WO2012126435A2 - 一种带宽资源的分配方法及装置 - Google Patents

一种带宽资源的分配方法及装置 Download PDF

Info

Publication number
WO2012126435A2
WO2012126435A2 PCT/CN2012/076111 CN2012076111W WO2012126435A2 WO 2012126435 A2 WO2012126435 A2 WO 2012126435A2 CN 2012076111 W CN2012076111 W CN 2012076111W WO 2012126435 A2 WO2012126435 A2 WO 2012126435A2
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
service
packet
service type
current
Prior art date
Application number
PCT/CN2012/076111
Other languages
English (en)
French (fr)
Other versions
WO2012126435A3 (zh
Inventor
邱杨
韩建蕊
刘宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12761437.8A priority Critical patent/EP2849389B1/en
Priority to PCT/CN2012/076111 priority patent/WO2012126435A2/zh
Priority to CN201280000619.1A priority patent/CN102783100B/zh
Publication of WO2012126435A2 publication Critical patent/WO2012126435A2/zh
Publication of WO2012126435A3 publication Critical patent/WO2012126435A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for allocating bandwidth resources. Background technique
  • Wavelength Division Multiplexing is widely used in transmission networks at all levels, which makes the network topology evolve from a simple ring, tree structure and other structures to more complex network structures.
  • IPTV Internet Protocol television
  • NTN Next Generation Network
  • 3G 3th Generation Network
  • TDM Time division multiplexing
  • DWDM Dense Wavelength Division Multiplexing
  • DWDM Dense Wavelength Division Multiplexing
  • the bandwidth resources are wasted due to the excessive bandwidth allocated, and when the baud rate of the service data is high (for example, the 400G service and the subsequent 1T service)
  • Such a high-bandwidth service may cause a service failure to increase the network blocking rate due to insufficient allocated bandwidth.
  • FBON flexible bandwidth optical network
  • the network can allocate the required bandwidth resources according to the baud rate of the service data itself, thereby improving the utilization of the network bandwidth resources and reducing the network blocking rate.
  • Figure 1 shows the allocation of bandwidth in a traditional DWDM network.
  • Figure 2 shows the allocation of bandwidth in an FBON network.
  • Figure 1 and Figure 2 each contain three different service types. Since the bandwidth allocation in FBON is allocated according to the actual bandwidth required by the service data, instead of allocating a fixed grid in the traditional DWDM network system, the waste of bandwidth is avoided as much as possible, thereby improving the utilization of bandwidth resources. . However, due to the FBON bandwidth allocation process, bandwidth fragments that cannot be used are formed. This bandwidth fragmentation is mainly due to the fact that the remaining bandwidth after bandwidth allocation is smaller than the bandwidth required by the minimum service and cannot be allocated to any kind of service usage.
  • Figure 3 illustrates the FBON network in the new industry. The generation of bandwidth fragments during the allocation process.
  • the idle bandwidth When the idle bandwidth satisfies the bandwidth requirement of the new to the service, the idle bandwidth will be allocated to the new to the service, but at this time, the remaining bandwidth cannot be used by the subsequent service to form the bandwidth fragment because it is less than the minimum service bandwidth requirement.
  • a similar situation also occurs during the business upgrade process, as shown in a and b in Figure 4.
  • the bandwidth fragmentation formed at this time is mainly due to the fact that the remaining bandwidth after the service upgrade cannot be utilized by any new service.
  • services of multiple service types may also generate mutual crosstalk in the process of hybrid transmission, thereby ultimately affecting the transmission performance of the service. Summary of the invention
  • the embodiment of the invention provides a method for allocating bandwidth resources, which can reduce mutual interference in the service transmission process of multiple service types, and at the same time, support the bandwidth allocation mode in the FBON, and can avoid the generation of bandwidth fragments in the service allocation bandwidth process. .
  • an embodiment of the present invention provides a method for allocating bandwidth resources, including:
  • the other service type refers to a service type different from the service type of the current service, where each The bandwidth packet is only allocated to the service of the same service type, and the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple of the bandwidth required for the service type to be processed.
  • the embodiment of the present invention further provides a bandwidth resource allocation apparatus, including: a first acquiring unit, an identifying unit, and an allocating unit, where:
  • a first obtaining unit configured to acquire a current service
  • An identification unit configured to identify a service type of a current service acquired by the acquiring unit
  • An allocation unit which allocates a required bandwidth in an idle bandwidth of a bandwidth packet that is not occupied by services of other service types, where the other service type refers to a service type different from the service type of the current service, where
  • Each bandwidth packet is only allocated to the service of the same service type, and the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple of the bandwidth required for the service type to be processed.
  • the bandwidth resource includes N bandwidth packets with the same bandwidth, the bandwidth of the bandwidth packet is the least common multiple of the bandwidth required for the service type to be processed, and the bandwidth of the bandwidth that is not occupied by the service of other service types is idle bandwidth.
  • the required bandwidth is allocated to the current service, and the other service type refers to a service type different from the service type of the current service, where each bandwidth packet is only allocated to the service of the same service type, so that The service type of the service type can reduce the mutual interference; at the same time, the required bandwidth in the idle bandwidth is allocated to the current service, so that the bandwidth resource can be allocated on demand to support the bandwidth allocation mode in the FBON, and Avoid bandwidth fragmentation during service bandwidth allocation.
  • 1 is a schematic diagram of bandwidth allocation in a conventional DWDM network
  • Figure 2 is a schematic diagram of bandwidth allocation for an FBON network
  • Figure 3 is a schematic diagram of the production bandwidth fragmentation of the FBON network in the new service allocation process
  • Figure 4 is a schematic diagram of the bandwidth fragment produced by the FBON network in the new service allocation process after the service upgrade;
  • FIG. 5 is a schematic flowchart of a first embodiment of a method for allocating bandwidth resources according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a second embodiment of a method for allocating bandwidth resources according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a bandwidth resource allocation process according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a third embodiment of a method for allocating bandwidth resources according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of another bandwidth resource allocation process according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a first embodiment of a bandwidth resource allocation apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is another embodiment of a bandwidth resource allocation apparatus according to an embodiment of the present invention. Schematic diagram of the structure of the embodiment;
  • FIG. 12 is a schematic structural diagram of a second embodiment of a method for allocating bandwidth resources according to an embodiment of the present disclosure
  • FIG. 13 is a schematic flowchart of a third embodiment of a method for allocating bandwidth resources according to an embodiment of the present invention. detailed description
  • FIG. 5 is a schematic flowchart of a first embodiment of a method for allocating a bandwidth resource according to an example of the present invention. As shown in FIG. 5, the method includes:
  • the current service is the service that currently needs to allocate bandwidth.
  • the required bandwidth in the idle bandwidth of the bandwidth packet that is not occupied by the service of the other service type is allocated to the current service, where the other service type refers to a service type different from the service type of the current service, where Each bandwidth packet is only allocated to the service of the same service type, and the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple of the bandwidth required for the service type to be processed.
  • each bandwidth packet is allocated to the service of the same service type in the allocation process.
  • the bandwidth packet 1 corresponds to the service of the service type A
  • the bandwidth packet 2 corresponds to the service of the service type B
  • the bandwidth packet 3 corresponds to the service.
  • a service of type D the service type corresponding to the bandwidth group is the same.
  • the bandwidth packet 1 corresponds to the service type A
  • the bandwidth packet 4 is also the service corresponding to the service type A.
  • a bandwidth packet that is not occupied by services of other service types may be a bandwidth group that has occupied a certain bandwidth with a service type of the current service, or may be unoccupied. Bandwidth grouping.
  • the step S103 of allocating the required bandwidth in the idle bandwidth of the bandwidth packet that is not occupied by the service of the other service type to the current service may include:
  • the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple bandwidth of the bandwidth required for the service type to be processed. This ensures that the bandwidth of each bandwidth packet is an integer multiple of the bandwidth required by the service of any of the service types to be processed, so that bandwidth fragmentation does not occur during bandwidth allocation. As long as there is an idle bandwidth in the bandwidth packet, the free bandwidth must be used by the service type of the service type of the bandwidth packet. Assume that the types of services to be processed include: service type A, service type B, service type C, and service type D, where service type A requires 10 GHz, service type B requires 20 GHz, and service type C requires bandwidth.
  • the bandwidth required for service type D is 40 GHz, and the minimum common multiple of the bandwidth required for the type of service to be processed is 120 GHz.
  • the bandwidth of each bandwidth packet is 120 GHz. Since the bandwidth of each bandwidth packet is only allocated to the traffic of the same service type, bandwidth fragmentation is impossible in the allocation process.
  • the method may further include: acquiring a required bandwidth of the service type to be processed;
  • the bandwidth resources are grouped according to the least common multiple to obtain N bandwidth-sorted packets having the same bandwidth.
  • the bandwidth of the bandwidth packet is the least common multiple bandwidth.
  • the types of services to be processed include: service type eight, service type service type, service type D, and service type E, where service type A requires 10 GHz, service type B requires 20 GHz, and service type C requires bandwidth.
  • the bandwidth required for service type D is 40 GHz
  • the bandwidth required for service type E is 120 GHz.
  • the calculated minimum common multiple is 120 GHz, and then the bandwidth resource is divided into N bandwidth packets with a bandwidth of 120 GHz.
  • the bandwidth resources are grouped according to the least common multiple to obtain N bandwidths.
  • the bandwidth packet the bandwidth of the bandwidth packet may also be an integer multiple of the least common multiple bandwidth. If the minimum common multiple of the service type to be processed is 120 GHz, the bandwidth resource can be divided into N bandwidth packets with a bandwidth of 120 GHz or 240 GHz or 360 GHz. The bandwidth of each bandwidth packet thus divided is also an integral multiple of the bandwidth required by any of the service types to be processed, and the bandwidth fragmentation does not occur in the allocation.
  • the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple of the bandwidth required for the service type to be processed, and the bandwidth of the bandwidth that is not occupied by services of other service types is in the idle bandwidth.
  • the required bandwidth is allocated to the current service, and the other service type refers to a service type different from the service type of the current service, where each bandwidth packet is only allocated to the service of the same service type, thus
