rings may be further substituted with suitable uncharged organic groups, preferably with a molecular weight lower than 200. Preferred groups are -

Figure imgf000008_0002

A preferred blue anthraquinone dye is of the form:

Figure imgf000008_0003
where the C ring is substituted by a reactive group. The dye may be further substituted with sulphonate groups (SOsNa) and suitable uncharged organic groups, preferably with a molecular weight lower than 200. Preferred uncharged organic groups are-CH3, -C2H5, and -OCH3. A preferred triphenodioxazine dye is of the form:

Figure imgf000009_0001
Where the D and E rings are substituted by a reactive groups. Preferably the D and E rings are further substituted by sulphonate groups (SOsNa).

A preferred red azo dye is of the form:

Figure imgf000009_0002

Where the F ring is optionally extended to form a naphthyl group are optionally substituted groups selected from sulphonate groups (SOsNa) and a reactive group.

G is selected from a reactive group, H, or alky group. A reactive group must be present on the dye.

With the exception of copper phthalocyanine dyes, metal complex dyes are not preferred.

Reactive groups are preferably selected from heterocyclic reactive groups and, a sulfooxyethylsulfonyl reactive group (-S02CH2CH2OS03Na). The heterocyclic reactive groups are preferably nitrogen contains aromatic rings bound to a halogen or an ammonium group, which react with NH2 or NH groups of the polymers to form a covalent bond. The halogen is preferred. More preferred heterocylic reactive groups are dichlorotriazinyl, difluorochloropyrimidine, monofluorotrazinyl, monofluorochlorotrazinyl, dichloroquinoxaline, difluorotriazine, monochlorotriazinyl, and trichloropyrimidine.

The reactive group may be linked to the dye chromophore via an alkyl spacer for example: dye-NH-CH2CH2-reactive group.

Especially preferred heterocylic reactive groups are:

Figure imgf000010_0001
wherein Ri is selected from H or alkyl, preferably H.

X is selected from F or CI.

When X = CI, Z1 is selected from -CI, -NR2R3, -OR2, -S03Na

When X = F, Z is selected from -NR2R3

R2 and R3 are independently selected from H, alkyl and aryl groups. Aryl groups are preferably phenyl and are preferably substituted by -S03Na or - S02CH2CH2OS03Na. Alkyl groups are preferably methyl or ethyl.

The phenyl groups may be further substituted with suitable uncharged organic groups, preferably with a molecular weight lower than 200. Preferred groups include -CH3, -C2H5, and -OCH3 The alkyl groups may be further substituted with suitable uncharged organic groups, preferably with a molecular weight lower than 200. Preferred groups include -CH3, -C2H5, -OH, -OCH3, -OC2H4OH. Most preferred heterocylic reactive groups are selected from:

Figure imgf000011_0001

and H H

Where n = 1 or 2, preferably 1 .

Preferably the reactive dye contains more than one reactive group, preferably two or three.

An untethered hydrolysed reactive dyes is one in which the reactive groups have reacted with the hydroxide anion, HO", rather than the polymer. Preferably the composition contains less than 100ppm of untethered hydrolysed reactive dye per l OOOOppm dye-polymer, more preferably less than 20ppm. Most preferably untethered hydrolysed reactive dyes are not present in the composition. Such dyes may be removed by dialysis or careful control of the reaction conditions.

Where a reactive dye has been tethered to the polymer to form one or more covalent bonds and has a hydrolysed reactive group this is not classed as an unteathered hydrolysed reactive dye. Examples of reactive dyes are reactive blue 2, reactive blue 4, reactive blue 5, reactive blue 7, reactive blue 15, reactive blue 19, reactive blue 27, reactive blue29, reactive blue 49, reactive blue 50, reactive blue 74, reactive blue 94, reactive blue 246, reactive blue 247, reactive blue 247, reactive blue 166, reactive blue 109, reactive blue 187, reactive blue 213, reactive blue 225, reactive blue 238, reactive blue 256. Further structures are exemplified below:

Figure imgf000012_0001

Figure imgf000012_0002
Figure imgf000012_0003

Figure imgf000013_0001

SURFACTANT

The composition comprises between 2 to 70 wt % of a surfactant, most preferably 10 to 30 wt %. In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry &

Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in

"Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .

Preferably the surfactants used are saturated.

Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are C6 to C22 alkyl phenol- ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic Cs to C18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.

