WO2012124460A1 - 磁気分離装置 - Google Patents

磁気分離装置 Download PDF

Info

Publication number
WO2012124460A1
WO2012124460A1 PCT/JP2012/054786 JP2012054786W WO2012124460A1 WO 2012124460 A1 WO2012124460 A1 WO 2012124460A1 JP 2012054786 W JP2012054786 W JP 2012054786W WO 2012124460 A1 WO2012124460 A1 WO 2012124460A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic separation
magnetic
magnetic field
filter
cylinder
Prior art date
Application number
PCT/JP2012/054786
Other languages
English (en)
French (fr)
Inventor
深谷 太郎
厚 山崎
伊知郎 山梨
徳介 早見
智明 木内
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201280008122.4A priority Critical patent/CN103370137B/zh
Publication of WO2012124460A1 publication Critical patent/WO2012124460A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Definitions

  • Embodiments of the present invention relate to a magnetic separation device.
  • Waste liquid discharged from factories and steelworks that process metals contains magnetic particles such as iron powder.
  • a magnetic separation device using a magnet is used.
  • a magnetic separation device having a pipe for passing a waste liquid containing magnetic particles, a filler made of a magnetic material arranged in the pipe, and a magnet that is arranged on the outer periphery of the pipe and applies a magnetic field to the filler is known.
  • a magnetic separation device when a waste liquid is passed through a pipe, a magnetic field is applied to the filler by a magnet disposed on the outer periphery of the pipe, and the magnetic particles are captured by the filler to separate the magnetic particles from the waste liquid.
  • the form of the filler include a mesh shape, a fiber shape, and a particle shape.
  • These fillers have an increased surface area in the order of particles, fibers, and meshes, which is advantageous from the viewpoint of efficiency of capturing magnetic particles.
  • the mesh-like filler is fine, the flow rate of the washing water cannot be increased, and it is difficult to wash the captured magnetic particles.
  • multiple columns are used for continuous magnetic separation.
  • a technique is known in which magnetic fields are alternately applied to two columns each filled with a magnetic material, and magnetic separation and cleaning are alternately performed.
  • the conventional magnetic separation apparatus did not separate magnetic particles well during cleaning.
  • the problem to be solved by the present invention is to provide a magnetic separation apparatus capable of performing continuous magnetic separation and easily separating magnetic particles during cleaning.
  • the magnetic separation device includes a plurality of nonmagnetic cylinders whose hollow portions serve as the flow path of the water to be treated and magnetic bodies arranged in the cylinder so as to be orthogonal to the flow of the water to be treated.
  • a plurality of magnetic separation columns having a plurality of filters are slidably provided outside the plurality of magnetic separation columns, and have a size corresponding to a part of the magnetic separation columns.
  • a magnetic field applying device that applies a magnetic field to the magnetic separation column of the unit.
  • FIG. 1 is a front view and a side view showing a partial cross section of a magnetic separation device according to an embodiment.
  • FIG. 2 is a perspective view of the magnetic field application device of the magnetic separation device according to the embodiment.
  • FIG. 3 is a cross-sectional view showing a magnetic separation column of the magnetic separation device according to the embodiment.
  • FIG. 4 is a cross-sectional view of a cylinder of a magnetic separation column of the magnetic separation device according to the embodiment.
  • FIG. 5 is a cross-sectional view showing a part of the annular support of the magnetic separation column of the magnetic separation device according to the embodiment.
  • FIG. 6 is a plan view showing a filter of the magnetic separation column of the magnetic separation device according to the embodiment.
  • FIG. 1A is a front view showing a partial cross section of the magnetic separation device according to the embodiment
  • FIG. 1B is a side view.
  • FIG. 1A shows a cross section cut along the line A-A ′ of FIG.
  • the first and second magnetic separation columns 10a and 10b are positioned on the same straight line in the vertical direction on the column support 1 that is erected in the vertical direction. Fixed in series.
  • a magnetic field application device support base 2 is erected in the vertical direction behind the column support base 1.
  • a magnetic field applying device 20 is attached to the magnetic field applying device support 2 so as to slide along the magnetic field applying device support 2 outside the first and second magnetic separation columns 10a and 10b.
  • the magnetic field application device 20 has a size corresponding to one magnetic separation column, and applies a magnetic field to the magnetic separation column when it is located outside the one magnetic separation column.
  • a magnetic field shielding cover 30 that shields the magnetic field generated from the magnetic field applying device 20 is provided so as to surround an area where the magnetic field applying device 20 slides along the magnetic field applying device support 2.
  • the material of the magnetic field shielding cover 30 is not particularly limited as long as it is a magnetic body capable of shielding the magnetic field generated from the magnetic field application device 20, and examples thereof include an iron plate.
  • the first magnetic separation column 10a and the second magnetic separation column 10b are alternately operated to separate magnetic particles from the water to be treated.
  • the magnetic separation column on the side where the magnetic field applying device 20 is used is used for magnetic separation, and the magnetic separation column at the position where there is no magnetic field applying device is subjected to filter cleaning (back washing).
  • FIG. 1 shows an example in which there are two magnetic separation columns, three or more magnetic separation columns may be arranged in series on the same line. Further, when four or more magnetic separation columns are arranged in series on the same line, the magnetic field application device 20 may have a size corresponding to two magnetic separation columns. As described above, the magnetic field applying device 20 may have a size corresponding to a part of the plurality of magnetic separation columns.
  • FIG. 2 shows a perspective view of the magnetic field application device.
