WO2012123845A1 - Likelihood-based spectral data projection domain de-noising - Google Patents
Likelihood-based spectral data projection domain de-noising Download PDFInfo
- Publication number
- WO2012123845A1 WO2012123845A1 PCT/IB2012/050985 IB2012050985W WO2012123845A1 WO 2012123845 A1 WO2012123845 A1 WO 2012123845A1 IB 2012050985 W IB2012050985 W IB 2012050985W WO 2012123845 A1 WO2012123845 A1 WO 2012123845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- projection data
- measurements
- noised
- photon
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T7/00—Details of radiation-measuring instruments
- G01T7/005—Details of radiation-measuring instruments calibration techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/408—Dual energy
Definitions
- the following generally relates to spectral imaging and more particularly to de-noising spectral data in the projection domain, and is described in connection with spectral computed tomography (CT).
- CT spectral computed tomography
- a conventional computed tomography (CT) scanner includes a rotating gantry rotatably mounted to a generally stationary gantry.
- the rotating gantry supports an x-ray tube and a detector array, which is mounted on the rotatable gantry opposite the x-ray tube, across an examination region.
- the rotating gantry and hence the x-ray tube and the detector array rotate around the examination region about a longitudinal or z-axis.
- the x- ray tube is configured to emit radiation that traverses the examination region (and a portion of a subject or object in the examination region) and illuminates the detector array.
- the detector array detects the radiation and generates projection data (detection measurements) indicative of the examination region and the subject or object disposed therein.
- a reconstructor reconstructs the projection data, generating volumetric image data.
- An image processor can process the volumetric image data and generate one or more images of the scanned portion of the subject or object.
- the scanner may include two x-ray tubes configured to emit different energy spectrums or an x-ray tube configured to switch between at least two different energy spectrums, and/or the detector array may include an energy-resolving detector array with spectral or photon counting detectors.
- a double decker spectral detector has a first detection layer configured to detect lower energy photons and a second detection layer configured to detect higher energy photons. The first and second detection layers are arranged with respect to each other such that the first detection layer is above the second detection layer and nearer to the x-ray tube along a direction of the radiation from the x-ray tube to the detector array.
- Each detection layer includes a scintillator/photodiode pair, in which the scintillator receives and absorbs an x-ray photon and emits a light photon indicative thereof, and the photosensor detects the light photon and generates a detection measurement indicative of the energy of the initial x-ray photon.
- the projection data will include four (4) independent energy-resolved detection measurements, respectively corresponding to (1) 80 kVp and the first detection layer, (2) 80 kVp and the second detection layer, (3) 140 kVp and the first detection layer, and (4) 140 kVp and the second detection layer.
- the first detection layer will absorb most of the photons and the second lower detection layer will register relatively few counts, and the energy-resolved measurements produced by the corresponding photodiode will have poor photon statistics.
- the photon statistics can be improved by increasing x-ray tube current; however, this will increase patient dose, or exposure to ionizing radiation.
- a narrow energy bin channel of a counting detector will produce measurements with poor photon statistics.
- the poor photon statistics will result in disproportionate basis-material decomposition noise.
- a method for processing projection data in the projection domain includes receiving the projection data.
- the projection data is generated by a spectral detector and includes two or more independent energy-resolved measurements in which at least one of the two or more measurements has first photon statistics.
- the method further includes generating a de-noised measurement in electronic format for the at least one of the two or more measurements having the first photon statistics.
- the de-noised measurement has second photon statistics which are better than the first photon statistics.
- a system includes a projection data processor that receives projection data generated by an imaging system and including two or more independent energy-resolved measurements in which at least one of the two or more measurements has first photon statistics, and de-noises the measurement for the at least one of the two or more measurements having the first photon statistics, wherein the de-noised measurement has second photon statistics which are better than the first photon statistics.
- a method includes processing projection data generated by a radiation sensitive detector so as to equalize noise of lower and higher photon statistic spectral measurements of the projection data based on minimizing a likelihood of the projection data in the projection domain.