Suitable anionic detergent compounds which may be used are usually water- soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Ci8 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl Cg to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The preferred anionic detergent compounds are sodium Cn to C15 alkyl benzene sulphonates and sodium C12 to C18 alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides. Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever). Especially preferred is surfactant system that is a mixture of an alkali metal salt of a C16 to C18 primary alcohol sulphate together with a C12 to C15 primary alcohol 3 to 7 EO ethoxylate.

The nonionic detergent is preferably present in amounts greater than 10%, e.g. 25 to 90 wt % of the surfactant system. Anionic surfactants can be present for example in amounts in the range from about 5% to about 40 wt % of the surfactant system.

In another aspect which is also preferred the surfactant may be a cationic such that the formulation is a fabric conditioner. To facilitate ease of use the formulation is preferably packed in pack sizes of 0.5 to 5kg. To reduce moisture ingress, the formulation is preferably packs in laminated cardboard packs or sealed plastic bags. CATIONIC COMPOUND

When the present invention is used as a fabric conditioner it needs to contain a cationic compound. Most preferred are quaternary ammonium compounds.

It is advantageous if the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain. It is preferred if the quaternary ammonium compound has the following formula:

R2

l +

R1 -N-R3 X

I

R4 in which R1 is a C12 to C22 alkyl or alkenyl chain; R2, R3 and R4 are independently selected from Ci to C4 alkyl chains and X" is a compatible anion. A preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.

A second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R1 and R2 are independently selected from C12 to C22 alkyl or alkenyl chain; R3 and R4 are independently selected from Ci to C4 alkyl chains and X" is a compatible anion. A detergent composition according to claim 1 in which the ratio of (ii) cationic material to (iv) anionic surfactant is at least 2: 1 .

Other suitable quaternary ammonium compounds are disclosed in EP 0 239 910 (Proctor and Gamble).

It is preferred if the ratio of cationic to nonionic surfactant is from 1 : 100 to 50:50, more preferably 1 :50 to 20:50. The cationic compound may be present from 1 .5 wt % to 50 wt % of the total weight of the composition. Preferably the cationic compound may be present from 2 wt % to 25 wt %, a more preferred composition range is from 5 wt % to 20 wt %.

The softening material is preferably present in an amount of from 2 to 60% by weight of the total composition, more preferably from 2 to 40%, most preferably from 3 to 30% by weight.

The composition optionally comprises a silicone. Builders or Complexing agents:

Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof. Examples of calcium sequestrant builder materials include alkali metal

polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.

Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate. Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in

EP-A-0,384,070.

The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.

Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders.

The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w. Aluminosilicates are materials having the general formula:

0.8-1 .5 M20. Al203. 0.8-6 Si02 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1 .5-3.5 S 1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3: 1 . Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate,

triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from

Hoechst).

Preferably the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate. Preferably the laundry detergent formulation is carbonate built.

FLUORESCENT AGENT

The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2- d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5- triazin-2-yl)]amino}stilbene-2-2' disulfonate, disodium 4,4'-bis{[(4-anilino-6- morpholino-1 ,3,5-triazin-2-yl)]amino} stilbene-2-2' disulfonate, and disodium 4,4'- bis(2-sulfostyryl)biphenyl.

It is preferred that the aqueous solution used in the method has a fluorescer present. When a fluorescer is present in the aqueous solution used in the method it is preferably in the range from 0.0001 g/l to 0.1 g/l, preferably 0.001 to 0.02 g/l. PERFUME

Preferably the composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and

Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components. In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]).

Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Perfume and top notes may be used to cue the whiteness benefit of the invention.

It is preferred that the laundry treatment composition does not contain a

peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid. POLYMERS

The composition may comprise one or more other polymers. Examples are carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol),

polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacry late/acrylic acid copolymers. Polymers present to prevent dye deposition, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole), are preferably absent from the formulation. ENZYMES

One or more enzymes are preferred present in a composition of the invention and when practicing a method of the invention. Preferably the level of each enzyme is from 0.0001 wt% to 0.1 wt% protein.

Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.

Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (7.

lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB

1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91 /16422).

Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202, WO 00/60063. Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™, Lipoclean™ (Novozymes A/S).

The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1 .1 .4 and/or EC 3.1 .1 .32. As used herein, the term

phospholipase is an enzyme which has activity towards phospholipids.

Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form

lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or

phosphatidic acid respectively. The enzyme and the shading dye may show some interaction and should be chosen such that this interaction is not negative. Some negative interactions may be avoided by encapsulation of one or other of enzyme or shading dye and/or other segregation within the product. Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™,

Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™,

Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.).

