WO2012121323A1 - 光学特性測定装置 - Google Patents

光学特性測定装置 Download PDF

Info

Publication number
WO2012121323A1
WO2012121323A1 PCT/JP2012/055945 JP2012055945W WO2012121323A1 WO 2012121323 A1 WO2012121323 A1 WO 2012121323A1 JP 2012055945 W JP2012055945 W JP 2012055945W WO 2012121323 A1 WO2012121323 A1 WO 2012121323A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
hemispherical
optical system
light
spheroid
Prior art date
Application number
PCT/JP2012/055945
Other languages
English (en)
French (fr)
Inventor
川手 悦男
ミロスラバ ハイン
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US14/003,201 priority Critical patent/US8982345B2/en
Priority to EP12755428.5A priority patent/EP2685237A4/en
Publication of WO2012121323A1 publication Critical patent/WO2012121323A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0085Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with both a detector and a source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4714Continuous plural angles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • G01N2201/0637Elliptic

Definitions

  • the present invention relates to an optical property measuring apparatus with excellent sensitivity that allows light to be incident on an object to be measured such as a sample and measure the intensity of light scattered from the sample and its spatial distribution.
  • the present invention relates to a scatterometer that can efficiently measure the global scattering of an object to be measured.
  • specular reflection a phenomenon in which diffuse reflection and diffuse transmission are added.
  • a scatterometer using a half-spheroid mirror is known.
  • a scatterometer using an integrating sphere and a scatterometer using a goniometer are known.
  • a scatterometer using an imaging hemisphere and a scatterometer using two ellipsoidal mirrors (also referred to as a seagull scatterometer) (see Patent Document 5) are known.
  • the present inventor has proposed a structure of a double elliptical optical system and has developed an optical characteristic measuring apparatus.
  • An apparatus using an optical system using a double elliptical cylindrical mirror has already been developed (see Patent Document 1).
  • the present inventor has developed an apparatus that measures absolute reflectance and absolute transmittance using an optical system having a structure in which two ellipsoidal mirrors are joined instead of joining elliptical cylinders (Patent Literature). 2 and 3).
  • the apparatus includes a bi-ellipsoidal mirror composed of two spheroid mirrors, and two beam switching mirrors and a sample are arranged at each focal point.
  • the present inventor can rotate a light-receiving-side spheroid mirror having a structure of a bi-elliptic type optical system by a predetermined angle and rotate a beam switching mirror at the focal point of the spheroid mirror by a minute angle.
  • the structure of the bi-elliptical optical system is such that the incident-side ellipsoidal mirror E1 and the light-receiving ellipsoidal mirror E2 have a common focal point F0 as a mutual focal point, and the remaining focal points of the ellipsoidal mirrors E1 and E2.
  • F1 and F2 be a structure in which these three focal points are aligned in a straight line.
  • the present inventor has developed a device for detecting scattered light that is focused on the focal point of a rotating ellipsoidal mirror by rotating a light-receiving side ellipsoidal mirror having a structure of a bi-elliptical optical system, It was possible to measure the global scattering of objects (see Patent Document 4).
  • the first and second ellipsoidal mirrors constituting the bielliptical optical system have a structure composed of a plate-like or belt-like member having a predetermined thickness (see FIG. 2 of Patent Document 4).
  • the scatterometers targeted by the scatterometer include the following measurement quantities. In light scattering from a sample, each light reflected or transmitted from the sample is distributed on a hemisphere. There are two important measurements at this time. (1) The total reflected light amount or the total transmitted light amount to the hemisphere is compared with the total background light amount measured in advance, and the hemispherical total reflectance or the hemispherical total transmittance is obtained. (2) Light distribution measurement (bidirectional reflection distribution function or bidirectional transmission distribution function) in measuring how the reflected light or transmitted light is distributed on each hemisphere.
  • a conventional scatterometer using a half-spheroid mirror is a method for measuring the total reflectance of a hemisphere. Although it was researched and developed until the 1980s, it was not put into practical use. The first reason is that a highly diffuse reflecting material that forms the inner wall of the integrating sphere, which was a competing technology, was developed, and the integrating sphere progressed and was put into practical use not only in the ultraviolet and visible regions but also in the infrared region. The second reason is that this half-spheroid mirror has two focal points, and a sample is placed at one focal point and a detector is placed at the other focal point to measure the reflectance of the sample. The reflected light from the sample is reflected by the ellipsoidal mirror and collected on the detector. However, since the detector cannot absorb all the incident light, the reflected light from the sample is reflected again by the ellipsoidal mirror and returns to the sample. By repeating this, there is a problem that the reflectance of the sample is measured higher than the original value.
  • a conventional scatterometer using an integrating sphere is a method of measuring a quantitative hemispherical total reflection (transmission) rate, and is the mainstream of measurement in this field today.
  • transmission quantitative hemispherical total reflection
  • a scatterometer using a conventional goniometer is a method for measuring a quantitative light distribution (BSDF), and is the mainstream of measurement in this field today.
  • BSDF quantitative light distribution
  • the detector since the detector must be scanned in 4 ⁇ space, there is a problem that it takes time for one measurement.
  • hemispherical total reflectance and hemispherical total transmittance can be obtained from data obtained by measuring the light distribution at each point in the 4 ⁇ space (see FIG. 17 of Patent Document 4).
  • a conventional scatterometer using an imaging hemisphere is a method of measuring scattered light distribution (light distribution measurement) using a CCD camera.
  • the principle is shown in FIG.
  • the sample is placed at the center of the hemisphere, and incident light is incident on the sample as shown.
  • the light reflected by the convex mirror in the vicinity of the sample enters a CCD camera installed outside the hemisphere.
  • the inner surface of the hemisphere is made of a diffusely reflective material, and its reflectance is suppressed to about 20%, and analysis is made on the assumption that multiple reflection in the integrating hemisphere can be ignored.
  • the measurement time is about 10 seconds.
  • this measurement method has many assumptions and has a problem that a precise quantitative measurement is impossible.
  • a conventional scatterometer developed by the present inventor that measures by rotating a light-receiving side spheroid mirror can perform three measurements: hemispherical total reflectance, hemispherical total transmittance, and light distribution measurement.
  • the light distribution measurement could also shorten the time, but compared with the imaging hemisphere etc., the measurement time was longer.
  • the hemispherical total reflection (transmission) rate it is necessary to integrate the measurement amount at each rotation angle, but quantitative analysis is difficult.
  • the present invention is intended to solve these problems, and can perform hemispherical total reflectance or hemispherical total transmittance and light distribution measurement (bidirectional reflection distribution function or bidirectional transmission distribution function) efficiently and in a short time. It is intended to measure and to improve the accuracy of quantitative measurement.
  • the present inventor has devised the shape of each of the first and second spheroid mirrors constituting the bielliptic optical system in an apparatus having the structure of a bielliptic optical system, and the first spheroid mirror And a second ellipsoidal surface mirror as a spheroid surface mirror partial body cut into a quarter or an eighth, etc. It came to complete.
  • the measurement object of the present invention is the following measurement amount. (1) Specular or scattering surface hemispherical total transmittance and hemispherical total reflectance (2) Mirror surface or scattering surface light distribution (bidirectional transmission distribution function and bidirectional reflection distribution function) (3) Spatial distribution (light distribution) of light emission from light emitters such as LEDs and total light emission amount
  • the present invention has the following features in order to achieve the above object.
  • the present invention is an optical characteristic measuring apparatus for measuring scattered light from a measurement object, comprising: a bielliptical optical system comprising a partial spheroid mirror and a belt-like spheroid mirror; and a hemispherical detection optical system.
  • the partial spheroid mirror has a structure cut at least by a plane passing through the axis of the bielliptical optical system and a plane orthogonal to the axis and passing through a common focal point, and the hemispherical detection optical system Is arranged at the focal point of the partial spheroid mirror.
  • the hemispherical detection optical system in the optical characteristic measurement apparatus of the present invention preferably includes a hemispherical lens, and is installed so that the center of the hemispherical lens coincides with the focal position of the partial spheroid mirror.
  • the hemispherical detection optical system of the present invention includes a tapered optical fiber, and the end surface on the large diameter side of the optical fiber is installed so as to coincide with the focal point of the hemispherical lens. Install the detector.
  • the hemispherical detection optical system of the present invention preferably includes a rotating parabolic mirror, and is installed so that the focal point of the rotating parabolic mirror coincides with the focal position of the partial spheroid mirror.
  • the hemispherical detection optical system of the present invention preferably includes a reflecting mirror and a photodetector, and the light emitted from the rotating paraboloid mirror is preferably measured by the photodetector via the reflecting mirror.
  • the hemispherical detection optical system of the present invention preferably includes a convex lens and a photodetector, and the light emitted from the hemispherical lens or the rotary parabolic mirror is preferably measured by the photodetector via the convex lens.
  • a CCD camera may be provided as the photodetector.
  • the partial spheroid mirror of the present invention is, for example, a quarter spheroid mirror or an eighth spheroid mirror.
  • the bielliptical optical system of the present invention is an optical system having three focal points on one axis by combining one of the focal points of the first ellipsoidal mirror and the second ellipsoidal mirror as a common focal point. It is a system.
  • the optical characteristic measurement apparatus of the present invention includes a reflector, also referred to as a beam switching mirror, at the focal point of a light-incident side band-shaped spheroid mirror, disposes an object to be measured (sample) at the common focal point, and the partial spheroid A hemispherical detection optical system is arranged at the focal point of the body mirror.
  • the hemispherical detection optical system is an optical system that can simultaneously detect the entire light reflected and collected by the hemispherical mirror surface.
  • hemispherical detection optical systems are (1) hemispherical lens, tapered fiber and CCD camera, (2) hemispherical lens, tapered fiber and photodiode detector, (3) hemispherical lens, convex lens system and CCD camera, ( 4) Hemispherical lens, convex lens system and photodiode detector, (5) Rotating parabolic mirror, convex lens system and CCD camera, (6) Rotating parabolic mirror, convex lens system and photodiode detector, (7) Rotating parallax.
  • the reflecting mirror is a name that combines a parabolic mirror and an ellipsoidal mirror.
  • the partial spheroid mirror is a quarter spheroid mirror
  • the light reflected by the quarter spheroid mirror can be detected simultaneously using a hemispherical detection optical system.
  • the partial spheroid mirror is an ⁇ ⁇ spheroid mirror
  • the hemispherical detection optical system is used, the light reflected by the ⁇ ⁇ spheroid mirror can be detected simultaneously. Can do.
  • the conventional imaging hemispherical optical system and seagull scatterometer can only measure diffuse reflection.
  • the conventional half-spheroid mirror has a problem of multiple reflection.
  • the incident-side spheroid mirror is a band-shaped spheroid mirror having a small reflection area. Can be reduced.
  • the angle of incidence on the sample can be made variable by using a belt-like spheroid mirror.
  • the absolute reflectance and the absolute transmittance can be measured.
  • the partial spheroid mirror a structure cut by a plane passing through the axis of the bielliptical optical system and a plane orthogonal to the axis and passing through the common focal point is used, thereby avoiding multiple reflections. be able to.
  • a bi-elliptic optical system composed of a partial spheroid mirror and a belt-like spheroid mirror is used, and the hemispherical detection optical system is installed at the focal point of the partial spheroid mirror so that Since reflected light can be detected simultaneously, hemispherical total reflectance or hemispherical total transmittance and light distribution measurement (bidirectional reflection distribution function or bidirectional transmission distribution function) can be measured efficiently and in a short time.