  • the service type of the service type can reduce the mutual interference; at the same time, the required bandwidth in the idle bandwidth is allocated to the current service, so that the bandwidth resource can be allocated on demand to support the bandwidth allocation mode in the FBON, and can be avoided.
  • Bandwidth fragmentation occurs during the process of bandwidth allocation.
  • FIG. 6 is a schematic flowchart of a second embodiment of a method for allocating bandwidth resources according to an embodiment of the present invention. As shown in FIG. 6, the method includes:
  • step S204 determines whether there is an idle bandwidth in a bandwidth packet that has occupied a certain bandwidth by the service of the service type. If there is an idle bandwidth, perform step S204 to perform idle bandwidth of a bandwidth that has been occupied by a bandwidth of the service of the service type. The required bandwidth in the allocation is allocated to the current service; if there is no idle bandwidth, step S205 is performed to allocate the required bandwidth in an unoccupied bandwidth packet to the current service.
  • the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple of the bandwidth required for the service type to be processed.
  • S204 Allocate the required bandwidth in the idleness of the bandwidth packet that has been occupied by the traffic of the service type to the current service.
  • the above unoccupied bandwidth packet is an unused bandwidth packet, and all bandwidths of the bandwidth packet are unoccupied bandwidth.
  • the service type includes 100G service and 400G service.
  • the bandwidth required for 100G service is 50GHz, and the bandwidth required for 400G service is 75GHz.
  • the bandwidth resource is divided into N bandwidth packets of 150 GHz bandwidth.
  • the bandwidth required to occupy a certain bandwidth of the service type service may be allocated to the current service in step S205.
  • the required bandwidth of the first bandwidth packet is allocated to the current service.
  • the current service is a 400G service, and at the same time, there is no bandwidth packet that has occupied a certain bandwidth by the service type service, and step S205 can be performed.
  • the required bandwidth in an unoccupied bandwidth packet is allocated to the current traffic, such as the required bandwidth of the second bandwidth packet is allocated to the current traffic. As shown in the second line of Figure 7.
  • step S203 in FIG. S204 allocates the required bandwidth in the idle bandwidth of the first bandwidth packet to the current service.
  • the current service is again a 400G service
  • the second packet in FIG. 7 passes through steps S203 and S204.
  • the required bandwidth in the idle bandwidth of the second bandwidth packet is allocated to the current service.
  • the process may be performed through step S205.
  • the required bandwidth in the third packet is allocated to the current service, as shown in the fourth row of FIG.
  • FIG. 8 is a schematic flowchart of a third embodiment of a method for allocating bandwidth resources according to an embodiment of the present invention. As shown in FIG. 8, the method includes:
  • step S304 determines whether there is an unoccupied bandwidth packet in the bandwidth resource. If the unoccupied bandwidth packet exists, perform step S304 to perform a bandwidth in the unoccupied bandwidth packet. The required bandwidth in the packet is allocated to the current service; if the unoccupied bandwidth packet does not exist, step S305 is performed to perform the idle location of the bandwidth that has been occupied by the service of the service type with a certain bandwidth. Broadband is required to be allocated to the current service.
  • the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is a least common multiple of the bandwidth required for the service type to be processed.
  • S304 allocates a required bandwidth in one of the unoccupied bandwidth packets to the current service.
  • Step S304 is performed to allocate the required bandwidth in one of the unoccupied bandwidth packets to the current service, that is, the bandwidth resource has an unoccupied bandwidth packet.
  • the service type to be allocated includes 100G service and 400G service.
  • the bandwidth required for 100G service is 50GHz, and the bandwidth required for 400G service is 75GHz.
  • S305 allocates the required bandwidth in the idle bandwidth of the bandwidth packet that has been occupied by the traffic of the service type to the current service.
  • step S305 is performed to allocate the required bandwidth in the idle bandwidth of the bandwidth packet that has been occupied by the traffic of the service type to the current service, that is, the current service.
  • Each bandwidth packet in the bandwidth resource is occupied, as shown in the third row or the fourth row of FIG.
  • the bandwidth resource when the bandwidth resource does not have an unoccupied bandwidth packet, if the current service is a 100G service, the first bandwidth packet is a bandwidth that has occupied a certain bandwidth by the service of the service type.
  • the packet may be allocated to the current service by the required bandwidth in the idle bandwidth of the first bandwidth packet in step S305, as shown in the fourth row of FIG.
  • step S305 may be: idle bandwidth in multiple bandwidth packets that have occupied a certain bandwidth by the service of the service type.
  • the required bandwidth in the free bandwidth of the most bandwidth packets is allocated to the current service.
  • step S305 selects the bandwidth packet with the largest free bandwidth among the three bandwidth packets, and selects The required bandwidth in the free bandwidth in the bandwidth packet with the most free bandwidth is allocated to the current service. If bandwidth group 1 has the most free bandwidth, the required bandwidth in the idle bandwidth of bandwidth packet 1 is allocated to the current service.
  • the current service is a 100G service at this time.
  • the bandwidth occupied by the service type service has a bandwidth of the first, third, and fifth.
  • the sixth bandwidth packet, and the idle bandwidths of the bandwidth packets are the same, that is, there are multiple bandwidth packets with the largest bandwidth of the bandwidth packets that have occupied a certain bandwidth by the service type service, and then step S305 is performed.
  • a desired bandwidth of the idle bandwidth of one of the plurality of bandwidth packets having the same free bandwidth is allocated to the current service.
  • the required bandwidth in the free bandwidth of the first bandwidth packet is allocated to the current traffic.
  • step S305 may further include:
  • the required bandwidth in the idle bandwidth of one of the selected bandwidth packets is allocated to the current traffic.
  • the required one of the bandwidth packets in the unoccupied bandwidth packet Bandwidth is allocated to the current service. In this way, the mutual interference is reduced in the service transmission process of multiple service types, and the bandwidth allocation mode in the FBON is supported, and the bandwidth fragmentation in the process of bandwidth allocation of the service can be avoided, and at the same time, the service allocated to each bandwidth packet is minimized as much as possible. This minimizes mutual interference during the transmission of the service.
  • FIG. 10 is a schematic structural diagram of a first embodiment of a bandwidth resource allocation apparatus according to an embodiment of the present invention. As shown in FIG. 10, the apparatus includes: a first acquiring unit 41, an identifying unit 42, and an allocation list. $43, where:
  • the first obtaining unit 41 is configured to acquire a current service.
  • the current service is the service that currently needs to allocate bandwidth.
  • the identifying unit 42 is configured to identify the service type of the current service acquired by the first acquiring unit 41.
  • the allocating unit 43 is configured to allocate, to the current service, a required bandwidth in an idle bandwidth of a bandwidth packet that is not occupied by services of other service types, where the other service type refers to a service different from the service type of the current service.
  • Type where each bandwidth packet is only allocated to the service of the same service type, the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple of the bandwidth required for the service type to be processed.
  • each bandwidth packet is allocated to the service of the same service type in the allocation process.
  • the bandwidth packet 1 corresponds to the service of the service type A
  • the bandwidth packet 2 corresponds to the service of the service type B
  • the bandwidth packet 3 corresponds to the service.
  • a business of type D the service type corresponding to the bandwidth group is the same.
  • the bandwidth packet 1 corresponds to the service type A
  • the bandwidth packet 4 is also the service corresponding to the service type A. This ensures that each bandwidth packet is assigned only one type of service, which can reduce mutual interference in the service transmission process of multiple service types.
  • a bandwidth packet that is not occupied by services of other service types may be a bandwidth group that has occupied a certain bandwidth with a service type of the current service, or may be unoccupied. Bandwidth grouping.
  • the allocating unit 43 may be specifically configured to allocate, to the current service, a required bandwidth in an idle bandwidth that has been grouped with a bandwidth of a service of a service type of the current service. Or assign the required bandwidth in the unoccupied bandwidth packet to the current service.
  • the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple bandwidth of the bandwidth required for the service type to be processed. This ensures that the bandwidth of each bandwidth packet is an integer multiple of the bandwidth required by any of the service types to be processed, so that bandwidth fragmentation does not occur during bandwidth allocation. As long as there is still bandwidth in the bandwidth packet, the free bandwidth must be used by the service type of the service type of the bandwidth packet.
  • the types of services that need to be processed include: Service Type A, Service Type B, Service Type C, and Service Type D, where the service type ⁇ required bandwidth is 10 GHz, the service type B requires a bandwidth of 20 GHz, the service type C requires a bandwidth of 30 GHz, the service type D requires a bandwidth of 40 GHz, and the required bandwidth of the service type to be processed.
  • the minimum common multiple is 120 GHz.
  • the bandwidth of each bandwidth packet is 120 GHz. Since the bandwidth of each bandwidth packet is only allocated to the traffic of the same service type, bandwidth fragmentation is unlikely to occur during the allocation process.
  • the device may further include:
  • a second obtaining unit 44 configured to acquire a required bandwidth of a service type to be processed
  • the calculating unit 45 is configured to calculate a least common multiple of the required bandwidth of the service type to be processed acquired by the second obtaining unit 44;
  • the grouping unit 46 is configured to group the bandwidth resources according to the least common multiple to obtain N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple bandwidth.
  • the types of services to be processed include: service type eight, service type ⁇ service type service type D and service type E, where service type A requires a bandwidth of 10 GHz, service type B requires a bandwidth of 20 GHz, and service type C requires The bandwidth is 30 GHz, the bandwidth required for service type D is 40 GHz, and the bandwidth required for service type E is 120 GHz.
  • the calculated minimum common multiple is 120 GHz, and then the bandwidth resource is divided into N bandwidth packets with a bandwidth of 120 GHz.
  • the grouping unit 46 groups the bandwidth resources according to the least common multiple to obtain N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet may also be an integer multiple of the least common multiple bandwidth. If the minimum common multiple of the service type to be processed is 120 GHz, the bandwidth resource can be divided into N bandwidth packets with a bandwidth of 120 GHz or 240 GHz or 360 GHz. The bandwidth of each bandwidth packet thus divided is also an integral multiple of the bandwidth required by any of the service types to be processed, and the bandwidth fragmentation does not occur in the allocation.
  • the bandwidth resource includes N bandwidth packets with the same bandwidth