- the invention may take form in various components and arrangements of components, and in various steps and arrangements of steps.
- the drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
- FIGURE 1 schematically illustrates an example imaging system in connection with a projection data processor that at least de-noises energy-resolved measurements of the projection data.
- FIGURE 2 schematically illustrates an example of the projection data processor.
- FIGURE 3 graphically illustrates an example profile of energy-resolved detection measurements having poor photon statistics and an example profile of a version of the energy-resolved detection measurements having the poor photon statistics after de- noising by the projection data processor.
- FIGURE 4 graphically illustrates an example profile of energy-resolved detection measurements having good photon statistics and an example profile of a version of the energy-resolved detection measurements having the good photon statistics after de- noising by the projection data processor.
- FIGURE 5 illustrates a method for de-noising projection data in which at least a sub-portion of energy-resolved detection measurements of the projection data have poor photon statistics.
- FIGURE 1 schematically illustrates an imaging system 100 such as a computed tomography (CT) scanner.
- the imaging system 100 includes a generally stationary gantry portion 102 and a rotating gantry portion 104.
- the rotating gantry portion 104 is rotatably supported by the generally stationary gantry portion 102 via a bearing (not shown) or the like.
- a radiation source 106 such as an x-ray tube, is supported by the rotating gantry portion 104 and rotates therewith around an examination region 108 about a longitudinal or z-axis 110.
- a source collimator 112 collimates radiation emitted by the radiation source 106, producing a generally cone, fan, wedge or otherwise-shaped radiation beam that traverse the examination region 108.
- a radiation source voltage controller 114 controls the mean emission voltage of the radiation source 106.
- the radiation source voltage controller 114 switches or otherwise changes the emission voltage, for example, between multiple voltages in a range from 10 kVp to 160 kVp, from scan to scan, between integration periods (views) of a scan, within an integration period, and/or otherwise.
- emission voltage for example, between multiple voltages in a range from 10 kVp to 160 kVp, from scan to scan, between integration periods (views) of a scan, within an integration period, and/or otherwise.
- the radiation source voltage controller 114 can be configured to switch the emission voltage between 80 kVp and 140 kVp. Under this control, the radiation source 106 emits first radiation with a first energy spectrum (80 kVp or 140 kVp) and a second radiation with a second different energy spectrum (140 kVp or 80 kVp). Alternatively, the controller 114 can control the source 106 to emit a single mean emission voltage, emission voltages other than 80 kVp and/or 140 kVp, and/or more than two different emission voltages.
- the imaging system 100 may include two or more radiation sources 106, arranged at different angular locations with respect to each other in the x/y plane (e.g., 60, 90, etc. degrees apart), where at least two of the radiation sources 106 emit radiation with different energy spectra.
- a one or two dimensional energy-resolving detector array 116 subtends an angular arc opposite the examination region 108 relative to the radiation source 106 and detects radiation that traverses the examination region 108.
- the energy-resolving detector array 116 is a spectral detector array and includes a photosensor array 118 and a scintillator array 120, which is optically coupled to the photosensor array 118 on the light sensitive side of the photosensor array 118.
- the energy- resolving detector array 116 is arranged in the imaging system 100 so that radiation traversing the examination region 108 impinges the scintillator array 120.
- the illustrated detector array 116 includes vertical detectors having multiple sub- scintillator 122 l s ..., 122N (wherein N is equal to or greater than two), stacked in a direction of the incoming radiation, each having a different spectral sensitivity and coupled to a corresponding photosensor regions 124i, ..., 124 N of the photosensor array 118.
- the sub-scintillator 122i has geometry and material that corresponds to lower energy photons
- the sub-scintillator 122N has geometry and material that corresponds to higher energy photons
- spectral sensitivities of the photosensor regions 124i, ..., 124N of the photosensor array 118 respectively match the light emission spectrums of the sub-scintillator 122i, ..., 122N.
- a non-limiting example of such a detector is described in patent application serial number 11/912,673, filed October 26, 2007, and entitled "Double Decker Detector for Spectral CT," the entirety of which is incorporated herein by reference.