  • absolute measurement such as absolute reflectance and absolute transmittance of a sample having a diffusing surface can be performed with high accuracy.
  • the sample is arranged at a common focal point, and the sample is irradiated with excitation light from the band-shaped spheroid mirror surface, and the luminescence from the sample is spread and diffused over the entire space (4 ⁇ steradians).
  • the light ( ⁇ steradian) incident on one spheroid mirror can be condensed by a hemispherical detection optical system and guided to a detector for analysis.
  • the present invention by arranging a light emitting diode instead of a sample at a common focal point, it is possible to quantitatively measure the spatial distribution of emitted light from the light emitting diode and the total amount of emitted light using a quarter spheroid mirror.
  • the light that can enter the camera is hemispheric (2 ⁇ ) because the imaging surface of the camera is about 10 mm behind the camera housing. It is limited to a solid angle of about 1/16 of (Stradians).
  • a hemispherical lens when the light incident on the bottom surface of the hemispherical lens from the solid angle (2 ⁇ steradian) of the hemispherical surface is emitted from the hemispherical lens, it is about one-seventh of the hemisphere. It can be condensed into a solid angle.
  • the diameter of the beam emitted from the hemispherical lens at a solid angle of 1/7 of this hemisphere is about 10 mm, which is larger than the size of the imaging surface of the CCD camera (for example, 7 mm long and 5.3 mm wide). Cannot be taken into the CCD camera.
  • the diameter of the beam at this position is about 10 mm, and by arranging the large-diameter side end face (diameter 20 mm) of the tapered optical fiber at this position, all the light can be taken into the fiber.
  • the diameter of the small-diameter end face of the fiber taper is about 6 mm and is smaller than the imaging surface of the CCD camera, all the light emitted from the fiber can be incident on the CCD camera.
  • Each numerical value is shown as an example for explanation, and the same effect is obtained regardless of the numerical value.
  • a combination of a rotating parabolic mirror and a reflecting mirror is used to match light that has spread to a solid angle of a hemisphere to a light receiving solid angle of a CCD camera.
  • a parabolic mirror or an ellipsoidal mirror is used to match light that has spread to a solid angle of a hemisphere to a light receiving solid angle of a CCD camera.
  • the reflective optical system has no wavelength dependence, so a wide range of wavelengths in the ultraviolet, visible, and infrared regions can be covered with a single hemispherical detection optical system. it can.
  • FIG. 2 is a diagram showing an optical characteristic measurement device according to Embodiment 1 and a reflection measurement arrangement.
  • FIG. 3 is a cross-sectional view of the optical property measuring apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating a transmission measurement arrangement in the optical characteristic measurement apparatus according to the first embodiment.
  • FIG. 3 is a diagram showing a background measurement arrangement in the optical characteristic measurement apparatus according to the first embodiment.
  • FIG. 3 shows a hemispherical surface detection optical system according to the first embodiment.
  • FIG. 3 is a diagram showing a belt-like spheroid mirror according to the first embodiment.
  • FIG. 3 shows a quarter spheroid mirror of the first embodiment.
  • FIG. 6 shows an eighth spheroid mirror according to the first embodiment.
  • 3A and 3B illustrate the arrangement of belt-like spheroid mirrors in the first embodiment.
  • 3A and 3B illustrate the arrangement of belt-like spheroid mirrors in the first embodiment.
  • 3A and 3B illustrate the arrangement of belt-like spheroid mirrors in the first embodiment.
  • 3A and 3B illustrate the rotation of a sample in Embodiment 1.
  • FIG. 5 shows measurement results obtained by the optical characteristic measurement apparatus according to the first embodiment.
  • FIG. 6 is a diagram illustrating an effect of a hemispherical lens by the optical characteristic measurement apparatus according to the first embodiment.
  • FIG. 5 shows measurement results obtained by the optical characteristic measurement apparatus according to the first embodiment.
  • FIG. 5 shows an optical characteristic measuring apparatus according to a second embodiment.
  • FIG. 6 shows an optical characteristic measuring apparatus according to a third embodiment.
  • FIG. 5 shows Embodiment Mode 4;
  • FIG. 5 shows Embodiment Mode 4; The figure explaining a prior art.
  • FIG. 1 is a perspective view showing a typical structure of the first embodiment, and shows a reflection measurement arrangement.
  • FIG. 2 is a diagram schematically showing a cross-sectional view of the apparatus of FIG. 1 and shows a reflection measurement mode.
  • FIG. 3 is a diagram showing a transmission measurement arrangement, and
  • FIG. 4 is a diagram showing a background measurement arrangement.
  • FIG. 5 is a diagram showing a hemispherical detection optical system.
  • 6 is a diagram showing a belt-like spheroid mirror
  • FIG. 7 is a diagram showing a quarter spheroid mirror
  • the bielliptic optical system which is the premise of the present invention will be described in detail.
  • two spheroid mirrors are arranged adjacent to each other so that the respective rotation axes are coaxial, and the two spheroid mirrors are focused on each other close to each other. It is configured by cutting along a plane perpendicular to the rotation axis and connecting so that the respective cut planes coincide.
  • the spheroid mirror is a mirror finished inside.
  • the first spheroid mirror on the light incident side and the second spheroid mirror on the light receiving side are combined with the remaining focal points of the two spheroid mirrors, with one focal point as a common focal point, Three focal points are aligned in a straight line (dotted line in FIG. 2).
  • the straight line connecting the three focal points is called “the axis of the bi-ellipsoidal mirror”. This straight line coincides with the rotation axis of the two spheroid mirrors, and is also the rotation axis of the bi-spheroid mirror.
  • the apparatus according to the first embodiment is configured such that one spheroid mirror (first spheroid mirror) having a bi-elliptical optical system structure is configured by a belt-like spheroid mirror 1.
  • the other spheroid mirror (second spheroid mirror) is composed of a quarter spheroid mirror 2 to detect scattered light collected at the focal point of the second spheroid mirror. It is provided.
  • FIGS. 12 and 13 are diagrams for explaining a cut surface of a spheroid surface (first and second spheroid mirrors).
  • the surface of the spheroid surface that is exactly half of the north and south poles is called the equator plane.
  • a plane perpendicular to the equator plane and passing through the north and south poles and including the long axis is called a meridian plane 1.
  • the plane perpendicular to the equator plane and passing through the north and south poles and including only the minor axis is called the meridian plane 2.
  • FIG. 12 the surface of the spheroid surface that is exactly half of the north and south poles.
  • a plane perpendicular to the equator plane and passing through the north and south poles and including the long axis is called a meridian plane 1.
  • the plane perpendicular to the equator plane and passing through the north and south poles and including only the minor axis is called the
  • the cut surface 1 is a surface at a position that is equidistant (for example, 20 mm) away from the equator plane.
  • the cutting plane 2 is a plane that passes through one focal point of the spheroid and is orthogonal to the equator plane.
  • the belt-like spheroid surface is the remaining three-dimensional object cut by the two surfaces of the cut surface 1 and the cut surface 2.
  • the quarter spheroid plane is the remaining solid cut by the equator plane and the cut plane 2.
  • the eighth spheroid surface is the remaining solid cut by the equator plane, meridian plane 1 and cut plane 2.
  • the 1/8 spheroid surface is not exactly 1/8 as a volume, but is called an 1/8 spheroid surface in the present invention.
  • the conventional half-spheroid surface is the remaining solid cut by the equator plane.
  • the apparatus of the first embodiment includes a hemispherical lens 4, a tapered optical fiber (also referred to as a fiber taper) 5, a CCD camera 6, a beam switching mirror (RM1 mirror) 7, a lens 8, and a light source 9.
  • the RM1 mirror 7 is disposed at the focal point of the first spheroid mirror
  • the sample (object to be measured) 3 is disposed at the common focal point
  • the hemispherical lens 4 is disposed at the focal point of the second spheroid mirror.
  • An incident through-hole is formed at the intersection of the bi-ellipsoidal mirror axis and the first spheroid mirror.
  • the reflection measurement mode in the reflection measurement arrangement of FIG. 1 will be described.
  • a light source 9 laser light source, spectrophotometer or the like
  • the light reaches a beam switching mirror (RM1 mirror) 7.
  • the light reflected by the beam switching mirror (RM1 mirror) 7 is further reflected by the first spheroid mirror (band-shaped spheroid mirror 1) and enters the sample 3 on the common focal point.
  • the light reflected by the sample 3 is reflected by the second spheroid mirror (quarter spheroid mirror 2) and collected at the focal point.
  • the distance from the top of the lens to the condensing point (F in FIG. 15) is about 4 mm.
  • a large-diameter side end face of a tapered optical fiber (also referred to as a fiber taper) 5 is disposed at this condensing point.
  • the belt-like spheroid mirror 1 will be further described.
  • Conventional imaging hemisphere optics and seagull scatterometers can measure reflectivity but cannot measure transmissivity, whereas the apparatus of the present invention uses a band-like spheroid mirror on the incident side. As a result, not only the reflectance but also the transmittance can be measured simultaneously.
  • the conventional half-spheroid mirror has a problem of multiple reflection, but in the present invention, the incident-side spheroid mirror is a belt-like spheroid mirror with a small reflection area, and the light source is belt-rotated.
  • the angle of incidence on the sample can be made variable by using a belt-like spheroid mirror.
  • a sample aluminum flat mirror or window glass
  • the concept of the symmetrical X-type optical system Japanese Patent No.
  • the optical path for reflection measurement and the optical path for background measurement are defined in space
  • the optical loss in the optical elements in the optical path can be canceled each other.
  • the reflection measurement is actually performed twice and the background measurement is also performed twice.
  • absolute reflectance and absolute transmittance can be measured.
  • the quarter spheroid mirror 2 will be further described.
  • a quarter spheroid mirror is used instead of a half spheroid mirror, multiple reflections can be avoided.
  • the space that can be measured by the quarter-spheroid mirror is not a half space (2 ⁇ space) but a maximum quarter space ( ⁇ space).
  • an eighth spheroid mirror may be used instead of the quarter spheroid mirror.
  • an eighth spheroid mirror may be used, a maximum of one-eighth space can be measured at a time.
  • FIG. 5 is a diagram showing a hemispherical detection optical system.
  • the hemispherical detection optical system includes a hemispherical lens 4, a fiber taper 5, and a CCD camera 6.
  • the fiber taper 5 is formed by forming a fiber bundle for transmitting an image into a taper shape, and has a function of enlarging or reducing an image from an incident surface at a predetermined magnification and transmitting the image to the other end surface. It is a device.
  • the hemispherical detection optical system is installed so that the detection system does not protrude into the space of the quarter-spheroid mirror 2 in order to measure light from the entire hemisphere.
  • the hemispherical lens 4 and the fiber taper 5 play a role similar to a fisheye lens.
  • the hemispherical detection optical system is arranged so that the collected light first enters the hemispherical lens 4 so that all the light from the entire hemisphere can be collected.
  • FIG. 14 illustrates an incident angle and an image formation position when parallel rays are incident on a hemispherical lens having a diameter of 2 mm and an aperture having a diameter of 2 mm. As shown, all the light from the entire hemisphere can be collected.
  • FIG. 15 is a diagram for explaining the relative positional relationship between the hemispherical lens and the fiber taper.
  • the distance to the imaging surface of the hemispherical lens is determined by the refractive index, radius and incident angle of the hemispherical lens.
  • the refractive index is 2 and the radius is 5 mm
  • the distance from the top of the hemisphere to the image plane is about 4 mm.
  • the incident surface of the fiber taper is made to coincide with the imaging surface.
  • Aperture a (1.5 mm) is attached to a hemispherical lens (diameter 10 mm, refractive index 2), and the total distance of D / 2 (radius of hemispherical lens) and F (distance to the imaging surface) from the bottom of the hemispherical lens
  • a large diameter surface (diameter h1) of the fiber taper was disposed, and a small diameter surface (diameter h2) was brought into close contact with the pixel surface of the CCD camera.
  • the imaging surface is a curved surface, but the fiber taper may be a flat surface as shown.
  • the image of the focal point can be transmitted to the pixel of the CCD camera, and thus a clearer image can be obtained. So it is more preferable.
  • one surface of the fiber taper may be disposed other than the focal position of the hemispherical lens. Since the pixel surface of the CCD camera 6 is recessed from the housing, it can be efficiently condensed by using the fiber taper 5.
  • Information (light distribution distribution) in which light is distributed in space can be obtained from the image of the CCD camera. Further, by integrating the charge amount of each pixel of the CCD camera, a hemispherical total reflection (transmission) rate can be obtained.
