WO2012118647A1 - Interior permanent magnet machine systems, and methods for controlling interior permanent magnet machines - Google Patents
Interior permanent magnet machine systems, and methods for controlling interior permanent magnet machines Download PDFInfo
- Publication number
- WO2012118647A1 WO2012118647A1 PCT/US2012/025993 US2012025993W WO2012118647A1 WO 2012118647 A1 WO2012118647 A1 WO 2012118647A1 US 2012025993 W US2012025993 W US 2012025993W WO 2012118647 A1 WO2012118647 A1 WO 2012118647A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- operating
- ipm machine
- bus voltage
- ipm
- ratio
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/08—Arrangements for controlling the speed or torque of a single motor
- H02P6/085—Arrangements for controlling the speed or torque of a single motor in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0025—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/60—Controlling or determining the temperature of the motor or of the drive
- H02P29/67—Controlling or determining the motor temperature by back electromotive force [back-EMF] evaluation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/16—Estimation of constants, e.g. the rotor time constant
Definitions
- Example embodiments are related to electronic drive device systems and methods for controlling electronic drive devices such as Interior Permanent Magnet (IPM) motors or machines.
- IPM Interior Permanent Magnet
- IPM motor control has voltage limitations ranging from medium to high speeds.
- a specific direct current (dc) bus voltage level determines a series of best operating trajectories for a batch of rotor speeds.
- IPM characterization is normally performed only at the nominal dc bus voltage level.
- motor operating points which generate direct and quadrature (d-q) current commands from a controller lookup table, are calibrated only at the nominal dc bus voltage level for a batch of rotor speeds.
- an operating dc bus voltage may fluctuate significantly, cycling through motoring and braking modes, especially with battery applications.
- the fluctuating operating dc bus voltage may impact current regulation at lower dc bus voltages.
- Example embodiments are directed to IPM machine systems and methods of controlling IPM machines.
- IPM motor control should utilize the boosted dc bus voltage in order to increase output torque, power and improve/ or efficiency. If the operating dc bus voltage is lower than the nominal dc bus voltage, motor operating points corresponding to the operating dc bus voltage are adjusted to ensure robust current control.
- Example embodiments utilize a dc bus voltage to determine a series of operating trajectories for a batch of rotor speeds. In other words, example embodiments efficiently operate an IPM motor with a varying dc bus voltage. In some example embodiments the IPM motor is operated while using only nominal voltage characterization data.
- An example embodiment discloses an IPM machine system including an IPM machine including a nominal operating direct current (dc) bus voltage, and a controller configured to detect an operating dc bus voltage of the IPM machine and to control the IPM machine based on the nominal operating dc bus voltage and the detected operating dc bus voltage.
- IPM machine system including an IPM machine including a nominal operating direct current (dc) bus voltage, and a controller configured to detect an operating dc bus voltage of the IPM machine and to control the IPM machine based on the nominal operating dc bus voltage and the detected operating dc bus voltage.
- dc direct current
- At least another example embodiment discloses a method of controlling an IPM machine.
- the method includes determining an operating dc bus voltage of the IPM machine and a nominal dc bus voltage of the IPM machine, subsequently determining a drive command based on the operating dc bus voltage of the IPM machine and the nominal dc bus voltage of the IPM machine, and outputting the determined drive command to the IPM machine.
- At least another example embodiment discloses an IPM machine system including an IPM machine and a controller configured to detect an operating dc bus voltage and operating rotor shaft speed of the IPM machine, determine a ratio of the detected operating dc bus voltage to the detected operating rotor shaft speed and control the IPM machine based on the determined ratio.
- FIGS. 1-5B represent non -limiting, example embodiments as described herein.
- FIG. 1 is a block diagram of an example embodiment of a system for controlling an electrical motor
- FIG. 2 is a block diagram of an electronic data processing system consistent with FIG. 1;
- FIG. 3 illustrates an example embodiment of a calculation module shown in FIG. 1;
- FIG. 4 illustrates an example embodiment of a current generation manager shown in FIG. 1;
- FIGS. 5A-5B illustrate a method of controlling an IPM machine according to an example embodiment.
- Such existing hardware may include one or more Central Processing Units (CPUs), digital signal processors (DSPs), application-specific-integrated-circuits, field programmable gate arrays (FPGAs) computers or the like.
- CPUs Central Processing Units
- DSPs digital signal processors
- FPGAs field programmable gate arrays
- tangible (or recording) storage medium typically encoded on some form of tangible (or recording) storage medium or implemented over some type of transmission medium.
- the tangible storage medium may be magnetic (e.g., a floppy disk or a hard drive) or optical (e.g., a compact disk read only memory, or "CD ROM"), and may be read only or random access.
- the transmission medium may be twisted wire pairs, coaxial cable, optical fiber, or some other suitable transmission medium known to the art. Example embodiments are not limited by these aspects of any given implementation.
- FIG. 1 discloses a system for controlling an IP machine such as a motor 117 (e.g., an interior permanent magnet (IPM) motor) or another alternating current machine.
- the motor 117 has a nominal dc bus voltage (e.g., 320 Volts).
- the nominal voltage is a named voltage.
- a nominal voltage of the motor 117 may be 320 Volts, but the motor may operate at a voltage above and below 320 Volts.
- the system, aside from the motor 117 may be referred to as an inverter or a motor controller.
- the system for controlling the motor 117 may also be referred to as an IPM machine system.
- the system includes electronic modules, software modules, or both.
- the motor controller includes an electronic data processing system 120 to support storing, processing or execution of software instructions of one or more software modules.
