New! View global litigation for patent families

WO2012122180A1 - Catheter with radiopaque coil - Google Patents

Catheter with radiopaque coil

Info

Publication number
WO2012122180A1
WO2012122180A1 PCT/US2012/027903 US2012027903W WO2012122180A1 WO 2012122180 A1 WO2012122180 A1 WO 2012122180A1 US 2012027903 W US2012027903 W US 2012027903W WO 2012122180 A1 WO2012122180 A1 WO 2012122180A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
catheter
layer
balloon
coil
outer
Prior art date
Application number
PCT/US2012/027903
Other languages
French (fr)
Inventor
Thomas Haslinger
Original Assignee
Abbott Cardiovascular Systems Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0012Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1036Making parts for balloon catheter systems, e.g. shafts or distal ends

Abstract

A balloon catheter having a radiopaque coil embedded in the catheter's body corresponding to a landmark of the balloon or other location on the catheter body. The radiopaque coil can be viewed under fluoroscopy to located the balloon or other structure of the catheter. The coil can be readily inserted in the manufacturing process by inserting it between two layers that form the catheter body, and then sealing the coil inside the catheter at the desired location. This facilitates both the manufacturing process and prevents the marker from being dislodged during the manufacturing, navigation, or inflation process.

Description

CATHETER WITH RADIOPAQUE COIL

BACKGROUND

This invention generally relates to intravascular balloon catheters and systems for performing percutaneous transluminal coronary angioplasty (PTCA) and/or stent delivery, and more particularly to a catheter delivery system that uses a radiopaque coil in the catheter structure to provide a visual indicator in the system showing where a part of the catheter is located within a body lumen.

PTCA is a widely used procedure for the treatment of coronary heart disease. In this procedure, a balloon dilatation catheter is advanced into the patient's coronary artery and the balloon on the catheter is inflated within the stenotic region of the patient's artery to open up the arterial passageway and thereby increase the blood flow there through. To facilitate the advancement of the dilatation catheter into the patient's coronary artery, a guiding catheter having a pre-shaped distal tip is first percutaneously introduced into the cardiovascular system of a patient by the Seldinger technique or other method through the brachial or femoral arteries.

The catheter is advanced until the pre-shaped distal tip of the guiding catheter is disposed within the aorta adjacent the ostium of the desired coronary artery, and the distal tip of the guiding catheter is then maneuvered into the ostium. A balloon dilatation catheter may then be advanced through the guiding catheter into the patient's coronary artery over a guidewire until the balloon on the catheter is disposed within the stenotic region of the patient's artery. The balloon is inflated to open up the arterial passageway and increase the blood flow through the artery. Generally, the inflated diameter of the balloon is

approximately the same diameter as the native diameter of the body lumen being dilated so as to complete the dilatation but not over expand the artery wall. After the balloon is finally deflated, blood flow resumes through the dilated artery and the dilatation catheter can be removed.

In a large number of angioplasty procedures, there may be a restenosis, i.e.

reformation of the arterial plaque. To reduce the restenosis rate and to strengthen the dilated area, physicians may implant an intravascular prosthesis or "stent" inside the artery at the site of the lesion. Stents may also be used to repair vessels having an intimal flap or dissection or to generally strengthen a weakened section of a vessel. Stents are usually delivered to a desired location within a coronary artery in a contracted condition on a balloon of a catheter which is similar in many respects to a balloon angioplasty catheter, and expanded to a larger diameter by expansion of the balloon. The balloon is then deflated to remove the catheter and the stent is left in place within the artery at the site of the dilated lesion.

To accurately place the balloon, and also the stent, at the desired location, visual markers on the catheter are typically utilized that are read by machines outside the body. For example, in the case where a balloon catheter is used with an fiuoroscope, a radiopaque marker incorporated into the catheter body may be observed visually on a screen while the procedure is taking place. In many cases, the markers must be precisely located to ensure accurate placement of the balloon in the affected area. Incorporating markers into the catheter's or balloon's structure can be expensive, and the markers can become dislodged when the catheter is torqued during delivery or when the catheter's balloon expands. For these reasons, a better and more economically feasible method of incorporating a radiopaque marker into a balloon catheter is needed.

SUMMARY OF THE INVENTION

The present invention is a catheter or catheter delivery system that incorporates a coil made from a radiopaque material that can be inserted between layers of a multi-layer catheter body. The coil is placed, for example, over a first layer of a multi-layer catheter body, and then a second layer of material is formed over the first, capturing the radiopaque coil between the two layers. Where the coil is disposed at, for example, the beginning or end of the working length of the balloon, the physician can accurately determine the precise location that the balloon needs to be positioned under fluoroscopy by locating the coil, which in turn identifies the beginning (or end) of the balloon's working length.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevated, perspective view of a catheter delivery system of the present invention;

FIG. 2 is a cross-sectional view of the catheter of FIG. 1 taken along lines 2-2; FIG. 3 is a cross-sectional view of the catheter of FIG. 1 taken along lines 3-3; FIG. 4 is a perspective view of the catheter as the outer layer is being peeled back for removal;

FIG. 5 is a perspective view of the coil being placed over the inner layer of the catheter;

FIG. 6 is an enlarged perspective view of the coil on the inner layer of the catheter; FIG. 7 is an enlarged view of the catheter with a new outer layer placed over the coil and the inner layer;

FIG. 8 is an enlarged view, partially in shadow, of the catheter with the balloon showing the position of the coil in a first embodiment; and

FIG. 9 is a perspective view of the catheter balloon showing the position of the coil in a second embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 illustrates a balloon catheter of the type that can benefit from the present invention. The catheter 10 of the invention generally comprises an elongated catheter shaft 11 having a proximal section, 12 a distal section 13, an inflatable balloon 14 formed of one or more polymeric materials on the distal section 13 of the catheter shaft 11, and an adapter 17 mounted on the proximal section 12 of shaft 11. In FIG. 1, the distal portion of the catheter 10 is illustrated within a patient's body lumen 18, prior to expansion of the balloon 14.

In the embodiment illustrated in FIG. 1, the catheter shaft 11 has an outer tubular member 19 and an inner tubular member 20 disposed within the outer tubular member defining, with the outer tubular member, an inflation lumen 21. Inflation lumen 21 is in fluid communication with the interior chamber 15 of the inflatable balloon 14. The inner tubular member 20 has an inner lumen 22 extending therein which is configured to slidably receive a guidewire 23 suitable for advancement through a patient's coronary arteries. The distal extremity 31 of the inflatable balloon 14 is sealingly secured to the distal extremity of the inner tubular member 20 and the proximal extremity 32 of the balloon 14 is sealingly secured to the distal extremity of the outer tubular member 19.

FIGs. 2 and 3 show transverse cross sections of the catheter shaft 11 and balloon 14, respectively, illustrating the guidewire receiving lumen 22 of the guidewire's inner tubular member 20 and inflation lumen 21 leading to the balloon interior 15. The balloon 14 can be inflated by a fluid introduced at the port in the side arm 24 into inflation lumen 21 contained in the catheter shaft 11, or by other means, such as from a passageway formed between the outside of the inner tubular member 20 and the outer tubular member 11, depending on the particular design of the catheter. The details and mechanics of balloon inflation vary according to the specific design of the catheter, and are well known in the art. Typically balloon catheters of the type shown in Figure 1 include radiopaque markers incorporated onto the inner tubular member. These markers must be formed onto the inner tubular member's surface, either through adhesives, mechanical attachment, or embedded into the inner tubular member's material. As explained above, there are shortcomings with incorporating radiopaque markers relating to reliability of adhering the markers to the catheter body as well as the fact that the procedure is expensive and reduces the manufacturing yield of the catheters. The present invention overcomes these shortcomings by implanting a radiopaque coil into the catheter body, preferably at a location of interest to the physician, so that the conventional balloon markers can be omitted. Figures 4 - 7 illustrate the various steps of one method for constructing the catheter of the present invention.

With reference to Figure 4, a catheter body 11 is formed on a mandrel 130 and may be formed, for example, as a dual-layer hollow extrusion with a lubricious inner layer 100 of HDPE or ultra high molecular weight polyethylene (UHMWPE) and an outer layer 105 of nylon or Pebax, with or without the usual Primacor "tie layer" that binds the inner layer 100 to the outer layer 105. To insert the radiopaque coil into the catheter body, the outer layer 105 is stripped away by peeling back tabs 115 until the scored portion 110 is readed, whereupon a coil placed over the inner layer 100. Assembly begins with the following steps to remove a distal section of the outer Pebax or nylon layer 105:

Step 1 : At an appropriate distance from the distal end of the catheter body 11 , the outer layer of the HDPE/nylon or HDPE/Pebax extrusion is circumferentially scored 110 using a cutting instrument such as a razor blade or the like to create a break point of the outer layer 105 only (FIG. 4). Care is called for to control the scoring blade in order to protect the inner layer 100.

Step 2: A longitudinal slit is made at the distal end of the catheter body over a length of several millimeters or more using a cutting knife such as a razor blade or equivalent, creating two semi-circular halves at the distal end.