  • the magnetic field applying device 20 includes a frame-like yoke 21 having three surfaces and one surface being opened, and different polarities attached to two opposing inner surfaces of the yoke 21 ( And first and second magnets 22a and 22b having N and S poles).
  • a magnetic field is formed by the first and second magnets 22 a and 22 b and the yoke 21.
  • the magnetic separation column has the first and second magnetic separation columns. It is placed in a magnetic field space formed by the magnets 22a and 22b, and a magnetic field is applied to the magnetic separation column.
  • the first and second magnets 22a and 22b may be permanent magnets or electromagnets.
  • FIG. 3 shows a cross-sectional view of one magnetic separation column.
  • the main body of one magnetic separation column is made of a non-magnetic cylindrical body 11, and the hollow portion serves as a flow path for water to be treated. Since the cylinder 11 is formed of a non-magnetic material, it is not affected by the magnetic field applied from the magnetic field application device 20.
  • a lid 12 a is attached to the lower end of the cylinder 11, and a lid 12 b is attached to the upper end of the cylinder 11.
  • the treated water introduction port 13a is connected to the lid body 12a at the lower end of the cylinder 11, and the treated water discharge port 13b is connected to the lid body 12b at the upper end of the cylinder 11.
  • a plurality of layers of filters 14 made of a magnetic material are disposed in the hollow portion of the cylindrical body 11 so as to be orthogonal to the flow of water to be treated. These multi-layer filters 14 are sandwiched between two non-magnetic annular supports 15. In FIG. 3, the annular support 15 is fixed at four locations in the cylindrical body 11, and three filters formed by a laminate of a plurality of layers of filters 14 in three regions formed by two adjacent annular supports 15. Layers are arranged.
  • FIG. 4 shows a cross-sectional view of the cylinder 11 of the magnetic separation column.
  • the cross section of the flow path in the cylinder 11 in the present embodiment has a shape in which corners of a rectangle (in this case, a square) are chamfered.
  • the curvature radius R of the chamfered corner of the flow path is designed to be about 5 mm, for example.
  • FIG. 5 is a cross-sectional view showing a part of the annular support 15.
  • the annular support 15 has a shape in which the outer periphery of the annular support 15 is chamfered at a rectangular corner, which is substantially the same as the inner periphery of the flow path of the cylindrical body 11.
  • the curvature radius R of the chamfered corner of the annular support 15 is also designed to be about 5 mm.
  • the annular support 15 is fixed in the cylinder 11 with a groove 16 formed on the outer peripheral surface facing the inner surface of the cylinder 11, and an O-ring 17 attached to the groove 16.
  • the annular support 15 is formed of a non-magnetic material and is not affected by the magnetic field applied from the magnetic field application device 20.
  • FIG. 6 is a plan view showing the filter 14.
  • the filter 14 in the present embodiment has a shape in which a rectangular corner is chamfered in substantially the same manner as the cross section of the flow path of the cylinder 11, but from the cross section of the flow path of the cylinder 11.
  • it is made of a wire mesh formed to be about 0.2 mm small.
  • the curvature radius R of the chamfered corner of the filter 14 is also designed to be about 5 mm.
  • the filter 14 is made of a magnetic material and is magnetized by the magnetic field applied from the magnetic field application device 20.
  • the material of the filter 14 is not particularly limited, but ferritic stainless steel or martensitic stainless steel, which is a ferromagnetic material excellent in corrosion resistance, is preferable.
  • the filter 14 is preferably an elastic body. For example, a metal net knitted with a plain weave or a twill weave itself functions as an elastic body. If the filter 14 is an elastic body, it is advantageous in that the removal efficiency of magnetic particles captured during backwashing described later is increased.
  • annular support 15 multiple layers of filter 14—annular support 15—multiple layers of filter 14—annular support 15—multiple layers of filter 14— The annular support 15 is installed in this order.
  • the lid bodies 12 a and 12 b are fixed to the cylinder 11 using a seal member or screws. To do.
  • a method for separating magnetic particles from water to be treated using the magnetic separation apparatus of the present embodiment will be described.
  • a magnetic field is applied to the first magnetic separation column 10 a by the magnetic field application device 20.
  • the filter 14 made of a magnetic material is magnetized.
  • water to be treated is introduced into the magnetic separation column 10a from the inlet 13a.
  • the water to be treated introduced into the magnetic separation column 10 a passes through a plurality of layers of filters 14 arranged in the flow path of the cylinder 11.
  • magnetic particles in the for-treatment water are captured by the filter 14.
  • the treated water from which the magnetic particles have been removed is discharged from the discharge port 13b.
  • the magnetic separation column 10a In the magnetic separation column 10a, when the amount of magnetic particles captured by the filter 14 increases, it becomes difficult to capture newly flowing magnetic particles. When the amount of magnetic particles captured in the magnetic separation column 10a decreases and the quality of the treated water deteriorates, the application of the magnetic field to the magnetic separation column 10a by the magnetic field application device 20 is stopped.
  • the magnetic field application device 20 is slid downward in parallel with the first magnetic separation column 10a, and is moved to the outside of the second magnetic separation column 10b arranged in series on the same straight line as the first magnetic separation column 10a. Then, the magnetic field is applied to the second magnetic separation column 10b, and the introduction path of the water to be treated is switched from the first magnetic separation column 10a to the second magnetic separation column 10b. In this state, the magnetic particles are separated from the water to be treated in the second magnetic separation column 10b in the same manner as described for the first magnetic separation column 10a.
  • the filter 14 in the first magnetic separation column 10a is compressed along the moving direction of the magnetic field. At this time, a shear force is applied to the magnetic particles deposited on the filter 14, and the magnetic particles are easily separated from the filter 14.