  • the bandwidth of the bandwidth packet is the least common multiple of the bandwidth required for the service type to be processed
  • the allocation unit groups the bandwidth that is not occupied by the services of other service types.
  • the required bandwidth in the bandwidth is allocated to the current service
  • the other service type refers to a service type different from the service type of the current service, where each bandwidth packet is only allocated to the service of the same service type, such that The service transmission process of multiple service types can reduce mutual interference; at the same time, the allocation unit allocates the required bandwidth in the idle bandwidth to the current service, so that the bandwidth resource can be allocated on demand to support the bandwidth allocation mode in the FBON. And can avoid bandwidth fragmentation during the process of bandwidth allocation.
  • the apparatus includes: a first acquiring unit 51, an identifying unit 52, and an allocating unit 53.
  • the allocation unit includes: a first determining unit 531, a first assigning subunit 532, and a second assigning subunit 533, wherein:
  • the first obtaining unit 51 is configured to acquire a current service.
  • the identification unit 52 is configured to identify the service type of the current service acquired by the obtaining unit 51.
  • the first determining unit 531 is configured to determine whether there is an idle bandwidth in a bandwidth packet that has occupied a certain bandwidth by the service of the service type.
  • the first allocation sub-unit 532 is configured to allocate, when the first determination unit 531 determines that the result is YES, the required bandwidth in the idle bandwidth of the bandwidth packet that has been occupied by the service type service to a certain bandwidth to the current service. .
  • the first judging unit 53 judges that the result is that the bandwidth packet that has occupied a certain bandwidth by the service of the service type has an idle bandwidth, and the first allocating sub-unit 532 will occupy a certain bandwidth by the service of the service type.
  • the required bandwidth in the idle bandwidth of the bandwidth packet is allocated to the current service.
  • the second allocation sub-unit 533 is configured to allocate a required bandwidth in an unoccupied bandwidth packet to the current service when the first determining unit 53 determines that the result is no.
  • the first judging unit 53 judges that the result is no.
  • the bandwidth packet that has been occupied by the traffic of the service type does not have an idle bandwidth, and the bandwidth packet that has occupied a certain bandwidth by the service of the service type does not exist.
  • the second allocation sub-unit 533 allocates the required bandwidth in an unoccupied bandwidth packet to the current service.
  • the bandwidth resource includes N bandwidth packets with the same bandwidth, and the bandwidth of the bandwidth packet is the least common multiple bandwidth of the bandwidth required for the service type to be processed. This ensures that the bandwidth of each bandwidth packet is an integer multiple of the bandwidth required by any of the service types that need to be processed, so that bandwidth fragmentation does not occur during bandwidth allocation. As long as there is still bandwidth in the bandwidth packet, the free bandwidth must be used by the service type of service of the service type allocated by the bandwidth packet.
  • the specific allocation process assumes that the service type needs to be 100G service and 400G service, the bandwidth required for 100G service is 50GHz, and the bandwidth required for 400G service is 75GHz, so that the bandwidth resource is divided into N bandwidths. Grouped for 150 GHz bandwidth. If the current service is a 100G service, there is no bandwidth group that has occupied a certain bandwidth by the service type service, that is, the first A determination unit 53 determines that the result is no, and the second allocation sub-unit 533 can allocate the required bandwidth in an unoccupied bandwidth packet to the current service, such as the required bandwidth allocation of the first bandwidth packet. Give the current business. After the current service is allocated, there is a 400G service that needs to allocate bandwidth.
  • the current service is a 400G service.
  • the second allocation subunit 533 can allocate the required bandwidth in an unoccupied bandwidth packet to the current service, such as allocating the required bandwidth of the second bandwidth packet to the current service. As shown in the second line of Figure 7.
  • the first allocation sub-unit 532 allocates the required bandwidth of the idle bandwidth of the first bandwidth packet to the current service.
  • the current service is again a 400G service
  • the first allocation sub-unit 532 allocates the required bandwidth of the idle bandwidth of the second bandwidth packet to the current service.
  • the second allocation sub-unit 533 can allocate the required bandwidth in the third packet to the current service, as shown in the fourth row of FIG.
  • the first determining unit determines whether there is an idle bandwidth in the bandwidth packet that has occupied a certain bandwidth by the service of the service type, and if there is an idle bandwidth, allocates the required bandwidth in the idle bandwidth to the Current service, which reduces mutual interference in the service transmission of multiple service types, supports the bandwidth allocation mode in FBON, and avoids bandwidth fragmentation in the process of bandwidth allocation, and at the same time, retains more in the bandwidth allocation process.
  • the occupied bandwidth group can allocate bandwidth resources to more types of services.
  • FIG. 13 is a schematic flowchart of a third embodiment of a method for allocating a bandwidth resource according to an embodiment of the present invention.
  • the device includes: a first acquiring unit 61, an identifying unit 62, and an allocating unit 63.
  • the allocation unit includes: a second judging unit 631, a third assigning subunit 632, and a fourth assigning subunit 633, wherein:
  • the first obtaining unit 61 is configured to acquire a current service.
  • the identifying unit 62 is configured to identify a service type of the current service acquired by the first acquiring unit 61.
  • the second determining unit 631 is configured to determine whether there is an unoccupied bandwidth packet in the bandwidth resource.
  • the third allocation sub-unit 632 is configured to allocate, when the second determining unit 631 determines that the result is YES, the required bandwidth in one of the unoccupied bandwidth packets to the current service.
  • the second determining unit 63 determines that the result is that there is an unoccupied bandwidth packet in the bandwidth resource, and the third allocating sub-unit 632 needs the bandwidth in any of the unoccupied bandwidth packets. Bandwidth is allocated to the current service.
  • the bandwidth required for the 100G service is 50 GHz
  • the bandwidth required for the 400 G service is 75 GHz, so that the bandwidth resource is divided into N.
  • the service such as allocating the required bandwidth of the first bandwidth packet to the current service.
  • the second determining unit 63 determines that the result is still yes, and the third assigning sub-unit 632 sets the bandwidth in one of the unoccupied bandwidth packets.
  • the required bandwidth is allocated to the current service, such as the required bandwidth of the second bandwidth packet is allocated to the current service, as shown in the second line of FIG.
  • the second determining unit 63 determines that the result is still yes, and the third allocating sub-unit 632 allocates the required bandwidth in one of the unoccupied bandwidth packets to the bandwidth.
  • the current service such as the required bandwidth of the third bandwidth packet, is allocated to the current service.
  • the second determining unit 63 determines that the result is still yes, and the third allocating sub-unit 632 allocates the required bandwidth in one of the unoccupied bandwidth packets to the bandwidth.
  • the current service such as the required bandwidth of the fourth bandwidth packet, is allocated to the current service, as shown in the third row of FIG.
  • a fourth allocation sub-unit 633 configured to: when the second determining unit 63 determines that the result is no, allocate, to the current service, a required bandwidth in an idle bandwidth of a bandwidth packet that has been occupied by a service of the service type by a certain bandwidth.
  • the second determining unit 63 determines that the result is no, and there is no unoccupied bandwidth packet in the bandwidth resource.
  • the fourth allocating sub-unit 633 groups the bandwidth that has been occupied by the service of the service type with a certain bandwidth. The required bandwidth in the bandwidth is allocated to the current service.
  • the fourth allocation sub-unit 633 groups the bandwidths that have been occupied by the service type service by a certain bandwidth.
  • the required bandwidth of the idle bandwidth is allocated to the current service, that is, the bandwidth resource does not have an unoccupied bandwidth packet at this time. That is, each bandwidth packet in the bandwidth resource is occupied.
  • this occupation only occupies a part of the bandwidth in the bandwidth packet, as shown in the third row or the fourth row of FIG.
  • the second determining unit 63 determines that the result is no. If the current service is a 100G service, the first bandwidth packet is already The bandwidth is grouped by the service type service, and the fourth allocation sub-unit 633 allocates the required bandwidth in the idle bandwidth of the bandwidth packet corresponding to the service type to the current service, for example, the first bandwidth. The required bandwidth in the packet is allocated to the current service, as shown in the fourth line of Figure 9.
  • the fourth allocation sub-unit 633 may specifically be used to occupy a certain bandwidth of the service that has been used by the service type.
  • the required bandwidth in the idle bandwidth of the bandwidth packet with the most free bandwidth in the bandwidth packet is allocated to the current service
  • bandwidth packet that has occupied a certain bandwidth by the service of the service type includes: bandwidth packet 1, bandwidth packet 2, and bandwidth packet 3, at which time the fourth allocation sub-unit 633 selects the bandwidth with the most idle bandwidth of the three bandwidth packets. Packets, and allocate the required bandwidth in the idle bandwidth of the selected bandwidth group with the most free bandwidth to the current service. If bandwidth group 1 has the most free bandwidth, allocation unit 64 allocates the required bandwidth of the bandwidth of bandwidth packet 1 to the current service.
  • the current service is a 100G service at this time.
  • the bandwidth occupied by the service type service has a bandwidth of the first, third, and fifth.
  • the sixth bandwidth packet, and the idle bandwidth of the bandwidth packets are the same, that is, there are multiple bandwidth packets with the largest bandwidth of the bandwidth packet that has occupied a certain bandwidth by the service type service, and then the fourth allocation
  • the subunit 633 allocates, to the current service, the required bandwidth in the idle bandwidth of one of the plurality of bandwidth packets having the same free bandwidth, the plurality of bandwidth packets being not in the same bandwidth group as the service type
  • the required bandwidth in the idle bandwidth of the first bandwidth packet is allocated to the current traffic.
  • the fourth allocation sub-unit 633 may also be specifically used to occupy a certain bandwidth from the service that has been used by the service type.
  • a bandwidth packet having an idle bandwidth is selected in the bandwidth packet, and a required bandwidth in the idle bandwidth of one of the selected bandwidth packets is allocated to the current service.
  • the second determining unit determines whether there is an unoccupied band in the bandwidth resource. A wide packet, if the unoccupied bandwidth packet exists, the allocation unit allocates a required bandwidth in one of the unoccupied bandwidth packets to the current service. In this way, the mutual interference is reduced in the service transmission process of the multiple service types, and the bandwidth allocation mode in the FBON is supported, and the bandwidth fragmentation in the service bandwidth allocation process can be avoided, and at the same time, the traffic allocated to each bandwidth packet is minimized. This minimizes mutual interference during the transmission of the service.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Description