Step 3: To separate the outer layer 105 from the inner layer 100, both halves of the bisected end are folded or rolled back, and a grasping tool such as tweezers or the like is used to grasp the outer layer 105 at the semi-circular halves and pull them away from the inner layer 100 of each half (Figure 4). The outer layer 105 is then peeled away from their respective inner layer to thus separate and remove the outer layer until the score mark 110 is reached, whereupon the outer layer halves 105a,b tear away from the catheter body 11. The result is a stepped transition 140 between the exposed HDPE inner layer 100 and the intact proximal remainder of the extrusion's outer layer 105 (Figure 5).

Next, a radiopaque coil 150 is slid over the exposed inner layer 100 of the catheter (see arrow 170 of FIG. 5) and a second coil may be added to the first coil. The coils 150 may, but not need be, stacked, and a separation of the two (or more) coils can provide a gap where the outer tubular member and the inner tubular member make physical contact to help seal the coil therebetween. Once the coil or coils 150 are in place, a new, lower durometer coextrusion outer layer 180 is slid over the coil(s) 150 and the inner layer 100 as shown in Figure 7. The coextrusion 180 may include an adhesive tie-layer (not shown) to help bond the new outer layer 180 to the inner layer 100. Placing the outer layer 180 over the coil sandwiches the coil 150 inside the catheter's multi-layer construction. The new outer layer 180 is butted against the old outer layer 105, and a suitable length of shrink tubing may be placed over the joint as is known in the art. A fluoropolymer shrink tube material, such as FEP, is preferable due to its non-stick nature. This region is then progressively heated to melt bond the various segments 180 and 100 together and, where present,, allow a Primacor middle layer to adhere or "tie" the outer layer 180 to the underlying HDPE layer. Afterwards, the shrink tubing and mandrel 130 are removed to leave the finished catheter body with the radiopaque coil 150 embedded in the catheter body.

The resultant catheter has the radiopaque coil 150 embedded in its construction and can be used to locate the balloon 14 or other part of the catheter under fluoroscopy. In Figure 8, the catheter 11 can be seen with a balloon 14 mounted thereon such that the coil 150 terminates at the end of the working section 51 of the balloon 14. Under fluoroscopy, a physician would be able to locate the coil 150 and immediately know where the working section 51 of the balloon ends. This feature allows the physician to locate the coil adjacent the lesion or obstruction and know with confidence that the balloon 14 will be applied at the precise location where the proximal end of the coil 150 begins. Alternatively, as shown in Figure 9, the coil 150 or coils can be placed along and co-terminus with the working section of the balloon 14 (between 51 and 52). For the catheter balloon 14 of Figure 9, the coil 150 corresponds to the beginning 52 and end 51 of the working portion of the balloon 14, so the physician can locate the coil 150 under fluoroscopy and place the balloon 14 precisely where it needs to be to accomplish the greatest effectiveness. Other locations are also available, such as at the beginning of the working section of the balloon for example. The outer layer 105 can be any durometer polymer, as required by the application, and its inner layer 100 can be any extrudable lubricious material. However, preferably the layer materials should not adhere well to each other during extrusion, because peeling off the outer layer 105 at the distal end would be more difficult. The dual layer catheter may be E-beam irradiated, particularly if its inner layer is HDPE (or UHMWPE), as this promotes cross-linking and thus prevents undesirable material flow of the inner layer during subsequent melt bonding operations.

The newly added outer layer segment 180 can be any durometer polymer, as the application requires, but it is preferred that it contain an inner surface of a "tie layer" material like Primacor in order to promote secure bonding to the inner layer 100. The heat needed for such bonding is preferably achieved by equipment that provides localized and controllable heat with the ability to traverse or rotate, and the required radial pressure is preferably provided by shrink tubing which does not adhere well to the underlying materials. Although it would be possible to simply heat the assembly in an oven, this is less desirable because of a greater tendency to trap air beneath the shrink tubing leading to surface irregularities.

This invention is also applicable to inner members whose inner layer 100 is a fluoropolymer such as PTFE. For example, the inner layer 100 can be a single-layer extrusion that is subsequently etched (e.g., sodium naphthalene or "Terra Etch") to promote bondability of its outer surface. An outer layer 105 is then extruded onto the fluoropolymer tubing in a semi-continuous (reel to reel) manner, with the extrusion parameters selected to prevent melt bonding of the two layers. Thus, the outer layer 105 can be subsequently peeled away at one end to make room for the installation of various durometers of outer jacket segments and radiopaque coils 150. In this embodiment, the added segments do not require an inner "tie layer' because they can be melt bonded directly to the etched fluoropolymer surface, again using heat and shrink tubing.

While particular forms of the invention have been illustrated and described, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited except by the appended claims.

Claims

WHAT IS CLAIMED:
1. A catheter body for insertion through a body lumen, comprising
a first layer forming an inner lumen of the catheter;
a second layer forming an outer surface of the catheter; and a radiopaque coil inserted between the first and second layers.
2. The catheter body of claim 1 , wherein the outer layer is formed in two parts.
3. The catheter body of claim 2, wherein the outer layer is formed by stripping away a first section, and then forming a new section in its place.
4. The catheter body of claim 1 , wherein a distal portion of the catheter includes an inflation balloon.
5. The catheter body of claim 4, wherein the radiopaque coil coincides longitudinally with a proximal end of a working section of the inflation balloon.
6. The catheter body of claim 4, wherein the radiopaque coil coincides longitudinally with a distal end of a working section of the inflation balloon.
7. The catheter body of claim 1, wherein the first layer is high density polyethylene.
8. The catheter body of claim 1 , wherein the first layer is ultra high molecular weight polyethylene.
9. The catheter body of claim 1 wherein the second layer is nylon.
10. The catheter body of claim 1 wherein the second layer is Pebax.
11. The catheter body of claim 3, where the second layer is adhered to the first layer with a tie layer.
12. The catheter body of claim 11 , where the tie layer is between the new section of the second layer and the first layer.
13. The catheter body of claim 1, wherein the first layer and the second layer are sandwiched together over the radiopaque coil by heat.
14. The catheter body of claim 1, further comprising a second radiopaque coil stacked against the first radiopaque coil.
15. The catheter body of claim 14, wherein the first radiopaque coil demarks the proximal onset of a working section of an inflation balloon and the second radiopaque coil demarks a distal end of the working section of the inflation balloon.
16. A method for making a catheter body comprising the steps of:
forming a composing catheter body having an inner layer and an outer layer;
cutting away a portion of the outer layer to expose the inner layer;
placing a radiopaque coil on the exposed inner layer; and
forming a new outer layer over the exposed inner layer and the radiopaque coil to trap the radiopaque coil between the inner layer and the new outer layer.
17. The method of claim 16, wherein a tie layer is interposed between the first layer and the new outer layer to bond the first layer to the second layer.
18. The method of claim 16 further comprising attaching an inflation balloon to the outer layer.
19. The method of claim 18 wherein the radiopaque coil coincides
longitudinally with a proximal end of a working section of the inflation balloon.
PCT/US2012/027903 2011-03-08 2012-03-06 Catheter with radiopaque coil WO2012122180A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/042,792 2011-03-08
US13042792 US8652098B2 (en) 2011-03-08 2011-03-08 Catheter with radiopaque coil

Publications (1)

Publication Number Publication Date
WO2012122180A1 true true WO2012122180A1 (en) 2012-09-13

Family

ID=45852760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/027903 WO2012122180A1 (en) 2011-03-08 2012-03-06 Catheter with radiopaque coil

Country Status (2)

Country Link
US (2) US8652098B2 (en)
WO (1) WO2012122180A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD732160S1 (en) * 2012-08-30 2015-06-16 Terumo Kabushiki Kaisha Intravenous catheter
USD731641S1 (en) * 2012-08-30 2015-06-09 Terumo Kabushiki Kaisha Intravenous catheter
US9504476B2 (en) 2012-10-01 2016-11-29 Microvention, Inc. Catheter markers
US9406129B2 (en) 2013-10-10 2016-08-02 Medtronic, Inc. Method and system for ranking instruments
US9668818B2 (en) 2014-10-15 2017-06-06 Medtronic, Inc. Method and system to select an instrument for lead stabilization

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011889A1 (en) * 1990-12-27 1992-07-23 Wormer Mark E Van Acoustically enhanced catheter
US5630806A (en) * 1991-08-13 1997-05-20 Hudson International Conductors Spiral wrapped medical tubing
US5782810A (en) * 1995-11-22 1998-07-21 O'donnell; Miles C. Multipart radiopaque and/or magnetically detectable tube catheter and method of fabrication thereof
US6285903B1 (en) * 1998-06-30 2001-09-04 Eclipse Surgical Technologies, Inc. Intracorporeal device with radiopaque marker
WO2003004085A2 (en) * 2001-07-03 2003-01-16 Boston Scientific Limited Intravascular catheter having multi-layered tip
US20050148866A1 (en) * 2003-12-29 2005-07-07 Scimed Life Systems, Inc. Medical device with modified marker band
EP1721631A1 (en) * 2005-05-13 2006-11-15 Terumo Kabushiki Kaisha Catheter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045071A (en) * 1985-12-17 1991-09-03 Mbo Laboratories, Inc. Double wall catheter with internal printing and embedded marker
US5176637A (en) * 1990-04-19 1993-01-05 Terumo Kabushiki Kaisha Catheter equipped with a dilation element
US5380304A (en) * 1991-08-07 1995-01-10 Cook Incorporated Flexible, kink-resistant, introducer sheath and method of manufacture
US5645532A (en) * 1996-03-04 1997-07-08 Sil-Med Corporation Radiopaque cuff peritoneal dialysis catheter
US6500147B2 (en) * 1999-02-22 2002-12-31 Medtronic Percusurge, Inc. Flexible catheter
US6488655B1 (en) * 1999-06-30 2002-12-03 Advanced Cardiovascular Systems, Inc. Polymer jacket with adhesive inner layer
US6508804B2 (en) * 1999-07-28 2003-01-21 Scimed Life Systems, Inc. Catheter having continuous lattice and coil reinforcement
US6702802B1 (en) 1999-11-10 2004-03-09 Endovascular Technologies, Inc. Catheters with improved transition
DE602004020449D1 (en) * 2003-02-26 2009-05-20 Boston Scient Ltd balloon catheter
US9320831B2 (en) * 2005-03-04 2016-04-26 W. L. Gore & Associates, Inc. Polymer shrink tubes and novel uses therefor
US20100286664A1 (en) * 2009-05-08 2010-11-11 Abbott Cardiovascular Systems, Inc. Catheter push device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011889A1 (en) * 1990-12-27 1992-07-23 Wormer Mark E Van Acoustically enhanced catheter
US5630806A (en) * 1991-08-13 1997-05-20 Hudson International Conductors Spiral wrapped medical tubing
US5782810A (en) * 1995-11-22 1998-07-21 O'donnell; Miles C. Multipart radiopaque and/or magnetically detectable tube catheter and method of fabrication thereof
US6285903B1 (en) * 1998-06-30 2001-09-04 Eclipse Surgical Technologies, Inc. Intracorporeal device with radiopaque marker
WO2003004085A2 (en) * 2001-07-03 2003-01-16 Boston Scientific Limited Intravascular catheter having multi-layered tip
US20050148866A1 (en) * 2003-12-29 2005-07-07 Scimed Life Systems, Inc. Medical device with modified marker band
EP1721631A1 (en) * 2005-05-13 2006-11-15 Terumo Kabushiki Kaisha Catheter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date Type
US20140123463A1 (en) 2014-05-08 application
US20120232478A1 (en) 2012-09-13 application
US8652098B2 (en) 2014-02-18 grant

Similar Documents

Publication Publication Date Title
US6258073B1 (en) Bifurcated catheter assembly
US5769819A (en) Catheter distal tip component
US6344045B1 (en) Sizing and therapeutic catheter with sheath
US7195638B1 (en) Catheter balloon
US6695809B1 (en) Catheter balloon with a discontinuous elastomeric outer layer
US5843027A (en) Balloon sheath
US4958634A (en) Limacon geometry balloon angioplasty catheter systems and method of making same
US4763654A (en) Tandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use
US4990139A (en) Tandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems
US6544218B1 (en) Catheter with biased shaft
US6113579A (en) Catheter tip designs and methods for improved stent crossing
US6620191B1 (en) System for releasably securing a stent on a catheter assembly and method of use
US20120245517A1 (en) Dual lumen bond for vascular closure device and methods
US5520647A (en) Rapid withdrawal catheter
US6517515B1 (en) Catheter having variable size guide wire lumen
US6652568B1 (en) Radiopaque balloon
US20080103443A1 (en) Balloon catheter for treating hardened lesions
US6979342B2 (en) Catheter with a polyimide distal tip
US20080243081A1 (en) Expandable trans-septal sheath
US6488655B1 (en) Polymer jacket with adhesive inner layer
US7037291B2 (en) Catheter shaft junction having a polymeric reinforcing member with a high glass transition temperature
US20080051705A1 (en) Bifurcation stent delivery catheter and method
US20040193196A1 (en) Device and method for converting a balloon catheter into a cutting ballon catheter
US7875049B2 (en) Expandable guide sheath with steerable backbone and methods for making and using them
US20020177800A1 (en) Aspiration catheters and method of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12709471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12709471

Country of ref document: EP

Kind code of ref document: A1