  • the filter 14 which is an elastic body tries to return to the original position.
  • a shearing force acts on the magnetic particles deposited on the filter 14.
  • the annular support 15 with the O-ring 17 provided between the multi-layer filter 14 and the multi-layer filter 14 works advantageously for utilizing the elastic force of the filter 14.
  • the number of layers of the filter 14 arranged in one region is made appropriate, recovery due to elasticity can be effectively utilized.
  • the O-ring 17 itself has entropy elasticity and is more easily deformed than the filter 14, the compressive force applied to the filter 14 can be made appropriate, and plastic deformation of the filter 14 due to excessive compressive force can be prevented.
  • the path is changed so that backwash water is supplied from the discharge port 13b and the magnetic particles are discharged from the introduction port 13a to the magnetic particle recovery tank. , So-called backwashing is performed.
  • the magnetic particles are already easily separated from the filter 14 by the action of the shearing force described above, so that the magnetic particles can be easily removed by backwashing, and the cleaning efficiency is increased.
  • the magnetic application device 20 is slid again to the outside of the first magnetic separation column 10a to perform magnetic separation.
  • the second magnetic separation column 10b is backwashed. In this way, the magnetic particles can be continuously separated from the water to be treated.
  • the annular support 15 in which the O-ring 17 that is a sealing member is fitted is disposed between the multiple layers of filters 14 and the multiple layers of filters 14.
  • the treated water can be prevented from passing through the gap between the inner wall of the cylinder 11 and the peripheral edge of the filter 14. For this reason, it can prevent that a magnetic particle mixes in treated water.
  • the number of layers of the filter 15 that can be disposed in the cylinder 11 is limited by the width required for the above. Therefore, considering the separation performance of the magnetic particles from the water to be treated by the filter 14 and the water tightness by the O-ring 17, the number of layers of the filter 14 used in the magnetic separation column 10 a and the annular support 15 with the O-ring 17 are used. Determine the number of.
  • the cylindrical body 11 has a rectangular cross-section because the cross-sectional area is increased by about 1/4 even when the same magnet is used rather than the circular shape, and the range included in the strong magnetic field space is widened. This is because the amount of capture can be increased. That is, a space near the first and second magnets 22a and 22b is a strong magnetic field space with a strong magnetic field strength, and a space near the yoke 21 and a space not in contact with the magnet is a weak magnetic field space with a low magnetic field strength. In the case of a circle, not only the cross-sectional area is smaller than in the case of a rectangle, but also the space included in the weak magnetic field space is reduced, but the range included in the strong magnetic field space is also reduced. Therefore, by using the rectangular cylinder 11, the magnetic particles can be efficiently captured using the strong magnetic field space widely.
  • the magnetic separation column has an inlet for treated water at the lower end and an outlet for treated water at the upper end. This is due to the following reasons. If the water to be treated is introduced from the upper end of the magnetic separation column, many magnetic particles are captured and collected at the center of the filter through which the water to be treated easily passes. When the magnetic field application device 20 is moved in such a state, the filter 14 is displaced in the cylinder 11, and a gap is formed between the inner surface of the cylinder 11 and the peripheral edge of the filter 14. Since the magnetic particles easily escape from the gap, the magnetic particles are mixed into the treated water, and the magnetic separation performance is deteriorated. On the other hand, when the water to be treated is introduced from the lower end of the magnetic separation column, the magnetic particles are captured almost uniformly in the plane of the filter 14, and thus the above-described problem does not occur.
  • a plurality of magnetic separation columns 10a and 10b are arranged in series in the vertical direction, the direction in which the water to be treated flows in the magnetic separation columns 10a and 10b is set to the vertical direction, and the filter 14 is arranged in the horizontal direction. It is preferable to do. This is due to the following reasons.
  • the filter 14 is not arranged in the horizontal direction, the magnetic particles captured by the filter 14 are concentrated on one side of the filter 14 due to gravity and are not distributed uniformly in the plane of the filter 14.
  • backwashing is performed in this state, when the filter 14 is compressed, the filter 14 is displaced in the cylinder 11, and a gap is formed between the inner surface of the cylinder 11 and the peripheral edge of the filter 14. Since the magnetic particles easily escape from the gap, the magnetic particles are mixed into the treated water, and the magnetic separation performance is deteriorated.
  • the filter 14 may be unevenly distributed in the cylinder 11 of the magnetic separation column.
  • a gap is formed between the inner surface of the cylindrical body 11 and the peripheral edge of the filter 14, and the magnetic particles easily escape from the gap, which causes the magnetic particles to be mixed into the treated water, and the magnetic separation performance is improved. descend.
  • the shape of the filter 14 is not a rectangle with chamfered corners as shown in FIG. 6 but a rectangle with corners, the corners are easily deformed by the stress when the magnetic field applying device 20 is moved, and There is a possibility of plastic deformation exceeding the elastic limit. Also in this case, a gap is formed between the inner surface of the cylindrical body 11 and the peripheral edge of the filter 14, and the magnetic particles easily escape from the gap, which causes the magnetic particles to be mixed into the treated water, and the magnetic separation performance is improved. descend. On the other hand, when the shape of the filter 14 is a rectangle with chamfered corners, such a problem does not occur.
  • the embodiment it is possible to provide a magnetic separation device capable of performing continuous magnetic separation and easily separating magnetic particles during cleaning.