一种带宽资源的分配方法及装置 技术领域
本发明涉及通信领域, 尤其涉及一种带宽资源的分配方法及装置。 背景技术
近年来, 波分技术 ( Wavelength Division Multiplexing, WDM )广泛应用于 各级传输网络, 使得网络拓朴结构从简单的环形、 树形结构等结构向更为复杂 的网络结构演进。同时,随着 IP网络的迅猛发展,宽带、网络电视( Internet Protocol television, IPTV )、 下一代网络(Next generation network, NGN ), 3G等新业务 的大量应用, 网络业务类型也由以时分多路复用 ( Time division multiplexing , TDM )业务为主的电路交换业务过渡到以 IP为主的数据业务。 数据业务的快速 增长和更为复杂的网络结构要求对网路提供更多的智能化功能, 以便在网络拓 朴及业务分布发生变化时能够快速响应, 实现业务的灵活调度和带宽的有效管 理。
基于传统波分技术的密集型光波复用 ( Dense Wavelength Division Multiplexing, DWDM ) 网络, 要求为每一个数据业务分配完全相同的带宽。 这 种带宽分配方法, 在业务数据的波特率低的时候会因为分配了过多的带宽而造 成带宽资源的浪费, 而在业务数据的波特率高时(如 400G业务和以后的 1T业 务这样的高带宽业务)会因为分配的带宽不够而造成业务失败增加网络的阻塞 率。 为了提升网络带宽的利用率, 降低网络的阻塞率, 业界提出了可变带宽网 络(Flexible bandwidth optical network, FBON )。 这种网络可以根据业务数据本 身的波特率为其分配所需要的带宽资源, 从而提高网络带宽资源的利用率, 降 低网络的阻塞率。 图 1为传统 DWDM网络中带宽的分配, 图 2为 FBON网络 中带宽的分配, 其中, 图 1和图 2中均包含三种不同的业务类型。 由于在 FBON 的带宽分配是按照业务数据实际所需要的带宽进行的分配, 而不是像传统 DWDM网络系统中分配固定的网格, 尽可能的避免了带宽的浪费, 从而提升的 带宽资源的利用率。 但是由于在 FBON带宽分配的过程中, 会形成无法被使用 的带宽碎片。 这种带宽碎片主要是由于在带宽分配后剩余的带宽小于最小业务 所需要的带宽而无法分配给任何一种业务使用。 图 3演示了 FBON网络在新业 务分配过程中带宽碎片的产生。 当空闲带宽满足新到业务的带宽需求时, 空闲 带宽将会被分配给新到业务, 但是这时剩余的带宽由于小于最小业务带宽的需 求而无法被后续业务使用而形成带宽碎片。 类似的情况也出现在业务升级的过 程中, 如图 4中的 a和 b所示。 这时候形成的带宽碎片主要是由于业务升级后 的剩余带宽无法被任何一种新业务利用。 在 FBON网络系统中除了可能产生的 带宽碎片问题, 多种业务类型的业务在混合传输的过程中也会产生相互的串扰 作用, 从而最终影响业务的传输性能。 发明内容
本发明实施例提供了一种带宽资源的分配方法, 在多种业务类型的业务传 输过程中可以减少相互干扰, 同时, 支持 FBON中带宽分配方式, 且能避免在 业务分配带宽过程中产生带宽碎片。
为了解决上述技术问题, 本发明实施例提供了一种带宽资源的分配方法, 包括:
获取当前业务;
识别所述当前业务的业务类型;
将没有被其它业务类型的业务占用的带宽分组的空闲带宽中的所需宽带分 配给所述当前业务, 所述其它业务类型指不同于所述当前业务的业务类型的业 务类型, 其中, 每个带宽分组只分配给同一种业务类型的业务, 所述带宽资源 包括 N个带宽相同的带宽分组, 所述带宽分组的带宽为需要处理的业务类型所 需带宽的最小公倍数。
相应地, 本发明实施例还提供了一种带宽资源的分配装置, 包括: 第一获 取单元、 识别单元和分配单元, 其中:
第一获取单元, 用于获取当前业务;
识别单元, 用于识别所述获取单元获取的当前业务的业务类型;
分配单元, 将没有被其它业务类型的业务占用的带宽分组的空闲带宽中的 所需宽带分配给所述当前业务, 所述其它业务类型指不同于所述当前业务的业 务类型的业务类型, 其中, 每个带宽分组只分配给同一种业务类型的业务, 所 述带宽资源包括 N个带宽相同的带宽分组, 所述带宽分组的带宽为需要处理的 业务类型所需带宽的最小公倍数。 本发明实施例, 带宽资源包括 N个带宽相同的带宽分组, 所述带宽分组的 带宽为需要处理的业务类型所需带宽的最小公倍数, 将没有被其它业务类型的 业务占用的带宽分组的空闲带宽中的所需宽带分配给所述当前业务, 所述其它 业务类型指不同于所述当前业务的业务类型的业务类型, 其中, 每个带宽分组 只分配给同一种业务类型的业务, 这样在多种业务类型的业务传输过程中可以 减少相互干扰; 同时, 是将空闲带宽中的所需宽带分配给所述当前业务, 这样 可以实现按需分配带宽资源, 以支持 FBON中带宽分配方式, 且能避免在业务 分配带宽过程中产生带宽碎片。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是传统 DWDM网络中带宽的分配示意图;
图 2是为 FBON网络中带宽的分配示意图;
图 3是 FBON网络在新业务分配过程中生产带宽碎片的示意图;
图 4是 FBON网络在新业务分配过程中生产的带宽碎片在业务升级后无法 使用的示意图;
图 5是本发明实施例提供的一种带宽资源的分配方法的第一实施例的流程 示意图;
图 6是本发明实施例提供的一种带宽资源的分配方法的第二实施例的流程 示意图;
图 7是本发明实施例提供的带宽资源分配过程的示意图;
图 8是本发明实施例提供的一种带宽资源的分配方法的第三实施例的流程 示意图;
图 9是本发明实施例提供的另一带宽资源分配过程的示意图;
图 10是本发明实施例提供的一种带宽资源的分配装置的第一实施例的结构 示意图;
图 11是本发明实施例提供的一种带宽资源的分配装置的第一实施例的另一 实施方式的结构示意图;
图 12是本发明实施例提供的一种带宽资源的分配方法的第二个实施例的结 构示意图;
图 13是本发明实施例提供的一种带宽资源的分配方法的第三实施例的流程 示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 5是本发明实例提供的一种带宽资源的分配方法的第一实施例的流程示 意图, 如图 5所示, 包括:
5101、 获取当前业务;
当前业务也就是当前需要分配带宽的业务。
5102、 识别所述当前业务的业务类型;
5103、 将没有被其它业务类型的业务占用的带宽分组的空闲带宽中的所需 宽带分配给所述当前业务, 所述其它业务类型指不同于所述当前业务的业务类 型的业务类型, 其中, 每个带宽分组只分配给同一种业务类型的业务, 所述带 宽资源包括 N个带宽相同的带宽分组, 所述带宽分组的带宽为需要处理的业务 类型所需带宽的最小公倍数。
将没有被其它业务类型的业务占用的带宽分组的空闲带宽中的所需宽带分 配给所述当前业务, 由于是将空闲带宽中的所需带宽分配给所述当前业务, 这 样可以实现按需分配, 以支持 FBON中带宽分配方式。 同时, 在分配过程中釆 用每个带宽分组只分配给同一种业务类型的业务, 例如带宽分组 1 对应业务类 型为 A的业务, 带宽分组 2对应业务类型为 B的业务, 带宽分组 3对应业务类 型为 D的业务。 当然还可以是几个带宽分组所对应的业务类型是一样的, 如带 宽分组 1对应业务类型为 A的业务,带宽分组 4也是对应业务类型为 A的业务。 这样保证每个带宽分组只分配一种业务类型, 可以减少多种业务类型的业务传 输过程中的相互干扰。 需要说明的是, 在本实施例中, 没有被其它业务类型的业务占用的带宽分 组具体可以是已被与所述当前业务的业务类型的业务占用一定带宽的带宽分 组, 还可以是未被占用的带宽分组。
作为一种可选的实施方式, 步骤 S103将没有被其它业务类型的业务占用的 带宽分组的空闲带宽中的所需宽带分配给所述当前业务可以包括:
将已被与所述当前业务的业务类型的业务占用一定带宽的带宽分组的空闲 带宽中的所需宽带分配给所述当前业务, 或者将一个未被占用的带宽分组中的 所需宽带分配给所述当前业务。
需要说明的是, 所述带宽资源包括 N个带宽相同的带宽分组, 所述带宽分 组的带宽为需要处理的业务类型所需带宽的最小公倍数带宽。 这样可以保证每 个带宽分组的带宽是需要处理的业务类型中任一业务类型的业务所需带宽的整 数倍, 从而在分配带宽过程中不会出现带宽碎片。 只要带宽分组中还有空闲带 宽, 该空闲带宽就一定可以被该带宽分组所分配的业务类型的业务类型的业务 使用。 假设需要处理的业务类型包括: 业务类型 A、 业务类型 B、 业务类型 C 和业务类型 D, 其中, 业务类型 A所需带宽为 10GHz, 业务类型 B所需带宽为 20GHz, 业务类型 C所需带宽为 30GHz, 业务类型 D所需带宽为 40GHz, 需要 处理的业务类型所需带宽的最小公倍就为 120GHz。这样每个带宽分组的带宽就 为 120GHz, 由于每个带宽分组的带宽只分配给同一业务类型的业务, 因此在分 配过程中不可能出现带宽碎片。
作为一种可选的实施方式, 在步骤 S101之前, 该方法还可以包括: 获取需要处理的业务类型的所需带宽;
计算需要处理的业务类型的所需带宽的最小公倍数;
根据所述最小公倍数对所述带宽资源进行分组, 以获得 N个带宽相同的带 宽分组, 所述带宽分组的带宽为所述最小公倍数带宽。
假设需要处理的业务类型包括: 业务类型八、 业务类型 业务类型 业 务类型 D和业务类型 E, 其中, 业务类型 A所需带宽为 10GHz, 业务类型 B 所需带宽为 20GHz, 业务类型 C所需带宽为 30GHz, 业务类型 D所需带宽为 40GHz, 业务类型 E所需带宽为 120GHz。 计算出的最小公倍为 120GHz, 然后 将所述带宽资源划分为带宽为 120GHz的 N个带宽分组。