- the energy-resolving detector array 116 generates and outputs energy- resolved projection data, which includes independent energy-resolved detection
- the resulting projection data will include four (4) independent energy-resolved detection measurements, representing the four (4) different combinations of two emission voltages and two detector spectral sensitivities.
- the energy-resolved projection data may include more or less independent energy- resolved detection measurements.
- the detector array 116 is a photon-counting detector array, which, in response to detecting a photon, generates a signal having peak amplitude indicative of the energy of the detected x-ray photon.
- Signal processing electronics associate the detected photon with an energy range corresponding to the energy of the detected photon.
- Such electronics generally include a pulse shaper that processes the signal and produces an electrical signal such as a voltage or current pulse with the peak amplitude indicative of the energy of the detected photon, a discriminator that compares the amplitude of the pulse with one or more energy thresholds set in accordance with different energy levels, a counter that counts the number of times the amplitude exceeds the threshold for each threshold, and a binner that bins detected photons into energy bins or windows based on the counts.
- a pulse shaper that processes the signal and produces an electrical signal such as a voltage or current pulse with the peak amplitude indicative of the energy of the detected photon
- a discriminator that compares the amplitude of the pulse with one or more energy thresholds set in accordance with different energy levels
- a counter that counts the number of times the amplitude exceeds the threshold for each threshold
- a binner that bins detected photons into energy bins or windows based on the counts.
- a projection data processor 126 is configured to process the energy- resolved projection data. As described in greater detail below, in one instance such processing includes, but is not limited to, de-noising the energy-resolved projection data in the projection domain using a likelihood-based approach. Such de-noising allows for generating projection data, for lower photon statistic channels, that is less noisy relative to the projection data for the lower photon statistic channels before the de-noising. The de- noising of projection data with higher photon statistic may result in de-noised projection data with substantially the same photon statistics or better photon statistics. In one instance, the de-noising equalizes the noise in the various acquired spectral measurements in the projection domain, prior to reconstruction.
- the projection domain processor 126 includes a log-likelihood processor 202, a de-noiser 204, and an algorithm(s) bank 206 with one or more algorithms accessible for use by the log-likelihood processor 202.
- the log-likelihood processor 202 takes as an input the energy-resolved projection data measurements from the detector array 1 16 and determines a signal or value indicative of a most likely decomposition of the attenuation given the measured data based on a model for the measurement, a negative log-likelihood algorithm from the bank 206, and the measurements.
- the de-noiser 204 utilizes the signal to de-noise the original input energy-resolved projection data measurements, based on the model, producing de-noised energy-resolved projection data measurements.
- the energy-resolved projection data measurements (I m ) can be represented via the model shown in EQUATION 1 :
- the log-likelihood processor 202 receives I m and employs one of the two below negative log-likelihood algorithms of algorithm bank 206, based on the type of the energy-resolving detectors generating the measurements, to determine the most likely decomposition of the attenuation given the measurements, or A i .
- a negative log- likelihood based on a Gaussian noise model
- a negative log-likelihood based on a Poisson-likelihood noise model, can be represented (without terms independent of the quantities to be estimated) as shown in EQUATION 3 :
- the log-likelihood processor 202 determines the most likely decomposition ( A i ) of the attenuation given the measured data ( I ) by minimizing the log-likelihood equality of EQUATION 2 or EQUATION 3.
- the projection data de-noiser 204 generates de-noised energy-resolved projection data measurements ( I m ) by replacing Aj with A i in EQUATION 1 , as shown in EQUATION 4:
- the de-noised energy-resolved projection data measurements (I m ) will, in general, differ from the initial energy-resolved projection data measurements ( 1 ) as the likelihood finds a best compromise between minimizing an overall sum in EQUATIONS 2 and 3 and satisfying single measurements.
- the differences between the de-noised and initial energy-resolved measurements (I m and I ) will be largest for terms with large variance ⁇ (5 m 2 ), and the variance of the de-noised energy-resolved projection data measurements (I m ) can be smaller than the variance of the corresponding initial energy-resolved projection data measurements (I ⁇ ).