The method of the invention may be carried out in the presence of cutinase.

Classified in EC 3.1 .1 .74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.

Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060. Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™,

Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and

Purastar™ (from Genencor International Inc.).

Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia,

Acremonium, e.g. the fungal cellulases produced from Humicola insolens,

Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 , 178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307. Commercially available

cellulases include Celluzyme™, Carezyme™, Endolase™, Renozyme™

(Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation).

Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S).

ENZYME STABILIZERS

Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708. The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.

Average molecular weights refer to weight average molecular weights.

Experimental Example 1

The polyetheramine, Jeffamine ED 2003 was obtained from Huntsmann. The polyetheramine is of the structure:

Figure imgf000023_0001
Where y ~ 39 and (x + z) ~ 6.

An aqueous solution containing 10wt% of the dye was created and heated to 343 K. To this was added 4wt% of the bis-azo dye Reactive Blue 171 and the solution mixed for 45 minutes the vcn 10wt% of soda ash wash added the solution mixed for a further 45 minutes at 343 K. The solution was cooled and the pH adjusted to 8 using 2M HCI.

The so-formed dye polymer was labelled DP

The experiment was repeated using 10wt% of the triphenodioxazine dye Reactive Blue 198. The so-formed dye polymer was labelled DP2.

Thin Layer Chromatography of the samples showed no hydrolysed reactive dye to be present.

Example 2

The following formulations were created:

Figure imgf000025_0001

1 Dequest 2066

2 Tinopal 5BMGX

DP1 and DP2 are the polymers synthesised in example 1 . The formulation was used to wash a mixture of white fabrics: woven cotton, , micro-fibre polyester, knitted nylon-elastane at a Liquor to cloth ratio of 10: 1 in a linitester. Demineralised water was used and each wash lasted 30 minutes and was followed by a running rinse. The formulations were used at 2.0g/L.

After the wash the white clothes were removed, dried and the colour measured using a reflectometer and expressed as the CIE L*a*b* values. A Ab value was calculated:

Ab = b(control without polymer) - b(wash with polymer)

A +ve value indicates a blueing of the fabric compared to the control. Bluer fabrics appear whiter to the eye.

The results are shown in the table below:

Figure imgf000026_0001
Use of the formulation containing the dye polymer increases the whiteness of the polyester and cotton fabrics.

Claims

We Claim:
A laundry treatment composition comprising:
(i) from 2 to 70 wt% of a surfactant; and,
(ii) from 0.01 to 20.0 wt% of a dye polymer, dye polymer obtainable by reacting a reactive dye with a polyetheramine, wherein the polyetherami is an organic compound that comprises an ether chain and at least one chain end is terminated by a primary amine.
A laundry treatment composition according to claim 1 , wherein the reactive dye is selected from: reactive blue; reactive black; reactive red; and, reactive violet dyes.
A laundry treatment composition according to claim 2, wherein the reactive dyes are selected from mixtures of: reactive black and reactive red; reactive blue and reactive red; reactive black and reactive violet; and, reactive blue and reactive violet, wherein the number of blue or black dye moieties is in excess of the red or violet dye moieties.
A laundry treatment composition according to any one of the preceding claims, wherein: the reactive dye is negatively charged and is selected from a chromophore selected from the group comprising of: azo; anthraquinone; phthalocyanine; and, triphendioxazine.
A laundry treatment composition according to any one of the preceding claims, wherein the reactive dye has reactive group selected from the group comprising: dichlorotriazinyl; difluorochloropyrimidine; monofluorotrazinyl; dichloroquinoxaline; vinylsulfone; difluorotriazine; monochlorotriazinyl;
bromoacrlyamide; and, trichloropyrimidine.
6. A laundry treatment composition according to any preceding claim, wherein the weight average molecular weight of the dye polymer is from 500 to 20 000.
A laundry treatment composition according to claim 6, wherein the weight average molecular weight of the dye polymer is from 1000 to 4000.
A laundry treatment composition according to any preceding claim, wherein the polyether chain of the polyetheramine is selected from: ethylene oxide (EO) units; propylene oxide (PO) units; and mixtures thereof.
9. A laundry treatment composition according to claim 8, wherein the
polyetheramine is selected from:
Figure imgf000028_0001
wherein y = 2 to 100 and (x + z) = 1 to 20.
A laundry treatment composition according to claim 8, wherein the polyetheramines is selected from:
Figure imgf000028_0002
wherein (y + z) = 3 to 100 and y/z varies from 0.1 to 20, and Ri is selected from: H; and, Methyl. A laundry treatment composition according to claim 8, wherein the
polyetheramines is selected from:
Figure imgf000029_0001
wherein x = 2 to 200.
A laundry treatment composition according to claim 8, wherein the
polyetheramines is selected from:
Figure imgf000029_0002
wherein n = 0 to 5, x, y and z are all at least 1 and (x + y + z) = 5 to 200, and R2 is selected from: H; Me; and, Et.
A laundry treatment composition according to claim 9, wherein y
and (x + z) = 4 to 10.
A domestic method of treating a textile, the method comprising the steps of: (i) treating a textile with an aqueous solution of the laundry treatment composition as defined in any one of claims 1 to 1 1 , the aqueous solution comprising from 10 ppb to 5000 ppm, of the dye polymer; and, from 0.0 g/L to 3 g/L of a surfactant; and, (ii) optionally rinsing and drying the textile.
A domestic method of treating a textile according to claim 14, wherein the aqueous solution comprises a fluorescer in the range from 0.0001 g/l to 0.1 g/l.
PCT/EP2012/051848 2011-03-21 2012-02-03 Dye polymer WO2012126665A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11158985 2011-03-21
EP11158985.9 2011-03-21