当然根据所述最小公倍数对所述带宽资源进行分组, 以获得 N个带宽相同 的带宽分组, 所述带宽分组的带宽还可以为整数倍所述最小公倍数带宽。 如需 要处理业务类型的最小公倍为 120GHz,就可以将所述带宽资源划分为 N个带宽 为 120GHz或 240GHz或 360GHz的带宽分组。这样划分出的每个带宽分组的带 宽也是需要处理的业务类型中任一业务类型所需带宽的整数倍, 同样在分配过 各中不会出现带宽碎片。
本实施例, 带宽资源包括 N个带宽相同的带宽分组, 所述带宽分组的带宽 为需要处理的业务类型所需带宽的最小公倍数, 将没有被其它业务类型的业务 占用的带宽分组的空闲带宽中的所需宽带分配给所述当前业务, 所述其它业务 类型指不同于所述当前业务的业务类型的业务类型, 其中, 每个带宽分组只分 配给同一种业务类型的业务, 这样在多种业务类型的业务传输过程中可以减少 相互干扰; 同时, 是将空闲带宽中的所需宽带分配给所述当前业务, 这样可以 实现按需分配带宽资源, 以支持 FBON中带宽分配方式, 且能避免在业务分配 带宽过程中产生带宽碎片。
图 6是本发明实施例提供的一种带宽资源的分配方法的第二实施例的流程 示意图, 如图 6所示, 包括:
5201、 获取当前业务。
5202、 识别所述当前业务的业务类型。
5203、 判断已被所述业务类型的业务占用一定带宽的带宽分组中是否存在 空闲带宽, 若存在空闲带宽, 则执行步骤 S204将已被所述业务类型的业务占用 一定带宽的带宽分组的空闲带宽中的所需带宽分配给所述当前业务; 若不存在 空闲带宽, 则执行步骤 S205将一个未被占用的带宽分组中的所需带宽分配给所 述当前业务。 其中, 所述带宽资源包括 N个带宽相同的带宽分组, 所述带宽分 组的带宽为需要处理的业务类型所需带宽的最小公倍数。
5204、 将已被所述业务类型的业务占用一定带宽的带宽分组的空闲中的所 需带宽分配给所述当前业务。
5205、 将一个未被占用的带宽分组中的所需带宽分配给所述当前业务。 上述未被占用的带宽分组也就是没有使用的带宽分组, 该带宽分组所有带 宽都为未占用的带宽。
具体的分配过程, 可以参考如图 7所示, 假设需要处理业务类型包括 100G 业务和 400G业务, 100G业务所需带宽为 50GHz, 400G业务所需带宽为 75GHz, 这样所述带宽资源就划分为 N个带宽为 150GHz带宽分组。 如当前业务为 100G 业务, 这时由于不存在已被所述业务类型的业务占用一定带宽的带宽分组, 就 可以通过步骤 S205 将一个未被占用的带宽分组中的所需带宽分配给该当前业 务, 如将第一个带宽分组的所需带宽分配给该当前业务。 该当前业务分配完后, 有一个 400G的业务需要分配带宽, 此时当前业务为 400G的业务, 同样这时不 存在已被所述业务类型的业务占用一定带宽的带宽分组, 就可以通过步骤 S205 将一个未被占用的带宽分组中的所需带宽分配给该当前业务, 如将第二个带宽 分组的所需带宽分配给该当前业务。 如图 7中第二行所示。
当当前业务又为 100G业务时,这时就存在已被所述业务类型的业务占用一 定带宽的带宽分组, 且该带宽分组中存在空闲带宽, 如图 7 中第一个分组, 通 过步骤 S203和 S204就将第一个带宽分组的空闲带宽中的所需带宽分配给该当 前业务。 当当前业务又为 400G业务时, 这时同样存在已被所述业务类型的业务 占用一定带宽的带宽分组, 且该带宽分组中存在空闲带宽, 如图 7 中第二个分 组通过步骤 S203和 S204就将第二个带宽分组的空闲带宽中的所需带宽分配给 该当前业务。 当第一个分组不存在空闲带宽时, 也就是所述已被所述业务类型 的业务占用一定带宽的带宽分组中不存在空闲带宽, 若此时的当前业务为 100G 业务, 则通过步骤 S205可以将第三个分组中的所需带宽分配给该当前业务, 具 体如图 7第四行所示。
本实施例, 通过判断已被所述业务类型的业务占用一定带宽的带宽分组中 是否存在空闲带宽, 若存在空闲带宽, 则将所述空闲带宽中的所需带宽分配给 所述当前业务, 这样在多种业务类型的业务传输过程中减少相互干扰, 且支持 FBON中带宽分配方式, 并能避免在业务分配带宽过程中产生带宽碎片, 同时, 这样在带宽分配过程保留更多未被占用的带宽分组, 可以将带宽资源给分配给 更多类型的业务。
图 8是本发明实施例提供的一种带宽资源的分配方法的第三实施例的流程 示意图, 如图 8所示, 包括:
5301、 获取当前业务。
5302、 识别所述当前业务的业务类型。
5303、 判断所述带宽资源中是否存在未被占用的带宽分组, 若存在所述未 被占用的带宽分组, 则执行步骤 S304将所述未被占用的带宽分组中的一个带宽 分组中的所需带宽分配给所述当前业务; 若不存在所述未被占用的带宽分组, 则执行步骤 S305将与已被所述业务类型的业务占用一定带宽的带宽分组的空闲 中的所需宽带分配给所述当前业务。 其中, 所述带宽资源包括 N个带宽相同的 带宽分组, 所述带宽分组的带宽为需要处理的业务类型所需带宽的最小公倍数。
S304将所述未被占用的带宽分组中的一个带宽分组中的所需带宽分配给所 述当前业务。
执行步骤 S304将所述未被占用的带宽分组中的一个带宽分组中的所需带宽 分配给所述当前业务, 也就是此时所述带宽资源存在未被占用的带宽分组。
具体的分配过程,可以参考如图 9所示,假设需要分配的业务类型包括 100G 业务和 400G业务, 100G业务所需带宽为 50GHz, 400G业务所需带宽为 75GHz, 这样所述带宽资源划分为 N个带宽为 150GHz的带宽分组。 如当前业务为 100G 业务, 这时所述带宽资源中存在未被占用的带宽分组, 通过步骤 S304将第一个 带宽分组中的所需带宽分配给该当前业务。 若为该当前业务分配完后, 当前业 务为 400G, 此时所述带宽资源中还存在未被占用的带宽分组, 则通过步骤 S304 将第二个带宽分组中的所需带宽分配给该当前业务, 具体如图 9第二行所示。
当当前业务又为 100G业务时,此时所述带宽资源中还存在未被占用的带宽 分组, 通过步骤 S304将第三个带宽分组中的所需带宽分配给该当前业务。 当当 前业务又为 400G业务时, 此时所述带宽资源中还存在未被占用的带宽分组, 通 过步骤 S304将第四个带宽分组中的所需带宽分配给该当前业务, 具体如图 9第 三行所示。
S305将已被所述业务类型的业务占用一定带宽的带宽分组的空闲带宽中的 所需宽带分配给所述当前业务。
所述带宽资源不存在未被占用的带宽分组时, 执行步骤 S305将已被所述业 务类型的业务占用一定带宽的带宽分组的空闲带宽中的所需宽带分配给所述当 前业务, 也就是此时所述带宽资源中每个带宽分组都有被占用, 如图 9第三行 或第四行所示。
如图 9第三行所示, 当所述带宽资源不存在未被占用的带宽分组时, 若当 前业务为 100G业务时,第一带宽分组为已被所述业务类型的业务占用一定带宽 的带宽分组, 则可以通过步骤 S305将第一带宽分组的空闲带宽中的所需带宽分 配给该当前业务, 如图 9第四行所示 > 需要说明的是, 当已被所述业务类型的业务占用一定带宽的带宽分组存在 多个时, 步骤 S305还可以是将已被所述业务类型的业务占用一定带宽的多个带 宽分组中空闲带宽最多的带宽分组的空闲带宽中的所需带宽分配给所述当前业 务。
假设已被所述业务类型的业务占用一定带宽的带宽分组包括: 带宽分组 1、 带宽分组 2和带宽分组 3 , 这时步骤 S305选择这三个带宽分组中空闲带宽最多 的带宽分组, 并将选择的空闲带宽最多的带宽分组中的空闲带宽中的所需带宽 分配给所述当前业务。 如带宽分组 1 的空闲带宽最多, 则将带宽分组 1 的空闲 带宽中的所需带宽分配给所述当前业务。
当然还有一种情况, 如图 9第三行所示, 支设此时当前业务为 100G业务, 这时已被所述业务类型的业务占用一定带宽的带宽分组有第一、 第三、 第五和 第六带宽分组, 且这些带宽分组的空闲带宽都是相同的, 也就是已被所述业务 类型的业务占用一定带宽的带宽分组的空闲带宽最多的带宽分组存在多个, 这 时步骤 S305就将多个空闲带宽相同的带宽分组中的一个带宽分组的空闲带宽中 的所需带宽分配给所述当前业务。 如图 9第四行所示, 将第一个带宽分组的空 闲带宽中的所需带宽分配给所述当前业务。
需要说明的是, 已被所述业务类型的业务占用一定带宽的带宽分组存在多 个时, 步骤 S305还可以包括:
从已被所述业务类型的业务占用一定带宽的多个带宽分组中选择存在空闲 带宽的带宽分组;
将选择出的带宽分组中的一个带宽分组的空闲带宽中的所需带宽分配给所 述当前业务。
本实施例, 通过判断所述带宽资源中是否存在未被占用的带宽分组, 若存 在所述未被占用的带宽分组, 则将所述未被占用的带宽分组中的一个带宽分组 中的所需带宽分配给所述当前业务。 这样在多种业务类型的业务传输过程中减 少相互干扰, 且支持 FBON中带宽分配方式, 并能避免在业务分配带宽过程中 产生带宽碎片, 同时, 尽量使每个带宽分组分配给的业务最少, 这样在业务传 输过程中相互干扰最少。
图 10是本发明实施例提供的一种带宽资源的分配装置的第一实施例的结构 示意图, 如图 10所示, 该装置包括: 第一获取单元 41、 识别单元 42和分配单 元 43 , 其中:
第一获取单元 41 , 用于获取当前业务。
当前业务也就是当前需要分配带宽的业务。
识别单元 42, 用于识别第一获取单元 41获取的当前业务的业务类型。
分配单元 43 , 用于将没有被其它业务类型的业务占用的带宽分组的空闲带 宽中的所需宽带分配给所述当前业务, 所述其它业务类型指不同于所述当前业 务的业务类型的业务类型, 其中, 每个带宽分组只分配给同一种业务类型的业 务, 所述带宽资源包括 N个带宽相同的带宽分组, 所述带宽分组的带宽为需要 处理的业务类型所需带宽的最小公倍数。