- the electronic data processing system 120 is indicated by the dashed lines in FIG. 1 and is shown in greater detail in FIG. 2.
- the electronic data processing system 120 may also be referred to as a controller for the motor 117.
- the data processing system 120 is coupled to an inverter circuit 188.
- the inverter circuit 188 includes a semiconductor drive circuit that drives or controls switching semiconductors (e.g., insulated gate bipolar transistors (IGBT) or other power transistors) to output control signals for the motor 117.
- IGBT insulated gate bipolar transistors
- the inverter circuit 188 is coupled to the motor 117.
- the motor 117 is associated with a sensor 115 (e.g., a position sensor, a resolver or encoder position sensor) that is associated with the motor shaft 126 or the rotor.
- the sensor 115 and the motor 117 are coupled to the data processing system 120 to provide feedback data (e.g., current feedback data, such as phase current values ia, ib and ic), raw position signals, among other possible feedback data or signals, for example.
- feedback data e.g., current feedback data, such as phase current values ia, ib and ic
- Other possible feedback data includes, but is not limited to, winding temperature readings, semiconductor temperature readings of the inverter circuit 188, three phase voltage data, or other thermal or performance information for the motor 117.
- a torque command generation module 105 is coupled to a d-q axis current generation manager 109 (e.g., d-q axis current generation look-up tables).
- the d-q axis current refers to the direct axis current and the quadrature axis current as applicable in the context of vector-controlled alternating current machines, such as the motor 117.
- the output of the d-q axis current generation manager 109 (d-q axis current commands iq_cmd and id_cmd) and the output of a current adjustment module 107 (e.g., d-q axis current adjustment module 107) are fed to a summer 119.
- one or more outputs (e.g., direct axis current data (id*) and quadrature axis current data (iq*)) of the summer 119 are provided or coupled to a current regulation controller 111. While the term current command is used, it should be understood that current command refers to a target current value.
- the current regulation controller 111 is capable of communicating with the pulse-width modulation (PWM) generation module 112 (e.g., space vector PWM generation module).
- PWM pulse-width modulation
- the current regulation controller 111 receives respective adjusted d-q axis current commands (e.g., id* and iq*) and actual d-q axis currents (e.g., id and iq) and outputs corresponding d-q axis voltage commands (e.g., vd* and vq* commands) for input to the PWM generation module 112.
- PWM pulse-width modulation
- the PWM generation module 112 converts the direct axis voltage and quadrature axis voltage data from two phase data representations into three phase representations (e.g., three phase voltage representations, such as va*, vb* and vc*) for control of the motor 117, for example.
- Outputs of the PWM generation module 112 are coupled to the inverter circuit 188.
- the inverter circuit 188 includes power electronics, such as switching semiconductors to generate, modify and control pulse-width modulated signals or other alternating current signals (e.g., pulse, square wave, sinusoidal, or other waveforms) applied to the motor 117.
- the PWM generation module 112 provides inputs to a driver stage within the inverter circuit 188.
- An output stage of the inverter circuit 188 provides a pulse-width modulated voltage waveform or other voltage signal for control of the motor 117.
- the inverter 188 is powered by a direct current (dc) voltage bus.
- dc direct current
- the motor 117 is associated with the sensor 1 15 (e.g., a resolver, encoder, speed sensor, or another position sensor or speed sensors) that estimates at least one of an angular position of the motor shaft 126, a speed or velocity of the motor shaft 126, and a direction of rotation of the motor shaft 126.
- the sensor 115 may be mounted on or integral with the motor shaft 126.
- the output of the sensor 115 is capable of communication with the primary processing module 114 (e.g., position and speed processing module).
- the sensor 115 may be coupled to an analog- to- digital converter (not shown) that converts analog raw position data or velocity data to digital raw position or velocity data, respectively.
- the sensor 115 e.g., digital position encoder
- a first output (e.g., position data ⁇ for the motor 117) of the primary processing module 114 is communicated to the phase converter 113 (e.g., three-phase to two-phase current Park transformation module) that converts respective three-phase digital representations of measured current into corresponding two-phase digital representations of measured current.
- a second output (e.g., speed data SD for the motor 117) of the primary processing module 114 is communicated to the calculation module 110 (e.g., adjusted voltage over speed ratio module).
- An input of a sensing circuit 124 is coupled to terminals of the motor 1 17 for sensing at least the measured three-phase currents and a voltage level of the direct current (dc) bus (e.g., high voltage dc bus which may provide dc power to the inverter circuit 188).
- An output of the sensing circuit 124 is coupled to an analog- to-digital converter 122 for digitizing the output of the sensing circuit 124.
- the digital output of the analog-to-digital converter 122 is coupled to the secondary processing module 116 (e.g., dc bus voltage and three phase current processing module).
- the sensing circuit 124 is associated with the motor 117 for measuring three phase currents (e.g., current applied to the windings of the motor 117, back EMF (electromotive force) induced into the windings, or both).
- phase converter 113 may apply a Park transformation or other conversion equations (e.g., certain conversion equations that are suitable are known to those of ordinary skill in the art) to convert the measured three-phase representations of current into two-phase representations of current based on the digital three-phase current data ia, ib and ic from the secondary processing module 116 and position data ⁇ from the sensor 115.
- the output of the phase converter 113 module (id, iq) is coupled to the current regulation controller 111.
- Other outputs of the primary processing module 114 and the secondary processing module 116 may be coupled to inputs of the calculation module 110 (e.g., adjusted voltage over-speed ratio calculation module).
- the primary processing module 114 may provide the speed data SD (e.g., motor shaft 126 speed in revolutions per minute), whereas the secondary processing module 116 may provide a measured (detected) level of the operating dc bus voltage Vdc of the motor 117 (e.g., on the dc bus of a vehicle).
- the dc voltage level on the dc bus that supplies the inverter circuit 188 with electrical energy may fluctuate or vary because of various factors, including, but not limited to, ambient temperature, battery condition, battery charge state, battery resistance or reactance, fuel cell state (if applicable), motor load conditions, respective motor torque and corresponding operational speed, and vehicle electrical loads (e.g., electrically driven air-conditioning compressor).
- the calculation module 110 is connected as an intermediary between the secondary processing module 116 and the d-q axis current generation manager 109. The output of the calculation module 110 can adjust or impact the current commands iq_cmd and id_cmd generated by the d-q axis current generation manager 109 to compensate for fluctuation or variation in the dc bus voltage, among other things.
- the rotor magnet temperature estimation module 104, the current shaping module 106, and the terminal voltage feedback module 108 are coupled to or are capable of communicating with the d-q axis current adjustment module 107.
- the d-q axis current adjustment module 107 may communicate with the d-q axis current generation manager or the summer 119.
- the rotor magnet temperature estimation module 104 estimates or determines the temperature of the rotor permanent magnet or magnets.
- the rotor magnet temperature estimation module 104 may estimate the temperature of the rotor magnets from, one or more sensors located on the stator, in thermal communication with the stator, or secured to the housing of the motor 117.
- the rotor magnet temperature estimation module 104 may be replaced with a temperature detector (e.g., a thermistor and wireless transmitter like infrared thermal sensor) mounted on the rotor or the magnet, where the detector provides a signal (e.g., wireless signal) indicative of the temperature of the magnet or magnets.
- a temperature detector e.g., a thermistor and wireless transmitter like infrared thermal sensor mounted on the rotor or the magnet, where the detector provides a signal (e.g., wireless signal) indicative of the temperature of the magnet or magnets.
- the torque command generation module 105 receives an input control data message, such as a speed control data message, a voltage control data message, or a torque control data message, over a vehicle data bus 118.
- the torque command generation module 105 converts the received input control message into torque control command data T_cmd.
- the d-q axis current generation manager 109 selects or determines the direct axis current command and the quadrature axis current command associated with respective torque control command data and respective detected motor shaft 126 speed data SD.
- the d-q axis current generation manager 109 selects or determines the direct axis current command and the quadrature axis current command by accessing one or more of the following: (1) a look-up table, database or other data structure that relates respective torque commands to corresponding direct and quadrature axes currents, (2) a set of quadratic equations or linear equations that relate respective torque commands to corresponding direct and quadrature axes currents, or (3) a set of rules (e.g., if-then rules) that relates respective torque commands to corresponding direct and quadrature axes currents.
- the sensor 115 on the motor 117 facilitates provision of the detected speed data SD for the motor shaft 126, where the primary processing module 114 may convert raw position data provided by the sensor 115 into speed data
- the current adjustment module 107 (e.g., d-q axis current adjustment module) provides current adjustment data to adjust the direct axis current command id_cmd and the quadrature axis current command iq_cmd based on input data from the rotor magnet temperature estimation module 104, the current shaping module 106, and terminal voltage feedback module 108.
- the current shaping module 106 may determine a correction or preliminary adjustment of the quadrature axis (q-axis) current command and the direct axis (d-axis) current command based on one or more of the following factors: torque load on the motor 117 and speed of the motor 117, for example.
- the rotor magnet temperature estimation module 104 may generate a secondary adjustment of the q- axis current command and the d-axis current command based on an estimated change in rotor temperature, for example.
- the terminal voltage feedback module 108 may provide a third adjustment to d-axis and q-axis current based on controller voltage command versus voltage limit.
- the current adjustment module 107 may provide an aggregate current adjustment that considers one or more of the following adjustments: a preliminary adjustment, a secondary adjustment, and a third adjustment.
- the motor 117 may include an interior permanent magnet (IPM) machine or a synchronous IPM machine (IPMSM).
- IPM interior permanent magnet
- IPMSM synchronous IPM machine
- the sensor 115 may include one or more of the following: a direct current motor, an optical encoder, a magnetic field sensor (e.g., Hall Effect sensor), magneto- resistive sensor, and a resolver (e.g., a brushless resolver).
- the sensor 115 includes a position sensor, where raw position data and associated time data are processed to determine speed or velocity data for the motor shaft 126.
- the sensor 115 includes a speed sensor, or the combination of a speed sensor and an integrator to determine the position of the motor shaft.
- the senor 115 includes an auxiliary, compact direct current generator that is coupled mechanically to the motor shaft 126 of the motor 117 to determine speed of the motor shaft 126, where the direct current generator produces an output voltage proportional to the rotational speed of the motor shaft 126.
- the sensor 115 includes an optical encoder with an optical source that transmits a signal toward a rotating object coupled to the motor shaft 126 and receives a reflected or diffracted signal at an optical detector, where the frequency of received signal pulses (e.g., square waves) may be proportional to a speed of the motor shaft 126.
- the sensor 1 15 includes a resolver with a first winding and a second winding, where the first winding is fed with an alternating current, where the voltage induced in the second winding varies with the frequency of rotation of the rotor.
- the electronic data processing system 120 includes an electronic data processor 264, a data bus 262, a data storage device 260, and one or more data ports (268, 270, 272, 274 and 276).
- the data processor 264, the data storage device 260 and one or more data ports are coupled to the data bus 262 to support communications of data between or among the data processor 264, the data storage device 260 and one or more data ports.
- the data processor 264 may include an electronic data processor, a microprocessor, a microcontroller, a programmable logic array, a logic circuit, an arithmetic logic unit, an application specific integrated circuit, a digital signal processor, a proportional-integral-derivative (PID) controller, or another data processing device.
- a microprocessor a microcontroller
- a programmable logic array a logic circuit
- an arithmetic logic unit an application specific integrated circuit
- a digital signal processor a proportional-integral-derivative (PID) controller, or another data processing device.
- PID proportional-integral-derivative
- the data storage device 260 may include any magnetic, electronic, or optical device for storing data.
- the data storage device 260 may include an electronic data storage device, an electronic memory, non-volatile electronic random access memory, one or more electronic data registers, data latches, a magnetic disc drive, a hard disc drive, an optical disc drive, or the like.
- the data ports include a first data port 268, a second data port 270, a third data port 272, a fourth data port 274 and a fifth data port 276, although any suitable number of data ports may be used.
- Each data port may include a transceiver and buffer memory, for example.
- each data port may include any serial or parallel input/ output port.
- the first data port 268 is coupled to the vehicle data bus 118.
- the vehicle data bus 118 is coupled to a controller 266.
- the second data port 270 may be coupled to the inverter circuit 188; the third data port 272 may be coupled to the sensor 115; the fourth data port 274 may be coupled to the analog-to-digital converter 122; and the fifth data port 276 may be coupled to the terminal voltage feedback module 108.
- the analog- to -digital converter 122 is coupled to the sensing circuit 124.
- the torque command generation module 105 is associated with or supported by the first data port 268 of the electronic data processing system 120.
- the first data port 268 may be coupled to a vehicle data bus 118, such as a controller area network (CAN) data bus.
- vehicle data bus 118 may provide data bus messages with torque commands to the torque command generation module 105 via the first data port 268.
- the operator of a vehicle may generate the torque commands via a user interface, such as a throttle, a pedal, the controller 266, or other control device.
- the senor 115 and the primary processing module 114 may be associated with or supported by a third data port 272 of the data processing system 120.
- Vd is the d-axis voltage
- v q is the q-axis voltage
- r s is the stator resistance
- i d is the d-axis current
- 3 ⁇ 4 is the q-axis current
- Ld is the d- axis inductance
- L q is the q-axis inductance
- ⁇ e is the electrical frequency of the IPM and A/ is the strength of the permanent magnet on the rotor of the IPM.
- stator resistance r s may be neglected because a voltage drop across a resistance item is much smaller than a voltage drop across an inductance item and a back EMF item (e.g., A/). If the stator resistance r s is neglected, equations (1) and (2) can be rewritten as follows:
- equations (3) and (4) indicate ratios of an available terminal voltage over motor electrical frequency to determine the operating points for the current commands iq_cmd and id_cmd, assuming the strength of the permanent magnet A/ and the inductances L d and Lq are all constants.
- the electrical frequency can be converted from rotor shaft speed in rpm.
- the terminal voltage may be referred to as the alternating current (ac) voltage applied at a terminal of a machine such as the motor 117.
- the dc bus voltage may be converted to the terminal voltage by the inverter switching circuit 188.
- the voltage over speed ratio can be calculated by dividing the operating dc bus voltage over operating rotor shaft speed in rpm.
- an operating trajectory calibrated at 5000 rpm at 325 V can be directly applied to 4615.4 rpm at 300 V or 5384.6 rpm at 350 V.
- the terminal voltage limitation is a maximum available output ac voltage generated from a dc bus voltage for a machine terminal at high speed heavy load conditions.
- a controller may require an additional voltage margin.
- the voltage margin is based on the permanent magnet strength change due to ambient temperature change, fast dynamics of torque command and dc bus voltage. Thus, the voltage margin may be set according to these factors.
- the actual voltage limit may be 90-95% (e.g., 92%) of the terminal voltage limitation.
- the permanent magnet strength ⁇ ⁇ is a function of rotor speeds due to the varying machine iron losses and rotor magnet heating effects.
- the varying magnet strength ⁇ ⁇ will further cause variation in the d-q axis inductances L d and L q .
- optimized operating points may still be different considering varying machine parameters such as back EMF strength and d-q axis inductances.
- a voltage compensation coefficient adjusts the calculated voltage over speed ratio values.
- the voltage compensation coefficient can be adjusted to reflect a voltage margin, depending on an application's dynamic response specification.
- the voltage compensation coefficient When the operating dc bus voltage is higher than the nominal dc bus voltage, the voltage compensation coefficient is set slightly higher considering weaker magnet strength for higher rotor speed. On the other hand, when the operating dc bus voltage is lower than nominal dc bus voltage, the voltage compensation coefficient shall be set slightly lower considering stronger magnet strength for lower operating rotor shaft speed.
- V 1 and rpm 1 , V 2 and rpm 2 , V 3 and rpm 3 there are three sets of operating dc bus voltages and operating rotor shaft speeds: V 1 and rpm 1 , V 2 and rpm 2 , V 3 and rpm 3 , where V 1 ⁇ V 2 ⁇ V 3 and rpm 1 ⁇ rpm 2 ⁇ rpm 3 , such that the operating dc bus voltage to operating rotor shaft speed ratios are as follows:
- the terminal voltage limitation will be tightest when the operating dc bus voltage is at V 1 with the operating rotor shaft speed at rpm 1 and loosest when the operating dc bus voltage is at V 3 with the operating rotor shaft speed at rpm 3 .
- the terminal voltage is loosest at V 1 because the back EMF strength is strongest at rpm 1 and weakest at rpm 3 .
- a voltage compensation coefficient is included to adjust the calculated operating dc bus voltage to operating rotor shaft speed ratio values such that Assuming V ⁇ is the nominal dc bus voltage used in the motor characterization procedure, then the voltage compensation coefficient ⁇ 2 is varied to adjust voltage margin depending on application's dynamic response specification.
- the value of the voltage compensation coefficient ⁇ 1 is set less than the voltage compensation coefficient ⁇ 2 to reflect an increased magnet strength ⁇ ⁇ effect at a lower speed.
- the value of the voltage compensation coefficient ⁇ 3 is set slightly larger than the voltage compensation coefficient ⁇ 2 for a decreased magnet strength ⁇ ⁇ at a higher speed.
- Motor characterization procedure is a procedure used to determine d-axis and q-axis commands for a specific speed and torque command. The procedure is repeated at multiple torque commands and multiple speeds.
- a motor characterization procedure is described in Appl. No. XX/XXX,XXX, entitled “METHOD AND APPARATUS FOR CHARACTERIZING AN INTERIOR PERMANENT MAGNET," by the inventors of the subject application, filed on February 28, 2011, the entire contents of which are hereby incorporated by reference.
- machine characterization may be performed under a nominal dc bus voltage level only, such as 320 V, and at a set of rotor shaft speeds. For a particular speed such as 5000 rpm, the voltage and speed combination together gives an operating dc bus voltage to operating rotor shaft speed ratio value of 320/5000.
- the voltage margin is a percentage of the nominal dc bus voltage such as 5% or 6%.
- a maximum available ac voltage from the dc bus is the operating dc bus voltage divided by ⁇ 2 in linear modulation range. Then the voltage margin may be within 5% or 6% of the nominal dc bus voltage divided by ⁇ 2 .
- a two-dimensional voltage compensation coefficient lookup table is constructed based on the tuning of operating dc bus voltages and operating rotor shaft speed pairs that produce the same ratio to achieve the same voltage margin.
- the threshold voltage margin is determined at the nominal dc bus voltage and associated operating rotor shaft speeds for the same torque command.
- the operating dc bus voltage may be adjusted to 280 V and the shaft speed may be adjusted to 4375 rpm.
- the voltage compensation coefficient may be tuned, e.g., to 0.97, until the voltage margin is achieved.
- the voltage compensation coefficient is determined such that the adjusted ratio at 280 V and 4375 rpm operation condition associated with a torque command generates a set of d-q axis current commands that have the same voltage margin as the 320 V and 5000 rpm operation condition associated with the same torque command.
- the set voltage margin can 320 V divided by ⁇ 2 and then multiplied by 5%.
- the operating dc bus voltage may be adjusted to 390 V and the shaft speed may be adjusted to 6094 rpm.
- the voltage compensation may be tuned, e.g., to 1.03, until the set voltage margin is achieved as well.
- the tuning procedure is repeated at different operating dc bus voltage levels such as 280, 290, 320,..., 380, 390 V to determine corresponding voltage compensation coefficients and put them into the two-dimensional voltage compensation coefficient lookup table.
- the voltage compensation coefficients become a two- dimensional lookup table ranging from minimum operating dc bus voltage to maximum operating dc bus voltage.
- the two-dimensional voltage compensation coefficient lookup table is shown as 310 in FIG. 3.
- FIG. 3 illustrates an example embodiment of a calculation module shown in FIG. 1.
- the calculation module 110 is configured to receive the detected operating dc bus voltage value Vdc and the speed data SD (in rpm).
- the calculation module 110 includes the two-dimensional voltage compensation coefficient lookup table (LUT) 310, a speed data processor 320, an adjusted ratio calculator 330 and a base torque LUT 340.
- LUT two-dimensional voltage compensation coefficient lookup table
- the voltage compensation coefficient LUT 310 receives the detected operating dc bus voltage value Vdc and outputs a voltage compensation coefficient Vcoeff based on the detected operating dc bus voltage value Vdc. More specifically, the voltage compensation coefficient LUT 310 includes a list of operating dc bus voltages, each of which is associated with a voltage compensation coefficient. The voltage compensation coefficients are determined using the tuning procedure described above. When the voltage compensation coefficient LUT 310 receives the detected operating dc bus voltage value Vdc, the voltage compensation coefficient LUT 310 outputs the voltage compensation coefficient associated with the received detected operating dc bus voltage value Vdc as the voltage compensation coefficient Vcoeff.
- the voltage compensation coefficient Vcoeff is output from the voltage compensation coefficient LUT 310 to the adjusted ratio (adjusted detected operating dc bus voltage to the detected operating rotor shaft speed ratio) calculator 330.
- the SD processor 320 is configured to receive the speed data SD, determine the absolute value of the speed data SD and output the absolute value of the speed data Abs_SD to the adjusted ratio calculator 330.
- the SD processor 320 may include an SD limiter that is configured to determine whether the speed data SD exceeds or is below a threshold and, therefore, should not be considered.
- the adjusted ratio calculator 330 is configured to receive the detected operating dc bus voltage value Vdc.
- the adjusted ratio Adj_ratio is output by the adjusted ratio calculator 330 to the d-q axis current generation manager 109 and the base torque LUT 340.
- the base torque LUT 340 determines a base torque value Base_Torq based on the adjusted ratio Adj_ratio and characterized base torque data associated with adjusted ratio values.
- base torque values are respectively associated with discrete speed points with a nominal dc bus voltage level.
- the two-dimensional base torque LUT 340 is established from the motor characterization procedure.
- each rotor shaft speed has a maximum output torque which is defined as the base torque at that speed.
- the base torque may also be referred to a peak torque.
- the base torque LUT 340 outputs the associated base torque value as the base torque value Base_Torq to the d-q axis current generation manager 109.
- FIG. 4 illustrates an example embodiment of a current generation manager shown in FIG. 1.
- the d-q axis current generation manager 109 includes a torque processor 410, a sign determination unit 420, a q-axis current (iq) command LUT 430, a d- axis current (id) command LUT 440 and a multiplier 450.
- the sign determination unit 420 determines the positive or negative sign of the torque command data T_cmd and outputs a sign value T_cmd_sign to the multiplier 450.
- the torque processor 410 receives the base torque value
- the torque command data T_cmd may be generated from a voltage (or speed) control proportional-integrator (PI) that regulates the dc bus voltage (or speed) or from a direct torque command in a torque control mode.
- the torque command data T_cmd may be in Nm.
- the torque processor 410 is configured to determine an absolute value of the torque command data T_cmd.
- the torque processor 410 is configured to convert the absolute value of the torque command data T_cmd into a percentage Torq_Perc of the base torque value Base_Torq.
- the torque processor 410 outputs the percentage Torq_Perc to the q-axis current (iq) command LUT 430 and the d-axis current (id) command LUT 440.
- the q-axis current (iq) command LUT 430 and the d-axis current (id) command LUT 440 are also configured to receive the adjusted ratio Adj_ratio.
- the q-axis current (iq) command LUT 430 and the d-axis current (id) command LUT 440 store q-axis and d-axis current commands, respectively, each of which is associated with a pair of adjustment ratio and torque percentage values.
- Torque control of IPM machines generally involves generating alternating current (AC or ac) control signals for controlling the IPM machine based on the requested torque.
- AC control signals are represented by a current vector having a peak current magnitude Is and current angle G.
- the current vector is often represented by a direct axis current id or Id component and quadrature axis current iq or Iq component of the current vector where:
- Id component is negative in IPM machine control while the sign of Iq component depends on the sign of the desired torque.
- the ac control signals are constrained by operational constraints associate with the IPM machine.
- the ac control signals which power stator windings in the IPM machine, have current limits to prevent damage to the IPM machine such as from overheating, etc.
- the current limits are generally predicated by the design of the IPM machine and/ or power switch thermal rating in the corresponding controller, and are known a priori to any characterization procedure.
- the d-axis current command LUT 440 is configured to output a d-axis current command id_cmd that is associated with the received torque percentage Torq_Perc and adjusted ratio Adj_ratio. As shown in FIG. 1 , the d-axis current command id_cmd is output to the summer 1 19.
- the q-axis current command LUT 430 is configured to output an initial q-axis current command that is associated with the received torque percentage Torq_Perc and adjusted ratio Adj_ratio.
- the initial q-axis current command is output to the multiplier 450 where the initial q-axis current command is multiplied with the sign of the torque command data T_cmd to generate the q-axis current command iq_cmd.
- the q-axis current command iq_cmd is output to the summer 119.
- FIGS. 5A-5B illustrate a method of controlling an IPM machine according to an example embodiment.
- the data processing system 120 is configured to implement the methods shown in FIGS. 5A-5B.
- the data processing system detects an operating dc bus voltage of the IPM machine (e.g., the motor 1 17). Based on the dc bus voltage, the data processing system is configured to determine a difference between the operating dc bus voltage and a nominal dc bus voltage of the electronic device.
- the data processing system subsequently determines current commands (drive command) based on the determined difference between an operating dc bus voltage of the IPM machine and a nominal dc bus voltage of the IPM machine.
- current commands drive command
- the calculation module 1 10 and the d-q axis current generation manager 109 are configured to determine the d-axis and q- axis current commands id_cmd and iq_cmd.
- the current commands are output to the electronic device. For example, based on the d-axis and q-axis current commands id_cmd and iq_cmd, the motor 1 17 is driven by the data processing system 120.
- FIG. 5B illustrates an example embodiment of determining current commands at S560.
- the data processing system determines a voltage compensation coefficient based on the detected operating dc bus voltage.
- the data processing system adjusts a ratio of the detected operating dc bus voltage to a detected operating rotor shaft speed by multiplying the ratio by the voltage compensation coefficient.
- the adjusted ratio calculator 330 calculates the adjusted ratio adj_ratio based on the voltage coefficient Vcoeff and the operating dc bus voltage Vdc.
- the data processing system determines a base torque based on the adjusted ratio of the detected operating dc bus voltage to a detected operating rotor shaft speed.
- the data processing system determines a torque command as a percentage of the base torque. Based on the percentage and the adjusted ratio, the data processing system determines the current commands at S570.
- IPM motor control should utilize the boosted dc bus voltage in order to increase output torque, power and improve/ or efficiency. If the operating dc bus voltage is lower than the nominal dc bus voltage, motor operating points corresponding to the operating dc bus voltage are adjusted to ensure robust current control.
- Example embodiments utilize a dc bus voltage to determine a series of operating trajectories for a batch of rotor speeds. In other words, example embodiments efficiently operate an IPM motor with a varying dc bus voltage. In some example embodiments the IPM motor is operated while using only nominal voltage characterization data.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Databases & Information Systems (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013556720A JP2014509822A (en) | 2011-02-28 | 2012-02-22 | Embedded permanent magnet machine system and method for controlling an embedded permanent magnet machine |
AU2012223654A AU2012223654A1 (en) | 2011-02-28 | 2012-02-22 | Interior permanent magnet machine systems, and methods for controlling interior permanent magnet machines |
CN201280010843.9A CN103404018B (en) | 2011-02-28 | 2012-02-22 | Interior permanent magnet machine systems, and methods for controlling interior permanent magnet machines |
BR112013022015-5A BR112013022015B1 (en) | 2011-02-28 | 2012-02-22 | interior permanent magnet machine system, and method for controlling an interior permanent magnet machine |
EP12752536.8A EP2681838B1 (en) | 2011-02-28 | 2012-02-22 | Interior permanent magnet machine systems |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/036,513 US8552673B2 (en) | 2011-02-28 | 2011-02-28 | Interior permanent magnet machine systems and methods for controlling interior permanent magnet machines |
US13/036,513 | 2011-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012118647A1 true WO2012118647A1 (en) | 2012-09-07 |
Family
ID=46718511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/025993 WO2012118647A1 (en) | 2011-02-28 | 2012-02-22 | Interior permanent magnet machine systems, and methods for controlling interior permanent magnet machines |
Country Status (7)
Country | Link |
---|---|
US (1) | US8552673B2 (en) |
EP (1) | EP2681838B1 (en) |
JP (1) | JP2014509822A (en) |
CN (1) | CN103404018B (en) |
AU (1) | AU2012223654A1 (en) |
BR (1) | BR112013022015B1 (en) |
WO (1) | WO2012118647A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102906995B (en) * | 2010-05-26 | 2016-03-30 | 三菱电机株式会社 | Control device of electric motor |
US8410737B2 (en) | 2011-02-28 | 2013-04-02 | Deere & Company | Device and method for generating an initial controller lookup table for an IPM machine |
FR2993116B1 (en) * | 2012-07-03 | 2014-06-27 | Renault Sa | METHOD FOR CONTROLLING A MOTOR POWERTRAIN AND CORRESPONDING SYSTEM |
FR3009771B1 (en) * | 2013-08-16 | 2017-07-14 | Sagem Defense Securite | METHOD FOR CONTROLLING A PERMANENT MAGNET SYNCHRONOUS ELECTRIC MACHINE AND ELECTRONIC CONTROL DEVICE THEREFOR |
US9735722B2 (en) * | 2014-02-19 | 2017-08-15 | Deere & Company | Methods of controlling a machine using a torque command limit derived from a current limit and systems thereof |
US9673742B2 (en) | 2014-04-21 | 2017-06-06 | Ford Global Technologies, Llc | Controlling magnetic flux in an automotive electric machine |
US10333444B2 (en) * | 2017-08-31 | 2019-06-25 | Eaton Intelligent Power Limited | System and method for stability control in adjustable speed drive with DC link thin film capacitor |
GB2579632B (en) * | 2018-12-07 | 2023-01-11 | Trw Ltd | A method of controlling a permanent magnet synchronous motor and a motor circuit |
JP7312065B2 (en) * | 2019-09-11 | 2023-07-20 | 日立Astemo株式会社 | Motor control device, electromechanical integrated unit, generator system, motor drive device and electric vehicle system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060097688A1 (en) * | 2004-11-09 | 2006-05-11 | Patel Nitinkumar R | Start-up and restart of interior permanent magnet machines |
EP1748550A1 (en) | 2004-05-14 | 2007-01-31 | Mitsubishi Denki Kabushiki Kaisha | Synchronous machine controller |
US20090212734A1 (en) | 2008-02-22 | 2009-08-27 | Rockwell Automation Technologies, Inc. | Torque limit of pm motors for field-weakening region operation |
US7586286B2 (en) | 2006-11-17 | 2009-09-08 | Continental Automotive Systems Us, Inc. | Method and apparatus for motor control |
US20090273308A1 (en) * | 2008-04-30 | 2009-11-05 | Rockwell Automation Technologies, Inc. | Position sensorless control of permanent magnet motor |
US20120221280A1 (en) | 2011-02-28 | 2012-08-30 | Deere & Company | Method And Apparatus For Characterizing An Interior Permanent Magnet Machine |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4023083A (en) | 1975-04-14 | 1977-05-10 | General Electric Company | Torque regulating induction motor system |
US4456865A (en) * | 1982-04-22 | 1984-06-26 | The Babcock & Wilcox Company | High torque servo positioner using 3 phase variable frequency constant torque controller |
US4814677A (en) | 1987-12-14 | 1989-03-21 | General Electric Company | Field orientation control of a permanent magnet motor |
US5140248A (en) * | 1987-12-23 | 1992-08-18 | Allen-Bradley Company, Inc. | Open loop motor control with both voltage and current regulation |
US5287051A (en) | 1992-02-14 | 1994-02-15 | General Electric Company | Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive |
US5428283A (en) | 1994-05-26 | 1995-06-27 | Alliedsignal Inc. | Power factor control of pulse width modulated inverter supplied permanent magnet motor |
US5914582A (en) | 1997-01-27 | 1999-06-22 | Hitachi, Ltd. | Permanent magnet synchronous motor controller and electric vehicle controller |
JP4245777B2 (en) | 2000-05-25 | 2009-04-02 | 三菱電機株式会社 | Control device and control method for induction motor |
JP4370754B2 (en) | 2002-04-02 | 2009-11-25 | 株式会社安川電機 | Sensorless control device and control method for AC motor |
US6768284B2 (en) * | 2002-09-30 | 2004-07-27 | Eaton Corporation | Method and compensation modulator for dynamically controlling induction machine regenerating energy flow and direct current bus voltage for an adjustable frequency drive system |
US7157878B2 (en) | 2002-11-19 | 2007-01-02 | Delphi Technologies, Inc. | Transient compensation voltage estimation for feedforward sinusoidal brushless motor control |
JP3661689B2 (en) | 2003-03-11 | 2005-06-15 | トヨタ自動車株式会社 | Motor drive device, hybrid vehicle drive device including the same, and computer-readable recording medium storing a program for causing a computer to control the motor drive device |
US7023168B1 (en) * | 2004-09-13 | 2006-04-04 | General Motors Corporation | Field weakening motor control system and method |
US7135833B2 (en) * | 2004-11-30 | 2006-11-14 | Rockwell Automation Technologies, Inc. | Motor control for flux-reduced braking |
US7733044B2 (en) | 2005-02-24 | 2010-06-08 | Mitsubishi Heavy Industries, Ltd. | IPM motor system and control method thereof |
KR20070116629A (en) * | 2005-03-17 | 2007-12-10 | 닛본 세이고 가부시끼가이샤 | Electric power steering device control method and apparatus |
CN101005206A (en) * | 2005-09-21 | 2007-07-25 | 国际整流器公司 | Safety circuit for permanent magnet synchronous generator actuated by weak field |
US7554276B2 (en) * | 2005-09-21 | 2009-06-30 | International Rectifier Corporation | Protection circuit for permanent magnet synchronous motor in field weakening operation |
JP4754417B2 (en) | 2006-06-26 | 2011-08-24 | 本田技研工業株式会社 | Control device for permanent magnet type rotating electrical machine |
JP4434184B2 (en) * | 2006-08-17 | 2010-03-17 | アイシン・エィ・ダブリュ株式会社 | Method and apparatus for feedback control of electric motor |
US7595600B2 (en) * | 2007-06-07 | 2009-09-29 | Gm Global Technology Operations, Inc. | Method and system for torque control in permanent magnet machines |
JP5285246B2 (en) * | 2007-07-27 | 2013-09-11 | オークマ株式会社 | Control device for reluctance type synchronous motor |
-
2011
- 2011-02-28 US US13/036,513 patent/US8552673B2/en active Active
-
2012
- 2012-02-22 JP JP2013556720A patent/JP2014509822A/en not_active Withdrawn
- 2012-02-22 BR BR112013022015-5A patent/BR112013022015B1/en active IP Right Grant
- 2012-02-22 WO PCT/US2012/025993 patent/WO2012118647A1/en active Application Filing
- 2012-02-22 AU AU2012223654A patent/AU2012223654A1/en not_active Abandoned
- 2012-02-22 CN CN201280010843.9A patent/CN103404018B/en active Active
- 2012-02-22 EP EP12752536.8A patent/EP2681838B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1748550A1 (en) | 2004-05-14 | 2007-01-31 | Mitsubishi Denki Kabushiki Kaisha | Synchronous machine controller |
US20060097688A1 (en) * | 2004-11-09 | 2006-05-11 | Patel Nitinkumar R | Start-up and restart of interior permanent magnet machines |
US7586286B2 (en) | 2006-11-17 | 2009-09-08 | Continental Automotive Systems Us, Inc. | Method and apparatus for motor control |
US20090212734A1 (en) | 2008-02-22 | 2009-08-27 | Rockwell Automation Technologies, Inc. | Torque limit of pm motors for field-weakening region operation |
US20090273308A1 (en) * | 2008-04-30 | 2009-11-05 | Rockwell Automation Technologies, Inc. | Position sensorless control of permanent magnet motor |
US20120221280A1 (en) | 2011-02-28 | 2012-08-30 | Deere & Company | Method And Apparatus For Characterizing An Interior Permanent Magnet Machine |
Also Published As
Publication number | Publication date |
---|---|
JP2014509822A (en) | 2014-04-21 |
CN103404018B (en) | 2017-05-17 |
US8552673B2 (en) | 2013-10-08 |
EP2681838A4 (en) | 2017-09-20 |
CN103404018A (en) | 2013-11-20 |
EP2681838B1 (en) | 2020-12-16 |
AU2012223654A1 (en) | 2013-09-12 |
US20120217911A1 (en) | 2012-08-30 |
BR112013022015A2 (en) | 2016-11-29 |
BR112013022015B1 (en) | 2020-12-01 |
EP2681838A1 (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2681838B1 (en) | Interior permanent magnet machine systems | |
EP2889999B1 (en) | Methods of torque estimation and compensation and systems thereof | |
EP3002872B1 (en) | Methods of estimating rotor magnet temperature and systems thereof | |
US8648555B2 (en) | Method and system for controlling an electric motor at or near stall conditions | |
US8853979B2 (en) | Method and system for calibrating rotor position offset of an electric motor | |
EP2678937B1 (en) | Method and system for controlling an electric motor with variable switching frequency at variable operating speeds | |
US8410737B2 (en) | Device and method for generating an initial controller lookup table for an IPM machine | |
US9071186B2 (en) | Method and apparatus for controlling an alternating current machine | |
US9735722B2 (en) | Methods of controlling a machine using a torque command limit derived from a current limit and systems thereof | |
US8744794B2 (en) | Method and apparatus for characterizing an interior permanent magnet machine | |
US20140306638A1 (en) | Methods of determining machine terminal voltage and systems thereof | |
WO2012115897A2 (en) | Method and system for controlling an electrical motor with temperature compensation | |
US20160276971A1 (en) | Methods of auto tuning machine parameters and systems thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12752536 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012752536 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013556720 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2012223654 Country of ref document: AU Date of ref document: 20120222 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013022015 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013022015 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130828 |