Publications (1)

Publication Number Publication Date
WO2012126665A1 true WO2012126665A1 (en) 2012-09-27

Family

ID=44378634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/051848 WO2012126665A1 (en) 2011-03-21 2012-02-03 Dye polymer

Country Status (1)

Country Link
WO (1) WO2012126665A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767581A1 (en) 2013-02-19 2014-08-20 The Procter & Gamble Company Method of laundering a fabric
EP2767579A1 (en) 2013-02-19 2014-08-20 The Procter and Gamble Company Method of laundering a fabric
EP2767582A1 (en) 2013-02-19 2014-08-20 The Procter and Gamble Company Method of laundering a fabric
US20140296124A1 (en) * 2013-03-28 2014-10-02 The Procter & Gamble Company Cleaning compositions containing a polyetheramine, a soil release polymer, and a carboxymethylcellulose
EP2832842A1 (en) 2013-07-30 2015-02-04 The Procter and Gamble Company Method of making granular detergent compositions comprising surfactants
EP2832843A1 (en) 2013-07-30 2015-02-04 The Procter and Gamble Company Method of making granular detergent compositions comprising polymers
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015110291A1 (en) * 2014-01-21 2015-07-30 Unilever Plc Dye polymer
WO2015126547A1 (en) 2014-02-19 2015-08-27 Milliken & Company Composition comprising benefit agent and aprotic solvent
WO2015127004A1 (en) 2014-02-19 2015-08-27 The Procter & Gamble Company Composition comprising benefit agent and aprotic solvent
EP2940117A1 (en) * 2014-04-30 2015-11-04 The Procter and Gamble Company Cleaning composition containing a polyetheramine
EP2987849A1 (en) 2014-08-19 2016-02-24 The Procter and Gamble Company Method of Laundering a Fabric
EP2987848A1 (en) 2014-08-19 2016-02-24 The Procter & Gamble Company Method of laundering a fabric
CN105492587A (en) * 2013-08-26 2016-04-13 宝洁公司 Cleaning compositions containing a polyetheramine
US9388368B2 (en) 2014-09-26 2016-07-12 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
US9487739B2 (en) 2014-09-25 2016-11-08 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
US9617502B2 (en) 2014-09-15 2017-04-11 The Procter & Gamble Company Detergent compositions containing salts of polyetheramines and polymeric acid
US9631163B2 (en) 2014-09-25 2017-04-25 The Procter & Gamble Company Liquid laundry detergent composition
US9677032B2 (en) 2014-04-30 2017-06-13 The Procter & Gamble Company Cleaning composition
US9719052B2 (en) 2014-03-27 2017-08-01 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
US9725682B2 (en) 2014-04-30 2017-08-08 The Procter & Gamble Company Cleaning composition
US9752101B2 (en) 2014-09-25 2017-09-05 The Procter & Gamble Company Liquid laundry detergent composition
JP2017527670A (en) * 2014-09-25 2017-09-21 ザ プロクター アンド ギャンブル カンパニー Detergent compositions containing a polyetheramine and anionic antifouling polymer
US9771547B2 (en) 2014-03-27 2017-09-26 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
US9850452B2 (en) 2014-09-25 2017-12-26 The Procter & Gamble Company Fabric care compositions containing a polyetheramine
US9868925B2 (en) 2014-04-30 2018-01-16 The Procter & Gamble Company Cleaning composition
US9903069B2 (en) 2014-04-22 2018-02-27 Milliken & Company Colored coatings and artificial leathers
US9980892B2 (en) 2014-04-14 2018-05-29 Conopce, Inc. Skin care composition
US10081785B2 (en) 2013-09-17 2018-09-25 Conopco, Inc. Dye polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976197A (en) * 1995-05-06 1999-11-02 Zeneca Limited Dyeing process and dyes
WO2010142503A1 (en) * 2009-06-12 2010-12-16 Unilever Plc Cationic dye polymers
WO2010148624A1 (en) * 2009-06-26 2010-12-29 Unilever Plc Dye polymers
WO2010151906A2 (en) * 2010-10-22 2010-12-29 Milliken & Company Bis-azo colorants for use as bluing agents
WO2011047987A1 (en) * 2009-10-23 2011-04-28 Unilever Plc Dye polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976197A (en) * 1995-05-06 1999-11-02 Zeneca Limited Dyeing process and dyes
WO2010142503A1 (en) * 2009-06-12 2010-12-16 Unilever Plc Cationic dye polymers
WO2010148624A1 (en) * 2009-06-26 2010-12-29 Unilever Plc Dye polymers
WO2011047987A1 (en) * 2009-10-23 2011-04-28 Unilever Plc Dye polymers
WO2010151906A2 (en) * 2010-10-22 2010-12-29 Milliken & Company Bis-azo colorants for use as bluing agents

