WO2012125962A1 - Phenolic modified polyesters and aqueous dispersions - Google Patents
Phenolic modified polyesters and aqueous dispersions Download PDFInfo
- Publication number
- WO2012125962A1 WO2012125962A1 PCT/US2012/029520 US2012029520W WO2012125962A1 WO 2012125962 A1 WO2012125962 A1 WO 2012125962A1 US 2012029520 W US2012029520 W US 2012029520W WO 2012125962 A1 WO2012125962 A1 WO 2012125962A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester resin
- phenolic
- grams
- resin
- modified polyester
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
- C08G81/02—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C08G81/024—Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
- C08G81/027—Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/082—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/09—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
- C08G18/4027—Mixtures of compounds of group C08G18/54 with other macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/54—Polycondensates of aldehydes
- C08G18/542—Polycondensates of aldehydes with phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8061—Masked polyisocyanates masked with compounds having only one group containing active hydrogen
- C08G18/807—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
- C08G18/8074—Lactams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/914—Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/914—Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/916—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/914—Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/918—Polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3415—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/08—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D187/00—Coating compositions based on unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
- C09D187/005—Block or graft polymers not provided for in groups C09D101/00 - C09D185/04
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/10—Anti-corrosive paints containing metal dust
- C09D5/106—Anti-corrosive paints containing metal dust containing Zn
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2390/00—Containers
- C08G2390/40—Inner coatings for containers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1355—Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
Definitions
- the invention relates to a phenolic modified polyesters for use in can coatings.
- the invention particularly relates to a coating systems that come in contact with food and beverages.
- Metal containers for receiving foods and beverages generally have one or more coatings to prevent contact between the filled product and metal. This is to prevent or minimize corrosion to the metal by the product and any disadvantageous influences on the quality of the product
- metal sheets are used which, prior to their shaping (such as for three-piece can production) or deformation (such as for deep drawing process), are coated with suitable coating compositions.
- the invention is a composition of a solvent borne phenolic modified polyester resin prepared using a formulation not including Bisphenol A as a component or subcomponent.
- the invention is an aqueous dispersion of a phenolic modified polyester resin prepared using a formulation not including Bisphenol A as a component or subcomponent
- polyester as used herein, is intended to include homopolyesters, copolyesters, and terpolyesters.
- polyesters are synthetic polymers prepared by the condensation of one or more carboxylic acids, preferably di functional carboxylic acids, with one or more polyalcohols, preferably di- or tri-alcohols.
- reduce as used herein, means any organic structure incorporated into a polymer through a polycondensation and/or an esterification reaction from the corresponding monomer.
- peating unit when used in connection with a polyester, means an organic structure having a dicarboxylic acid residue and a diol residue bonded through an ester linkage.
- the phenolic modified polyester resins are generally prepared using a formulation that includes one or more dicarboxylic acids, one or more polyalcohols, preferably a di or tri-alcohol, and one or more phenolic resins.
- the dicarboxylic acids useable in connection with the the phenolic modified polyester resins of the invention generally include any mat are known to be useable to those of ordinary skill in the art of preparing polyesters, especially polyester coatings useful for coatings in contact with food and beverages.
- Such dicarboxylic acids include, but are not limited to: succinic acid, glutaric acid, dimethyl glutaric, acid, adipic acid, dimethyl adipic acid, azelaic acid, phthalic acid, isophthalic acid, 5-tert-butyl isophthalic acid, terephthalic acid, dimethyl terephthalic acid, 2,6-naphthalcne dicarboxylic acid, and mixtures thereof.
- the polyalcohols useable in connection with die present invention as formulation components for preparing the phenolic modified polyester resins may be any known to those of ordinary skill in the art Exemplary compounds include, but are not limited to: ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-l ,3-propanediol, glycerol, diethylene glycol, dipropylene glycol, triethylene glycol, trimethylolpropane, trimethylolethane, tripropylene glycol, neopentyl glycol, pentaerythritol, 1,4-butanediol, trimethylol propane, hexylene glycol, cyclohexanedimethanol, a polyethylene or polypropylene glycol having an Mw of about 500 or less, and mixtures thereof.
- Bisphenol A isopropylidenediphenol
- the phenolic modified polyester resins of the disclosure are prepared by first condensing a diol and a dicarboxylic acid using a catalyst to form a polyester resin. After the condensation is complete, the resulting polyester resin is grafted with a phenolic resin.
- the polyester resin may be prepared in two steps prior to grafting by doing a polycondensation of a first diol and dicarboxylic acid and then a second polycondensation of the first resin with an additional diol and dicarboxylic acid.
- a mixture of at least two diols and/or dicarboxylic acids are subjected to condensation conditions to prepare the polyester resin.
- the molar ratio of OH to COOH is preferably from 1.1/1.0 to 1.01/1.0
- the selected polyester preferably has a molecular weight Mw of between 6,000 and 100,000 g/mol, preferably 7,000 to 50,000 g/mol and more preferably 7,000 to 35,000 g/mol.
- the Acid Number of between 25 and 55, preferably between 30 and 45 and more preferably between 35 and 45.
- the polyester preferably has an hydroxyl number between 30 and 60 and a Tg of between 30 °C and 55°C
- the phenolic resins which may used to prepare the phenolic modified polyester resins are any that may be grafted onto a polyester resin and are not prepared using Bisphenol A.
- one such resin is a novolak resin and another is a resole resin.
- the novolak resins suitable for use in the formulations of the disclosure are generally the condensation product, preferably the polycondensation products,of at least one aromatic hydrocarbon, preferably including a moiety with a hydroxyl group bound to an aromatic ring, with at least one of an aldehyde or ketone.
- the phenolic moiety cannot include bisphenol A or a Bisphenol A moiety.
- the novolak resins are generally prepared using an excess of aromatic hydrocarbon., i.e.
- the aromatic hydrocarbon may be selected from, but is not limited to, m-cresol, o-cresol, p-cresol, 2,5-xylenol, 3,5-xylenol, resorcinol, pyrogallol, phenol, trisphenol, o-ethyl phenol, m -ethyl phenol, p-ethyl phenol, propyl phenol, n-butyl phenol, t-butyl phenol, 1 -naphthol, and 2-naphthol,.
- the at least one aldehyde or ketone may be selected from, but is not limited to, formaldehyde, acetaldehyde, propion aldehyde, benzaldehyde, furfural, acetone, methyl ethyl ketone, and methyl isobutyl ketone, in the presence of an acid.
- a resole resin when used with the formulations of the disclosure, it may be an organic hydrocarbon and an aldehyde and/or ketone polycondensation product where the two components are present in nearly equal molar ratio to an excess of the aldehyde and/or ketone.
- the components useful for making the resole are the same as those designated as useful for preparing the novolak.
- the phenolic resin may be prepared using an alcohol.
- Suitable alcohols include, but are not limited to ethanol, propanol, butanol, pentanol, and the like. Such resins are sometimes referred to in the art . as etherified resins.
- the phenolic modified polyester resins of the disclosure may be prepared in manner or using any method known to be useful for preparing such resins to those of ordinary skill in the art Generally, the phenolic resin is grafted to the polyester resin.
- a polyester resin is prepared and men a phenolic resin is grafted upon it
- a premade polyester resin is obtained and then used for grafting with the phenolic resin. Any method that results in a composition having a phenolic resin suitably grafted to the polyester resin may be used with the method of the disclosure.
- the phenolic resin mixed with the polyester in amount that is 6% to 30% per total weight of the combined resins, and the polyester resin is 70% to 94% per total weight
- the phenolic modified polymer preferably has a molecular weight Mw of between 6,000 and 100,000 g/mol, preferably 7,000 to 50,000 g/mol and more preferably 7,000 to 35,000 g/mol.
- the phenolic modified polyester preferably has Tg of between 20 °C and 35°C
- Catalysts useful with the method of the disclosure include strong acids, strong bases, and organo-tin catalysts. Any catalyst that can be used to catalyze an ester condensation may be used. In some embodiments, the catalysts will be selected to facilitate the use of the resulting resin in an application where a film prepared with the resin is in contact with food and or beverage.
- a solvent may be used to control the viscosity of the reactants, primarily to prevent the reaction mixture from becoming too viscous for safe handling. Any solvent that will reduce viscosity but not interfere with the condensation and/or grafting may be used.
- the solvent may be but is not limited to methyl N-amyl ketone, N-methyl pyrrolidone ( MP), ethanol, methanol, propanol, acetone, methyl ethyl ketone, benzene, ethylene glycol monobutyl ether (EB), toluene, xylene, naphthalene, nonene and petroleum fractions.
- Another embodiment of the present invention is directed to a composition compirsing a phenolic modified polyester resin dispersed in water or solvent Any method known to those of ordinary skill in the art of preparing a dispersion from organic resins may be used. For example, me method of U.S. Patent No.
- the phenolic modified polyester resins, and the resulting dispersions are substantially free of Bisphenol A and Bisphenol A moieties.
- the resins and dispersions are generally made substantially free of bisphenol A and Bisphenol A moieties by the use of materials and reactants that do not contain Bisphenol A or Bisphenol A moieties as a component or subcomponent
- a substrate must be coated with a film prepared using a formulation not including Bisphenol A as a component or subcomponent
- the term "not including Bisphenol A as a component or subcomponent” means mat the subject film is prepared with no component of the formulation being Bisphenol A and that nothing used to prepare the components of the film formulation is prepared using Bisphenol A.
- the resulting film is substantially free of bom mobile and bound Bisphenol A and/or Bisphenol A moieties.
- the compositions of the disclosure can be used to prepare coatings that are heat resistant, and resistant to erosion in the presence of salty or alcoholic beverages. They have about the same properties as similar resins prepared using Bisphenol A, but are free of both mobile and bound Bisphenol A and Bisphenol A moieties.
- compositions of the disclosure may be used for any application where such a coating would be desirable.
- the compositions of the disclosure may be used as anticorrosion coatings, electrically insulating varnishes, and even powder coatings.
- the coatings may be applied to the substrate using any method known to be useful to those of ordinary skill in the art. Generally speaking, these application techniques include spray coating, dip coating sheet coating and curtain coating. Appropriate curing may be required in some or all of these methods.
- compositions of the disclosure may optionally include other additives mat do not adversely affect the coating composition or a cured coating resulting therefrom.
- the optional additives like the other components of the coating, are at least substantially free of mobile and/or bound Bisphenol A moieties. In one embodiment, the additive are completely free of such compounds.
- Suitable additives include, for example, those mat improve the processability or manufacturability of the composition, enhance composition aesthetics, or improve a particular functional property or characteristic of the coating composition or the cured composition resulting therefrom, such as adhesion to a substrate.
- Additives that may be included are carriers, additional polymers, emulsifiers, pigments, metal powders or paste, fillers, anti-migration aids, anti-microbials, extenders, curing agents, lubricants, coalescents, wetting agents, biocides, plasticizers, crosslinking agents, antifoaming agents, colorants, waxes, anti -oxidants, anticorrosion agents, flow control agents, thixotropic agents, dispersants, adhesion promoters, UV stabilizers, scavenger agents or combinations thereof.
- Each optional ingredient can be included in a sufficient amount to serve its intended purpose, but preferably not in such an amount to adversely affect a coating composition or a cured coating resulting therefrom.
- TMA trimellitic anhydride
- NMP N-methyl pyrrolidone
- Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
- TMA trimellitic anhydride
- NMP N-methyl pyrrolidonc
- TMA trimellitic anhydride
- NMP N-methyl pyrrolidone
- TMA trimellitic anhydride
- NMP N-methyl pyrrolidone
- TMA trimellitic anhydride
- NMP N-methyl pyrrolidone
- TMA trimellitic anhydride
- NMP N- methyl pyrrol idone
- NVM and 20.1 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
- TMA trimellitic anhydride
- NMP N- methyl pyrrol idone
- Comparative Examples are indicated by a C preceding their number.
- Clear coat films for draw down testing were prepared by applying the resins using the formulations shown below Alcoa chrome treated aluminium panels, electro- tinplate (ETP) and tin free steel (TFS) panels. Film weights were 3 - 4 mg square inch (msi) for the aluminium panels and 1 -2 msi for the TFS and ETP panels.
- the aluminium panels received a 60 second dwell time at 400 degrees Fahrenheit with a 45 second ramp up.
- the TFS and ETP panels received a 2 minute and IS second at 400 °F bake. And then the ETP panels received an additional 5 minutes at 415 °F bake.
- the aluminium panels were then tested for retort resistance - 90 minutes in lemon-lime Oatorade.
- the TFS panels were tested for flexibility.
- the ETP panels were tested for retort resistance for 90 minutes in deionized water and in 400 ppm sodium bicarbonate.
- Adhesion testing is performed to assess whether the coating adheres to the coated substrate.
- the adhesion test was performed either according to ASTM D 3359 or DIN 53151.
- ASTM D 3359 - Test Method B using SCOTCH 610 tape, available from 3M Company of Saint Paul, Minnesota.
- Adhesion is generally rated on a scale of 0-5 where a rating of "0" indicates no adhesion failure, a rating of " ⁇ indicates 90% of the coating remains adhered, and a rating of "2" indicates 75% of the coating remains adhered, and so on. Adhesion ratings of 0 are typically desired for commercially viable coatings.
- Wedge bends measure the flexibility of the coating and the ability to be formed.
- Wedge-bend test a coated panel of 100 mm by 50 mm is bent over a 6 mm cylindrical mandrel. The folded panel thus produced is men impacted (4.5 Nm or 45 kg.cm) in a device (the wedge-bend tester) to form a wedge- shaped contour, flat at one end and 6 mm diameter at the other end. The panel is immersed for two minutes in an acidified copper sulphate solution. The flexibility is assessed by measuring the continuous damage caused by the impact
- Blush resistance measures the ability of a coating to resist attack by various solutions. Typically, blush is measured by the amount of water absorbed into a coated film. When the film absorbs water, it generally becomes cloudy or looks white. Blush is generally measured visually using a scale of 0-5 where a rating of "0" indicates no blush and a rating of "5" indicates complete whitening of the film. Blush ratings of at most 2 are typically desired for commercially viable coatings and optimally 1 or less. Blush si rated for both the steam area and the immersed liquid area of the panel. Process or Retort Resistance
- Retort performance is not necessarily required for all food and beverage coatings, but is desirable for some product types that are packed under retort conditions. Testing is accomplished by subjecting the substrate to heat ranging from 105-130°C and pressure ranging from 0.7 kg cm 2 to 1.0S kg cm 2 for a period of 15 minutes to 90 minutes.
- the coated substrate was immersed in deionized water and subjected to heat of 121 0 C (2SO 0 F) and pressure of 1.05 kg/cm 2 for a period of 90 minutes.
- the coated substrate was men tested for adhesion and blush as described above. In food or beverage applications requiring retort performance, adhesion ratings of 0 and blush ratings of 2 or less are typically desired for commercially viable coatings.
- BYK-310 is a heat resistant silicone additive for film production.
- BYK-016 is polymeric defoamer.
- DI/EB means deionized water and EB TEST RESULTS
- TMA trimellitic anhydride
- NMP N- methyl pyrrolidone
- TMA trimellitic anhydride
- NMP N- methyl pyrrolidine
- Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
- TMA trimellitic anhydride
- MAK methyl amyl ketone
- Films were prepared using Alcoa Chrome treated aluminium and tin free steel only. Film weights were 2 - 4 mg/square inch.
- the aluminium panels received a 16 second dwell time in a 300 degrees centigrade oven to reach a Peak Metal Temperature (PMT) of 450°F.
- the TFS panels received a 10 minutes at 380 °F bake at metal temperature (17 minutes dwell in 380 oven).
- the aluminium panels were then tested for retort resistance - bom 90 minutes in deionized water and 30 minutes in lemon-lime Oatorade.
- the TFS panels were tested for retort resistance for 90 minutes in deionized water only.
- CYMEL 1 123 An amino type resin crosslinker for coatings.
- NACURE 5925 An amine blocked acid catalyst
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Polyesters Or Polycarbonates (AREA)
- Paints Or Removers (AREA)
Abstract
Substrates, such as the interior surfaces of food containers, can be coated using a composition including a phenolic modified polyester resin prepared using a formulation not including Bisphenol A as a component or subcomponent. These polymers arid subsequent coatings are free of both mobile and bound Bisphenol A moieties. These polymers and resulting coatings have properties similar to and, in some embodiments, superior over comparable conventional polyester coatings.
Description
PHENOLIC MODIFIED POLYESTERS AND AQUEOUS DISPERSIONS BACKGROUND OF THE INVENTION FIELD OF THE DISCLOSURE
[0001] The invention relates to a phenolic modified polyesters for use in can coatings. The invention particularly relates to a coating systems that come in contact with food and beverages.
BACKGROUND OF THE DISCLOSURE
[00021 In the food and beverage industry of both today and the past, the preservation of food has been an issue mat has tested the limits of the technology of the times. For example, margarine was the product of a Chemist seeking to win a prize for making a butter substitute for use by the French armed forces in the middle of the 19th century. Early efforts of preserving foods were sometimes tragic. The Franklin Expedition, a 19th century effort to find a Northwest passage, was doomed, at least in part, by its provisions. This early effort of "canning" used lead to seal the seams of the cans which contaminated the food therein.
[0003] Fortunately modern efforts of canning are safe and becoming safer. Metal containers for receiving foods and beverages generally have one or more coatings to prevent contact between the filled product and metal. This is to prevent or minimize corrosion to the metal by the product and any disadvantageous influences on the quality of the product For producing containers of mis type, such as cans of tin-plated or chromium- plated steels or aluminium, metal sheets are used which, prior to their shaping (such as for three-piece can production) or deformation (such as for deep drawing process), are coated with suitable coating compositions.
[0004] In producing cans for foods and beverages, coatings are required which are extremely flexible and have a low order of toxicity. Furthermore, filled food cans are often sterilized. Sterilization processes may expose food containers, such as cans, to temperatures of 135°C or greater. It follows then, that coatings used to preserve food must therefore be sufficiently stable at those temperatures and must be capable of adhering to the surface of the metal.
[0005] Recently, the use of coatings formulated with Bisphenol A have come under scrutiny. It would be desirable in the art of coating food containers to use a coating produced using little or no Bisphenol A.
SUMMARY OF THE DISCLOSURE
[0006] In one aspect, the invention is a composition of a solvent borne phenolic modified polyester resin prepared using a formulation not including Bisphenol A as a component or subcomponent.
[0007] In another aspect, the invention is an aqueous dispersion of a phenolic modified polyester resin prepared using a formulation not including Bisphenol A as a component or subcomponent
DETAILED DESCRIPTION OF THE DISCLOSURE
[0008] One embodiment of the present invention is directed to a composition comprising a phenolic modified polyester resin. The term "polyester," as used herein, is intended to include homopolyesters, copolyesters, and terpolyesters. In general, polyesters are synthetic polymers prepared by the condensation of one or more carboxylic acids, preferably di functional carboxylic acids, with one or more polyalcohols, preferably di- or tri-alcohols. The term "residue", as used herein, means any organic structure incorporated into a polymer through a polycondensation and/or an esterification reaction from the corresponding monomer. The term "repeating unit", when used in connection with a polyester, means an organic structure having a dicarboxylic acid residue and a diol residue bonded through an ester linkage.
[0009] The phenolic modified polyester resins are generally prepared using a formulation that includes one or more dicarboxylic acids, one or more polyalcohols, preferably a di or tri-alcohol, and one or more phenolic resins.
[0010] The dicarboxylic acids useable in connection with the the phenolic modified polyester resins of the invention generally include any mat are known to be useable to those of ordinary skill in the art of preparing polyesters, especially polyester coatings useful for coatings in contact with food and beverages. Such dicarboxylic acids include, but are not limited to: succinic acid, glutaric acid, dimethyl glutaric, acid, adipic acid, dimethyl adipic acid, azelaic acid, phthalic acid, isophthalic acid, 5-tert-butyl isophthalic
acid, terephthalic acid, dimethyl terephthalic acid, 2,6-naphthalcne dicarboxylic acid, and mixtures thereof.
[0011 ] The polyalcohols useable in connection with die present invention as formulation components for preparing the phenolic modified polyester resins may be any known to those of ordinary skill in the art Exemplary compounds include, but are not limited to: ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-l ,3-propanediol, glycerol, diethylene glycol, dipropylene glycol, triethylene glycol, trimethylolpropane, trimethylolethane, tripropylene glycol, neopentyl glycol, pentaerythritol, 1,4-butanediol, trimethylol propane, hexylene glycol, cyclohexanedimethanol, a polyethylene or polypropylene glycol having an Mw of about 500 or less, and mixtures thereof. Bisphenol A (isopropylidenediphenol) is not used with the formulations of the disclosure.
[0012] In one embodiment, the phenolic modified polyester resins of the disclosure are prepared by first condensing a diol and a dicarboxylic acid using a catalyst to form a polyester resin. After the condensation is complete, the resulting polyester resin is grafted with a phenolic resin. In an alternative embodiment, the polyester resin may be prepared in two steps prior to grafting by doing a polycondensation of a first diol and dicarboxylic acid and then a second polycondensation of the first resin with an additional diol and dicarboxylic acid. In still another embodiment, a mixture of at least two diols and/or dicarboxylic acids are subjected to condensation conditions to prepare the polyester resin. The molar ratio of OH to COOH is preferably from 1.1/1.0 to 1.01/1.0
[0013] The selected polyester preferably has a molecular weight Mw of between 6,000 and 100,000 g/mol, preferably 7,000 to 50,000 g/mol and more preferably 7,000 to 35,000 g/mol. The Acid Number of between 25 and 55, preferably between 30 and 45 and more preferably between 35 and 45. The polyester preferably has an hydroxyl number between 30 and 60 and a Tg of between 30 °C and 55°C
[0014] The phenolic resins which may used to prepare the phenolic modified polyester resins are any that may be grafted onto a polyester resin and are not prepared using Bisphenol A. For example, one such resin is a novolak resin and another is a resole resin. Generally speaking, the novolak resins suitable for use in the formulations of the disclosure are generally the condensation product, preferably the polycondensation products,of at least one aromatic hydrocarbon, preferably including a moiety with a hydroxyl group bound to an aromatic ring, with at least one of an aldehyde or ketone. The phenolic moiety cannot include bisphenol A or a Bisphenol A moiety. The novolak resins
are generally prepared using an excess of aromatic hydrocarbon., i.e. the aldehyde phenol ratio is less than one. The aromatic hydrocarbon may be selected from, but is not limited to, m-cresol, o-cresol, p-cresol, 2,5-xylenol, 3,5-xylenol, resorcinol, pyrogallol, phenol, trisphenol, o-ethyl phenol, m -ethyl phenol, p-ethyl phenol, propyl phenol, n-butyl phenol, t-butyl phenol, 1 -naphthol, and 2-naphthol,. The at least one aldehyde or ketone may be selected from, but is not limited to, formaldehyde, acetaldehyde, propion aldehyde, benzaldehyde, furfural, acetone, methyl ethyl ketone, and methyl isobutyl ketone, in the presence of an acid.
[0015] When a resole resin is used with the formulations of the disclosure, it may be an organic hydrocarbon and an aldehyde and/or ketone polycondensation product where the two components are present in nearly equal molar ratio to an excess of the aldehyde and/or ketone. The components useful for making the resole are the same as those designated as useful for preparing the novolak.
[0016] In another embodiment of the method of the disclosure, the phenolic resin may be prepared using an alcohol. Suitable alcohols include, but are not limited to ethanol, propanol, butanol, pentanol, and the like. Such resins are sometimes referred to in the art . as etherified resins.
[0017] The phenolic modified polyester resins of the disclosure may be prepared in manner or using any method known to be useful for preparing such resins to those of ordinary skill in the art Generally, the phenolic resin is grafted to the polyester resin. For example, in one embodiment, a polyester resin is prepared and men a phenolic resin is grafted upon it In another embodiment, a premade polyester resin is obtained and then used for grafting with the phenolic resin. Any method that results in a composition having a phenolic resin suitably grafted to the polyester resin may be used with the method of the disclosure. Preferably, the phenolic resin mixed with the polyester in amount that is 6% to 30% per total weight of the combined resins, and the polyester resin is 70% to 94% per total weight
[0018] The phenolic modified polymer preferably has a molecular weight Mw of between 6,000 and 100,000 g/mol, preferably 7,000 to 50,000 g/mol and more preferably 7,000 to 35,000 g/mol. The phenolic modified polyester preferably has Tg of between 20 °C and 35°C
[0019] Where useful catalysts may be used with method of the disclosure. Catalysts useful with the method of the disclosure include strong acids, strong bases, and organo-tin
catalysts. Any catalyst that can be used to catalyze an ester condensation may be used. In some embodiments, the catalysts will be selected to facilitate the use of the resulting resin in an application where a film prepared with the resin is in contact with food and or beverage.
[0020] At each step of the process of the disclosure, a solvent may be used to control the viscosity of the reactants, primarily to prevent the reaction mixture from becoming too viscous for safe handling. Any solvent that will reduce viscosity but not interfere with the condensation and/or grafting may be used. In one embodiment, the solvent may be but is not limited to methyl N-amyl ketone, N-methyl pyrrolidone ( MP), ethanol, methanol, propanol, acetone, methyl ethyl ketone, benzene, ethylene glycol monobutyl ether (EB), toluene, xylene, naphthalene, nonene and petroleum fractions.
[0021 ] Another embodiment of the present invention is directed to a composition compirsing a phenolic modified polyester resin dispersed in water or solvent Any method known to those of ordinary skill in the art of preparing a dispersion from organic resins may be used. For example, me method of U.S. Patent No. 6,277,953 to Nothnagel, et al., which is fully incorporated by reference in its entirety, where the resin is solvated in an organic hydrophilic solvent and then removing the hydrophilic organic solvent from a solvent blend of water and the hydrophilic organic solvent at temperatures which minimize the mean particle size of the polymer in the resulting aqueous dispersion of the polymer and/or removing the organic solvent from the polymer/organic solvent water blend such that inversions do not occur.
[0022] The phenolic modified polyester resins, and the resulting dispersions are substantially free of Bisphenol A and Bisphenol A moieties. The resins and dispersions are generally made substantially free of bisphenol A and Bisphenol A moieties by the use of materials and reactants that do not contain Bisphenol A or Bisphenol A moieties as a component or subcomponent
[0023] To test the efficiency of the phenolic modified polyester a substrate must be coated with a film prepared using a formulation not including Bisphenol A as a component or subcomponent For the purposes of this application, the term "not including Bisphenol A as a component or subcomponent" means mat the subject film is prepared with no component of the formulation being Bisphenol A and that nothing used to prepare the components of the film formulation is prepared using Bisphenol A. The resulting film is substantially free of bom mobile and bound Bisphenol A and/or Bisphenol A moieties.
[0024] The compositions of the disclosure can be used to prepare coatings that are heat resistant, and resistant to erosion in the presence of salty or alcoholic beverages. They have about the same properties as similar resins prepared using Bisphenol A, but are free of both mobile and bound Bisphenol A and Bisphenol A moieties.
[0025] While ideal for use in coating substrates in contact with food and/or beverages, such as the interior of beverage cans, the compositions of the disclosure may be used for any application where such a coating would be desirable. For example, the compositions of the disclosure may be used as anticorrosion coatings, electrically insulating varnishes, and even powder coatings.
[0026] The coatings may be applied to the substrate using any method known to be useful to those of ordinary skill in the art. Generally speaking, these application techniques include spray coating, dip coating sheet coating and curtain coating. Appropriate curing may be required in some or all of these methods.
[0027] The compositions of the disclosure may optionally include other additives mat do not adversely affect the coating composition or a cured coating resulting therefrom. The optional additives, like the other components of the coating, are at least substantially free of mobile and/or bound Bisphenol A moieties. In one embodiment, the additive are completely free of such compounds. Suitable additives include, for example, those mat improve the processability or manufacturability of the composition, enhance composition aesthetics, or improve a particular functional property or characteristic of the coating composition or the cured composition resulting therefrom, such as adhesion to a substrate. Additives that may be included are carriers, additional polymers, emulsifiers, pigments, metal powders or paste, fillers, anti-migration aids, anti-microbials, extenders, curing agents, lubricants, coalescents, wetting agents, biocides, plasticizers, crosslinking agents, antifoaming agents, colorants, waxes, anti -oxidants, anticorrosion agents, flow control agents, thixotropic agents, dispersants, adhesion promoters, UV stabilizers, scavenger agents or combinations thereof. Each optional ingredient can be included in a sufficient amount to serve its intended purpose, but preferably not in such an amount to adversely affect a coating composition or a cured coating resulting therefrom. EXAMPLES and COMPARATIVE EXAMPLES
[0028] The following examples and comparative examples are provided to illustrate certain embodiments of the invention. The examples are not intended to limit the scope of
the application and they should not be so interpreted. Amounts are in w/v parts or w/v percentages unless otherwise indicated. EXAMPLE 1
A. Synthesis of Phenolic Modified Polyester Resin
[0029] 1. 876.4 grams of 2-methyl, 1,3-propanediol (MP Diol), 371.6 grams of 1,4- cyclohexanedimethanol (CHDM-90), 101.5 grams of trimethylol propane (TMP) and 0.68 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and under a nitrogen blanket
[0030] 2. The flask was heated until the glycols were melted and 3742 grams of adipic acid (AA) and 1496.6 grams of isophthalic acid (IPtA) were added with mixing.
[0031 ] 3. The temperature was steadily and gradually increased to 227 degrees centigrade and waters of esteri fit cation were removed.
[0032] 4. When the acid value was 9.1, the temperature was reduced to ISO degrees centigrade.
[0033] 5. The packed column was replaced with a decanter and 313.8 grams of Bakelite- PF6S3S ethcrified phenolic resol was added to the flask. The temperature is increased gradually to 188 degrees centigrade and held at this temperature for 45 minutes. 109.9 grams of n-butanol/l-methoxy-2-propanol from PF 6535 is collected and removed.
[0034] 6. The temperature was reduced to 170 degrees centigrade and 216.9 grams of trimellitic anhydride (TMA) and 260 grams of N-methyl pyrrolidone (NMP) were added. The temperature is maintained at 170 degrees centigrade until an acid value of 47.5 was reached.
[0035] 7. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 80% NV with methyl ethyl ketone (ME ) and then to 70% NV with ethylene glycol monobutyl ether (EB).
[0036] The physical properties of the Solution from Step 7:
B. Preparation of Phenolic Modified Poly ester Dispersion (PMPD)
[0037] 1. 1006 grams of the phenolic modified polyester solution at 70% NVM and 52.1 grams of imethylethanol amine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[0038] 2. The flask was heated to 40 degrees centigrade with mixing.
[0039] 3. Upon reaching temperature, 1213.8 grams of deionized water was added over approximately 30 minutes.
[0040] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[0041] 5. Vacuum was continued until 42% NVM is reached and then deionized water is added for a final NVM of 40%.
[0042] The physical properties of the dispersion are:
A. Synthesis of Phenolic Modified Polyester Resin
[0043] 1. 902.2 grams of 2-methyl, 1,3-propanediol (MP Diol), 382.5 grams of 1,4- cyclohexanedimethanol (CHDM-90), 104.5 grams of trimethylol propane (TMP) and 0.70 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[0044] 2. The flask was heated until the glycols were melted and 481.5 grams of adipic acid (AA) and 1444.7 grams of isophthalic acid (IPtA) were added with mixing.
[0045] 3. The temperature was steadily and gradually increased to 227 degrees centigrade and waters of esterifcation were removed.
[0046] 4. When the acid value was 9.4, the temperature was reduced to 170 degrees centigrade.
[0047] 5. 223.3 grams of trimellitic anhydride (TMA) and 254 grams of N-methyl pyrrolidonc (NMP) were added. The temperature was maintained at 170 degrees centigrade until an acid value of 50 was reached.
[0048] 6. The packed column was replaced with a decanter and 323.1 grams of Bakclite PF6535 etherified phenolic resol was added to the flask. The temperature was increased gradually to 188 degrees centigrade and held at this temperature for 45 minutes. 113.1 grams of n-butanol/1 -methoxy-2-propanol from PF 6535 is collected and removed.
[0049] 7. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 80% NV with methyl ethyl ketone (MEK) and then to 70% NV with ethylene glycol monobutyl ether (EB).
[0050] The physical properties of the Solution from Step 7:
B. Preparation of Phenolic Modified Polyester Dispersion (PMPD)
[0051 ] 1. 1308.5 grams of the phenolic modified polyester solution at 70%
NVM and 65.4 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[0052] 2. The flask was heated to 40 degrees centigrade with mixing.
[0053] 3. Upon reaching temperature, 1580.8 grams of deionized water was added over approximately 30 minutes.
[0054] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[0055] 5. Vacuum was continued until 42% NVM is reached and then deionized water is added for a final NVM of 40%.
[0056] The physical properties of the dispersion are:
A. Synthesis of Phenolic Modified Polyester Resin
[0057] 1. 1106.9 grams of 2-methyl, 1 -propanediol (MP Diol), 48.0 grams of trimethylol propane (TMP) and 3.2 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[0058] 2. The flask was heated until the glycols were melted and 1726.1 grams of terephthalic acid (TP A) and 191.8 grams of isophthalic acid (IPtA) were added with mixing.
[0059] 3. The temperature was steadily and gradually increased to 238 degrees centigrade and waters of esterifjcation were removed.
[0060] 4. When the acid value was 10.8, the temperature was reduced to 182 degrees centigrade and 127.2 grams of trimellitic anhydride (TMA) and 229 grams of N-methyl pyrrolidone (NMP) were added. The temperature is maintained at 182 degrees centigrade until an acid value of 39.4 was reached.
[0061 ] 5. The packed column was replaced with a decanter and 304.0 grams of Bakelite PF6S35 etberified phenolic resol was added to the flask. The temperature is increased gradually to 182 degrees centigrade and held at mis temperature for 35 minutes. 75 grams of n-butanol/ 1 -methoxy-2-propanol from PF 6535 is collected and removed.
[0062] 6. The temperature was reduced to 70 degrees centigrade and
cut to 70% NV with methyl ethyl ketone (MEK).
[0063] The physical properties of the Solution from Step 6:
[0064] 1. 1 1 S0.9 grams of the phenolic modified polyester solution at 68.6% NVM and 32.0 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[0065] 2. The flask was heated to 30 degrees centigrade with mixing.
[0066] 3. Upon reaching temperature, 1387.8 grams of deionized water was added over approximately 30 minutes.
[0067] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[0068] 5. Vacuum was continued until 44% NVM is reached and men deionized water is added for a final NVM of 40%.
[0069] The physical properties of the dispersion are:
A. Synthesis of Phenolic Modified Polyester Resin
[0070] 1. 11 13.7 grams of 2-methyl, 1,3-propanediol (MP Diol), 48.0 grams of trimethylol propane (TMP) and 3.2 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[0071 ] 2. The flask was heated until the glycols were melted and 129.3 grams of adipic acid (AA), 177.2 grams of isophthalic acid (IPtA) and 1594.7 grams of terephthalic acid (TP A) were added with mixing.
[0072] 3. The temperature was steadily and gradually increased to 238 degrees centigrade and waters of esterifi cation were removed.
[0073] 4. When the acid value was 9.3, the temperature was reduced to 182 degrees centigrade and 137.3 grams of trimellitic anhydride (TMA) and 227 grams of N-methyl pyrrolidone (NMP) were added. The temperature is maintained at 182 degrees centigrade until an acid value of 36.7 was reached.
[0074] 5. The packed column was replaced with a decanter and 305 grams of Bakelite PF6535 etherified phenolic resol was added to the flask. The temperature is
increased gradually to 182 degrees centigrade and held at this temperature for 35 minutes. 82 grams of n-butano/ 1 -methoxy-2-propanol 1 from PF6S35 is collected and removed.
[0075] 6. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 70% NV with methyl ethyl ketone (MEK).
[0076] The physical properties of the Solution from Step 6:
B. Preparation of Phenolic Modified Polyester Dispersion (PMPD)
[0077] 1. 1 126.6 grams of the phenolic modified polyester solution at 68.5% NVM, and 30.2 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[0078] 2. The flask was heated to 30 degrees centigrade with mixing.
[0079] 3. Upon reaching temperature, 1380.9 grams of deionized water was added over approximately 30 minutes.
[0080] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[0081 ] 5. Vacuum was continued until 45% NVM is reached and then deionized water is added for a final NVM of 40 %.
[0082] The physical properties of the dispersion are:
A. Synthesis of Phenolic Modified Polyester Resin
[0083] 1. 11 13.7 grams of 2-methyl, 1,3-propanediol (MP Diol), 48.0 grams of trimethylol propane (TMP) and 3.2 grams Fascat 9100 catalyst were charged to a round
bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[0084] 2. The flask was heated until the glycols were melted and 129.3 grams of adipic acid (AA), 177.2 grams of isophthalic acid (IPtA) and 1594.7 grams of terephthalic acid (TP A) were added with mixing.
[0085] 3. The temperature was steadily and gradually increased to 238 degrees centigrade and waters of esterifcation were removed.
[0086] 4. When the acid value was 9.4, the temperature was reduced to 182 degrees centigrade.
[008η 5. 137.3 grams of trimellitic anhydride (TMA) and 227 grams of N-methyl pyrrolidone (NMP) were added The temperature was maintained at 182 degrees centigrade until an acid value of 38.2 was reached.
[0088] 6. The packed column was replaced with a decanter and 590.8 grams of Bakelite PF6535 etherified phenolic resol was added to the flask. The temperature was increased gradually to 150 degrees centigrade and held at this temperature for 60 minutes. 72 grams of n-butanol/l-methoxy-2-propanol from PF 6535 is collected and removed.
[0089] 7. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 75% NV with methyl ethyl ketone (MEK) and then to 70% NV with ethylene glycol monobutyl ether (EB).
[0090] The physical properties of die Solution from Step 7:
B. Preparation of Phenolic Modified Polyester Dispersion (PMPD)
[0091 ] 1. 1126.1 grams of the phenolic modified polyester solution at 70.6% NVM and 29.8 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[0092] 2. The flask was heated to 30 degrees centigrade with mixing.
[0093] 3. Upon reaching temperature, 1313.7 grams of deionized water was added over approximately 30 minutes.
[0094] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[0095] 5. Vacuum was continued until 48% NVM is reached and then deionized water is added for a final NVM of 45%.
[0096] The physical properties of the dispersion are:
A. Synthesis of Phenolic Modified Polyester Resin
[0097] 1. 870.1 grams of 2-methyl, 1,3-propanediol (MP Diol), 37.5 grams of trimethylol propane (TMP) and 2.5 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[0098] 2. The flask was heated until the glycols were melted and 101.0 grams of adipic acid (AA), 138.4 grams of isophthalic acid (IPtA) and 1245.8 grams of terephthalic acid (TP A) were added with mixing.
[0099] 3. The temperature was steadily and gradually increased to 238 degrees centigrade and waters of esterifcation were removed.
[00100] 4. When the acid value was 7.6, die temperature was reduced to 182 degrees centigrade.
[00101] 5. 107.2 grams of trimellitic anhydride (TMA) and 177 grams of N- methyl pyrrol idone (NMP) were added. The temperature was maintained at 182 degrees centigrade until an acid value of 31.3 was reached.
[00102] 6. The packed column was replaced with a decanter and 961.6 grams of Bakelite PF653S etherified phenolic resol was added to the flask. The temperature was increased gradually to ISO degrees centigrade and held at this temperature for 60 minutes. 211 grams of n-butanol/1 -methoxy-2-propanol from PF 6535 is collected and removed.
[00103] 7. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 75% NV with methyl ethyl ketone (MEK) and then to 70% NV with ethylene glycol monobutyl ether (EB).
[00104] The physical properties of the Solution from Step 7:
B. Preparation of Phenolic Modified Polyester Dispersion (PMPD)
[00105] 1. 1177.9 grams of the phenolic modified polyester solution at 72%
NVM and 20.1 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[00106] 2. The flask was heated to 30 degrees centigrade with mixing.
[00107] 3. Upon reaching temperature, 1454.3 grams of deionized water was added over approximately 30 minutes.
[00108] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[00109] 5. Vacuum was continued until 48% NVM is reached and then deionized water is added for a final NVM of 45%.
[00110] The physical properties of the dispersion are:
A. Synthesis of Phenolic Modified Polyester Resin
[0011 1] 1. 870.1 grams of 2-methyl, 1 -propanediol (MP Diol), 37.5 grams of trimethylol propane (TMP) and 2.5 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[00112] 2. The flask was heated until the glycols were melted and 101.0 grams of adipic acid (AA), 138.4 grams of isophthalic acid (IPtA) and 1245.8 grams of terephthalic acid (TPA) were added with mixing.
[001 13] 3. The temperature was steadily and gradually increased to 238 degrees centigrade and waters of esterifcation were removed.
[001 14] 4. When the acid value was 6.1, the temperature was reduced to 182 degrees centigrade.
[00115] 5. 107.2 grams of trimellitic anhydride( TMA) and 177 grams of methyl amyl ketone (MAK) were added The temperature was maintained at 182 degrees centigrade until an acid value of 35.4 was reached.
[00116] 6. The packed column was replaced with a decanter and 961.6 grams of Bakelite PF6535 etherified phenolic resol was added to the flask. The temperature was increased gradually to 150 degrees centigrade and held at this temperature for 60 minutes. 84 grams of n-butanol/ 1 -methoxy-2-propanol from PF 6535 is collected and removed.
[00117] 7. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 75% NV with methyl ethyl ketone (MEK) and then to 70% NV with ethylene glycol monobutyl ether (EB).
[00118] The physical properties of the Solution from Step 7:
[00119] 1. 1203.6 grams of the phenolic modified polyester solution at 70.6%
NVM and 26.1 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[00120] 2. The flask was heated to 30 degrees centigrade with mixing.
[00121 ] 3. Upon reaching temperature, 1427.3 grams of deionized water was added over approximately 30 minutes.
[00122] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[00123] 5. Vacuum was continued until 47% NVM is reached and men deionized water is added for a final NVM of 45%.
[00124] The physical properties of the dispersion are:
COMPARATIVE EXAMPLE 7
A. Synthesis of Polyester Resin
[00125] 1. 1252.9 grams of 2-methyl, 1,3-propanediol (MP Diol), 54.0 grams of trimethylol propane (TMP) and 3.6 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[00126] 2. The flask was heated until the glycols were melted and 145.4 grams of adipic acid (AA), 398.7 grams of isophthalic acid (IPtA) and 1594.7 grams of terephthalic acid (TP A) were added with mixing.
[00127] 3. The temperature was steadily and gradually increased to 238 degrees centigrade and waters of esterification were removed.
[00128] 4. When the acid value was 10.6, the temperature was reduced to 182 degrees centigrade.
[00129] 5. 154.4 grams of trimellitic anhydride (TMA) and 250.4 grams of N- methyl pyrrol idone (NMP) were added. The temperature was maintained at 182 degrees centigrade until an acid value of 36 was reached
[00130] 6. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 70% NV with methyl ethyl ketone (ME ).
[00131 ] The physical properties of the Solution from Step 6:
B. Preparation of Polyester Dispersion (PE)
[00132] 1. 1087.8 grams of the polyester solution at 73% NVM and 44.9 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[00133] 2. The flask was heated to 30 degrees centigrade with mixing.
[00134] 3. Upon reaching temperature, 1145.5 grams of deionized water was added over approximately 30 minutes.
[00135] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[00136] 5. Vacuum was continued until 48% NVM is reached and then deionized water is added for a final NVM of 45%.
[00137] The physical properties of the dispersion are:
[00138] Comparative Examples are indicated by a C preceding their number. Clear coat films for draw down testing were prepared by applying the resins using the formulations shown below Alcoa chrome treated aluminium panels, electro- tinplate (ETP) and tin free steel (TFS) panels. Film weights were 3 - 4 mg square inch (msi) for the aluminium panels and 1 -2 msi for the TFS and ETP panels. The aluminium panels received a 60 second dwell time at 400 degrees Fahrenheit with a 45 second ramp up. The
TFS and ETP panels received a 2 minute and IS second at 400 °F bake. And then the ETP panels received an additional 5 minutes at 415 °F bake. The aluminium panels were then tested for retort resistance - 90 minutes in lemon-lime Oatorade. The TFS panels were tested for flexibility. The ETP panels were tested for retort resistance for 90 minutes in deionized water and in 400 ppm sodium bicarbonate.
TEST METHODS
Adhesion
[00139] Adhesion testing is performed to assess whether the coating adheres to the coated substrate. The adhesion test was performed either according to ASTM D 3359 or DIN 53151. (i) ASTM D 3359 - Test Method B, using SCOTCH 610 tape, available from 3M Company of Saint Paul, Minnesota. Adhesion is generally rated on a scale of 0-5 where a rating of "0" indicates no adhesion failure, a rating of "Γ indicates 90% of the coating remains adhered, and a rating of "2" indicates 75% of the coating remains adhered, and so on. Adhesion ratings of 0 are typically desired for commercially viable coatings.
Flexibility
[00140] Wedge bends measure the flexibility of the coating and the ability to be formed. Wedge-bend test; a coated panel of 100 mm by 50 mm is bent over a 6 mm cylindrical mandrel. The folded panel thus produced is men impacted (4.5 Nm or 45 kg.cm) in a device (the wedge-bend tester) to form a wedge- shaped contour, flat at one end and 6 mm diameter at the other end. The panel is immersed for two minutes in an acidified copper sulphate solution. The flexibility is assessed by measuring the continuous damage caused by the impact
Blush Resistance
[00141 ] Blush resistance measures the ability of a coating to resist attack by various solutions. Typically, blush is measured by the amount of water absorbed into a coated film. When the film absorbs water, it generally becomes cloudy or looks white. Blush is generally measured visually using a scale of 0-5 where a rating of "0" indicates no blush and a rating of "5" indicates complete whitening of the film. Blush ratings of at most 2 are typically desired for commercially viable coatings and optimally 1 or less. Blush si rated for both the steam area and the immersed liquid area of the panel.
Process or Retort Resistance
[00142] This is a measure of the coating integrity of the coated substrate after exposure to heat and pressure with a liquid such as water. Retort performance is not necessarily required for all food and beverage coatings, but is desirable for some product types that are packed under retort conditions. Testing is accomplished by subjecting the substrate to heat ranging from 105-130°C and pressure ranging from 0.7 kg cm 2 to 1.0S kg cm 2 for a period of 15 minutes to 90 minutes. For the present evaluation, the coated substrate was immersed in deionized water and subjected to heat of 121 0 C (2SO 0 F) and pressure of 1.05 kg/cm 2 for a period of 90 minutes. The coated substrate was men tested for adhesion and blush as described above. In food or beverage applications requiring retort performance, adhesion ratings of 0 and blush ratings of 2 or less are typically desired for commercially viable coatings.
Gatorade Retort Resistance for Beverage Can Inside Spray Coatings
[00143] This is a measure of the coating integrity of the coated substrate after exposure to heat and pressure with a liquid such as Gatorade. For the present evaluation, the coated substrate was immersed in lemon-lime Gatorade and subjected to heat of 121°C (250 °F) and pressure of 1.05 kg/cm 2 for a period of 90 minutes. The coated substrate was then tested for adhesion and blush as described above. In food or beverage applications requiring retort performance, adhesion ratings of 0 and blush ratings of 2 or less are typically desired for commercially viable coatings.
BYK-310 is a heat resistant silicone additive for film production. BYK-016 is polymeric defoamer.
DI/EB means deionized water and EB
TEST RESULTS
[00144] The following Comparative Examples arc prepared and tested substantially similar to Examples 1-21 unless otherwise noted.
COMPARATIVE EXAMPLE 22
A. Synthesis of High Tg Polyester Resin
[00145] 1. 1252.9 grams of 2-methyl, 1 , 3-propanediol (MP Diol), 54 grams of trimethylol propane (TMP), and 3.6 grams Fascat 9100 and 15.5 grams of Fascat 4202 catalysts were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[00146] 2. The flask was heated until the glycols were melted and 145.4 grams of adipic acid (AA) and 1993.3 grams of terephthalic acid (TP A) were added with mixing.
[00147] 3. The temperature was steadily and gradually increased to 238 degrees centigrade and waters of esterification were removed
[00148] 4. When the acid value was 16.2, the temperature was reduced to 182 degrees centigrade.
[00149] 5. 154.4 grams of trimellitic anhydride (TMA) and 256 grams of N- methyl pyrrolidone (NMP) were added. The temperature is maintained at 182 degrees centigrade until an acid value of 37 was reached.
[00150] 6. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 70% NV with methyl ethyl ketone (ME ).
[00151 ] The physical properties of the Solution from Step 6:
B. Preparation of Polyester Dispersion (PE)
[00152] 1. 1031.8 grams of the polyester solution at 70% NVM and 36.2 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[00153] 2. The flask was heated to 40 degrees centigrade with mixing.
[00154] 3. Upon reaching temperature, 1261.9 grams of deionized water was added over approximately 30 minutes.
[00155] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[00156] 5. Vacuum was continued until 48% NVM is reached and then deionized water is added for a final NVM of 45%.
[00157] The physical properties of the dispersion are:
COMPARATIVE EXAMPLE 23
A. Synthesis of High Tg Polyester Resin
[00158] 1. 1245.2 grams of 2-methyl, 1 ,3-propanediol (MP Diol), 54 grams of trimethylol propane (TMP) and 3.6 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[00159] 2. The flask was heated until the glycols were melted and 2157.6 grams of terephthalic acid (T A) were added with mixing.
[00160] 3. The temperature was steadily and gradually increased to 238 degrees centigrade and waters of esterification were removed
[00161 ] 4. When the acid value was 13.5, the temperature was reduced to 182 degrees centigrade.
[00162] 5. 143.3 grams of trimellitic anhydride (TMA) and 259 grams of N- methyl pyrrolidine (NMP) were added. The temperature is maintained at 182 degrees centigrade until an acid value of 35.2 was reached.
[00163] 6. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 70% NV with methyl ethyl ketone (MEK).
[00164] The physical properties of the Solution from Step 6:
B. Preparation of Polyester Dispersion (PE)
[00165] 1. 1002.7 grams of the polyester solution at 70% NVM, 33.9 grams of Dimethylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[00166] 2. The flask was heated to 40 degrees centigrade with mixing.
[00167] 3. Upon reaching temperature, 1188 grams of deionized water was added over approximately 30 minutes.
[00168] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[00169] S. Vacuum was continued until 48% NVM is reached and then deionized water is added for a final NVM of 45%.
[00170] The physical properties of the dispersion are:
COMPARATIVE EXAMPLE 24
A. Synthesis of High Tg Polyester Resin
[00171 ] 1. 615.6 grams of 2-methyl, 1,3-propanediol (MP Diol), 684 grams of l ,4-clohexaneodimethanol (CHDM-90), 216.2 grams of trimethylol propane (TMP) and 0.72 grams Fascat 9100 catalyst were charged to a round bottom flask equipped with a packed column, partial condenser, receiver, and nitrogen blanket
[00172] 2. The flask was heated until the glycols were melted and 4%.1 grams of adipic acid (AA) and 1488.3 grams of isophthalic acid (IPtA) were added with mixing.
[00173] 3. The temperature was steadily and gradually increased to 227 degrees centigrade and waters of esterifcation were removed.
[00174] 4. When the acid value was 10.2, the temperature was reduced to 165 degrees centigrade.
[00175] 5. 168 grams of trimellitic anhydride (TMA) and 259 grams of methyl amyl ketone (MAK) were added The temperature was maintained at 165 degrees centigrade until an acid value of 39.9 was reached.
[00176] 6. The temperature was reduced to 70 degrees centigrade and the polymer was cut to 77% NV with methyl ethyl ketone (MEK) and then to 70% NV with ethylene glycol monobutyl ether (EB).
[00177] The physical properties of the Solution from Step 6:
B. Preparation of Polyester Dispersion (PE)
[00178] 1. 1042.8 grams of the polyester solution at 71% NVM and 46 grams of Dimemylethanolamine (DMEOA) were charged to a round bottom flask equipped with a total condenser and receiver.
[00179] 2. The flask was heated to 40 degrees centigrade with mixing.
[00180] 3. Upon reaching temperature, 1202.9 grams of deionized water was added over approximately 30 minutes.
[00181] 4. Vacuum was applied to the flask and slowly increased to a maximum of 26 inches of mercury.
[00182] 5. Vacuum was continued until 42.8% NVM is reached and then deionized water is added for a final NVM of 40%.
[00183] The physical properties of the dispersion are:
[00184] Films were prepared using Alcoa Chrome treated aluminium and tin free steel only. Film weights were 2 - 4 mg/square inch. The aluminium panels received a 16 second dwell time in a 300 degrees centigrade oven to reach a Peak Metal Temperature (PMT) of 450°F. The TFS panels received a 10 minutes at 380 °F bake at metal temperature (17 minutes dwell in 380 oven). The aluminium panels were then tested for retort resistance - bom 90 minutes in deionized water and 30 minutes in lemon-lime Oatorade. The TFS panels were tested for retort resistance for 90 minutes in deionized water only.
FILM FORMULATION
CYMEL 1 123: An amino type resin crosslinker for coatings.
NACURE 5925: An amine blocked acid catalyst
TEST RESULTS
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims. Those skilled in the art will recognize, or be able to ascertain using no more man routine experimentation, many equivalents to the specific embodiments of the method and compositions described herein. Such equivalents are intended to be encompassed by the following claims.
Claims
We claim: 1. A phenolic modified polyester resin composition prepared by grafting a phenolic resin to a polyester resin, wherein the phenolic modified polyester resin is substantially free of bisphenol A.
2. The phenolic modified polyester resin according to claim 1 , wherein the polyester resin comprises a condensation product of one or more carboxylic acids with one or more polyalcohols , and the phenolic resin is a condensation product of at least one aromatic hydrocarbon and at least one of an aldehyde or a ketone..
3. The phenolic modified polyester resin according to claim 2, wherein the polyester resin has a molecular weight of between 6,000 and 100,000 g/mol.
4. The phenolic modified polyester resin according to claim 3, wherein the polyester resin has a molecular weight of between 7,000 and 35,000 g/mol.
5. The phenolic modified polyester resin according to claim 4, wherein the polyester resin has an Acid Number of between 25 and 55, an hydroxyl number between 30 and 60 and a Tg of between 30 °C and 55°C.
6. The phenolic modified polyester resin according to claim 2, wherein the phenolic resin is the condensation product of an aromatic hydrocarbon and one of an aldehyde and ketone.
7. The phenolic modified polyester resin according to claim 6, wherein the polyester resin is present in amount from 6% to 30% per total weight of the combined resins, and the polyester resin is present in an amount from 70% to 94% per total weight
8. The phenolic modified polyester resin according to claim 6, wherein the phenolic resin is selected from the group consisting of a novolak resin and a resol resin.
9. The phenolic modified polyester resin according to claim 2, wherein the one or more carboxylic acids comprise adipic acid, isopthalic acid and terephthalic acid, and the one or more polyalcohols comprise 2-methyl-l ,3-propanediol and trimethylol propane.
10. A composition comprising:
A phenolic modified polyester resin composition prepared by grafting a phenolic resin to a polyester resin, wherein the phenolic modified polyester resin is dispersed in an aqueous medium and is substantially free of bisphenol A.
11. The composition according to claim 10, wherein the polyester resin comprises a condensation product of one or more carboxylic acids with one or more polyalcohols, and the phenolic resin is a condensation product of at least one aromatic hydrocarbon and at least one of an aldehyde or a ketone.
12. The composition according to claim 11 , wherein the polyester resin has a molecular weight of between 7,000 and 35,000 g/mol.
13. The composition according to claim 12, wherein the polyester resin has an Acid Number of between 25 and 55, an hydroxyl number between 30 and 60 and a Tg of between 30 °C and 55°C.
14. The composition according to claim 10, wherein the polyester resin is present in phenolic modified polyester resin in amount from 6% to 30% per total weight of the combined resins, and the polyester resin is present in an amount from 70% to 94% per total weight
15. The composition according to claim 10, wherein the composition is between 30% and 50% NVM.
16. A container comprising:
a metal surface coated with a dispersion comprising a phenolic modified polyester resin composition prepared by grafting a phenolic resin to a polyester resin,
wherein the phenolic modified polyester is substantially free of bisphenol A.
17. The container according to claim 16, further comprising one or more food or beverages within the container and in contact with the coated metal surface.
18. The container according to claim 16, wherein the metal is selected from the group selected from aluminum, steel, tin-coated aluminum, tin plated steel; chromium-plated aluminum and chromium plated steel.
19. The container according to claim 16, wherein the polyester resin comprises a condensation product of one or more carboxylic acids with one or more potyalcohols.
20. The container according to claim 10, wherein the polyester resin comprises a condensation product of one or more carboxylic acids with one or more polyalcohols, and the phenolic resin is a condensation product of at least one aromatic hydrocarbon and at least one of an aldehyde or a ketone.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12757058.8A EP2686353A4 (en) | 2011-03-17 | 2012-03-16 | Phenolic modified polyesters and aqueous dispersions |
US14/005,722 US9988552B2 (en) | 2011-03-17 | 2012-03-16 | Phenolic modified polyesters and aqueous dispersions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161453773P | 2011-03-17 | 2011-03-17 | |
US61/453,773 | 2011-03-17 | ||
US201161561147P | 2011-11-17 | 2011-11-17 | |
US61/561,147 | 2011-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012125962A1 true WO2012125962A1 (en) | 2012-09-20 |
Family
ID=46831117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/029520 WO2012125962A1 (en) | 2011-03-17 | 2012-03-16 | Phenolic modified polyesters and aqueous dispersions |
Country Status (3)
Country | Link |
---|---|
US (1) | US9988552B2 (en) |
EP (1) | EP2686353A4 (en) |
WO (1) | WO2012125962A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102031877B1 (en) | 2012-02-17 | 2019-11-08 | 에스더블유아이엠씨 엘엘씨 | Methods and materials for the functionalization of polymers and coatings including functionalized polymer |
WO2019060247A1 (en) * | 2017-09-19 | 2019-03-28 | Swimc Llc | Coating compositions including a resole phenolic resin, articles, and methods of coating |
WO2019079149A1 (en) * | 2017-10-16 | 2019-04-25 | Videojet Technologies Inc. | A continuous inkjet ink composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2825712A (en) * | 1954-03-08 | 1958-03-04 | Gen Electric | Modified aromatic hydrocarbon-aldehyde resins |
US6893678B2 (en) * | 2001-04-06 | 2005-05-17 | Kansai Paint Co., Ltd. | Water-based coating composition for inner surface of can and method of coating inner surface of can |
US20100243506A1 (en) * | 2006-09-19 | 2010-09-30 | Valspar Sourcing, Inc. | Food and Beverage Containers and Methods of Coating |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3489701A (en) | 1966-08-01 | 1970-01-13 | Hooker Chemical Corp | Flexible phenolic resins |
US9096772B2 (en) | 2008-12-10 | 2015-08-04 | Valspar Sourcing, Inc. | Polyester polymer having phenolic functionality and coating compositions formed therefrom |
-
2012
- 2012-03-16 WO PCT/US2012/029520 patent/WO2012125962A1/en active Application Filing
- 2012-03-16 US US14/005,722 patent/US9988552B2/en active Active
- 2012-03-16 EP EP12757058.8A patent/EP2686353A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2825712A (en) * | 1954-03-08 | 1958-03-04 | Gen Electric | Modified aromatic hydrocarbon-aldehyde resins |
US6893678B2 (en) * | 2001-04-06 | 2005-05-17 | Kansai Paint Co., Ltd. | Water-based coating composition for inner surface of can and method of coating inner surface of can |
US20100243506A1 (en) * | 2006-09-19 | 2010-09-30 | Valspar Sourcing, Inc. | Food and Beverage Containers and Methods of Coating |
Non-Patent Citations (1)
Title |
---|
See also references of EP2686353A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20140010925A1 (en) | 2014-01-09 |
EP2686353A1 (en) | 2014-01-22 |
EP2686353A4 (en) | 2014-07-30 |
US9988552B2 (en) | 2018-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10563010B2 (en) | Polymer having unsaturated cycloaliphatic functionality and coating compositions therefrom | |
KR102143268B1 (en) | Phosphatized polyesters and coating compositions containing the same | |
JP4881432B2 (en) | Food cans coated with a bis-epoxy polyester and a composition containing the bis-epoxy polyester | |
CN102245721B (en) | Polyester polymer having phenolic functionality and coating compositions formed therefrom | |
CN106164171B (en) | Polyester coating compositions comprising polymers derived from cyclic carbonates | |
CN107418396B (en) | Method and material for polymer functionalization and coatings comprising the functionalized polymers | |
WO2013111814A1 (en) | Coating composition, can coating containing same, and can inner surface coating metal material coated with said can coating | |
JP2004346131A (en) | Polyester resin and composition | |
US9988552B2 (en) | Phenolic modified polyesters and aqueous dispersions | |
WO2015147145A1 (en) | Polyester resin, and can coating material | |
US7659341B2 (en) | Aqueous compositions for can coating | |
JP2017002158A (en) | Polyester resin and can coating resin composition comprising the same | |
JP5766416B2 (en) | Resin composition for paint | |
RU2645341C2 (en) | Container coating compositions | |
WO2018025669A1 (en) | Coating composition | |
CN111133063A (en) | Coating compositions, articles, and methods of coating comprising resole resins | |
JP6753039B2 (en) | Polyester resin and resin composition for can coating containing it | |
EP4347733A1 (en) | Polyester copolymer and coating compositions therefrom having improved corrosion resistance | |
WO2016199417A1 (en) | Polyester resin, resin composition for coating cans, can lid, coated can and drink can |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12757058 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14005722 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012757058 Country of ref document: EP |