  • the background measurement is performed with no sample in the arrangement of FIG.
  • a light source 9 laser light source, light from a spectrophotometer
  • a beam switching mirror (RM1 mirror) 7 with a different orientation as shown in the figure.
  • the light reflected by the beam switching mirror (RM1 mirror) 7 is further reflected by the belt-like spheroid mirror 1 and enters the sample 3 on the common focal point.
  • the light transmitted through the sample 3 is reflected by the quarter spheroid mirror 2 and collected at the focal point.
  • the incident angle to the sample can be changed by rotating the beam switching mirror (RM1 mirror) 7 by a predetermined angle.
  • FIG. 9 shows an arrangement in which the belt-like spheroid mirror is in a position perpendicular to the equator plane of the quarter spheroid mirror.
  • FIG. 11 shows a case of a horizontal position, and
  • FIG. 10 schematically shows an arrangement during rotation.
  • the method of using a hemispherical lens in the first stage as the hemispherical detection optical system has a drawback that the image at the most peripheral part becomes too small compared to the central part.
  • the sample and the belt-like spheroid mirror need only be rotated with correlation.
  • a complete quarter-space image is first obtained by combining one image of the central portion and three images of the peripheral portion.
  • the sample is rotated by 180 ° around the Y axis, and photographing is performed four times in the same procedure as before, and these are synthesized. This will give you an image of the remaining quarter space. By combining these two images, a half space (2 ⁇ space) can be measured.
  • the X, Y, and Z axes are the next axes with the common focus as the coordinate origin.
  • the X axis is a line (dotted line in FIG. 2) connecting the light source, the sample, and the bottom surface of the hemispherical lens, and coincides with the rotation axis of the belt-like spheroidal mirror.
  • the Y axis is a straight line (broken line in FIG. 2) that passes through the origin and is vertical.
  • the Z-axis is a line connecting edges cut off at right angles of a quarter ellipse, and is an axis orthogonal to the X-axis and the Y-axis.
  • FIGS. 16, 17, and 18 show the imaging of ⁇ space and the composition of the screen on a quarter spheroid mirror.
  • FIG. 16A shows a normal arrangement in the case of the first image.
  • FIG. 16B shows an arrangement in which the sample is rotated counterclockwise by an angle ⁇ around the X axis and the belt-like spheroid mirror is also rotated by the same angle in the case of the second image.
  • FIG. 17A shows an arrangement in the case of the third image in which the sample is rotated clockwise by an angle ⁇ around the X axis, and the belt-like spheroid mirror is also rotated by the same angle.
  • FIG. 16A shows a normal arrangement in the case of the first image.
  • FIG. 16B shows an arrangement in which the sample is rotated counterclockwise by an angle ⁇ around the X axis and the belt-like spheroid mirror is also rotated by the same angle in the case of the second image.
  • FIG. 17A shows an arrangement in the
  • FIG. 17B shows an arrangement in which the sample is rotated counterclockwise by an angle ⁇ around the Z axis and the RM1 mirror is also rotated by the same angle in the case of the fourth image.
  • FIG. 18 shows how the first to fourth images are synthesized to synthesize the sample image.
  • the sample can be rotated 180 ° and the same measurement can be repeated to shoot the 2 ⁇ space and synthesize the image. That is, in order to measure the reflected light and transmitted light from the sample surface on the side of the belt-like spheroid mirror, the sample is rotated 180 ° around the Y axis and the same measurement as in FIGS. 16 and 17 is repeated. By synthesizing these eight images, an accurate 2 ⁇ space orientation distribution can be obtained.
  • FIG. 19 shows the measurement results measured using the apparatus of this embodiment.
  • the light source was a helium neon laser
  • the grating was used as a sample
  • laser light was applied to the grating
  • diffuse reflected light more precisely, diffracted light
  • the horizontal axis represents the scattering angle
  • the vertical axis represents the output measured by the CCD camera. According to the apparatus of the present embodiment, it can be seen that a high-order diffraction image from the grating is measured with high accuracy.
  • FIG. 20 shows the measurement results measured with the apparatus of this embodiment and the apparatus without a hemispherical lens.
  • the horizontal axis is the incident angle to the hemispherical mirror, and the vertical axis is the reflected signal intensity.
  • the circle mark indicates the signal intensity when there is no lens, and the square mark indicates the signal intensity when there is a lens.
  • the signal intensity curve is normalized at the peak. Compared to when there is no lens, it swells to the left and right when there is a lens. This bulge is the effect of a hemispherical lens as a fisheye lens.
  • the diffuse reflectance, transmittance and absorptivity were measured using a mirror-finished parallel plate quartz sample and Spectralon sample.
  • FIG. 21 shows the measurement results.
  • the horizontal axis is the angle of incidence (in degrees) on the sample.
  • the vertical axis represents reflectance, transmittance, and absorptance, and is indicated as (R, T, A).
  • the circle mark indicates the transmittance of the mirror-finished quartz
  • the square mark indicates the reflectance of the mirror-finished quartz
  • the triangle mark indicates the absorption rate of the mirror-finished quartz
  • the rhombus mark indicates the reflectance of Spectralon.
  • Mirror-finished parallel plate quartz is an ideal specular reflection and transmission material with zero absorptance in this wavelength region (heme neon laser wavelength 633 nm).
  • the absorptance was almost zero in the range where the incident angle was small, and the reflectance and transmittance were the recommended values in the handbook.
  • Spectralon is an ideal perfect diffuser.
  • the measurement result of the reflectance of this sample is approximately 50% in a range where the incident angle is small.
  • the space seen by the quarter-spheroid mirror is ⁇ , the total reflectivity is exactly doubled to 100%, which is a good match. From the measurement results, it can be seen that the reflectance and transmittance can be accurately measured by using a quarter spheroid mirror.
  • a photodetector such as a photodiode (silicon photodiode) or a photomultiplier tube may be used instead of the CCD camera.
  • Measured samples include various samples such as carbon nanotubes, microlenses, and the like. For example, if there is a scratch on the microlens, the spatial distribution of diffusely reflected light is distorted, so it is possible to determine whether there is distortion or not in a measurement time of about 10 seconds.
  • Embodiment 2 In the first embodiment, the example using the hemispherical lens, the fiber taper, and the CCD camera as the hemispherical detection optical system, and the example using the hemispherical lens, the fiber taper, and the photodiode detector have been described.
  • Embodiment 2 an example in which a convex lens system is used instead of the fiber taper will be described with reference to FIG.
  • FIG. 22 the point where five solid lines, one-dot chain line and two-dot chain line are gathered is the focal point F2 of the spheroid mirror.
  • the center of the hemispherical lens is arranged so as to coincide with the focal point F2 of the spheroid mirror.
  • the bottom surface of the hemispherical lens is disposed in parallel with the edge surface of the quarter spheroid mirror. Therefore, since the hemispherical detection optical system does not make a shadow inside the spheroid mirror, the hemispherical lens can collect all the light collected from the 2 ⁇ space at the focal point F2.
  • the one-dot chain line and the two-dot chain line indicate light rays that travel substantially parallel to the bottom surface of the hemispherical lens and gather at the focal point F2.
  • the hemispherical detection optical system of the present embodiment includes a hemispherical lens 4, a convex lens system (convex lens 1, convex lens 2), and a CCD camera 6.
  • the light collected from the 2 ⁇ space at the focal point of the quarter-spheroid mirror 2 enters the hemispherical lens 4 and is converged at the time of emission due to the refractive index of the hemispherical lens 4.
  • the light that has passed through the hemispherical lens 4 is condensed by a convex lens system (convex lens 1 and convex lens 2) into parallel rays by the convex lens 1 and by the convex lens 2, and the CCD camera 6 is disposed in the vicinity of the focal point.
  • the camera can image light from the entire hemisphere and obtain an image of the entire hemisphere. Thereby, an orientation distribution diagram can be obtained in a short time.
  • a photodetector such as a photodiode (silicon photodiode) or a photomultiplier tube may be used instead of the CCD camera 6.
  • Embodiment 3 In the second embodiment, an example in which a hemispherical lens, a convex lens, and a CCD camera (or a photodiode detector) are used as the hemispherical detection optical system has been described.
  • a rotating parabolic mirror 14 is used instead of the hemispherical lens 4 will be described with reference to FIG.
  • the hemispherical detection optical system of the present embodiment includes a rotary parabolic mirror 14, a convex lens system (convex lens) 13, and a CCD camera 6.
  • the parabolic mirror 14 has a structure that is cut (opened) at a plane perpendicular to the rotation axis and passing through the focal point, and the inner surface is a mirror surface.
  • the edge of the quarter-spheroid mirror and the cutting plane (opening) passing through the focal point of the paraboloid mirror are placed in parallel so that the focal points of the two coincide.
  • the alternate long and short dash lines indicate the same rays as in the second embodiment.
  • a point where five solid lines, a one-dot chain line, and a two-dot chain line are gathered is the focal point F2 of the spheroid mirror, and also coincides with the focal point of the rotary parabolic mirror.
  • the light passing through the through hole at the focal position of the rotary parabolic mirror is reflected by the inner paraboloid of the rotary parabolic mirror.
  • the reflected light travels parallel to the optical axis and is collected at the focal point of the convex lens 13.
  • the light that has traveled without being reflected by the paraboloid is refracted by the convex lens 13 but is not condensed at the focal point but is collected near the focal point.
  • Embodiment 4 In the basic form using the paraboloid mirror shown in the third embodiment, as can be seen from FIG. 23, the light parallel to the paraboloid mirror and the light diverging from the focal point F2 are the same as those of the CCD camera. The light distribution measurement is not strictly accurate because it may enter the pixel. Therefore, Embodiment 4 is an improvement for measuring light distribution measurement more accurately.
  • the apparatus 1 of Embodiment 4 is shown in FIG. 24, and the apparatus 2 is shown in FIG.
  • the apparatus 1 is provided with a rotating parabolic mirror 14, a parabolic mirror 16, and a CCD camera 6 (or a detector such as a photodiode) as shown in FIG.
  • the one-dot chain line and the two-dot chain line are light incident on the rotary paraboloid mirror at an incident angle near 90 °, and these and the solid line are reflected by the rotary paraboloid mirror to become parallel rays, and the upper paraboloid When reflected by the mirror, it is focused on the detector.
  • the light beam drawn by the broken line is light that diverges from the focal point of the spheroid mirror. When it is reflected by the upper paraboloid mirror but not by the paraboloid mirror, it is blocked by the aperture and detected. The vessel is not reached.
  • the apparatus 2 is provided with a rotating parabolic mirror 14, an ellipsoidal mirror 17, and a CCD camera 6 (or a detector such as a photodiode) as shown in FIG.
  • the one-dot chain line and the two-dot chain line are light incident on the rotary paraboloid mirror at an incident angle near 90 °, and these and the solid line are reflected by the rotary paraboloid mirror to become parallel rays. If it is reflected by, it will be blocked by the aperture and will not reach the detector.
  • the light beam drawn by the broken line is light that diverges from the focal point of the spheroid mirror part, and reaches the detector when reflected by the upper ellipsoidal mirror without being reflected by the parabolic mirror.
  • the parabolic mirror 16 by arranging the parabolic mirror 16 as shown in FIG. 24, the parallel rays from the rotating parabolic mirror can be condensed on the detector (CCD camera or photodiode detector).
  • the detector CCD camera or photodiode detector
  • the light that is not reflected by the rotary parabolic mirror is divergent light from the focal point of the spheroid mirror partial body (also referred to as a partial spheroid mirror).
  • 17 apparatus 2, FIG. 25
  • it it can be made to condense to a detector.
  • an aperture divergent light can be eliminated when the light is collected by the parabolic mirror 16, and parallel light rays can be eliminated when the light is collected by the ellipsoidal mirror 17.
  • the light distribution can be measured by combining these two images.
  • the hemispherical detection optical system includes a rotating parabolic mirror and a reflecting mirror (referred to as an integrated parabolic mirror and an elliptical mirror) and a CCD camera, or a rotating parabolic mirror and a reflecting surface. It is a combination of a mirror (a combination of a parabolic mirror and an ellipsoidal mirror) and a photodiode detector. Since these hemispherical detection optical systems do not use an optical element utilizing refraction such as a lens, these optical systems can be used in any wavelength region of ultraviolet, visible, and infrared. The detector needs to be matched to the measurement wavelength region.
  • a photodetector such as a photodiode (silicon photodiode) or a photomultiplier tube may be used instead of the CCD camera 6.