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767581A1 (en) 2013-02-19 2014-08-20 The Procter & Gamble Company Method of laundering a fabric
EP2767579A1 (en) 2013-02-19 2014-08-20 The Procter and Gamble Company Method of laundering a fabric
EP2767582A1 (en) 2013-02-19 2014-08-20 The Procter and Gamble Company Method of laundering a fabric
WO2014130512A1 (en) 2013-02-19 2014-08-28 The Procter & Gamble Company Method of laundering a fabric
WO2014130509A1 (en) 2013-02-19 2014-08-28 The Procter & Gamble Company Method of laundering a fabric
WO2014130508A1 (en) 2013-02-19 2014-08-28 The Procter & Gamble Company Method of laundering a fabric
CN105073966A (en) * 2013-03-28 2015-11-18 宝洁公司 Cleaning compositions containing a polyetheramine
WO2014160821A1 (en) * 2013-03-28 2014-10-02 The Procter & Gamble Company Cleaning compositions containing a polyetheramine, a soil release polymer, and a carboxymethylcellulose
US20140296127A1 (en) * 2013-03-28 2014-10-02 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
WO2014160820A1 (en) * 2013-03-28 2014-10-02 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
AU2014241193B2 (en) * 2013-03-28 2016-10-20 The Procter And Gamble Company Cleaning compositions containing a polyetheramine
JP2016519184A (en) * 2013-03-28 2016-06-30 ザ プロクター アンド ギャンブル カンパニー Cleaning compositions containing polyetheramine
US20140296124A1 (en) * 2013-03-28 2014-10-02 The Procter & Gamble Company Cleaning compositions containing a polyetheramine, a soil release polymer, and a carboxymethylcellulose
CN105102600A (en) * 2013-03-28 2015-11-25 宝洁公司 Cleaning compositions containing polyetheramine, soil release polymer, and carboxymethylcellulose
US9193939B2 (en) 2013-03-28 2015-11-24 The Procter & Gamble Company Cleaning compositions containing a polyetheramine, a soil release polymer, and a carboxymethylcellulose
US9540592B2 (en) 2013-03-28 2017-01-10 The Procter & Gamble Company Cleaning compositions containing a polyetheramine, a soil release polymer, and a carboxymethylcellulose
EP2832842A1 (en) 2013-07-30 2015-02-04 The Procter and Gamble Company Method of making granular detergent compositions comprising surfactants
EP2832843A1 (en) 2013-07-30 2015-02-04 The Procter and Gamble Company Method of making granular detergent compositions comprising polymers
US9550965B2 (en) 2013-08-26 2017-01-24 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
CN105492587B (en) * 2013-08-26 2018-04-10 宝洁公司 Polyether amine containing cleaning composition
CN105492587A (en) * 2013-08-26 2016-04-13 宝洁公司 Cleaning compositions containing a polyetheramine
US10081785B2 (en) 2013-09-17 2018-09-25 Conopco, Inc. Dye polymer
WO2015110291A1 (en) * 2014-01-21 2015-07-30 Unilever Plc Dye polymer
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015127004A1 (en) 2014-02-19 2015-08-27 The Procter & Gamble Company Composition comprising benefit agent and aprotic solvent
WO2015126547A1 (en) 2014-02-19 2015-08-27 Milliken & Company Composition comprising benefit agent and aprotic solvent
US9771547B2 (en) 2014-03-27 2017-09-26 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
US9719052B2 (en) 2014-03-27 2017-08-01 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
US9980892B2 (en) 2014-04-14 2018-05-29 Conopce, Inc. Skin care composition
US9903069B2 (en) 2014-04-22 2018-02-27 Milliken & Company Colored coatings and artificial leathers
WO2015168373A1 (en) * 2014-04-30 2015-11-05 The Procter & Gamble Company Cleaning composition containing a polyetheramine
US9868925B2 (en) 2014-04-30 2018-01-16 The Procter & Gamble Company Cleaning composition
EP2940117A1 (en) * 2014-04-30 2015-11-04 The Procter and Gamble Company Cleaning composition containing a polyetheramine
US9637710B2 (en) 2014-04-30 2017-05-02 The Procter & Gamble Company Cleaning composition containing a polyetheramine
US9677032B2 (en) 2014-04-30 2017-06-13 The Procter & Gamble Company Cleaning composition
US9725682B2 (en) 2014-04-30 2017-08-08 The Procter & Gamble Company Cleaning composition
EP2987848A1 (en) 2014-08-19 2016-02-24 The Procter & Gamble Company Method of laundering a fabric
EP2987849A1 (en) 2014-08-19 2016-02-24 The Procter and Gamble Company Method of Laundering a Fabric
US9617502B2 (en) 2014-09-15 2017-04-11 The Procter & Gamble Company Detergent compositions containing salts of polyetheramines and polymeric acid
US9752101B2 (en) 2014-09-25 2017-09-05 The Procter & Gamble Company Liquid laundry detergent composition
US9850452B2 (en) 2014-09-25 2017-12-26 The Procter & Gamble Company Fabric care compositions containing a polyetheramine
US9487739B2 (en) 2014-09-25 2016-11-08 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
JP2017527670A (en) * 2014-09-25 2017-09-21 ザ プロクター アンド ギャンブル カンパニー Detergent compositions containing a polyetheramine and anionic antifouling polymer
US10174274B2 (en) 2014-09-25 2019-01-08 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
US9631163B2 (en) 2014-09-25 2017-04-25 The Procter & Gamble Company Liquid laundry detergent composition
US9388368B2 (en) 2014-09-26 2016-07-12 The Procter & Gamble Company Cleaning compositions containing a polyetheramine