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 実施形態に係る磁気分離装置は、中空部が被処理水の流路となる非磁性の筒体および前記筒体内に被処理水の流れに対して直交するように配置された磁性体からなる複数のフィルターを有する磁気分離カラムを、複数直列に配置した複数の磁気分離カラムと、前記複数の磁気分離カラムの外側にスライド可能に設けられ、一部の磁気分離カラムに対応するサイズをもち、一部の磁気分離カラムに磁場を印加する磁場印加装置とを有する。

Description

磁気分離装置
 本発明の実施形態は磁気分離装置に関する。
 金属加工を行なう工場や製鉄所から排出される廃液には、鉄粉などの磁性粒子が含まれている。こうした廃液から磁性粒子を分離するには、磁石を利用する磁気分離装置が用いられる。
 たとえば、磁性粒子を含む廃液を通す配管と、配管内に配置された磁性体からなる充填材と、配管の外周に配置され充填材に磁場を印加する磁石とを有する磁気分離装置が知られている。こうした磁気分離装置では、配管に廃液を通す際、配管の外周に配置された磁石により充填材に磁場を印加し、充填材によって磁性粒子を捕獲させて廃液から磁性粒子を分離する。充填材の形態には網目状、繊維状、粒子状などがある。これらの充填材は、粒子状、繊維状、網目状の順に表面積が大きくなり、磁性粒子を捕獲する効率の観点から有利になる。一方、網目状の充填材は、目が細かいために洗浄水の流速を大きくすることができず、捕獲した磁性粒子を洗浄しにくい。
 また、磁気分離を連続して行うには複数のカラムを使用する。たとえば、それぞれ磁性体を充填した2つのカラムに交互に磁場を印加するようにし、磁気分離と洗浄を交互に行う技術が知られている。
 しかし、従来の磁気分離装置では、洗浄時に磁性粒子を良好に分離できていたわけではない。
特開平9-141018号公報
 本発明が解決しようとする課題は、連続した磁気分離を行うことができ、かつ洗浄時に磁性粒子を分離しやすい磁気分離装置を提供することである。
 実施形態に係る磁気分離装置は、中空部が被処理水の流路となる非磁性の筒体および前記筒体内に被処理水の流れに対して直交するように配置された磁性体からなる複数のフィルターを有する磁気分離カラムを、複数直列に配置した複数の磁気分離カラムと、前記複数の磁気分離カラムの外側にスライド可能に設けられ、一部の磁気分離カラムに対応するサイズをもち、一部の磁気分離カラムに磁場を印加する磁場印加装置とを有する。
図1は、実施形態に係る磁気分離装置の一部断面を示す正面図および側面図。 図2は、実施形態に係る磁気分離装置の磁場印加装置の斜視図。 図3は、実施形態に係る磁気分離装置の磁気分離カラムを示す断面図。 図4は、実施形態に係る磁気分離装置の磁気分離カラムの筒体の横断面図。 図5は、実施形態に係る磁気分離装置の磁気分離カラムの環状支持体の一部を示す断面図。 図6は、実施形態に係る磁気分離装置の磁気分離カラムのフィルターを示す平面図。
実施形態
 以下、図面を参照して実施形態に係る磁気分離装置を説明する。
 図1(a)は実施形態に係る磁気分離装置の一部断面を示す正面図、図1(b)は側面図である。図1(a)には図1(b)のA-A’線に沿って切断した断面を示している。図1(a)および(b)に示すように、鉛直方向に立設されたカラム支持台1に、第1および第2の磁気分離カラム10a,10bが鉛直方向の同一直線上に位置するように固定され直列に配置されている。図1(b)の側面図に示すように、カラム支持台1の後方に磁場印加装置支持台2が鉛直方向に立設されている。磁場印加装置支持台2には、磁場印加装置20が前記第1および第2の磁気分離カラム10a,10bの外側で磁場印加装置支持台2に沿ってスライドするように取り付けられている。磁場印加装置20は1つの磁気分離カラムに対応するサイズを有し、1つの磁気分離カラムの外側に位置しているときにその磁気分離カラムに磁場を印加する。磁場印加装置20が磁場印加装置支持台2に沿ってスライドする領域を囲んで、磁場印加装置20から発生する磁場を遮断する磁場遮断カバー30が設けられている。磁場遮断カバー30は、この磁場印加装置20から発生する磁場を遮断できる磁性体であれば材質は特に限定されず、たとえば鉄板などが挙げられる。
 後により詳細に説明するように、図1の磁気分離装置では、第1の磁気分離カラム10aと第2の磁気分離カラム10bとで交互に、被処理水から磁性粒子を分離する操作を行う。このとき、磁場印加装置20がある側の磁気分離カラムは磁気分離に用いられ、磁場印加装置がない位置の磁気分離カラムはフィルターの洗浄(逆洗)が施される。
 なお、図1では磁気分離カラムが2本である例を示しているが、3本以上の磁気分離カラムを同一線上に直列に配置してもよい。また、4本以上の磁気分離カラムを同一線上に直列に配置した場合に、磁場印加装置20が2つの磁気分離カラムに対応するサイズをもっていてもよい。このように、磁場印加装置20は複数の磁気分離カラムのうち一部の磁気分離カラムに対応するサイズをもっていればよい。
 図2は磁場印加装置の斜視図を示す。図2に示すように、磁場印加装置20は、3つの面を有し1面が開放された枠状のヨーク21と、ヨーク21の対向する2つの内面上にそれぞれ取り付けられた互いに異なる極性(N極およびS極)をもつ第1および第2の磁石22a,22bとを有する。第1および第2の磁石22a,22bならびにヨーク21により磁場が形成される。磁場印加装置20が磁場印加装置支持台2に沿ってスライドし、1つの磁気分離カラムの外側に第1および第2の磁石22a,22bが位置すると、その磁気分離カラムは第1および第2の磁石22a,22bによって形成される磁場空間内に置かれ、その磁気分離カラムに磁場が印加される。第1および第2の磁石22a,22bは永久磁石でも電磁石でもよい。
 図3は1つの磁気分離カラムの断面図を示す。図3に示すように、1つの磁気分離カラムの本体は非磁性体の筒体11からなっており、その中空部が被処理水の流路となっている。筒体11は非磁性体で形成されているので、磁場印加装置20から印加される磁場の影響を受けない。筒体11の下端には蓋体12a,筒体11の上端には蓋体12bが取り付けられている。本実施形態では、筒体11下端の蓋体12aには被処理水の導入口13aが接続され、筒体11上端の蓋体12bに処理水の排出口13bが接続されている。筒体11内の中空部には、被処理水の流れに対して直交するように磁性体からなる複数層のフィルター14が配置されている。これらの複数層のフィルター14は、非磁性の2つの環状支持体15の間に挟まれている。図3では筒体11内の4個所に環状支持体15が固定され、隣接する2つの環状支持体15で形成される3つの領域に複数層のフィルター14の積層体で形成される3つのフィルター層が配置されている。
 図4は磁気分離カラムの筒体11の横断面図を示す。図4に示すように、本実施形態における筒体11内の流路の横断面は、矩形(この場合、正方形)の隅部が面取りされた形状になっている。流路の面取りされた隅部の曲率半径Rは、たとえば5mm程度に設計される。
 図5は環状支持体15の一部を示す断面図である。環状支持体15の平面図は図示しないが、環状支持体15はその外周が筒体11の流路の内周とほぼ同じく矩形の隅部が面取りされた形状になっている。環状支持体15の面取りされた隅部の曲率半径Rも5mm程度に設計される。図5に示すように、環状支持体15は、筒体11の内面に面する外周面に溝部16が形成され、この溝部16にOリング17が装着された状態で筒体11内に固定される。環状支持体15は非磁性体で形成され、磁場印加装置20から印加される磁場の影響を受けない。
 図6はフィルター14を示す平面図である。図6に示すように、本実施形態におけるフィルター14は、筒体11の流路の横断面とほぼ同じく矩形の隅部が面取りされた形状を有するが、筒体11の流路の横断面よりもたとえば0.2mm程度小さく形成された金網からなっている。フィルター14の面取りされた隅部の曲率半径Rも5mm程度に設計される。
 フィルター14は磁性体で形成されており、磁場印加装置20から印加される磁場によって磁性を帯びる。フィルター14の材質は特に限定されないが、耐食性に優れた強磁性体であるフェライト系ステンレス鋼やマルテンサイト系ステンレス鋼などが好ましい。また、フィルター14は弾性体であることが好ましく、たとえば平織、綾織などで編まれた金属の網はそれ自体が弾性体として働く。フィルター14が弾性体であると、後述する逆洗時に捕獲した磁性粒子の除去効率を高める点で有利である。
 図3に示した例では、筒体11内の流路に、環状支持体15-複数層のフィルター14-環状支持体15-複数層のフィルター14-環状支持体15-複数層のフィルター14-環状支持体15がこの順に設置されている。図3に示す磁気分離カラムの場合、筒体11内に環状支持体15および複数層のフィルター14を設置した後、シール部材やネジなどを利用して筒体11に蓋体12a,12bを固定する。
 本実施形態の磁気分離装置を用いて被処理水から磁性粒子を分離する方法を説明する。まず、磁場印加装置20によって第1の磁気分離カラム10aに磁場を印加する。この結果、磁性体からなるフィルター14は磁化される。この状態で、導入口13aから磁気分離カラム10a内に被処理水を導入する。磁気分離カラム10a内に導入された被処理水は、筒体11の流路に配置された複数層のフィルター14を通過する。このとき、被処理水中の磁性粒子がフィルター14によって捕獲される。こうして磁性粒子が除去された処理水が排出口13bから排出される。
 磁気分離カラム10aにおいて、フィルター14に捕獲された磁性粒子の量が増加すると、新たに流入する磁性粒子が捕獲されにくくなる。磁気分離カラム10aにおいて磁性粒子の捕獲量が低下して処理水の水質が劣化した際には、磁場印加装置20による磁気分離カラム10aへの磁場の印加を中止する。
 次に、磁場印加装置20を第1の磁気分離カラム10aと平行に下方へスライドさせ、第1の磁気分離カラム10aと同一直線上に直列に配置された第2の磁気分離カラム10bの外側へ位置させ、第2の磁気分離カラム10bに磁場を印加し、被処理水の導入経路を第1の磁気分離カラム10aから第2の磁気分離カラム10bに切り替える。この状態で、上述した第1の磁気分離カラム10aについて説明したのと同様にして、第2の磁気分離カラム10bにおいて被処理水から磁性粒子を分離する。
 上記のように磁場印加装置20を第1の磁気分離カラム10aに平行に下方へスライドさせると、第1の磁気分離カラム10a内のフィルター14は磁場の移動方向に沿って圧縮される。このとき、フィルター14上に堆積した磁性粒子にせん断力がかかり、磁性粒子がフィルター14から離れやすくなる。また、磁場印加装置20が第1の磁気分離カラム10aからはずれて圧縮が開放されると、弾性体であるフィルター14は元の位置に戻ろうとする。そして、磁場印加装置20の移動中と同様に、フィルター14が復元しようとするときにも、フィルター14上に堆積した磁性粒子にせん断力が働く。
 複数層のフィルター14と複数層のフィルター14との間に設けられたOリング17つき環状支持体15は、フィルター14の弾性力を活用するのに有利に働く。ここで、1つの領域に配置するフィルター14の層数を適正にすると、弾性による回復を有効に活用できる。また、Oリング17自身はエントロピー弾性を有し、フィルター14よりも変形しやすいので、フィルター14にかかる圧縮力を適正にし、過剰な圧縮力によるフィルター14の塑性変形を防止できる。
 磁場印加装置20を第1の磁気分離カラム10aの位置からはずした後、排出口13bから逆洗水を供給し、導入口13aから磁性粒子を磁性粒子回収槽へ排出するように経路を変更し、いわゆる逆洗を行う。このときすでに、上述したせん断力の作用により磁性粒子がフィルター14上から離れやすくなっているので、逆洗により容易に磁性粒子を除去することができ、洗浄効率が高くなる。
 第1の磁気分離カラム10aの逆洗が完了すると、磁気印加装置20を再び第1の磁気分離カラム10aの外側へスライドさせて磁気分離を行う。一方、第2の磁気分離カラム10bに逆洗を施す。このようにして連続的に被処理水からの磁性粒子の分離を行うことができる。
 実施形態に係る磁気分離装置の磁気分離カラムでは、複数層のフィルター14と複数層のフィルター14との間に、密閉部材であるOリング17が嵌め込まれた環状支持体15が配置されているので、被処理水が筒体11の内壁とフィルター14の周縁部との間の隙間を通過するのを防止できる。このため、処理水に磁性粒子が混入するのを防止できる。
 ここで、被処理水を通過させるフィルター14の層数を多くするほど多量の磁性粒子を捕獲することができるので、処理水の水質が向上する。また、使用するOリング17つき環状支持体15の数が多いほど、被処理水のもれを防止して処理水への磁性粒子の混入を防止することができるが、環状支持体15の配置に要する幅の分だけ筒体11内に配置できるフィルター15の層数が制限される。そこで、フィルター14による被処理水からの磁性粒子の分離性能とOリング17による水密性とを考慮して、磁気分離カラム10a内で使用するフィルター14の層数とOリング17つき環状支持体15の数を決定する。
 筒体11の断面を矩形にするのは、円形よりも矩形の方が同じ磁石を利用した場合でも断面積が1/4程度大きくなるとともに、強磁場空間に含まれる範囲も広くなり、磁性粒子の捕獲量を増加できるためである。すなわち、第1および第2の磁石22a,22bに近い空間は磁場強度が強い強磁場空間となり、ヨーク21に近い空間や磁石と接していない空間は磁場強度が弱い弱磁場空間となる。円形の場合には矩形の場合よりも断面積が小さくなるばかりでなく、弱磁場空間に含まれる空間も少なくなるが、強磁場空間に含まれる範囲も少なくなる。したがって、矩形の筒体11を利用することで、強磁場空間を広く利用して効率的に磁性粒子を捕獲することができる。
 すでに説明したように、磁気分離カラムは、下端に被処理水の導入口を有し、上端に処理水の排出口を有することが好ましい。これは以下のような理由による。被処理水を磁気分離カラムの上端から導入したとすると、被処理水が通過しやすいフィルターの中央部で多くの磁性粒子が捕獲されて溜まる。このような状態で磁場印加装置20を移動させると、筒体11内でフィルター14がずれて、筒体11の内面とフィルター14の周縁部との間に隙間ができる。磁性粒子はこの隙間から抜けやすくなるので、処理水に磁性粒子が混入する原因となり、磁気分離性能が低下する。これに対して、被処理水を磁気分離カラムの下端から導入すると、磁性粒子はフィルター14の面内でほぼ均一に捕獲されるので、上記のような問題が生じない。
 すでに説明したように、複数の磁気分離カラム10a,10bを鉛直方向に直列に配置して、磁気分離カラム10a,10b内で被処理水が流れる方向を鉛直方向にし、フィルター14を水平方向に配置することが好ましい。これは以下のような理由による。フィルター14が水平方向に配置されていない場合、フィルター14で捕獲された磁性粒子が重力によってフィルター14の片側に集中してフィルター14の面内で均一に分布しなくなる。この状態で逆洗を行うと、フィルター14が圧縮されたときに筒体11内でフィルター14がずれて、筒体11の内面とフィルター14の周縁部との間に隙間ができる。磁性粒子はこの隙間から抜けやすくなるので、処理水に磁性粒子が混入する原因となり、磁気分離性能が低下する。
 また、磁場印加装置20を磁気分離カラムの流路と平行な方向ではなく、直交する方向(水平方向)に移動させると、磁気分離カラムの筒体11内でフィルター14が偏在する可能性がある。この場合にも、筒体11の内面とフィルター14の周縁部との間に隙間ができ、磁性粒子はこの隙間から抜けやすくなるので、処理水に磁性粒子が混入する原因となり、磁気分離性能が低下する。
 さらに、フィルター14の形状が図6に示すように隅部を面取りした矩形ではなく、角のある矩形である場合、磁場印加装置20の移動時の応力によって隅部が変形しやすくなり、材料の弾性限界を超えて塑性変形する可能性がある。この場合にも、筒体11の内面とフィルター14の周縁部との間に隙間ができ、磁性粒子はこの隙間から抜けやすくなるので、処理水に磁性粒子が混入する原因となり、磁気分離性能が低下する。これに対して、フィルター14の形状が隅部を面取りした矩形である場合、このような問題は生じない。
 実施形態によれば、連続した磁気分離を行うことができ、かつ洗浄時に磁性粒子を分離しやすい磁気分離装置を提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (6)

  1.  中空部が被処理水の流路となる非磁性の筒体および前記筒体内に被処理水の流れに対して直交するように配置された磁性体からなる複数のフィルターを有する磁気分離カラムを、複数直列に配置した複数の磁気分離カラムと、
     前記複数の磁気分離カラムの外側にスライド可能に設けられ、一部の磁気分離カラムに対応するサイズをもち、一部の磁気分離カラムに磁場を印加する磁場印加装置と
    を有する磁気分離装置。
  2.  前記複数の磁気分離カラムのうち、前記磁場印加装置のある位置の磁気分離カラムは磁気分離に用いられ、前記磁場印加装置のない位置の磁気分離カラムはフィルターの洗浄が施される請求項1に記載の磁気分離装置。
  3.  さらに、前記磁場印加装置がスライドする領域の外側に設けられた、磁気を遮断するカバーを有する請求項1に記載の磁気分離装置。
  4.  前記複数の磁気分離カラムは鉛直方向に直列に配置され、個々の磁気分離カラムは下端に被処理水の導入口を有し上端に処理水の排出口を有する請求項1に記載の磁気分離装置。
  5.  前記筒体内の流路は、矩形の隅部が面取りされた横断面を有する請求項1に記載の磁気分離装置。
  6.  前記複数のフィルターは非磁性の2つの環状支持体の間に挟まれ、前記環状支持体は前記筒体の内面に面する外周面に形成された溝部にOリングを装着した状態で前記筒体内に固定されている請求項1に記載の磁気分離装置。
PCT/JP2012/054786 2011-03-11 2012-02-27 磁気分離装置 WO2012124460A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280008122.4A CN103370137B (zh) 2011-03-11 2012-02-27 磁选装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-054335 2011-03-11
JP2011054335A JP5361926B2 (ja) 2011-03-11 2011-03-11 磁気分離装置