- the energy-resolved projection data measurement can be otherwise modeled and/or another algorithm can be used by the log- likelihood processor 202 to determine the signal used to de-noise the projection data.
- a reconstructor 128 reconstructs the processed projection data and generates volumetric image data indicative of the examination region 108.
- the illustrated reconstructor 128 is configured to employ one or more reconstruction algorithms 130 such as a spectral decomposition algorithm, a maximum likelihood (ML) reconstruction algorithm, a filtered back-projection algorithm, an iterative reconstruction algorithm, and/or other reconstruction algorithm.
- reconstruction algorithms 130 such as a spectral decomposition algorithm, a maximum likelihood (ML) reconstruction algorithm, a filtered back-projection algorithm, an iterative reconstruction algorithm, and/or other reconstruction algorithm.
- An example reconstruction algorithm models the projection data as a combination of the photo-electric effect with attenuation basis function , the
- At least three detection signals are available for at least three energy ranges (e.g., photo-electric effect, Compton effect, and a K-edge material)
- a system of at least three equations is formed having three unknowns (Ap h , A Co , and A K i), which can be solved with known numerical methods.
- the results e.g., A Ph and A Co , and, optionally, An, ..., ⁇
- the detector array 1 16 includes two sub-scintillators 122 with two different spectral sensitivities and optically coupled to corresponding photosensor layers 124
- resolution increases with the number of independent measurements available.
- the four of the measurements can be used in both cases to improve sensitivity and noise robustness, for example, using maximum likelihood approach that takes into account noise statistics.
- a suitable maximum likelihood approach is described in connection with "K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors," E. Roessl and R. Proksa, 2007 Phys. Med. Biol. 52 4679-4696.
- Another example reconstruction algorithm reconstructs the energy-resolved projection data into individual images and using image based analysis techniques to obtain meaningful clinical information.
- One non-limiting approach is to perform an N- dimensional cluster analysis to decompose the images into components such as soft tissue, calcium, iodine or other materials, where N is the number of distinct spectral
- the imaging system 100 further includes a couch or patient support 132 that supports a human or object within the examination region 108.
- the support 132 is movable in the x, y and z directions, which enables an operator or the system to suitably position the subject within the examination region 108 before, during and/or after scanning.
- a computing system such as an operator console 134 facilitates user interaction with the scanner 100.
- Software applications executed by the operator console 134 allow the user to configure and/or control operation of the scanner 100. For instance, the user can interact with the operator console 134 to select a protocol that includes kV switching, energy- resolved detection, and/or spectral reconstruction.
- the projection data processor 126 can be implemented via one or more processors executing one or more computer readable instructions encoded on computer readable storage medium (e.g., physical memory) and/or carried in a signal.
- the projection data processor 126 can be part of the system 100 (as shown), for example, part of the console 134, the reconstructor 128, a separate component, etc. and/or remote from the system 100, for example, part of a computing system or distributed across computing systems.
- the algorithm bank 206 may be local (as shown) or remote and may include one or both of the algorithms.
- FIGURES 3 and 4 graphically show initial and de-noised energy-resolved detection measurements in connection with a multi-bin photon counting detector.
- a y-axis 302 represents projection data measurements in units of absolute counts and an x-axis 304 represents detector channels of a row of detectors.
- profile 306 represents initial energy-resolved detection measurements for measurements of a poor photon statistic bin (i.e., small energy window with few counts and low statistics)
- profile 308 represents a log likelihood de-noised version of the profile 306 generated by the projection data processor 126 (FIGURES 1 and 2).
- the profile 308 for the de-noised measurements is, visibly, much less noisy than the profile 306 for the initial poor photon statistic measurements. In this example, noise is improved by about a factor of two. In generally, the degree of improvement will depend on the original bin statistics relative to the statistics in all other bins.