Similar Documents

Publication Publication Date Title
EP2406327B1 (en) Dye-polymers formulations
EP1791940B1 (en) Laundry treatment compositions
EP2443220B1 (en) Detergent composition comprising anionic dye polymer
JP6049679B2 (en) Bizuazo dyes intended for use as a bluing agent
CN102083952B (en) Laundry compositions
CN100577787C (en) Laundry treatment compositions
US20100115707A1 (en) Shading composition
ES2390112T3 (en) Washing treatment composition comprising polymeric lubricants
ES2413054T3 (en) Dye incorporation in granular laundry composition
CN101970631B (en) Laundry treatment compositions
RU2598853C2 (en) Composition for washing clothes containing dyes
EP2440645B1 (en) Cationic dye polymers
JP6203812B2 (en) Carboxylate dye
ES2426231T3 (en) Shading composition
JP6046167B2 (en) Laundry care compositions containing a dye
EP2403931B1 (en) Dye radical initiators
CN102985521A (en) Compositions comprising optical benefit agents
JP2009527618A (en) Shading composition
US20180245025A1 (en) Leuco Triphenylmethane Colorants As Bluing Agents In Laundry Care Compositions
CN103429670B (en) Dye polymer
WO2016041676A1 (en) Whitening composition
EP2670788B1 (en) Alkaline liquid detergent compositions
ES2477518T3 (en) polymeric dye
ES2425472T3 (en) Process for the production of a dye polymer
CA2777308C (en) Dye polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12703081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12703081

Country of ref document: EP

Kind code of ref document: A1