将没有被其它业务类型的业务占用的带宽分组的空闲带宽中的所需宽带分 配给所述当前业务, 由于是将空闲带宽中的所需带宽分配给所述当前业务, 可 以实现按需分配, 以支持 FBON中带宽分配方式。 同时, 在分配过程中釆用每 个带宽分组只分配给同一种业务类型的业务,例如带宽分组 1对应业务类型为 A 的业务, 带宽分组 2对应业务类型为 B的业务, 带宽分组 3对应业务类型为 D 的业务。 当然还可以是几个带宽分组所对应的业务类型是一样的, 如带宽分组 1 对应业务类型为 A的业务, 带宽分组 4也是对应业务类型为 A的业务。 这样保 证每个带宽分组只分配一种业务类型, 可以减少多种业务类型的业务传输过程 中的相互干扰。
需要说明的是, 在本实施例中, 没有被其它业务类型的业务占用的带宽分 组具体可以是已被与所述当前业务的业务类型的业务占用一定带宽的带宽分 组, 还可以是未被占用的带宽分组。
作为一种可选的实施方式, 分配单元 43具体可以用于将已被与所述当前业 务的业务类型的业务占用一定带宽的带宽分组的空闲带宽中的所需宽带分配给 所述当前业务, 或者将未被占用的带宽分组中的所需宽带分配给所述当前业务。
需要说明的是, 所述带宽资源包括 N个带宽相同的带宽分组, 所述带宽分 组的带宽为需要处理的业务类型所需带宽的最小公倍数带宽。 这样可以保证每 个带宽分组的带宽是需要处理的业务类型中任一业务类型所需带宽的整数倍, 从而在分配带宽过程中不会出现带宽碎片。 只要带宽分组中还有空闲带宽, 该 空闲带宽就一定可以被该带宽分组所分配的业务类型的业务类型的业务使用。 假设需要处理的业务类型包括: 业务类型 A、 业务类型 B、 业务类型 C和业务 类型 D,其中,业务类型 Α所需带宽为 10GHz,业务类型 B所需带宽为 20GHz, 业务类型 C所需带宽为 30GHz, 业务类型 D所需带宽为 40GHz, 需要处理的业 务类型所需带宽的最小公倍就为 120GHz。 这样每个带宽分组的带宽就为 120GHz, 由于每个带宽分组的带宽只分配给同一业务类型的业务, 因此在分配 过程中不可能出现带宽碎片。
需要说明的是, 在另一实施, 如图 11所示, 该装置还可以包括:
第二获取单元 44, 用于获取需要处理的业务类型的所需带宽;
计算单元 45,用于计算第二获取单元 44获取到的需要处理的业务类型的所 需带宽的最小公倍数;
分组单元 46, 用于根据所述最小公倍数对所述带宽资源进行分组, 以获得 N 个带宽相同的带宽分组, 所述带宽分组的带宽为所述最小公倍数带宽。 假设 需要处理的业务类型包括: 业务类型八、 业务类型^ 业务类型 业务类型 D 和业务类型 E, 其中, 业务类型 A所需带宽为 10GHz, 业务类型 B所需带宽为 20GHz, 业务类型 C所需带宽为 30GHz, 业务类型 D所需带宽为 40GHz, 业务 类型 E所需带宽为 120GHz。 计算出的最小公倍为 120GHz, 然后将所述带宽资 源划分为带宽为 120GHz的 N个带宽分组。
当然分组单元 46根据所述最小公倍数对所述带宽资源进行分组, 以获得 N 个带宽相同的带宽分组, 所述带宽分组的带宽还可以为整数倍所述最小公倍数 带宽。 如需要处理业务类型的最小公倍为 120GHz, 就可以将所述带宽资源划分 为 N个带宽为 120GHz或 240GHz或 360GHz的带宽分组。这样划分出的每个带 宽分组的带宽也是需要处理的业务类型中任一业务类型所需带宽的整数倍, 同 样在分配过各中不会出现带宽碎片。
本实施例, 带宽资源包括 N个带宽相同的带宽分组, 所述带宽分组的带宽 为需要处理的业务类型所需带宽的最小公倍数, 分配单元将没有被其它业务类 型的业务占用的带宽分组的空闲带宽中的所需宽带分配给所述当前业务, 所述 其它业务类型指不同于所述当前业务的业务类型的业务类型, 其中, 每个带宽 分组只分配给同一种业务类型的业务, 这样在多种业务类型的业务传输过程中 可以减少相互干扰; 同时, 分配单元是将空闲带宽中的所需宽带分配给所述当 前业务, 这样可以实现按需分配带宽资源, 以支持 FBON中带宽分配方式, 且 能避免在业务分配带宽过程中产生带宽碎片。 图 12是本发明实施例提供的一种带宽资源的分配方法的第二个实施例的结 构示意图, 如图 12所示, 该装置包括: 第一获取单元 51、 识别单元 52、 和分 配单元 53 , 该分配单元包括: 第一判断单元 531、 第一分配子单元 532和第二 分配子单元 533 , 其中:
第一获取单元 51 , 用于获取当前业务。
识别单元 52, 用于识别获取单元 51获取的当前业务的业务类型。
第一判断单元 531 ,用于已被所述业务类型的业务占用一定带宽的带宽分组 中是否存在空闲带宽。
第一分配子单元 532, 用于当第一判断单元 531判断结果为是时, 将已被所 述业务类型的业务占用一定带宽的带宽分组的空闲带宽中的所需带宽分配给所 述当前业务。
第一判断单元 53判断结果为是指, 已被所述业务类型的业务占用一定带宽 的带宽分组存在空闲带宽, 这时第一分配子单元 532将已被所述业务类型的业 务占用一定带宽的带宽分组的空闲带宽中的所需带宽分配给所述当前业务。
第二分配子单元 533 , 用于当第一判断单元 53判断结果为否时, 将一个未 被占用的带宽分组中的所需带宽分配给所述当前业务。
第一判断单元 53判断结果为否指, 已被所述业务类型的业务占用一定带宽 的带宽分组不存在空闲带宽中, 还可以是不存在已被所述业务类型的业务占用 一定带宽的带宽分组, 这时第二分配子单元 533 将一个未被占用的带宽分组中 的所需带宽分配给所述当前业务。
需要说明的是, 在本实施例中, 所述带宽资源包括 N个带宽相同的带宽分 组, 所述带宽分组的带宽为需要处理的业务类型所需带宽的最小公倍数带宽。 这样可以保证每个带宽分组的带宽是需要处理的业务类型中任一业务类型所需 带宽的整数倍, 从而在分配带宽过程中不会出现带宽碎片。 只要带宽分组中还 有空闲带宽, 该空闲带宽就一定可以被该带宽分组所分配的业务类型的业务类 型的业务使用。
具体的分配过程, 如图 7所示, 假设需要处理业务类型包括 100G业务和 400G业务, 100G业务所需带宽为 50GHz, 400G业务所需带宽为 75GHz, 这样 所述带宽资源就划分为 N个带宽为 150GHz带宽分组。如当前业务为 100G业务, 这时由于不存在已被所述业务类型的业务占用一定带宽的带宽分组, 也就是第 一判断单元 53判断结果为否, 这时第二分配子单元 533就可以将一个未被占用 的带宽分组中的所需带宽分配给该当前业务, 如将第一个带宽分组的所需带宽 分配给该当前业务。 该当前业务分配完后, 有一个 400G的业务需要分配带宽, 此时当前业务为 400G的业务, 同样这时不存在已被所述业务类型的业务占用一 定带宽的带宽分组, 第二分配子单元 533 就可以将一个未被占用的带宽分组中 所需带宽分配给该当前业务, 如将第二个带宽分组的所需带宽分配给该当前业 务。 如图 7中第二行所示。
当当前业务又为 100G业务时,这时就存在已被所述业务类型的业务占用一 定带宽的带宽分组, 且该带宽分组中存在空闲带宽, 如图 7 中第一个分组, 第 一判断单元 53判断的结果为是, 第一分配子单元 532将第一个带宽分组的空闲 带宽中的所需带宽分配给该当前业务。 当当前业务又为 400G业务时, 这时同样 存在已被所述业务类型的业务占用一定带宽的带宽分组, 且该带宽分组中存在 空闲带宽, 如图 7中第二个分组, 第一判断单元 53判断的结果就为是, 第一分 配子单元 532将第二个带宽分组的空闲带宽中的所需带宽分配给该当前业务。 当第一个分组不存在空闲带宽时, 也就是已被所述业务类型的业务占用一定带 宽的带宽分组中不存在空闲带宽, 若此时的当前业务为 100G业务, 第一判断单 元 53判断的结果就为否, 第二分配子单元 533可以将第三个分组中的所需带宽 分配给该当前业务, 具体如图 7第四行所示。
本实施例, 通过第一判断单元判断已被所述业务类型的业务占用一定带宽 的带宽分组中是否存在空闲带宽, 若存在空闲带宽, 则将所述空闲带宽中的所 需带宽分配给所述当前业务, 这样在多种业务类型的业务传输过程中减少相互 干扰, 且支持 FBON中带宽分配方式, 并能避免在业务分配带宽过程中产生带 宽碎片, 同时, 这样在带宽分配过程保留更多未被占用的带宽分组, 可以将带 宽资源给分配给更多类型的业务。
图 13是本发明实施例提供的一种带宽资源的分配方法的第三实施例的流程 示意图, 如图 13所示, 该装置包括: 第一获取单元 61、 识别单元 62、 分配单 元 63 , 该分配单元包括: 第二判断单元 631、 第三分配子单元 632和第四分配 子单元 633 , 其中:
第一获取单元 61 , 用于获取当前业务。
识别单元 62, 用于识别第一获取单元 61获取的当前业务的业务类型。 第二判断单元 631 , 用于判断所述带宽资源中是否存在未被占用的带宽分 组。
第三分配子单元 632, 用于当第二判断单元 631判断结果为是时, 将所述未 被占用的带宽分组中的一个带宽分组中的所需带宽分配给所述当前业务。
第二判断单元 63判断结果为是指, 所述带宽资源中存在未被占用的带宽分 组, 这时第三分配子单元 632将所述未被占用的带宽分组中任一带宽分组中的 所需带宽分配给所述当前业务。
具体的如图 9所示, ^^设目前存在两个业务类型, 即 100G业务和 400G业 务, 100G业务所需带宽为 50GHz, 400G业务所需带宽为 75GHz, 这样所述带 宽资源就划分为 N个带宽为 150GHz的带宽分组。如当前业务为 100G业务,这 时第二判断单元 63判断结果就为是, 第三分配子单元 632将所述未被占用的带 宽分组中的一个带宽分组中的所需带宽分配给所述当前业务, 如将第一个带宽 分组的所需带宽分配给该当前业务。 若为该当前业务分配完后, 当前业务变为 400G, 此时第二判断单元 63判断结果还为是, 第三分配子单元 632将所述未被 占用的带宽分组中的一个带宽分组中的所需带宽分配给所述当前业务, 如将第 二个带宽分组的所需带宽分配给该当前业务, 具体如图 9第二行所示。
当当前业务又变为 100G业务时, 此时第二判断单元 63判断结果还为是, 第三分配子单元 632将所述未被占用的带宽分组中的一个带宽分组中的所需带 宽分配给所述当前业务, 如将第三个带宽分组的所需带宽分配给该当前业务。 当当前业务又变为 400G业务时, 此时第二判断单元 63判断结果还为是, 第三 分配子单元 632将所述未被占用的带宽分组中的一个带宽分组中的所需带宽分 配给所述当前业务, 如将第四个带宽分组的所需带宽分配给该当前业务, 具体 如图 9第三行所示。
第四分配子单元 633 , 用于当第二判断单元 63判断结果为否时, 将已被所 述业务类型的业务占用一定带宽的带宽分组的空闲带宽中的所需宽带分配给所 述当前业务。
第二判断单元 63判断结果为否指, 所述带宽资源中不存在未被占用的带宽 分组, 这时第四分配子单元 633 将已被所述业务类型的业务占用一定带宽的带 宽分组的空闲带宽中的所需宽带分配给所述当前业务。
第四分配子单元 633 将已被所述业务类型的业务占用一定带宽的带宽分组 的空闲带宽的所需宽带分配给所述当前业务也就是此时所述带宽资源不存在未 被占用的带宽分组。 也就是所述带宽资源中每个带宽分组都有被占用, 当然可 能这个占用只是占用带宽分组中一部分带宽, 如图 9第三行或第四行所示。
如图 9第三行所示, 当所述带宽资源不存在未被占用的带宽分组时, 这时 第二判断单元 63判断结果为否, 若当前业务为 100G业务时, 第一带宽分组为 已被所述业务类型的业务占用一定带宽的带宽分组, 第四分配子单元 633 将与 所述业务类型对应的带宽分组的空闲带宽中的所需宽带分配给所述当前业务, 如将第一带宽分组中的所需带宽分配给该当前业务, 如图 9第四行所示。
需要说明的是, 当已被所述业务类型的业务占用一定带宽的带宽分组存在 多个时, 第四分配子单元 633 具体还可以用于将已被所述业务类型的业务占用 一定带宽的多个带宽分组中空闲带宽最多的带宽分组的空闲带宽中的所需带宽 分配给所述当前业务
假设已被所述业务类型的业务占用一定带宽的带宽分组包括: 带宽分组 1、 带宽分组 2和带宽分组 3 ,这时第四分配子单元 633就选择这三个带宽分组的空 闲带宽最多的带宽分组, 并将选择的空闲带宽最多的带宽分组的空闲带宽中的 所需带宽分配给所述当前业务。 如带宽分组 1的空闲带宽最多, 分配单元 64则 将带宽分组 1的空闲带宽中的所需带宽分配给所述当前业务。
当然还有一种情况, 如图 9第三行所示, 支设此时当前业务为 100G业务, 这时已被所述业务类型的业务占用一定带宽的带宽分组有第一、 第三、 第五和 第六带宽分组, 且这些带宽分组的空闲带宽都是相同的, 也就是已被所述业务 类型的业务占用一定带宽的带宽分组的空闲带宽最多的带宽分组存在多个, 这 时第四分配子单元 633 将多个空闲带宽相同的带宽分组中的一个带宽分组的空 闲带宽中的所需带宽分配给所述当前业务, 该多个带宽分组为与所述业务类型 相同的带宽分组中未被占用带宽最多的带宽分组。 如图 9第四行所示, 将第一 个带宽分组的空闲带宽中的所需带宽分配给所述当前业务。
需要说明的是, 已被所述业务类型的业务占用一定带宽的带宽分组存在多 个时, 第四分配子单元 633还具体可以用于从已被所述业务类型的业务占用一 定带宽的多个带宽分组中选择存在空闲带宽的带宽分组, 并将选择出的带宽分 组中的一个带宽分组的空闲带宽中的所需带宽分配给所述当前业务。
本实施例, 通过第二判断单元判断所述带宽资源中是否存在未被占用的带 宽分组, 若存在所述未被占用的带宽分组, 分配单元则将所述未被占用的带宽 分组中的一个带宽分组中的所需带宽分配给所述当前业务。 这样在实现多种业 务类型的业务传输过程中减少相互干扰, 且支持 FBON中带宽分配方式, 并能 避免在业务分配带宽过程中产生带宽碎片, 同时, 尽量使每个带宽分组分配给 的业务最少, 这样在业务传输过程中相互干扰最少。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体( Read-Only Memory , ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种带宽资源的分配方法, 其特征在于, 包括:
获取当前业务;
识别所述当前业务的业务类型;
将没有被其它业务类型的业务占用的带宽分组的空闲带宽中的所需宽带分 配给所述当前业务, 所述其它业务类型指不同于所述当前业务的业务类型的业 务类型, 其中, 每个带宽分组只分配给同一种业务类型的业务, 所述带宽资源 包括 N个带宽相同的带宽分组, 所述带宽分组的带宽为需要处理的业务类型所 需带宽的最小公倍数。
2、 如权利要求 1所述的方法, 其特征在于, 在所述获取当前业务之前, 该 方法还包括:
获取需要处理的业务类型的所需带宽;
计算获取到的需要处理的业务类型的所需带宽的最小公倍数;
根据所述最小公倍数对所述带宽资源进行分组, 以获得 N个带宽相同的带 宽分组, 所述带宽分组的带宽为所述最小公倍数。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述将没有被其它业务类 型的业务占用的带宽分组的空闲带宽中的所需宽带分配给所述当前业务包括: 判断已被所述业务类型的业务占用一定带宽的带宽分组中是否存在空闲带 宽, 若存在空闲带宽, 则将所述空闲带宽中的所需带宽分配给所述当前业务; 若不存在空闲带宽, 将一个未被占用的带宽分组中的所需带宽分配给所述 当前业务。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述将没有被其它业务类 型的业务占用的带宽分组的空闲带宽中的所需宽带分配给所述当前业务包括: 判断所述带宽资源中是否存在未被占用的带宽分组, 若存在所述未被占用 的带宽分组, 则将所述未被占用的带宽分组中的一个带宽分组中的所需带宽分 配给所述当前业务; 若不存在未被占用的带宽分组, 则将已被所述业务类型的业务占用一定带 宽的带宽分组的空闲带宽中的所需宽带分配给所述当前业务。
5、 如权利要求 4所述的方法, 其特征在于, 当已被所述业务类型的业务占 用一定带宽的带宽分组存在多个时, 所述将将已被所述业务类型的业务占用一 定带宽的带宽分组的空闲带宽中的所需宽带分配给所述当前业务包括:
从已被所述业务类型的业务占用一定带宽的多个带宽分组中选择存在空闲 带宽的带宽分组;
将选择出的带宽分组中的一个带宽分组的空闲带宽中的所需带宽分配给所 述当前业务。
6、 一种带宽资源的分配装置, 其特征在于, 包括: 第一获取单元、 识别单 元和分配单元, 其中:
第一获取单元, 用于获取当前业务;
识别单元, 用于识别所述第一获取单元获取的当前业务的业务类型; 分配单元, 用于将没有被其它业务类型的业务占用的带宽分组的空闲带宽 中的所需宽带分配给所述当前业务, 所述其它业务类型指不同于所述当前业务 的业务类型的业务类型, 其中, 每个带宽分组只分配给同一种业务类型的业务, 所述带宽资源包括 N个带宽相同的带宽分组, 所述带宽分组的带宽为需要处理 的业务类型所需带宽的最小公倍数。
7、 如权利要求 6所述的装置, 其特征在于, 该装置还包括:
第二获取单元, 用于获取需要处理的业务类型的所需带宽;
计算单元, 用于计算所述第二获取单元获取到的需要处理的业务类型的所 需带宽的最小公倍数;
分组单元, 用于根据所述最小公倍数对所述带宽资源进行分组, 以获得 N 个带宽相同的带宽分组, 所述带宽分组的带宽为所述最小公倍数。
8、 如权利要求 6或 7所述装置, 其特征在于, 所述分配单元包括: 第一判断单元, 用于已被所述业务类型的业务占用一定带宽的带宽分组中 是否存在空闲带宽;
第一分配子单元, 用于当所述第一判断单元判断结果为是时, 将已被所述 业务类型的业务占用一定带宽的带宽分组的空闲带宽中的所需带宽分配给所述 当前业务;
第二分配子单元, 用于当所述第一判断单元判断结果为否时, 将一个未被 占用的带宽分组中的所需带宽分配给所述当前业务。
9、 如权利要求 6或 7所述的装置, 其特征在于, 所述分配单元包括: 第二判断单元, 用于判断所述带宽资源中是否存在未被占用的带宽分组; 第三分配子单元, 用于当所述第二判断单元判断结果为是时, 将所述未被 占用的带宽分组中的一个带宽分组中的所需带宽分配给所述当前业务;
第四分配子单元, 用于当所述第二判断单元判断结果为否时, 将已被所述 业务类型的业务占用一定带宽的带宽分组的空闲带宽中的所需宽带分配给所述 当前业务。
10、 如权利要求 9所述的装置, 其特征在于, 当已被所述业务类型的业务 占用一定带宽的带宽分组存在多个时, 所述第四分配子单元还用于从已被所述 业务类型的业务占用一定带宽的多个带宽分组中选择存在空闲带宽的带宽分 组, 并将选择出的带宽分组中的一个带宽分组的空闲带宽中的所需带宽分配给 所述当前业务。
PCT/CN2012/076111 2012-05-25 2012-05-25 一种带宽资源的分配方法及装置 WO2012126435A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12761437.8A EP2849389B1 (en) 2012-05-25 2012-05-25 Method and apparatus for allocating bandwidth resources
PCT/CN2012/076111 WO2012126435A2 (zh) 2012-05-25 2012-05-25 一种带宽资源的分配方法及装置
CN201280000619.1A CN102783100B (zh) 2012-05-25 2012-05-25 一种带宽资源的分配方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076111 WO2012126435A2 (zh) 2012-05-25 2012-05-25 一种带宽资源的分配方法及装置