Abstract

 被測定物の光学特性を測定する装置において、半球全反射率と半球全透過率と配光測定とを測定可能な装置を提供することを目的とし、さらに測定時間の短縮化、半球全反射(透過)率の定量解析の高精度化を図ることを目的とする。2つの楕円体面鏡の各々の焦点の1つを共通焦点にして結合して、3つの焦点を一軸上に有する光学系である双楕円型光学系において、該双楕円型光学系を、四分の一等の部分回転楕円体面鏡2と帯状回転楕円体面鏡1とで構成する。半球レンズ4又は回転放物面鏡を備える半球面検出光学系を、部分回転楕円体面鏡の焦点の位置に設置することにより、被測定物で散乱され部分回転楕円体面鏡の鏡面で反射され焦点に集光される光を、例えば半球レンズとテーパー状光ファイバー5を介して、CCDカメラ6で撮影し、被測定物の光学特性を測定する。

Description

光学特性測定装置
 本発明は、試料などの被測定物に光を入射させ、試料からの散乱光の光強度とその空間分布を測定可能な、感度の優れた光学特性測定装置に関する。特に、被測定物の全球散乱を効率的に測定することができる散乱計に関する。
 近年、半導体など電子部品の製造やナノテクノロジー分野での精密計測において、光学特性検査装置の測定精度の向上が望まれている。
 光を物質に入射した際の光と物質との相互作用を考えると、物質による正反射、拡散反射、(正)透過、拡散透過、そして光吸収の5種類に分類できる。すなわち、反射と透過現象に関しては、入射角度と反射角度が等しい正反射と、入射角度と透過光の角度が等しい(正)透過と、一つの入射角度に対して反射光や透過光が広い空間に発生する散乱(拡散反射と拡散透過を足し合わせた現象)がある。
 従来、正反射率と(正)透過率を測定するために別々のアクセサリーを用いて相対反射率と絶対透過率を測定してきた。この方法の欠点は各々の測定量の測定精度が異なることである。この問題点を解決するため、透過率測定と反射率測定を統合させた装置を本発明者は開発してきた(特許文献1~3参照)。
 物質による光の散乱現象に注目すると、全空間(4π空間)に一様に光が散乱される完全散乱と、ある特定の一部空間に光が散乱される部分散乱がある。前者の完全散乱の例は緩くパッキングされた微小粉末で、後者の例は身の回りに非常に多い。例えばタイル、ペンキの塗られた面、布(縦糸と横糸)、紙面(紙の繊維が網目状になっている)などである。正反射と(正)透過現象を、この部分散乱における「ある特定の一部空間」の極限として見なすことができる。このような例からも、散乱測定のためには、全球散乱(TSS:Total Spherical Scatter)と散乱の異方性(BSDF:Bidirectional Scatter Distribution Function、双方向散乱分布関数)の両方を測ることが必要である。
 試料からの光散乱の光学測定分野において、二分の一回転楕円体面鏡を使った散乱計が知られている。また、積分球を用いた散乱計や、ゴニオメーターを使った散乱計が知られている。また、イメージング半球を使った散乱計や、2つの楕円面鏡を使った散乱計(シーガル型散乱計とも呼ぶ)(特許文献5参照)が知られている。
 本発明者は、双楕円型光学系の構造を提案して光学特性測定装置を開発してきた。すでに、双楕円柱面鏡を用いた光学系を用いる装置を開発した(特許文献1参照)。また、楕円柱を結合するのではなく、回転楕円体面鏡を2つ結合した構造の光学系を用いて、絶対反射率と絶対透過率を測定する装置を、本発明者は開発した(特許文献2及び3参照)。該装置は、2個の回転楕円体面鏡からなる双楕円体面鏡を備え、2個のビーム切換鏡と試料とを各焦点に配置するものである。
 また、本発明者は、双楕円型光学系の構造の受光側回転楕円体面鏡を所定角回転し、その回転楕円体面鏡の焦点にあるビーム切換えミラーを微少角度ずつ回転させることが可能な装置を開発して散乱光の異方性の測定を行った(非特許文献1、特許文献4の図14参照)。双楕円型光学系の構造は、入射側の楕円体面鏡E1と受光側の楕円体面鏡E2を、互いの1つの焦点を共通焦点F0とし、さらに楕円体面鏡E1とE2のそれぞれの残りの焦点をF1とF2とすると、これら3つの焦点が一直線状に並ぶようにした構造である。
 また、本発明者は、双楕円型光学系の構造の受光側回転楕円体面鏡を回転させ、回転される楕円体面鏡の焦点に集光する散乱光を検出する装置を開発して、被測定物の全球散乱を測定することを可能とした(特許文献4参照)。特許文献4では、双楕円型光学系を構成する第1及び第2の楕円面鏡は、所定の厚さの板状もしくは帯状部材からなる構造であった(特許文献4の図2参照)。
特開2004-257956号公報 特開2004-45065号公報 特開2006-234681号公報 特開2010-276363号公報 米国特許5210418号明細書
Kawate E.,"Measurement method of optical scatter using a STAR GEM as a scatterometer" In proceedings of the SPIE,vol.7065,2008,706515-1-706515-9
 散乱計が対象とする散乱測定量には次のような測定量がある。試料からの光散乱では、試料から反射或いは透過された光は、各々半球面上に分布する。このときの重要な測定は2つである。(1)半球面への全反射光量または全透過光量で、予め測定した全バックグラウンド光量と比較して、半球全反射率または半球全透過率を求める。(2)各半球面上に反射光または透過光がどのように分布しているかの測定で、配光測定(双方向反射分布関数または双方向透過分布関数)である。
 従来の二分の一回転楕円体面鏡を使った散乱計は、半球全反射率を測定する方法である。1980年代まで研究開発されてきたが、実用化されなかった。第一の理由は、競合する技術であった積分球の内壁を構成する高拡散反射物質が開発されて積分球が進歩して紫外・可視ばかりでなく赤外領域でも実用化された。第二の理由は、この二分の一回転楕円体面鏡には2つの焦点があり、一方の焦点に試料を他方の焦点に検出器を配置して試料の反射率を測定した。試料からの反射光は楕円体面鏡で反射されて検出器に集光されるが、検出器は入射光を全て吸収できないので、それからの反射光は楕円体面鏡で再度反射されて試料へ戻る。これの繰り返しが起こることによって、試料の反射率は、本来の値より高く測定されてしまうという問題がある。
 従来の積分球を使った散乱計は、定量的な半球全反射(透過)率を測定する方法であり、今日この分野の測定の主流である。しかし、配光分布は測定できないという問題がある(特許文献4の図16参照)。
 従来のゴニオメーターを使った散乱計は、定量的な配光分布(BSDF)を測定する方法であり、今日この分野の測定の主流である。しかし、検出器を4π空間でスキャンしなければならないので、一回の測定に時間がかかることという問題がある。原理的には、4π空間の各点の配光を測定したデータから、半球全反射率と半球全透過率を求めることができる(特許文献4の図17参照)。
 従来のイメージング半球を使った散乱計は、CCDカメラを使って散乱光分布(配光測定)を測定する方法である。その原理を図26に示す。試料を半球の中心に設置し、試料へ入射光を図示のように入射する。試料からの拡散反射光のうち試料の近傍においた凸面ミラーで反射された光は半球外に設置されたCCDカメラに入射する。この半球の内面は拡散反射性の物質で構成されその反射率は20%程度に抑えてあり、積分半球内の多重反射を無視できるとして解析している。測定時間は10秒程度である。しかし、この測定方法には、多くの仮定が入っていて、厳密な定量的測定は不可能であるという問題がある。
 従来の2つの楕円面鏡を使った散乱計(特許文献5参照)は、楕円面鏡2枚をカモメの翼のような位置に設置して、その共通焦点に試料を配置し、残りの2つの焦点に固定ミラーをそれぞれ配置した構造を有している。この構造では、絶対反射率測定は不可能で、相対反射率を測定できるだけであり、また透過率測定はできない。拡散反射測定に関しても、一方の楕円面に入射した散乱光を測定できるだけで、定量測定は不可能であるという問題がある。
 本発明者の開発した従来の受光側回転楕円体面鏡を回転させて測定する散乱計(特許文献4参照)は、半球全反射率と半球全透過率と配光測定の3つができる。しかしながら、次の2つの改善すべき問題があることが判明した。ゴニオメーターに比較すれば、配光測定も時間を短縮できたが、イメージング半球等と比較すると測定時間が長い。半球全反射(透過)率を測定するためには、各回転角度での測定量を積分しなければならないが、定量的な解析が難しい。
 本発明は、これらの問題を解決しようとするものであり、半球全反射率または半球全透過率、並びに配光測定(双方向反射分布関数または双方向透過分布関数)を、効率よく短時間で測定すること、また定量測定を高精度化することを目的とするものである。
 本発明者は、双楕円型光学系の構造を備える装置において、双楕円型光学系を構成する第1及び第2の回転楕円体面鏡のそれぞれの形状を工夫し、第1の回転楕円体面鏡を、帯状に切断した形状の回転楕円体面鏡帯状体として、第2の回転楕円体面鏡を、四分の一や八分の一等のように切断した回転楕円体面鏡部分体とし、本発明を完成するに到った。
 本発明の測定対象は、次の測定量である。
(1)鏡面又は散乱面の半球全透過率と半球全反射率
(2)鏡面又は散乱面の配光分布(双方向透過分布関数と双方向反射分布関数)
(3)LED等の発光体からの発光の空間分布(配光分布)と全発光量
 本発明は、上記目的を達成するために、以下の特徴を有するものである。
 本発明は、被測定物からの散乱光を測定する光学特性測定装置であって、部分回転楕円体面鏡と帯状回転楕円体面鏡とからなる双楕円型光学系と、半球面検出光学系とを備え、前記部分回転楕円体面鏡は、少なくとも、双楕円型光学系の軸を通る面と、該軸に直交し共通焦点を通る面とで切断された構造を有し、前記半球面検出光学系は前記部分回転楕円体面鏡の焦点の位置に設置したことを特徴とする。
 本発明の光学特性測定装置における半球面検出光学系は、半球レンズを備え、半球レンズの中心が前記部分回転楕円体面鏡の焦点の位置に一致するように設置することが好ましい。本発明の前記半球面検出光学系は、テーパー状の光ファイバーを備え、前記光ファイバーの大径側の端面を、前記半球レンズの焦点に一致するように設置し、このファイバーの出射側の端面に光検出器を設置する。本発明の半球面検出光学系は、回転放物面鏡を備え、回転放物面鏡の焦点が前記部分回転楕円体面鏡の焦点の位置に一致するように設置することが好ましい。本発明の半球面検出光学系は、反射面鏡及び光検出器を備え、回転放物面鏡を出射した光を、該反射面鏡を介して光検出器で測定することが好ましい。本発明の半球面検出光学系は、凸レンズ及び光検出器を備え、半球レンズまたは回転放物面鏡を出射した光を、該凸レンズを介して光検出器で測定することが好ましい。本発明では、光検出器としてCCDカメラを備えるとよい。
 本発明の部分回転楕円体面鏡は、例えば、四分の一回転楕円体面鏡又は八分の一回転楕円体面鏡である。
 また、本発明の双楕円型光学系は、第1の楕円体面鏡及び第2の楕円体面鏡の各々の焦点の1つを共通焦点にして結合して、3つの焦点を一軸上に有する光学系である。
 本発明の光学特性測定装置は、光入射側の帯状回転楕円体面鏡の焦点に、ビーム切り替えミラーとも呼ぶ反射板を備え、前記共通焦点に被測定物(試料)を配置し、前記部分回転楕円体面鏡の焦点に半球面検出光学系を配置する。
 半球面検出光学系とは、半球面の鏡面で反射され集光された光全体を同時に検出可能な光学系をいう。半球面検出光学系の例は、(1)半球レンズとテーパー状ファイバーとCCDカメラ、(2)半球レンズとテーパー状ファイバーとフォトダイオード検出器、(3)半球レンズと凸レンズ系とCCDカメラ、(4)半球レンズと凸レンズ系とフォトダイオード検出器、(5)回転放物面鏡と凸レンズ系とCCDカメラ、(6)回転放物面鏡と凸レンズ系とフォトダイオード検出器、(7)回転放物面鏡と反射面鏡とCCDカメラ、(8)回転放物面鏡と反射面鏡とフォトダイオード検出器などがある。ここで、反射面鏡とは、放物面鏡と楕円面鏡を統合した呼び方である。部分回転楕円体面鏡が、四分の一回転楕円体面鏡である場合は、半球面検出光学系を用いると、該四分の一回転楕円体面鏡で反射された光を同時に検出することができる。また、部分回転楕円体面鏡が、八分の一回転楕円体面鏡である場合は、半球面検出光学系を用いると、該八分の一回転楕円体面鏡で反射された光を同時に検出することができる。
 本発明では、部分回転楕円体面鏡と帯状回転楕円体面鏡とからなる双楕円型光学系を用いることにより、従来のイメージング半球光学系やシーガル型散乱計では拡散反射しか測定できなかったのに対して、反射率ばかりでなく透過率も同時に測定可能となった。また、従来の二分の一回転楕円体面鏡では多重反射の問題があったが、本発明では、入射側の回転楕円体面鏡を、反射面積の少ない帯状回転楕円体面鏡としたので、多重反射を減らせる。さらに光源を帯状回転楕円体面鏡の外部に配置してこの楕円体面鏡の入射用透孔を通してこの楕円体面鏡内部へ光を導く構造とすることにより、多重反射を減らせる効果が大である。また、本発明では、帯状回転楕円体面鏡を使うことにより、試料への入射角度を可変にできる。また、拡散反射(透過)的でない試料(平面ミラーや窓ガラス等)の場合には、絶対反射率と絶対透過率が測定できる。
 本発明では、前記部分回転楕円体面鏡として、双楕円型光学系の軸を通る面と、該軸に直交し共通焦点を通る面とで切断された構造を用いたことにより、多重反射を避けることができる。
 本発明では、部分回転楕円体面鏡と帯状回転楕円体面鏡とからなる双楕円型光学系を用い、半球面検出光学系を部分回転楕円体面鏡の焦点の位置に設置したことにより、半球前面で反射される光を同時に検出できるので、半球全反射率または半球全透過率、並びに配光測定(双方向反射分布関数または双方向透過分布関数)を、効率よく短時間で測定できる。
 また、本発明では、拡散表面をもつ試料の絶対反射率や絶対透過率等の絶対測定を高精度に行える。本発明では、共通焦点に試料を配置し、帯状回転楕円体面鏡側から励起光を試料に照射して、試料からのルミネッセンスが全空間(4πステラジアン)に広がって放散されるが、四分の一回転楕円体面鏡に入射した光(πステラジアン)は、半球面検出光学系で集光して検出器へ導いて分析できる。
 本発明では、共通焦点に試料の代わりに発光ダイオードを配置することで、四分の一回転楕円体面鏡を使って発光ダイオードからの放射光の空間分布と全発光光量の定量測定もできる。
 四分の一回転楕円体面鏡の焦点(F2)へ直接CCDカメラを配置したのでは、カメラの撮像面がカメラの筐体より約10mm奥にあることで、カメラに入射できる光は半球(2πステラジアン)の16分の1程度の立体角に限られてしまう。これに対して、本発明では、半球レンズを用いることで、半球面の立体角(2πステラジアン)から半球レンズの底面へ入射した光を、半球レンズから出射するときには半球の七分の一程度の立体角中へ集光できる。しかしながら、この半球の七分の一の立体角で半球レンズから出射したビームの直径は約10mmで、CCDカメラの撮像面の大きさ(例えば、縦7mmで横5.3mm)より大きいので、全てをCCDカメラに取り込むことができない。本発明では、半球レンズから出射した光は、そのレンズの頂点から半径程度の距離で結像することを発見した。この位置でのビームの直径は先ほどの約10mmであり、この位置へテーパー状光ファイバーの大口径側端面(直径20mm)を配置することで、全ての光をファイバー中へ取り込むことができる。このファイバーテーパーの小口径端面の直径は6mm程度であり、CCDカメラの撮像面より小さいので、ファイバーから出射する全ての光をCCDカメラへ入射させることができる。なお、各数値は説明のための1例として示したものであり、数値によらず同様の効果がある。
 本発明では、回転放物面鏡と反射面鏡(放物面鏡や楕円面鏡)を組み合わせて用いることで、半球の立体角に広がった光を、CCDカメラの受光立体角へマッチィングさせることができる。半球レンズ等を使う半球面検出光学系ではレンズ等の屈折率が波長に依存するために、広い波長範囲の測定のためには、途中で半球レンズやファイバーテーパーの材質を変える必要がある、一方、回転放物面鏡と反射面鏡とを組合せて使うと、反射光学系で波長依存性が無いので、紫外・可視・赤外領域の広い波長領域を1台の半球面検出光学系でカバーできる。
実施の形態1の光学特性測定装置であり、反射測定配置を示す図。 実施の形態1の光学特性測定装置の断面図。 実施の形態1の光学特性測定装置における透過測定配置を示す図。 実施の形態1の光学特性測定装置におけるバックグラウンド測定配置を示す図。 実施の形態1の半球面検出光学系を示す図。 実施の形態1の帯状回転楕円体面鏡を示す図。 実施の形態1の四分の一回転楕円体面鏡を示す図。 実施の形態1の八分の一回転楕円体面鏡を示す図。 実施の形態1において帯状回転楕円体面鏡の配置を説明する図。 実施の形態1において帯状回転楕円体面鏡の配置を説明する図。 実施の形態1において帯状回転楕円体面鏡の配置を説明する図。 回転楕円体面の赤道面等を説明する図。 回転楕円体面の切断面を説明する図。 半球レンズに入射した光線を示す図。 半球レンズとファイバーテーパーを用いた半球面検出光学系を示す図。 実施の形態1における試料の回転を説明する図。 実施の形態1における試料の回転を説明する図。 実施の形態1における合成画像を説明する図。 実施の形態1の光学特性測定装置による測定結果を示す図。 実施の形態1の光学特性測定装置による半球レンズの効果を示す図。 実施の形態1の光学特性測定装置による測定結果を示す図。 実施の形態2の光学特性測定装置を示す図。 実施の形態3の光学特性測定装置を示す図。 実施の形態4を示す図。 実施の形態4を示す図。 従来技術を説明する図。
 以下、本発明の実施の形態について、図面を参照して説明する。
(実施の形態1)
 試料からの散乱光を計測するための光学特性測定装置に関して、その代表的な構造及び評価結果等について説明する。図1は、実施の形態1の代表的な構造を示す斜視図であり、反射測定配置を示している。図2は、図1の装置の断面図を模式的に示した図であり、反射測定モードを示している。図3は透過測定配置を示す図であり、図4はバックグラウンド測定配置を示す図である。図5は、半球面検出光学系を示した図である。図6は、帯状回転楕円体面鏡を示した図であり、図7は、四分の一回転楕円体面鏡を示した図で、図8は、八分の一回転楕円体面鏡を示した図である。図9、10、11は、帯状回転楕円体面鏡を回転させた様子を示す図である。
 まず本発明の前提となる双楕円型光学系について詳細に説明する。双楕円型光学系は、二つの回転楕円体面鏡を、夫々の回転軸が同軸上にあるように互いに隣接して配置したもので、この二つの回転楕円体面鏡を、夫々互いに近接した焦点を含み回転軸に垂直の面において切断して、夫々の切断面が一致するように接続して構成されたものである。回転楕円体面鏡は内部を鏡面に仕上げたものである。光入射側の第1の回転楕円体面鏡と受光側の第2の回転楕円体面鏡を、互いの1つの焦点を共通焦点とし、2つの回転楕円体面鏡のそれぞれの残りの焦点と合わせた、3つの焦点が一直線状(図2の点線)に並ぶ。3つの焦点を結ぶ直線を「双楕円体面鏡の軸」と呼ぶ。この直線は上記二つの回転楕円体面鏡の回転軸と一致し、双楕円体面鏡の回転軸でもある。
 本実施の形態1の装置は、図1に示すように、双楕円型光学系の構造の一方の回転楕円体面鏡(第1の回転楕円体面鏡)を帯状回転楕円体面鏡1で構成し、他方の回転楕円体面鏡(第2の回転楕円体面鏡)を、四分の一回転楕円体面鏡2で構成し、第2の回転楕円体面鏡の焦点に集光する散乱光を検出する構成を備えたものである。
 帯状回転楕円体面鏡1及び四分の一回転楕円体面鏡2について図12、13を参照して説明する。図12、13は、回転楕円体面(第1、第2の回転楕円体面鏡)の切断面を説明するための図である。図12において、回転楕円体面の北極と南極からちょうど半分の位置の面を、赤道面と呼ぶ。赤道面と直交し北極と南極を通り長軸を含む面を、子午線面1と呼ぶ。赤道面と直交し北極と南極を通り短軸のみを含む面を、子午線面2と呼ぶ。図13において、切断面1は、赤道面から上下に等距離(例えば20mm)離れた位置の面である。切断面2は、回転楕円体の1つの焦点を通り、赤道面と直交する平面である。
 帯状回転楕円体面は、切断面1の2つの面と切断面2で切断した残りの立体である。
 四分の一回転楕円体面は、赤道面と切断面2で切断した残りの立体である。体積としては正しくは回転楕円体の四分の一ではないが、本発明において四分の一回転楕円体面と呼ぶ。
 八分の一回転楕円体面は、赤道面と子午線面1と切断面2で切断した残りの立体である。八分の一回転楕円体面の場合も、体積としては正しくは八分の一ではないが、本発明において八分の一回転楕円体面と呼ぶ。
 なお、従来の半回転楕円体面は、赤道面で切断した残りの立体である。
 実施の形態1の装置は、半球レンズ4、テーパー状光ファイバー(ファイバーテーパーとも呼ぶ)5、CCDカメラ6、ビーム切り替え鏡(RM1ミラー)7、レンズ8、光源9を備えている。第1の回転楕円体面鏡の焦点に、RM1ミラー7を配置し、共通焦点に試料(被測定物)3を配置し、第2の回転楕円体面鏡の焦点に、半球レンズ4を配置する。上記双楕円体面鏡の軸と第1の回転楕円体面鏡の交点には、入射用透孔が形成されている。
 図1の反射測定配置における反射測定モードについて説明する。光源9(レーザー光源、或いは分光光度計等)からの光を、レンズ8及び入射用透孔を通して、双楕円面鏡内部に取り込むと、この光はビーム切り替え鏡(RM1ミラー)7に達する。ビーム切り替え鏡(RM1ミラー)7で反射された光は、第1の回転楕円体面鏡(帯状回転楕円体面鏡1)でさらに反射され、共通焦点上の試料3に入射する。この試料3で反射された光は、第2の回転楕円体面鏡(四分の一回転楕円体面鏡2)で反射されて焦点に集光する。半球レンズの中心をこの焦点と一致させて配置することで、全ての光は半球レンズの平面側から内部へ入射するときに、その材質の屈折率で決まる角度だけ入射光は屈折する。さらにこの半球レンズの特性により、四分の一回転楕円体面鏡側の任意の方向から入射した平行光線は、レンズの半径と材質の屈折率とその入射角度で決まるある特定の距離へ集光する。光線追跡ソフトを使ってシュミレーションした結果を図14と図15に示す。屈折率2で直径10mm(図15のD)の半球レンズの場合、レンズの頂点から集光点まで距離(図15のF)は、約4mmである。この集光点に、テーパー状光ファイバー(ファイバーテーパーとも呼ぶ)5の大口径側端面を配置する。テーパー状光ファイバーの小口径側端面をCCDカメラ6の画素面に近接させて配置することで、CCDカメラの画像は鮮明になる。
 帯状回転楕円体面鏡1についてさらに説明する。従来のイメージング半球光学系やシーガル型散乱計は、その構造上、反射率測定はできるが、透過率測定はできないのに対して、本発明の装置は、入射側に帯状回転楕円体面鏡を使うことにより、反射率ばかりでなく透過率も同時に測定可能となった。
 また、従来の二分の一回転楕円体面鏡では多重反射の問題があったが、本発明では、入射側の回転楕円体面鏡を、反射面積の少ない帯状回転楕円体面鏡とし、さらに光源を帯状回転楕円体面鏡の外部に配置してこの楕円体面鏡の入射用透孔を通してこの楕円体面鏡内部へ光を導く構造のために、多重反射を減らせる。
 さらに、本発明では、帯状回転楕円体面鏡を使うことで、試料への入射角度を可変にできる。さらに、拡散反射(透過)的でない試料(アルミ平面ミラーや窓ガラス)の場合には、対称X型光学系(特許第3470267号)の考え方(反射測定の光路とバックグラウンド測定の光路を空間のどこでも重なり合うように構築することで、その光路中の光学素子での光ロスを互いにキャンセルできる光学系。このために実際は反射測定を2回、バックグラウンド測定も2回おこなっている。)を使うことで、絶対反射率と絶対透過率が測定できる。
 四分の一回転楕円体面鏡2についてさらに説明する。本発明では、二分の一回転楕円体面鏡ではなくて、四分の一回転楕円体面鏡を用いたので、多重反射を避けることができる。しかし、四分の一回転楕円体面鏡で測定できる空間は、半空間(2π空間)ではなくて、最大で四分の一空間(π空間)である。
 また、四分の一回転楕円体面鏡に変えて、八分の一回転楕円体面鏡を用いてもよい。八分の一回転楕円体面鏡を用いた場合は、最大で八分の一の空間を一度に測定できる。
 半球面検出光学系について以下説明する。図5は、半球面検出光学系を示した図である。本実施の形態では、半球面検出光学系は、半球レンズ4、ファイバーテーパー5、CCDカメラ6を備える。ファイバーテーパー5は、像を伝達するファイバーバンドルをテーパー状に成形したものであり、入射面からの像を所定の倍率で拡大又は縮小して他方の端面に伝達する機能を有する高解像度の像伝達デバイスである。
 半球面検出光学系は、半球面全体からの光を測定するために、四分の一回転楕円体面鏡2の空間へ検出系が突出しないように設置される。ちょうど、半球レンズ4とファイバーテーパー5は、魚眼レンズに類似する役割をする。半球面検出光学系は、半球全体からの光を全て集光できるように、集光された光が最初に半球レンズ4に入射するように配置される。
 半球レンズに入射した光線について図14を参照して説明する。図14は、直径2mmのアパーチャーを付けた直径10mmの半球レンズに平行光線が入射した時の入射角度と結像の位置を図示したものである。図示のように、半球全体からの光を全て集光することができる。
 図15は、半球レンズとファイバーテーパーの相対位置関係を説明する図である。半球レンズの結像面までの距離は、半球レンズの屈折率、半径と入射角度で決まる。屈折率が2で、半径が5mmのとき、半球の頂点から結像面までの距離は約4mmである。結像面にファイバーテーパーの入射面を一致させる。半球レンズ(直径10mm、屈折率2)にアパーチャーa(1.5mm)を付け、半球レンズの底面から、D/2(半球レンズの半径)とF(結像面までの距離)の合計の距離に、ファイバーテーパーの大径面(径h1)を配置し、小径の面(径h2)を、CCDカメラの画素面に密着させた。詳細には、結像面は曲面であるが、図示のようにファイバーテーパーは平面でもよい。このように、ファイバーテーパー5については、半球レンズの焦点位置に、ファイバーテーパーの一方の面を配置すると、焦点の画像をCCDカメラのピクセルに伝達することができるので、より鮮明な画像が得られるので、より好ましい。しかし、ファイバーテーパーの一方の面を半球レンズの焦点位置に以外に配置してもよい。
 CCDカメラ6は筐体からピクセル面が奥まっているので、ファイバーテーパー5を用いることにより、効率よく集光できる。CCDカメラの画像から、空間に光が分布していた情報(配光分布)を得られる。さらに、CCDカメラの各ピクセルの電荷量を積分することにより、半球全反射(透過)率を得ることができる。
 次に、測定方法について説明する。図4の配置で試料無しの状態でバックグラウンド測定を行う。図3に示す透過測定の場合、光源9(レーザ光源、分光光度計からの光)からの光を、レンズ8及び入射用透孔を通して、双楕円面鏡内部に取り込むと、この光は、反射測定の場合と異なる図示のような向きのビーム切り替え鏡(RM1ミラー)7に達する。ビーム切り替え鏡(RM1ミラー)7で反射された光は、帯状回転楕円体面鏡1でさらに反射され、共通焦点上の試料3に入射する。この試料3を透過した光は、四分の一回転楕円体面鏡2で反射されて焦点に集光する。
 ビーム切り替え鏡(RM1ミラー)7を所定角度回転することで、試料への入射角度を変えることができる。
 帯状回転楕円体面鏡を回転して測定する方法について図9~11、16~18を参照して以下説明する。帯状回転楕円体面鏡の回転は、半球レンズによる最周辺部分の像が中心部分の像に比べて圧縮されてしまうのを改善する時に使う。図9は、帯状回転楕円体面鏡が、四分の一回転楕円体面鏡の赤道面に対して垂直の位置にある配置を示す。図11に、水平の位置の場合を示し、図10に、回転途中の配置を模式的に示す。
 半球面検出光学系として半球レンズを初段に使う方法では、最周辺部の像が中心部分に比べて小さくなりすぎるという欠点がある。まずこの欠点の改善のためには、試料と帯状回転楕円体面鏡を相関を持って回転させればよい。実際には中心部分の撮映1枚と周辺部分の撮影3枚を合成させることで、まず完全な四分の一空間の画像を得る。次に試料をY軸の周りで180°回転させて、先ほどと同じ手順で4回の撮影をおこない、これらを合成する。これで残りの四分の一空間の画像を得る。これら2つの画像を合成することで、半空間(2π空間)を測定できる。
 なお、ここで、X、Y、Z軸とは、共通焦点を座標原点とし、次の軸をいう。X軸は、光源と試料と半球レンズの底面を結ぶ線(図2の点線)で、帯状回転楕円対面鏡の回転軸と一致する。Y軸は、原点を通り、垂直な直線(図2の破線)をいう。Z軸は四分の一楕円の直角に切り落とされたエッジを結ぶ線で、X軸とY軸と直交する軸をいう。
 図16、17、18は、四分の一回転楕円体面鏡上での、π空間の撮影と画面の合成について示したものである。図16(A)は、第1画像の場合の、通常の配置を示す。図16(B)は、第2画像の場合の、試料をX軸の周りで反時計方向にある角度φ回転させ、帯状回転楕円体面鏡も同じ角度回転させた配置を示す。図17(A)は、第3画像の場合の、試料をX軸の周りで時計方向にある角度φ回転させ、帯状回転楕円体面鏡も同じ角度回転させた配置を示す。図17(B)は、第4画像の場合の、試料をZ軸の周りで反時計方向にある角度θ回転させ、RM1ミラーも同じ角度回転させた配置を示す。図18は、第1~第4画像を合成して、試料の画像合成をする様子を示す。
 さらに、試料を180°回転させて同じ測定を繰り返して2π空間の撮影と画像の合成をすることができる。即ち、帯状回転楕円体面鏡の側にあった試料面からの反射光や透過光を測定するために、試料をY軸の回りに180°回転させて、図16、17と同じ測定を繰り返す。これら8枚の画像を合成することで、正確な2π空間の配向分布が得られる。
 本実施の形態の装置を用いて、測定した測定結果を図19に示す。光源はヘリウムネオンレーザで、グレーティングを試料として、レーザ光をグレーティングへ照射して、グレーティングからの拡散反射光(正確には、回折光)を測定した。図の横軸は散乱角、縦軸はCCDカメラで測定した出力を示す。本実施の形態の装置によれば、グレーティングからの高次の回折像が高精度で測定されることがわかる。
 半球レンズの魚眼レンズとしての効果を測定した結果を示す。図20に、本実施の形態の装置と、半球レンズ無しの装置とで、測定した測定結果を示す。横軸は半球ミラーへの入射角度で、縦軸は反射信号強度である。丸印がレンズ無しの時の信号強度で、四角印がレンズ有りの時の信号強度である。なお、比較のために信号強度曲線のピークで規格化してある。レンズ無しの時に比べて、レンズ有りの時、左右に膨らんでいる。この膨らみ分が半球レンズの魚眼レンズとしての効果である。
 鏡面仕上げの平行平板石英試料とスペクトラロン試料を用いて、拡散反射率、透過率と吸収率の測定を行った。図21に、測定結果を示す。横軸は試料への入射角度(度)である。縦軸は反射率、透過率、吸収率であり、(R,T,A)と示す。丸印が鏡面仕上げ石英の透過率、四角印が鏡面仕上げ石英の反射率、三角印が鏡面仕上げ石英の吸収率、菱形印がスペクトラロンの反射率である。鏡面仕上げの平行平板石英は、この波長領域(へリームネオンレーザの波長633nm)で吸収率ゼロで、理想的な正反射と正透過をする物質である。測定結果も入射角度の小さい範囲で、吸収率がほぼゼロとなり、反射率も透過率もハンドブックの推奨値であった。スペクトラロンは、理想的な完全拡散板である。この試料の反射率の測定結果は、入射角度が小さい範囲で、ほぼ50%である。四分の一回転楕円体面鏡が見る空間がπであることを考えると、全反射率はちょうど2倍の100%となり、よい一致をしている。
 測定結果から、四分の一回転楕円体面鏡を使うと反射率と透過率が精度良く測れることがわかる。
 半球全反射(透過)率測定のためには、CCDカメラの代わりに、フォトダイード(シリコンフォトダイオード)や光電子増倍管のような光検出器を用いてもよい。
 測定対象の試料として、カーボンナノチューブ等の各種試料、マイクロレンズ等がある。例えばマイクロレンズに傷があれば拡散反射光の空間分布が歪むので、歪みがあるかないかを、10秒程度の測定時間で判定可能である。
(実施の形態2)
 実施の形態1では、半球面検出光学系として、半球レンズとファイバーテーパーとCCDカメラとを用いた例、及び半球レンズとファイバーテーパーとフォトダイオード検出器を用いた例とを説明した。実施の形態2では、ファイバーテーパーの代わりに、凸レンズ系を用いた例を図22を参照して説明する。図22において、実線5本と一点鎖線と二点鎖線が集まっている点が、回転楕円体面鏡の焦点F2である。半球レンズの中心は、回転楕円体面鏡の焦点F2と一致するように配置される。また、半球レンズの底面が、四分の一回転楕円体面鏡の縁の面と平行に配置される。これにより、半球面検出光学系が回転楕円体面鏡内部に影を作らないので、焦点F2に2π空間から集まる全ての光を半球レンズが集光できる。
 一点鎖線と二点鎖線は、半球レンズの底面とほぼ平行に進む光線を示し、焦点F2に集まる。本実施の形態の半球面検出光学系は、半球レンズ4、凸レンズ系(凸レンズ1、凸レンズ2)、CCDカメラ6を備える。2π空間から四分の一回転楕円体面鏡2の焦点に集まった光は、半球レンズ4に入射し、半球レンズ4の屈折率のために、出射時に収束される。屈折率n=2の半球レンズのとき、このレンズを出射する光は、0.134×2π(ステラデアン)に収束される。入射時は2πステラデアンであるので、半球空間のビームが13.4%の空間へ収束されたことになる。
 半球レンズ4を通った光を、凸レンズ系(凸レンズ1、凸レンズ2)により、凸レンズ1で平行光線に、凸レンズ2で集光させて、その焦点の近傍にCCDカメラ6を配置する。カメラにより、半球面全体からの光を撮像し、半球面全体の画像を得ることができる。これにより、配向分布図を短時間で得ることができる。
 半球全反射(透過)率測定のためには、CCDカメラ6の代わりに、フォトダイード(シリコンフォトダイオード)や光電子増倍管のような光検出器を用いてもよい。
(実施の形態3)
 実施の形態2では、半球面検出光学系として、半球レンズと凸レンズとCCDカメラ(又はフォトダイオード検出器)を用いた例を説明した。実施の形態3では、半球レンズ4の代わりに、回転放物面鏡14を用いた例を図23を参照して説明する。本実施の形態の半球面検出光学系は、回転放物面鏡14、凸レンズ系(凸レンズ)13、CCDカメラ6を備える。回転放物面鏡14は、その回転軸に垂直で焦点を通る面で切断(開口部)された形状で、内面が鏡面になった構造である。四分の一回転楕円体面鏡の縁と、回転放物面鏡の焦点を通る切断面(開口部)を平行にして、両者の焦点が一致するように、設置する。
 一点鎖線と二点鎖線は、実施の形態2と同様の光線を示している。図23において、実線5本と一点鎖線と二点鎖線が集まっている点が、回転楕円体面鏡の焦点F2であり、回転放物面鏡の焦点とも一致している。回転放物面鏡の焦点位置の透孔を通った光は、回転放物面鏡の内放物面で反射される。反射されて光は、光軸に平行に進み、凸レンズ13の焦点に集光される。一方、放物面で反射されずに進んだ光は、凸レンズ13で屈折されるが、その焦点には集光されずに、焦点近くに集まる。これらの光の集まる所にCCDカメラ6を設置することで、全光量測定と配向測定ができる。
(実施の形態4)
 実施の形態3で示した回転放物面鏡を用いた基本形では、図23からもわかるように、回転放物面鏡で平行になった光と、焦点F2から発散した光がCCDカメラの同じ画素に入ることがあるので、配光測定が厳密には正確でない。そこで配光測定をより正確に測定するための改良が、実施の形態4である。実施の形態4の装置1を図24に、装置2を図25に示す。
 装置1は、図24のように、回転放物面鏡14と放物面鏡16とCCDカメラ6(又はフォトダイオード等の検出器)を設けたものである。図24では、一点鎖線と二点鎖線は入射角度90°近くで回転放物面鏡に入射する光で、これらと実線が回転放物面鏡で反射したのち平行光線となり、上部の放物面鏡で反射されると、検出器へ集光する。破線で描かれた光線は回転楕円体面鏡部分体の焦点から発散する光であり、回転放物面鏡では反射されずに上部の放物面鏡で反射されると、アパーチャーで遮断されて検出器へは到達しない。
 装置2は、図25のように、回転放物面鏡14と楕円面鏡17とCCDカメラ6(又はフォトダイオード等の検出器)を設けたものである。図25では、一点鎖線と二点鎖線は入射角度90°近くで回転放物面鏡に入射する光で、これらと実線が回転放物面鏡で反射したのち平行光線となり、上部の楕円面鏡で反射されると、アパーチャーで遮断されて検出器へは到達しない。破線で描かれた光線は回転楕円体面鏡部分体の焦点から発散する光であり、回転放物面鏡では反射されずに上部の楕円面鏡で反射されると、検出器へ到達する。
 このように、図24のように、放物面鏡16を配置することで、回転放物面鏡からの平行光線を検出器(CCDカメラ或いはフォトダイオード検出器)へ集光できる。一方、図23において回転放物面鏡で反射しない光は、回転楕円体面鏡部分体(部分回転楕円体面鏡とも呼ぶ)の焦点からの発散光で、放物面鏡16の代わりに楕円体面鏡17を設置すること(装置2、図25)で、検出器へ集光させることができる。本実施の形態において、必要に応じて検出器の前等に適当な直径のアパーチャー(開口絞り)15を設けることが好ましい。アパーチャーを設置することで、放物面鏡16で集光するときには発散光を排除でき、楕円体面鏡17で集光する時には平行光線を排除できる。これら2つの画像を合成することで配光分布を測定できる。
 実施の形態4における半球面検出光学系は、回転放物面鏡と反射面鏡(放物面鏡と楕円面鏡を統合した呼び方)とCCDカメラ、又は、回転放物面鏡と反射面鏡(放物面鏡と楕円面鏡を統合した呼び方)とフォトダイオード検出器の組み合わせである。これらの半球面検出光学系ではレンズのような屈折を利用した光学素子を使っていないので、紫外、可視、赤外のどの波長領域でも使用可能な光学系である。なお検出器は、測定波長領域に合わせる必要がある。
 半球全反射(透過)率測定のためには、CCDカメラ6の代わりに、フォトダイード(シリコンフォトダイオード)や光電子増倍管のような光検出器を用いてもよい。
 上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。
 1 帯状回転楕円体面鏡
 2 四分の一回転楕円体面鏡
 3 試料
 4 半球レンズ
 5 ファイバーテーパー
 6、26 CCDカメラ
 7 ビーム切り替えミラー
 8、11、12、13  レンズ
 9 光源
 14 回転放物面鏡
 15 アパーチャー
 16 放物面鏡
 17 楕円面鏡
 24 ミラー
 25 拡散反射面
 

Claims (8)

  1.  被測定物からの散乱光を測定する光学特性測定装置であって、
     部分回転楕円体面鏡と帯状回転楕円体面鏡とからなる双楕円型光学系と、半球面検出光学系とを備え、
     前記部分回転楕円体面鏡は、少なくとも、双楕円型光学系の軸を通る面と、該軸に直交し共通焦点を通る面とで切断された構造を有し、
     前記半球面検出光学系は前記部分回転楕円体面鏡の焦点の位置に設置したことを特徴とする光学特性測定装置。
  2.  前記半球面検出光学系は、半球レンズを備え、半球レンズの中心が前記部分回転楕円体面鏡の焦点の位置に一致するように設置したことを特徴とする請求項1記載の光学特性測定装置。
  3.  前記半球面検出光学系は、テーパー状の光ファイバーを備え、前記光ファイバーの大径側の端面を、前記半球レンズの焦点に一致するように設置したことを特徴とする請求項1又は2記載の光学特性測定装置。
  4.  前記半球面検出光学系は、回転放物面鏡を備え、回転放物面鏡の焦点が前記部分回転楕円体面鏡の焦点の位置に一致するように設置したことを特徴とする請求項1記載の光学特性測定装置。
  5.  前記半球面検出光学系は、反射面鏡及び光検出器を備え、前記回転放物面鏡を出射した光を、該反射面鏡を介して光検出器で測定することを特徴とする請求項4記載の光学特性測定装置。
  6.  前記半球面検出光学系は、凸レンズ及び光検出器を備え、半球レンズまたは回転放物面鏡を出射した光を、該凸レンズを介して光検出器で測定することを特徴とする請求項2又は4記載の光学特性測定装置。
  7.  前記半球面検出光学系は、光検出器としてCCDカメラを備えることを特徴とする請求1乃至6のいずれか1項記載の光学特性測定装置。
  8.  前記部分回転楕円体面鏡は、四分の一回転楕円体面鏡又は八分の一回転楕円体面鏡であることを特徴とする請求項1乃至7のいずれか1項記載の光学特性測定装置。
PCT/JP2012/055945 2011-03-08 2012-03-08 光学特性測定装置 WO2012121323A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/003,201 US8982345B2 (en) 2011-03-08 2012-03-08 Optical characteristic measuring apparatus
EP12755428.5A EP2685237A4 (en) 2011-03-08 2012-03-08 OPTICAL CHARACTERISTIC MEASURING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011050104A JP5721070B2 (ja) 2011-03-08 2011-03-08 光学特性測定装置
JP2011-050104 2011-03-08

Publications (1)

Publication Number Publication Date
WO2012121323A1 true WO2012121323A1 (ja) 2012-09-13

Family

ID=46798278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055945 WO2012121323A1 (ja) 2011-03-08 2012-03-08 光学特性測定装置

Country Status (4)

Country Link
US (1) US8982345B2 (ja)
EP (1) EP2685237A4 (ja)
JP (1) JP5721070B2 (ja)
WO (1) WO2012121323A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118645A (zh) * 2019-04-19 2019-08-13 西北核技术研究所 一种半椭球反射面的光学性能综合评价方法
CN112053352A (zh) * 2020-09-10 2020-12-08 杭州佰腾电子科技有限公司 一种材料表面效果测量装置、模型及评价方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289450B2 (ja) 2012-05-09 2018-03-07 シーゲイト テクノロジー エルエルシーSeagate Technology LLC 表面特徴マッピング
US9212900B2 (en) 2012-08-11 2015-12-15 Seagate Technology Llc Surface features characterization
US9297759B2 (en) 2012-10-05 2016-03-29 Seagate Technology Llc Classification of surface features using fluorescence
US9297751B2 (en) 2012-10-05 2016-03-29 Seagate Technology Llc Chemical characterization of surface features
US10024790B2 (en) 2012-10-05 2018-07-17 Seagate Technology Llc Imaging a transparent article
US9377394B2 (en) 2012-10-16 2016-06-28 Seagate Technology Llc Distinguishing foreign surface features from native surface features
US9217714B2 (en) 2012-12-06 2015-12-22 Seagate Technology Llc Reflective surfaces for surface features of an article
US9201019B2 (en) 2013-05-30 2015-12-01 Seagate Technology Llc Article edge inspection
US9274064B2 (en) 2013-05-30 2016-03-01 Seagate Technology Llc Surface feature manager
US9513215B2 (en) 2013-05-30 2016-12-06 Seagate Technology Llc Surface features by azimuthal angle
US9217715B2 (en) 2013-05-30 2015-12-22 Seagate Technology Llc Apparatuses and methods for magnetic features of articles
EP3059574A4 (en) 2013-10-15 2017-12-27 National Institute Of Advanced Industrial Science Optical measurement device and device provided with optical system
US8982125B1 (en) * 2014-05-15 2015-03-17 Chaos Software Ltd. Shading CG representations of materials
JP6296925B2 (ja) 2014-06-30 2018-03-20 株式会社東芝 光ビーム走査装置
US9322776B2 (en) * 2014-08-19 2016-04-26 The Boeing Company Method and system for imaging a target
JP2016099281A (ja) * 2014-11-25 2016-05-30 高電工業株式会社 検体検査装置及び検体検査システム
GB2550338A (en) 2016-05-12 2017-11-22 Hewlett Packard Development Co Lp Reflector and additive manufacturing system
DE102016109803B3 (de) * 2016-05-27 2017-07-06 Eyec Gmbh Inspektionsvorrichtung und Inspektionsverfahren zur Inspektion des Oberflächenbildes einer einen Prüfling darstellenden Flachsache
FR3087011B1 (fr) * 2018-10-08 2022-12-30 Unity Semiconductor Dispositif d’inspection optique en champ sombre
CN110596054B (zh) * 2019-09-23 2022-03-01 河南师范大学 一种双向透射分布函数快速测量装置
JP7325383B2 (ja) * 2020-07-20 2023-08-14 アンリツ株式会社 物品検査装置
CN112649388A (zh) * 2020-12-07 2021-04-13 珠海格力电器股份有限公司 气体浓度检测系统及空调器
CN112729564B (zh) * 2020-12-28 2022-02-22 济南指上云信息科技有限公司 一种便携式发射率测量装置及其测量模块
CN116909014B (zh) * 2023-09-11 2023-12-01 之江实验室 一种基于椭球面的振镜平面扫描装置和扫描方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210418A (en) 1991-09-19 1993-05-11 Harrick Scientific Corp. Ultra-small sample analyzer for internal reflection spectroscopy
JPH08501880A (ja) * 1992-11-30 1996-02-27 ブロート リサーチ オーガニゼイション インコーポレイテッド 半球状に散乱あるいは放射された光を高速に測定する装置および方法
JPH11183320A (ja) * 1997-12-17 1999-07-09 Nikon Corp 光学特性測定ユニット、透過特性測定装置、反射特性測定装置、エリプソメータ、透過特性測定方法および反射特性測定方法
JP2000180351A (ja) * 1998-10-08 2000-06-30 Nikon Corp 光学特性測定ユニット
JP2002188999A (ja) * 2000-12-21 2002-07-05 Hitachi Ltd 異物・欠陥検出装置及び検出方法
JP3470267B2 (ja) 2001-03-29 2003-11-25 独立行政法人産業技術総合研究所 対称x型光学系
JP2004045065A (ja) 2002-07-09 2004-02-12 National Institute Of Advanced Industrial & Technology 入射角度可変の絶対反射率と絶対透過率測定光学系
JP2004257956A (ja) 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology 楕円型光学系
JP2006234681A (ja) 2005-02-25 2006-09-07 National Institute Of Advanced Industrial & Technology 立体双楕円型光学装置
JP2010276363A (ja) 2009-05-26 2010-12-09 National Institute Of Advanced Industrial Science & Technology 光学特性測定装置及び測定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE58017T1 (de) * 1983-12-24 1990-11-15 Inotech Ag Vorrichtung zum fuehren und sammeln von licht in der fotometrie od. dgl.
JPS60190835A (ja) * 1985-02-22 1985-09-28 Hitachi Ltd 微粒子検出器
CA2130343C (en) * 1992-02-21 2003-02-11 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Analysis of particle characteristics
US5767967A (en) * 1997-01-02 1998-06-16 Yufa; Aleksandr L. Method and device for precise counting and measuring the particulates and small bodies
WO1999026054A1 (fr) * 1997-11-19 1999-05-27 Otsuka Electronics Co., Ltd. Appareil de mesure des caracteristiques d'un angle optique
JP3234183B2 (ja) * 1997-11-19 2001-12-04 大塚電子株式会社 光散乱強度測定装置
US6731384B2 (en) 2000-10-10 2004-05-04 Hitachi, Ltd. Apparatus for detecting foreign particle and defect and the same method
US6914680B2 (en) 2002-07-09 2005-07-05 National Institute Of Advanced Industrial Science And Technology Optical system for measurement of optical constant
JP5300249B2 (ja) * 2007-11-21 2013-09-25 株式会社日立ハイテクノロジーズ 液体分析装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210418A (en) 1991-09-19 1993-05-11 Harrick Scientific Corp. Ultra-small sample analyzer for internal reflection spectroscopy
JPH08501880A (ja) * 1992-11-30 1996-02-27 ブロート リサーチ オーガニゼイション インコーポレイテッド 半球状に散乱あるいは放射された光を高速に測定する装置および方法
JPH11183320A (ja) * 1997-12-17 1999-07-09 Nikon Corp 光学特性測定ユニット、透過特性測定装置、反射特性測定装置、エリプソメータ、透過特性測定方法および反射特性測定方法
JP2000180351A (ja) * 1998-10-08 2000-06-30 Nikon Corp 光学特性測定ユニット
JP2002188999A (ja) * 2000-12-21 2002-07-05 Hitachi Ltd 異物・欠陥検出装置及び検出方法
JP3470267B2 (ja) 2001-03-29 2003-11-25 独立行政法人産業技術総合研究所 対称x型光学系
JP2004045065A (ja) 2002-07-09 2004-02-12 National Institute Of Advanced Industrial & Technology 入射角度可変の絶対反射率と絶対透過率測定光学系
JP2004257956A (ja) 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology 楕円型光学系
JP2006234681A (ja) 2005-02-25 2006-09-07 National Institute Of Advanced Industrial & Technology 立体双楕円型光学装置
JP2010276363A (ja) 2009-05-26 2010-12-09 National Institute Of Advanced Industrial Science & Technology 光学特性測定装置及び測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWATE E.: "Measurement method of optical scatter using a STAR GEM as a scatterometer", PROCEEDINGS OF THE SPIE, vol. 7065, 2008, pages 706515 - 1,706515-9
See also references of EP2685237A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118645A (zh) * 2019-04-19 2019-08-13 西北核技术研究所 一种半椭球反射面的光学性能综合评价方法
CN112053352A (zh) * 2020-09-10 2020-12-08 杭州佰腾电子科技有限公司 一种材料表面效果测量装置、模型及评价方法
CN112053352B (zh) * 2020-09-10 2024-03-15 中国计量大学 一种材料表面效果测量装置、模型及评价方法

Also Published As

Publication number Publication date
EP2685237A4 (en) 2014-08-13
EP2685237A1 (en) 2014-01-15
US20140002825A1 (en) 2014-01-02
US8982345B2 (en) 2015-03-17
JP5721070B2 (ja) 2015-05-20
JP2012185121A (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5721070B2 (ja) 光学特性測定装置
JP6153119B2 (ja) 光学測定装置及び光学系を備える装置
US9007590B2 (en) Apparatus for measuring transmittance
TW200813420A (en) An optical measurement system with simultaneous multiple wavelengths, multiple angles of incidence and angles of azimuth
TWI667465B (zh) 平板顆粒度檢測裝置
JP2009531660A (ja) 多数のセンサ又は多数の光源経路を有する測定システムの光学的設計
JP2009531658A (ja) 媒体中の粒子物体から予め画定された散乱角からの光の測定
JP2009531657A (ja) 粒子測定システムの光学的設計
JP5263783B2 (ja) 光学特性測定装置及び測定方法
US20050146719A1 (en) Method and apparatus for illuminating a substrate during inspection
TWI649535B (zh) Optical element characteristic measuring device
JP2009531659A (ja) 2重機能の測定システム
JP4742616B2 (ja) 立体双楕円型光学装置
US10384152B2 (en) Backscatter reductant anamorphic beam sampler
Kawate et al. New scatterometer for spatial distribution measurements of light scattering from materials
JP2009531661A (ja) 自己校正測定システム
JP4560517B2 (ja) 物体からの光強度を測定する携帯型装置と、そのような装置の使用方法
JP3388285B2 (ja) 検査装置
CN206594055U (zh) 水分测定装置
KR100749829B1 (ko) 3차원 광측정장치
JPH03214038A (ja) 空気中に散布されたエアロゾルと粉麈などの測定装置
US7508522B2 (en) Reflected light measuring apparatus and reflected light measuring method
US20190033207A1 (en) Microscopic analysis device
CN102901048A (zh) 反射罩、照明装置、检测/测量装置及检测/测量方法
CN113359288B (zh) 一种暗场散射显微成像和光谱测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14003201

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE