WO2012116927A1 - Monovalent antigen binding proteins - Google Patents

Monovalent antigen binding proteins Download PDF

Info

Publication number
WO2012116927A1
WO2012116927A1 PCT/EP2012/053119 EP2012053119W WO2012116927A1 WO 2012116927 A1 WO2012116927 A1 WO 2012116927A1 EP 2012053119 W EP2012053119 W EP 2012053119W WO 2012116927 A1 WO2012116927 A1 WO 2012116927A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen binding
antibody
binding protein
heavy chain
domain
Prior art date
Application number
PCT/EP2012/053119
Other languages
French (fr)
Inventor
Birgit Bossenmaier
Hubert Kettenberger
Christian Klein
Klaus-Peter KEUNKELE
Joerg Thomas Regula
Wolfgang Schaefer
Manfred Schwaiger
Claudio Sustmann
Original Assignee
F. Hoffmann-La Roche Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F. Hoffmann-La Roche Ag filed Critical F. Hoffmann-La Roche Ag
Priority to KR1020137022150A priority Critical patent/KR101572338B1/en
Priority to JP2013555826A priority patent/JP5768147B2/en
Priority to EP12708515.7A priority patent/EP2681240B1/en
Priority to MX2013009781A priority patent/MX342034B/en
Priority to CA2824824A priority patent/CA2824824A1/en
Priority to BR112013020338A priority patent/BR112013020338A2/en
Priority to RU2013141078/10A priority patent/RU2013141078A/en
Priority to CN201280010809.1A priority patent/CN103403025B/en
Publication of WO2012116927A1 publication Critical patent/WO2012116927A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/66Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a swap of domains, e.g. CH3-CH2, VH-CL or VL-CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • the present invention relates to monovalent antigen binding proteins with a CH1-CL domain exchange, methods for their production, pharmaceutical compositions containing said antibodies, and uses thereof.
  • c-Met monovalent antibodies have different properties such as lack of agonistic function or reduced receptor internalization upon antibody binding than their corresponding bivalent forms and therefore represent attractive formats for therapeutic use.
  • E.g. WO 2005/063816 refers to monovalent antibody fragments as therapeutics.
  • US 2004/0033561 describes a method for the generation of monovalent antibodies based on the co-expression of a VH-CH1-CH2-CH3 antibody chain with a VL-CL-
  • CH2-CH3 antibody chain CH2-CH3 antibody chain; however, a disadvantage of this method is the formation of a binding inactive homodimer of VL-CL-CH2-CH3 chains as depicted in Fig. 2. Due the similar molecular weight such homodimeric by-products are the difficult to separate.
  • WO 2007/048037 also refers to monovalent antibodies based on the co-expression of a VH-CH1-CH2-CH3 antibody chain with a VL-CL-CH2-CH3 antibody chain, but having a tagging moiety attached to the heavy chain for easier purification of the heterodimer from the difficult-to-separate homodimeric by-product.
  • WO 2009/089004 describes another possibility to generate a heterodimeric monovalent antibody using electrostatic steering effects.
  • WO 2010/145792 relates tetravalent bispecific antibodies, wherein mismatched byproducts of similar weight are reduced resulting in higher yields of the desiered bispecific antibody. Summary of the Invention
  • the invention comprises a monovalent antigen binding protein comprising a) a modified heavy chain of an antibody which specifically binds to an antigen, wherein the VH domain is replaced by the VL domain of said antibody; and
  • the CH3 domain of the modified heavy chain of the antibody of a) and the CH3 domain of the modified heavy chain of the antibody of b) each meet at an interface which comprises an original interface between the antibody CH3 domains;
  • said interface is altered to promote the formation of the monovalent antigen binding protein, wherein the alteration is characterized in that i) the CH3 domain of one heavy chain is altered,
  • an amino acid residue is replaced with an amino acid residue having a larger side chain volume, thereby generating a protuberance within the interface of the CH3 domain of one heavy chain which is positionable in a cavity within the interface of the CH3 domain of the other heavy chain
  • an amino acid residue is replaced with an amino acid residue having a smaller side chain volume, thereby generating a cavity within the interface of the second
  • this monovalent antigen binding protein according to the invention is characterized in that
  • said amino acid residue having a larger side chain volume is selected from the group consisting of arginine (R), phenylalanine (F), tyrosine (Y), tryptophan (W), and said amino acid residue having a smaller side chain volume is selected from the group consisting of alanine (A), serine (S), threonine (T), valine (V).
  • both CH3 domains are further altered by the introduction of cysteine (C) as amino acid in the corresponding positions of each CH3 domain such that a disulfide bridge between both CH3 domains can be formed.
  • C cysteine
  • the monovalent antigen binding protein according to the invention is characterized in that is of human IgG isotype.
  • the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NCv l; and
  • the monovalent antigen binding protein according to the invention is characterized in that the modified heavy chains of a) and b) are of IgGl isotype, and the antigen binding protein is afucosylated with an the amount of fucose of 80 % or less (preferably of 65 % to 5 %) of the total amount of oligosaccharides (sugars) at Asn297.
  • the invention further comprises a method for the preparation of a monovalent antigen binding protein according to the invention comprising the steps of a) transforming a host cell with vectors comprising nucleic acid molecules encoding
  • a monovalent antigen binding protein according to the invention b) culturing the host cell under conditions that allow synthesis of said monovalent antigen binding protein molecule;
  • the invention further comprises nucleic acid encoding the monovalent antigen binding protein according to the invention.
  • the invention further comprises vectors comprising nucleic acid encoding the monovalent antigen binding protein according to the invention.
  • the invention further comprises host cell comprising said vectors.
  • the invention further comprises composition, preferably a pharmaceutical or a diagnostic composition of a monovalent antigen binding protein according to the invention.
  • the invention further comprises pharmaceutical composition comprising a monovalent antigen binding protein according to the invention and at least one pharmaceutically acceptable excipient.
  • the invention further comprises method for the treatment of a patient in need of therapy, characterized by administering to the patient a therapeutically effective amount of a monovalent antigen binding protein according to the invention.
  • the antigen binding proteins according to the invention are based on the principle that a VL-CH1-CH2-CH3 and VH-CL-CH2-CH3 chain only forms heterodimers and cannot form a diffi cult-to-separate homodimeric by-product of similar structure and molecular weight.
  • the effect of this modification lays not primarily in a reduction of by-products, but in that the only by-product which is formed is changed from a homodimeric by-product of similar size into a High-Molecular weight tetramer ( Figure ID). This High-Molecular weight tetramer then can be easily removed with SEC or other MW separation techniques.
  • the formed dimeric byproduct ( Figure ID) can be easily separated due to the different molecular weight (the molecular weight is approximately doubled) and structure. Therefore the purification without the introduction of further modifications (like e.g. genetic introductions of tags) is possible.
  • the monovalent antigen binding proteins according to the invention have valuable characteristics such as biological or pharmacological activities (as e.g. ADCC, or antagonistic biological activity as well as lack of agonistic activities). They can be used e.g. for the treatment of diseases such as cancer.
  • the monovalent antigen binding proteins have furthermore highly valuable pharmacokinetic properties (like e.g. halftime (term tl/2) or AUC). Description of the Figures
  • FIG. 1 A) Scheme of the monovalent antigen binding protein according to the invention with CH1-CL domain exchange based on VL-CH1-CH2-CH3 and VH-CL-CH2-CH3 chains (abbreviated as MoAb). B) Scheme of a MoAb according to the invention including knobs-into-holes in the CH3 domains. C) Scheme of the dimeric bivalent antigen binding protein (MoAb-Dimer that is formed as a byproduct which can be easily separated due to different structure and molecular weight).
  • Figure 2 Scheme of A) a monovalent antibody of VL-CL-CH2-CH3 and of VH-CH1-CH2-CH3 chains (described e.g. in US 2004/0033561) and B) the binding inactive difficult-to- separate homodimer byproduct of VL-CL-CH2-CH3 chains (described e.g. in WO 2007/048037).
  • Peak fractions (1,2) were pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
  • Peak fractions (1,2, 3) were pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
  • Peak fraction was pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
  • FIG. 7 Biochemical characterization of MoAb IGF1R with KiH mutations (IGF1R AK18 MoAb KiH).
  • Peak fractions (1,2) were pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
  • Peak fraction was pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
  • Figure 9 c-Met receptor phosphorylation assay in A549 cells.
  • A549 cells were stimulated with HGF in the absence or presence of c-Met binding antibodies or c-Met 5D5 MoAb ("wt")).
  • Total cell lysates were subjected to immunoblot analysis.
  • Asterisk marks phospho- c-Met band in between two unspecific bands.
  • A549 cells with flow cytrometric analysis were incubated with a dilution series of the indicated antibodies. Bound antibodies were visualized with an Fc-binding secondary fluorophor coupled antibody.
  • FIG 11 Schematic picture of the surface plasmon resonance assay applied to analyze the binding affinity of the monovalent antigen binding protein IGF1R AK18 MoAb ("wt").
  • FIG. 12 Cellular binding of MoAb IGF-1R (IGF1R AK18 MoAb ("wt")) to A549 cells with flow cytometric analysis. A549 cells were incubated with a dilution series of the indicated antibodies. Bound antibodies were visualized with an Fc-binding secondary fluorophor coupled antibody.
  • MoAb IGF-1R IGF1R AK18 MoAb
  • IGF-1R IgGl antibody and monovalent antigen binding protein IGFIR MoAb IGFIR AK18 MoAb
  • IGF-1 induced autophosphorylation of IGF-1R was assessed following incubation with IGF-1R IgGl antibody and monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")), the data show that IGF-1 induced autophoshorylation of IGF-1R is reduced in terms of potency when the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb (“wt”)) is bound.
  • IGFIR MoAb IGFIR AK18 MoAb
  • the invention comprises a monovalent antigen binding protein comprising a) a modified heavy chain of an antibody which specifically binds to an antigen, wherein the VH domain is replaced by the VL domain of said antibody; and
  • the CH3 domains of said monovalent antigen binding protein according to the invention can be altered by the "knobs- into-holes" (KiH) technology which is described in detail with several examples in e.g. WO 96/027011, Ridgway, J.B., et al., Protein Eng. 9 (1996) 617-621; and Merchant, A.M., et al., Nat Biotechnol 16 (1998) 677-681.
  • the interaction surfaces of the two CH3 domains are altered to increase the heterodimerisation of both heavy chains containing these two CH3 domains.
  • Each of the two CH3 domains (of the two heavy chains) can be the "knob", while the other is the "hole". The effect of this modification is that the High-Molecular weight tetramer by-product, is reduced significantly.
  • said monovalent antigen binding protein is further characterized in that the CH3 domain of the heavy chain of the full length antibody of a) and the CH3 domain of the modified heavy chain of the full length antibody of b) each meet at an interface which comprises an original interface between the antibody CH3 domains;
  • said interface is altered to promote the formation of the monovalent antigen binding protein, wherein the alteration is characterized in that:
  • an amino acid residue is replaced with an amino acid residue having a larger side chain volume, thereby generating a protuberance within the interface of the CH3 domain of one heavy chain which is positionable in a cavity within the interface of the CH3 domain of the other heavy chain and
  • an amino acid residue is replaced with an amino acid residue having a smaller side chain volume, thereby generating a cavity within the interface of the second CH3 domain within which a protuberance within the interface of the first CH3 domain is positionable.
  • amino acid residue having a larger side chain volume is selected from the group consisting of arginine (R), phenylalanine (F), tyrosine (Y), tryptophan (W).
  • amino acid residue having a smaller side chain volume is selected from the group consisting of alanine (A), serine (S), threonine (T), valine (V).
  • both CH3 domains are further altered by the introduction of cysteine (C) as amino acid in the corresponding positions of each
  • said monovalent antigen binding protein comprises a T366W mutation in the CH3 domain of the "knobs chain” and T366S, L368A, Y407V mutations in the CH3 domain of the "hole chain”.
  • An additional interchain disulfide bridge between the CH3 domains can also be used (Merchant, A.M., et al., Nature Biotech 16 (1998) 677-681) e.g. by introducing a Y349C mutation into the CH3 domain of the "knobs chain” and a E356C mutation or a S354C mutation into the CH3 domain of the "hole chain).
  • said monovalent antigen binding protein comprises Y349C, T366W mutations in one of the two CH3 domains and E356C, T366S, L368A, Y407V mutations in the other of the two CH3 domains or said monovalent antigen binding protein comprises Y349C, T366W mutations in one of the two CH3 domains and S354C, T366S, L368A, Y407V mutations in the other of the two CH3 domains (the additional Y349C mutation in one CH3 domain and the additional E356C or S354C mutation in the other CH3 domain forming a interchain disulfide bridge) (numbering always according to EU index of Kabat). But also other knobs-in-holes technologies as described by EP 1 870 459 Al, can be used alternatively or additionally.
  • a preferred example for said monovalent antigen binding protein are
  • said monovalent antigen binding protein comprises a T366W mutation in the CH3 domain of the "knobs chain” and T366S,
  • said monovalent antigen binding protein comprises Y349C, T366W mutations in one of the two CH3 domains and S354C,
  • T366S, L368A, Y407V mutations in the other of the two CH3 domains or said monovalent antigen binding protein comprises Y349C, T366W mutations in one of the two CH3 domains and S354C, T366S, L368A, Y407V mutations in the other of the two CH3 domains and additionally R409D; K370E mutations in the CH3 domain of the "knobs chain” and D399K; E357K mutations in the CH3 domain of the "hole chain”.
  • the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 1;
  • the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ
  • the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:5; and
  • the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:7; and
  • the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ
  • the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 11; and
  • antibody denotes a full length antibody consisting of two antibody heavy chains and two antibody light chains (see Fig. 1).
  • a heavy chain of full length antibody is a polypeptide consisting in N-terminal to C-terminal direction of an antibody heavy chain variable domain (VH), an antibody constant heavy chain domain 1 (CHI), an antibody hinge region (HR), an antibody heavy chain constant domain 2 (CH2), and an antibody heavy chain constant domain 3 (CH3), abbreviated as VH-CHl -HR-CH2-CH3 ; and optionally an antibody heavy chain constant domain 4 (CH4) in case of an antibody of the subclass IgE.
  • VH antibody heavy chain variable domain
  • CHI antibody constant heavy chain domain 1
  • HR antibody hinge region
  • CH2 antibody heavy chain constant domain 2
  • CH3 antibody heavy chain constant domain 3
  • the heavy chain of full length antibody is a polypeptide consisting in N-terminal to C-terminal direction of VH, CHI, HR, CH2 and CH3.
  • the light chain of full length antibody is a polypeptide consisting in N-terminal to C-terminal direction of an antibody light chain variable domain (VL), and an antibody light chain constant domain (CL), abbreviated as VL-CL.
  • the antibody light chain constant domain (CL) can be ⁇ (kappa) or ⁇ (lambda).
  • the antibody chains are linked together via inter-polypeptide disulfide bonds between the CL domain and the CHI domain (i.e. between the light and heavy chain) and between the hinge regions of the full length antibody heavy chains.
  • full length antibodies are natural antibodies like IgG (e.g. IgG 1 and IgG2), IgM, IgA, IgD, and IgE.)
  • the antibodies according to the invention can be from a single species e.g. human, or they can be chimerized or humanized antibodies.
  • the full length antibodies according to the invention comprise two antigen binding sites each formed by a pair of VH and VL, which both specifically bind to the same (first) antigen.
  • the monovalent antigen binding proteins of the invention are derived by modifying: a) the first heavy chain of said antibody by replacing the VH domain by the VL domain of said antibody; and by modifying b) the second heavy chain of said antibody by replacing the CHI domain by the CL domain of said antibody.
  • the resulting monovalent antigen binding protein comprise two modified heavy chains and no light chains.
  • the C-terminus of the heavy or light chain of said full length antibody denotes the last amino acid at the C-terminus of said heavy or light chain.
  • binding site or "antigen-binding site” as used herein denotes the region(s) of antigen binding protein according to the invention to which a ligand
  • the antigen-binding site comprises an antibody heavy chain variable domains (VH) and an antibody light chain variable domains (VL).
  • the antigen-binding sites i.e. the pairs of VH/VL
  • the antigen-binding sites can be derived a) from known antibodies to the antigen or b) from new antibodies or antibody fragments obtained by de novo immunization methods using inter alia either the antigen protein or nucleic acid or fragments thereof or by phage display.
  • An antigen-binding site of a monovalent antigen binding protein of the invention contains six complementarity determining regions (CDRs) which contribute in varying degrees to the affinity of the binding site for antigen. There are three heavy chain variable domain CDRs (CDRH1, CDRH2 and CDRH3) and three light chain variable domain CDRs (CDRLl, CDRL2 and CDRL3). The extent of CDR and framework regions (FRs) is determined by comparison to a compiled database of amino acid sequences in which those regions have been defined according to variability among the sequences.
  • Antibody specificity refers to selective recognition of the antibody for a particular epitope of an antigen. Natural antibodies, for example, are monospecific. Bispecific antibodies are antibodies which have two different antigen-binding specificities. The monovalent antigen binding proteins according to the invention are "monospecific" and specifically bind to an epitope of the respective antigen.
  • valent as used within the current application denotes the presence of a specified number of binding sites in an antibody molecule.
  • a natural antibody for example has two binding sites and is bivalent.
  • monovalent antigen binding protein denotes the a polypeptide containing only one antigen binding site.
  • the full length antibodies of the invention comprise immunoglobulin constant regions of one or more immunoglobulin classes.
  • Immunoglobulin classes include
  • an full length antibody of the invention and thus a monovalent antigen binding protein of the invention has a constant domain structure of an IgG class antibody.
  • the terms "monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of a single amino acid composition.
  • chimeric antibody refers to an antibody comprising a variable region, i.e., binding region, from one source or species and at least a portion of a constant region derived from a different source or species, usually prepared by recombinant DNA techniques. Chimeric antibodies comprising a murine variable region and a human constant region are preferred. Other preferred forms of “chimeric antibodies” encompassed by the present invention are those in which the constant region has been modified or changed from that of the original antibody to generate the properties according to the invention, especially in regard to Clq binding and/or Fc receptor (FcR) binding. Such chimeric antibodies are also referred to as "class-switched antibodies”. Chimeric antibodies are the product of expressed immunoglobulin genes comprising DNA segments encoding immunoglobulin variable regions and DNA segments encoding immunoglobulin constant regions.
  • CDR complementarity determining regions
  • a murine CDR is grafted into the framework region of a human antibody to prepare the "humanized antibody.” See, e.g., Riechmann, L., et al., Nature 332 (1988) 323-327; and Neuberger, M.S., et al., Nature 314 (1985) 268-270.
  • Particularly preferred CDRs correspond to those representing sequences recognizing the antigens noted above for chimeric antibodies.
  • Other forms of "humanized antibodies” encompassed by the present invention are those in which the constant region has been additionally modified or changed from that of the original antibody to generate the properties according to the invention, especially in regard to Clq binding and/or Fc receptor (FcR) binding.
  • human antibody is intended to include antibodies having variable and constant regions derived from human germ line immunoglobulin sequences.
  • Human antibodies are well-known in the state of the art (van Dijk, M.A., and van de Winkel, J.G., Curr. Opin. Chem. Biol. 5 (2001) 368-374).
  • Human antibodies can also be produced in transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire or a selection of human antibodies in the absence of endogenous immunoglobulin production.
  • Human antibodies can also be produced in phage display libraries (Hoogenboom, H.R., and Winter, G., J. Mol. Biol. 227
  • human antibody as used herein also comprises such antibodies which are modified in the constant region to generate the properties according to the invention, especially in regard to Clq binding and/or FcR binding, e.g. by "class switching” i.e. change or mutation of Fc parts (e.g. from IgGl to IgG4 and/or IgGl/IgG4 mutation).
  • class switching i.e. change or mutation of Fc parts (e.g. from IgGl to IgG4 and/or IgGl/IgG4 mutation).
  • recombinant human antibody is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from a host cell such as a NSO or CHO cell or from an animal (e.g.
  • a mouse that is transgenic for human immunoglobulin genes or antibodies expressed using a recombinant expression vector transfected into a host cell.
  • Such recombinant human antibodies have variable and constant regions in a rearranged form.
  • the recombinant human antibodies according to the invention have been subjected to in vivo somatic hypermutation.
  • the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germ line VH and VL sequences, may not naturally exist within the human antibody germ line repertoire in vivo.
  • variable domain (variable domain of a light chain (VL), variable region of a heavy chain (VH) as used herein denotes each of the pair of light and heavy chains which is involved directly in binding the antibody to the antigen.
  • the domains of variable human light and heavy chains have the same general structure and each domain comprises four framework (FR) regions whose sequences are widely conserved, connected by three "hypervariable regions” (or complementarity determining regions, CDRs).
  • the framework regions adopt a ⁇ -sheet conformation and the CDRs may form loops connecting the ⁇ -sheet structure.
  • the CDRs in each chain are held in their three-dimensional structure by the framework regions and form together with the CDRs from the other chain the antigen binding site.
  • the antibody heavy and light chain CDR3 regions play a particularly important role in the binding specificity/affinity of the antibodies according to the invention and therefore provide a further object of the invention.
  • hypervariable region or "antigen-binding portion of an antibody” when used herein refer to the amino acid residues of an antibody which are responsible for antigen-binding.
  • the hypervariable region comprises amino acid residues from the "complementarity determining regions” or "CDRs".
  • CDRs complementarity determining regions
  • FR Framework regions are those variable domain regions other than the hypervariable region residues as herein defined. Therefore, the light and heavy chains of an antibody comprise from N- to C-terminus the domains FR1, CDR1, FR2, CDR2, FR3,
  • CDR3, and FR4 CDRs on each chain are separated by such framework amino acids. Especially, CDR3 of the heavy chain is the region which contributes most to antigen binding. CDR and FR regions are determined according to the standard definition of Kabat, et al., Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, National Institutes of Health, Bethesda, MD (1991).
  • binding refers to the binding of the monovalent antigen binding protein to an epitope of the antigen in an in vitro assay, preferably in an plasmon resonance assay (BIAcore, GE-Healthcare Uppsala, Sweden) with purified wild-type antigen.
  • the affinity of the binding is defined by the terms ka (rate constant for the association of the antibody from the antibody/antigen complex), k D (dissociation constant), and K D (k D /ka).
  • Binding or specifically binding means a binding affinity (K D ) of 10 "8 mol/1 or less, preferably 10 "9 M to 10 "13 mol/1.
  • a monovalent antigen binding protein according to the invention is specifically binding to each antigen for which it is specific with a binding affinity (K D ) of 10 "8 mol/1 or less, preferably 10 "9 M to 10 "13 mol/1.
  • Binding of the monovalent antigen binding protein to the FcyRIII can be investigated by a BIAcore assay (GE-Healthcare Uppsala, Sweden).
  • the affinity of the binding is defined by the terms ka (rate constant for the association of the antibody from the antibody/antigen complex), k D (dissociation constant), and K D (k D /ka).
  • epitope includes any polypeptide determinant capable of specific binding to a monovalent antigen binding proteins.
  • epitope determinant include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl, or sulfonyl, and, in certain embodiments, may have specific three dimensional structural characteristics, and or specific charge characteristics.
  • An epitope is a region of an antigen that is bound by a monovalent antigen binding protein.
  • an antibody is said to specifically bind an antigen when it preferentially recognizes its target antigen in a complex mixture of proteins and/or macromolecules.
  • the monovalent antigen binding protein according to the invention is characterized in that said full length antibody is of human IgGl subclass, or of human IgGl subclass with the mutations L234A and L235A.
  • the monovalent antigen binding protein according to the invention is characterized in that said full length antibody is of human IgG2 subclass. In a further embodiment the monovalent antigen binding protein according to the invention is characterized in that said full length antibody is of human IgG3 subclass.
  • the monovalent antigen binding protein according to the invention is characterized in that said full length antibody is of human IgG4 subclass or, of human IgG4 subclass with the additional mutations S228P and L235E (also named IgG4 SPLE).
  • constant region denotes the sum of the domains of an antibody other than the variable region.
  • the constant region is not involved directly in binding of an antigen, but exhibit various effector functions.
  • antibodies are divided in the classes (also named isotypes): IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (also named isotypes), such as IgGl, IgG2, IgG3, and IgG4, IgAl and IgA2.
  • the heavy chain constant regions that correspond to the different classes of antibodies are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the light chain constant regions (CL) which can be found in all five antibody classes are called ⁇ (kappa) and ⁇ (lambda).
  • constant region derived from human origin denotes a constant heavy chain region of a human antibody of the subclass IgGl, IgG2, IgG3, or IgG4 and/or a constant light chain kappa or lambda region.
  • constant regions are well known in the state of the art and e.g. described by Kabat, E.A., (see e.g. Johnson, G. and Wu, T.T., Nucleic Acids Res. 28 (2000) 214-218; Kabat, E.A., et al., Proc. Natl. Acad. Sci. USA 72 (1975) 2785- 2788).
  • an antibody according to the invention has a reduced FcR binding compared to an IgGl antibody and the full length parent antibody is in regard to FcR binding of IgG4 subclass or of IgGl or IgG2 subclass with a mutation in S228, L234, L235 and/or D265, and/ or contains the PVA236 mutation.
  • the mutations in the full length parent antibody are S228P, L234A, L235A, L235E and/or PVA236.
  • the mutations in the full length parent antibody are in IgG4 S228P and L235E and in IgGl L234A and L235A.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC complement-dependent cytotoxicity
  • CDC complement-dependent cytotoxicity
  • binding of Clq to an antibody is caused by defined protein-protein interactions at the so called binding site.
  • constant region binding sites are known in the state of the art and described e.g. by Lukas, T.J., et al., J. Immunol. 127 (1981) 2555-2560; Bunkhouse, R. and Cobra, J.J., Mol. Immunol.
  • ADCC antibody-dependent cellular cytotoxicity
  • an antigen binding protein according to the invention show improved ADCC properties compared to its parent full length antibody. These improved ADCC effects achieved without further modification of the Fc part like glycoengineering.
  • the term "complement-dependent cytotoxicity (CDC)” denotes a process initiated by binding of complement factor Clq to the Fc part of most IgG antibody subclasses. Binding of Clq to an antibody is caused by defined protein-protein interactions at the so called binding site. Such Fc part binding sites are known in the state of the art (see above).
  • Fc part binding sites are, e.g., characterized by the amino acids L234, L235, D270, N297, E318, K320, K322, P331, and P329 (numbering according to EU index of Kabat).
  • Antibodies of subclass IgGl, IgG2, and IgG3 usually show complement activation including Clq and C3 binding, whereas IgG4 does not activate the complement system and does not bind Clq and/or C3.
  • IgGl type antibodies the most commonly used therapeutic antibodies, are glycoproteins that have a conserved N-linked glycosylation site at Asn297 in each CH2 domain.
  • ADCC antibody dependent cellular cytotoxicity
  • the monovalent antigen binding protein according to the invention is characterized in that the modified heavy chains of a) and b) are of IgGl isotype, and the antigen binding protein is afucosylated with an the amount of fucose of 80% or less of the total amount of oligosaccharides (sugars) at Asn297.
  • the antigen binding protein is afucosylated with an the amount of fucose of 65% to 5% of the total amount of oligosaccharides (sugars) at Asn297.
  • afucosylated antigen binding protein refers to an antigen binding proteins of IgGl or IgG3 isotype (preferably of IgGl isotype) with an altered pattern of glycosylation in the Fc region at Asn297 having a reduced level of fucose residues.
  • Glycosylation of human IgGl or IgG3 occurs at Asn297 as core fucosylated bianntennary complex oligosaccharide glycosylation terminated with up to 2 Gal residues.
  • These structures are designated as GO, Gl (al,6 or al,3) or G2 glycan residues, depending from the amount of terminal Gal residues (Raju,
  • CHO type glycosylation of antibody Fc parts is e.g. described by Routier, F.H., Glycoconjugate J. 14 (1997) 201-207.
  • Antibodies which are recombinantely expressed in non glycomodified CHO host cells usually are fucosylated at Asn297 in an amount of at least 85 %.
  • an afucosylated antibody as used herein includes an antibody having no fucose in its glycosylation pattern. It is commonly known that typical glycosylated residue position in an antibody is the asparagine at position 297 according to the EU numbering system ("Asn297").
  • an afucosylated antigen binding protein means an antibody of IgGl or IgG3 isotype (preferably of IgGl isotype) wherein the amount of fucose is 80 % or less (e.g. of 80 % to 1 %) of the total amount of oligosaccharides (sugars) at Asn297 (which means that at least 20 % or more of the oligosaccharides of the Fc region at Asn297 are afucosylated). In one embodiment the amount of fucose is 65% or less (e.g.
  • amount of fucose means the amount of said oligosaccharide (fucose) within the oligosaccharide (sugar) chain at Asn297, related to the sum of all oligosaccharides (sugars) attached to Asn 297 (e.g. complex, hybrid and high mannose structures) measured by MALDI-TOF mass spectrometry and calculated as average value (for a detailed procedure to determine the amount of fucose, see e.g. WO 2008/077546).
  • the oligosaccharides of the Fc region are bisected.
  • the afucosylated antibody according to the invention can be expressed in a glycomodified host cell engineered to express at least one nucleic acid encoding a polypeptide having GnTIII activity in an amount sufficient to partially fucosylate the oligosaccharides in the Fc region.
  • the polypeptide having GnTIII activity is a fusion polypeptide.
  • al,6-fucosyltransferase activity of the host cell can be decreased or eliminated according to US 6,946,292 to generate glycomodified host cells.
  • the amount of antibody fucosylation can be predetermined e.g. either by fermentation conditions (e.g.
  • WO 2006/116260 WO 2006/114700, WO 2005/011735, WO 2005/027966, WO 97/028267, US 2006/0134709, US 2005/0054048, US 2005/0152894, WO 2003/035835, WO 2000/061739.
  • These glycoengineered antigen binding proteins according to the invention have an increased ADCC (compared to the parent antigen binding proteins).
  • Other glycoengineering methods yielding afucosylated antigen binding proteins according to the invention are described e.g. in Niwa, R.. et al., J. Immunol. Methods 306 (2005) 151-160; Shinkawa, T., et al., J. Biol. Chem, 278 (2003) 3466-3473; WO 03/055993 or US 2005/0249722.
  • one aspect of the invention is an afucosylated antigen binding protein according to the invention which of IgGl isotype or IgG3 isotype (preferably of
  • IgGl isotype with an amount of fucose of 60 % or less (e.g. of 60 % to 1 %) of the total amount of oligosaccharides (sugars) at Asn297, for the treatment of cancer in.
  • an afucosylated anti-CD20 antibody of IgGl or IgG3 isotype preferably of IgGl isotype
  • specifically binding to CD20 with an amount of fucose of 60% or less of the total amount of oligosaccharides (sugars) at Asn297, for the manufacture of a medicament for the treatment of cancer.
  • the amount of fucose is between 60 % and 20 % of the total amount of oligosaccharides (sugars) at Asn297. In one embodiment the amount of fucose is between 60 % and 40 % of the total amount of oligosaccharides (sugars) at Asn297. In one embodiment the amount of fucose is between 0 % of the total amount of oligosaccharides (sugars) at Asn297.
  • EU index (according to Kabat) is generally used when referring to a residue or position in an immunoglobulin heavy chain constant region (e.g., the EU index is reported in Kabat et al., Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, National Institutes of Health, Bethesda, MD (1991) expressly incorporated herein by reference).
  • the sugar chains show characteristics of N-linked glycans attached to Asn297 of an antibody recombinantly expressed in a CHO cell
  • NGNA as used within this application denotes the sugar residue N-glycolylneuraminic acid.
  • the antibody according to the invention is produced by recombinant means.
  • one aspect of the current invention is a nucleic acid encoding the antibody according to the invention and a further aspect is a cell comprising said nucleic acid encoding an antibody according to the invention.
  • Methods for recombinant production are widely known in the state of the art and comprise protein expression in prokaryotic and eukaryotic cells with subsequent isolation of the antibody and usually purification to a pharmaceutically acceptable purity.
  • nucleic acids encoding the respective modified light and heavy chains are inserted into expression vectors by standard methods.
  • the monovalent antigen binding proteins according to the invention are suitably separated from the culture medium by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA and RNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures.
  • the hybridoma cells can serve as a source of such DNA and RNA.
  • the DNA may be inserted into expression vectors, which are then transfected into host cells such as HEK 293 cells, CHO cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of recombinant monoclonal antibodies in the host cells.
  • Amino acid sequence variants (or mutants) of the monovalent antigen binding protein are prepared by introducing appropriate nucleotide changes into the antibody DNA, or by nucleotide synthesis. Such modifications can be performed, however, only in a very limited range, e.g. as described above. For example, the modifications do not alter the above mentioned antibody characteristics such as the IgG isotype and antigen binding, but may improve the yield of the recombinant production, protein stability or facilitate the purification.
  • the term "host cell” as used in the current application denotes any kind of cellular system which can be engineered to generate the antibodies according to the current invention. In one embodiment HEK293 cells and CHO cells are used as host cells.
  • the expressions "cell,” “cell line,” and “cell culture” are used interchangeably and all such designations include progeny.
  • the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Variant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Expression in NSO cells is described by, e.g., Barnes, L.M., et al., Cytotechnology 32 (2000) 109-123; Barnes, L.M., et al., Biotech. Bioeng. 73 (2001) 261-270.
  • Transient expression is described by, e.g., Durocher, Y., et al., Nucl. Acids. Res. 30 (2002) E9. Cloning of variable domains is described by Orlandi, R., et al., Proc. Natl. Acad. Sci. USA 86 (1989) 3833-3837; Carter, P., et al., Proc. Natl. Acad. Sci. USA 89 (1992) 4285-4289; and Norderhaug, L., et al., J. Immunol. Methods 204 (1997) 77-87.
  • a preferred transient expression system (HEK 293) is described by Schlaeger, E.-J., and Christensen, K., in Cytotechnology 30 (1999) 71-83 and by Schlaeger, E.-J., in J. Immunol. Methods 194 (1996) 191-199.
  • the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site.
  • Eukaryotic cells are known to utilize promoters, enhancers and polyadenylation signals.
  • a nucleic acid is "operably linked" when it is placed in a functional relationship with another nucleic acid sequence.
  • DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a pre-protein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • "operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading frame. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • Purification of monovalent antigen binding proteins is performed in order to eliminate cellular components or other contaminants, e.g. other cellular nucleic acids or proteins (e.g. byproducts) by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis, and others well known in the art (see Ausubel, F., et al. (eds.), Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York (1987)).
  • Different methods are well established and widespread used for protein purification, such as affinity chromatography with microbial proteins (e.g. protein A or protein G affinity chromatography), ion exchange chromatography (e.g.
  • cation exchange (carboxymethyl resins), anion exchange (amino ethyl resins) and mixed- mode exchange), thiophilic adsorption (e.g. with beta-mercaptoethanol and other SH ligands), hydrophobic interaction or aromatic adsorption chromatography (e.g. with phenyl-sepharose, aza-arenophilic resins, or m-aminophenylboronic acid), metal chelate affinity chromatography (e.g.
  • One aspect of the invention is a pharmaceutical composition comprising an antibody according to the invention.
  • Another aspect of the invention is the use of an antibody according to the invention for the manufacture of a pharmaceutical composition.
  • a further aspect of the invention is a method for the manufacture of a pharmaceutical composition comprising an antibody according to the invention.
  • the present invention provides a composition, e.g. a pharmaceutical composition, containing an antibody according to the present invention, formulated together with a pharmaceutical carrier.
  • One embodiment of the invention is the monovalent antigen binding protein according to the invention for the treatment of cancer.
  • Another aspect of the invention is said pharmaceutical composition for the treatment of cancer.
  • One embodiment of the invention is the monovalent antigen binding protein according to the invention for use in the treatment of cancer.
  • Another aspect of the invention is the use of an antibody according to the invention for the manufacture of a medicament for the treatment of cancer.
  • Another aspect of the invention is method of treatment of patient suffering from cancer by administering an antibody according to the invention to a patient in the need of such treatment.
  • pharmaceutical carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
  • the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g. by injection or infusion).
  • a composition of the present invention can be administered by a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. To administer a compound of the invention by certain routes of administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation.
  • the compound may be administered to a subject in an appropriate carrier, for example, liposomes, or a diluent.
  • Pharmaceutically acceptable diluents include saline and aqueous buffer solutions.
  • Pharmaceutical carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is known in the art.
  • parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intra-arterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.
  • cancer refers to proliferative diseases, such as lymphomas, lymphocytic leukemias, lung cancer, non small cell lung (NSCL) cancer, bronchioloalviolar cell lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, gastric cancer, colon cancer, breast cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, prostate cancer, cancer of the bladder, cancer of the kidney or ure
  • compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
  • the compounds of the present invention which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
  • compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • the composition must be sterile and fluid to the extent that the composition is deliverable by syringe.
  • the carrier preferably is an isotonic buffered saline solution.
  • Proper fluidity can be maintained, for example, by use of coating such as lecithin, by maintenance of required particle size in the case of dispersion and by use of surfactants.
  • isotonic agents for example, sugars, polyalcohols such as mannitol or sorbitol, and sodium chloride in the composition.
  • the expressions "cell”, “cell line”, and “cell culture” are used interchangeably and all such designations include progeny.
  • the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Variant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.
  • transfection refers to process of transfer of a vectors/nucleic acid into a host cell. If cells without daunting cell wall barriers are used as host cells, transfection is carried out e.g. by the calcium phosphate precipitation method as described by Graham and Van der Eh, Virology 52 (1978) 546. However, other methods for introducing DNA into cells such as by nuclear injection or by protoplast fusion may also be used. If prokaryotic cells or cells which contain substantial cell wall constructions are used, e.g. one method of transfection is calcium treatment using calcium chloride as described by Cohen, F.N, et al., PNAS. 69 (1972) 7110.
  • expression refers to the process by which a nucleic acid is transcribed into mRNA and/or to the process by which the transcribed mRNA (also referred to as transcript) is subsequently being translated into peptides, polypeptides, or proteins.
  • the transcripts and the encoded polypeptides are collectively referred to as gene product. If the polynucleotide is derived from genomic DNA, expression in a eukaryotic cell may include splicing of the mRNA.
  • a “vector” is a nucleic acid molecule, in particular self-replicating, which transfers an inserted nucleic acid molecule into and/or between host cells.
  • the term includes vectors that function primarily for insertion of DNA or RNA into a cell (e.g., chromosomal integration), replication of vectors that function primarily for the replication of DNA or RNA, and expression vectors that function for transcription and/or translation of the DNA or RNA. Also included are vectors that provide more than one of the functions as described.
  • An “expression vector” is a polynucleotide which, when introduced into an appropriate host cell, can be transcribed and translated into a polypeptide.
  • An “expression system” usually refers to a suitable host cell comprised of an expression vector that can function to yield a desired expression product.
  • DNA sequences were determined by double strand sequencing performed at SequiServe (Vaterstetten, Germany) and Geneart AG (Regensburg, Germany). Gene synthesis
  • Desired gene segments were prepared by Geneart AG (Regensburg, Germany) from synthetic oligonucleotides and PCR products by automated gene synthesis.
  • the gene segments which are flanked by singular restriction endonuclease cleavage sites were cloned into pGA18 (ampR) plasmids.
  • the plasmid DNA was purified from transformed bacteria and concentration determined by UV spectroscopy.
  • DNA sequence of subcloned gene fragments was confirmed by DNA sequencing.
  • DNA sequences encoding for the two antibody chains (VH-CL-CH2-CH3 and VL-CH1-CH2-CH3) were prepared as whole fragments by gene synthesis with flanking 5'HpaI and 3'NaeI restriction sites.
  • Gene Segments coding "knobs-into- hole", meaning one antibody heavy chain carrying a T366W mutation in the CH3 domain as well as a second antibody heavy chain carrying T366S, L368A and Y407V mutations in the CH3 domain were synthesized with 5 '-Bell and 3'-NaeI restriction sites.
  • DNA sequences coding "knobs-into-hole” antibody heavy chain carrying S354C and T366W mutations in the CH3 domain as well as a second antibody heavy chain carrying Y349C, T366S, L368A and Y407V mutations were prepared by gene synthesis with flanking Bell and Nael restriction sites. All constructs were designed with a 5 '-end DNA sequence coding for a leader peptide, which targets proteins for secretion in eukaryotic cells. Construction of the expression plasmids
  • a Roche expression vector was used for the construction of all antibody chains.
  • the vector is composed of the following elements: an origin of replication, oriP, of Epstein-Barr virus (EBV),
  • beta-lactamase gene which confers ampicillin resistance in E. coli, the immediate early enhancer and promoter from the human cytomegalovirus (HCMV),
  • poly A human 1 -immunoglobulin polyadenylation
  • the immunoglobulin genes in the order of VH-CL-CH2-CH3 and VL-CH1-CH2- CH3 as well as "knobs-into-hole" constructs were prepared by gene synthesis and cloned into pGA18 (ampR) plasmids as described.
  • the pG18 (ampR) plasmids carrying the synthesized DNA segments and the Roche expression vector were digested either with Hpal and Nael or with Bell and Nael restriction enzymes (Roche Molecular Biochemicals) and subjected to agarose gel electrophoresis. Purified DNA segments were then ligated to the isolated Roche expression vector Hpal/Nael or Bcll/Nael fragment resulting in the final expression vectors.
  • the final expression vectors were transformed into E. coli cells, expression plasmid DNA was isolated (Miniprep) and subjected to restriction enzyme analysis and DNA sequencing. Correct clones were grown in 150 ml LB-Amp medium, again plasmid DNA was isolated (Maxiprep) and sequence integrity confirmed by DNA sequencing.
  • Recombinant immunoglobulin variants were expressed by transient transfection of human embryonic kidney 293-F cells using the FreeStyleTM 293 Expression System according to the manufacturer's instruction (Invitrogen, USA). Briefly, suspension FreeStyleTM 293-F cells were cultivated in FreeStyleTM 293 Expression medium at 37°C/8% C0 2 . Cells were seeded in fresh medium at a density of l-2xl0 6 viable cells/ml on the day of transfection.
  • DNA-293fectinTM complexes were prepared in Opti-MEM ® I medium (Invitrogen, USA) using 325 ⁇ of 293fectinTM (Invitrogen, Germany) and 250 ⁇ g of each plasmid DNA in a 1 : 1 molar ratio for a 250 ml final transfection volume.
  • Antibody containing cell culture supernatants were harvested 7 days after transfection by centrifugation at 14000 g for 30 minutes and filtered through a sterile filter (0.22 ⁇ ). Supernatants were stored at -20°C until purification.
  • antibodies were generated by transient transfection in HEK293-
  • EBNA cells Antibodies were expressed by transient co-transfection of the respective expression plasmids in adherently growing HEK293- EBNA cells (human embryonic kidney cell line 293 expressing Epstein-Barr- Virus nuclear antigen; American type culture collection deposit number ATCC # CRL- 10852, Lot. 959 218) cultivated in DMEM (Dulbecco's modified Eagle's medium, Gibco) supplemented with 10% Ultra Low IgG FCS (fetal calf serum, Gibco), 2 mM L-Glutamine (Gibco), and 250 ⁇ g/ml Geneticin (Gibco).
  • DMEM Dulbecco's modified Eagle's medium, Gibco
  • Ultra Low IgG FCS fetal calf serum, Gibco
  • 2 mM L-Glutamine Gibco
  • 250 ⁇ g/ml Geneticin Gabco
  • FuGE ETM 6 Transfection Reagent (Roche Molecular Biochemicals) was used in a ratio of FuGENETM reagent ( ⁇ ) to DNA ( ⁇ ) of 4: 1 (ranging from 3 : 1 to 6: 1). Proteins were expressed from the respective plasmids using an equimolar ratio of plasmids. Cells were feeded at day 3 with L- Glutamine ad 4 mM, Glucose [Sigma] and NAA [Gibco]. Bispecific antibody containing cell culture supernatants were harvested from day 5 to 11 after transfection by centrifugation and stored at -200C. General information regarding the recombinant expression of human immunoglobulins in e.g. FIEK293 cells is given in: Meissner, P. et al., Biotechnol.
  • Antibodies were purified from cell culture supernatants by affinity chromatography using Protein A-SepharoseTM (GE Healthcare, Sweden) and Superdex200 size exclusion chromatography. Briefly, sterile filtered cell culture supernatants were applied on a Hi Trap ProteinA HP (5 ml) column equilibrated with PBS buffer (10 mM Na 2 HP0 4 , 1 mM KH 2 P0 4 , 137 mM NaCl and 2.7 mM KC1, pH 7.4). Unbound proteins were washed out with equilibration buffer.
  • PBS buffer 10 mM Na 2 HP0 4 , 1 mM KH 2 P0 4 , 137 mM NaCl and 2.7 mM KC1, pH 7.4
  • Antibody and antibody variants were eluted with 0.1 M citrate buffer, pH 2.8, and the protein containing fractions were neutralized with 0.1 ml 1 M Tris, pH 8.5. Then, the eluted protein fractions were pooled, concentrated with an Amicon Ultra centrifugal filter device (MWCO: 30 K, Millipore) to a volume of 3 ml and loaded on a Superdex200 HiLoad 120 ml 16/60 or 26/60 gel filtration column (GE Healthcare, Sweden) equilibrated with 20mM Histidin, 140 mM NaCl, pH 6.0. Fractions containing purified antibodies with less than 5 % high molecular weight aggregates were pooled and stored as 1.0 mg/ml aliquots at -80°C.
  • MWCO Amicon Ultra centrifugal filter device
  • the protein concentration of purified protein samples was determined by measuring the optical density (OD) at 280 nm, using the molar extinction coefficient calculated on the basis of the amino acid sequence.
  • Purity and molecular weight of antibodies were analyzed by SDS-PAGE in the presence and absence of a reducing agent (5 mM 1,4-dithiotreitol) and staining with Coomassie brilliant blue.
  • the NuPAGE® Pre-Cast gel system (Invitrogen, USA) was used according to the manufacturer's instruction (4-12 % Tris-Glycine gels).
  • the aggregate content of antibody samples was analyzed by high-performance SEC using a Superdex 200 analytical size-exclusion column (GE Healthcare, Sweden) in 200 mM KH 2 P0 4 , 250 mM KC1, pH 7.0 running buffer at 25°C. 25 ⁇ g protein were injected on the column at a flow rate of 0.5 ml/min and eluted isocratic over 50 minutes. For stability analysis, concentrations of 1 mg/ml of purified proteins were incubated at 4°C and 40°C for 7 days and then evaluated by high-performance SEC (e.g. FIP SEC Analysis (Purified Protein).
  • FIP SEC Analysis Purified Protein
  • the total deglycosylated mass of antibodies was determined and confirmed via electrospray ionization mass spectrometry (ESI-MS). Briefly, 100 ⁇ g purified antibodies were deglycosylated with 50 mU N-Glycosidase F (PNGaseF, ProZyme) in 100 mM KH2P04/K2HP04, pH 7 at 37°C for 12-24 h at a protein concentration of up to 2 mg/ml and subsequently desalted via FIPLC on a Sephadex G25 column (GE Healthcare). The mass of the respective heavy and light chains was determined by ESI-MS after deglycosylation and reduction.
  • PNGaseF N-Glycosidase F
  • SEC-MALLS size-exclusion chromatography with multi-angle laser light scattering
  • MALLS allows molecular weight estimation of macromolecules irrespective of their molecular shape or other presumptions.
  • SEC-MALLS is based on a separation of proteins according to their size (hydrodynamic radius) via SEC chromatography, followed by concentration- and scattered light-sensitive detectors.
  • SEC -MALLS typically gives rise to molecular weight estimates with an accuracy that allows clear discrimination between monomers, dimers, trimers etc., provided the SEC separation is sufficient.
  • 5xl0e5 A549 cells were seeded per well of a 6-well plate the day prior HGF stimulation in RPMI with 0.5 % FCS (fetal calf serum). The next day, growth medium was replaced for one hour with RPMI containing 0.2 % BSA (bovine serum albumine). 12,5 ⁇ g/mL of the bispecific antibody was then added to the medium and cells were incubated for 15 minutes upon which HGF (R&D, 294-HGN) was added for further 10 minutes in a final concentration of 25 ng/mL.
  • FCS fetal calf serum
  • BSA bovine serum albumine
  • Cells were washed once with ice cold PBS containing 1 mM sodium vanadate upon which they were placed on ice and lysed in the cell culture plate with 100 ⁇ _, lysis buffer (50 mM Tris-Cl pH7.5, 150 mM NaCl, 1 % P40, 0.5 % DOC, aprotinine, 0.5 mM PMSF, 1 mM sodium -vanadate). Cell lysates were transferred to eppendorf tubes and lysis was allowed to proceed for 30 minutes on ice. Protein concentration was determined using the BCA method (Pierce).
  • Her3 (ErbB3) phosphorylation assay 2xl0e5 MCF7 cells were seeded per well of a 12-well plate in complete growth medium (RPMI 1640, 10 % FCS). Cells were allowed to grow to 90 % confluency within two days. Medium was then replaced with starvation medium containing 0.5 % FCS. The next day the respective antibodies were supplemented at the indicated concentrations 1 hour prior addition of 500 ng/mL Heregulin (R&D). Upon addition of Heregulin cells were cultivated further 10 minutes before the cells were harvested and lysed. Protein concentration was determined using the BCA method (Pierce).
  • A549 were detached and counted. 1.5xl0e5 cells were seeded per well of a conical 96-well plate. Cells were spun down (1500 rpm, 4°C, 5 min) and incubated for 30 min on ice in 50 ⁇ _, of a dilution series of the respective bispecific antibody in PBS with 2 % FCS (fetal calf serum). Cells were again spun down and washed once with 200 ⁇ _, PBS containing 2 % FCS followed by a second incubation of 30 min with 5 ⁇ g/mL of Alexa488-coupled antibody directed against human Fc which was diluted in PBS containing 2 % FCS (Jackson Immunore search, 109116098).
  • FCS fetal calf serum
  • mfi mean fluorescence intensity of the cells was determined by flow cytometry (FACS Canto, BD). Mfi was determined at least in duplicates of two independent stainings. Flow cytometry spectra were further processed using the FlowJo software (TreeStar). Half-maximal binding was determined using XLFit 4.0 (IDBS) and the dose response one site model 205.
  • the binding properties of monovalent anti-IGF-lR antibodies were analyzed by surface plasmon resonance (SPR) technology using a Biacore instrument (Biacore,
  • CM5 biosensorchip For capturing anti-human IgG antibody was immobilized on the surface of a CM5 biosensorchip using amine-coupling chemistry. Flow cells were activated with a 1 : 1 mixture of 0.1 M N-hydroxysuccinimide and 0.1 M 3-(N ,N- dimethylamino)propyl-N- ethylcarbodiimide at a flow rate of 5 ⁇ /min. Anti-human IgG antibody was injected in sodium acetate, pH 5.0 at 10 ⁇ g/ml. A reference control flow cell was treated in the same way but with vehicle buffers only instead of the capturing antibody. Surfaces were blocked with an injection of 1 M ethanolamine/HCl pH 8.5.
  • the IGF-1R antibodies were diluted in HBS-P and injected. All interactions were performed at 25°C (standard temperature).
  • the regeneration solution of 3 M Magnesium chloride was injected for 60 s at 5 ⁇ /min flow to remove any non- covalently bound protein after each binding cycle. Signals were detected at a rate of one signal per second. Samples were injected at increasing concentrations.
  • Fig. 17 depicts the applied assay format. A low loading density with capturing antibody density and IGF-1R antibody was chosen to enforce monovalent binding.
  • human Fcgllla was immobilized to a CM-5 sensor chip by capturing the His-tagged receptor to an anti-His antibody (Penta-His, Qiagen) which was coupled to the surface by standard amine-coupling and blocking chemistry on a SPR instrument (Biacore T100). After FcgRIIIa capturing, 50 nM IGF1R antibodies were injected at 25°C at a flow rate of 5 ⁇ / ⁇ . The chip was afterwards regenerated with a 60s pulse of 10 mM glycine-HCl, pH 2.0 solution.
  • ADCC Antibody-dependent cellular cytotoxicity assay
  • ADCC antibody-dependent cell cytotoxicity
  • effector cells freshly isolated PBMC were added at an E:T ratio of 25: 1.
  • the plates were centrifuged for 1 minutes at 200 x g, followed by an incubation step of 2 hours at 37°C. After incubation the cells were spun down for 10 minutes at 200 x g and 20 ⁇ of supernatant was harvested and transferred to an Optiplate 96-F plate.
  • 200 ⁇ of Europium solution Perkin Elmer, at room temperature
  • the magnitude of cell lysis by ADCC is expressed as % of the maximum release of TDA fluorescence enhancer from the target cells lysed by detergent corrected for spontaneous release of TDA from the respective target cells.
  • IGF-IR internalization assay The binding of antibodies and antigen binding protein according the invention to the IGF-IR results in internalization and degradation of the receptor. This process can be monitored by incubating IGF-IR expressing HT29 CRC cells with IGF-IR targeting antibodies followed by a quantification of remaining IGF-IR protein levels in cell lysates by ELISA. For this purpose, HT29 cells at 1,5 xl04 cells/well were incubated in a 96 well MTP in RPMI with 10 % FCS over night at 37°C and 5 % C02 in order to allow attachment of the cells.
  • the medium was aspirated and 100 ⁇ anti IGF-IR antibody diluted in RPMI + 10 % FCS was added in concentrations from 10 nM to 2 pM in 1 :3 dilution steps.
  • the cells were incubated with antibody for 18 hours at 37°C. Afterwards, the medium was again removed and 120 ⁇ MES lysis buffer (25 mM MES pH 6.5 + Complete) were added.
  • 96-Well streptavidin coated polystyrene plates (Nunc) were loaded with 100 ⁇ MAK ⁇ hu IGF-lRa>hu-la-IgG-Bi (Ch. lO) diluted 1 :200 in 3%BSA/PBST (final concentration 2.4 ⁇ g/ml) and incubated under constant agitation for 1 hour at room temperature. Afterwards, the well content was removed and each well was washed three times with 200 ⁇ PBST. 100 ⁇ of the cell lysate solution were added per well, again incubated for 1 hour at room temperature on a plate shaker, and washed three times with 200 ⁇ PBST.
  • IGF-IR autophosphorylation assay IGF-1 stimulation
  • IGF-IR IGF-1 induced autophosphorylation.
  • IGF.-1R IgGl antibody IGF.-1R IgGl antibody.
  • 3T3-IGF-1R cells a murine fibroblast cell line overexpressing human IGF-IR, were treated for 10 minutes with 10 nM recombinant human IGF-1 in the presence of different concentrations of monovalent and bivalent IGF-IR antibody. After lysis of the cells, the levels of phosphorylated IGF-IR protein were determined by a phospho-IGF-lR specific ELISA, combining a human IGF-1R specific capture antibody and a phospho- Tyrosine specific detection antibody.
  • PK properties Single Dose Kinetics in Mice Methods Animals: MRI mice, female, fed, 23-32 g body weight at the time point of compound administration.
  • mice were allocated to 3 groups with 2-3 animals each. Blood samples are taken from group 1 at 0.5, 168 and 672 hours, from group 2 at 24 and 336 hours and from group 3 at 48 and 504 hours after dosing.
  • Blood samples of about 100 ⁇ _ were obtained by retrobulbar puncture. Serum samples of at least 40 ⁇ were obtained from blood after 1 hour at room temperature by centrifugation (9300xg) at room temperature for 2.5 min. Serum samples were frozen directly after centrifugation and stored frozen at -20°C until analysis.
  • mice serum concentrations of the human antibodies in mice serum were determined with an enzyme linked immunosorbent assay (ELISA) using 1 % mouse serum.
  • ELISA enzyme linked immunosorbent assay
  • Biotinylated monoclonal antibody against human Fey (mAb ⁇ hFcyp AN > IgG-Bi) was bound to streptavidin coated microtiterplates in the first step.
  • serum samples in various dilutions
  • reference standards respectively, were added and bound to the immobilized
  • digoxigenylated monoclonal antibody against human Fey (mAb ⁇ hFcy P AN > IgG-Dig) was added.
  • the human antibodies were detected via anti-Dig-horseradish-peroxidase antibody- conjugate.
  • ABTS-solution was used as the substrate for horseradish-peroxidase. The specificity of the used capture and detection antibody, which does not cross react with mouse IgG, enables quantitative determination of human antibodies in mouse serum samples. Calculations:
  • the pharmacokinetic parameters were calculated by non-compartmental analysis, using the pharmacokinetic evaluation program WinNonlinTM, version 5.2.1.
  • MRT LST mean residence time h
  • T max The time of maximum observed concentration
  • Vss Volume of distribution at steady state (Vss), calculated as MRT(O-inf) x CL (MRT(O-inf), defined as AUMC(0-inf)/AUC(0-inf).
  • MoAb KiH 205 MoAb KiH were designed incorporating mutations in the CH3 parts to support heterodimerization by the knobs-into-holes (KiH) technology (Merchant, A.M., et al., Nat. Biotechnol. 16 (1998) 677-681). All monovalent antibodies were transiently expressed in HEK293 cells as described above, and subsequently purified via Protein A affinity chromatography followed by size exclusion.
  • Fig. 3-5 depict the chromatograms of the size exclusion chromatography of the three different monovalent antigen binding proteins without knobs-into-holes as well as the corresponding SDS-PAGE under non-reducing and reducing conditions.
  • Fig. 6-5 depict the chromatograms of the size exclusion chromatography of the three different monovalent antigen binding proteins with knobs-into-holes as well as the corresponding SDS-PAGE under non-reducing and reducing conditions.
  • knobs-into-holes technology for Fc-heterodimerization the relative yields of heterodimeric monovalent antigen binding protein compared to the bivalent MoAb-Dimer could be enhanced as shown in Figs. 6-8.
  • c-Met phosphorylation ( Figure 9) c-Met has been described as oncogenic receptor tyrosine kinase which upon deregulation fosters cellular transformation. Antibodies targeting c-Met have been described in the past. MetMAb/OA-5D5 (Genentech) is one such antibody inhibiting ligand-dependent activation of c-Met. As the bivalent antibody is activatory, it was engineered as one-armed construct in which one FAb arm was deleted leaving a monovalent antibody.
  • c-Met MoAb monovalent antigen binding protein c-Met MoAb
  • a cell suspension was incubated with a threefold dilution series (100 - 0.0003 ⁇ g/mL) of the indicated antibodies. Bound antibodies were visualized with a secondary Alexa488-coupled antibody binding to the constant region of human immunoglobulin. Fluorescence intensity of single cells was measured on a FACS Canto (BD Biosciences) flow cytometer. No differences in binding of c-Met MoAb and OA-5D5 are observable indicating that the c-Met MoAb (c-Met 5D5 MoAb ("wt”)) efficiently binds to cell surface c-Met. half-maximal binding
  • IGF-IR extracellular domain binding of the monovalent antigen binding protein IGF1R MoAb (IGF1R AK18 MoAb ("wt")) was compared to the binding of the parental ⁇ IGF-1R> IgGl antibody by surface Plasmon resonance (SPR).
  • Fig. 17 depicts the scheme of the SPR assay to determine the monovalent affinity. The analysis (double determination) showed that the IGF-IR binding affinity is retained in the monovalent antibody. k(on) k(off) KD
  • IGF1R MoAb monovalent antigen binding protein IGF1R MoAb
  • IGF-IR 150kDa: 0.76 nM
  • IGF-IR MoAb (lOOkDa): 5.65 nM
  • Example 6 IGF-IR MoAb (lOOkDa): 5.65 nM
  • Donor-derived peripheral blood mononuclear cells can be used to measure effector cell recruitment by non-glycoengineered and glycoengineered antibodies to cancer cells. Lysis of cancer cells correlates with NK cell mediated cytotoxicity and is proportional to the antibody's ability to recruit NK cells.
  • DU145 prostate cancer cells were incubated in a 1 :25 ratio (DU145:PBMC) ratio with PBMC in the absence or presence of the respective antibodies. After 2 hours cellular lysis was determined using the BATD A/Europium system as described above. The magnitude of cell lysis by ADCC is expressed as % of the maximum release of TDA fluorescence enhancer from the target cells lysed by detergent corrected for spontaneous release of TDA from the respective target cells.
  • the non-glycoengineered monovalent antigen binding protein IGFIR MoAb (IGFIR AKl 8 MoAb (“wt”)) is even superior in inducing ADCC at high concentrations compared to the glycoengineered parent IGF-IR antibody that shows a drop in the ADCC assay going to high concentrations.
  • IGFIR AKl 8 MoAb Monovalent IGF-IR antigen binding proteins (IGFIR AKl 8 MoAb (“wt”)) that mediate reduced IGF-IR internalization and enhanced ADCC due to reduced internalization (see below) and double the amount of Fc-parts to engage FcRIIIa receptors on effector cells may thus represent a promising approach to target IGF-IR on cancer cells; as non-glycoengineered or as glycoengineered antibodies.
  • IGF-IR AKl 8 MoAb The data in Fig. 14 show that internalization of IGF-IR is reduced in terms of potency and absolute internalization when the monovalent antigen binding protein IGFIR MoAb (IGFIR AKl 8 MoAb ("wt")) is bound.
  • the targeting IGF-IR on tumor cells by bivalent IGF-IR antibodies results in internalization and lysosomal degradation of IGF-IR.
  • HT29 colon cancer cells were treated for 18 hours with different concentrations of monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt”)) and bivalent parent IGF-IR antibody. After lysis of the cells, the remaining levels of IGF-IR protein were determined by IGF-IR specific ELISA.
  • IGFIR MoAb IGFIR AK18 MoAb
  • IGFIR MoAb IGFIR AK18 MoAb ("wt") is bound. Maximum internalization was reduced from 83 % (IgGl) to 48 % (MoAb), the concentration required for halfmax inhibition increased from 0.027 nM (IgGl) to 1.5 nM (MoAb).
  • IGF-IR AK18 MoAb a murine fibroblast cell line overexpressing human IGF-IR, were treated for 10 minutes with 10 nM recombinant human IGF-1 in the presence of different concentrations of monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) and bivalent parent IGF-IR antibody. After lysis of the cells, the levels of phosphorylated IGF-IR protein were determined by a phospho-IGF-lR specific ELISA, combining a human IGF-IR specific capture antibody and a phospho-Tyrosine specific detection antibody.
  • FIG. 15 show that the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) can inhibit IGF-1 induced autophosphorylation although at a higher concentration due to monovalent binding on cells (lack of avidity effect due to bivalent binding).
  • the concentration required for halfmax inhibition increased from 1.44 nM (IgGl) to 27.9 nM (MoAb). Since the difference in IC50 values of monovalent and bivalent antibodies is slightly less pronounced in IGF-IR autophosphorylation (19 fold) compared to IGF-IR downregulation (59 fold), the reduced impact of monovalent binding on downregulation cannot solely explained by reduced affinity to the IGF-1R.
  • AK18 MoAb (“wt”) was studied by dynamic light scattering as described above. Briefly, aggregation tendency of the monovalent antigen binding protein IGFIR MoAb was assessed by a DLS timecourse experiment at 40°C. Over a period of five days, no measurable increase in the hydrodynamic radius (Rh) of the isolated monomer fraction (c.f Figure 10) could be detected (Fig. 22).
  • Pharmacokinetic properties of the monovalent antibodies according to the invention were determined in MRI mice, female, fed, 23-32 g body weight at the time point of compound administration mice in a single dose PK study, as described above (in the methods sections).
  • the PK properties are given in the subsequent table and indicate that the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) has improved PK properties compared to the parental ⁇ IGF-1R> IgGl antibody.
  • IGFIR MoAb IGFIR AK18 MoAb
  • the monovalent antigen binding protein IGF1R MoAb (IGF1R AK18 MoAb ("wt")) was transiently expressed and purified via Protein A affinity and size exclusion chromatography. After preparative SEC the antibody eluted within two separate peaks (peak 1 and peak 2), which were collected. Analytical SEC from the fraction 2 (peak 2) corresponds to a molecular weight of 100 kDa indicating a defined monomer. SEC-MALS confirmed the initial SEC result and shows for the fraction 2 (monomer,) a MW of 99.5 kDa. SDS-PAGE analysis of this fraction under denaturing and reducing conditions shows one major band with an apparent molecular weight of 50-60 kDa. Under non reducing conditions fraction 2 (monomer) shows a major band around a MW of 100 kDa.
  • Fraction 2 190 mL ESI-MS spectra of deglycosylated MoAbs from fraction 2 show one peak series corresponding to a monomer with a mass of 98151 Da.
  • Table 3 Summary of MS data from non reducing ESI-MS measurements from fraction 2.
  • MS measurements under reducing conditions of fraction 2 show the correct sequence and expression of the construct.
  • the MS data from fraction 2 show two different heavy chains with a molecular weight of 47959 Da and 50211 Da in approximately equal amounts.
  • Table 4 Summary of MS data from reducing ESI-MS measurements under reducing conditions from fraction 2.
  • HEK-EBNA cells are transfected, using the calcium phosphate method, with four plasmids. Two encoding the antibody chains, one for a fusion GnTIII polypeptide expression (a GnT-III expression vector), and one for mannosidase II expression (a Golgi mannosidase II expression vector) at a ratio of 4:4: 1 : 1, respectively.
  • Cells are grown as adherent monolayer cultures in T flasks using DMEM culture medium supplemented with 10 % FCS, and are transfected when they are between 50 and 80% confluent.
  • a solution of DNA, CaCl 2 and water is prepared by mixing 94 ⁇ g total plasmid vector DNA divided equally between the light and heavy chain expression vectors, water to a final volume of 469 ⁇ and 469 ⁇ of a 1M CaCl 2 solution.

Abstract

The present invention relates to monovalent antigen binding proteins with a CH1-CL domain exchange, methods for their production, pharmaceutical compositions containing said antibodies, and uses thereof.

Description

Monovalent antigen binding proteins
The present invention relates to monovalent antigen binding proteins with a CH1-CL domain exchange, methods for their production, pharmaceutical compositions containing said antibodies, and uses thereof.
Background of the Invention In the last two decades various engineered antibody derivatives, either mono or- multispecific, either mono- or multivalent have been developed and evaluated (see e.g. Holliger, P., et al., Nature Biotech 23 (2005) 1126-1136; Fischer, N., and Leger, O., Pathobiology 74 (2007) 3-14).
For certain antigens as e.g. c-Met monovalent antibodies have different properties such as lack of agonistic function or reduced receptor internalization upon antibody binding than their corresponding bivalent forms and therefore represent attractive formats for therapeutic use. E.g. WO 2005/063816 refers to monovalent antibody fragments as therapeutics.
US 2004/0033561 describes a method for the generation of monovalent antibodies based on the co-expression of a VH-CH1-CH2-CH3 antibody chain with a VL-CL-
CH2-CH3 antibody chain; however, a disadvantage of this method is the formation of a binding inactive homodimer of VL-CL-CH2-CH3 chains as depicted in Fig. 2. Due the similar molecular weight such homodimeric by-products are the difficult to separate. WO 2007/048037 also refers to monovalent antibodies based on the co-expression of a VH-CH1-CH2-CH3 antibody chain with a VL-CL-CH2-CH3 antibody chain, but having a tagging moiety attached to the heavy chain for easier purification of the heterodimer from the difficult-to-separate homodimeric by-product.
WO 2009/089004 describes another possibility to generate a heterodimeric monovalent antibody using electrostatic steering effects.
WO 2010/145792 relates tetravalent bispecific antibodies, wherein mismatched byproducts of similar weight are reduced resulting in higher yields of the desiered bispecific antibody. Summary of the Invention
The invention comprises a monovalent antigen binding protein comprising a) a modified heavy chain of an antibody which specifically binds to an antigen, wherein the VH domain is replaced by the VL domain of said antibody; and
b) a modified heavy chain of said antibody, wherein the CHI domain is replaced by the CL domain of said antibody.
In one embodiment of the invention the monovalent antigen binding protein according to the invention is characterized in that
the CH3 domain of the modified heavy chain of the antibody of a) and the CH3 domain of the modified heavy chain of the antibody of b) each meet at an interface which comprises an original interface between the antibody CH3 domains;
wherein said interface is altered to promote the formation of the monovalent antigen binding protein, wherein the alteration is characterized in that i) the CH3 domain of one heavy chain is altered,
so that within the original interface the CH3 domain of one heavy chain that meets the original interface of the CH3 domain of the other heavy chain within the monovalent antigen binding protein,
an amino acid residue is replaced with an amino acid residue having a larger side chain volume, thereby generating a protuberance within the interface of the CH3 domain of one heavy chain which is positionable in a cavity within the interface of the CH3 domain of the other heavy chain
and
ii) the CH3 domain of the other heavy chain is altered,
so that within the original interface of the second CH3 domain that meets the original interface of the first CH3 domain within the monovalent antigen binding protein,
an amino acid residue is replaced with an amino acid residue having a smaller side chain volume, thereby generating a cavity within the interface of the second
CH3 domain within which a protuberance within the interface of the first CH3 domain is positionable. In one embodiment of the invention this monovalent antigen binding protein according to the invention is characterized in that
said amino acid residue having a larger side chain volume is selected from the group consisting of arginine (R), phenylalanine (F), tyrosine (Y), tryptophan (W), and said amino acid residue having a smaller side chain volume is selected from the group consisting of alanine (A), serine (S), threonine (T), valine (V).
In one embodiment of the invention this monovalent antigen binding protein according to the invention is further characterized in that
both CH3 domains are further altered by the introduction of cysteine (C) as amino acid in the corresponding positions of each CH3 domain such that a disulfide bridge between both CH3 domains can be formed.
In one embodiment the monovalent antigen binding protein according to the invention is characterized in that is of human IgG isotype.
In one embodiment the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NCv l; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:2; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:3; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:4; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:5; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:6; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 7; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:8; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 9; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 10; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 11; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 12.
In one aspect of the invention the monovalent antigen binding protein according to the invention is characterized in that the modified heavy chains of a) and b) are of IgGl isotype, and the antigen binding protein is afucosylated with an the amount of fucose of 80 % or less (preferably of 65 % to 5 %) of the total amount of oligosaccharides (sugars) at Asn297.
The invention further comprises a method for the preparation of a monovalent antigen binding protein according to the invention comprising the steps of a) transforming a host cell with vectors comprising nucleic acid molecules encoding
a monovalent antigen binding protein according to the invention b) culturing the host cell under conditions that allow synthesis of said monovalent antigen binding protein molecule; and
c) recovering said monovalent antigen binding protein molecule from said culture.
The invention further comprises nucleic acid encoding the monovalent antigen binding protein according to the invention. The invention further comprises vectors comprising nucleic acid encoding the monovalent antigen binding protein according to the invention.
The invention further comprises host cell comprising said vectors.
The invention further comprises composition, preferably a pharmaceutical or a diagnostic composition of a monovalent antigen binding protein according to the invention.
The invention further comprises pharmaceutical composition comprising a monovalent antigen binding protein according to the invention and at least one pharmaceutically acceptable excipient. The invention further comprises method for the treatment of a patient in need of therapy, characterized by administering to the patient a therapeutically effective amount of a monovalent antigen binding protein according to the invention.
The antigen binding proteins according to the invention are based on the principle that a VL-CH1-CH2-CH3 and VH-CL-CH2-CH3 chain only forms heterodimers and cannot form a diffi cult-to-separate homodimeric by-product of similar structure and molecular weight. The effect of this modification lays not primarily in a reduction of by-products, but in that the only by-product which is formed is changed from a homodimeric by-product of similar size into a High-Molecular weight tetramer (Figure ID). This High-Molecular weight tetramer then can be easily removed with SEC or other MW separation techniques.
The formed dimeric byproduct (Figure ID) can be easily separated due to the different molecular weight (the molecular weight is approximately doubled) and structure. Therefore the purification without the introduction of further modifications (like e.g. genetic introductions of tags) is possible. It has further been found that the monovalent antigen binding proteins according to the invention have valuable characteristics such as biological or pharmacological activities (as e.g. ADCC, or antagonistic biological activity as well as lack of agonistic activities). They can be used e.g. for the treatment of diseases such as cancer. The monovalent antigen binding proteins have furthermore highly valuable pharmacokinetic properties ( like e.g. halftime (term tl/2) or AUC). Description of the Figures
Figure 1 A) Scheme of the monovalent antigen binding protein according to the invention with CH1-CL domain exchange based on VL-CH1-CH2-CH3 and VH-CL-CH2-CH3 chains (abbreviated as MoAb). B) Scheme of a MoAb according to the invention including knobs-into-holes in the CH3 domains. C) Scheme of the dimeric bivalent antigen binding protein (MoAb-Dimer that is formed as a byproduct which can be easily separated due to different structure and molecular weight).
Figure 2 Scheme of A) a monovalent antibody of VL-CL-CH2-CH3 and of VH-CH1-CH2-CH3 chains (described e.g. in US 2004/0033561) and B) the binding inactive difficult-to- separate homodimer byproduct of VL-CL-CH2-CH3 chains (described e.g. in WO 2007/048037).
Figure 3 Biochemical characterization of MoAb c-Met (c-Met 5D5 MoAb
("wt")). (A) Protein A purified antigen binding protein was separated on a Superdex 200 26/60 column. Individual peaks correspond to MoAb (3), MoAb Dimer (2) and an aggregate fraction (1). (B) Peak fractions (1,2,3) were pooled and subjected to SDS-PAGE under non-reducing and reducing conditions.
Polyacrylamide gels were stained with Coomassie Blue dye. Figure 4 Biochemical characterization of monovalent MoAb IGF1R
(IGF1R AK18 MoAb ("wt")). (A) Protein A purified antigen binding protein was separated on an Superdex 200 26/60 column. Individual peaks correspond to MoAb (2) and MoAb Dimer (1).
(B) Peak fractions (1,2) were pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye. C) The molecular mass of the peaks fractions 1 and 2 was investigated by SEC-MALLS. Peak 2 was identified as monovalent antigen binding protein
MoAb IGF 1R.
Figure 5 Biochemical characterization of MoAb Her3 (Her3 205 MoAb
("wt")). (A) Protein A purified antibody was separated on an Superdex 200 26/60 column. Individual peaks correspond to MoAb (3), MoAb Dimer (2) and an aggregate fraction (1). (B)
Peak fractions (1,2, 3) were pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
Figure 6 Biochemical characterization of MoAb Her3 with KiH mutations
(Her3 205 MoAb KiH). (A) Protein A purified antigen binding protein was separated on an Superdex 200 26/60 column. (B)
Peak fraction was pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
Figure 7 Biochemical characterization of MoAb IGF1R with KiH mutations (IGF1R AK18 MoAb KiH). (A) Protein A purified antibody was separated on an Superdex 200 26/60 column.
Individual peaks correspond to MoAb (2) and MoAb Dimer (1).
(B) Peak fractions (1,2) were pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
Figure 8 Biochemical characterization of MoAb c-Met with KiH mutations (c-Met 5D5 MoAb KiH). (A) Protein A purified antibody was separated on an Superdex 200 26/60 column. (B)
Peak fraction was pooled and subjected to SDS-PAGE under non-reducing and reducing conditions. Polyacrylamide gels were stained with Coomassie Blue dye.
Figure 9 c-Met receptor phosphorylation assay in A549 cells. A549 cells were stimulated with HGF in the absence or presence of c-Met binding antibodies or c-Met 5D5 MoAb ("wt")). Total cell lysates were subjected to immunoblot analysis. Asterisk marks phospho- c-Met band in between two unspecific bands.
Figure 10 Cellular binding of MoAb c-Met (c-Met 5D5 MoAb ("wt"))) to
A549 cells with flow cytrometric analysis. A549 cells were incubated with a dilution series of the indicated antibodies. Bound antibodies were visualized with an Fc-binding secondary fluorophor coupled antibody.
Figure 11 Schematic picture of the surface plasmon resonance assay applied to analyze the binding affinity of the monovalent antigen binding protein IGF1R AK18 MoAb ("wt").
Figure 12 Cellular binding of MoAb IGF-1R (IGF1R AK18 MoAb ("wt")) to A549 cells with flow cytometric analysis. A549 cells were incubated with a dilution series of the indicated antibodies. Bound antibodies were visualized with an Fc-binding secondary fluorophor coupled antibody.
ADCC Assay with parent non-glycoengineered (non-ge) IGFIR Mab and parent glycoengineered (ge) IGFIR Mab and non-glycoengineered monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")). Donor derived peripheral blood mononuclear cells (PBMC) were incubated with prostate cancer cells (DU145) in the presence of parent non-ge IGFIR Mab (= 1), parent ge IGFIR Mab (= 2) and non-ge monovalent antigen binding protein IGFIR MoAb (= 3).
Internalization of IGF-1R was assessed following incubation with parent IGF-1R IgGl antibody and monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")), the data show that internalization of IGF-1R is reduced in terms of potency and absolute internalization when the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) is bound.
IGF-1 induced autophosphorylation of IGF-1R was assessed following incubation with IGF-1R IgGl antibody and monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")), the data show that IGF-1 induced autophoshorylation of IGF-1R is reduced in terms of potency when the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) is bound.
Aggregation tendency of the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt"))was assessed by a DLS timecourse experiment. Over a period of five days, no measurable increase in the hydrodynamic radius (Rh) of the isolated monomer fraction (see Figure 4) could be detected.
ESI-MS spectrum of the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) after deglycosylation and under non-reducing conditions.
ESI-MS spectrum of the IGF-1R monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) after deglycosylation and reduction. Detailed Description of the Invention
The invention comprises a monovalent antigen binding protein comprising a) a modified heavy chain of an antibody which specifically binds to an antigen, wherein the VH domain is replaced by the VL domain of said antibody; and
b) a modified heavy chain of said antibody, wherein the CHI domain is replaced by the CL domain of said antibody.
In one preferred embodiment of the invention the CH3 domains of said monovalent antigen binding protein according to the invention can be altered by the "knobs- into-holes" (KiH) technology which is described in detail with several examples in e.g. WO 96/027011, Ridgway, J.B., et al., Protein Eng. 9 (1996) 617-621; and Merchant, A.M., et al., Nat Biotechnol 16 (1998) 677-681. In this method the interaction surfaces of the two CH3 domains are altered to increase the heterodimerisation of both heavy chains containing these two CH3 domains. Each of the two CH3 domains (of the two heavy chains) can be the "knob", while the other is the "hole". The effect of this modification is that the High-Molecular weight tetramer by-product, is reduced significantly.
The introduction of a disulfide bridge further stabilizes the heterodimers (Merchant, A.M., et al., Nature Biotech 16 (1998) 677-681; Atwell, S., et al., J. Mol. Biol. 270 (1997) 26-35) and increases the yield.
Thus in one aspect of the invention said monovalent antigen binding protein is further characterized in that the CH3 domain of the heavy chain of the full length antibody of a) and the CH3 domain of the modified heavy chain of the full length antibody of b) each meet at an interface which comprises an original interface between the antibody CH3 domains;
wherein said interface is altered to promote the formation of the monovalent antigen binding protein, wherein the alteration is characterized in that:
i) the CH3 domain of one heavy chain is altered,
so that within the original interface the CH3 domain of one heavy chain that meets the original interface of the CH3 domain of the other heavy chain within the monovalent antigen binding protein, an amino acid residue is replaced with an amino acid residue having a larger side chain volume, thereby generating a protuberance within the interface of the CH3 domain of one heavy chain which is positionable in a cavity within the interface of the CH3 domain of the other heavy chain and
ii) the CH3 domain of the other heavy chain is altered,
so that within the original interface of the second CH3 domain that meets the original interface of the first CH3 domain within the monovalent antigen binding protein,
an amino acid residue is replaced with an amino acid residue having a smaller side chain volume, thereby generating a cavity within the interface of the second CH3 domain within which a protuberance within the interface of the first CH3 domain is positionable.
Preferably said amino acid residue having a larger side chain volume is selected from the group consisting of arginine (R), phenylalanine (F), tyrosine (Y), tryptophan (W).
Preferably said amino acid residue having a smaller side chain volume is selected from the group consisting of alanine (A), serine (S), threonine (T), valine (V).
In one aspect of the invention both CH3 domains are further altered by the introduction of cysteine (C) as amino acid in the corresponding positions of each
CH3 domain such that a disulfide bridge between both CH3 domains can be formed.
In one preferred embodiment, said monovalent antigen binding protein comprises a T366W mutation in the CH3 domain of the "knobs chain" and T366S, L368A, Y407V mutations in the CH3 domain of the "hole chain". An additional interchain disulfide bridge between the CH3 domains can also be used (Merchant, A.M., et al., Nature Biotech 16 (1998) 677-681) e.g. by introducing a Y349C mutation into the CH3 domain of the "knobs chain" and a E356C mutation or a S354C mutation into the CH3 domain of the "hole chain". Thus in a another preferred embodiment, said monovalent antigen binding protein comprises Y349C, T366W mutations in one of the two CH3 domains and E356C, T366S, L368A, Y407V mutations in the other of the two CH3 domains or said monovalent antigen binding protein comprises Y349C, T366W mutations in one of the two CH3 domains and S354C, T366S, L368A, Y407V mutations in the other of the two CH3 domains (the additional Y349C mutation in one CH3 domain and the additional E356C or S354C mutation in the other CH3 domain forming a interchain disulfide bridge) (numbering always according to EU index of Kabat). But also other knobs-in-holes technologies as described by EP 1 870 459 Al, can be used alternatively or additionally. A preferred example for said monovalent antigen binding protein are
R409D; K370E mutations in the CH3 domain of the "knobs chain" and D399K; E357K mutations in the CH3 domain of the "hole chain" (numbering always according to EU index of Kabat).
In another preferred embodiment said monovalent antigen binding protein comprises a T366W mutation in the CH3 domain of the "knobs chain" and T366S,
L368A, Y407V mutations in the CH3 domain of the "hole chain" and additionally R409D; K370E mutations in the CH3 domain of the "knobs chain" and D399K; E357K mutations in the CH3 domain of the "hole chain".
In another preferred embodiment said monovalent antigen binding protein comprises Y349C, T366W mutations in one of the two CH3 domains and S354C,
T366S, L368A, Y407V mutations in the other of the two CH3 domains or said monovalent antigen binding protein comprises Y349C, T366W mutations in one of the two CH3 domains and S354C, T366S, L368A, Y407V mutations in the other of the two CH3 domains and additionally R409D; K370E mutations in the CH3 domain of the "knobs chain" and D399K; E357K mutations in the CH3 domain of the "hole chain".
In one embodiment the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 1; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:2.
In one embodiment the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ
ID NO:3; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:4. In one embodiment the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:5; and
b) a modified heavy chain comprising the amino acid sequence of SEQ
ID NO:6.
In one embodiment the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:7; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:8.
In one embodiment the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ
ID NO: 9; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NCv lO. In one embodiment the monovalent antigen binding protein according to the invention is characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 11; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 12.
The term "antibody" as used herein denotes a full length antibody consisting of two antibody heavy chains and two antibody light chains (see Fig. 1). A heavy chain of full length antibody is a polypeptide consisting in N-terminal to C-terminal direction of an antibody heavy chain variable domain (VH), an antibody constant heavy chain domain 1 (CHI), an antibody hinge region (HR), an antibody heavy chain constant domain 2 (CH2), and an antibody heavy chain constant domain 3 (CH3), abbreviated as VH-CHl -HR-CH2-CH3 ; and optionally an antibody heavy chain constant domain 4 (CH4) in case of an antibody of the subclass IgE. Preferably the heavy chain of full length antibody is a polypeptide consisting in N-terminal to C-terminal direction of VH, CHI, HR, CH2 and CH3. The light chain of full length antibody is a polypeptide consisting in N-terminal to C-terminal direction of an antibody light chain variable domain (VL), and an antibody light chain constant domain (CL), abbreviated as VL-CL. The antibody light chain constant domain (CL) can be κ (kappa) or λ (lambda). The antibody chains are linked together via inter-polypeptide disulfide bonds between the CL domain and the CHI domain (i.e. between the light and heavy chain) and between the hinge regions of the full length antibody heavy chains. Examples of typical full length antibodies are natural antibodies like IgG (e.g. IgG 1 and IgG2), IgM, IgA, IgD, and IgE.) The antibodies according to the invention can be from a single species e.g. human, or they can be chimerized or humanized antibodies. The full length antibodies according to the invention comprise two antigen binding sites each formed by a pair of VH and VL, which both specifically bind to the same (first) antigen. From the these full length antibodies the monovalent antigen binding proteins of the invention are derived by modifying: a) the first heavy chain of said antibody by replacing the VH domain by the VL domain of said antibody; and by modifying b) the second heavy chain of said antibody by replacing the CHI domain by the CL domain of said antibody. Thus the resulting monovalent antigen binding protein comprise two modified heavy chains and no light chains.
The C-terminus of the heavy or light chain of said full length antibody denotes the last amino acid at the C-terminus of said heavy or light chain.
The terms "binding site" or "antigen-binding site" as used herein denotes the region(s) of antigen binding protein according to the invention to which a ligand
(e.g. the antigen or antigen fragment of it) actually binds and which is derived from antibody molecule or a fragment thereof (e.g. a Fab fragment). The antigen-binding site according to the invention comprise an antibody heavy chain variable domains (VH) and an antibody light chain variable domains (VL). The antigen-binding sites (i.e. the pairs of VH/VL) that specifically bind to the desired antigen can be derived a) from known antibodies to the antigen or b) from new antibodies or antibody fragments obtained by de novo immunization methods using inter alia either the antigen protein or nucleic acid or fragments thereof or by phage display. An antigen-binding site of a monovalent antigen binding protein of the invention contains six complementarity determining regions (CDRs) which contribute in varying degrees to the affinity of the binding site for antigen. There are three heavy chain variable domain CDRs (CDRH1, CDRH2 and CDRH3) and three light chain variable domain CDRs (CDRLl, CDRL2 and CDRL3). The extent of CDR and framework regions (FRs) is determined by comparison to a compiled database of amino acid sequences in which those regions have been defined according to variability among the sequences.
Antibody specificity refers to selective recognition of the antibody for a particular epitope of an antigen. Natural antibodies, for example, are monospecific. Bispecific antibodies are antibodies which have two different antigen-binding specificities. The monovalent antigen binding proteins according to the invention are "monospecific" and specifically bind to an epitope of the respective antigen.
The term "valent" as used within the current application denotes the presence of a specified number of binding sites in an antibody molecule. A natural antibody for example has two binding sites and is bivalent. The term "monovalent antigen binding protein" denotes the a polypeptide containing only one antigen binding site.
The full length antibodies of the invention comprise immunoglobulin constant regions of one or more immunoglobulin classes. Immunoglobulin classes include
IgG, IgM, IgA, IgD, and IgE class (or isotypes) and, in the case of IgG and IgA, their subclasses (or subtypes). In a preferred embodiment, an full length antibody of the invention and thus a monovalent antigen binding protein of the invention has a constant domain structure of an IgG class antibody. The terms "monoclonal antibody" or "monoclonal antibody composition" as used herein refer to a preparation of antibody molecules of a single amino acid composition.
The term "chimeric antibody" refers to an antibody comprising a variable region, i.e., binding region, from one source or species and at least a portion of a constant region derived from a different source or species, usually prepared by recombinant DNA techniques. Chimeric antibodies comprising a murine variable region and a human constant region are preferred. Other preferred forms of "chimeric antibodies" encompassed by the present invention are those in which the constant region has been modified or changed from that of the original antibody to generate the properties according to the invention, especially in regard to Clq binding and/or Fc receptor (FcR) binding. Such chimeric antibodies are also referred to as "class-switched antibodies". Chimeric antibodies are the product of expressed immunoglobulin genes comprising DNA segments encoding immunoglobulin variable regions and DNA segments encoding immunoglobulin constant regions.
Methods for producing chimeric antibodies involve conventional recombinant DNA and gene transfection techniques are well known in the art. See, e.g., Morrison, S.L., et al., Proc. Natl. Acad. Sci. USA 81 (1984) 6851-6855; US 5,202,238 and US 5,204,244. The term "humanized antibody" refers to antibodies in which the framework or
"complementarity determining regions" (CDR) have been modified to comprise the CDR of an immunoglobulin of different specificity as compared to that of the parent immunoglobulin. In a preferred embodiment, a murine CDR is grafted into the framework region of a human antibody to prepare the "humanized antibody." See, e.g., Riechmann, L., et al., Nature 332 (1988) 323-327; and Neuberger, M.S., et al., Nature 314 (1985) 268-270. Particularly preferred CDRs correspond to those representing sequences recognizing the antigens noted above for chimeric antibodies. Other forms of "humanized antibodies" encompassed by the present invention are those in which the constant region has been additionally modified or changed from that of the original antibody to generate the properties according to the invention, especially in regard to Clq binding and/or Fc receptor (FcR) binding.
The term "human antibody", as used herein, is intended to include antibodies having variable and constant regions derived from human germ line immunoglobulin sequences. Human antibodies are well-known in the state of the art (van Dijk, M.A., and van de Winkel, J.G., Curr. Opin. Chem. Biol. 5 (2001) 368-374). Human antibodies can also be produced in transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire or a selection of human antibodies in the absence of endogenous immunoglobulin production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge (see, e.g., Jakobovits, A., et al., Proc. Natl. Acad. Sci. USA 90 (1993) 2551-2555; Jakobovits, A., et al., Nature 362 (1993) 255-258; Bruggemann, M., et al., Year Immunol. 7 (1993) 33-40). Human antibodies can also be produced in phage display libraries (Hoogenboom, H.R., and Winter, G., J. Mol. Biol. 227
(1992) 381-388; Marks, J.D., et al., J. Mol. Biol. 222 (1991) 581-597). The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole, et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); and Boerner, P., et al., J. Immunol. 147 (1991) 86-95). As already mentioned for chimeric and humanized antibodies according to the invention the term "human antibody" as used herein also comprises such antibodies which are modified in the constant region to generate the properties according to the invention, especially in regard to Clq binding and/or FcR binding, e.g. by "class switching" i.e. change or mutation of Fc parts (e.g. from IgGl to IgG4 and/or IgGl/IgG4 mutation). The term "recombinant human antibody", as used herein, is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from a host cell such as a NSO or CHO cell or from an animal (e.g. a mouse) that is transgenic for human immunoglobulin genes or antibodies expressed using a recombinant expression vector transfected into a host cell. Such recombinant human antibodies have variable and constant regions in a rearranged form. The recombinant human antibodies according to the invention have been subjected to in vivo somatic hypermutation. Thus, the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germ line VH and VL sequences, may not naturally exist within the human antibody germ line repertoire in vivo.
The "variable domain" (variable domain of a light chain (VL), variable region of a heavy chain (VH) as used herein denotes each of the pair of light and heavy chains which is involved directly in binding the antibody to the antigen. The domains of variable human light and heavy chains have the same general structure and each domain comprises four framework (FR) regions whose sequences are widely conserved, connected by three "hypervariable regions" (or complementarity determining regions, CDRs). The framework regions adopt a β-sheet conformation and the CDRs may form loops connecting the β-sheet structure. The CDRs in each chain are held in their three-dimensional structure by the framework regions and form together with the CDRs from the other chain the antigen binding site. The antibody heavy and light chain CDR3 regions play a particularly important role in the binding specificity/affinity of the antibodies according to the invention and therefore provide a further object of the invention.
The terms "hypervariable region" or "antigen-binding portion of an antibody" when used herein refer to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region comprises amino acid residues from the "complementarity determining regions" or "CDRs". "Framework" or "FR" regions are those variable domain regions other than the hypervariable region residues as herein defined. Therefore, the light and heavy chains of an antibody comprise from N- to C-terminus the domains FR1, CDR1, FR2, CDR2, FR3,
CDR3, and FR4. CDRs on each chain are separated by such framework amino acids. Especially, CDR3 of the heavy chain is the region which contributes most to antigen binding. CDR and FR regions are determined according to the standard definition of Kabat, et al., Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, National Institutes of Health, Bethesda, MD (1991).
As used herein, the term "binding" or "specifically binding" refers to the binding of the monovalent antigen binding protein to an epitope of the antigen in an in vitro assay, preferably in an plasmon resonance assay (BIAcore, GE-Healthcare Uppsala, Sweden) with purified wild-type antigen. The affinity of the binding is defined by the terms ka (rate constant for the association of the antibody from the antibody/antigen complex), kD (dissociation constant), and KD (kD/ka). Binding or specifically binding means a binding affinity (KD) of 10"8 mol/1 or less, preferably 10"9 M to 10"13 mol/1. Thus, a monovalent antigen binding protein according to the invention is specifically binding to each antigen for which it is specific with a binding affinity (KD) of 10"8 mol/1 or less, preferably 10"9 M to 10"13 mol/1.
Binding of the monovalent antigen binding protein to the FcyRIII can be investigated by a BIAcore assay (GE-Healthcare Uppsala, Sweden). The affinity of the binding is defined by the terms ka (rate constant for the association of the antibody from the antibody/antigen complex), kD (dissociation constant), and KD (kD/ka).
The term "epitope" includes any polypeptide determinant capable of specific binding to a monovalent antigen binding proteins. In certain embodiments, epitope determinant include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl, or sulfonyl, and, in certain embodiments, may have specific three dimensional structural characteristics, and or specific charge characteristics. An epitope is a region of an antigen that is bound by a monovalent antigen binding protein. In certain embodiments, an antibody is said to specifically bind an antigen when it preferentially recognizes its target antigen in a complex mixture of proteins and/or macromolecules.
In a further embodiment the monovalent antigen binding protein according to the invention is characterized in that said full length antibody is of human IgGl subclass, or of human IgGl subclass with the mutations L234A and L235A.
In a further embodiment the monovalent antigen binding protein according to the invention is characterized in that said full length antibody is of human IgG2 subclass. In a further embodiment the monovalent antigen binding protein according to the invention is characterized in that said full length antibody is of human IgG3 subclass.
In a further embodiment the monovalent antigen binding protein according to the invention is characterized in that said full length antibody is of human IgG4 subclass or, of human IgG4 subclass with the additional mutations S228P and L235E (also named IgG4 SPLE).
The term "constant region" as used within the current applications denotes the sum of the domains of an antibody other than the variable region. The constant region is not involved directly in binding of an antigen, but exhibit various effector functions. Depending on the amino acid sequence of the constant region of their heavy chains, antibodies are divided in the classes (also named isotypes): IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (also named isotypes), such as IgGl, IgG2, IgG3, and IgG4, IgAl and IgA2. The heavy chain constant regions that correspond to the different classes of antibodies are called α, δ, ε, γ, and μ, respectively. The light chain constant regions (CL) which can be found in all five antibody classes are called κ (kappa) and λ (lambda).
The term "constant region derived from human origin" as used in the current application denotes a constant heavy chain region of a human antibody of the subclass IgGl, IgG2, IgG3, or IgG4 and/or a constant light chain kappa or lambda region. Such constant regions are well known in the state of the art and e.g. described by Kabat, E.A., (see e.g. Johnson, G. and Wu, T.T., Nucleic Acids Res. 28 (2000) 214-218; Kabat, E.A., et al., Proc. Natl. Acad. Sci. USA 72 (1975) 2785- 2788). While antibodies of the IgG4 subclass show reduced Fc receptor (FcyRIIIa) binding, antibodies of other IgG subclasses show strong binding. However Pro238, Asp265, Asp270, Asn297 (loss of Fc carbohydrate), Pro329, Leu234, Leu235, Gly236, Gly237, Ile253, Ser254, Lys288, Thr307, Gln311, Asn434, and His435 are residues which, if altered, provide also reduced Fc receptor binding (Shields, R.L., et al., J. Biol. Chem. 276 (2001) 6591-6604; Lund, J., et al., FASEB J. 9 (1995) 115-119; Morgan, A., et al., Immunology 86 (1995) 319-324; EP 0 307 434).
In one embodiment an antibody according to the invention has a reduced FcR binding compared to an IgGl antibody and the full length parent antibody is in regard to FcR binding of IgG4 subclass or of IgGl or IgG2 subclass with a mutation in S228, L234, L235 and/or D265, and/ or contains the PVA236 mutation. In one embodiment the mutations in the full length parent antibody are S228P, L234A, L235A, L235E and/or PVA236. In another embodiment the mutations in the full length parent antibody are in IgG4 S228P and L235E and in IgGl L234A and L235A.
The constant region of an antibody is directly involved in ADCC (antibody- dependent cell-mediated cytotoxicity) and CDC (complement-dependent cytotoxicity). Complement activation (CDC) is initiated by binding of complement factor Clq to the constant region of most IgG antibody subclasses. Binding of Clq to an antibody is caused by defined protein-protein interactions at the so called binding site. Such constant region binding sites are known in the state of the art and described e.g. by Lukas, T.J., et al., J. Immunol. 127 (1981) 2555-2560; Bunkhouse, R. and Cobra, J.J., Mol. Immunol. 16 (1979) 907-917; Burton, D.R., et al., Nature 288 (1980) 338-344; Thomason, J.E., et al., Mol. Immunol. 37 (2000) 995-1004; Idiocies, E.E., et al., J. Immunol. 164 (2000) 4178-4184; Hearer, M., et al., J. Virol. 75 (2001) 12161-12168; Morgan, A., et al., Immunology 86 (1995) 319-324; and EP 0 307 434. Such constant region binding sites are, e.g., characterized by the amino acids L234, L235, D270, N297, E318, K320, K322, P331, and P329 (numbering according to EU index of Kabat). The term "antibody-dependent cellular cytotoxicity (ADCC)" refers to lysis of human target cells by an antibody according to the invention in the presence of effector cells. ADCC is measured preferably by the treatment of a preparation of antigen expressing cells with an antibody according to the invention in the presence of effector cells such as freshly isolated PBMC or purified effector cells from buffy coats, like monocytes or natural killer (NK) cells or a permanently growing NK cell line.
Surprisingly it has been found out that an antigen binding protein according to the invention show improved ADCC properties compared to its parent full length antibody. These improved ADCC effects achieved without further modification of the Fc part like glycoengineering. The term "complement-dependent cytotoxicity (CDC)" denotes a process initiated by binding of complement factor Clq to the Fc part of most IgG antibody subclasses. Binding of Clq to an antibody is caused by defined protein-protein interactions at the so called binding site. Such Fc part binding sites are known in the state of the art (see above). Such Fc part binding sites are, e.g., characterized by the amino acids L234, L235, D270, N297, E318, K320, K322, P331, and P329 (numbering according to EU index of Kabat). Antibodies of subclass IgGl, IgG2, and IgG3 usually show complement activation including Clq and C3 binding, whereas IgG4 does not activate the complement system and does not bind Clq and/or C3.
Cell-mediated effector functions of monoclonal antibodies can be enhanced by engineering their oligosaccharide component as described in Umana, P., et al., Nature Biotechnol. 17 (1999) 176-180, and US 6,602,684. IgGl type antibodies, the most commonly used therapeutic antibodies, are glycoproteins that have a conserved N-linked glycosylation site at Asn297 in each CH2 domain. The two complex biantennary oligosaccharides attached to Asn297 are buried between the CH2 domains, forming extensive contacts with the polypeptide backbone, and their presence is essential for the antibody to mediate effector functions such as antibody dependent cellular cytotoxicity (ADCC) (Lifely, M.R., et al., Glycobiology 5 (1995) 813-822; Jefferis, R., et al., Immunol. Rev. 163 (1998) 59-76; Wright, A., and Morrison, S., L., Trends Biotechnol. 15 (1997) 26-32). Umana, P., et al. Nature Biotechnol. 17 (1999) 176-180 and WO 99/54342 showed that overexpression in Chinese hamster ovary (CHO) cells of B(l,4)-N-acetylglucosaminyltransferase III ("GnTIII"), a glycosyltransferase catalyzing the formation of bisected oligosaccharides, significantly increases the in vitro ADCC activity of antibodies.
Alterations in the composition of the Asn297 carbohydrate or its elimination affect also binding to FcyR and Clq (Umana, P., et al., Nature Biotechnol. 17 (1999) 176- 180; Davies, J., et al., Biotechnol. Bioeng. 74 (2001) 288-294; Mimura, Y., et al., J. Biol. Chem. 276 (2001) 45539-45547; Radaev, S., et al., J. Biol. Chem. 276 (2001) 16478-16483; Shields, R., L., et al., J. Biol. Chem. 276 (2001) 6591-6604; Shields, R., L., et al., J. Biol. Chem. 277 (2002) 26733-26740; Simmons, L., C, et al., J. Immunol. Methods 263 (2002) 133-147).
In one aspect of the invention the monovalent antigen binding protein according to the invention is characterized in that the modified heavy chains of a) and b) are of IgGl isotype, and the antigen binding protein is afucosylated with an the amount of fucose of 80% or less of the total amount of oligosaccharides (sugars) at Asn297.
In one embodiment the antigen binding protein is afucosylated with an the amount of fucose of 65% to 5% of the total amount of oligosaccharides (sugars) at Asn297.
The term "afucosylated antigen binding protein" refers to an antigen binding proteins of IgGl or IgG3 isotype (preferably of IgGl isotype) with an altered pattern of glycosylation in the Fc region at Asn297 having a reduced level of fucose residues. Glycosylation of human IgGl or IgG3 occurs at Asn297 as core fucosylated bianntennary complex oligosaccharide glycosylation terminated with up to 2 Gal residues. These structures are designated as GO, Gl (al,6 or al,3) or G2 glycan residues, depending from the amount of terminal Gal residues (Raju,
T.S., BioProcess Int. 1 (2003) 44-53). CHO type glycosylation of antibody Fc parts is e.g. described by Routier, F.H., Glycoconjugate J. 14 (1997) 201-207. Antibodies which are recombinantely expressed in non glycomodified CHO host cells usually are fucosylated at Asn297 in an amount of at least 85 %. It should be understood that the term an afucosylated antibody as used herein includes an antibody having no fucose in its glycosylation pattern. It is commonly known that typical glycosylated residue position in an antibody is the asparagine at position 297 according to the EU numbering system ("Asn297").
Thus an afucosylated antigen binding protein according to the invention means an antibody of IgGl or IgG3 isotype (preferably of IgGl isotype) wherein the amount of fucose is 80 % or less (e.g. of 80 % to 1 %) of the total amount of oligosaccharides (sugars) at Asn297 (which means that at least 20 % or more of the oligosaccharides of the Fc region at Asn297 are afucosylated). In one embodiment the amount of fucose is 65% or less (e.g. of 65 % to 1 %), in one embodiment from 65 % to 5 %, in one embodiment from 40 % to 20 % of the oligosaccharides of the Fc region at Asn297. According to the invention "amount of fucose" means the amount of said oligosaccharide (fucose) within the oligosaccharide (sugar) chain at Asn297, related to the sum of all oligosaccharides (sugars) attached to Asn 297 (e.g. complex, hybrid and high mannose structures) measured by MALDI-TOF mass spectrometry and calculated as average value (for a detailed procedure to determine the amount of fucose, see e.g. WO 2008/077546). Furthermore in one embodiment, the oligosaccharides of the Fc region are bisected. The afucosylated antibody according to the invention can be expressed in a glycomodified host cell engineered to express at least one nucleic acid encoding a polypeptide having GnTIII activity in an amount sufficient to partially fucosylate the oligosaccharides in the Fc region. In one embodiment, the polypeptide having GnTIII activity is a fusion polypeptide. Alternatively al,6-fucosyltransferase activity of the host cell can be decreased or eliminated according to US 6,946,292 to generate glycomodified host cells. The amount of antibody fucosylation can be predetermined e.g. either by fermentation conditions (e.g. fermentation time) or by combination of at least two antibodies with different fucosylation amount. Such afucosylated antigen binding proteins and respective glycoengineering methods are described in WO 2005/044859, WO 2004/065540, WO 2007/031875, Umana, P., et al., Nature Biotechnol. 17 (1999) 176-180, WO 99/154342, WO 2005/018572,
WO 2006/116260, WO 2006/114700, WO 2005/011735, WO 2005/027966, WO 97/028267, US 2006/0134709, US 2005/0054048, US 2005/0152894, WO 2003/035835, WO 2000/061739. These glycoengineered antigen binding proteins according to the invention have an increased ADCC (compared to the parent antigen binding proteins). Other glycoengineering methods yielding afucosylated antigen binding proteins according to the invention are described e.g. in Niwa, R.. et al., J. Immunol. Methods 306 (2005) 151-160; Shinkawa, T., et al., J. Biol. Chem, 278 (2003) 3466-3473; WO 03/055993 or US 2005/0249722.
Thus one aspect of the invention is an afucosylated antigen binding protein according to the invention which of IgGl isotype or IgG3 isotype (preferably of
IgGl isotype) with an amount of fucose of 60 % or less (e.g. of 60 % to 1 %) of the total amount of oligosaccharides (sugars) at Asn297, for the treatment of cancer in. In another aspect of the invention is the use of an afucosylated anti-CD20 antibody of IgGl or IgG3 isotype (preferably of IgGl isotype) specifically binding to CD20 with an amount of fucose of 60% or less of the total amount of oligosaccharides (sugars) at Asn297, for the manufacture of a medicament for the treatment of cancer. In one embodiment the amount of fucose is between 60 % and 20 % of the total amount of oligosaccharides (sugars) at Asn297. In one embodiment the amount of fucose is between 60 % and 40 % of the total amount of oligosaccharides (sugars) at Asn297. In one embodiment the amount of fucose is between 0 % of the total amount of oligosaccharides (sugars) at Asn297. The "EU numbering system" or "EU index (according to Kabat)" is generally used when referring to a residue or position in an immunoglobulin heavy chain constant region (e.g., the EU index is reported in Kabat et al., Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, National Institutes of Health, Bethesda, MD (1991) expressly incorporated herein by reference).
The term "the sugar chains show characteristics of N-linked glycans attached to Asn297 of an antibody recombinantly expressed in a CHO cell" denotes that the sugar chain at Asn297 of the full length parent antibody according to the invention has the same structure and sugar residue sequence except for the fucose residue as those of the same antibody expressed in unmodified CHO cells, e.g. as those reported in WO 2006/103100.
The term "NGNA" as used within this application denotes the sugar residue N-glycolylneuraminic acid.
The antibody according to the invention is produced by recombinant means. Thus, one aspect of the current invention is a nucleic acid encoding the antibody according to the invention and a further aspect is a cell comprising said nucleic acid encoding an antibody according to the invention. Methods for recombinant production are widely known in the state of the art and comprise protein expression in prokaryotic and eukaryotic cells with subsequent isolation of the antibody and usually purification to a pharmaceutically acceptable purity. For the expression of the antibodies as aforementioned in a host cell, nucleic acids encoding the respective modified light and heavy chains are inserted into expression vectors by standard methods. Expression is performed in appropriate prokaryotic or eukaryotic host cells like CHO cells, NS0 cells, SP2/0 cells, HEK293 cells, COS cells, PER.C6 cells, yeast, or E.coli cells, and the antibody is recovered from the cells (supernatant or cells after lysis). General methods for recombinant production of antibodies are well-known in the state of the art and described, for example, in the review articles of Makrides, S.C., Protein Expr. Purif. 17 (1999) 183-202; Geisse, S., et al., Protein Expr. Purif. 8 (1996) 271-282; Kaufman, R.J., Mol. Biotechnol. 16 (2000) 151-161 ; Werner, R.G., Drug Res. 48 (1998) 870-880.
The monovalent antigen binding proteins according to the invention are suitably separated from the culture medium by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. DNA and RNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures. The hybridoma cells can serve as a source of such DNA and RNA. Once isolated, the DNA may be inserted into expression vectors, which are then transfected into host cells such as HEK 293 cells, CHO cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of recombinant monoclonal antibodies in the host cells.
Amino acid sequence variants (or mutants) of the monovalent antigen binding protein are prepared by introducing appropriate nucleotide changes into the antibody DNA, or by nucleotide synthesis. Such modifications can be performed, however, only in a very limited range, e.g. as described above. For example, the modifications do not alter the above mentioned antibody characteristics such as the IgG isotype and antigen binding, but may improve the yield of the recombinant production, protein stability or facilitate the purification. The term "host cell" as used in the current application denotes any kind of cellular system which can be engineered to generate the antibodies according to the current invention. In one embodiment HEK293 cells and CHO cells are used as host cells. As used herein, the expressions "cell," "cell line," and "cell culture" are used interchangeably and all such designations include progeny. Thus, the words "transformants" and "transformed cells" include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Variant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Expression in NSO cells is described by, e.g., Barnes, L.M., et al., Cytotechnology 32 (2000) 109-123; Barnes, L.M., et al., Biotech. Bioeng. 73 (2001) 261-270. Transient expression is described by, e.g., Durocher, Y., et al., Nucl. Acids. Res. 30 (2002) E9. Cloning of variable domains is described by Orlandi, R., et al., Proc. Natl. Acad. Sci. USA 86 (1989) 3833-3837; Carter, P., et al., Proc. Natl. Acad. Sci. USA 89 (1992) 4285-4289; and Norderhaug, L., et al., J. Immunol. Methods 204 (1997) 77-87. A preferred transient expression system (HEK 293) is described by Schlaeger, E.-J., and Christensen, K., in Cytotechnology 30 (1999) 71-83 and by Schlaeger, E.-J., in J. Immunol. Methods 194 (1996) 191-199. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, enhancers and polyadenylation signals.
A nucleic acid is "operably linked" when it is placed in a functional relationship with another nucleic acid sequence. For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a pre-protein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading frame. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
Purification of monovalent antigen binding proteins is performed in order to eliminate cellular components or other contaminants, e.g. other cellular nucleic acids or proteins (e.g. byproducts) by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis, and others well known in the art (see Ausubel, F., et al. (eds.), Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York (1987)). Different methods are well established and widespread used for protein purification, such as affinity chromatography with microbial proteins (e.g. protein A or protein G affinity chromatography), ion exchange chromatography (e.g. cation exchange (carboxymethyl resins), anion exchange (amino ethyl resins) and mixed- mode exchange), thiophilic adsorption (e.g. with beta-mercaptoethanol and other SH ligands), hydrophobic interaction or aromatic adsorption chromatography (e.g. with phenyl-sepharose, aza-arenophilic resins, or m-aminophenylboronic acid), metal chelate affinity chromatography (e.g. with Ni(II)- and Cu(II)-affinity material), size exclusion chromatography, and electrophoretical methods (such as gel electrophoresis, capillary electrophoresis) (Vijayalakshmi, M.A., Appl. Biochem. Biotech. 75 (1998) 93-102). An example of a purification is described in Example 1 and the corresponding Figures 3 to 8.
One aspect of the invention is a pharmaceutical composition comprising an antibody according to the invention. Another aspect of the invention is the use of an antibody according to the invention for the manufacture of a pharmaceutical composition. A further aspect of the invention is a method for the manufacture of a pharmaceutical composition comprising an antibody according to the invention. In another aspect, the present invention provides a composition, e.g. a pharmaceutical composition, containing an antibody according to the present invention, formulated together with a pharmaceutical carrier.
One embodiment of the invention is the monovalent antigen binding protein according to the invention for the treatment of cancer.
Another aspect of the invention is said pharmaceutical composition for the treatment of cancer.
One embodiment of the invention is the monovalent antigen binding protein according to the invention for use in the treatment of cancer.
Another aspect of the invention is the use of an antibody according to the invention for the manufacture of a medicament for the treatment of cancer. Another aspect of the invention is method of treatment of patient suffering from cancer by administering an antibody according to the invention to a patient in the need of such treatment.
As used herein, "pharmaceutical carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Preferably, the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g. by injection or infusion).
A composition of the present invention can be administered by a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. To administer a compound of the invention by certain routes of administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation. For example, the compound may be administered to a subject in an appropriate carrier, for example, liposomes, or a diluent. Pharmaceutically acceptable diluents include saline and aqueous buffer solutions. Pharmaceutical carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is known in the art.
The phrases "parenteral administration" and "administered parenterally" as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intra-arterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion. The term cancer as used herein refers to proliferative diseases, such as lymphomas, lymphocytic leukemias, lung cancer, non small cell lung (NSCL) cancer, bronchioloalviolar cell lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, gastric cancer, colon cancer, breast cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, prostate cancer, cancer of the bladder, cancer of the kidney or ureter, renal cell carcinoma, carcinoma of the renal pelvis, mesothelioma, hepatocellular cancer, biliary cancer, neoplasms of the central nervous system (CNS), spinal axis tumors, brain stem glioma, glioblastoma multiforme, astrocytomas, schwanomas, ependymonas, medulloblastomas, meningiomas, squamous cell carcinomas, pituitary adenoma and Ewings sarcoma, including refractory versions of any of the above cancers, or a combination of one or more of the above cancers.
These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
Regardless of the route of administration selected, the compounds of the present invention, which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts. The composition must be sterile and fluid to the extent that the composition is deliverable by syringe. In addition to water, the carrier preferably is an isotonic buffered saline solution.
Proper fluidity can be maintained, for example, by use of coating such as lecithin, by maintenance of required particle size in the case of dispersion and by use of surfactants. In many cases, it is preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol or sorbitol, and sodium chloride in the composition.
As used herein, the expressions "cell", "cell line", and "cell culture" are used interchangeably and all such designations include progeny. Thus, the words "transformants" and "transformed cells" include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Variant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.
The term "transformation" as used herein refers to process of transfer of a vectors/nucleic acid into a host cell. If cells without formidable cell wall barriers are used as host cells, transfection is carried out e.g. by the calcium phosphate precipitation method as described by Graham and Van der Eh, Virology 52 (1978) 546. However, other methods for introducing DNA into cells such as by nuclear injection or by protoplast fusion may also be used. If prokaryotic cells or cells which contain substantial cell wall constructions are used, e.g. one method of transfection is calcium treatment using calcium chloride as described by Cohen, F.N, et al., PNAS. 69 (1972) 7110.
As used herein, "expression" refers to the process by which a nucleic acid is transcribed into mRNA and/or to the process by which the transcribed mRNA (also referred to as transcript) is subsequently being translated into peptides, polypeptides, or proteins. The transcripts and the encoded polypeptides are collectively referred to as gene product. If the polynucleotide is derived from genomic DNA, expression in a eukaryotic cell may include splicing of the mRNA.
A "vector" is a nucleic acid molecule, in particular self-replicating, which transfers an inserted nucleic acid molecule into and/or between host cells. The term includes vectors that function primarily for insertion of DNA or RNA into a cell (e.g., chromosomal integration), replication of vectors that function primarily for the replication of DNA or RNA, and expression vectors that function for transcription and/or translation of the DNA or RNA. Also included are vectors that provide more than one of the functions as described. An "expression vector" is a polynucleotide which, when introduced into an appropriate host cell, can be transcribed and translated into a polypeptide. An "expression system" usually refers to a suitable host cell comprised of an expression vector that can function to yield a desired expression product.
The following examples, sequence listing and figures are provided to aid the understanding of the present invention, the true scope of which is set forth in the appended claims. It is understood that modifications can be made in the procedures set forth without departing from the spirit of the invention. Description of the Sequence Listing
SEQ ID NO:l c-Met 5D5 MoAb ("wt") - modified heavy chain a) VL-CHl- CH2-CH3
SEQ ID NO:2 c-Met 5D5 MoAb ("wt") - modified heavy chain b) VH-CL- CH2-CH3
SEQ ID NO:3 IGF1R AK18 MoAb ("wt") - modified heavy chain a) VL-CHl- CH2-CH3
SEQ ID NO:4 IGF1R AK18 MoAb ("wt") - modified heavy chain b) VH-CL- CH2-CH3
SEQ ID NO:5 Her3 205 MoAb ("wt") - modified heavy chain a) VL-CH1-CH2- CH3
SEQ ID NO:6 Her3 205 MoAb ("wt") - modified heavy chain b) VH-CL-CH2- CH3
SEQ ID NO:7 c-Met 5D5 MoAb KiH modified heavy chain a) VL-CH1-CH2-
CH3 knob T366W, S354C
SEQ ID NO:8 c-Met 5D5 MoAb KiH modified heavy chain b) VH-CL-CH2-
CH3 hole L368A, Y407V, T366S , Y349C
SEQ ID NO:9 IGF1R AK18 MoAb KiH modified heavy chain a) VL-CHl-
CH2-CH3 knob T366W, S354C
SEQ ID NO:10 IGF1R AK18 MoAb KiH modified heavy chain b) VH-CL-CH2-
CH3 hole L368A, Y407V, T366S , Y349C
SEQ ID NO:ll Her3 205 MoAb KiH modified heavy chain a) VL-CH1-CH2-
CH3 knob T366W, S354C
SEQ ID NO:12 Her3 205 MoAb KiH modified heavy chain b) VH-CL-CH2-
CH3 hole L368A, Y407V, T366S , Y349C
Experimental procedures A. Materials and Methods:
Recombinant DNA techniques
Standard methods were used to manipulate DNA as described in Sambrook, J., et al., Molecular cloning: A laboratory manual; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). The molecular biological reagents were used according to the manufacturer's instructions. DNA and protein sequence analysis and sequence data management
General information regarding the nucleotide sequences of human immunoglobulins light and heavy chains is given in: Kabat, E.A. et al., (1991) Sequences of Proteins of Immunological Interest, Fifth Ed., NIH Publication No 91-3242. Amino acids of antibody chains are numbered according to EU numbering (Edelman, G.M., et al., PNAS 63 (1969) 78-85; Kabat, E.A., et al., (1991) Sequences of Proteins of Immunological Interest, Fifth Ed., NIH Publication No 91-3242). The GCG's (Genetics Computer Group, Madison, Wisconsin) software package version 10.2 and Infomax's Vector NTI Advance suite version 8.0 was used for sequence creation, mapping, analysis, annotation and illustration.
DNA sequencing
DNA sequences were determined by double strand sequencing performed at SequiServe (Vaterstetten, Germany) and Geneart AG (Regensburg, Germany). Gene synthesis
Desired gene segments were prepared by Geneart AG (Regensburg, Germany) from synthetic oligonucleotides and PCR products by automated gene synthesis. The gene segments which are flanked by singular restriction endonuclease cleavage sites were cloned into pGA18 (ampR) plasmids. The plasmid DNA was purified from transformed bacteria and concentration determined by UV spectroscopy. The
DNA sequence of subcloned gene fragments was confirmed by DNA sequencing. DNA sequences encoding for the two antibody chains (VH-CL-CH2-CH3 and VL-CH1-CH2-CH3) were prepared as whole fragments by gene synthesis with flanking 5'HpaI and 3'NaeI restriction sites. Gene Segments coding "knobs-into- hole", meaning one antibody heavy chain carrying a T366W mutation in the CH3 domain as well as a second antibody heavy chain carrying T366S, L368A and Y407V mutations in the CH3 domain were synthesized with 5 '-Bell and 3'-NaeI restriction sites. In a similar manner, DNA sequences coding "knobs-into-hole" antibody heavy chain carrying S354C and T366W mutations in the CH3 domain as well as a second antibody heavy chain carrying Y349C, T366S, L368A and Y407V mutations were prepared by gene synthesis with flanking Bell and Nael restriction sites. All constructs were designed with a 5 '-end DNA sequence coding for a leader peptide, which targets proteins for secretion in eukaryotic cells. Construction of the expression plasmids
A Roche expression vector was used for the construction of all antibody chains. The vector is composed of the following elements: an origin of replication, oriP, of Epstein-Barr virus (EBV),
- an origin of replication from the vector pUC18 which allows replication of this plasmid in E. coli
a beta-lactamase gene which confers ampicillin resistance in E. coli, the immediate early enhancer and promoter from the human cytomegalovirus (HCMV),
- the human 1 -immunoglobulin polyadenylation ("poly A") signal sequence, and
- unique Hpal, Bell, and Nael restriction sites.
The immunoglobulin genes in the order of VH-CL-CH2-CH3 and VL-CH1-CH2- CH3 as well as "knobs-into-hole" constructs were prepared by gene synthesis and cloned into pGA18 (ampR) plasmids as described. The pG18 (ampR) plasmids carrying the synthesized DNA segments and the Roche expression vector were digested either with Hpal and Nael or with Bell and Nael restriction enzymes (Roche Molecular Biochemicals) and subjected to agarose gel electrophoresis. Purified DNA segments were then ligated to the isolated Roche expression vector Hpal/Nael or Bcll/Nael fragment resulting in the final expression vectors. The final expression vectors were transformed into E. coli cells, expression plasmid DNA was isolated (Miniprep) and subjected to restriction enzyme analysis and DNA sequencing. Correct clones were grown in 150 ml LB-Amp medium, again plasmid DNA was isolated (Maxiprep) and sequence integrity confirmed by DNA sequencing.
Transient expression of immunoglobulin variants in HEK293 cells
Recombinant immunoglobulin variants were expressed by transient transfection of human embryonic kidney 293-F cells using the FreeStyle™ 293 Expression System according to the manufacturer's instruction (Invitrogen, USA). Briefly, suspension FreeStyle™ 293-F cells were cultivated in FreeStyle™ 293 Expression medium at 37°C/8% C02. Cells were seeded in fresh medium at a density of l-2xl06 viable cells/ml on the day of transfection. DNA-293fectin™ complexes were prepared in Opti-MEM® I medium (Invitrogen, USA) using 325 μΐ of 293fectin™ (Invitrogen, Germany) and 250 μg of each plasmid DNA in a 1 : 1 molar ratio for a 250 ml final transfection volume. Antibody containing cell culture supernatants were harvested 7 days after transfection by centrifugation at 14000 g for 30 minutes and filtered through a sterile filter (0.22 μπι). Supernatants were stored at -20°C until purification. Alternatively, antibodies were generated by transient transfection in HEK293-
EBNA cells. Antibodies were expressed by transient co-transfection of the respective expression plasmids in adherently growing HEK293- EBNA cells (human embryonic kidney cell line 293 expressing Epstein-Barr- Virus nuclear antigen; American type culture collection deposit number ATCC # CRL- 10852, Lot. 959 218) cultivated in DMEM (Dulbecco's modified Eagle's medium, Gibco) supplemented with 10% Ultra Low IgG FCS (fetal calf serum, Gibco), 2 mM L-Glutamine (Gibco), and 250 μg/ml Geneticin (Gibco). For transfection FuGE E™ 6 Transfection Reagent (Roche Molecular Biochemicals) was used in a ratio of FuGENE™ reagent (μΐ) to DNA (μ ) of 4: 1 (ranging from 3 : 1 to 6: 1). Proteins were expressed from the respective plasmids using an equimolar ratio of plasmids. Cells were feeded at day 3 with L- Glutamine ad 4 mM, Glucose [Sigma] and NAA [Gibco]. Bispecific antibody containing cell culture supernatants were harvested from day 5 to 11 after transfection by centrifugation and stored at -200C. General information regarding the recombinant expression of human immunoglobulins in e.g. FIEK293 cells is given in: Meissner, P. et al., Biotechnol.
Bioeng. 75 (2001) 197-203.
Purification of antibodies
Antibodies were purified from cell culture supernatants by affinity chromatography using Protein A-Sepharose™ (GE Healthcare, Sweden) and Superdex200 size exclusion chromatography. Briefly, sterile filtered cell culture supernatants were applied on a Hi Trap ProteinA HP (5 ml) column equilibrated with PBS buffer (10 mM Na2HP04, 1 mM KH2P04, 137 mM NaCl and 2.7 mM KC1, pH 7.4). Unbound proteins were washed out with equilibration buffer. Antibody and antibody variants were eluted with 0.1 M citrate buffer, pH 2.8, and the protein containing fractions were neutralized with 0.1 ml 1 M Tris, pH 8.5. Then, the eluted protein fractions were pooled, concentrated with an Amicon Ultra centrifugal filter device (MWCO: 30 K, Millipore) to a volume of 3 ml and loaded on a Superdex200 HiLoad 120 ml 16/60 or 26/60 gel filtration column (GE Healthcare, Sweden) equilibrated with 20mM Histidin, 140 mM NaCl, pH 6.0. Fractions containing purified antibodies with less than 5 % high molecular weight aggregates were pooled and stored as 1.0 mg/ml aliquots at -80°C.
Analysis of purified proteins
The protein concentration of purified protein samples was determined by measuring the optical density (OD) at 280 nm, using the molar extinction coefficient calculated on the basis of the amino acid sequence. Purity and molecular weight of antibodies were analyzed by SDS-PAGE in the presence and absence of a reducing agent (5 mM 1,4-dithiotreitol) and staining with Coomassie brilliant blue. The NuPAGE® Pre-Cast gel system (Invitrogen, USA) was used according to the manufacturer's instruction (4-12 % Tris-Glycine gels). The aggregate content of antibody samples was analyzed by high-performance SEC using a Superdex 200 analytical size-exclusion column (GE Healthcare, Sweden) in 200 mM KH2P04, 250 mM KC1, pH 7.0 running buffer at 25°C. 25 μg protein were injected on the column at a flow rate of 0.5 ml/min and eluted isocratic over 50 minutes. For stability analysis, concentrations of 1 mg/ml of purified proteins were incubated at 4°C and 40°C for 7 days and then evaluated by high-performance SEC (e.g. FIP SEC Analysis (Purified Protein). The integrity of the amino acid backbone of reduced bispecific antibody light and heavy chains was verified by NanoElectrospray Q-TOF mass spectrometry after removal of N-glycans by enzymatic treatment with Peptide-N-Glycosidase F (Roche Molecular Biochemicals).
Mass spectrometry and SEC-MALLS
Mass spectrometry
The total deglycosylated mass of antibodies was determined and confirmed via electrospray ionization mass spectrometry (ESI-MS). Briefly, 100 μg purified antibodies were deglycosylated with 50 mU N-Glycosidase F (PNGaseF, ProZyme) in 100 mM KH2P04/K2HP04, pH 7 at 37°C for 12-24 h at a protein concentration of up to 2 mg/ml and subsequently desalted via FIPLC on a Sephadex G25 column (GE Healthcare). The mass of the respective heavy and light chains was determined by ESI-MS after deglycosylation and reduction. In brief, 50 μg antibody in 115 μΐ were incubated with 60 μΐ 1M TCEP and 50 μΐ 8 M Guanidine- hydrochloride subsequently desalted. The total mass and the mass of the reduced heavy and light chains was determined via ESI-MS on a Q-Star Elite MS system equipped with a NanoMate source. The mass range recorded depends on the samples molecular weight. In general for reduced antibodies the mass range was set from 600-2000 m/z and for non reduced antibodies or bispecific molecules from 1000-3600 m/z.
SEC-MALLS SEC -MALLS (size-exclusion chromatography with multi-angle laser light scattering) was used to determine the approximate molecular weight of proteins in solution. According to the light scattering theory, MALLS allows molecular weight estimation of macromolecules irrespective of their molecular shape or other presumptions. SEC-MALLS is based on a separation of proteins according to their size (hydrodynamic radius) via SEC chromatography, followed by concentration- and scattered light-sensitive detectors. SEC -MALLS typically gives rise to molecular weight estimates with an accuracy that allows clear discrimination between monomers, dimers, trimers etc., provided the SEC separation is sufficient.
In this work, the following instrumentation was used: Dionex Ultimate 3000 HPLC; column: Superose6 10/300 (GE Healthcare); eluent: 1 x PBS; flow rate: 0.25 mL/min; detectors: OptiLab REX (Wyatt Inc., Dernbach), MiniDawn Treos (Wyatt Inc., Dernbach). Molecular weights were calculated with the Astra software, version 5.3.2.13. Protein amounts between 50 and 150 μg were loaded on the column and BSA (Sigma Aldrich) was used as a reference protein. Dynamic Light Scattering (DLS) timecourse
Samples (30 μΕ) at a concentration of approx. 1 mg/mL in 20 mM His/HisCl, 140 mM NaCl, pH 6.0, were filtered via a 384-well filter plate (0.45 μπι pore size) into a 384-well optical plate (Corning) and covered with 20 μΕ paraffin oil (Sigma). Dynamic light scattering data were collected repeatedly during a period of 5 days with a DynaPro DLS plate reader (Wyatt) at a constant temperature of 40 °C. Data were processed with Dynamics V6.10 (Wyatt). c-Met phosphorylation assay
5xl0e5 A549 cells were seeded per well of a 6-well plate the day prior HGF stimulation in RPMI with 0.5 % FCS (fetal calf serum). The next day, growth medium was replaced for one hour with RPMI containing 0.2 % BSA (bovine serum albumine). 12,5 μg/mL of the bispecific antibody was then added to the medium and cells were incubated for 15 minutes upon which HGF (R&D, 294-HGN) was added for further 10 minutes in a final concentration of 25 ng/mL. Cells were washed once with ice cold PBS containing 1 mM sodium vanadate upon which they were placed on ice and lysed in the cell culture plate with 100 μΙ_, lysis buffer (50 mM Tris-Cl pH7.5, 150 mM NaCl, 1 % P40, 0.5 % DOC, aprotinine, 0.5 mM PMSF, 1 mM sodium -vanadate). Cell lysates were transferred to eppendorf tubes and lysis was allowed to proceed for 30 minutes on ice. Protein concentration was determined using the BCA method (Pierce). 30-50 μg of the lysate was separated on a 4-12% Bis-Tris NuPage gel (Invitrogen) and proteins on the gel were transferred to a nitrocellulose membrane. Membranes were blocked for one hour with TBS-T containing 5 % BSA and developed with a phospho- specific c-Met antibody directed against Y1349 (Epitomics, 2319-1) according to the manufacturer's instructions. Immunoblots were reprobed with an antibody binding to unphosphorylated c-Met (Santa Cruz, sc-161).
Her3 (ErbB3) phosphorylation assay 2xl0e5 MCF7 cells were seeded per well of a 12-well plate in complete growth medium (RPMI 1640, 10 % FCS). Cells were allowed to grow to 90 % confluency within two days. Medium was then replaced with starvation medium containing 0.5 % FCS. The next day the respective antibodies were supplemented at the indicated concentrations 1 hour prior addition of 500 ng/mL Heregulin (R&D). Upon addition of Heregulin cells were cultivated further 10 minutes before the cells were harvested and lysed. Protein concentration was determined using the BCA method (Pierce). 30-50 μg of the lysate was separated on a 4-12% Bis-Tris NuPage gel (Invitrogen) and proteins on the gel were transferred to a nitrocellulose membrane. Membranes were blocked for one hour with TBS-T containing 5 % BSA and developed with a phospho-specific Her3/ErbB3 antibody specifically recognizing Tyrl289 (4791, Cell Signaling).
FACS
A549 were detached and counted. 1.5xl0e5 cells were seeded per well of a conical 96-well plate. Cells were spun down (1500 rpm, 4°C, 5 min) and incubated for 30 min on ice in 50 μΙ_, of a dilution series of the respective bispecific antibody in PBS with 2 % FCS (fetal calf serum). Cells were again spun down and washed once with 200 μΙ_, PBS containing 2 % FCS followed by a second incubation of 30 min with 5 μg/mL of Alexa488-coupled antibody directed against human Fc which was diluted in PBS containing 2 % FCS (Jackson Immunore search, 109116098). Cells were spun down washed twice with 200 μΙ_, PBS containing 2 % FCS, resuspended in BD CellFix solution (BD Biosciences) and incubated for at least 10 min on ice. Mean fluorescence intensity (mfi) of the cells was determined by flow cytometry (FACS Canto, BD). Mfi was determined at least in duplicates of two independent stainings. Flow cytometry spectra were further processed using the FlowJo software (TreeStar). Half-maximal binding was determined using XLFit 4.0 (IDBS) and the dose response one site model 205.
Surface Plasmon Resonance
The binding properties of monovalent anti-IGF-lR antibodies were analyzed by surface plasmon resonance (SPR) technology using a Biacore instrument (Biacore,
GE-Healthcare, Uppsala). This system is well established for the study of molecule interactions. It allows a continuous real-time monitoring of ligand/analyte bindings and thus the determination of association rate constants (ka), dissociation rate constants (kd), and equilibrium constants (KD) in various assay settings. SPR- technology is based on the measurement of the refractive index close to the surface of a gold coated biosensor chip. Changes in the refractive index indicate mass changes on the surface caused by the interaction of immobilized ligand with analyte injected in solution. If molecules bind to immobilized ligand on the surface the mass increases, in case of dissociation the mass decreases. For capturing anti-human IgG antibody was immobilized on the surface of a CM5 biosensorchip using amine-coupling chemistry. Flow cells were activated with a 1 : 1 mixture of 0.1 M N-hydroxysuccinimide and 0.1 M 3-(N ,N- dimethylamino)propyl-N- ethylcarbodiimide at a flow rate of 5 μΐ/min. Anti-human IgG antibody was injected in sodium acetate, pH 5.0 at 10 μg/ml. A reference control flow cell was treated in the same way but with vehicle buffers only instead of the capturing antibody. Surfaces were blocked with an injection of 1 M ethanolamine/HCl pH 8.5. The IGF-1R antibodies were diluted in HBS-P and injected. All interactions were performed at 25°C (standard temperature). The regeneration solution of 3 M Magnesium chloride was injected for 60 s at 5 μΐ/min flow to remove any non- covalently bound protein after each binding cycle. Signals were detected at a rate of one signal per second. Samples were injected at increasing concentrations. Fig. 17 depicts the applied assay format. A low loading density with capturing antibody density and IGF-1R antibody was chosen to enforce monovalent binding.
For affinity measurements, human Fcgllla was immobilized to a CM-5 sensor chip by capturing the His-tagged receptor to an anti-His antibody (Penta-His, Qiagen) which was coupled to the surface by standard amine-coupling and blocking chemistry on a SPR instrument (Biacore T100). After FcgRIIIa capturing, 50 nM IGF1R antibodies were injected at 25°C at a flow rate of 5 μΕ/πήη. The chip was afterwards regenerated with a 60s pulse of 10 mM glycine-HCl, pH 2.0 solution. Antibody-dependent cellular cytotoxicity assay (ADCC)
Determination of antibody mediated effector functions by anti-IGF-IR antibodies. In order to determine the capacity of the generated antibodies to elicit immune effector mechanisms antibody-dependent cell cytotoxicity (ADCC) studies were performed. To study the effects of the antibodies in ADCC, DU145 IGF-IR expressing cells (1 x 106 cells /ml) were labeled with 1 μΐ per ml BATDA solution
(Perkin Elmer) for 25 minutes at 37°C in a cell incubator. Afterwards, cells were washed four times with 10 ml of RPMI-FM/PenStrep and spun down for 10 minutes at 200 x g. Before the last centrifugation step, cell numbers were determined and cells diluted to lxl 0e5 cells/ml in RPMI-FM/Pen Strep medium from the pellet afterwards. The cells were plated 5,000 per well in a round bottom plate, in a volume of 50 μΐ. HuMAb antibodies were added at a final concentration ranging from 25-0.1 μg/ml in a volume of 50 μΐ cell culture medium to 50 μΐ cell suspension. Subsequently, 50 μΐ of effector cells, freshly isolated PBMC were added at an E:T ratio of 25: 1. The plates were centrifuged for 1 minutes at 200 x g, followed by an incubation step of 2 hours at 37°C. After incubation the cells were spun down for 10 minutes at 200 x g and 20 μΐ of supernatant was harvested and transferred to an Optiplate 96-F plate. 200 μΐ of Europium solution (Perkin Elmer, at room temperature) were added and plates were incubated for 15 minutes on a shaker table. Fluorescence is quantified in a time-resolved fluorometer (Victor 3, Perkin Elmer) using the Eu-TDA protocol from Perkin Elmer. The magnitude of cell lysis by ADCC is expressed as % of the maximum release of TDA fluorescence enhancer from the target cells lysed by detergent corrected for spontaneous release of TDA from the respective target cells.
IGF-IR internalization assay The binding of antibodies and antigen binding protein according the invention to the IGF-IR results in internalization and degradation of the receptor. This process can be monitored by incubating IGF-IR expressing HT29 CRC cells with IGF-IR targeting antibodies followed by a quantification of remaining IGF-IR protein levels in cell lysates by ELISA. For this purpose, HT29 cells at 1,5 xl04 cells/well were incubated in a 96 well MTP in RPMI with 10 % FCS over night at 37°C and 5 % C02 in order to allow attachment of the cells. Next morning, the medium was aspirated and 100 μΐ anti IGF-IR antibody diluted in RPMI + 10 % FCS was added in concentrations from 10 nM to 2 pM in 1 :3 dilution steps. The cells were incubated with antibody for 18 hours at 37°C. Afterwards, the medium was again removed and 120 μΐ MES lysis buffer (25 mM MES pH 6.5 + Complete) were added.
For ELISA, 96-Well streptavidin coated polystyrene plates (Nunc) were loaded with 100 μΐ MAK<hu IGF-lRa>hu-la-IgG-Bi (Ch. lO) diluted 1 :200 in 3%BSA/PBST (final concentration 2.4 μg/ml) and incubated under constant agitation for 1 hour at room temperature. Afterwards, the well content was removed and each well was washed three times with 200 μΐ PBST. 100 μΐ of the cell lysate solution were added per well, again incubated for 1 hour at room temperature on a plate shaker, and washed three times with 200 μΐ PBST. After removal of the supernatant, 100 μΐ/well PAK<human IGF- lRa>Ra-C20-IgG (Santa Cruz #sc-713) diluted 1 :750 in 3 % BSA/PBST was added followed by the same incubation and washing intervals as described above. In order to detect the specific antibody bound to IGF-IR, 100 μΐ/well of a polyclonal horse-radish-peroxidase-coupled rabbit antibody (Cell Signaling #7074) diluted 1 :4000 in 3 % BSA/PBST were added. After another hour, unbound antibody was again removed by washing thoroughly 6 times as described above. For quantification of bound antibody, 100 μΐ/well 3,3'- 5,5'-Tetramethylbenzidin (Roche, BM-Blue ID.-Nr. l 1484281) was added and incubated for 30 minutes at room temperature. The colorigenic reaction is finally stopped by adding 25 μΐ/well 1M H2S04 and the light absorption is measured at 450 nm wavelength. Cells not treated with antibody are used as a control for 0% downregulation, lysis buffer as background control.
IGF-IR autophosphorylation assay (IGF-1 stimulation)
Targeting IGF-IR by IGF-IR antibodies results in inhibition of IGF-1 induced autophosphorylation. We investigated the inhibition of autophosphorylation of the monovalent IGF-IR antibody without knobs-into-holes compared to the parental
IGF.-1R IgGl antibody. For this purpose 3T3-IGF-1R cells, a murine fibroblast cell line overexpressing human IGF-IR, were treated for 10 minutes with 10 nM recombinant human IGF-1 in the presence of different concentrations of monovalent and bivalent IGF-IR antibody. After lysis of the cells, the levels of phosphorylated IGF-IR protein were determined by a phospho-IGF-lR specific ELISA, combining a human IGF-1R specific capture antibody and a phospho- Tyrosine specific detection antibody.
Determination of PK properties: Single Dose Kinetics in Mice Methods Animals: MRI mice, female, fed, 23-32 g body weight at the time point of compound administration.
Study protocol:
For a single i.v. dose of 10 mg/kg the mice were allocated to 3 groups with 2-3 animals each. Blood samples are taken from group 1 at 0.5, 168 and 672 hours, from group 2 at 24 and 336 hours and from group 3 at 48 and 504 hours after dosing.
Blood samples of about 100 μΙ_, were obtained by retrobulbar puncture. Serum samples of at least 40 μΐ were obtained from blood after 1 hour at room temperature by centrifugation (9300xg) at room temperature for 2.5 min. Serum samples were frozen directly after centrifugation and stored frozen at -20°C until analysis.
Analytics:
The concentrations of the human antibodies in mice serum were determined with an enzyme linked immunosorbent assay (ELISA) using 1 % mouse serum.
Biotinylated monoclonal antibody against human Fey (mAb<hFcypAN >IgG-Bi) was bound to streptavidin coated microtiterplates in the first step. In the next step serum samples (in various dilutions) and reference standards, respectively, were added and bound to the immobilized
Figure imgf000041_0001
Then digoxigenylated monoclonal antibody against human Fey (mAb<hFcyPAN>IgG-Dig) was added. The human antibodies were detected via anti-Dig-horseradish-peroxidase antibody- conjugate. ABTS-solution was used as the substrate for horseradish-peroxidase. The specificity of the used capture and detection antibody, which does not cross react with mouse IgG, enables quantitative determination of human antibodies in mouse serum samples. Calculations:
The pharmacokinetic parameters were calculated by non-compartmental analysis, using the pharmacokinetic evaluation program WinNonlin™, version 5.2.1.
Table 1: Computed Pharmacokinetic Parameters:
Figure imgf000042_0001
Abbreviations of Pharmacokinetic Units Pharmacokinetic Parameters Parameters
VZ terminal distribution volume L/kg
CL/F total clearance after non IV mL/min/kg
routes or after IV route of
prodrug
VZ/F terminal distribution volume L/kg
after non IV routes or after
IV route of prodrug
MRT INF mean residence time h
(extrapolated)
MRT LST mean residence time h
(observed)
HALFLIFE Z terminal halflife h
F bioavailability after non IV %
routes or after IV route of
prodrug
The following pharmacokinetic parameters were used for assessing the human antibodies:
• The initial concentration estimated for bolus IV models (CO).
· The maximum observed concentration (Cmax), occurring at (Tmax).
• The time of maximum observed concentration (Tmax).
• The area under the concentration/time curve AUC(O-inf) was calculated by linear trapezoidal rule (with linear interpolation) from time 0 to infinity.
• The apparent terminal half-life (T i/2) was derived from the equation: Ti/2
Figure imgf000043_0001
• Total body clearance (CL) was calculated as Dose/AUC(0-inf).
• Volume of distribution at steady state (Vss), calculated as MRT(O-inf) x CL (MRT(O-inf), defined as AUMC(0-inf)/AUC(0-inf). B. Examples:
Example 1:
Generation of monovalent antibody
We designed monovalent antigen binding proteins against c-Met (SEQ ID NO: l and SEQ ID NO:2; c-Met 5D5 MoAb ("wt")), IGF-IR (SEQ ID NO:3 and SEQ ID NO:4.; IGF1R AK18 MoAb ("wt")) and HER3 (SEQ ID N0 5 and SEQ ID NO:6; Her3 205 MoAb ("wt")) based on the design principle as shown in Fig. 1A. In addition, the same monovalent antibodies against c-Met (SEQ ID NO: 7 and SEQ ID NO:8; c-Met 5D5 MoAb KiH), IGF-1R (SEQ ID NO:9 and SEQ ID NO: 10; IGF1R AK18 MoAb KiH) and HER3 (SEQ ID NO: l l and SEQ ID NO: 12; Her3
205 MoAb KiH) were designed incorporating mutations in the CH3 parts to support heterodimerization by the knobs-into-holes (KiH) technology (Merchant, A.M., et al., Nat. Biotechnol. 16 (1998) 677-681). All monovalent antibodies were transiently expressed in HEK293 cells as described above, and subsequently purified via Protein A affinity chromatography followed by size exclusion.
Fig. 3-5 depict the chromatograms of the size exclusion chromatography of the three different monovalent antigen binding proteins without knobs-into-holes as well as the corresponding SDS-PAGE under non-reducing and reducing conditions.
The size of the different peaks was confirmed by SEC -MALLS (Fig. 4C) and the identity of the isolated proteins was confirmed by mass spectrometry. Taken together these data show that the CHl-CL crossover allows the easy purification of a pure monovalent antibody (peak 3 in Fig. 3, peak 2 in Fig. 4, peak 3 in Fig. 5) without the need to include knobs-into-holes into the Fc proportion to enforce heterodimerization. This product can be baseline separated by size exclusion chromatopgraphy from a bivalent, dimeric form of the antigen binding protein
(MoAb-Dimer) as byproduct as depicted in Fig. 1C that precedes the peak for the monovalent antigen binding protein. Most of the cysteine bridges in the bivalent, dimeric construct which crosslink the dimer are not closed which leads to the observation that under non-reducing conditions in SDS-PAGE a main product is observed at 100 kDa and not as would be expected at 200 kDa (peak 2 in Fig 3, peak 1 in Fig 4, peak 2 in Fig. 5). The additional peak (peak 1 in Fig3, peak 1 in Fig 5) observable for c-Met 5D5 MoAb ("wt") and Her3 205 MoAb ("wt") depict higher molecular weight aggregates. This is in contrast to the monovalent antibody as described in WO/2007/048037 where the mixture of heterodimeric and homodimeric monovalent antibody (Fig.2) cannot be separated by conventional means.
Fig. 6-5 depict the chromatograms of the size exclusion chromatography of the three different monovalent antigen binding proteins with knobs-into-holes as well as the corresponding SDS-PAGE under non-reducing and reducing conditions. By applying this knobs-into-holes technology for Fc-heterodimerization the relative yields of heterodimeric monovalent antigen binding protein compared to the bivalent MoAb-Dimer could be enhanced as shown in Figs. 6-8.
Example 2:
c-Met phosphorylation (Figure 9) c-Met has been described as oncogenic receptor tyrosine kinase which upon deregulation fosters cellular transformation. Antibodies targeting c-Met have been described in the past. MetMAb/OA-5D5 (Genentech) is one such antibody inhibiting ligand-dependent activation of c-Met. As the bivalent antibody is activatory, it was engineered as one-armed construct in which one FAb arm was deleted leaving a monovalent antibody. To demonstrate similar efficacy of OA-5D5 and monovalent antigen binding protein c-Met MoAb (c-Met 5D5 MoAb ("wt")), A549 cells were incubated with the respective antibodies in the absence or presence of HGF, the only known ligand of c-Met. In contrast to the bivalent MetMAb (MetMAb (biv. Ab)), neither of the antibodies has activatory potential in the absence of HGF. Furthermore, as to be expected c-Met MoAb (c-Met 5D5 MoAb ("wt")) is as efficacious in suppressing ligand-induced receptor phosphorylation as OA-5D5. An unspecific human IgG control antibody has no influence on HGF-dependent c-Met receptor phosphorylation.
Example 3:
Cellular binding to c-Met expressing cell lines (Figure 10)
Cellular binding of monovalent antigen binding protein c-Met MoAb (c-Met 5D5 MoAb ("wt")) was demonstrated on A549 cells. A cell suspension was incubated with a threefold dilution series (100 - 0.0003 μg/mL) of the indicated antibodies. Bound antibodies were visualized with a secondary Alexa488-coupled antibody binding to the constant region of human immunoglobulin. Fluorescence intensity of single cells was measured on a FACS Canto (BD Biosciences) flow cytometer. No differences in binding of c-Met MoAb and OA-5D5 are observable indicating that the c-Met MoAb (c-Met 5D5 MoAb ("wt")) efficiently binds to cell surface c-Met. half-maximal binding
OA-5D5: 1.45 nM
c-Met MoAb 1.57 nM Example 4:
IGF-IR binding affinity (Figure 11)
IGF-IR extracellular domain binding of the monovalent antigen binding protein IGF1R MoAb (IGF1R AK18 MoAb ("wt")) was compared to the binding of the parental <IGF-1R> IgGl antibody by surface Plasmon resonance (SPR). Fig. 17 depicts the scheme of the SPR assay to determine the monovalent affinity. The analysis (double determination) showed that the IGF-IR binding affinity is retained in the monovalent antibody. k(on) k(off) KD
Mab (IGF-IR) 1.74E+06 6.63E-03 3.80E-09
MoAb (IGF-IR) 1.3E+06 2.9E-03 2.16E-09
MoAb (IGF-IR) 2.4E+06 3.3E-03 1.4E-09
Example 5:
Cellular binding to IGF-IR expressing cell lines (Figure 12)
Cellular binding of monovalent antigen binding protein IGF1R MoAb (IGF1R AK18 MoAb ("wt")) was demonstrated on A549 cells. A549 cells in the logarithmic growth phase were detached with accutase (Sigma) and 2xl0e5 cells were used for each individual antibody incubation. MoAb was added in a threefold dilution series (100 - 0.0003 μg/mL). Bound antibodies were visualized with a secondary Alexa488-coupled antibody (5 μg/mL) binding to the constant region of human immunoglobulin. Dead cells were stained with 7-AAD (BD) and excluded from the analysis. Fluorescence intensity of single cells was measured on a FACS Canto (BD Biosciences) flow cytometer. The data show that there is a difference in halfmaximal binding to cells due to the fact that the IGF-IR IgGl antibody can bind with two arms to IGF-IR on cells and exhibits an avidity effect whereas the monovalent antibody can only bind with one arm. half-maximal binding
IGF-IR (150kDa): 0.76 nM
IGF-IR MoAb (lOOkDa): 5.65 nM Example 6:
ADCC induction (Figure 13)
Donor-derived peripheral blood mononuclear cells (PBMC) can be used to measure effector cell recruitment by non-glycoengineered and glycoengineered antibodies to cancer cells. Lysis of cancer cells correlates with NK cell mediated cytotoxicity and is proportional to the antibody's ability to recruit NK cells. In this particular setting, DU145 prostate cancer cells were incubated in a 1 :25 ratio (DU145:PBMC) ratio with PBMC in the absence or presence of the respective antibodies. After 2 hours cellular lysis was determined using the BATD A/Europium system as described above. The magnitude of cell lysis by ADCC is expressed as % of the maximum release of TDA fluorescence enhancer from the target cells lysed by detergent corrected for spontaneous release of TDA from the respective target cells. The data show that despite the lower apparent affinity for IGF-IR on cells the non-glycoengineered monovalent antigen binding protein IGF 1R MoAb (IGF 1R AKl 8 MoAb ("wt")) is superior in inducing ADCC at high concentrations compared to the non-glycoengineered parent IGF-IR antibody. Surprisingly, the non-glycoengineered monovalent antigen binding protein IGFIR MoAb (IGFIR AKl 8 MoAb ("wt")) is even superior in inducing ADCC at high concentrations compared to the glycoengineered parent IGF-IR antibody that shows a drop in the ADCC assay going to high concentrations.
Monovalent IGF-IR antigen binding proteins (IGFIR AKl 8 MoAb ("wt")) that mediate reduced IGF-IR internalization and enhanced ADCC due to reduced internalization (see below) and double the amount of Fc-parts to engage FcRIIIa receptors on effector cells may thus represent a promising approach to target IGF-IR on cancer cells; as non-glycoengineered or as glycoengineered antibodies.
Example 7:
IGF-IR internalization assay (Figure 14)
Targeting IGF-IR by bivalent parent IGF-IR antibodies results in internalization of IGF-IR. We investigated the internalization properties of the monovalent antigen binding protein IGFIR MoAb (IGFIR AKl 8 MoAb ("wt")). The data in Fig. 14 show that internalization of IGF-IR is reduced in terms of potency and absolute internalization when the monovalent antigen binding protein IGFIR MoAb (IGFIR AKl 8 MoAb ("wt")) is bound. The targeting IGF-IR on tumor cells by bivalent IGF-IR antibodies results in internalization and lysosomal degradation of IGF-IR. We investigated the internalization properties of the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")). For this purpose, HT29 colon cancer cells were treated for 18 hours with different concentrations of monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) and bivalent parent IGF-IR antibody. After lysis of the cells, the remaining levels of IGF-IR protein were determined by IGF-IR specific ELISA.
The data in Fig. 20 show that internalization of IGF-IR is reduced in terms of potency and absolute internalization when the monovalent antigen binding protein
IGFIR MoAb (IGFIR AK18 MoAb ("wt")) is bound. Maximum internalization was reduced from 83 % (IgGl) to 48 % (MoAb), the concentration required for halfmax inhibition increased from 0.027 nM (IgGl) to 1.5 nM (MoAb).
Example 8:
IGF-IR autophosphorylation (IGF-1 stimulation) (Figure 15)
Targeting IGF-IR by IGF-IR antibodies results in inhibition of IGF-1 induced autophosphorylation. We investigated the inhibition of autophosphorylation of the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) compared to the parent IGF-IR IgGl antibody. For this purpose 3T3-IGF-1R cells, a murine fibroblast cell line overexpressing human IGF-IR, were treated for 10 minutes with 10 nM recombinant human IGF-1 in the presence of different concentrations of monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) and bivalent parent IGF-IR antibody. After lysis of the cells, the levels of phosphorylated IGF-IR protein were determined by a phospho-IGF-lR specific ELISA, combining a human IGF-IR specific capture antibody and a phospho-Tyrosine specific detection antibody.
The data in Fig. 15 show that the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) can inhibit IGF-1 induced autophosphorylation although at a higher concentration due to monovalent binding on cells (lack of avidity effect due to bivalent binding). The concentration required for halfmax inhibition increased from 1.44 nM (IgGl) to 27.9 nM (MoAb). Since the difference in IC50 values of monovalent and bivalent antibodies is slightly less pronounced in IGF-IR autophosphorylation (19 fold) compared to IGF-IR downregulation (59 fold), the reduced impact of monovalent binding on downregulation cannot solely explained by reduced affinity to the IGF-1R.
Example 9:
Stability of IGF-1R monovalent antigen binding protein (Figure 16) The stability of the monovalent antigen binding protein IGFIR MoAb (IGFIR
AK18 MoAb ("wt")) was studied by dynamic light scattering as described above. Briefly, aggregation tendency of the monovalent antigen binding protein IGFIR MoAb was assessed by a DLS timecourse experiment at 40°C. Over a period of five days, no measurable increase in the hydrodynamic radius (Rh) of the isolated monomer fraction (c.f Figure 10) could be detected (Fig. 22).
Example 10:
Determination of PK properties
Pharmacokinetic properties of the monovalent antibodies according to the invention were determined in MRI mice, female, fed, 23-32 g body weight at the time point of compound administration mice in a single dose PK study, as described above (in the methods sections).
The PK properties are given in the subsequent table and indicate that the monovalent antigen binding protein IGFIR MoAb (IGFIR AK18 MoAb ("wt")) has improved PK properties compared to the parental <IGF-1R> IgGl antibody.
Table 2: Summary of PK properties
Figure imgf000049_0001
Example 11:
ESI-MS experiment IGF-1R MoAb (Figure 17 and 18)
The monovalent antigen binding protein IGF1R MoAb (IGF1R AK18 MoAb ("wt")) was transiently expressed and purified via Protein A affinity and size exclusion chromatography. After preparative SEC the antibody eluted within two separate peaks (peak 1 and peak 2), which were collected. Analytical SEC from the fraction 2 (peak 2) corresponds to a molecular weight of 100 kDa indicating a defined monomer. SEC-MALS confirmed the initial SEC result and shows for the fraction 2 (monomer,) a MW of 99.5 kDa. SDS-PAGE analysis of this fraction under denaturing and reducing conditions shows one major band with an apparent molecular weight of 50-60 kDa. Under non reducing conditions fraction 2 (monomer) shows a major band around a MW of 100 kDa.
Fraction 1= 165 mL
Fraction 2= 190 mL ESI-MS spectra of deglycosylated MoAbs from fraction 2 show one peak series corresponding to a monomer with a mass of 98151 Da.
Table 3: Summary of MS data from non reducing ESI-MS measurements from fraction 2.
Figure imgf000050_0001
MS measurements under reducing conditions of fraction 2 show the correct sequence and expression of the construct. The MS data from fraction 2 show two different heavy chains with a molecular weight of 47959 Da and 50211 Da in approximately equal amounts.
Table 4: Summary of MS data from reducing ESI-MS measurements under reducing conditions from fraction 2.
Fraction Molecular weight, heavy Molecular weight, heavy chain 1 (theor. 50226 Da) chain 2
(theor. 47961 Da)
Fraction 2 50211 Da (pyro Glu at N- 47959 Da
term.) Example 12:
Production of glycoengineered antigen binding proteins
For the production of the glycoengineered antigen binding protein, HEK-EBNA cells are transfected, using the calcium phosphate method, with four plasmids. Two encoding the antibody chains, one for a fusion GnTIII polypeptide expression (a GnT-III expression vector), and one for mannosidase II expression (a Golgi mannosidase II expression vector) at a ratio of 4:4: 1 : 1, respectively. Cells are grown as adherent monolayer cultures in T flasks using DMEM culture medium supplemented with 10 % FCS, and are transfected when they are between 50 and 80% confluent. For the transfection of a T150 flask, 15 million cells are seeded 24 hours before transfection in 25 ml DMEM culture medium supplemented with FCS (at 10 % V/V final), and cells are placed at 37°C in an incubator with a 5% C02 atmosphere overnight. For each T150 flask to be transfected, a solution of DNA, CaCl2 and water is prepared by mixing 94 μg total plasmid vector DNA divided equally between the light and heavy chain expression vectors, water to a final volume of 469 μΐ and 469 μΐ of a 1M CaCl2 solution. To this solution, 938 μΐ of a 50 mM HEPES, 280 mM NaCl, 1.5 mM Na2HP04 solution at pH 7.05 are added, mixed immediately for 10 sec and left to stand at room temperature for 20 sec. The suspension is diluted with 10 ml of DMEM supplemented with 2 % FCS, and added to the T150 in place of the existing medium. Then additional 13 ml of transfection medium are added. The cells are incubated at 37°C, 5 % C02 for about 17 to 20 hours, then medium is replaced with 25 ml DMEM, 10 % FCS. The conditioned culture medium is harvested approx. 7 days post-media exchange by centrifugation for 15 min at 210 x g, the solution is sterile filtered (0.22 um filter) and sodium azide in a final concentration of 0.01 % w/v is added, and kept at 4°C.

Claims

Patent Claims
A monovalent antigen binding protein comprising a) a modified heavy chain of an antibody which specifically binds to an antigen, wherein the VH domain is replaced by the VL domain of said antibody; and
b) a modified heavy chain of said antibody, wherein the CHI domain is replaced by the CL domain of said antibody.
The monovalent antigen binding protein according to claim 1, characterized in that the CH3 domain of the modified heavy chain of the antibody of a) and the CH3 domain of the modified heavy chain of the antibody of b) each meet at an interface which comprises an original interface between the antibody CH3 domains;
wherein said interface is altered to promote the formation of the monovalent antigen binding protein, wherein the alteration is characterized in that: i) the CH3 domain of one heavy chain is altered,
so that within the original interface the CH3 domain of one heavy chain that meets the original interface of the CH3 domain of the other heavy chain within the monovalent antigen binding protein,
an amino acid residue is replaced with an amino acid residue having a larger side chain volume, thereby generating a protuberance within the interface of the CH3 domain of one heavy chain which is positionable in a cavity within the interface of the CH3 domain of the other heavy chain
and
ii) the CH3 domain of the other heavy chain is altered,
so that within the original interface of the second CH3 domain that meets the original interface of the first CH3 domain within the monovalent antigen binding protein,
an amino acid residue is replaced with an amino acid residue having a smaller side chain volume, thereby generating a cavity within the interface of the second CH3 domain within which a protuberance within the interface of the first CH3 domain is positionable.
3. The monovalent antigen binding protein according to claim 2, characterized in that
said amino acid residue having a larger side chain volume is selected from the group consisting of arginine (R), phenylalanine (F), tyrosine (Y), tryptophan (W), and said amino acid residue having a smaller side chain volume is selected from the group consisting of alanine (A), serine (S), threonine (T), valine (V).
4. The monovalent antigen binding protein according to claim 3, characterized in that
both CH3 domains are further altered by the introduction of cysteine (C) as amino acid in the corresponding positions of each CH3 domain such that a disulfide bridge between both CH3 domains can be formed.
5. The monovalent antigen binding protein according to claims 1 to 4, characterized in that is of human IgGl isotype.
6. The monovalent antigen binding protein according to claim 1, characterized in comprising a) a modified heavy chain comprising the amino acid sequence of SEQ ID NCv l; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:2; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:3; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:4; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:5; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:6; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 7; and b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO:8; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 9; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 10; or a) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 11; and
b) a modified heavy chain comprising the amino acid sequence of SEQ ID NO: 12.
The monovalent antigen binding protein according to claims 1, 2, 3, 4 or 6, characterized in that the modified heavy chains of a) and b) are of IgGl isotype, and the antigen binding protein is afucosylated with an amount of fucose of 80 % or less of the total amount of oligosaccharides (sugars) at Asn297 is of human IgGl isotype.
A pharmaceutical composition of a monovalent antigen binding protein according to claims 1 to 7.
A pharmaceutical composition comprising a monovalent antigen binding protein according to claims 1 to 7 and at least one pharmaceutically acceptable excipient.
The monovalent antigen binding protein according to claims 1 to 7 for use in the treatment of cancer.
Use of the monovalent antigen binding protein according to claims 1 to 7 for the manufacture of a medicament for the treatment of cancer.
12. A method for the treatment of a patient in need of therapy, characterized by administering to the patient a therapeutically effective amount of a monovalent antigen binding protein according to claims 1 to 7.
13. A method for the preparation of a monovalent antigen binding protein according to claims 1 to 7 comprising the steps of a) transforming a host cell with vectors comprising nucleic acid molecules encoding a monovalent antigen binding protein according to claims 1 to
7, b) culturing the host cell under conditions that allow synthesis of said monovalent antigen binding protein molecule; and c) recovering said monovalent antigen binding protein molecule from said culture.
14. Nucleic acid encoding the monovalent antigen binding protein according to claims 1 to 7.
15. A vector comprising nucleic acid according to claim 14.
16. A host cell comprising the vector according to claim 15.
PCT/EP2012/053119 2011-02-28 2012-02-24 Monovalent antigen binding proteins WO2012116927A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020137022150A KR101572338B1 (en) 2011-02-28 2012-02-24 Monovalent antigen binding proteins
JP2013555826A JP5768147B2 (en) 2011-02-28 2012-02-24 Monovalent antigen binding protein
EP12708515.7A EP2681240B1 (en) 2011-02-28 2012-02-24 Monovalent antigen binding proteins
MX2013009781A MX342034B (en) 2011-02-28 2012-02-24 Monovalent antigen binding proteins.
CA2824824A CA2824824A1 (en) 2011-02-28 2012-02-24 Monovalent antigen binding proteins
BR112013020338A BR112013020338A2 (en) 2011-02-28 2012-02-24 monovalent antigen binding protein, pharmaceutical composition, use of monovalent antigen binding protein, method for treating a patient in need of therapy, method for preparing a monovalent antigen binding protein, nucleic acid, vector and cell hostess
RU2013141078/10A RU2013141078A (en) 2011-02-28 2012-02-24 SINGLE VALVE ANTI-BINDING PROTEINS
CN201280010809.1A CN103403025B (en) 2011-02-28 2012-02-24 Monovalent antigen binding protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11156321 2011-02-28
EP11156321.9 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012116927A1 true WO2012116927A1 (en) 2012-09-07

Family

ID=45819191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/053119 WO2012116927A1 (en) 2011-02-28 2012-02-24 Monovalent antigen binding proteins

Country Status (11)

Country Link
US (2) US20120237507A1 (en)
EP (1) EP2681240B1 (en)
JP (1) JP5768147B2 (en)
KR (1) KR101572338B1 (en)
CN (1) CN103403025B (en)
AR (1) AR085403A1 (en)
BR (1) BR112013020338A2 (en)
CA (1) CA2824824A1 (en)
MX (1) MX342034B (en)
RU (1) RU2013141078A (en)
WO (1) WO2012116927A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054804A1 (en) * 2012-10-05 2014-04-10 協和発酵キリン株式会社 Heterodimeric protein composition
EP2762497A1 (en) * 2013-02-05 2014-08-06 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
WO2014122144A1 (en) 2013-02-05 2014-08-14 Engmab Ag BISPECIFIC ANTIBODIES AGAINST CD3ε AND BCMA
GB2519786A (en) * 2013-10-30 2015-05-06 Sergej Michailovic Kiprijanov Multivalent antigen-binding protein molecules
WO2015143406A3 (en) * 2014-03-21 2015-11-26 Regeneron Pharmaceuticals, Inc. Vl antigen binding proteins exhibiting distinct binding characteristics
EP2982692A1 (en) 2014-08-04 2016-02-10 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
WO2016055592A1 (en) 2014-10-09 2016-04-14 Engmab Ag Bispecific antibodies against cd3epsilon and ror1
EP3023437A1 (en) 2014-11-20 2016-05-25 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
US9382323B2 (en) 2009-04-02 2016-07-05 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US9688758B2 (en) 2012-02-10 2017-06-27 Genentech, Inc. Single-chain antibodies and other heteromultimers
US9879095B2 (en) 2010-08-24 2018-01-30 Hoffman-La Roche Inc. Bispecific antibodies comprising a disulfide stabilized-Fv fragment
US9890204B2 (en) 2009-04-07 2018-02-13 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies
JP2018048192A (en) * 2013-03-28 2018-03-29 三星電子株式会社Samsung Electronics Co.,Ltd. Fusion protein formed by coupling of c-met antibody and vegf-binding fragment
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US9994646B2 (en) 2009-09-16 2018-06-12 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
US10106600B2 (en) 2010-03-26 2018-10-23 Roche Glycart Ag Bispecific antibodies
US10106612B2 (en) 2012-06-27 2018-10-23 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
JP2019022497A (en) * 2013-03-15 2019-02-14 アムジエン・インコーポレーテツド Heterodimeric bispecific antibodies
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
WO2020004490A1 (en) 2018-06-26 2020-01-02 協和キリン株式会社 Antibody binding to chondroitin sulfate proteoglycan-5
WO2020004492A1 (en) 2018-06-26 2020-01-02 協和キリン株式会社 Antibody binding to cell adhesion molecule 3
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US10633457B2 (en) 2014-12-03 2020-04-28 Hoffmann-La Roche Inc. Multispecific antibodies
US10881085B2 (en) 2014-03-21 2021-01-05 Regeneron Pharmaceuticals, Inc. Non-human animals that make single domain binding proteins
US10954310B2 (en) 2010-08-02 2021-03-23 Regeneran Pharmaceuticals, Inc. Mice that make VL binding proteins
US11111314B2 (en) 2015-03-19 2021-09-07 Regeneron Pharmaceuticals, Inc. Non-human animals that select for light chain variable regions that bind antigen
US11421022B2 (en) 2012-06-27 2022-08-23 Hoffmann-La Roche Inc. Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
US11618790B2 (en) 2010-12-23 2023-04-04 Hoffmann-La Roche Inc. Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
US11952421B2 (en) 2014-10-09 2024-04-09 Bristol-Myers Squibb Company Bispecific antibodies against CD3EPSILON and ROR1

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703132B2 (en) * 2009-06-18 2014-04-22 Hoffmann-La Roche, Inc. Bispecific, tetravalent antigen binding proteins
WO2017106462A1 (en) * 2015-12-18 2017-06-22 Biogen Ma Inc. Bispecific antibody platform
WO2018115262A1 (en) * 2016-12-23 2018-06-28 Innate Pharma Heterodimeric antigen binding proteins

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307434A1 (en) 1987-03-18 1989-03-22 Medical Res Council Altered antibodies.
US5202238A (en) 1987-10-27 1993-04-13 Oncogen Production of chimeric antibodies by homologous recombination
US5204244A (en) 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1997028267A1 (en) 1996-02-02 1997-08-07 Repligen Corporation Antibodies and immunoglobulin fusion proteins having modified effector functions and uses therefor
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2003035835A2 (en) 2001-10-25 2003-05-01 Genentech, Inc. Glycoprotein compositions
WO2003055993A1 (en) 2001-12-25 2003-07-10 Kyowa Hakko Kogyo Co., Ltd. Composition of antibody specifically binding to cd20
US20040033561A1 (en) 2001-10-19 2004-02-19 Millennium Pharmaceuticals, Inc. Immunoglobulin DNA cassette molecules, monobody constructs, methods of production, and methods of use therefor
WO2004065540A2 (en) 2003-01-22 2004-08-05 Glycart Biotechnology Ag Fusion constructs and use of same to produce antibodies with increased fc receptor binding affinity and effector function
WO2005011735A1 (en) 2003-07-29 2005-02-10 Morphotek, Inc. Antibodies and methods for generating genetically altered antibodies with enhanced effector function
WO2005018572A2 (en) 2003-08-22 2005-03-03 Biogen Idec Ma Inc. Improved antibodies having altered effector function and methods for making the same
WO2005027966A2 (en) 2003-09-05 2005-03-31 Genentech, Inc. Antibodies with altered effector functions
WO2005044859A2 (en) 2003-11-05 2005-05-19 Glycart Biotechnology Ag Cd20 antibodies with increased fc receptor binding affinity and effector function
WO2005063816A2 (en) 2003-12-19 2005-07-14 Genentech, Inc. Monovalent antibody fragments useful as therapeutics
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
US20050249722A1 (en) 2000-04-12 2005-11-10 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Monoclonal antibodies with enhanced ADCC function
US20060134709A1 (en) 2004-11-10 2006-06-22 Jeffery Stavenhagen Engineering Fc antibody regions to confer effector function
WO2006093794A1 (en) * 2005-02-28 2006-09-08 Centocor, Inc. Heterodimeric protein binding compositions
WO2006103100A2 (en) 2005-04-01 2006-10-05 F. Hoffmann-La Roche Ag Antibodies against ccr5 and uses thereof
WO2006116260A2 (en) 2005-04-26 2006-11-02 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
WO2006114700A2 (en) 2005-04-26 2006-11-02 Bioren, Inc. Method of producing human igg antibodies with enhanced effector functions
WO2007031875A2 (en) 2005-08-26 2007-03-22 Glycart Biotechnology Ag Modified antigen binding molecules with altered cell signaling activity
WO2007048037A2 (en) 2005-10-21 2007-04-26 Amgen Inc. METHODS FOR GENERATING MONOVALENT IgG
EP1870459A1 (en) 2005-03-31 2007-12-26 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
WO2008077546A1 (en) 2006-12-22 2008-07-03 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2009080253A1 (en) * 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
WO2009080252A1 (en) * 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
WO2010112194A1 (en) * 2009-04-02 2010-10-07 F. Hoffmann-La Roche Ag Antigen-binding polypeptides and multispecific antibodies comprising them
WO2010145792A1 (en) 2009-06-16 2010-12-23 F. Hoffmann-La Roche Ag Bispecific antigen binding proteins

Family Cites Families (267)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150149A (en) 1976-11-29 1979-04-17 Professional Staff Association Of The Los Angeles County Harbor General Hospital Method and means for the early detection and diagnosis of certain types of cancers
US4361544A (en) 1980-03-03 1982-11-30 Goldenberg Milton David Tumor localization and therapy with labeled antibodies specific to intracellular tumor-associated markers
US4444744A (en) 1980-03-03 1984-04-24 Goldenberg Milton David Tumor localization and therapy with labeled antibodies to cell surface antigens
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
US6548640B1 (en) 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
JP2919890B2 (en) 1988-11-11 1999-07-19 メディカル リサーチ カウンスル Single domain ligand, receptor consisting of the ligand, method for producing the same, and use of the ligand and the receptor
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
DE4118120A1 (en) 1991-06-03 1992-12-10 Behringwerke Ag TETRAVALENT BISPECIFIC RECEPTORS, THEIR PRODUCTION AND USE
US6511663B1 (en) 1991-06-11 2003-01-28 Celltech R&D Limited Tri- and tetra-valent monospecific antigen-binding proteins
WO1992022653A1 (en) 1991-06-14 1992-12-23 Genentech, Inc. Method for making humanized antibodies
GB9114948D0 (en) 1991-07-11 1991-08-28 Pfizer Ltd Process for preparing sertraline intermediates
EP0604580A1 (en) 1991-09-19 1994-07-06 Genentech, Inc. EXPRESSION IN E. COLI OF ANTIBODY FRAGMENTS HAVING AT LEAST A CYSTEINE PRESENT AS A FREE THIOL, USE FOR THE PRODUCTION OF BIFUNCTIONAL F(ab') 2? ANTIBODIES
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
EP0614375A1 (en) 1991-11-26 1994-09-14 Alkermes, Inc. Process for the preparation of transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
CA2129663C (en) 1992-02-06 2005-07-05 James S. Huston Biosynthetic binding protein for cancer marker
GB9221657D0 (en) 1992-10-15 1992-11-25 Scotgen Ltd Recombinant bispecific antibodies
HU225646B1 (en) 1992-10-28 2007-05-29 Genentech Inc Hvegf receptors as vascular endothelial cell growth factor antagonists
US5747654A (en) 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
WO1994029351A2 (en) 1993-06-16 1994-12-22 Celltech Limited Antibodies
US6476198B1 (en) 1993-07-13 2002-11-05 The Scripps Research Institute Multispecific and multivalent antigen-binding polypeptide molecules
UA40577C2 (en) 1993-08-02 2001-08-15 Мерк Патент Гмбх Bispecific antigen molecule for lysis of tumor cells, method for preparing of bispecific antigen molecule, monoclonal antibody (variants), pharmaceutical preparation, pharmaceutical kit for lysis of tumor cells (variants), method of lysis of tumor cells
WO1995009917A1 (en) 1993-10-07 1995-04-13 The Regents Of The University Of California Genetically engineered bispecific tetravalent antibodies
US5814464A (en) 1994-10-07 1998-09-29 Regeneron Pharma Nucleic acids encoding TIE-2 ligand-2
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
GB9504344D0 (en) 1995-03-03 1995-04-19 Unilever Plc Antibody fragment production
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
BR9606706A (en) 1995-10-16 1999-04-06 Unilever Nv Bispecific or bivalent antibody fragment analog use process to produce the same
GB9603256D0 (en) 1996-02-16 1996-04-17 Wellcome Found Antibodies
ES2225961T3 (en) 1996-04-04 2005-03-16 Unilever N.V. MULTIVALLY AND MULTI SPECIFIC ANTIGEN UNION PROTEIN.
AU4333397A (en) 1996-09-05 1998-03-26 Adrenaline Research, Inc. High power spark plug wire
EP2301580B1 (en) 1997-04-07 2012-01-18 Genentech, Inc. Container holding anti-VEGF antibodies
ES2236634T3 (en) 1997-04-07 2005-07-16 Genentech, Inc. ANTI-VEGF ANTIBODIES.
EP0915987A2 (en) 1997-04-21 1999-05-19 Donlar Corporation POLY-($g(a)-L-ASPARTIC ACID), POLY-($g(a)-L-GLUTAMIC ACID) AND COPOLYMERS OF L-ASP AND L-GLU, METHOD FOR THEIR PRODUCTION AND THEIR USE
US20020062010A1 (en) 1997-05-02 2002-05-23 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
DK0979281T3 (en) 1997-05-02 2005-11-21 Genentech Inc Process for the preparation of multispecific antibodies with heteromultimers and common components
US7951917B1 (en) 1997-05-02 2011-05-31 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
CA2293829C (en) 1997-06-24 2011-06-14 Genentech, Inc. Methods and compositions for galactosylated glycoproteins
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
DE69840412D1 (en) 1997-10-31 2009-02-12 Genentech Inc METHODS AND COMPOSITIONS CONTAINING GLYCOPROTEIN GLYCOR FORMS
WO1999037791A1 (en) 1998-01-23 1999-07-29 Vlaams Interuniversitair Instituut Voor Biotechnologie Multipurpose antibody derivatives
CA2323757C (en) 1998-04-02 2011-08-02 Genentech, Inc. Antibody variants and fragments thereof
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
DE19819846B4 (en) 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalent antibody constructs
DE69942148D1 (en) 1998-06-22 2010-04-29 Immunomedics Inc USE OF BISPECIFIC ANTIBODIES IN DIAGNOSIS AND THERAPY
US7138103B2 (en) 1998-06-22 2006-11-21 Immunomedics, Inc. Use of bi-specific antibodies for pre-targeting diagnosis and therapy
US6312689B1 (en) 1998-07-23 2001-11-06 Millennium Pharmaceuticals, Inc. Anti-CCR2 antibodies and methods of use therefor
US20030035798A1 (en) 2000-08-16 2003-02-20 Fang Fang Humanized antibodies
WO2000035956A1 (en) 1998-12-16 2000-06-22 Kyowa Hakko Kogyo Co., Ltd. Antihuman vegf monoclonal antibody
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
KR100940380B1 (en) 1999-01-15 2010-02-02 제넨테크, 인크. Polypeptide Variants with Altered Effector Function
US6897044B1 (en) 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
US7696325B2 (en) 1999-03-10 2010-04-13 Chugai Seiyaku Kabushiki Kaisha Polypeptide inducing apoptosis
CN1232039A (en) 1999-04-02 1999-10-20 中国人民解放军海军总医院 Genetic engineering double specific antibody and its use
PT1222292E (en) 1999-10-04 2005-11-30 Medicago Inc METHOD FOR REGULATING THE TRANSCRIPTION OF EXOGENEOUS GENES IN THE PRESENCE OF NITROGEN
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
EP1229125A4 (en) 1999-10-19 2005-06-01 Kyowa Hakko Kogyo Kk Process for producing polypeptide
US7449443B2 (en) 2000-03-23 2008-11-11 California Institute Of Technology Method for stabilization of proteins using non-natural amino acids
CN1423700A (en) 2000-03-24 2003-06-11 麦克美特股份公司 Multifunctional polypeptides comprising a binding site to and epitope of the NKG2D receptor complex
JP2003531588A (en) 2000-04-11 2003-10-28 ジェネンテック・インコーポレーテッド Multivalent antibodies and their uses
DE10021678A1 (en) 2000-05-05 2002-04-18 Stefan Duebel Recombinant polyspecific antibody constructs, useful for diagnosis and treatment of cancer, comprises three antibody fragments,where at least one comprises a disulfide bridge
AU2001264946A1 (en) 2000-05-24 2001-12-03 Imclone Systems Incorporated Bispecific immunoglobulin-like antigen binding proteins and method of production
US6586207B2 (en) 2000-05-26 2003-07-01 California Institute Of Technology Overexpression of aminoacyl-tRNA synthetases for efficient production of engineered proteins containing amino acid analogues
CA2410551A1 (en) 2000-06-30 2002-01-10 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw (Vib) Heterodimeric fusion proteins
ES2620359T3 (en) 2000-10-06 2017-06-28 Kyowa Hakko Kirin Co., Ltd. Cells that produce antibody compositions
US7064191B2 (en) 2000-10-06 2006-06-20 Kyowa Hakko Kogyo Co., Ltd. Process for purifying antibody
RU2295537C2 (en) 2000-10-20 2007-03-20 Тугаи Сейяку Кабусики Кайся Modified antagonistic antibody
EP1327681A4 (en) 2000-10-20 2004-09-01 Chugai Pharmaceutical Co Ltd Degraded agonist antibody
US7319139B2 (en) 2001-01-29 2008-01-15 Biogen Idec, Inc. TAG-72 specific CH2 domain deleted antibodies
US20030099974A1 (en) 2001-07-18 2003-05-29 Millennium Pharmaceuticals, Inc. Novel genes, compositions, kits and methods for identification, assessment, prevention, and therapy of breast cancer
WO2003011878A2 (en) 2001-08-03 2003-02-13 Glycart Biotechnology Ag Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
WO2003033648A2 (en) 2001-09-05 2003-04-24 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Imaging the activity of extracellular proteases in cells using mutant anthrax toxin protective antigens that are cleaved by specific extracellular proteases
ES2276735T3 (en) 2001-09-14 2007-07-01 Affimed Therapeutics Ag SINGLE CHAIN MULTIMERIC FV ANTIBODIES IN TANDEM.
US7521053B2 (en) 2001-10-11 2009-04-21 Amgen Inc. Angiopoietin-2 specific binding agents
US7658924B2 (en) 2001-10-11 2010-02-09 Amgen Inc. Angiopoietin-2 specific binding agents
US7138370B2 (en) 2001-10-11 2006-11-21 Amgen Inc. Specific binding agents of human angiopoietin-2
EP1450857B1 (en) 2001-10-16 2010-09-15 The Government of the United States of America, represented by The Secretary, Department of Health and Human Services Broadly cross-reactive neutralizing antibodies against human immunodeficiency virus selected by env-cd4-co-receptor complexes
WO2003073238A2 (en) 2002-02-27 2003-09-04 California Institute Of Technology Computational method for designing enzymes for incorporation of amino acid analogs into proteins
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
EP1487879B1 (en) 2002-03-01 2012-12-26 Immunomedics, Inc. Bispecific antibody point mutations for enhancing rate of clearance
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US7332585B2 (en) 2002-04-05 2008-02-19 The Regents Of The California University Bispecific single chain Fv antibody molecules and methods of use thereof
WO2003085119A1 (en) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. METHOD OF ENHANCING ACTIVITY OF ANTIBODY COMPOSITION OF BINDING TO FcϜ RECEPTOR IIIa
EP1498490A4 (en) 2002-04-09 2006-11-29 Kyowa Hakko Kogyo Kk Process for producing antibody composition
JPWO2003085107A1 (en) 2002-04-09 2005-08-11 協和醗酵工業株式会社 Genome-modified cells
US20050031613A1 (en) 2002-04-09 2005-02-10 Kazuyasu Nakamura Therapeutic agent for patients having human FcgammaRIIIa
JPWO2003084569A1 (en) 2002-04-09 2005-08-11 協和醗酵工業株式会社 Antibody composition-containing medicine
JP4628679B2 (en) 2002-04-09 2011-02-09 協和発酵キリン株式会社 Cells in which the activity of a protein involved in GDP-fucose transport is reduced or deleted
US20070274998A1 (en) 2002-04-29 2007-11-29 Genpatzz Pharmacogentetics Ag Novel Bispecific Molecules For Use In Therapy And Diagnosis
US7081443B2 (en) 2002-05-21 2006-07-25 Korea Advanced Institutes Of Science And Technology (Kaist) Chimeric comp-ang1 molecule
SE0201863D0 (en) 2002-06-18 2002-06-18 Cepep Ab Cell penetrating peptides
CN1678634A (en) 2002-06-28 2005-10-05 多曼蒂斯有限公司 Immunoglobulin single variable antigen combination area and its opposite constituent
US7140727B2 (en) 2002-07-10 2006-11-28 Isl Technologies, Llc Eyeglass frame assembly
PL210545B1 (en) 2002-10-10 2012-01-31 Merck Patent Gmbh Pharmaceutical compositions directed to erb-b1 receptors
US7361740B2 (en) 2002-10-15 2008-04-22 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
DK1572744T3 (en) 2002-12-16 2010-09-20 Genentech Inc Immunoglobulin variants and their applications
US7534427B2 (en) 2002-12-31 2009-05-19 Immunomedics, Inc. Immunotherapy of B cell malignancies and autoimmune diseases using unconjugated antibodies and conjugated antibodies and antibody combinations and fusion proteins
CA2512729C (en) 2003-01-09 2014-09-16 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
CA2516236A1 (en) 2003-02-13 2004-08-26 Pharmacia Corporation Antibodies to c-met for the treatment of cancers
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
US7871607B2 (en) 2003-03-05 2011-01-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
JP2007525466A (en) 2003-05-30 2007-09-06 ジェネンテック・インコーポレーテッド Treatment with anti-VEGF antibody
ES2408582T3 (en) 2003-05-30 2013-06-21 Merus B.V. Fab library for the preparation of a mixture of antibodies
NZ544923A (en) 2003-06-27 2009-02-28 Biogen Idec Inc Use of hydrophobic-interaction-chromatography or hinge-region modifications for the production of homogeneous anti-body solutions
CA2531118C (en) 2003-07-01 2013-01-08 Immunomedics, Inc. Multivalent carriers of bi-specific antibodies
US7579157B2 (en) 2003-07-10 2009-08-25 Hoffmann-La Roche Inc. Antibody selection method against IGF-IR
WO2005044853A2 (en) 2003-11-01 2005-05-19 Genentech, Inc. Anti-vegf antibodies
US20050106667A1 (en) 2003-08-01 2005-05-19 Genentech, Inc Binding polypeptides with restricted diversity sequences
US20050064509A1 (en) 2003-09-23 2005-03-24 The Regents Of The University Of California Use of templated self assembly to create novel multifunctional species
CN1326881C (en) 2003-09-29 2007-07-18 中国人民解放军军事医学科学院基础医学研究所 Trivalent bispecific antibody and its preparation process and use
EP1688439A4 (en) 2003-10-08 2007-12-19 Kyowa Hakko Kogyo Kk Fused protein composition
AU2004280065A1 (en) 2003-10-09 2005-04-21 Kyowa Hakko Kirin Co., Ltd. Process for producing antibody composition by using RNA inhibiting the function of alpha1,6-fucosyltransferase
ES2831379T3 (en) 2003-10-09 2021-06-08 Ambrx Inc Polymeric derivatives for selective protein modification
WO2005051976A2 (en) 2003-11-20 2005-06-09 Ansata Therapeutics, Inc. Protein and peptide ligation processes and one-step purification processes
ES2305879T3 (en) 2003-11-21 2008-11-01 Ucb Pharma, S.A. METHOD FOR THE TREATMENT OF MULTIPLE SCLEROSIS BY INHIBITION OF ACTIVITY IL-17.
WO2005053742A1 (en) 2003-12-04 2005-06-16 Kyowa Hakko Kogyo Co., Ltd. Medicine containing antibody composition
AU2005211362B2 (en) 2004-02-02 2008-03-13 Ambrx, Inc. Modified human interferon polypeptides and their uses
US20080187954A1 (en) 2004-03-10 2008-08-07 Lonza Ltd. Method For Producing Antibodies
CA2561264A1 (en) 2004-03-24 2005-10-06 Xencor, Inc. Immunoglobulin variants outside the fc region
EP2357201B1 (en) 2004-04-13 2017-08-30 F. Hoffmann-La Roche AG Anti-P-selectin antibodies
WO2006020258A2 (en) 2004-07-17 2006-02-23 Imclone Systems Incorporated Novel tetravalent bispecific antibody
ZA200701715B (en) 2004-08-19 2008-07-30 Genentech Inc Polypeptide variants with altered effector function
TWI380996B (en) 2004-09-17 2013-01-01 Hoffmann La Roche Anti-ox40l antibodies
KR101270829B1 (en) 2004-09-23 2013-06-07 제넨테크, 인크. Cystein engineered antibodies and conjugates
JO3000B1 (en) 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
RU2394839C2 (en) 2004-12-21 2010-07-20 Астразенека Аб Antibodies against angiopoietin-2 and use thereof
AU2006211037B2 (en) 2005-02-07 2012-05-24 Roche Glycart Ag Antigen binding molecules that bind EGFR, vectors encoding same, and uses thereof
AU2005327973A1 (en) 2005-02-23 2006-08-31 Merrimack Pharmaceuticals, Inc. Bispecific binding agents for modulating biological activity
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
US9963510B2 (en) 2005-04-15 2018-05-08 Macrogenics, Inc. Covalent diabodies and uses thereof
EP1868650B1 (en) 2005-04-15 2018-10-03 MacroGenics, Inc. Covalent diabodies and uses thereof
JP5085322B2 (en) 2005-06-10 2012-11-28 中外製薬株式会社 Pharmaceutical composition containing sc (Fv) 2
EP1925319B1 (en) 2005-06-10 2018-03-07 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(fv)2
US8008453B2 (en) 2005-08-12 2011-08-30 Amgen Inc. Modified Fc molecules
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
NZ612578A (en) 2005-08-19 2014-11-28 Abbvie Inc Dual variable domain immunoglobin and uses thereof
US8053569B2 (en) 2005-10-07 2011-11-08 Armagen Technologies, Inc. Nucleic acids encoding and methods of producing fusion proteins
WO2007044887A2 (en) 2005-10-11 2007-04-19 Transtarget, Inc. Method for producing a population of homogenous tetravalent bispecific antibodies
US7666622B2 (en) 2005-10-19 2010-02-23 Regeneron Pharmaceuticals, Inc. Monomeric self-associating fusion polypeptides and therapeutic uses thereof
FR2894959B1 (en) 2005-12-15 2008-02-29 Galderma Res & Dev RAR-GAMMA RECEPTOR SELECTIVE AGONIST BIPHENYL DERIVATIVES
CN101370519B (en) 2005-12-15 2013-07-24 阿斯利康(瑞典)有限公司 Combination of angiopoietin-2 antagonist and of VEGF-A, KDR and/or Flt1 antagonist for treating cancer
GB0601513D0 (en) 2006-01-25 2006-03-08 Univ Erasmus Medical Ct Binding molecules 3
AR059066A1 (en) 2006-01-27 2008-03-12 Amgen Inc COMBINATIONS OF THE ANGIOPOYETINE INHIBITOR -2 (ANG2) AND THE VASCULAR ENDOTELIAL GROWTH FACTOR INHIBITOR (VEGF)
BRPI0707824A2 (en) 2006-02-15 2011-05-10 Imclone Systems Inc antigen-binding protein, and methods of neutralizing tyrosine kinase receptor activation, inhibiting angiogenesis, reducing tumor growth and producing an antigen-binding protein
EP2610268A1 (en) 2006-03-03 2013-07-03 Tokyo University of Science Modified antibodies with enhanced biological activities
GEP20135917B (en) 2006-03-17 2013-09-10 Biogen Idec Inc Stabilized polypeptide compositions
WO2007108013A2 (en) 2006-03-22 2007-09-27 National Institute Of Immunology Novel bioconjugates as therapeutic agent and synthesis thereof
ES2395969T3 (en) 2006-03-24 2013-02-18 Merck Patent Gmbh Genetically modified heterodimeric protein domains
US20070274985A1 (en) 2006-05-26 2007-11-29 Stefan Dubel Antibody
KR20090024241A (en) 2006-06-06 2009-03-06 올레그 일리치 엡쉬테인 Medicinal agent for treating fatness, diabetes, and diseases associated with impared glocose tolerance
BRPI0713272A2 (en) 2006-06-12 2017-05-02 Receptor Biologix Inc receptor-specific therapeutic products on the surface of pan cells
JP2009541275A (en) 2006-06-22 2009-11-26 ノボ・ノルデイスク・エー/エス Production of bispecific antibodies
WO2008005828A2 (en) 2006-06-30 2008-01-10 Novo Nordisk A/S PHARMACEUTICALLY ACCEPTABLE COMPOSITIONS COMPRISING ANTIBODY MOLECULES SPECIFIC TO LAMININ-5 α3 CHAIN DOMAINS G1G2 AND USE THEREOF
AR062223A1 (en) 2006-08-09 2008-10-22 Glycart Biotechnology Ag MOLECULES OF ADHESION TO THE ANTIGEN THAT ADHER TO EGFR, VECTORS THAT CODE THEM, AND THEIR USES OF THESE
US7741446B2 (en) 2006-08-18 2010-06-22 Armagen Technologies, Inc. Fusion antibodies that cross the blood-brain barrier in both directions
PL2059533T3 (en) 2006-08-30 2013-04-30 Genentech Inc Multispecific antibodies
CN101205255A (en) 2006-12-14 2008-06-25 上海中信国健药业有限公司 Anti CD20 tetravalent antibody, preparation method and uses thereof
KR20150097813A (en) 2006-12-19 2015-08-26 제넨테크, 인크. Vegf-specific antagonists for adjuvant and neoadjuvant therapy and the treatment of early stage tumors
EP2716301B1 (en) 2007-02-16 2017-04-05 Merrimack Pharmaceuticals, Inc. Antibodies against erbb3 and uses thereof
US10259860B2 (en) 2007-02-27 2019-04-16 Aprogen Inc. Fusion proteins binding to VEGF and angiopoietin
EP2626371A1 (en) 2007-07-31 2013-08-14 MedImmune, LLC Multispecific epitope binding proteins and uses thereof
JP5702603B2 (en) 2007-08-15 2015-04-15 アイエスピー インヴェストメンツ インコーポレイテッドIsp Investments Inc. Polyvinylamide polymers containing polymerizable functional groups
EP2178914A2 (en) 2007-08-15 2010-04-28 Bayer Schering Pharma Aktiengesellschaft Monospecific and multispecific antibodies and method of use
DE102007038753A1 (en) 2007-08-16 2009-02-19 Giesecke & Devrient Gmbh Device and method for the calibration of a sensor system
JP2010538012A (en) 2007-08-28 2010-12-09 バイオジェン アイデック マサチューセッツ インコーポレイテッド Compositions that bind to multiple epitopes of IGF-1R
EP2050764A1 (en) 2007-10-15 2009-04-22 sanofi-aventis Novel polyvalent bispecific antibody format and uses thereof
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US8227577B2 (en) 2007-12-21 2012-07-24 Hoffman-La Roche Inc. Bivalent, bispecific antibodies
JP2009181819A (en) 2008-01-31 2009-08-13 Hitachi High-Technologies Corp Charged particle beam device
JP4438875B2 (en) 2008-02-27 2010-03-24 三菱自動車工業株式会社 Vehicle fuel storage amount estimation device
NZ621443A (en) 2008-04-11 2015-09-25 Emergent Product Dev Seattle Cd37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof
US8822645B2 (en) 2008-07-08 2014-09-02 Abbvie Inc. Prostaglandin E2 dual variable domain immunoglobulins and uses thereof
PE20110926A1 (en) 2008-09-26 2011-12-29 Roche Glycart Ag ANTI-EGFR / ANTI-IGF-1R BIESPECIFIC ANTIBODIES
US8268314B2 (en) 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
JP5913980B2 (en) 2008-10-14 2016-05-11 ジェネンテック, インコーポレイテッド Immunoglobulin variants and uses thereof
SG171812A1 (en) 2008-12-04 2011-07-28 Abbott Lab Dual variable domain immunoglobulins and uses thereof
US20120020952A1 (en) 2009-01-26 2012-01-26 Genmab A/S Methods for producing mixtures of antibodies
US8940501B2 (en) 2009-01-30 2015-01-27 Whitehead Institute For Biomedical Research Methods for ligation and uses thereof
PE20120539A1 (en) 2009-03-20 2012-05-12 Genentech Inc ANTI-HER BIESPECIFIC ANTIBODIES
BRPI1014089A2 (en) 2009-04-02 2016-04-19 Roche Glycart Ag multispecific antibodies comprising full length antibodies and single chain fab fragments
MX2011010166A (en) 2009-04-07 2011-10-11 Roche Glycart Ag Bispecific anti-erbb-3/anti-c-met antibodies.
MX2011010158A (en) 2009-04-07 2011-10-17 Roche Glycart Ag Bispecific anti-erbb-2/anti-c-met antibodies.
PL2417156T3 (en) 2009-04-07 2015-07-31 Roche Glycart Ag Trivalent, bispecific antibodies
ES2708124T3 (en) 2009-04-27 2019-04-08 Oncomed Pharm Inc Procedure for preparing heteromultimeric molecules
TW201100543A (en) 2009-05-27 2011-01-01 Hoffmann La Roche Tri-or tetraspecific antibodies
US8703132B2 (en) 2009-06-18 2014-04-22 Hoffmann-La Roche, Inc. Bispecific, tetravalent antigen binding proteins
CA2766608C (en) 2009-07-06 2018-06-19 F. Hoffmann-La Roche Ag Bi-specific digoxigenin binding antibodies
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
NZ701769A (en) 2009-09-16 2016-06-24 Genentech Inc Coiled coil and/or tether containing protein complexes and uses thereof
EP2483310B1 (en) 2009-09-29 2014-08-13 Roche Glycart AG Bispecific death receptor agonistic antibodies
HUE029257T2 (en) 2009-12-29 2017-02-28 Aptevo Res And Dev Llc Heterodimer binding proteins and uses thereof
US20130045492A1 (en) 2010-02-08 2013-02-21 Regeneron Pharmaceuticals, Inc. Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain
US20120021409A1 (en) 2010-02-08 2012-01-26 Regeneron Pharmaceuticals, Inc. Common Light Chain Mouse
EP2501817B2 (en) 2010-02-08 2021-04-21 Regeneron Pharmaceuticals, Inc. Common light chain mouse
TWI426920B (en) 2010-03-26 2014-02-21 Hoffmann La Roche Bispecific, bivalent anti-vegf/anti-ang-2 antibodies
EP2554669B1 (en) 2010-03-26 2018-09-19 Kyowa Hakko Kirin Co., Ltd. Novel antibody having modification site introduced therein, and antibody fragment
US9527926B2 (en) 2010-05-14 2016-12-27 Rinat Neuroscience Corp. Heterodimeric proteins and methods for producing and purifying them
JP5997154B2 (en) 2010-08-16 2016-09-28 ノビミューン エスアー Method for producing multispecific multivalent antibody
CN103068847B (en) 2010-08-24 2019-05-07 罗切格利卡特公司 Activable bispecific antibody
EP2609111B1 (en) 2010-08-24 2017-11-01 F. Hoffmann-La Roche AG Bispecific antibodies comprising a disulfide stabilized-fv fragment
JP5941049B2 (en) 2010-10-05 2016-06-29 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Antibodies against human TWEAK and uses thereof
EP2635607B1 (en) 2010-11-05 2019-09-04 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2012075037A1 (en) 2010-11-30 2012-06-07 Genentech, Inc. Low affinity blood brain barrier receptor antibodies and uses therefor
SI2647707T1 (en) 2010-11-30 2018-12-31 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
JP5764677B2 (en) * 2011-02-28 2015-08-19 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Antigen binding protein
CN103403025B (en) 2011-02-28 2016-10-12 弗·哈夫曼-拉罗切有限公司 Monovalent antigen binding protein
EA201791693A1 (en) 2011-03-25 2018-05-31 Гленмарк Фармасьютикалс С.А. HETERODIMERNY IMMUNOHLOBULINS
BR112013026423A2 (en) 2011-04-20 2016-11-29 Roche Glycart Ag method and constructs for blood-brain barrier ph pending passage
EP2726494B1 (en) 2011-06-28 2017-01-04 Whitehead Institute For Biomedical Research Using sortases to install click chemistry handles for protein ligation
TWI687439B (en) 2011-06-30 2020-03-11 中外製藥股份有限公司 Heterodimerized polypeptide
US9738707B2 (en) 2011-07-15 2017-08-22 Biogen Ma Inc. Heterodimeric Fc regions, binding molecules comprising same, and methods relating thereto
EA030147B1 (en) 2011-08-23 2018-06-29 Роше Гликарт Аг Bispecific t cell activating antigen binding molecules
CN103889452B (en) 2011-08-23 2017-11-03 罗切格利卡特公司 To T cell activation antigen and the bispecific antibody and application method of specific for tumour antigen
WO2013026835A1 (en) 2011-08-23 2013-02-28 Roche Glycart Ag Fc-free antibodies comprising two fab fragments and methods of use
US20130058937A1 (en) 2011-08-23 2013-03-07 Johannes Auer Bispecific antigen binding molecules
MX2014002053A (en) 2011-08-23 2014-04-25 Roche Glycart Ag Anti-mcsp antibodies.
CA2853230C (en) 2011-10-31 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
DK2794658T3 (en) 2011-12-19 2017-06-19 Synimmune Gmbh BISPECIFIC ANTIBODY MOLECULE
DK2794905T3 (en) 2011-12-20 2020-07-06 Medimmune Llc MODIFIED POLYPEPTIDES FOR BISPECIFIC ANTIBODY BASIC STRUCTURES
CA2854243A1 (en) 2011-12-21 2013-06-27 Simone HOEGE Rapid method for cloning and expression of cognate antibody variable region gene segments
BR112014024903A2 (en) 2012-04-05 2017-07-11 Hoffmann La Roche bispecific antibodies to human tweak and human il17 and their uses
PL2838918T3 (en) 2012-04-20 2019-11-29 Merus Nv Methods and means for the production of heterodimeric ig-like molecules
EP2855531A1 (en) 2012-05-24 2015-04-08 F. Hoffmann-La Roche AG Multispecific antibodies
KR20150036606A (en) 2012-07-13 2015-04-07 자임워크스 인코포레이티드 Bispecific asymmetric heterodimers comprising anti-cd3 constructs
MX2015002407A (en) 2012-09-14 2015-06-22 Hoffmann La Roche Method for the production and selection of molecules comprising at least two different entities and uses thereof.
EP2900696A1 (en) 2012-09-25 2015-08-05 Glenmark Pharmaceuticals S.A. Purification of hetero-dimeric immunoglobulins
RU2015117393A (en) 2012-10-08 2016-12-10 Роше Гликарт Аг Deprived fc antibodies containing two Fab fragments, and methods for their use
UY35148A (en) 2012-11-21 2014-05-30 Amgen Inc HETERODIMERIC IMMUNOGLOBULINS
CA2893562C (en) 2012-11-28 2023-09-12 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
CA2903056A1 (en) 2013-03-15 2014-09-18 Merck Patent Gmbh Tetravalent bispecific antibodies
UA118028C2 (en) 2013-04-03 2018-11-12 Рош Глікарт Аг Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use
DK3041862T3 (en) 2013-09-05 2020-07-27 Igm Biosciences Inc MODIFIED BISPECIFIC, PENTA AND HEXAVALENT IG-M ANTIBODIES WITH CONSTANT CHAIN
CN105612182B (en) 2013-10-11 2019-12-10 豪夫迈·罗氏有限公司 Multispecific domain exchange consensus variable light chain antibodies
CN105829347B (en) 2013-12-20 2020-09-08 豪夫迈·罗氏有限公司 Bispecific HER2 antibodies and methods of use
CN111057151B (en) 2014-01-06 2022-05-03 豪夫迈·罗氏有限公司 Monovalent blood brain barrier shuttle modules
CA2932364A1 (en) 2014-01-15 2015-07-23 F. Hoffmann-La Roche Ag Fc-region variants with improved protein a-binding
KR20160104009A (en) 2014-01-15 2016-09-02 에프. 호프만-라 로슈 아게 Fc-region variants with modified fcrn-binding properties
CN105899534B (en) 2014-01-15 2020-01-07 豪夫迈·罗氏有限公司 Fc region variants with modified FCRN and maintained protein A binding properties
UA117289C2 (en) 2014-04-02 2018-07-10 Ф. Хоффманн-Ля Рош Аг Multispecific antibodies
WO2016016299A1 (en) 2014-07-29 2016-02-04 F. Hoffmann-La Roche Ag Multispecific antibodies
EP2982692A1 (en) 2014-08-04 2016-02-10 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
BR112016030462A2 (en) 2014-08-04 2018-01-16 F. Hoffmann-La Roche Ag binding molecules, one or more isolated polynucleotides, one or more vectors, host cell, method of producing a binding molecule, pharmaceutical composition, use of the binding molecule, method of treating disease and inducing target cell lysis
RU2017116020A (en) 2014-10-08 2018-11-12 Ф.Хоффманн-Ля Рош Аг COMBINED THERAPY BY SPECIFIC ANTIBODIES SPECIFIC TO FAP AND DR5, AND CHEMOTHERAPEUTIC AGENTS
RU2747011C2 (en) 2014-11-20 2021-04-23 Ф.Хоффманн-Ля Рош Аг General light chains and methods of their application
CR20170203A (en) 2014-11-20 2017-06-29 Hoffmann La Roche MOLECULES OF ANTIGEN BINDING SPECIFIC ACTIVITIES OF CELLS T
EP3227332B1 (en) 2014-12-03 2019-11-06 F.Hoffmann-La Roche Ag Multispecific antibodies
EP3356420B1 (en) 2015-10-02 2023-11-01 F. Hoffmann-La Roche AG Multispecific antibodies
AR106365A1 (en) 2015-10-02 2018-01-10 Hoffmann La Roche BISPECIFIC MOLECULES OF ANTIGEN BINDING TO T-CELL ACTIVATORS
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
WO2017055393A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules
CN107949574A (en) 2015-10-02 2018-04-20 豪夫迈·罗氏有限公司 Bispecific T cell activation antigen binding molecules
BR112018002570A2 (en) 2015-10-02 2018-10-16 Hoffmann La Roche bispecific antigen binding molecule, bispecific antibody, polynucleotides, ox40-specific binding antibody, pharmaceutical composition and method for inhibiting tumor cell growth in an individual
WO2017055318A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Cd33xcd3 bispecific t cell activating antigen binding molecules
BR112018000835A2 (en) 2015-10-02 2018-09-11 Hoffmann La Roche molecule, one or more polynucleotides, one or more vectors, cell, molecule production method, composition, use of the molecule, method of treating a disease and method for inducing lysis of a target cell
WO2017055385A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xgd2 bispecific t cell activating antigen binding molecules
WO2017055314A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific anti-cd19xcd3 t cell activating antigen binding molecules
ES2886569T3 (en) 2015-10-02 2021-12-20 Hoffmann La Roche Bispecific antibodies specific for PD1 and TIM3
WO2017055392A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules
EP3359568B1 (en) 2015-10-07 2022-03-09 F. Hoffmann-La Roche AG Bispecific antibodies with tetravalency for a costimulatory tnf receptor

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307434A1 (en) 1987-03-18 1989-03-22 Medical Res Council Altered antibodies.
US5202238A (en) 1987-10-27 1993-04-13 Oncogen Production of chimeric antibodies by homologous recombination
US5204244A (en) 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1997028267A1 (en) 1996-02-02 1997-08-07 Repligen Corporation Antibodies and immunoglobulin fusion proteins having modified effector functions and uses therefor
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
US6602684B1 (en) 1998-04-20 2003-08-05 Glycart Biotechnology Ag Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
US20050249722A1 (en) 2000-04-12 2005-11-10 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Monoclonal antibodies with enhanced ADCC function
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
US20040033561A1 (en) 2001-10-19 2004-02-19 Millennium Pharmaceuticals, Inc. Immunoglobulin DNA cassette molecules, monobody constructs, methods of production, and methods of use therefor
WO2003035835A2 (en) 2001-10-25 2003-05-01 Genentech, Inc. Glycoprotein compositions
WO2003055993A1 (en) 2001-12-25 2003-07-10 Kyowa Hakko Kogyo Co., Ltd. Composition of antibody specifically binding to cd20
WO2004065540A2 (en) 2003-01-22 2004-08-05 Glycart Biotechnology Ag Fusion constructs and use of same to produce antibodies with increased fc receptor binding affinity and effector function
US20050054048A1 (en) 2003-07-29 2005-03-10 Luigi Grasso Antibodies and methods for generating genetically altered antibodies with enhanced effector function
WO2005011735A1 (en) 2003-07-29 2005-02-10 Morphotek, Inc. Antibodies and methods for generating genetically altered antibodies with enhanced effector function
WO2005018572A2 (en) 2003-08-22 2005-03-03 Biogen Idec Ma Inc. Improved antibodies having altered effector function and methods for making the same
WO2005027966A2 (en) 2003-09-05 2005-03-31 Genentech, Inc. Antibodies with altered effector functions
US20050152894A1 (en) 2003-09-05 2005-07-14 Genentech, Inc. Antibodies with altered effector functions
WO2005044859A2 (en) 2003-11-05 2005-05-19 Glycart Biotechnology Ag Cd20 antibodies with increased fc receptor binding affinity and effector function
WO2005063816A2 (en) 2003-12-19 2005-07-14 Genentech, Inc. Monovalent antibody fragments useful as therapeutics
US20060134709A1 (en) 2004-11-10 2006-06-22 Jeffery Stavenhagen Engineering Fc antibody regions to confer effector function
WO2006093794A1 (en) * 2005-02-28 2006-09-08 Centocor, Inc. Heterodimeric protein binding compositions
EP1870459A1 (en) 2005-03-31 2007-12-26 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
WO2006103100A2 (en) 2005-04-01 2006-10-05 F. Hoffmann-La Roche Ag Antibodies against ccr5 and uses thereof
WO2006116260A2 (en) 2005-04-26 2006-11-02 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
WO2006114700A2 (en) 2005-04-26 2006-11-02 Bioren, Inc. Method of producing human igg antibodies with enhanced effector functions
WO2007031875A2 (en) 2005-08-26 2007-03-22 Glycart Biotechnology Ag Modified antigen binding molecules with altered cell signaling activity
WO2007048037A2 (en) 2005-10-21 2007-04-26 Amgen Inc. METHODS FOR GENERATING MONOVALENT IgG
WO2008077546A1 (en) 2006-12-22 2008-07-03 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2009080253A1 (en) * 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
WO2009080252A1 (en) * 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
WO2010112194A1 (en) * 2009-04-02 2010-10-07 F. Hoffmann-La Roche Ag Antigen-binding polypeptides and multispecific antibodies comprising them
WO2010145792A1 (en) 2009-06-16 2010-12-23 F. Hoffmann-La Roche Ag Bispecific antigen binding proteins

Non-Patent Citations (65)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1987, GREENE PUBLISHING AND WILEY INTERSCIENCE
ATWELL, S. ET AL., J. MOL. BIOL., vol. 270, 1997, pages 26 - 35
BARNES, L.M. ET AL., BIOTECH. BIOENG., vol. 73, 2001, pages 261 - 270
BARNES, L.M. ET AL., CYTOTECHNOLOGY, vol. 32, 2000, pages 109 - 123
BOERNER, P. ET AL., J. IMMUNOL., vol. 147, 1991, pages 86 - 95
BRUGGEMANN, M. ET AL., YEAR IMMUNOL., vol. 7, 1993, pages 33 - 40
BUNKHOUSE, R.; COBRA, J.J., MOL. IMMUNOL., vol. 16, 1979, pages 907 - 917
BURTON, D.R. ET AL., NATURE, vol. 288, 1980, pages 338 - 344
CARTER, P. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285 - 4289
COHEN, F.N ET AL., PNAS, vol. 69, 1972, pages 7110
COLE ET AL.: "Monoclonal Antibodies and Cancer Therapy", 1985, ALAN R. LISS, pages: 77
DAVIES, J. ET AL., BIOTECHNOL. BIOENG., vol. 74, 2001, pages 288 - 294
DUROCHER, Y. ET AL., NUCL. ACIDS. RES., vol. 30, 2002, pages E9
EDELMAN, G.M. ET AL., PNAS, vol. 63, 1969, pages 78 - 85
FISCHER, N.; LEGER, 0., PATHOBIOLOGY, vol. 74, 2007, pages 3 - 14
GEISSE, S. ET AL., PROTEIN EXPR. PURIF., vol. 8, 1996, pages 271 - 282
GRAHAM; VAN DER EH, VIROLOGY, vol. 52, 1978, pages 546
HEARER, M. ET AL., J. VIROL., vol. 75, 2001, pages 12161 - 12168
HOLLIGER, P. ET AL., NATURE BIOTECH, vol. 23, 2005, pages 1126 - 1136
HOOGENBOOM, H.R.; WINTER, G., J. MOL. BIOL., vol. 227, 1992, pages 381 - 388
IDIOCIES, E.E. ET AL., J. IMMUNOL., vol. 164, 2000, pages 4178 - 4184
JAKOBOVITS, A. ET AL., NATURE, vol. 362, 1993, pages 255 - 258
JAKOBOVITS, A. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 2551 - 2555
JEFFERIS, R. ET AL., IMMUNOL. REV., vol. 163, 1998, pages 59 - 76
JOHNSON, G.; WU, T.T., NUCLEIC ACIDS RES., vol. 28, 2000, pages 214 - 218
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, PUBLIC HEALTH SERVICE, NATIONAL INSTITUTES OF HEALTH
KABAT, E.A. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 72, 1975, pages 2785 - 2788
KABAT, E.A. ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NIH PUBLICATION
KAUFMAN, R.J., MOL. BIOTECHNOL., vol. 16, 2000, pages 151 - 161
LIFELY, M.R. ET AL., GLYCOBIOLOGY, vol. 5, 1995, pages 813 - 822
LUKAS, T.J. ET AL., J. IMMUNOL., vol. 127, 1981, pages 2555 - 2560
LUND, J. ET AL., FASEB J., vol. 9, 1995, pages 115 - 119
MAKRIDES, S.C., PROTEIN EXPR. PURIF., vol. 17, 1999, pages 183 - 202
MARKS, J.D. ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
MEISSNER, P. ET AL., BIOTECHNOL. BIOENG., vol. 75, 2001, pages 197 - 203
MERCHANT, A.M. ET AL., NAT BIOTECHNOL, vol. 16, 1998, pages 677 - 681
MERCHANT, A.M. ET AL., NAT. BIOTECHNOL., vol. 16, 1998, pages 677 - 681
MERCHANT, A.M. ET AL., NATURE BIOTECH, vol. 16, 1998, pages 677 - 681
MIMURA, Y. ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 45539 - 45547
MORGAN, A. ET AL., IMMUNOLOGY, vol. 86, 1995, pages 319 - 324
MORRISON S L ET AL: "Variable Region Domain Exchange Influences the Functional Properties of IgG", JOURNAL OF IMMUNOLOGY, AMERICAN ASSOCIATION OF IMMUNOLOGISTS, US, vol. 160, 1 January 1998 (1998-01-01), pages 2802 - 2808, XP003001892, ISSN: 0022-1767 *
MORRISON, S.L. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855
NEUBERGER, M.S. ET AL., NATURE, vol. 314, 1985, pages 268 - 270
NIWA, R. ET AL., J. IMMUNOL. METHODS, vol. 306, 2005, pages 151 - 160
NORDERHAUG, L. ET AL., J. IMMUNOL. METHODS, vol. 204, 1997, pages 77 - 87
ORLANDI, R. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 3833 - 3837
RADAEV, S. ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 16478 - 16483
RAJU, T.S., BIOPROCESS INT., vol. 1, 2003, pages 44 - 53
RIDGWAY, J.B. ET AL., PROTEIN ENG., vol. 9, 1996, pages 617 - 621
RIECHMANN, L. ET AL., NATURE, vol. 332, 1988, pages 323 - 327
ROUTIER, F.H., GLYCOCONJUGATE J., vol. 14, 1997, pages 201 - 207
SAMBROOK, J. ET AL.: "Molecular cloning: A laboratory manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHLAEGER, E.-J., J. IMMUNOL. METHODS, vol. 194, 1996, pages 191 - 199
SCHLAEGER, E.-J.; CHRISTENSEN, K., CYTOTECHNOLOGY, vol. 30, 1999, pages 71 - 83
SHIELDS, R., L. ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 6591 - 6604
SHIELDS, R., L. ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 26733 - 26740
SHIELDS, R.L. ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 6591 - 6604
SHINKAWA, T. ET AL., J. BIOL. CHEM, vol. 278, 2003, pages 3466 - 3473
SIMMONS, L., C. ET AL., J. IMMUNOL. METHODS, vol. 263, 2002, pages 133 - 147
THOMASON, J.E. ET AL., MOL. IMMUNOL., vol. 37, 2000, pages 995 - 1004
UMANA, P. ET AL., NATURE BIOTECHNOL., vol. 17, 1999, pages 176 - 180
VAN DIJK, M.A.; VAN DE WINKEL, J.G., CURR. OPIN. CHEM. BIOL., vol. 5, 2001, pages 368 - 374
VIJAYALAKSHMI, M.A., APPL. BIOCHEM. BIOTECH., vol. 75, 1998, pages 93 - 102
WERNER, R.G., DRUG RES., vol. 48, 1998, pages 870 - 880
WRIGHT, A; MORRISON, S., L., TRENDS BIOTECHNOL., vol. 15, 1997, pages 26 - 32

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10927163B2 (en) 2007-12-21 2021-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US9382323B2 (en) 2009-04-02 2016-07-05 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
US9890204B2 (en) 2009-04-07 2018-02-13 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies
US10640555B2 (en) 2009-06-16 2020-05-05 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US11673945B2 (en) 2009-06-16 2023-06-13 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US9994646B2 (en) 2009-09-16 2018-06-12 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
US10106600B2 (en) 2010-03-26 2018-10-23 Roche Glycart Ag Bispecific antibodies
US10954310B2 (en) 2010-08-02 2021-03-23 Regeneran Pharmaceuticals, Inc. Mice that make VL binding proteins
US9879095B2 (en) 2010-08-24 2018-01-30 Hoffman-La Roche Inc. Bispecific antibodies comprising a disulfide stabilized-Fv fragment
US11618790B2 (en) 2010-12-23 2023-04-04 Hoffmann-La Roche Inc. Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US10793621B2 (en) 2011-02-28 2020-10-06 Hoffmann-La Roche Inc. Nucleic acid encoding dual Fc antigen binding proteins
US9688758B2 (en) 2012-02-10 2017-06-27 Genentech, Inc. Single-chain antibodies and other heteromultimers
US10106612B2 (en) 2012-06-27 2018-10-23 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US11407836B2 (en) 2012-06-27 2022-08-09 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US11421022B2 (en) 2012-06-27 2022-08-23 Hoffmann-La Roche Inc. Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
EP2905290A4 (en) * 2012-10-05 2016-05-25 Kyowa Hakko Kirin Co Ltd Heterodimeric protein composition
US9714291B2 (en) 2012-10-05 2017-07-25 Kyowa Hakko Kirin Co., Ltd Heterodimer protein composition
US10494437B2 (en) 2012-10-05 2019-12-03 Kyowa Kirin Co., Ltd Heterodimer protein composition
WO2014054804A1 (en) * 2012-10-05 2014-04-10 協和発酵キリン株式会社 Heterodimeric protein composition
EP2762497A1 (en) * 2013-02-05 2014-08-06 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
US10077315B2 (en) 2013-02-05 2018-09-18 Engmab Sàrl Bispecific antibodies against CD3 and BCMA
WO2014122144A1 (en) 2013-02-05 2014-08-14 Engmab Ag BISPECIFIC ANTIBODIES AGAINST CD3ε AND BCMA
US9963513B2 (en) 2013-02-05 2018-05-08 Engmab Sàrl Method for the selection of antibodies against BCMA
US10851171B2 (en) 2013-02-05 2020-12-01 Engmab Sarl Method for the selection of antibodies against BCMA
JP2019022497A (en) * 2013-03-15 2019-02-14 アムジエン・インコーポレーテツド Heterodimeric bispecific antibodies
US11634502B2 (en) 2013-03-15 2023-04-25 Amgen Inc. Heterodimeric bispecific antibodies
JP2018048192A (en) * 2013-03-28 2018-03-29 三星電子株式会社Samsung Electronics Co.,Ltd. Fusion protein formed by coupling of c-met antibody and vegf-binding fragment
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
GB2519786A (en) * 2013-10-30 2015-05-06 Sergej Michailovic Kiprijanov Multivalent antigen-binding protein molecules
US10881085B2 (en) 2014-03-21 2021-01-05 Regeneron Pharmaceuticals, Inc. Non-human animals that make single domain binding proteins
WO2015143406A3 (en) * 2014-03-21 2015-11-26 Regeneron Pharmaceuticals, Inc. Vl antigen binding proteins exhibiting distinct binding characteristics
US10787522B2 (en) 2014-03-21 2020-09-29 Regeneron Pharmaceuticals, Inc. VL antigen binding proteins exhibiting distinct binding characteristics
EP2982692A1 (en) 2014-08-04 2016-02-10 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
EP2982694A1 (en) 2014-08-04 2016-02-10 EngMab AG Bispecific antibodies against cd3epsilon and bcma
WO2016020332A1 (en) 2014-08-04 2016-02-11 Engmab Ag Bispecific antibodies against cd3epsilon and bcma
WO2016055592A1 (en) 2014-10-09 2016-04-14 Engmab Ag Bispecific antibodies against cd3epsilon and ror1
US11952421B2 (en) 2014-10-09 2024-04-09 Bristol-Myers Squibb Company Bispecific antibodies against CD3EPSILON and ROR1
EP3023437A1 (en) 2014-11-20 2016-05-25 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
US10633457B2 (en) 2014-12-03 2020-04-28 Hoffmann-La Roche Inc. Multispecific antibodies
US11111314B2 (en) 2015-03-19 2021-09-07 Regeneron Pharmaceuticals, Inc. Non-human animals that select for light chain variable regions that bind antigen
WO2020004492A1 (en) 2018-06-26 2020-01-02 協和キリン株式会社 Antibody binding to cell adhesion molecule 3
WO2020004490A1 (en) 2018-06-26 2020-01-02 協和キリン株式会社 Antibody binding to chondroitin sulfate proteoglycan-5

Also Published As

Publication number Publication date
KR101572338B1 (en) 2015-11-26
JP2014509199A (en) 2014-04-17
MX2013009781A (en) 2013-09-26
BR112013020338A2 (en) 2016-10-18
US20120237507A1 (en) 2012-09-20
RU2013141078A (en) 2015-04-10
CA2824824A1 (en) 2012-09-07
KR20130135896A (en) 2013-12-11
AR085403A1 (en) 2013-09-25
US20180037633A1 (en) 2018-02-08
EP2681240B1 (en) 2017-08-16
CN103403025A (en) 2013-11-20
JP5768147B2 (en) 2015-08-26
CN103403025B (en) 2016-10-12
EP2681240A1 (en) 2014-01-08
MX342034B (en) 2016-09-12
US10611825B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
US10611825B2 (en) Monovalent antigen binding proteins
US10793621B2 (en) Nucleic acid encoding dual Fc antigen binding proteins
US20200062826A1 (en) Trivalent, bispecific antibodies
KR101498346B1 (en) Bispecific antibodies
KR101431318B1 (en) Multispecific antibodies comprising full length antibodies and single chain fab fragments
US20140135482A1 (en) Bispecific Anti ErbB3 / Anti cMet Antibodies
CA2736408A1 (en) Bispecific anti-egfr/anti-igf-1r antibodies
KR20150013188A (en) Multispecific antibodies
MX2011013616A (en) Bispecific, tetravalent antigen binding proteins.
WO2013164325A1 (en) Multispecific antigen binding proteins
TW201243050A (en) Monovalent antigen binding proteins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12708515

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012708515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012708515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2824824

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137022150

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/009781

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013555826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013141078

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013020338

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013020338

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130809