- profile 402 represents initial energy-resolved detection measurements for measurements of a high statistic bin (i.e., a relatively larger energy window with more counts and greater statistics)
- profile 404 represents a log likelihood de-noised version of the profile 402 generated by the projection data processor 126 (FIGURES 1 and 2). Note that the profile 404 for the de-noised measurements and the profile 306 for the initial high statistic measurements have, visibly, about the same noise.
- the detector array 116 can be an energy-resolving detector array like the one discussed in FIGURE 1 or photon counting detector like the example discussed next in connection with FIGURE 5.
- FIGURE 2 negative log-likelihoods were described for both energy-resolving detector arrays (EQUATION 2) and photon-counting detector arrays (EQUATION 3).
- FIGURE 5 illustrates a method for processing projection data including energy-resolved detection measurements. It is to be appreciated that the ordering of the acts in the methods described herein is not limiting. As such, other orderings are contemplated herein. In addition, one or more acts may be omitted and/or one or more additional acts may be included.
- projection data is received.
- the projection data can be generated by an energy-resolving detector and include two or more independent energy-resolved measurements in which at least one of the two or more measurements has first photon statistics.
- a model representing the independent energy-resolved measurements is obtained.
- An example model includes the model shown in EQUATION 1. Other models can alternatively be used.
- a signal indicative of a most likely decomposition of attenuation for a measurement of the independent energy-resolved measurements is generated based on the model and the corresponding measurement. This act can be performed at least on the at least one measurement having the first photon statistic and can be repeated for all or subset of the two or more independent energy-resolved measurements.
- a log-likelihood approach can be used to generate the signal. More particularly, where the energy-resolving detector is a vertical, a negative log- likelihood based on a Gaussian noise model such as the one as shown in EQUATION 2 can be used, and where the energy-resolving detector is a photon-counting detector, a negative log-likelihood based on a Poisson noise model such as the one as shown in EQUATION 3 can be used.
- a de-noised measurement for the measurement is generated.
- the de-noised measurement can be based on the model and the signal. For example, as described herein, this can be achieved by substituting the signal into the model and computing the measurement that results in the signal, wherein the de-noised measurement has second photon statistics, which are better than the first photon statistics. This act can be performed at least on the signal corresponding to the first photon statistic and can be repeated for all or subset of the signals for the other two or more independent energy- resolved measurements.
- the de-noised projection data is reconstructed.
- the above may be implemented via one or more processors executing one or more computer readable instructions encoded or embodied on computer readable storage medium such as physical memory which causes the one or more processors to carry out the various acts and/or other functions and/or acts. Additionally or alternatively, the one or more processors can execute instructions carried by transitory medium such as a signal or carrier wave.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012800131755A CN103430216A (en) | 2011-03-15 | 2012-03-02 | Likelihood-based spectral data projection domain de-noising |
EP12710345.5A EP2686832A1 (en) | 2011-03-15 | 2012-03-02 | Likelihood-based spectral data projection domain de-noising |
RU2013145538/28A RU2582475C2 (en) | 2011-03-15 | 2012-03-02 | Likelihood-based spectral data projection domain de-noising |
US14/005,041 US20140005971A1 (en) | 2011-03-15 | 2012-03-02 | Likelihood-based spectral data projection domain de-noising |
BR112013023261A BR112013023261A2 (en) | 2011-03-15 | 2012-03-02 | method for processing projection data in the projection domain |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161452825P | 2011-03-15 | 2011-03-15 | |