Publications (2)

Publication Number Publication Date
WO2012126435A2 true WO2012126435A2 (zh) 2012-09-27
WO2012126435A3 WO2012126435A3 (zh) 2013-04-18

Family

ID=46879811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076111 WO2012126435A2 (zh) 2012-05-25 2012-05-25 一种带宽资源的分配方法及装置

Country Status (3)

Country Link
EP (1) EP2849389B1 (zh)
CN (1) CN102783100B (zh)
WO (1) WO2012126435A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3057353A4 (en) * 2013-10-31 2016-11-02 Huawei Tech Co Ltd METHOD AND DEVICE FOR ASSIGNING FREQUENCY SPECTROS

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205248B (zh) * 2016-03-17 2021-09-21 中国移动通信集团内蒙古有限公司 一种资源分配方法及系统
CN109218855B (zh) * 2017-06-30 2021-09-28 中国电信股份有限公司 用于olt切片的带宽分配方法、装置以及光网络系统
CN108111931B (zh) * 2017-12-15 2021-07-16 国网辽宁省电力有限公司 一种电力光纤接入网的虚拟资源切片管理方法及装置
RU2762625C1 (ru) 2018-01-12 2021-12-21 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ конфигурирования параметра и связанные с ним изделия

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327682B2 (en) * 2003-06-27 2008-02-05 Cisco Technology, Inc. Methods and devices for flexible bandwidth allocation
US20070133431A1 (en) * 2005-12-09 2007-06-14 Koo Ki J Media access control method in wireless local area network
KR100928678B1 (ko) * 2006-10-02 2009-11-27 삼성전자주식회사 광대역 무선 접속 시스템의 연결 수락 제어 방법 및 장치
CN101282575B (zh) * 2007-04-02 2012-01-11 中兴通讯股份有限公司 一种随机接入方法及其系统
US10193655B2 (en) * 2008-01-15 2019-01-29 Futurewei Technologies, Inc. Method and apparatus for scheduling multimedia streams over a wireless broadcast channel
CN102083208B (zh) * 2009-11-30 2013-09-25 普天信息技术研究院有限公司 资源分配方法和装置
CN101827442B (zh) * 2010-04-06 2014-07-16 中兴通讯股份有限公司 一种基带资源管理方法和系统
JP2012015822A (ja) * 2010-06-30 2012-01-19 Brother Ind Ltd 通信装置、通信方法、及び通信プログラム
CN102438319B (zh) * 2012-01-13 2014-07-23 电信科学技术研究院 一种上行控制信道资源分配方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3057353A4 (en) * 2013-10-31 2016-11-02 Huawei Tech Co Ltd METHOD AND DEVICE FOR ASSIGNING FREQUENCY SPECTROS

Also Published As

Publication number Publication date
EP2849389B1 (en) 2017-02-22
CN102783100A (zh) 2012-11-14
CN102783100B (zh) 2015-04-08
EP2849389A4 (en) 2015-06-10
WO2012126435A3 (zh) 2013-04-18
EP2849389A2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
US10263889B2 (en) Data forwarding method, device, and system in software-defined networking
JP7375844B2 (ja) 光ネットワーク管理装置
US9979656B2 (en) Methods, systems, and computer readable media for implementing load balancer traffic policies
KR20140027518A (ko) 클라우드 환경 내 가상 자원들의 할당을 위한 방법 및 장치
JP2014239521A (ja) チャネルボンディングを用いたネットワーク上のデータ送信
JP2009535901A (ja) ブロードバンドアクセスネットワーク容量管理
WO2012126435A2 (zh) 一种带宽资源的分配方法及装置
US20120076154A1 (en) Method, apparatus and system for adjusting resource delegation in network
US20220109614A1 (en) Dynamic adaptive network
CN109495593B (zh) 地址分配方法及系统
CN107135056B (zh) 一种减少频谱碎片和时延的任播业务资源分配方法
CN102388575B (zh) 在订户同意情况下的动态dsl线路带宽管理方法、系统及设备
US8107506B2 (en) Method and apparatus for reducing service impairment in link aggregation group
JP2021501536A (ja) アップリンクデータパケットリソース割り当て方法およびユーザ端末
US20120039271A1 (en) Method and apparatus for distributed scheduling in wireless mesh network based on ofdma
CN107438098B (zh) 一种动态内容分发方法及其系统
CN111194088B (zh) 一种基于子网划分的移动网络动态时隙分配方法
JP6678833B1 (ja) ネットワークコントローラ
CN109429335B (zh) 集群语音用户跨运营商抢占方法及设备
JP2007520095A (ja) ダイナミックネットワークチャンネル修正のための方法およびシステム
KR101787448B1 (ko) 단일 데이터 센터 클라우드 컴퓨팅 환경에서의 확률적 가상 네트워크 요청 방법, 이를 이용한 요청 수신 장치, 이를 이용한 자원 할당 방법, 자원 할당 장치, 이를 수행하는 프로그램 및 기록매체
WO2023124467A1 (zh) 数据分发方法、装置、网络设备及存储介质
WO2016197322A1 (zh) 域合并方法及媒介间桥接器、节点
WO2022035500A1 (en) Efficient spectrum allocation in a multi-node optical network
WO2014047897A1 (zh) 资源分配方法、设备和系统,资源获取方法及设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000619.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761437

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012761437

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012761437

Country of ref document: EP