WO2012117638A1 - リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池 - Google Patents

リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池 Download PDF

Info

Publication number
WO2012117638A1
WO2012117638A1 PCT/JP2011/078622 JP2011078622W WO2012117638A1 WO 2012117638 A1 WO2012117638 A1 WO 2012117638A1 JP 2011078622 W JP2011078622 W JP 2011078622W WO 2012117638 A1 WO2012117638 A1 WO 2012117638A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
negative electrode
lithium secondary
secondary battery
electrode material
Prior art date
Application number
PCT/JP2011/078622
Other languages
English (en)
French (fr)
Inventor
向井 孝志
太地 坂本
境 哲男
谷 邦彦
直人 山下
幸一郎 池田
Original Assignee
独立行政法人産業技術総合研究所
五鈴精工硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 五鈴精工硝子株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to US13/391,811 priority Critical patent/US9070941B2/en
Priority to JP2013502155A priority patent/JP6029215B2/ja
Priority to KR1020127004129A priority patent/KR101434064B1/ko
Priority to CN201180003445.XA priority patent/CN102782915B/zh
Priority to EP11817497.8A priority patent/EP2541656B1/en
Publication of WO2012117638A1 publication Critical patent/WO2012117638A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium secondary battery, a production method thereof, and a negative electrode for a lithium secondary battery and a lithium secondary battery.
  • Lithium secondary batteries such as lithium ion batteries and lithium polymer batteries have a higher voltage and a higher capacity and are lighter than nickel cadmium batteries and nickel metal hydride batteries. Therefore, in recent years, the use as a main power source for mobile communication devices, portable electronic devices, electric bicycles, electric motorcycles, electric vehicles and the like has been expanded.
  • a graphite negative electrode material is generally used as the negative electrode active material (negative electrode material) of the lithium secondary battery.
  • the theoretical capacity of a lithium secondary battery using a graphite negative electrode material is only 372 mAh / g at the maximum, further increase in capacity is desired.
  • graphite has a problem that lithium dendrite precipitates when charged in a low temperature atmosphere.
  • lithium metal (Li) is used as a negative electrode material for a lithium secondary battery
  • a high theoretical capacity can be obtained (for example, see Patent Document 1).
  • the deposited dendrites have high reaction activity due to their large specific surface area, and an interfacial film consisting of decomposition products of solvents having no electron conductivity is formed on the surface, thereby increasing the internal resistance of the battery.
  • the charge / discharge efficiency decreases.
  • lithium secondary batteries using lithium metal hereinafter sometimes referred to as “Li”) have the disadvantages of low reliability and short cycle life, Not reached.
  • a negative electrode material made of a material other than Li and causing no internal short circuit is desired.
  • elements such as tin and silicon, nitrides, oxides and the like of these can occlude Li by forming an alloy with Li.
  • the Li storage amount is much larger than that of carbon.
  • various alloy negative electrodes containing these substances have been proposed.
  • elements such as tin and silicon cause a volume change up to about 4 times due to lithium occlusion / release during charging / discharging, the electrode itself may collapse.
  • an electrode using a negative electrode material composed of a composite powder containing a first substance that easily forms a compound with lithium and a second substance that hardly forms a compound with lithium has been proposed (see, for example, Patent Document 3). More specifically, in this electrode, as the first substance, at least one selected from 1) tin, silicon, aluminum and silver and 2) one or more of these compounds is used, and the second As the substance, 1) copper, nickel and cobalt, and 2) at least one of compounds containing one or more of these are used. Although the cycle characteristics are considerably improved by this method, the capacity gradually decreases after 50 cycles, and the capacity after 100 cycles is less than 200 mAh / g.
  • lithium ion batteries currently on the market use a flammable organic solvent as the electrolyte
  • safety measures are indispensable in addition to liquid leakage, short-circuiting and overcharging. Therefore, in order to improve safety, development of an all-solid-state lithium ion battery using a solid electrolyte such as an ion conductive polymer or ceramic as an electrolyte has been advanced. Ceramics that can be used as a lithium ion conductive solid electrolyte have a high lithium ion conductivity, and thus attention has been focused especially on sulfide-based substances, and many developments are being made.
  • a Li—PS—solid electrolyte has been studied as a lithium sulfide-based solid electrolyte (see Non-Patent Document 1). It is known that such a lithium sulfide-based solid electrolyte is amorphized and the conductivity is greatly increased, and a high conductivity of the order of 10 ⁇ 4 S / cm or more can be obtained. Therefore, these systems have been made amorphous by mechanical milling using a planetary ball mill or the like. However, conventional lithium sulfide-based solid electrolytes easily react with moisture in the air to produce hydroxides and oxides, which have very low ionic conductivity. It was a cause of greatly reducing the sex.
  • the present invention has been made in view of the current state of the above-described prior art, and its main purpose is a sulfide-based negative electrode having water resistance, excellent cycle characteristics, high output performance while maintaining high discharge capacity. And providing a negative electrode material for a lithium secondary battery and a method for producing the same, and a negative electrode for a lithium secondary battery and a lithium secondary battery.
  • the negative electrode material for a lithium secondary battery of the present invention is It consists of sulfide glass containing sulfur and the following components (i) and (ii): (I) at least one element selected from the group consisting of Sb, As, Bi, Ge, Si, Cu, Zn, Pd, In, and Zr, (Ii) at least one element selected from the group consisting of Se, Te, Ga, Sn, Pb, Cd, Al, Fe, Mg, Ca, Co, Ag, Sr, P, Ba,
  • the ratio of each of the above components is sulfur: 40 to 80 mol%, (i): 1 to 50 mol%, and (ii): 1 to 50 mol%.
  • the sulfide glass has a high capacity, a good cycle life is obtained, and functions as a sulfur-based negative electrode active material having water-resistant properties.
  • the sulfide glass preferably contains 0.5 to 40 mol% of Ge. Since Ge has a role of forming a glass skeleton structure, a vitrified negative electrode material can be reliably obtained.
  • the negative electrode material for a lithium secondary battery of the present invention may be a composite powder of the following A component and B component.
  • a component that can occlude lithium electrochemically (2) B component is the above sulfide glass,
  • “composite” is a concept different from “mixing”, and the mixed powder is simply a collection of the A component powder and the B component powder, whereas the composite powder is contained in one particle constituting the powder. Contains both the A component and the B component.
  • the composite powder is preferably a composite powder in which the B component is coated on the surface of the A component.
  • the presence of the B component around the A component as a nucleus (surface) makes it possible to improve the ionic conductivity of the A component associated with insertion and extraction (charge / discharge) of lithium. Moreover, the crack resulting from expansion and contraction can be suppressed. As a result, only the A component can improve the ionic conductivity and cycle characteristics even with an active material having poor ion conductivity and cycle life, so even an active material with poor conductivity or high capacity (large volume expansion) can be cycled. Good life characteristics.
  • the ratio of the A component and the B component in the composite powder as a whole is preferably 5 to 80 mass% for the A component and 95 to 20 mass% for the B component when the total amount of both is 100 mass%.
  • a long-life type negative electrode having very excellent cycle life characteristics and a high-capacity type negative electrode having a very high capacity per active material weight are obtained. be able to.
  • the composite powder it is sufficient that the A component and the B component exist as main component phases, and a very small amount of impurities may exist. Even a very small amount of impurities does not adversely affect cycle deterioration.
  • the negative electrode for a lithium secondary battery of the present invention is a negative electrode for a lithium secondary battery using the negative electrode material for a lithium secondary battery. Therefore, it becomes a negative electrode for a lithium secondary battery having a long life, a high charge / discharge capacity, and being easy to handle.
  • the negative electrode for a lithium secondary battery of the present invention since the negative electrode material is made of sulfide glass having water resistance, an aqueous binder can be used. It is preferable that the negative electrode for lithium secondary batteries of this invention contains a polyimide binder. By using a polyimide binder, even when the volume expansion accompanying charging / discharging is large, the binding by the binder can be maintained.
  • the lithium secondary battery of the present invention is a lithium secondary battery using the negative electrode for a lithium secondary battery. Therefore, the lithium secondary battery has a high capacity, good cycle life characteristics, and excellent water resistance.
  • the method for producing a negative electrode material for a lithium secondary battery of the present invention is as follows.
  • B a step of combining the A component and the B component; It has.
  • the B component that is sufficiently vitrified by the step (A) can be obtained, and the B component and the A component that are sufficiently vitrified by the step (B) are combined.
  • a negative electrode for a lithium secondary battery that has a high charge / discharge capacity and is easy to handle can be obtained.
  • the step (B) is preferably a step of combining the A component and the B component by mechanical milling. Since the B component has a lower mechanical strength than the A component, the B component is more easily pulverized than the A component. Therefore, it is possible to coat the A component with the B component by pressing the B component powder that has become fine particles by mechanical milling onto the surface of the A component powder with a ball or the like.
  • the step (B) may be a step in which the component A is dispersed in the melted component B, and a pulverization process is performed after cooling.
  • the B component is less than the A component, the B component is difficult to be coated on the A component, but by adopting a method in which the A component is dispersed in the molten B component and pulverized after cooling, the B component is added to the A component. Can be reliably coated.
  • a conductive assistant and / or a binder is added and the composite powder contains the conductive assistant and / or the binder.
  • the present invention has water resistance, is easy to handle, maintains high discharge capacity, can exhibit excellent cycle characteristics, high output performance, and precipitates lithium dendrite even when charged at low temperature.
  • a negative electrode material for lithium secondary battery and a method for producing the same can be provided.
  • FIG. 4 is a diagram showing cycle life of Examples 1 to 4. 2 is a charge / discharge curve diagram of Example 1.
  • FIG. It is the figure which showed the cycle life characteristic of Example 7.
  • FIG. 6 is a high rate charge / discharge curve of Example 7.
  • FIG. It is the figure which showed the XRD test result of Example 1 after low temperature charge and graphite.
  • the negative electrode material for a lithium secondary battery (lithium ion secondary battery) of the present invention is: It consists of sulfide glass containing sulfur and the following components (i) and (ii): (I) at least one element selected from the group consisting of Sb, As, Bi, Ge, Si, Cu, Zn, Pd, In, and Zr, (Ii) at least one element selected from the group consisting of Se, Te, Ga, Sn, Pb, Cd, Al, Fe, Mg, Ca, Co, Ag, Sr, P, Ba,
  • the ratio of each of the above components is sulfur: 40 to 80 mol%, (i): 1 to 50 mol%, and (ii): 1 to 50 mol%.
  • the sulfide glass has water resistance, becomes at least lithium sulfide (Li 2 S) in the process of initial charge (lithium ion occlusion), and does not react in the subsequent charge / discharge process. That is, it is reduced by lithium and decomposed into at least a solid electrolyte layer.
  • lithium orthosilicate Li 4 SiO 4
  • the sulfide glass is decomposed into a lithium sulfide (Li 2 S) -based solid electrolyte in the initial charging process.
  • the lithium sulfide (Li 2 S) -based solid electrolyte layer is a solid capable of moving lithium ions in the process of occlusion / release of lithium ions. Therefore, the negative electrode material for a lithium secondary battery of the present invention can be discharged at high output by decomposing into a lithium sulfide (Li 2 S) -based solid electrolyte having good ion conductivity in the initial charging process. Become.
  • the negative electrode material for a lithium secondary battery of the present invention is
  • the component (i) is composed of at least one element selected from the group consisting of Sb, Bi, Ge, Cu, and Zn,
  • the component (ii) is composed of Sn. It may be a thing.
  • the negative electrode material for a lithium secondary battery of the present invention is The component (i) is made of Ge,
  • the component (ii) is composed of at least one element selected from the group consisting of Te, Ga, Sn, Al, Mg, Ca, Sr, P, Ba, It may be a thing.
  • At least one of Ge among the components (i) and Sn among the components (ii) is essential. Thereby, excellent battery characteristics can be obtained.
  • sulfur is an essential element for forming lithium sulfide by initial charging
  • (i) is a skeletal structure of the glass (Ii) has a role of facilitating the formation of glass and a role of occluding and releasing lithium.
  • sulfur is 40 to 80 mol%.
  • the amount of lithium sulfide-based solid electrolyte formed decreases, resulting in poor ion conductivity, and the volume of (ii) associated with charge and discharge. Since the amount of the buffer layer that absorbs the expansion is small and the cycle life characteristic is poor, it is difficult to vitrify when it exceeds 80 mol%, and since the amount of (ii) is small, the negative electrode capacity is small, This is also not preferable in some cases, more preferably 30 to 70 mol%, and even more preferably 35 to 65 mol%.
  • (i) is 1 to 50 mol% if it is less than 1 mol%, the glass skeleton structure is formed, and since there is little (i), it will crystallize and become a negative electrode without water resistance, exceeding 50 mol% And the amount of (ii) is small, resulting in an electrode having a small negative electrode capacity, which is not preferable in any case. It is more preferably 5 to 40 mol%, and more preferably 10 to 35 mol%. Further preferred.
  • the reason why (ii) is 1 to 50 mol% is that if it is less than 1 mol%, the electrode has a small negative electrode capacity, and if it exceeds 50 mol%, the amount of sulfur and the amount of (i) will decrease.
  • the amount of the solid electrolyte formed is reduced, the ion conductivity becomes poor, the amount of the buffer layer that absorbs the volume expansion of (ii) accompanying charge / discharge is small, and the electrode has poor cycle life characteristics. This is also not preferable in some cases, more preferably 5 to 45 mol%, still more preferably 10 to 40 mol%.