US61/452,825 | 2011-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012123845A1 true WO2012123845A1 (en) | 2012-09-20 |
Family
ID=45876821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2012/050985 WO2012123845A1 (en) | 2011-03-15 | 2012-03-02 | Likelihood-based spectral data projection domain de-noising |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140005971A1 (en) |
EP (1) | EP2686832A1 (en) |
CN (1) | CN103430216A (en) |
BR (1) | BR112013023261A2 (en) |
RU (1) | RU2582475C2 (en) |
WO (1) | WO2012123845A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014080311A1 (en) * | 2012-11-26 | 2014-05-30 | Koninklijke Philips N.V. | Projection data de-noising |
WO2014129463A1 (en) * | 2013-02-19 | 2014-08-28 | 株式会社東芝 | Computed tomography device, photon number determination program, photon number determination device, and calibration program |
CN107292847A (en) * | 2017-06-28 | 2017-10-24 | 上海联影医疗科技有限公司 | A kind of data noise reduction and system |
US10176603B2 (en) | 2013-08-07 | 2019-01-08 | The University Of Chicago | Sinogram (data) domain pansharpening method and system for spectral CT |
US11908046B2 (en) | 2017-06-28 | 2024-02-20 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for determining processing parameter for medical image processing |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9076237B2 (en) * | 2013-03-12 | 2015-07-07 | Wisconsin Alumni Research Foundation | System and method for estimating a statistical noise map in x-ray imaging applications |
US9978158B2 (en) * | 2013-08-30 | 2018-05-22 | Koninklijke Philips N.V. | Spectral projection data de-noising with anti-correlation filter |
JP6277331B1 (en) * | 2014-12-11 | 2018-02-07 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | X-ray detector, imaging apparatus and calibration method |
JP6580836B2 (en) * | 2015-02-03 | 2019-09-25 | キヤノンメディカルシステムズ株式会社 | Photon counting CT system |
EP3271898B1 (en) * | 2015-03-18 | 2019-10-16 | Prismatic Sensors AB | Image reconstruction based on energy-resolved image data from a photon-counting multi bin detector |
US9508165B1 (en) * | 2015-06-30 | 2016-11-29 | General Electric Company | Systems and methods for peak tracking and gain adjustment |
WO2017046141A1 (en) * | 2015-09-16 | 2017-03-23 | Koninklijke Philips N.V. | X-ray imaging device for an object |
US9875527B2 (en) | 2016-01-15 | 2018-01-23 | Toshiba Medical Systems Corporation | Apparatus and method for noise reduction of spectral computed tomography images and sinograms using a whitening transform |
CN108550158B (en) * | 2018-04-16 | 2021-12-17 | Tcl华星光电技术有限公司 | Image edge processing method, electronic device and computer readable storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030156684A1 (en) * | 2002-02-20 | 2003-08-21 | Fessler Jeffrey A. | Method for statistically reconstructing images from a plurality of transmission measurements having energy diversity and image reconstructor apparatus utilizing the method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0728862B2 (en) * | 1989-02-13 | 1995-04-05 | 株式会社東芝 | CT device |
US6793496B2 (en) * | 1999-04-15 | 2004-09-21 | General Electric Company | Mathematical model and a method and apparatus for utilizing the model |
JP3789728B2 (en) * | 1999-08-10 | 2006-06-28 | ジーイー横河メディカルシステム株式会社 | Projection data correction method and apparatus, and radiation tomography apparatus |
EP1934942B1 (en) * | 2005-09-26 | 2016-05-04 | Koninklijke Philips N.V. | Iterative reconstruction with enhanced noise control filtering |
EP2024935A1 (en) * | 2006-05-11 | 2009-02-18 | Philips Intellectual Property & Standards GmbH | Method and apparatus for reconstructing an image |
US8155264B2 (en) * | 2006-11-30 | 2012-04-10 | Koninklijke Philips Electronics N.V. | Gated computed tomography |
CN100565587C (en) * | 2008-04-07 | 2009-12-02 | 深圳市蓝韵实业有限公司 | A kind of reprocessing method for maximum-density projection image data |
-
2012
- 2012-03-02 WO PCT/IB2012/050985 patent/WO2012123845A1/en active Application Filing
- 2012-03-02 RU RU2013145538/28A patent/RU2582475C2/en not_active IP Right Cessation
- 2012-03-02 CN CN2012800131755A patent/CN103430216A/en active Pending
- 2012-03-02 BR BR112013023261A patent/BR112013023261A2/en not_active IP Right Cessation
- 2012-03-02 EP EP12710345.5A patent/EP2686832A1/en not_active Withdrawn
- 2012-03-02 US US14/005,041 patent/US20140005971A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030156684A1 (en) * | 2002-02-20 | 2003-08-21 | Fessler Jeffrey A. | Method for statistically reconstructing images from a plurality of transmission measurements having energy diversity and image reconstructor apparatus utilizing the method |
Non-Patent Citations (3)
Title |
---|
E. ROESSL; R. PROKSA: "K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors", PHYS. MED. BIOL., vol. 52, 2007, pages 4679 - 4696 |
JOONKI NOH ET AL: "Statistical Sinogram Restoration in Dual-Energy CT for PET Attenuation Correction", IEEE TRANSACTIONS ON MEDICAL IMAGING, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 28, no. 11, 1 November 2009 (2009-11-01), pages 1688 - 1702, XP011280942, ISSN: 0278-0062, DOI: 10.1109/TMI.2009.2018283 * |
JOSEPH A O'SULLIVAN ET AL: "Alternating Minimization Algorithms for Transmission Tomography", IEEE TRANSACTIONS ON MEDICAL IMAGING, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 26, no. 3, 1 March 2007 (2007-03-01), pages 283 - 297, XP011171978, ISSN: 0278-0062, DOI: 10.1109/TMI.2006.886806 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014080311A1 (en) * | 2012-11-26 | 2014-05-30 | Koninklijke Philips N.V. | Projection data de-noising |
CN104903933A (en) * | 2012-11-26 | 2015-09-09 | 皇家飞利浦有限公司 | Projection data de-noising |
US9600866B2 (en) | 2012-11-26 | 2017-03-21 | Koninklijke Philips N.V. | Projection data de-noising |
WO2014129463A1 (en) * | 2013-02-19 | 2014-08-28 | 株式会社東芝 | Computed tomography device, photon number determination program, photon number determination device, and calibration program |
US9155516B2 (en) | 2013-02-19 | 2015-10-13 | Kabushiki Kaisha Toshiba | Apparatus and method for count loss calibration of photon-counting detectors in spectral computed tomography imaging |
US10176603B2 (en) | 2013-08-07 | 2019-01-08 | The University Of Chicago | Sinogram (data) domain pansharpening method and system for spectral CT |
CN107292847A (en) * | 2017-06-28 | 2017-10-24 | 上海联影医疗科技有限公司 | A kind of data noise reduction and system |
CN107292847B (en) * | 2017-06-28 | 2022-03-25 | 上海联影医疗科技股份有限公司 | Data noise reduction method and system |
US11908046B2 (en) | 2017-06-28 | 2024-02-20 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for determining processing parameter for medical image processing |
Also Published As
Publication number | Publication date |
---|---|
BR112013023261A2 (en) | 2016-12-20 |
RU2013145538A (en) | 2015-04-20 |
EP2686832A1 (en) | 2014-01-22 |
CN103430216A (en) | 2013-12-04 |
US20140005971A1 (en) | 2014-01-02 |
RU2582475C2 (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012123845A1 (en) | Likelihood-based spectral data projection domain de-noising | |
US11123034B2 (en) | Spectral imaging | |
US9754387B2 (en) | System and method for improved energy series of images using multi-energy CT | |
US8442184B2 (en) | Spectral CT | |
US8363779B2 (en) | System and method of acquiring multi-energy CT imaging data | |
US7734076B2 (en) | Material decomposition image noise reduction | |
US8199874B2 (en) | System and method of mitigating low signal data for dual energy CT | |
US8611489B2 (en) | Spectral imaging | |
WO2013144812A2 (en) | Conventional imaging with an imaging system having photon counting detectors | |
JP2008536138A (en) | Energy distribution reconstruction in CT | |
CN107072626B (en) | Spectral projection extension | |
US20150248782A1 (en) | Quantitative spectral imaging | |
WO2022096401A1 (en) | Methods and systems for generating a spectral computed tomography image | |
CN118871999A (en) | Metric-based data management for X-ray imaging systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12710345 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012710345 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012710345 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14005041 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013145538 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013023261 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013023261 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130911 |