Publications (1)

Publication Number Publication Date
WO2012124460A1 true WO2012124460A1 (ja) 2012-09-20

Family

ID=46830536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054786 WO2012124460A1 (ja) 2011-03-11 2012-02-27 磁気分離装置

Country Status (3)

Country Link
JP (1) JP5361926B2 (ja)
CN (1) CN103370137B (ja)
WO (1) WO2012124460A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068142A1 (en) * 2012-11-05 2014-05-08 Basf Se Apparatus for the continuous separation of magnetic constituents
WO2018002654A1 (en) * 2016-06-30 2018-01-04 Adey Holdings (2008) Limited Magnetic filter for a central heating system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104258989B (zh) * 2014-10-15 2016-07-13 赵宽学 快捷清洗电磁除铁机
CN104353549B (zh) * 2014-11-18 2017-01-18 崔雷 一种电磁除铁机
CN104399708B (zh) * 2014-11-25 2016-06-15 攀钢集团矿业有限公司 一种磁选机磁介质的清洗方法
CN104384017B (zh) * 2014-12-03 2016-11-23 崔雷 防阻塞电磁磁选机
CN104722398B (zh) * 2015-03-24 2017-05-10 广州粤有研矿物资源科技有限公司 吸附装置及方法
KR102425092B1 (ko) * 2020-10-28 2022-07-25 복상흠 금속물질 분리 기구

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180070A (ja) * 1975-01-09 1976-07-13 English Clays Lovering Pochin Jiseiryushibunrisochi
JPS59314A (ja) * 1982-06-25 1984-01-05 Fuji Electric Co Ltd 電磁フイルタ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054513A (en) * 1973-07-10 1977-10-18 English Clays Lovering Pochin & Company Limited Magnetic separation, method and apparatus
US4116829A (en) * 1974-01-18 1978-09-26 English Clays Lovering Pochin & Company Limited Magnetic separation, method and apparatus
JPS5952509A (ja) * 1982-09-17 1984-03-27 Nec Corp 磁気分離装置
CN1041703A (zh) * 1985-05-29 1990-05-02 乌克兰水利工程学院 从流体介质分离铁磁性物料的装置
JPH059314A (ja) * 1991-07-04 1993-01-19 Toray Ind Inc 長尺物の処理方法およびその処理装置
JP4288555B2 (ja) * 2002-05-09 2009-07-01 独立行政法人科学技術振興機構 磁性体を用いた分離浄化装置
CN2729346Y (zh) * 2003-08-25 2005-09-28 李宝林 强力洁油净化装置
CN100445629C (zh) * 2004-09-17 2008-12-24 金文江 注油器
EP1880054B1 (en) * 2005-05-09 2014-10-15 Kadant Canada Corp. Screen basket with replaceable profiled bars
CN201710704U (zh) * 2010-05-07 2011-01-19 宁波东方兴达环保设备有限公司 空气净化器等离子过滤装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180070A (ja) * 1975-01-09 1976-07-13 English Clays Lovering Pochin Jiseiryushibunrisochi
JPS59314A (ja) * 1982-06-25 1984-01-05 Fuji Electric Co Ltd 電磁フイルタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068142A1 (en) * 2012-11-05 2014-05-08 Basf Se Apparatus for the continuous separation of magnetic constituents
WO2018002654A1 (en) * 2016-06-30 2018-01-04 Adey Holdings (2008) Limited Magnetic filter for a central heating system
GB2551828B (en) * 2016-06-30 2021-02-24 Adey Holdings 2008 Ltd Magnetic filter for a central heating system
US11014095B2 (en) 2016-06-30 2021-05-25 Adey Holdings (2008) Limited Magnetic filter for a central heating system

Also Published As

Publication number Publication date
CN103370137A (zh) 2013-10-23
CN103370137B (zh) 2016-05-18
JP5361926B2 (ja) 2013-12-04
JP2012187538A (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
WO2012124460A1 (ja) 磁気分離装置
CN107921441B (zh) 用于顺磁性及反磁性物质的过滤器
KR102386599B1 (ko) 회전드럼형 자기분리장치
KR20090089403A (ko) 여과 장치
US10010891B2 (en) Magnetic filter
CN104334281A (zh) 用于精炼及化学工业的磁性过滤器
JP2006341212A (ja) 磁性異物類除去清掃装置
JP2014138912A (ja) 濾過装置
JP5398434B2 (ja) 磁気分離装置
JP6283084B2 (ja) 乾式振動磁気フィルタ用の改良物質分離回収マトリックス
JP5275291B2 (ja) 磁気分離システム及び磁気分離装置
RU2300421C1 (ru) Магнитный сепаратор
JP2728848B2 (ja) 磁気フィルタ
WO2014061172A1 (ja) 磁気分離システム、磁気分離装置及び磁気分離方法
JPWO2016088282A1 (ja) オイルフィルタ装置及びオイルフィルタエレメント
JP2014000543A (ja) 金属粉粒含有廃液の処理方法
CN102344188A (zh) 永磁体复合滤网格栅
KR102118305B1 (ko) 전자석 필터
JP5808275B2 (ja) 磁気分離装置
KR102620509B1 (ko) 스트레이너
JP4460959B2 (ja) 微細磁性粒子の除去装置
KR101995456B1 (ko) 네오디뮴 자석을 이용한 물 속 Fe 흡착 및 제거 시스템
KR20180076664A (ko) 전자석 필터 및 그 제조방법
CN111097604A (zh) 一种过滤装置及铁系金属制品的处理设备
JPH04349908A (ja) 浄油装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758112

Country of ref document: EP

Kind code of ref document: A1