  • the sulfide glass constituting the negative electrode material for lithium secondary batteries of the present invention preferably contains Ge.
  • Ge has a role of forming a glass skeleton structure.
  • the Ge content is preferably 0.5 to 40 mol%, more preferably 1 to 20 mol%. If the Ge content is less than 0.5 mol%, vitrification may not be sufficiently performed, and if it exceeds 40 mol%, the amount of (ii) decreases, resulting in an electrode having a small negative electrode capacity.
  • Ge is an expensive element, it becomes an expensive electrode, which is not preferable in any case.
  • the sulfide glass may be used by combining two or more kinds of sulfide glasses.
  • the method for producing the sulfide glass constituting the negative electrode material for a lithium secondary battery of the present invention is not particularly limited. For example, a predetermined amount of each component raw material is enclosed in a quartz ampoule, and the content enclosed by heat treatment is glass. It can manufacture by making it.
  • raw materials in addition to sulfur (S), Sb, Bi, Ge, Si, Cu, Zn, Se, Te, Ga, Sn, Pb, Cd, Al, Fe, Mg, Ca, Co, Ag, Sr, Single metals such as Ba and In, or sulfides thereof (for example, Ag 2 S, Al 2 S 3 , BiS, Bi 2 S 3 , Fe 2 S 3 , GaS, In 2 S 3 , MgS, Sb 2 S 3 , Sb 2 S 5 , SnS, SnS 2 , ZrS 2 , GeS, GeS 2 , ZnS, etc.), or non-metals such as As and P.
  • the raw material is used with sulfur as an essential component, and in addition, a combination of the above (i) and (ii) is used.
  • the quartz ampoule used is sufficiently dried inside by a vacuum dryer. Further, during vitrification, it is preferable to heat at 400 to 1100 ° C., more preferably at 600 to 800 ° C.
  • the heat treatment time may be a time during which the content enclosed in the quartz ampoule is sufficiently vitrified, but is generally preferably 1 to 30 hours, more preferably 5 to 24 hours. By heating at a temperature of 400 to 1100 ° C. for 1 to 30 hours, the above contents can be vitrified sufficiently.
  • the sulfide glass constituting the negative electrode material for a lithium secondary battery of the present invention is excellent in water resistance, so that it can be handled in air and used with a water-based binder, which was not possible with conventional sulfides.
  • the sulfide glass obtained by the above-described method can be further improved in conductivity by forming a conductive coating with a conductive metal, carbon or the like. Thereby, it has a more favorable battery characteristic as a negative electrode active material for lithium batteries.
  • Known methods such as sputtering, vapor deposition, mechanical alloy (MA), rotary kiln, and electroless plating can be used as a method for forming a conductive coating such as a conductive metal or carbon on sulfide glass.
  • the coating amount of the conductive coating if the amount is too small, the effect of improving the conductivity is not sufficient.On the other hand, if the amount is too large, the surface of the sulfide glass is almost covered and it becomes difficult to occlude / release lithium ions. Absent.
  • the coating amount of the conductive coating is preferably about 0.1 to 30 parts by weight, more preferably about 0.5 to 25 parts by weight with respect to 100 parts by weight of the sulfide glass. More preferably, it is about 1 to 10 parts by weight.
  • the carbon precursor used in this method may be an organic material that is carbonized by heating.
  • a sticky hydrocarbon-based organic material coal-based pitch, petroleum-based pitch, or the like can be used.
  • examples of the sticky hydrocarbon organic substance include phenol resin, furan resin, citric acid, PVA, and urushiol.
  • the heating temperature may be any temperature at which the carbon precursor is carbonized, and is preferably about 300 to 1100 ° C., and more preferably about 500 to 900 ° C. In this case, if the heating temperature is too low (less than 300 ° C.), the carbon precursor is difficult to be carbonized. On the other hand, if the heating temperature is too high (above 1100 ° C.), the sulfide glass reacts with the carbon, This is not preferable because it may occur and the apparatus becomes large and the cost increases.
  • the heat treatment time may be a time for carbonization of the carbon precursor, and is usually about 1 to 24 hours. If the heating time is too short, the carbon precursor is not sufficiently carbonized, which is not preferable because the negative electrode has poor electron conductivity.
  • the atmosphere during the carbonization treatment may be a non-oxidizing atmosphere such as an inert atmosphere or a reducing atmosphere.
  • the atmosphere may be He (helium), Ne (neon), Ar (argon), N 2 (nitrogen), H 2 (hydrogen), or the like.
  • any of the above-described sulfide glass and sulfide glass having a conductive coating formed thereon can be effectively used as a negative electrode active material for a lithium secondary battery.
  • the negative electrode material for a lithium secondary battery of the present invention may be the above sulfide glass alone, but a material capable of electrochemically occluding and releasing lithium (hereinafter referred to as A component) and the above sulfide. It is preferable to use a composite powder with glass (hereinafter referred to as component B). By using a negative electrode material for a lithium secondary battery made of such a composite powder, it is possible to further increase the capacity.
  • the negative electrode material for lithium secondary batteries of this invention When making the negative electrode material for lithium secondary batteries of this invention into the composite powder of A component and B component, it can manufacture with a manufacturing method provided with the following (A) process and (B) process.
  • the process for producing sulfide glass described above can be adopted as the process (A).
  • step (B) a step of combining the A component and the B component by mechanical milling, a step of dispersing the A component in the molten B component, and performing a pulverization process after cooling can be employed. These steps (B) will be described in detail later.
  • the A component is not particularly limited as long as it can occlude lithium ions during initial charging and can occlude and release lithium ions during subsequent charging and discharging.
  • Li Na, C, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb
  • At least one element selected from the group consisting of Sn and Pb, an alloy, oxide, chalcogenide or halide using these elements are preferred.
  • the element is preferably Al, Si, Zn, Ge, Ag, Sn, etc.
  • the alloy is Si—Al, Al—Zn, Si—Mg, Al—Ge, Si—Ge, Each combination of Si—Ag, Si—Sn, Zn—Sn, Ge—Ag, Ge—Sn, Ge—Sb, Ag—Sn, Ag—Ge, Sn—Sb, etc. is preferable.
  • SnO, SnO 2 , SnC 2 O 4 , Li 4 Ti 5 O 12 and the like are preferable.
  • As the chalcogenide SnS, SnS 2 and the like are preferable.
  • SnF 2 , SnCl 2 , SnI 2 , SnI 4 and the like are preferable. Is preferred.
  • the above-mentioned component A may be used alone or in combination of two or more.
  • the ratio of the A component and the B component is preferably 5 to 80 mass% for the A component and 95 to 20 mass% for the B component, and 20 to 70 mass% for the A component when the total amount of both is 100 mass%.
  • B component is more preferably 80 to 30 mass%.
  • the capacity per active material weight is 500 to 1500 mAh / g and the cycle life characteristics are very good, it is promising as a long-life type negative electrode.
  • the capacity per active material weight is as high as 1500 to 3500 mAh / g. Promising.
  • the A component and the B component may be present as main component phases, and even if a very small amount of impurities is present, cycle deterioration is not adversely affected.
  • the B component on the surface of the A component is first Li-reduced in the initial charging (Li occlusion) process, and a solid electrolyte layer is generated.
  • the B component is S—Ge—Sn glass, it is separated into lithium sulfide-germanium sulfide (Li 2 S—SiS 2 ) and tin by Li reduction.
  • Li 2 S—SiS 2 does not participate as an active material under the condition of 0 to 1 V (vs. lithium potential) and therefore does not participate in the subsequent charge / discharge reaction. Therefore, even if the ionic conductivity of the phase-separated Sn or A component that exists as a skeleton in the composite powder and participates in the charge / discharge reaction is improved, and the volume of the phase-separated Sn or A component changes, Li 2 S Since -GeS 2 functions as a buffer layer, volume change of the composite powder as a whole can be effectively suppressed.
  • Li 2 S—GeS 2 —SiS 2 When the B component is S—Ge—Si—Sn glass, it undergoes phase separation into lithium sulfide-silicon sulfide-germanium sulfide (Li 2 S—GeS 2 —SiS 2 ) and tin by Li reduction. Li 2 S—GeS 2 —SiS 2 also does not participate as an active material under the condition of 0 to 1 V (vs. Li + / Li), and therefore does not participate in the subsequent charge / discharge reaction.
  • Li 2 S—GeS 2 —S 2 also does not participate as an active material under the condition of 0 to 1 V (vs. Li + / Li), and therefore does not participate in the subsequent charge / discharge reaction.
  • Li 2 S—GeS 2 , Li 2 S—GeS 2 —SiS 2, etc. produced in the charging process are excellent in ion conductivity.
  • the A component is a metal component that mainly reacts with Li and has excellent electrical conductivity. Therefore, in the charge / discharge process of the composite powder constituting the negative electrode material for a lithium secondary battery of the present invention, excellent conductivity can be obtained in terms of both ion conductivity and electrical conductivity.
  • the A component and the phase-separated Sn become a Li phase when Li is further occluded and becomes a reversible capacitive component phase.
  • the negative electrode material for a lithium secondary battery of the present invention composed of the above composite powder has a large reversible electric capacity possessed by phase-separated Sn and A components, and Li 2 S— which is a solid electrolyte layer / buffer layer.
  • Li 2 S— which is a solid electrolyte layer / buffer layer.
  • the surface of the A component is preferably coated with the B component.
  • the reason for this is that the presence of the B component around the A component nucleus improves the ionic conductivity of the A component that accompanies lithium insertion / release (charging / discharging) and cracks caused by expansion / contraction. This is because it can be suppressed.
  • the A component alone can improve the ionic conductivity and cycle characteristics even with an active material with poor ion conductivity and cycle life, so even an active material with poor conductivity or high capacity (large volume expansion) can be used. Good cycle life characteristics.
  • the A component may be the primary particles themselves or may be aggregated secondary particles or the like.
  • the B component may be completely coated on the entire surface of the A component, or may be coated only on a part of the A component. When only a part of the A component is coated, 20% or more of the surface area of the A component may be covered with the B component.
  • the ratio of the A component covered with the B component can be measured, for example, by using a scanning electron microscope (SEM) photograph.
  • the method for coating the B component on the surface of the A component is not particularly limited.
  • a method in which a raw material containing the A component and the B component is mixed and a mechanical milling process is performed.
  • Mechanical milling is a method of applying external forces such as impact, tension, friction, compression, and shear to the raw material powder (at least component A and component B), including a rolling mill, vibration mill, planetary mill, rocking mill, Examples include a method using a horizontal mill, an attritor mill, a jet mill, a crusher, a homogenizer, a fluidizer, a paint shaker, a mixer and the like.
  • the raw material powder in the method using a planetary mill, can be pulverized / mixed or subjected to solid phase reaction by mechanical energy generated by putting both the raw material powder and balls in a container and rotating and revolving. According to this method, it is known that the material is pulverized to the nano order.
  • the raw material powder of the negative electrode material contains at least an A component and a B component. Since the B component has lower mechanical strength than the A component, the B component is more easily pulverized than the A component. Therefore, the B component powder that has become fine particles can be pressure-bonded to the surface of the A component powder with a ball or the like, and the A component can be coated with the B component.
  • the method of coating the B component on the surface of the A component there is a method in which the A component is dispersed in the molten B component and pulverized after cooling.
  • the B component is less than the A component, it is difficult to coat the B component on the A component by the above-described mechanical milling method, so this method (dispersing the A component in the molten B component and grinding after cooling) It is preferable to employ the method.
  • the conditions for melting the B component are not particularly limited, but if the heating temperature is less than 400 ° C., it is difficult to melt, and the B component may be decomposed at a temperature exceeding 1100 ° C. Therefore, the heating temperature is about 400 to 1100 ° C., more preferably 500 to 900 ° C.
  • a conductive additive may be contained in the B component.
  • the conductive assistant may be dispersed in the state where the B component is melted.
  • the conductivity can be improved, and the cycle life characteristics and high rate discharge characteristics of the battery can be greatly improved.
  • a conductive support agent may be contained in B component, and a conductive support agent may be contained in B component in both (A) process and (B) process.
  • a metal, a conductive polymer, etc. may react with B component, it is preferable to use carbon black.
  • carbon black include acetylene black (AB), ketjen black (KB), carbon fiber (VGCF), carbon nanotube (CNT), graphite, soft carbon, and hard carbon.
  • a carbon precursor may be used as a conductive additive.
  • the conductive assistant is preferably contained in an amount of 0.1 to 10 wt%, more preferably 0.5 to 5 wt%.
  • the content is 0.1 to 10 wt%, a sufficient conductivity improvement effect can be obtained, high-rate discharge characteristics can be improved, and a decrease in capacity due to the drop of the B component from the A component is minimized. Can be suppressed.
  • a highly cohesive conductive agent such as carbon black
  • a lithium secondary battery using the above-described composite powder as a negative electrode material for a lithium battery has high capacity, good cycle life characteristics, and excellent water resistance.
  • the above-described sulfide glass and sulfide glass having a conductive coating formed thereon can be used effectively as a negative electrode material for a lithium battery.
  • these negative electrode materials of the present invention and being deposited on a current collector it can function well as a negative electrode for a lithium secondary battery.
  • the deposition is to fix the current collector in contact with the negative electrode material of the present invention. That is, filling of the negative electrode material, fixing of the negative electrode material by a metal net as a current collector, and the like are applicable.
  • the deposition method is not particularly limited, and examples thereof include a pressure bonding method, a slurry method, a paste method, an electrophoresis method, a dipping method, a spin coating method, and an aerosol deposition method.
  • a metal foam such as foamed nickel is used as a current collector
  • a slurry method or a paste method is preferable from the viewpoints of packing density, electrode production rate, and the like.
  • the negative electrode may contain, in addition to the negative electrode material of the present invention, a conductive auxiliary agent for imparting conductivity and a binder for imparting binding properties as necessary.
  • a conductive support agent, a binder, etc. are contained in B component by putting a conductive support agent, a binder, etc. in the said (A) process and / or (B) process at the time of manufacture of negative electrode material.
  • a conductive additive, a binder, and the like may be further included in the production of the negative electrode using the negative electrode material.
  • a suitable solvent N-methyl-2-pyrrolidone (NMP), water, alcohol, xylene, toluene, etc.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode mixture paste composition, the negative electrode mixture slurry, and the like obtained by sufficiently kneading and applying to the surface of the current collector are dried, and further pressed to form a negative electrode material-containing layer on the current collector surface. It can be formed into a negative electrode.
  • a known lithium secondary battery element positive electrode, separator, electrolytic solution, etc.
  • a conventional method such as a square, cylindrical, or coin type. What is necessary is just to assemble to lithium secondary batteries, such as.
  • the conductive auxiliary agent those usually used, for example, those described above can be used, and when the carbon material is included, the type (structure, etc.) of the carbon material is not particularly limited.
  • carbon materials such as acetylene black (AB), ketjen black (KB), graphite, carbon fiber, carbon tube, and amorphous carbon may be used alone or in combination of two or more. Also good.
  • those capable of forming a conductive three-dimensional network structure in the composite powder for example, flaky conductive material (flaked copper powder, flake nickel powder, etc.), carbon fiber, carbon tube, amorphous carbon, etc.
  • a conductive three-dimensional network structure is formed, a sufficient current collecting effect can be obtained as a negative electrode material for a lithium secondary battery, and volume expansion of electrodes (particularly alloy components) during Li occlusion can be effectively suppressed. it can.
  • Binders are also commonly used, such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyimide (PI), polyamide, polyamideimide, polyacryl, styrene butadiene rubber (SBR), styrene-ethylene- Materials such as butylene-styrene copolymer (SEBS) and carboxymethyl cellulose (CMC) may be used alone or in combination of two or more.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PI polyimide
  • SBR styrene butadiene rubber
  • SEBS styrene-ethylene- Materials
  • CMC carboxymethyl cellulose
  • the negative electrode material-containing layer of the negative electrode for example, the negative electrode material of the present invention is preferably 50 to 99 mass%, the conductive auxiliary agent amount is 0.5 to 40 mass%, and the binder amount is preferably 0.5 to 30 mass%.
  • the thickness of the negative electrode material-containing layer of the negative electrode is preferably 0.5 to 200 ⁇ m, for example, although it depends on the electrode capacity density. By setting the thickness of the negative electrode material-containing layer within this range, a practical electric capacity can be obtained while the current collector supports the negative electrode material.
  • the electrode capacity density is preferably 0.1 to 30 mAh / cm 2 .
  • the negative electrode of the present invention when the negative electrode of the present invention is obtained at an electrode capacity density of 0.1 to 3 mAh / cm 2 , it is suitable for ultra-high power applications, and at an electrode capacity density of 0.5 to 5 mAh / cm 2 It is suitable for output applications.
  • An electrode capacity density of 3 to 30 mAh / cm 2 is suitable for high capacity applications.
  • the electrode capacity density can be measured by, for example, a charge / discharge cycle capacity test, or can be obtained by calculating the capacity from the active material application weight and dividing the value by the electrode area.
  • the current collector is not particularly limited as long as it is a material having electronic conductivity and capable of energizing the held negative electrode material.
  • conductive materials such as C, Ti, Cr, Ni, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, and alloys containing two or more of these conductive materials (for example, stainless steel ) Can be used.
  • the current collector is preferably C, Ti, Cr, Ni, Cu, Au, stainless steel, etc., and C, Ni, Cu, stainless steel and the like are preferable.
  • the shape of the current collector includes linear, rod-like, plate-like, foil-like, net-like, woven fabric, non-woven fabric, expanded, porous body or foam, among which the packing density can be increased and the output characteristics are good. Therefore, an expand, a porous body or a foam is preferable.
  • lithium cobaltate LiCoO 2
  • lithium nickelate LiNiO 2
  • cobalt manganese lithium nickelate LiCo 0.33 Ni 0.33 Mn 0.33 O 2
  • lithium manganate LiMn 2 O 4
  • Lithium iron phosphate LiFePO 4
  • vanadium oxide-based materials sulfur-based materials and the like
  • a separator what is used for a well-known lithium secondary battery can be used.
  • a porous sheet made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide, a glass filter, a nonwoven fabric, and the like can be used, but the invention is not limited thereto.
  • the electrolyte needs to contain lithium ions, it is not particularly limited as long as it is used in a lithium secondary battery, but a lithium salt is preferable as the electrolyte salt.
  • the lithium salt includes at least one selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and lithium trifluoromethanesulfonate imide. Can be used. Since the lithium salt has a high electronegative property and is easily ionized, it has excellent charge / discharge cycle characteristics and can improve the charge / discharge capacity of the secondary battery.
  • solvent for the electrolyte examples include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ⁇ -butyrolactone, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl- At least one selected from the group consisting of 1,3-dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methyl sulfolane, nitromethane, N, N-dimethylformamide, and dimethyl sulfoxide
  • propylene carbonate alone, a mixture of ethylene carbonate and diethyl carbonate, or ⁇ -butyrolactone alone is preferred.
  • the mixing ratio of the mixture of ethylene carbonate and diethyl carbonate can be arbitrarily adjusted in the range of 10 to 90 vol% for both ethylene carbonate and diethyl carbonate.
  • a solid electrolyte may be used without using a solvent. According to the lithium secondary battery having the above-described structure, it functions as a secondary battery.
  • the XRD measurement of the sulfide was performed using the X-ray-diffraction apparatus.
  • sulfides 1 to 33 were vitrified.
  • the sulfides 34 to 39 were not vitrified and crystals were formed. Those that were vitrified were designated as “ ⁇ ”, and those that were not vitrified were designated as “x”, and are shown in Table 2.
  • Sulfides 1 to 33 were stored in water at a temperature of 40 ° C. for 24 hours to confirm the presence or absence of water resistance. The vitrified sulfides 1 to 33 were not particularly changed.
  • Examples 1-36, Examples AI, Comparative Examples 1-2, and Reference Examples 1-3 By using A and B components (sulfide glass) shown in Table 3 below as starting materials, mechanical milling treatment (normal temperature, normal pressure, and argon gas atmosphere) is performed with zirconia balls and containers. A composite powder having the surface coated with component B was prepared. Table 1 shows the starting materials used in Examples 1-36, Examples AI, Comparative Examples 1-2, and Reference Examples 1-3, the mixing ratio of A and B components, and synthesis conditions (gravity acceleration, time) 3 shows. In Examples 1 to 4 and 14 to 36, only the B component is used, and in Comparative Examples 1 and 2, only the A component is used. In Reference Examples 1 to 3, the A component and the B component are simply mixed and the milling process is not performed.
  • the starting material of Example 13 contains KB in addition to Si and sulfide 1.
  • Examples 37 to 41 Ingot in which sulfide 1 (B component) shown in Tables 1 and 2 is heated to bring the glass into a molten state, and then A component is added and dispersed, and then naturally cooled to room temperature and A component is dispersed in B component.
  • the obtained ingot was pulverized with a stirring crusher to prepare a composite powder in which the A component was coated with the B component.
  • the heat treatment condition was that the sulfide glass was heated to 750 ° C. at a rate of temperature increase of 20 ° C./hour and then held at the same temperature for 12 hours. Then, it naturally cooled to room temperature.
  • Example 40 After the sulfide 1 was heated to 750 ° C. and the glass was melted, the A component and KB were added and dispersed at the same time, and naturally cooled to room temperature, so that the A component and KB were in the B component. An ingot dispersed in was prepared.
  • FIG. 1 shows the CV (cyclic voltammetry) measurement results of Example 1. As can be seen from the CV measurement results shown in FIG. 1, a large reduction peak can be confirmed around 1 V in the initial charge (lithium storage process).
  • FIG. 2 shows the CV measurement result of Example 7.
  • this large reduction peak in the vicinity of 1 V is a reduction peak derived from sulfide (Example 1), and is the energy used to convert the sulfur content of Example 1 into lithium sulfide and change to lithium sulfide. Seem.
  • a large reduction peak was confirmed in the vicinity of 1 V for sulfides 1 to 33.
  • negative electrode active material 85 mass%, KB 5 mass%, CMC binder 8 mass%, PVA binder 1 mass%, SBR binder 1 mass% were mixed.
  • a slurry-like mixture was prepared, applied and dried on an electrolytic copper foil having a thickness of 25 ⁇ m, and then closely bonded to the electrolytic copper foil and the coating film by a roll press machine, and then heat treatment (under reduced pressure, 135 ° C. 1 hour or more) to obtain a test electrode (negative electrode).
  • a metal lithium foil having a capacity about 50 times the test electrode calculated capacity is used, and a glass filter is used as a separator, and 1 mol / L LiPF 6 / PC: DMC (1: 1 vol%) is provided as an electrolyte.
  • a laminated cell (3 cm ⁇ 3 cm) was prepared.
  • the composite powders (negative electrode materials) obtained in Examples 5 to 41 and Examples A to I, and the powders obtained in Comparative Examples 1 and 2 and Reference Examples 1 to 3 were used as negative electrode active materials.
  • 5 mass% of KB and 15 mass% of PI binder are mixed to prepare a slurry-like mixture.
  • test electrode negative electrode
  • a metal lithium foil having a capacity of about 50 times the calculated capacity of the test electrode is used, a glass filter is used as a separator, and 1 mol / L LiPF 6 / EC: DEC (1: 1 vol%) is provided as an electrolyte.
  • a coin cell (CR2032) was produced.
  • the batteries using the sulfide glass or composite powder of Examples 1-41 and Examples AI as negative electrodes have a high capacity retention ratio (discharge capacity at the 100th cycle / initial discharge capacity).
  • the batteries using the composite powders of Examples 5 to 13, 37 to 41 and Example G as the negative electrode showed a high discharge capacity of 600 to 1700 mAh / g at the 50th charge / discharge cycle.
  • a battery using the composite powder of each Example as a negative electrode is less likely to deteriorate and has a good capacity retention rate.
  • Examples 5 to 7, 11 to 13, 37 to 39, and 41 showed a high discharge capacity at the 100th cycle of 1200 mAh / g or more.
  • the cycle life of Examples 1 to 4 is shown in FIG.
  • the charge / discharge curve of Example 1 in which the battery characteristics were particularly good is shown in FIG.
  • FIG. 5 shows the cycle life characteristics of Example 7
  • FIG. 6 shows a discharge curve diagram, in which the battery characteristics were particularly good among Examples 1 to 41 and Examples A to I.
  • FIG. 7 shows an image diagram of a charge / discharge process of a cross-section of the negative electrode material according to the present invention, in which the A component is Si and the B component is B component 1 (60S-9Sb-15Sn-16Ge).
  • Li 2 S—GeS 2 —Sb 2 S 3 is a solid electrolyte, and functions as a buffer material for volume expansion of Si and Sn. Therefore, it has excellent output characteristics and hardly deteriorates even after repeated charge and discharge.
  • FIG. 10 shows the relationship between the discharge density of the current negative electrode material (graphite and hard carbon) and the negative electrode material of the present invention (Example 1 (component B), Example 7 (composite powder of component A and component B)). Shown in Further, FIG. 11 shows a comparative diagram of the high rate discharge characteristics.
  • Example 1 component B of the present invention
  • Example 7 composite powder of component A and component B of the present invention. It can be seen that the discharge current density is very high. As is apparent from FIGS. 8 to 11, a large capacity exceeding 1000 mAh / g is maintained even at a discharge rate of 10 C, indicating that the high rate discharge characteristics are good.
  • the test cells (batteries) using the negative electrode materials of Examples 1 to 4 had good cycle life characteristics, and of these, Example 1 had a high capacity.
  • the test cell using the negative electrode material of Example 7 maintains a capacity of 1300 mAh / g or more even at a discharge rate of 5 C, and is capable of high rate discharge. I understand. In particular, the capacity of 1000 mAh / g or more is maintained even at 10 C, and it can be seen that discharge at an extremely high current is possible.
  • ⁇ Evaluation 3 Low temperature charge test> The test cells of Examples 1 to 41 were charged to 0 V at a 0.01 C rate in a temperature atmosphere of ⁇ 5 ° C. The test cell after full charge was disassembled, the negative electrode was taken out, and XRD measurement was performed in a dry atmosphere to confirm whether metallic lithium was deposited. For comparison, a negative electrode using graphite as an active material was prepared and charged at low temperature under the same conditions. As a result of XRD measurement, no diffraction peak derived from lithium could be confirmed in the electrodes of Examples 1 to 41, but a diffraction peak derived from lithium was confirmed in an electrode using graphite as an active material. As an example, FIG.
  • Example 12 shows the XRD test results of the electrode of Example 1 after the low-temperature charge and the electrode using graphite as an active material (Comparative Example 2).
  • the diffraction peak derived from lithium cannot be confirmed in the electrode of Example 1, but the diffraction peak derived from lithium can be confirmed in the electrode using graphite as an active material (Comparative Example 2). From the above, it has been proved that the electrode of the present invention is safe without precipitation of lithium dendrite even when charged at a low temperature.
  • the lithium secondary battery obtained by the present invention can be used for applications such as main power sources of mobile communication devices, portable electronic devices, electric bicycles, electric motorcycles, electric vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

(課題)耐水性を有する硫化物系負極で、高い放電容量を維持しつつ、優れたサイクル特性、高い出力性能を発揮でき、且つ低温で充電を行ってもリチウムデンドライトの析出がないリチウム二次電池用負極材料を提供すること。 (解決手段)硫黄と、下記(i)及び(ii)の成分を含む硫化物ガラスからなり、 (i)Sb、As、Bi、Ge、Si、Cu、Zn、Pd、In、Zrからなる群から選択される少なくとも一種以上の元素、 (ii)Se、Te、Ga、Sn、Pb、Cd、Al、Fe、Mg、Ca、Co、Ag、Sr、P、Baからなる群から選択される少なくとも一種以上の元素、 上記各成分の割合が、硫黄:40~80モル%、(i):1~50モル%、(ii):1~50モル%である、リチウム二次電池用負極材料とする。

Description

リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池
 本発明は、リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池に関する。
 リチウムイオン電池、リチウムポリマー電池等のリチウム二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比較して高電圧、高容量を有し、しかも軽量である。そのため、近年では、移動体通信機器、携帯用電子機器、電動自転車、電動二輪車、電気自動車等の主電源としての利用が拡大している。
 このリチウム二次電池の負極活物質(負極材料)には、現在黒鉛質負極材料が一般的に使用されている。しかし、黒鉛質負極材料を用いたリチウム二次電池の理論容量は、最大でも372mAh/gに過ぎないため、より一層の高容量化が望まれている。また、黒鉛は低い温度雰囲気で充電を行うとリチウムデンドライトが析出する問題があった。
 一方、リチウム金属(Li)をリチウム二次電池の負極材料とすれば、高い理論容量が得られる(例えば、特許文献1参照)。しかし、常温であっても、充電時に負極にデンドライトが析出し、充放電を繰り返すことによって正極側に達して、内部短絡の現象が起こるという大きな欠点がある。その上、析出したデンドライトは、比表面積が大きいために反応活性度が高く、その表面で電子伝導性のない溶媒の分解生成物からなる界面被膜が形成され、これにより電池の内部抵抗が高くなって充放電効率の低下を生じる。このような理由により、リチウム金属(以後「Li」と記載することもある)を用いるリチウム二次電池は、信頼性が低く、サイクル寿命が短いという欠点があり、広く実用化される段階には達していない。
 このような背景から、Li以外の材料からなり、内部短絡が起こらないような負極材料が望まれている。例えば、スズ、珪素等の元素や、これらの窒化物、酸化物等は、Liと合金を形成することによってLiを吸蔵することができる。さらに、そのLi吸蔵量は炭素よりはるかに大きい値を示すことが知られている。このことから、これらの物質を含む各種の合金負極が提案されている。
 しかし、スズや珪素等の元素は、充電・放電時に起こるリチウム吸蔵・放出により、約4倍にまで体積変化を生じるため、電極そのものが瓦解することがある。
 この問題を解決する方策として、銅集電体表面にめっき法によりSn薄膜を形成した電極が提案されている(例えば、特許文献2参照)。この方法により、サイクル特性は改善されるが、単位面積当たりの容量を1.5mAh/cm以上得るように、Sn層を厚膜化した場合、初期の容量は向上するが、サイクル劣化が大きくなる、入出力特性が低くなるという課題がある。
 他方、リチウムと化合物を形成しやすい第一物質及びリチウムと化合物を形成しにくい第二物質を含む複合粉末からなる負極材を用いた電極が提案されている(例えば、特許文献3参照)。より具体的には、この電極では、第一物質として、1)スズ、珪素、アルミニウム及び銀並びに2)これらの一種又は二種以上を含む化合物、から選択される少なくとも一種を使用し、第二物質として、1)銅、ニッケル及びコバルト並びに、2)これらの一種又は二種以上を含む化合物の少なくとも一種を使用する。この方法によりサイクル特性はかなり改善されるが、50サイクル後から、徐々に容量が低下し、100サイクル後の容量は200mAh/gに満たない。
 現在市販されているリチウムイオン電池は、電解液として可燃性の有機溶媒を用いるので、液漏れの他、短絡や過充電などを想定した安全対策が欠かせない。そこで、安全性向上のために、電解質としてイオン伝導性ポリマーやセラミックス等の固体電解質を用いた全固体型リチウムイオン電池の開発が進められている。リチウムイオン伝導性固体電解質として利用可能なセラミックスとしては、高いリチウムイオン伝導性を有することから、特に、硫化物系の物質に注目が集まっており、数多くの開発が進められている。
 例えば、硫化リチウム系の固体電解質として、Li-P-S系の固体電解質が検討されている(非特許文献1参照)。このような硫化リチウム系の固体電解質は非晶質化が進むとともに導電率は大きく増大し、10-4S/cmオーダー以上の高い導電率が得られることが知られている。そのため、遊星型ボールミル等を用いたメカニカルミリング処理により、これらの系の非晶質化を行っていた。
 しかし、これまでの硫化リチウム系の固体電解質は、空気中の水分と容易に反応し、水酸化物や酸化物を生成し、これらはイオン伝導性が非常に小さいため、当該固体電解質のイオン伝導性を大きく低下させる原因となっていた。特に、多くの硫化物は、水分と反応することで、有毒な硫化水素ガスを発生するため、取り扱いが非常に難しかった。
 従来の液式のリチウムイオン電池は、電解質が液体であっため、活物質層内に電解液が浸み込みやすくイオン伝導性を確保するのにあまり問題はなかったが、固体電解質を使用する際は、予め固体電解質を負極活物質層内に含有する必要性があった。
 上述したように、硫化物系の固体電解質は水分と容易に反応するため、SBR、CMC、PTFE等の水系バインダーを用いることができないのはおろか、各々の製造工程もドライ雰囲気下で製造する必要性があり、コスト高となっていた。
特開平10-302741号公報 特開2003-157833号公報 特開2002-124254号公報 A.Hayashi et al.,Electrochem.Comm.5(2003)111、H.Morimoto et al.,J.Am.Ceram.Soc.82[5](1999)1352
 本発明は、上記従来技術の現状に鑑みてなされたものであり、その主な目的は、耐水性を有する硫化物系負極で、高い放電容量を維持しつつ、優れたサイクル特性、高い出力性能を発揮でき、且つ低温で充電を行ってもリチウムデンドライトの析出がないリチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池を提供することにある。
 本発明のリチウム二次電池用負極材料は、
 硫黄と、下記(i)及び(ii)の成分を含む硫化物ガラスからなり、
(i)Sb、As、Bi、Ge、Si、Cu、Zn、Pd、In、Zrからなる群から選択される少なくとも一種以上の元素、
(ii)Se、Te、Ga、Sn、Pb、Cd、Al、Fe、Mg、Ca、Co、Ag、Sr、P、Baからなる群から選択される少なくとも一種以上の元素、
 上記各成分の割合が、硫黄:40~80モル%、(i):1~50モル%、(ii):1~50モル%である。
 本発明のリチウム二次電池用負極材料によれば、硫化物ガラスが、高容量であって良好なサイクル寿命が得られ、且つ、耐水性の性質を有する硫黄系の負極活物質として機能することができる。
 既にガラス化している硫化物ガラスを使用するため、メカニカルミリング等で非晶質化する工程を省略することができる。また、耐水性及び耐酸性を有しているので、水或いは酸素と容易に反応することがなく、イオン伝導性の低下が生じることがなく、取り扱いも容易である。更に、水系バインダーを用いることができるとともに、各々の製造工程をドライ雰囲気下とする必要がなく、製造コストを削減することができる。
 上記硫化物ガラスは、Geを0.5~40モル%含むことが好ましい。
 Geはガラスの骨格構造を形成する役割があるため、ガラス化された負極材料を確実に得ることができる。
 本発明のリチウム二次電池用負極材料は、下記A成分とB成分の複合粉末であるとしてもよい。
(1)A成分が、リチウムを電気化学的に吸蔵することができる材料、
(2)B成分が、上記硫化物ガラス、
 ここで、「複合」は「混合」とは異なる概念であり、混合粉末がA成分の粉末とB成分の粉末の単なる集合であるのに対し、複合粉末は当該粉末を構成する1つの粒子中にA成分とB成分の両方が含有されている。
 上記複合粉末は、A成分表面にB成分が被覆された複合粉末であることが好ましい。
 A成分を核としてその周囲(表面)にB成分が存在することで、リチウムの吸蔵・放出(充電・放電)に伴うA成分のイオン伝導性を向上させることができる。また、膨張・収縮に起因する割れを抑制することができる。これにより、A成分のみではイオン伝導性やサイクル寿命が乏しい活物質でもイオン伝導性とサイクル特性を向上させることができるので、導電性が乏しい或いは高容量な(体積膨張の大きな)活物質でもサイクル寿命特性が良好なものとなる。
 上記複合粉末全体におけるA成分とB成分の割合は、両者の合計量を100mass%とした場合に、A成分が5~80mass%であり、B成分が95~20mass%であることが好ましい。
 このような割合においてA成分とB成分の割合を調整することにより、サイクル寿命特性に非常に優れた長寿命タイプの負極や、活物質重量当たりの容量が非常に高い高容量タイプの負極を得ることができる。
 尚、上記複合粉末中には、A成分とB成分が主成分相として存在していればよく、ごく微量の不純物が存在してもよい。ごく微量の不純物が存在してもサイクル劣化には悪影響を及ぼさない。
 本発明のリチウム二次電池用負極は、上記リチウム二次電池用負極材料を用いたリチウム二次電池用負極である。
 そのため、長寿命で高い充放電容量を有し、しかも取り扱いが容易であるリチウム二次電池用負極となる。
 本発明のリチウム二次電池用負極は、負極材料が耐水性を有する硫化物ガラスからなるため、水系バインダーを使用することができる。
 本発明のリチウム二次電池用負極は、ポリイミドバインダーを含有することが好ましい。
 ポリイミドバインダーを使用することにより、充放電に伴う体積膨張が大きい場合でも、バインダーによる結着を維持することができる。
 本発明のリチウム二次電池は、上記リチウム二次電池用負極を用いたリチウム二次電池である。
 そのため、高容量であるとともに、サイクル寿命特性が良好であり、且つ耐水性に優れたリチウム二次電池となる。
 本発明のリチウム二次電池用負極材料の製造方法は、
(A)上記B成分の原料を調合し、熱処理(温度400~1100℃、処理時間1~30時間)により調合物をガラス化させB成分を得る工程、
(B)上記A成分と上記B成分を複合化させる工程、
を備えている。
 この方法によれば、(A)工程により充分にガラス化されたB成分を得ることができ、(B)工程により充分にガラス化されたB成分とA成分とを複合化するため、長寿命で高い充放電容量を有し、しかも取り扱いが容易であるリチウム二次電池用負極を得ることができる。
 上記工程(B)は、メカニカルミリングによりA成分とB成分を複合化させる工程であることが好ましい。
 B成分は、A成分と比べて機械的強度が低いため、A成分よりもB成分が粉砕されやすい。そのため、メカニカルミリングにより微粒子となったB成分粉末がA成分粉末の表面にボール等により圧着して、A成分にB成分を被覆することが可能である。
 上記工程(B)は、溶融したB成分に、A成分を分散させ、冷却後、粉砕処理を行う工程であってもよい。
 B成分がA成分よりも少ない場合には、A成分にB成分が被覆されにくいが、溶融したB成分にA成分を分散させ、冷却後粉砕する方法を採用することにより、A成分にB成分を確実に被覆することが可能となる。
 上記(A)及び/又は(B)の工程で、導電助剤及び/又はバインダーを入れ、複合粉末に導電助剤及び/又はバインダーを含有させることが好ましい。
 複合粉末に導電助剤を含有させることにより、得られるリチウム二次電池用負極材料の導電性を向上させることができ、電池のサイクル寿命特性、高率放電特性を大幅に向上させることが可能となる。
 本発明によれば、耐水性を有し、取り扱いが容易であり、高い放電容量を維持しつつ、優れたサイクル特性、高い出力性能を発揮でき、且つ低温で充電を行ってもリチウムデンドライトの析出がないリチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池を提供することができる。
実施例1のCV測定結果を示した図である。 実施例7のCV測定結果を示した図である。 実施例1~4のサイクル寿命を示した図である。 実施例1の充放電曲線図である。 実施例7のサイクル寿命特性を示した図である。 実施例7の充放電曲線図である。 実施例7の充放電過程のイメージ図である。 実施例7の高率充放電曲線図である。 実施例7の高率充放電時のサイクル寿命特性を示した図である。 黒鉛、ハードカーボン、実施例1、実施例7の放電密度の関係を示した図である。 黒鉛、ハードカーボン、実施例1、実施例7の高率放電特性を比較した図である。 低温充電後の実施例1と黒鉛のXRD試験結果を示した図である。
 以下、本発明のリチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池の実施形態について説明する。
 本発明のリチウム二次電池(リチウムイオン二次電池)用負極材料は、
 硫黄と、下記(i)及び(ii)の成分を含む硫化物ガラスからなり、
(i)Sb、As、Bi、Ge、Si、Cu、Zn、Pd、In、Zrからなる群から選択される少なくとも一種以上の元素、
(ii)Se、Te、Ga、Sn、Pb、Cd、Al、Fe、Mg、Ca、Co、Ag、Sr、P、Baからなる群から選択される少なくとも一種以上の元素、
 上記各成分の割合が、硫黄:40~80モル%、(i):1~50モル%、(ii):1~50モル%である。
 上記硫化物ガラスは、耐水性を有しており、初期の充電(リチウムイオン吸蔵)の過程で少なくとも硫化リチウム(LiS)となり、その後の充放電過程で反応しない。即ち、リチウム還元され、少なくとも固体電解質層に分解する。
 例えば、SiOの場合、初期の充電の過程で、固体電解質であるオルトケイ酸リチウム(LiSiO)を形成する。しかし、オルトケイ酸リチウムは、イオン伝導性が乏しいため、高出力の放電が難しい。
 これに対して、上記硫化物ガラスは、初期の充電過程で、硫化リチウム(LiS)系の固体電解質に分解する。硫化リチウム(LiS)系の固体電解質層は、リチウムイオンの吸蔵・放出の過程で、リチウムイオンを移動させることができる固体である。
 そのため、本発明のリチウム二次電池用負極材料は、初期の充電過程で、イオン伝導性の良好な硫化リチウム(LiS)系の固体電解質に分解することで、高出力の放電が可能となる。
 本発明のリチウム二次電池用負極材料は、
 上記(i)の成分が、Sb、Bi、Ge、Cu、Znからなる群から選択される少なくとも一種以上の元素からなり、
 上記(ii)の成分が、Snからなる、
ものとしてもよい。
 本発明のリチウム二次電池用負極材料は、
 上記(i)の成分が、Geからなり、
 上記(ii)の成分が、Te、Ga、Sn、Al、Mg、Ca、Sr、P、Baからなる群から選択される少なくとも一種以上の元素からなる、
ものとしてもよい。
 即ち、本発明においては、上記(i)の成分のうちのGeと、上記(ii)の成分のうちのSn、の少なくともいずれか一方の元素を必須とすることが好ましい。これにより、優れた電池特性を得ることができる。
 本発明のリチウム二次電池用負極材料を構成する硫化物ガラスの各成分のうち、硫黄は、初期の充電で硫化リチウムを形成するために必須の元素であり、(i)はガラスの骨格構造を形成する役割があり、(ii)はガラスを形成しやすくする役割とリチウムを吸蔵・放出する役割がある。
 硫黄を40~80モル%とするのは、40モル%未満であると硫化リチウム系の固体電解質の形成量が少なくなり、イオン伝導性が乏しくなることや、充放電に伴う(ii)の体積膨張を吸収するバッファー層の量が少なくサイクル寿命特性が悪い電極となり、80モル%を超えるとガラス化しにくく、また、(ii)の量が少ないため、負極容量が小さい電極となって、いずれの場合も好ましくないためであり、30~70モル%とすることがより好ましく、35~65モル%とすることがさらに好ましい。
 (i)を1~50モル%とするのは、1モル%未満であるとガラスの骨格構造を形成する(i)が少ないため、結晶化し、耐水性のない負極となり、50モル%を超えると(ii)の量が少ないため、負極容量が小さい電極となって、いずれの場合も好ましくないためであり、5~40モル%とすることがより好ましく、10~35モル%とすることがさらに好ましい。
 (ii)を1~50モル%とするのは、1モル%未満であると負極容量が小さい電極となり、50モル%を超えると硫黄量や(i)の量が少なくなるため、硫化リチウム系の固体電解質の形成量が少なくなり、イオン伝導性が乏しくなることや、充放電に伴う(ii)の体積膨張を吸収するバッファー層の量が少なくサイクル寿命特性が悪い電極となって、いずれの場合も好ましくないためであり、5~45モル%とすることがより好ましく、10~40モル%とすることがさらに好ましい。
 本発明のリチウム二次電池用負極材料を構成する硫化物ガラスは、ガラス化の観点から、Geを含有していることが好ましい。Geは、ガラスの骨格構造を形成する役割がある。
 Geの含有量は0.5~40モル%とすることが好ましく、1~20モル%とすることがより好ましい。
 Geの含有量が0.5モル%未満であるとガラス化が充分に行われないおそれがあり、40モル%を超えると(ii)の量が少なくなるため、負極容量が小さい電極になることや、Geは高価な元素であるため、コスト高な電極となるため、いずれの場合も好ましくない。
 尚、上記硫化物ガラスは、二種以上の硫化物ガラスを複合化して使用してもよい。
 本発明のリチウム二次電池用負極材料を構成する硫化物ガラスの製造方法は特に限定されないが、例えば、石英アンプル内に各成分の原料を所定量封入し、熱処理により封入された内容物をガラス化させることにより製造できる。
 原料としては、硫黄(S)の他に、Sb、Bi、Ge、Si、Cu、Zn、Se、Te、Ga、Sn、Pb、Cd、Al、Fe、Mg、Ca、Co、Ag、Sr、Ba、In等の単体金属、又はこれらの硫化物(例えば、AgS、Al、BiS、Bi、Fe、GaS、In、MgS、Sb、Sb、SnS、SnS、ZrS、GeS、GeS、ZnS、等)、或いはAs、P等の非金属を使用できる。
 上記原料は、硫黄を必須として使用され、これに加えて上記(i)と(ii)の組み合わせが使用される。
 上記製造方法により硫化物ガラスを製造する際は、使用する石英アンプルは真空乾燥機により充分に内部を乾燥させることが好ましい。また、ガラス化の際は、400~1100℃で加熱することが好ましく、600~800℃で加熱することがより好ましい。熱処理時間は石英アンプル内に封入された内容物が充分にガラス化される時間であれば良いが、一般に1~30時間が好ましく、5~24時間がより好ましい。温度400~1100℃で1~30時間加熱することにより、上記内容物を充分にガラス化することができる。
 本発明のリチウム二次電池用負極材料を構成する硫化物ガラスは、耐水性に優れるので、従来の硫化物ではできなかった空気中での取り扱いや水系バインダーの使用が可能となる。
 上記した方法で得られる硫化物ガラスは、更に、導電性金属、炭素等によって導電性を有する被覆を形成することによって、導電性を向上させることができる。これにより、リチウム電池用負極活物質として、より良好な電池特性を有するものとなる。
 硫化物ガラスに導電性金属、炭素等の導電性被覆を形成する方法としては、スパッタリング、蒸着法、メカニカルアロイ(MA)法、ロータリーキルン法、無電解めっき法などの公知の技術を利用できる。
 導電性被覆の被覆量については、少なすぎると導電性を向上させる効果が充分ではなく、一方、多すぎると硫化物ガラスの表面がほとんど被覆されてリチウムイオンの吸蔵・放出が困難となるので好ましくない。このため、導電性被覆の被覆量は、硫化物ガラス100重量部に対して、0.1~30重量部程度とすることが好ましく、0.5~25重量部程度とすることがより好ましく、1~10重量部程度とすることが更に好ましい。
 特に、上記した硫化物ガラスと炭素前駆体とを混合し、非酸化性雰囲気下で加熱して炭素による被覆を形成する方法によれば、大規模な装置を用いることなく、簡単な方法で均一性に優れた炭素による被覆を形成できる点で有利である。
 この方法で用いる炭素前駆体は、加熱によって炭化する有機材料であればよく、例えば、粘着性を有するハイドロカーボン系有機物、石炭系ピッチ、石油系ピッチ等を用いることができる。これらの内で、粘着性を有するハイドロカーボン系有機物としては、フェノ-ル樹脂、フラン樹脂、クエン酸、PVA、ウルシオールなどを例示できる。これらの炭素前駆体は一種単独又は二種以上混合して用いることができる。
 加熱温度は、炭素前駆体が炭化する温度であれば良く、例えば、300~1100℃程度とすることが好ましく、500~900℃程度とすることがより好ましい。この場合、加熱温度が低すぎる(300℃未満)と、炭素前駆体が炭化されにくく、一方、加熱温度が高すぎる(1100℃超)と、硫化物ガラスが炭素と反応し、硫化炭素等を発生する可能性があり、さらに装置も大掛かりなものとなりコスト高となるので好ましくない。
 加熱処理の時間は、炭素前駆体が炭化する時間であれば良く、通常は、1~24時間程度とすればよい。加熱時間が短すぎる場合には、炭素前駆体が充分には炭化されず、電子伝導性の悪い負極になるので好ましくない。一方、加熱時間が長すぎると、熱処理が無駄であり、経済的に好ましくない。
 炭化処理時の雰囲気は、不活性雰囲気、還元雰囲気等の非酸化性雰囲気とすればよい。具体的には、He(ヘリウム)、Ne(ネオン)、Ar(アルゴン)、N(窒素)、H(水素)等の雰囲気とすればよい。
 上記した硫化物ガラス、及びこれに導電性を有する被覆を形成した硫化物ガラスは、いずれもリチウム二次電池用負極活物質として有効に使用できる。
 本発明のリチウム二次電池用負極材料は、上記硫化物ガラス単独であってもよいが、リチウムを電気化学的に吸蔵及び放出することができる材料(以下、A成分という)と、上記硫化物ガラス(以下、B成分という)との複合粉末とすることが好ましい。
 このような複合粉末からなるリチウム二次電池用負極材料とすることにより、更なる高容量化が可能となる。
 本発明のリチウム二次電池用負極材料をA成分とB成分の複合粉末とする場合、下記の(A)工程と(B)工程を備える製造方法により製造することができる。
(A)B成分の原料を調合し、熱処理(温度400~1100℃、処理時間1~30時間)により調合物をガラス化させB成分を得る工程
(B)A成分とB成分を複合化させる工程
 上記(A)工程と(B)工程のうち、(A)工程としては上記した硫化物ガラスの製造方法を採用することができる。(B)工程としては、メカニカルミリングによりA成分とB成分を複合化させる工程や、溶融したB成分にA成分を分散させ、冷却後、粉砕処理を行う工程などを採用することができる。これら(B)工程については後程詳述する。
 A成分は、初期の充電においてリチウムイオンを吸蔵することができ、且つ、その後の充放電時においてリチウムイオンを吸蔵・放出することができるものであれば特に限定はされない。
 例えば、Li、Na、C、Mg、Al、Si、P、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、W、Pb及びBiよりなる群から選択される少なくとも一種以上の元素、これらの元素を用いた合金、酸化物、カルコゲン化物又はハロゲン化物であればよい。
 これらのなかでも、放電プラトーの領域が0~1V(vs.Li/Li)の範囲内に観測できる観点から、Li、C、Mg、Al、Si、Ti、Zn、Ge、Ag、In、Sn及びPbよりなる群から選択される少なくとも一種以上の元素、これらの元素を用いた合金、酸化物、カルコゲン化物又はハロゲン化物が好ましい。
 さらにエネルギー密度の観点から、元素としては、Al、Si、Zn、Ge、Ag、Sn等が好ましく、合金としては、Si-Al、Al-Zn、Si-Mg、Al-Ge、Si-Ge、Si-Ag、Si-Sn、Zn-Sn、Ge-Ag、Ge-Sn、Ge-Sb、Ag-Sn、Ag-Ge、Sn-Sb等の各組み合わせ等が好ましく、酸化物としては、SiO、SnO、SnO、SnC、LiTi12等が好ましく、カルコゲン化物としては、SnS、SnS等が好ましく、ハロゲン化物としては、SnF、SnCl、SnI、SnI等が好ましい。
 尚、上記したA成分は一種のみで使用してもよいし二種以上使用してもよい。
 複合粉末において、A成分とB成分の割合は、両者の合計量を100mass%とした場合に、A成分5~80mass%とB成分95~20mass%であることが好ましく、A成分20~70mass%とB成分80~30mass%であることがより好ましい。例えば、A成分がSiである場合を例にとると、A成分(Si)が5~35mass%で、B成分が95~65mass%である場合は、活物質重量当たりの容量が500~1500mAh/gで、且つ、サイクル寿命特性が非常によいため、長寿命タイプの負極として有望である。一方、A成分(Si)が35~80mass%で、B成分が65~20mass%である場合は、活物質重量当たりの容量が1500~3500mAh/gと非常に高いため、高容量タイプの負極として有望である。尚、上記複合粉末中に、A成分とB成分が主成分相として存在していればよく、ごく微量の不純物が存在してもサイクル劣化には悪影響を及ぼさない。
 以下、説明の簡略化のため、B成分として、S-Ge-Snガラス(S:60モル%、Ge:25モル%、Sn:15モル%)を用いた場合について説明する。ただし、B成分がこれのみに限定されないことは言うまでもない。
 本発明のリチウム二次電池用負極材料は、初期の充電(Li吸蔵)過程で、まずA成分表面上のB成分がLi還元され、固体電解質層が生成する。例えば、B成分がS-Ge-Snガラスの場合は、Li還元により、硫化リチウム-硫化ゲルマニウム(LiS-SiS)とスズに分相する。LiS-SiSは、0~1V(対リチウム電位)の条件では活物質として関与しないため、以後の充放電反応には関与しない。そのため、複合粉末中の骨格として存在し、充放電反応に関与する分相したSnやA成分のイオン伝導性を向上させ、分相したSnやA成分が体積変化をしても、LiS-GeSがバッファー層として機能するため、複合粉末全体としての体積変化を効果的に抑制できる。また、B成分が、S-Ge-Si-Snガラスの場合は、Li還元により、硫化リチウム-硫化シリコン-硫化ゲルマニウム(LiS―GeS―SiS)とスズに分相する。LiS―GeS―SiSも、0~1V(vs.Li/Li)の条件では活物質として関与しないため、以後の充放電反応には関与しない。そのため、複合粉末中の骨格として存在し、充放電反応に関与する分相したSnやA成分のイオン伝導性を向上させ、分相したSnやA成分が体積変化をしても、複合粉末全体としての体積変化を効果的に抑制できる。
 充電過程で生成するLiS-GeS、LiS-GeS-SiS等はイオン伝導性に優れる。A成分は主にLiと反応する金属成分であり、電気伝導性に優れる。よって、本発明のリチウム二次電池用負極材料を構成する複合粉末の充放電過程では、イオン伝導性と電気伝導性の両方の点で優れた伝導性が得られる。A成分や分相したSnは、更にLiを吸蔵していくとLi化した相になり、可逆的な容量成分相になる。
 以上から、上記複合粉末からなる本発明のリチウム二次電池用負極材料は、分相したSnやA成分のもつ大きな可逆的な電気容量と、固体電化質層兼バッファー層であるLiS-GeS相、LiS-GeS-SiS相等のもつ不可逆成分の骨格構造をもつことで、高出力、高容量、サイクル寿命等に優れた特性を示す。
 本発明に係るリチウム二次電池用負極材料を構成する複合粉末は、A成分の表面にB成分が被覆されていることが好ましい。
 その理由は、A成分核の周囲にB成分が存在することで、リチウムの吸蔵・放出(充電・放電)に伴うA成分のイオン伝導性を向上させることと、膨張・収縮に起因する割れを抑制することができるためである。これにより、A成分のみでは、イオン伝導性やサイクル寿命が乏しい活物質でもイオン伝導性とサイクル特性を向上させることができるので、導電性が乏しい或いは高容量な(体積膨張の大きな)活物質でもサイクル寿命特性が良好なものとなる。
 A成分は、一次粒子そのものであってもよいし、凝集した二次粒子等であってもかまわない。B成分は、A成分の全面に完全に被覆されていてもよいし、A成分の一部のみに被覆されていてもよい。A成分の一部のみに被覆されている場合は、A成分の表面積の20%以上がB成分で被覆されていればよい。本発明において、A成分がB成分で被覆されている割合は、例えば、走査型電子顕微鏡(SEM)写真を用いることにより測定することができる。
 A成分の表面にB成分を被覆する方法は特に限定されないが、例えば、A成分とB成分とを含む原料物質を混合し、メカニカルミリング処理を行う方法が挙げられる。
 メカニカルミリング処理とは、衝撃・引張り・摩擦・圧縮・せん断等の外力を原料粉末(少なくともA成分及びB成分)に与える方法であって、転動ミル、振動ミル、遊星ミル、揺動ミル、水平ミル、アトライターミル、ジェットミル、擂潰機、ホモジナイザー、フルイダイザー、ペイントシェイカー、ミキサー等などを用いる方法が挙げられる。
 例えば、遊星ミルを用いる方法では、原料粉末とボールとを共に容器に入れ、自転と公転をさせることによって生じる力学的エネルギーにより、原料粉末を粉砕・混合又は固相反応させることができる。この方法によれば、ナノオーダーまで粉砕されることが知られている。
 本発明では、負極材料の原料粉末は少なくともA成分とB成分とを含んでいる。B成分はA成分と比べて機械的強度が低いため、A成分よりもB成分が粉砕されやすい。そのため、微粒子となったB成分粉末がA成分粉末の表面にボール等により圧着して、A成分にB成分を被覆することが可能である。
 A成分の表面にB成分を被覆する方法の別の例としては、溶融したB成分にA成分を分散させ、冷却後粉砕する方法が挙げられる。
 B成分がA成分よりも少ない場合には、上記したメカニカルミリング処理を行う方法ではA成分にB成分が被覆されにくいため、この方法(溶融したB成分にA成分を分散させ、冷却後粉砕する方法)を採用することが好ましい。
 B成分を溶融する条件としては、特に限定されないが、加熱温度が400℃未満だと溶融されにくく、1100℃を超える温度ではB成分が分解されるおそれがある。したがって、加熱温度は400~1100℃程度であり、500~900℃がより好ましい。
 尚、B成分を被覆する際に(即ち上記(B)工程において)、導電助剤をB成分に含有させてもよい。その方法としては、B成分が溶融した状態中に導電助剤を分散させておけばよい。B成分に導電助剤を含有させることで、導電性を向上させ、電池のサイクル寿命特性、高率放電特性を大幅に向上させることができる。
 尚、上記(A)工程において導電助剤をB成分に含有させてもよいし、(A)工程と(B)工程の両方において導電助剤をB成分に含有させてもよい。
 導電助剤としては、特に限定されないが、金属や導電性高分子等は、B成分と反応するおそれがあるため、カーボンブラックを用いることが好ましい。カーボンブラックとしては、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンファイバー(VGCF)、カーボンナノチューブ(CNT)、黒鉛、ソフトカーボン、ハードカーボン等が挙げられる。また、溶融中のB成分は温度が高いため、導電助剤として、炭素前躯体を用いてもかまわない。
 B成分を100wt%とした場合、導電助剤は、これに対して0.1~10wt%含有するのが好ましく、0.5~5wt%含有するのがより好ましい。含有量が0.1~10wt%の場合、充分な導電性改善効果が得られ、高率放電特性を向上させることができるとともに、A成分からB成分が脱落することによる容量低下も最低限に抑えることができる。上記導電助剤のなかでも、凝集性の高い導電剤、例えばカーボンブラックを用いた場合には、撹拌機、超音波等で導電助剤を分散させることが好ましい。
 上記した複合粉末をリチウム電池用負極材料として用いたリチウム二次電池は、高容量でサイクル寿命特性が良好で、且つ耐水性に優れる。
 上記した複合粉末の他に、上記した硫化物ガラス、及びこれに導電性を有する被覆を形成した硫化物ガラスも同様に、リチウム電池用負極材料として有効に使用できる。
 これら本発明の負極材料を用い、集電体上に被着形成することで、リチウム二次電池用の負極として良好に機能させることができる。
 被着形成するとは、集電体と本発明の負極材料とを接触させた状態で固定することである。すなわち、負極材料を充填すること、集電体である金属網等によって負極材料を固定すること等が該当する。被着形成手法としては特に限定されないが、例えば、圧着法、スラリー法、ペースト法、電気泳動法、ディッピング法、スピンコート法、エアロゾルデポジション法等があげられる。なかでも、発泡状ニッケルのような金属発泡体を集電体として用いる場合は、充填密度、電極製造速度等の観点から、スラリー法又はペースト法が好ましい。
 負極は、例えば、本発明の負極材料の他に、必要に応じて導電性を付与するための導電助剤、結着性を付与するためのバインダーを含有させてもよい。
 尚、本発明では負極材料の製造時に、上記(A)工程及び/又は(B)工程において、導電助剤、バインダー等を入れることにより、B成分中に導電助剤、バインダー等を含有させることができるが、この場合であっても、当該負極材料を用いた負極の製造時において、導電助剤、バインダー等をさらに含有させてもよい。例えば、上記負極材料に加えて導電助剤及びバインダー等を含有させた混合物(負極合剤)に、適当な溶剤(N-メチル-2-ピロリドン(NMP)、水、アルコール、キシレン、トルエン等)を加えて充分に混練して得られる負極合剤ペースト組成物、負極合剤スラリー等を、集電体表面に塗布、乾燥し、更にプレスすることで、集電体表面に負極材料含有層を形成し、負極とすることができる。
 この負極を搭載したリチウム二次電池を作製する場合には、公知のリチウム二次電池の電池要素(正極、セパレーター、電解液等)を用いて、常法に従って、角型、円筒型、コイン型等のリチウム二次電池に組み立てればよい。
 導電助剤としては、通常用いられているもの、例えば上記で説明したものを使用することができ、炭素材料を含む場合には、炭素材料の種類(構造等)は特に限定されない。例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、カーボンファイバー、カーボンチューブ、非晶質炭素等の炭素材料を、一種単独で用いてもよいし、または二種以上を併用してもよい。より好ましくは、複合粉末中に導電性の3次元網目構造を形成できるもの(例えば、フレーク状の導電材(フレーク銅粉やフレークニッケル粉等)、カーボンファイバー、カーボンチューブ、非晶質炭素等)が好ましい。導電性の3次元網目構造が形成されていれば、リチウム二次電池用負極材料として充分な集電効果が得られるとともに、Li吸蔵時の電極(特に合金成分)の体積膨張を効果的に抑制できる。
 バインダーも通常用いられているもの、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、ポリアミド、ポリアミドイミド、ポリアクリル、スチレンブタジエンゴム(SBR)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、カルボキシメチルセルロース(CMC)等の材料を一種単独で用いてもよく、二種以上を併用してもよい。但し、A成分と複合化した活物質を用い、活物質容量が1000mAh/gを超える場合は、充放電に伴う体積膨張が大きいため、用いるバインダーはPIが好ましい。
 負極の負極材料含有層においては、例えば、本発明の負極材料が50~99mass%、導電助剤量が0.5~40mass%、バインダー量が0.5~30mass%であることが好ましい。
 負極の負極材料含有層の厚みは、電極容量密度にもよるが、例えば、0.5~200μmであることが好ましい。負極材料含有層の厚みをこの範囲とすることで、集電体が負極材料を支持しつつ、実用的な電気容量を得ることができる。
 電極容量密度は、0.1~30mAh/cmであることが好ましい。例えば、電極容量密度0.1~3mAh/cmで本発明の負極を得た場合、超高出力用途に適しており、電極容量密度0.5~5mAh/cmでは、長寿命用途や高出力用途に適しており、電極容量密度3~30mAh/cmでは、高容量用途に適している。尚、電極容量密度は、例えば、充放電サイクル容量試験等により測定することができる他、活物質塗布重量から容量を計算し、その値を電極面積で割ることにより求めることができる。
 集電体は、電子伝導性を有し、保持した負極材料に通電し得る材料であれば特に限定されない。例えば、C、Ti、Cr、Ni、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au等の導電性物質、これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。電気伝導性が高く、電解液中の安定性がよい観点から、集電体としてはC、Ti、Cr、Ni、Cu、Au、ステンレス鋼等が好ましく、さらに材料コストの観点からC、Ni、Cu、ステンレス鋼等が好ましい。
 集電体の形状には線状、棒状、板状、箔状、網状、織布、不織布、エキスパンド、多孔体又は発泡体があり、このうち充填密度を高めることができること、出力特性が良好なことから、エキスパンド、多孔体又は発泡体が好ましい。
 正極としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、コバルトマンガンニッケル酸リチウム(LiCo0.33Ni0.33Mn0.33)、マンガン酸リチウム(LiMn)、リン酸鉄リチウム(LiFePO)、酸化バナジウム系材料、硫黄系材料等の既存のものが用いられる。
 セパレータとしては、公知のリチウム二次電池に用いられるものが使用できる。
 例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シート、ガラスフィルター、不織布等を用いることができるが、これらに限定はされない。
 電解質は、リチウムイオンを含有する必要があることから、リチウム二次電池で用いられるものであれば特に限定されないが、その電解質塩としては、リチウム塩が好適である。このリチウム塩としては、具体的には、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウム及びトリフルオロメタンスルホン酸イミドリチウムよりなる群から選択される少なくとも一種を用いることができる。上記リチウム塩は、電気的陰性度が高く、イオン化しやすいことから、充放電サイクル特性に優れ、二次電池の充放電容量を向上させることができる。
 上記電解質の溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、γ-ブチロラクトン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチルエーテル、スルホラン、メチルスルホラン、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシドよりなる群から選択される少なくとも一種を用いることができ、特に、プロピレンカーボネート単体、エチレンカーボネートとジエチルカーボネートとの混合物、又はγ-ブチロラクトン単体が好適である。尚、上記エチレンカーボネートとジエチルカーボネートとの混合物の混合比は、エチレンカーボネート及びジエチルカーボネートともに10~90vol%の範囲で任意に調整することができる。
 あるいは、溶媒を用いず、固体電解質でもかまわない。
 上述の構造のリチウム二次電池によれば、二次電池として機能する。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<硫化物ガラスの製造>
 硫化物ガラスの原料を下記表1に示す配合により調合し、熱処理により調合物を溶融させ、その後、室温まで冷却することにより、硫化物1~39を得た。熱処理条件は、調合物を20℃/時間の昇温速度で所定温度まで昇温後、同温度で12時間保持した。
 得られた硫化物1~39それぞれの組成及び合成条件を表1、2に示す。尚、表2において、室温まで自然冷却したものを「自然」と表記し、10℃/時間の降温速度で室温まで降温したものを「徐冷」と表記した。
 また、得られた硫化物がガラス化されているか否かを確認するために、X線回折装置を用いて硫化物のXRD測定を行った。その結果、硫化物1~33はガラス化していた。他方、硫化物34~39はガラス化しておらず結晶が生成していた。ガラス化したものを「○」とし、ガラス化していないものを「×」とし、表2に示した。
 硫化物1~33を温度40℃の水の中で24時間保存し、耐水性の有無を確認した。ガラス化した硫化物1~33は、特に変化はなかった。他方、結晶化した硫化物34~39は、水酸化物が形成し、腐卵臭を放っていたため、結晶化した硫化物は水と反応し、硫水素(HS)を発生したものと考えられる。
 表1にて硫化物を「硫」と略し、硫化物1を硫1,硫化物2を硫2・・等と表記する。
Figure JPOXMLDOC01-appb-T000001




























Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<実施例1~36、実施例A~I、比較例1~2、及び参考例1~3>
 下記表3に示すA成分とB成分(硫化物ガラス)を出発材料とし、ジルコニア製のボール及び容器にて、メカニカルミリング処理(常温、常圧、アルゴンガス雰囲気下)を行うことにより、A成分の表面にB成分を被覆した複合粉末を作製した。
 実施例1~36、実施例A~I、比較例1~2、及び参考例1~3で用いた出発材料、A成分とB成分の調合比、及び合成条件(重力加速度、時間)を表3に示す。
 尚、実施例1~4、14~36はB成分のみ、比較例1~2はA成分のみであるためミリング処理を施していない。参考例1~3は、A成分とB成分とを単に混合しただけのものでありミリング処理を施していない。
 実施例13の出発材料は、Siと硫化物1の他、KBを含有している。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
<実施例37~41>
 表1、2に示す硫化物1(B成分)を加熱し、ガラスが溶融した状態にした後、A成分を加えて分散し、室温まで自然冷却してA成分がB成分中に分散したインゴットを作製した。得られたインゴットを攪拌擂潰機により、粉砕し、A成分にB成分を被覆した複合粉末を作製した。尚、熱処理条件は、硫化物ガラスを20℃/時間の昇温速度で750℃まで昇温後、同温度で12時間保持した。その後、室温まで自然冷却した。
 実施例37~41で用いた出発材料及びAとBとKBの調合比を下記表4に示す。
 尚、実施例40は、硫化物1を750℃まで加熱し、ガラスが溶融した状態にした後、A成分とKBを同時に加え分散し、室温まで自然冷却してA成分とKBがB成分中に分散したインゴットを作製した。
Figure JPOXMLDOC01-appb-T000010
<分析>
 実施例1~36の負極材料の粉末粒子を走査型電子顕微鏡(SEM)で測定した結果、一次粒子の粒径D50の10%以上が1μm以下の範囲内であった。また、実施例5~18で得られた複合粉末の二次粒子の粒子径をレーザー回折法で測定した結果、平均二次粒子径の1~15μmの比率が95%で、全ての二次粒子の最大粒子径が80μm以下であった。
 図1に実施例1のCV(サイクリックボルタンメトリ)測定結果を示す。
 図1に示すCV測定結果からわかるように、初期の充電(リチウム吸蔵過程)の1V付近で、大きな還元ピークが確認できる。
 図2に実施例7のCV測定結果を示す。
 図2に示すCV測定結果からわかるように、Siと硫化物1を複合化しても、初期の充電(リチウム吸蔵過程)の1V付近で、大きな還元ピークが確認できる。
 よって、この1V付近の大きな還元ピークは、硫化物(実施例1)由来の還元ピークであり、実施例1の硫黄分がリチウム還元され、硫化リチウムに変化するのに使用されたエネルギーであると思われる。また、硫化物1~33でも同様に1V付近に大きな還元ピークを確認した。
<電池特性の評価>
 実施例1~4で得られた硫化物ガラス(負極材料)を負極活物質として用い、負極活物質85mass%、KB5mass%、CMCバインダー8mass%、PVAバインダー1mass%、SBRバインダー1mass%を混合してスラリー状の合剤を調製し、厚さ25μmの電解銅箔上に塗布・乾燥後、ロールプレス機により、電解銅箔と塗膜とを密着接合させ、次いで、加熱処理(減圧下、135℃、1時間以上)して試験電極(負極)を得た。
 対極として、試験電極計算容量の約50倍の容量を有している金属リチウム箔を用い、セパレータとしてガラスフィルター、電解液として1mol/LのLiPF/PC:DMC(1:1vol%)を具備したラミネートセル(3cm×3cm)を作製した。
 実施例5~41及び実施例A~Iで得られた複合粉末(負極材料)、比較例1~2及び参考例1~3で得られた粉末を負極活物質として用い、負極活物質80mass%、KB5mass%、PIバインダー15mass%を混合してスラリー状の合剤を調製し、厚さ35μmの電解銅箔上に塗布・乾燥後、ロールプレス機により、電解銅箔と塗膜とを密着接合させ、次いで、加熱処理(減圧下、265℃、1時間以上)して試験電極(負極)を得た。
 対極として、試験電極計算容量の約50倍の容量を有している金属リチウム箔を用い、セパレータとしてガラスフィルター、電解液として1mol/LのLiPF/EC:DEC(1:1vol%)を具備したコインセル(CR2032)を作製した。
<評価1:サイクル寿命特性>
 作製した試験セル(リチウム二次電池)を0.5C率で充放電試験した結果を下記表5に示す。尚、負極の容量密度は、3~4mAh/cmであり、カットオフ電位は、0-1Vに設定した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表5から明らかなように、実施例1~41及び実施例A~Iの硫化物ガラス又は複合粉末を負極とした電池は、容量維持率(100サイクル目の放電容量/初期放電容量)が高い。
 また実施例5~13、37~41及び実施例Gの複合粉末を負極とした電池は、充放電50サイクル目の放電容量が600~1700mAh/gの高い値を示した。さらに、比較例1と比較して、各実施例の複合粉末を負極とした電池は劣化しにくく、容量維持率が良好であることがわかる。中でも、実施例5~7、11~13、37~39、41は100サイクル目の放電容量が1200mAh/g以上の高い値を示した。
 一例として、実施例1~4のサイクル寿命を図3に示す。このうち特に電池特性が良好であった実施例1の充放電曲線を図4に示す。
 実施例1~41及び実施例A~Iの中でも特に電池特性が良好であった、実施例7のサイクル寿命特性を図5に、放電曲線図を図6に示す。
 また表5より、単独金属(比較例1)、単に混合しただけの粉末(参考例1~3)を負極として用いた場合は、充放電50サイクル後の放電容量は低く、しかも50サイクル後の放電容量の劣化は著しく(初期の放電容量を100%と仮定した際、100サイクル目の放電容量維持率は20%以下)、サイクル寿命が不充分であることがわかる。また黒鉛を活物質の負極(比較例2)として用いた場合について、100サイクル目の放電容量と放電容量維持率は良好であるが、リチウム(Li)と電気化学的に反応する元素であるSiの高容量を生かすほどの高放電容量を示さないことがわかる。
 また、一例として、A成分をSi、B成分をB成分1(60S-9Sb-15Sn-16Ge)で構成される本発明の負極材料断面の充放電過程のイメージ図を図7に示す。図7に示したように、初期の充電で、A成分はリチウム化し、B成分である硫化物はリチウム還元され、LiS-GeS-SbとLiSn(x=4.4以下)に分解する。LiS-GeS-Sbは固体電解質であり、また、SiやSnの体積膨張のバッファー材として機能するため、出力特性が良好で、繰り返し充放電を行っても劣化しにくい。
<評価2:高率放電特性>
 実施例7の負極材料を負極として用いた電池を0.2C率で充電し、その後所定電流で放電した高率充放電曲線を図8に、高率充放電時のサイクル寿命特性を図9に示す。尚、負極の容量密度は1.1mAh/cmであり、カットオフ電位は0-1Vに設定した。
 現行の負極材料(黒鉛とハードカーボン)と、本発明の負極材料(実施例1(B成分)、実施例7(A成分とB成分との複合粉末))との放電密度の関係を図10に示す。また、高率放電特性の比較図を図11に示す。
 図10及び図11より、黒鉛やハードカーボンと比べ、本発明の実施例1(B成分)の放電電流密度は高く、さらに本発明の実施例7(A成分とB成分との複合粉末)の放電電流密度は非常に高いことがわかる。
 図8~図11から明らかなように、放電レート10Cでも1000mAh/gを超える大きな容量を維持しており、高率放電特性が良好であることがわかる。
 図3~4から明らかなように、実施例1~4の負極材料を用いた試験セル(電池)については、サイクル寿命特性が良好であり、このうち実施例1が高容量であった。
 また、図6~9から明らかなように、実施例7の負極材料を用いた試験セルについては、放電レート5Cでも1300mAh/g以上の容量を維持しており、高率放電が可能であることがわかる。特に、10Cでも1000mAh/g以上の容量を維持しており、極めて高い電流での放電が可能であることがわかる。
<評価3:低温充電試験>
 実施例1~41の試験セルを、-5℃の温度雰囲気下で、0.01C率で0Vまで充電した。フル充電後の試験セルを解体して負極を取り出し、ドライ雰囲気下でXRD測定を行い金属リチウムが析出しているか否かを確認した。比較として黒鉛を活物質とした負極を作製し、同様の条件で低温充電した。
 XRD測定の結果、実施例1~41の電極は、リチウムに由来する回折ピークは確認できなかったが、黒鉛を活物質とする電極にはリチウムに由来する回折ピークを確認した。
 一例として、上記低温充電後の実施例1の電極と黒鉛を活物質とした電極(比較例2)のXRD試験結果を図12に示す。図12から分かるように、実施例1の電極ではリチウムに由来する回折ピークは確認できないが、黒鉛を活物質とした電極(比較例2)ではリチウムに由来する回折ピークが確認できる。
 以上より、本発明の電極は低温充電を行ってもリチウムデンドライトの析出がなく安全であることが証明された。
 本発明により得られるリチウム二次電池は、例えば、移動体通信機器、携帯用電子機器、電動自転車、電動二輪車、電気自動車等の主電源等の用途に利用することが可能である。

Claims (15)

  1.  硫黄と、下記(i)及び(ii)の成分を含む硫化物ガラスからなり、
    (i)Sb、As、Bi、Ge、Si、Cu、Zn、Pd、In、Zrからなる群から選択される少なくとも一種以上の元素、
    (ii)Se、Te、Ga、Sn、Pb、Cd、Al、Fe、Mg、Ca、Co、Ag、Sr、P、Baからなる群から選択される少なくとも一種以上の元素、
     上記各成分の割合が、硫黄:40~80モル%、(i):1~50モル%、(ii):1~50モル%である、リチウム二次電池用負極材料。
  2.  上記(i)の成分が、Sb、Bi、Ge、Cu、Znからなる群から選択される少なくとも一種以上の元素からなり、
     上記(ii)の成分が、Snからなる、
    請求項1記載のリチウム二次電池用負極材料。
  3.  上記(i)の成分が、Geからなり、
     上記(ii)の成分が、Te、Ga、Sn、Al、Mg、Ca、Sr、P、Baからなる群から選択される少なくとも一種以上の元素からなる、
    請求項1記載のリチウム二次電池用負極材料。
  4.  上記硫化物ガラスが、Geを0.5~40モル%含む請求項1~3いずれかに記載のリチウム二次電池用負極材料。
  5. (1)A成分が、リチウムを電気化学的に吸蔵及び放出することができる材料、
    (2)B成分が、請求項1~4いずれかに記載の硫化物ガラス、
    からなるA成分とB成分の複合粉末であるリチウム二次電池用負極材料。
  6.  上記複合粉末が、A成分表面にB成分が被覆された複合粉末である請求項5に記載のリチウム二次電池用負極材料。
  7.  上記複合粉末全体におけるA成分とB成分の割合が、両者の合計量を100mass%とした場合に、A成分が5~80mass%であり、B成分が95~20mass%である請求項5又は6に記載のリチウム二次電池用負極材料。
  8.  請求項1~7いずれかに記載の負極材料を用いたリチウム二次電池用の負極。
  9.  水系バインダーを含有する請求項8に記載のリチウム二次電池用の負極。
  10.  ポリイミドバインダーを含有する請求項8に記載のリチウム二次電池用の負極。
  11.  請求項8~10いずれかに記載の負極を用いたリチウム二次電池。
  12.  請求項5記載のリチウム二次電池用負極材料の製造方法であって、
    (A)B成分の原料を調合し、熱処理(温度400~1100℃、処理時間1~30時間)により調合物をガラス化させB成分を得る工程、
    (B)A成分とB成分を複合化させる工程、
    を備えるリチウム二次電池用負極材料の製造方法。
  13.  上記工程(B)が、メカニカルミリングによりA成分とB成分を複合化させる工程である請求項12記載のリチウム二次電池用負極材料の製造方法。
  14.  上記工程(B)が、溶融したB成分に、A成分を分散させ、冷却後、粉砕処理を行う工程である請求項12記載のリチウム二次電池用負極材料の製造方法。
  15.  上記(A)及び/又は(B)の工程で、導電助剤及び/又はバインダーを入れ、複合粉末に導電助剤及び/又はバインダーを含有させる請求項12記載のリチウム二次電池用負極材料の製造方法。
PCT/JP2011/078622 2011-03-02 2011-12-09 リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池 WO2012117638A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/391,811 US9070941B2 (en) 2011-03-02 2011-12-09 Negative electrode material for lithium secondary battery and its manufacturing method, and negative electrode for lithium secondary battery, and lithium secondary battery
JP2013502155A JP6029215B2 (ja) 2011-03-02 2011-12-09 リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池
KR1020127004129A KR101434064B1 (ko) 2011-03-02 2011-12-09 리튬 2차 전지용 음극재료 및 그 제조방법, 및 리튬 2차 전지용 음극 및 리튬 2차 전지
CN201180003445.XA CN102782915B (zh) 2011-03-02 2011-12-09 锂二次电池用负极材料及其制备方法、以及锂二次电池用负极及锂二次电池
EP11817497.8A EP2541656B1 (en) 2011-03-02 2011-12-09 Negative electrode material for lithium rechargeable battery, method of manufacturing thereof, negative electrode for lithium rechargeable battery, and lithium rechargeable battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-045698 2011-03-02
JP2011045698 2011-03-02
JP2011-100039 2011-04-27
JP2011100039A JP5002824B1 (ja) 2011-03-02 2011-04-27 リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池

Publications (1)

Publication Number Publication Date
WO2012117638A1 true WO2012117638A1 (ja) 2012-09-07

Family

ID=46757585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078622 WO2012117638A1 (ja) 2011-03-02 2011-12-09 リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US9070941B2 (ja)
EP (1) EP2541656B1 (ja)
JP (2) JP5002824B1 (ja)
KR (1) KR101434064B1 (ja)
CN (1) CN102782915B (ja)
WO (1) WO2012117638A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167906A1 (ja) * 2013-04-10 2014-10-16 独立行政法人産業技術総合研究所 リチウム二次電池用負極活物質及びその製造方法
JP2015536558A (ja) * 2013-10-29 2015-12-21 エルジー・ケム・リミテッド 正極活物質の製造方法、及びこれによって製造されたリチウム二次電池用正極活物質
WO2016063877A1 (ja) * 2014-10-22 2016-04-28 公立大学法人大阪府立大学 全固体二次電池用の正極、その製造方法及び全固体二次電池
JP2018181764A (ja) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 非水電解液二次電池用の負極
JP2022061217A (ja) * 2020-10-06 2022-04-18 トヨタ自動車株式会社 負極活物質、負極活物質の製造方法およびリチウムイオン電池

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002824B1 (ja) * 2011-03-02 2012-08-15 独立行政法人産業技術総合研究所 リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池
JP5777555B2 (ja) * 2012-03-30 2015-09-09 京セラ株式会社 蓄電デバイス
JP5817657B2 (ja) * 2012-06-20 2015-11-18 トヨタ自動車株式会社 電池システム、電池システムの製造方法、電池の制御装置
JP5541319B2 (ja) * 2012-07-12 2014-07-09 トヨタ自動車株式会社 被覆活物質の製造方法
JP6115933B2 (ja) * 2012-09-05 2017-04-19 出光興産株式会社 負極合材、負極及びリチウムイオン電池
US10741842B2 (en) * 2012-12-07 2020-08-11 Samsung Electronics Co., Ltd. Solid-state battery
KR101497330B1 (ko) 2013-06-03 2015-03-02 주식회사 엘지화학 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
US9761861B1 (en) 2013-06-25 2017-09-12 Quantumscape Corporation Pulse plating of lithium material in electrochemical devices
US9680151B2 (en) 2013-10-14 2017-06-13 Board Of Regents, The University Of Texas System Sub-stoichiometric, chalcogen-containing-germanium, tin, or lead anodes for lithium or sodium ion batteries
WO2016126610A1 (en) * 2015-02-03 2016-08-11 Quantumscape Corporation Metal sulfide anolytes for electrochemical cells
CN104681791B (zh) * 2015-03-25 2017-03-01 东莞市迈科科技有限公司 一种锂离子电池负极材料的制备方法
CN105680040B (zh) * 2016-01-12 2019-03-29 浙江大学 一种锑基储锂材料及其制备方法
EP3327830B1 (en) * 2016-11-25 2019-11-06 Sumitomo Rubber Industries, Ltd. Metal-ion secondary battery
US11735780B2 (en) 2017-03-10 2023-08-22 Quantumscape Battery, Inc. Metal negative electrode ultrasonic charging
KR102184170B1 (ko) 2017-07-25 2020-11-27 주식회사 엘지화학 이차전지용 동박, 그 제조 방법 및 이를 포함하는 이차전지
CN110931739B (zh) * 2019-11-21 2022-04-08 广东工业大学 一种ZnS/SnS/三硫化二锑@C空心纳米立方体结构复合材料及其制备方法和应用
DE102020108397B3 (de) * 2020-03-26 2021-07-15 Westfälische Wilhelms-Universität Münster Elektrochemische Zelle mit Schwefel-Elektrode und reversiblem Dual-Ionen-Ladungstransfer
CN111952561A (zh) * 2020-08-03 2020-11-17 扬州大学 自模板法合成的CoIn2S4@CPAN微球复合材料及其方法
CN111864199A (zh) * 2020-09-07 2020-10-30 中国科学技术大学 一种碱金属离子电池
CN112952102B (zh) * 2021-02-22 2023-02-28 湘潭大学 一种复合金属氧化物表面修饰的锂金属电池负极集流体的制备方法与应用
CA3155252A1 (en) * 2021-04-09 2022-10-09 National Research Council Of Canada Glass-containing pseudo-reference electrode for use in ion-selective electrode sensors and ion selective field-effect transistors
CN114031108B (zh) * 2021-11-02 2024-04-26 远景动力技术(江苏)有限公司 复合硫化物及其制备方法和应用
CN116632224B (zh) * 2023-07-24 2023-10-24 帕瓦(长沙)新能源科技有限公司 负极材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302741A (ja) 1997-04-25 1998-11-13 Seiko Instr Inc 非水電解質二次電池
JP2002124254A (ja) 2000-10-17 2002-04-26 Fukuda Metal Foil & Powder Co Ltd リチウム電池用負極材料及びその製造方法
JP2003059492A (ja) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
JP2003157833A (ja) 2001-11-19 2003-05-30 Daiwa Kasei Kenkyusho:Kk リチウム二次電池用負極及びその製造方法
JP2008103282A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 極材及びそれを用いた固体二次電池
JP2011028893A (ja) * 2009-07-22 2011-02-10 Toyota Motor Corp 全固体電池システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266353B2 (ja) * 1993-01-21 2002-03-18 三菱電線工業株式会社 リチウム電池用正極材
KR100659851B1 (ko) * 2005-04-27 2006-12-19 삼성에스디아이 주식회사 리튬 이차 전지
JP5448020B2 (ja) * 2007-03-23 2014-03-19 トヨタ自動車株式会社 合材層の製造方法および固体電池の製造方法
EP2383829A1 (en) 2009-01-21 2011-11-02 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material
US8283388B2 (en) * 2009-02-09 2012-10-09 Toyota Jidosha Kabushiki Kaisha Method for producing solid electrolyte material-containing sheet
JP5382130B2 (ja) * 2009-11-02 2014-01-08 トヨタ自動車株式会社 固体電解質電池の製造方法
JP5002824B1 (ja) * 2011-03-02 2012-08-15 独立行政法人産業技術総合研究所 リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池
CN103999272B (zh) * 2011-11-02 2017-03-15 独立行政法人产业技术综合研究所 钠二次电池用负极材料及其制造方法,以及钠二次电池用负极及钠二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302741A (ja) 1997-04-25 1998-11-13 Seiko Instr Inc 非水電解質二次電池
JP2002124254A (ja) 2000-10-17 2002-04-26 Fukuda Metal Foil & Powder Co Ltd リチウム電池用負極材料及びその製造方法
JP2003059492A (ja) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
JP2003157833A (ja) 2001-11-19 2003-05-30 Daiwa Kasei Kenkyusho:Kk リチウム二次電池用負極及びその製造方法
JP2008103282A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 極材及びそれを用いた固体二次電池
JP2011028893A (ja) * 2009-07-22 2011-02-10 Toyota Motor Corp 全固体電池システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.HAYASHI ET AL., ELECTROCHEM.COMM., vol. 5, 2003, pages 111
H.MORIMOTO ET AL., J.AM.CERAM.SOC., vol. 82, no. 5, 1999, pages 1352
See also references of EP2541656A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167906A1 (ja) * 2013-04-10 2014-10-16 独立行政法人産業技術総合研究所 リチウム二次電池用負極活物質及びその製造方法
JP2014207064A (ja) * 2013-04-10 2014-10-30 独立行政法人産業技術総合研究所 リチウム二次電池用負極活物質及びその製造方法
US10141573B2 (en) 2013-04-10 2018-11-27 National Institute Of Advanced Industrial Science And Technology Lithium secondary battery negative electrode active material and method for manufacturing same
JP2015536558A (ja) * 2013-10-29 2015-12-21 エルジー・ケム・リミテッド 正極活物質の製造方法、及びこれによって製造されたリチウム二次電池用正極活物質
US10056605B2 (en) 2013-10-29 2018-08-21 Lg Chem, Ltd. Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
US10529985B2 (en) 2013-10-29 2020-01-07 Lg Chem, Ltd. Cathode active material for lithium secondary battery
WO2016063877A1 (ja) * 2014-10-22 2016-04-28 公立大学法人大阪府立大学 全固体二次電池用の正極、その製造方法及び全固体二次電池
JPWO2016063877A1 (ja) * 2014-10-22 2017-08-31 国立研究開発法人科学技術振興機構 全固体二次電池用の正極、その製造方法及び全固体二次電池
US10734634B2 (en) 2014-10-22 2020-08-04 Japan Science And Technology Agency Positive electrode for all-solid secondary battery, method for manufacturing same, and all-solid secondary battery
JP2018181764A (ja) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 非水電解液二次電池用の負極
JP2022061217A (ja) * 2020-10-06 2022-04-18 トヨタ自動車株式会社 負極活物質、負極活物質の製造方法およびリチウムイオン電池
JP7435394B2 (ja) 2020-10-06 2024-02-21 トヨタ自動車株式会社 負極活物質、負極活物質の製造方法およびリチウムイオン電池

Also Published As

Publication number Publication date
CN102782915B (zh) 2015-09-30
JP2014067481A (ja) 2014-04-17
EP2541656A1 (en) 2013-01-02
US9070941B2 (en) 2015-06-30
KR101434064B1 (ko) 2014-08-25
CN102782915A (zh) 2012-11-14
US20140054492A1 (en) 2014-02-27
JPWO2012117638A1 (ja) 2014-07-07
JP6029215B2 (ja) 2016-11-24
EP2541656A4 (en) 2014-08-20
JP5002824B1 (ja) 2012-08-15
EP2541656B1 (en) 2019-10-02
KR20120132460A (ko) 2012-12-05

Similar Documents

Publication Publication Date Title
JP6029215B2 (ja) リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池
JP5165258B2 (ja) 非水電解質二次電池
JP6119021B2 (ja) ナトリウム二次電池用負極材料及びその製造方法、並びにナトリウム二次電池用負極及びナトリウム二次電池
WO2015030053A1 (ja) 全固体電池および電極活物質の製造方法
KR102285151B1 (ko) 리튬이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
JP5549982B2 (ja) 珪素酸化物粉末及びこれを用いたリチウムイオン二次電池用負極材料、この材料を用いたリチウムイオン二次電池、並びにリチウムイオン二次電池負極材用の珪素酸化物粉末の製造方法
US20130260236A1 (en) Negative-electrode material for electricity storage device, and negative electrode for electricity storage device using same
JPWO2006068066A1 (ja) 非水電解液二次電池用もしくは非水電解液電気化学キャパシタ用の複合電極活物質およびその製造法
JP2003303585A (ja) 電 池
US10892481B2 (en) Methods of pre-lithiating electroactive material and electrodes including pre-lithiated electroactive material
JP2006261061A (ja) 電極材料及びそれを用いた電極並びにリチウム電池と電極材料の製造方法
JP2012182115A (ja) 蓄電デバイス用負極活物質の製造方法
JP5709126B2 (ja) リチウム二次電池用負極材料及びその製造方法
JP6723707B2 (ja) リチウムイオン電池用正極活物質、正極材料、正極、およびリチウムイオン電池
JP2011249293A (ja) リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池
JP4133116B2 (ja) リチウムイオン二次電池用負極活物質、その製造法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6273868B2 (ja) 蓄電デバイス用負極活物質およびその製造方法
JP2020077615A (ja) ナトリウムイオン二次電池用負極活物質及びその製造方法
CN115810724B (zh) 复合石墨材料及其制备方法、负极极片、二次电池
JP6794518B2 (ja) 固体電解質材料の製造方法
JP6715913B2 (ja) 正極材料、正極、リチウムイオン電池および正極材料の製造方法
JP2002313321A (ja) 非水系二次電池用負極に適した材料、負極、その製造方法および電池
KR20130045681A (ko) 이차전지용 음극 활물질 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003445.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127004129

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011817497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13391811

Country of ref document: US

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE