WO2012115193A1 - Carbon dioxide reforming catalyst for hydrocarbons and carbon dioxide reforming method for hydrocarbons - Google Patents

Carbon dioxide reforming catalyst for hydrocarbons and carbon dioxide reforming method for hydrocarbons Download PDF

Info

Publication number
WO2012115193A1
WO2012115193A1 PCT/JP2012/054431 JP2012054431W WO2012115193A1 WO 2012115193 A1 WO2012115193 A1 WO 2012115193A1 JP 2012054431 W JP2012054431 W JP 2012054431W WO 2012115193 A1 WO2012115193 A1 WO 2012115193A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
catalyst
site
dioxide reforming
reforming
Prior art date
Application number
PCT/JP2012/054431
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤秀人
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013501121A priority Critical patent/JP5626446B2/en
Publication of WO2012115193A1 publication Critical patent/WO2012115193A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a hydrocarbon carbon dioxide reforming catalyst used for producing a synthesis gas containing hydrogen and carbon monoxide by reforming a hydrocarbon-based source gas, and a hydrocarbon using the same.
  • the present invention relates to a carbon dioxide reforming method.
  • hydrocarbon gases are generated in technical fields such as petroleum refining and petrochemistry, but they are not necessarily efficiently used as raw material gases for various substances, and a method for converting them into more effective substances is required. Yes.
  • hydrocarbon gas reforming hydrocarbon steam reforming, saturated carbonization are methods for producing synthesis gas containing hydrogen and carbon monoxide by reforming hydrocarbon-based gas.
  • hydrocarbon-based gas There are known methods such as combined reforming of carbon dioxide and steam in which both carbon dioxide and steam react with hydrogen in the presence of a catalyst.
  • Carbon dioxide reforming of hydrocarbons is suitable for producing a synthesis gas having a relatively high carbon monoxide concentration by reacting a saturated hydrocarbon such as methane with carbon dioxide in the presence of a catalyst.
  • steam reforming of hydrocarbons is suitable for producing a synthesis gas having a relatively high hydrogen concentration by reacting a saturated hydrocarbon such as methane with steam in the presence of a catalyst.
  • carbon may be deposited on the catalyst during the process of hydrocarbon decomposition.
  • the degree of carbon deposition varies depending on the hydrocarbon reforming conditions. It is said that carbon is most likely to precipitate in carbon dioxide reforming of hydrocarbons, and that the amount of carbon deposition is relatively small in hydrocarbon steam reforming.
  • the carbon deposited on the catalyst gradually accumulates to reduce the catalytic activity, and if it is deposited in large quantities, the reaction tube may be clogged.
  • hydrocarbon ratio hereinafter, “steam / hydrocarbon ratio” is set high, and carbon deposition is suppressed by introducing excessive steam.
  • the hydrocarbon carbon dioxide or steam reforming catalyst includes a nickel-based catalyst in which nickel is supported on a substrate such as alumina, a ruthenium-based catalyst in which ruthenium is supported (see Patent Document 1), and further, such as alumina.
  • a rhodium-based catalyst in which rhodium is supported on a substrate is known.
  • rhodium, cobalt, and nickel are supported as active components on a carrier using lanthanum aluminate, strontium titanate, and barium titanate, which are perovskite compounds, for the purpose of suppressing carbon deposition and improving activity at low temperatures.
  • a carrier using lanthanum aluminate, strontium titanate, and barium titanate, which are perovskite compounds, for the purpose of suppressing carbon deposition and improving activity at low temperatures.
  • Such a catalyst is known (see Patent Document 3).
  • Nickel-based catalysts in which nickel is supported on a substrate such as alumina, which is common as a hydrocarbon steam reforming catalyst, are likely to cause carbon deposition on the catalyst. Therefore, there is a need to carry out a hydrocarbon steam reforming reaction under conditions of a high steam / hydrocarbon ratio with excess steam.
  • excess water vapor has the problem of increased energy consumption during the water vaporization process, and the concentration of carbon monoxide in the synthesis gas composition to be produced decreases, resulting in monoxide oxidation such as fuel synthesis.
  • it is not suitable for applications that require synthesis gas with a high carbon concentration.
  • this is a reforming reaction that is more likely to cause carbon deposition.
  • the ruthenium-based catalyst as shown in Patent Document 1 has an action of suppressing carbon deposition, carbon deposition is less than that of a nickel-based catalyst and the activity can be easily maintained.
  • unsaturated hydrocarbons coexist in the raw material, thermal carbon deposition and activity decrease are likely to occur, and even if the ruthenium-based catalyst has an effect of suppressing carbon deposition, it may be caused by unsaturated hydrocarbons contained in the raw material gas. There is a problem that poisoning and activity decrease.
  • the rhodium-based catalyst in which rhodium is supported on a substrate such as alumina as shown in Patent Document 2 is said to have similar problems.
  • Patent Document 3 since a catalyst using a perovskite type complex oxide as shown in Patent Document 3 has high activity, it is possible to suppress carbon deposition even if the amount of steam supplied is reduced in steam reforming. However, it has not yet been possible to suppress carbon deposition in carbon dioxide reforming where carbon deposition is more likely to occur.
  • the present invention solves the above problems, and efficiently reforms hydrocarbons with carbon dioxide while suppressing carbon deposition (for example, reforming methane to carbon dioxide to produce hydrogen and carbon monoxide. It is an object of the present invention to provide a hydrocarbon carbon dioxide reforming catalyst and a hydrocarbon carbon dioxide reforming method using the same.
  • the hydrocarbon carbon dioxide reforming catalyst of the present invention comprises: Complex oxide ABO 3 having a perovskite structure (the element constituting the A site is mainly Sr and may contain Ba, Ca, Mg, and the element constituting the B site is mainly Ti and may contain Zr) A catalyst containing Ni, (a) molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.90 ⁇ A / B ⁇ 1.20, (b) A molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in a range of 0.02 ⁇ Ni / B ⁇ 0.16.
  • the hydrocarbon carbon dioxide reforming catalyst according to claim 2 comprises: (a) molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.90 ⁇ A / B ⁇ 1.20, (b) The molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.04 ⁇ Ni / B ⁇ 0.16.
  • the hydrocarbon carbon dioxide reforming catalyst according to claim 3 is: (a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.96 ⁇ A / B ⁇ 1.20, (b) The molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.04 ⁇ Ni / B ⁇ 0.13.
  • the hydrocarbon carbon dioxide reforming catalyst according to claim 4 (a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.98 ⁇ A / B ⁇ 1.20, (b) A molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.04 ⁇ Ni / B ⁇ 0.08.
  • the hydrocarbon carbon dioxide reforming catalyst according to claim 5 (a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.98 ⁇ A / B ⁇ 1.01, (b) A molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.04 ⁇ Ni / B ⁇ 0.08.
  • the hydrocarbon carbon dioxide reforming catalyst according to claim 6 (a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 1.01 ⁇ A / B ⁇ 1.04, (b) The molar ratio of the total amount of Ni and the B site element: Ni / B is in the range of 0.08 ⁇ Ni / B ⁇ 0.12.
  • the hydrocarbon carbon dioxide reforming catalyst according to claim 7 is characterized in that at least a part of the Ni is dissolved in the composite oxide ABO 3 .
  • the hydrocarbon carbon dioxide reforming method according to claim 8 uses the hydrocarbon carbon dioxide reforming catalyst according to any one of claims 1 to 7 as a raw material gas comprising hydrocarbon and carbon dioxide. Then, reforming is performed to produce a synthesis gas composed of hydrogen and CO.
  • the carbon dioxide is efficiently reformed with carbon dioxide while suppressing carbon deposition (for example, methane is reformed with carbon dioxide to generate hydrogen and carbon monoxide). It becomes possible to provide a catalyst for carbon dioxide reforming of a possible hydrocarbon. Specifically, for example, when carbon dioxide reforming is performed at 900 ° C., a hydrocarbon carbon dioxide reforming catalyst capable of sufficiently suppressing carbon deposition can be provided.
  • Ni In order for the carbon dioxide reforming catalyst of the present invention to function effectively in the carbon dioxide reforming of hydrocarbons, Ni must be at least partially reduced to metallic Ni, in producing the carbon dioxide reforming catalyst of the present invention, for example, NiO can be used as the Ni raw material. In that case, when the catalyst is used for carbon dioxide reforming, it can be made into an effective state as a catalyst for carbon dioxide reforming by performing a reduction treatment and reducing at least a part of Ni to metal Ni. .
  • a carbon dioxide reforming catalyst capable of reforming hydrocarbons with carbon dioxide extremely efficiently without substantially depositing carbon. Become. Specifically, for example, when carbon dioxide reforming is performed at 800 ° C., a carbon dioxide reforming catalyst capable of reforming hydrocarbons with carbon dioxide extremely efficiently while preventing carbon precipitation almost completely. It becomes possible to provide.
  • the carbon dioxide capable of reforming hydrocarbons with carbon dioxide more efficiently than the carbon dioxide reforming catalyst of claim 4 without substantially depositing carbon It becomes possible to provide a carbon reforming catalyst.
  • the catalyst is heated at a higher temperature than the reforming temperature range in order to suppress thermal contraction, surface area variation, cracking and cracking of the catalyst due to thermal shock in the reforming temperature range. Even when calcined with, the carbon deposition of the catalyst and the activity of the catalyst are not reduced. Therefore, it is possible to provide a carbon dioxide reforming catalyst capable of reforming hydrocarbons with carbon dioxide more efficiently.
  • the Ni component is preferably dissolved in the composite oxide ABO 3 having a perovskite structure, and the Ni oxide is a composite oxide in which most of the Ni component is a support.
  • [1] Manufacture of carbon dioxide reforming catalyst (1) Manufacture of catalyst 1 of Table 1 As catalyst raw materials, strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and nickel oxide (NiO) are prepared.
  • strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and nickel oxide (NiO) are prepared.
  • the carbon dioxide reforming catalyst (hereinafter also simply referred to as “catalyst”) 1 is a catalyst as a comparative example in which the above-mentioned A / B (molar ratio) does not satisfy the requirements of the present invention.
  • Catalysts (carbon dioxide reforming catalysts) 2 to 16 were produced.
  • Each of the catalysts 2 to 16 is a catalyst in which the above-mentioned values of A / B (molar ratio) and Ni / B (molar ratio) satisfy the requirements of the present invention.
  • the gas discharged from the outlet 5 of the reaction tube 1 was introduced into the analyzer and the gas concentration was measured.
  • the catalyst indicated by reference numeral 3 in FIG. 1 is taken out from the reaction tube 1, and the amount of carbon deposited in the carbon dioxide reforming test over 75 hours is calculated from the difference in catalyst weight before and after the test. Asked.
  • the carbon dioxide reforming test of methane (CH 4 ) was also performed under the condition of reforming temperature: 800 ° C., where carbon deposition is more likely to occur than the reforming temperature: 900 ° C.
  • the reforming test at a reforming temperature of 800 ° C. is performed by filling 2 cc of the catalyst after the carbon dioxide reforming test at 900 ° C. for 75 hours into the reaction tube 1 and setting the temperature to 800 ° C. by the heater 2.
  • the catalyst is taken out from the reaction tube 1 and the amount of carbon deposited in the carbon dioxide reforming test at 800 ° C. for 6 hours is calculated from the catalyst weight difference before and after the reforming test at 800 ° C. Asked.
  • Reforming temperature outlet methane concentration in reforming test at 900 ° C.
  • reforming temperature 900 ° C.
  • reforming temperature 800 ° C.
  • Table 1 shows the amount of deposited carbon.
  • Ni / B value is smaller, the carbon deposition resistance is higher. It was confirmed that there was a tendency.
  • the carbon deposition resistance and catalytic activity of the hydrocarbon carbon dioxide reforming catalyst is not only the Ni content, that is, the Ni / B value, but also the composite oxidation having the perovskite structure as the support. It also varies greatly depending on the composition of the product ABO 3 , that is, the A / B value. Therefore, in order to obtain a catalyst having high carbon deposition resistance and excellent catalytic activity, both “composition of composite oxide ABO 3 as support: A / B value” and “Ni content: Ni / B value” It is important to set to an appropriate range.
  • the composition range defined in claim 1 of the present invention that is, “0.90 ⁇ A / B ⁇ 1.20 and 0.02 ⁇ Ni / B ⁇ 0.16”
  • the above-mentioned “carbon deposition amount” after the carbon dioxide reforming test at 900 ° C. for 75 hours is 1 wt% or less
  • the catalyst in the composition range defined in claim 1 is, for example, 1000 ° C. or more. This is significant when applied to applications in which carbon dioxide reforming of hydrocarbons is performed under the following temperature conditions.
  • composition range where the Ni / B value is small that is, a composition range where the Ni content is low
  • the catalytic activity is low, so that sufficient catalytic activity is required in addition to excellent carbon deposition resistance.
  • the composition range defined in claim 2 of the present invention that is, “0.90 ⁇ A / B ⁇ 1.20 and 0.04 ⁇ Ni / B ⁇ 0.16” It is preferable to set it as the composition range.
  • composition range defined in claim 3 of the present invention that is, “0.96 ⁇ A / B ⁇ 1.20 and 0.04 ⁇ Ni / B ⁇ 0.13”
  • carbon deposition amount after the carbon dioxide reforming test at 900 ° C. for 75 hours is 0 wt%
  • the catalyst in the composition range defined in claim 3 is, for example, 900 ° C. or more. It is considered effective to be applied to applications in which hydrocarbons undergo carbon dioxide reforming under temperature conditions.
  • composition range defined in claim 4 of the present invention i.e. “0.98 ⁇ A / B ⁇ 1.20 and 0.04 ⁇ Ni / B ⁇ 0.08”
  • carbon deposition amount after the carbon dioxide reforming test at 800 ° C. for 6 hours is 0 wt%
  • the catalyst in the composition range defined in claim 4 is, for example, 800 ° C. or more. It is considered effective to be applied to applications in which hydrocarbons undergo carbon dioxide reforming under temperature conditions.
  • the composition range defined in claim 5 of the present invention i.e. “0.98 ⁇ A / B ⁇ 1.01 and 0.04 ⁇ Ni / B ⁇ 0.08” It is preferable that the composition range be
  • catalysts 17 to 21 shown in Table 2.
  • Each of the catalysts 17 to 21 is a catalyst that satisfies the requirements of the present invention in the values of A / B (molar ratio) and Ni / B (molar ratio) described above.
  • Carbon dioxide reforming test The carbon dioxide reforming test for hydrocarbons (methane (CH4) in this example) was conducted using the above-described reduction-treated carbon dioxide reforming catalyst, and the characteristics were examined.
  • the gas discharged from the outlet 5 of the reaction tube 1 was introduced into the analyzer and the gas concentration was measured.
  • the catalyst indicated by reference numeral 3 in FIG. 1 is taken out from the reaction tube 1, and the amount of carbon deposited in the carbon dioxide reforming test over 50 hours is calculated from the difference in catalyst weight before and after the test. Asked.
  • Table 2 shows the outlet methane concentration in the reforming test at the reforming temperature: 900 ° C. and the carbon deposition amount in the reforming test at the reforming temperature: 900 ° C. for 50 hours.
  • the composition range defined in claim 6 of the present invention that is, In the composition range of “1.01 ⁇ A / B ⁇ 1.04 and 0.08 ⁇ Ni / B ⁇ 0.12,” the above-mentioned “carbon precipitation” after the carbon dioxide reforming test at 900 ° C. for 50 hours.
  • the amount ” is 2 wt% or less, and the catalyst having the composition range defined in claim 6 is significant when applied to an application in which carbon dioxide reforming of hydrocarbon is performed at a temperature condition of, for example, 1000 ° C. or more. .
  • Example 2 since the firing temperature of the catalyst is 1300 ° C., the thermal strength of the catalyst is improved as compared with Example 1. Therefore, the present invention is effective for applications in which carbon dioxide reforming of hydrocarbons is performed under a high reforming temperature condition of 900 ° C. or higher.
  • the progress of the sintering may cause a decrease in the surface area and agglomeration of the metal component, thereby reducing the carbon deposition resistance and activity of the catalyst.
  • the composition is in the range of claim 6 of the present invention, the carbon deposition of the catalyst and the activity of the catalyst are not reduced.
  • the element constituting the A site is Sr and the element constituting the B site is Ti as an example of the composite oxide ABO 3 having a perovskite structure has been described.
  • the additive that substitutes Sr or Ti at the B site and the impurities that are mixed without intentional addition.
  • an element that enters the A site of the composite oxide ABO 3 having a perovskite structure for example, Ba, Ca, Mg substitutes Sr in SrTiO 3 and acts in the same manner as Sr. There is no problem that Ba, Ca, and Mg are present as impurities.
  • an element entering the B site of the composite oxide ABO 3 having a perovskite structure for example, Zr replaces Ti in SrTiO 3 and acts in the same way as Ti, so that it can be used as an additive or impurity in the catalyst. There is no problem that Zr exists.
  • A is the total number of moles of Sr, Ba, Ca, Mg” and “B is the total number of moles of Ti and Zr”, and A / B and Ni / By selecting the value of B, it is possible to obtain the same carbon deposition suppression effect as in this example.
  • the Sr content in the element contained in the A site and the Ti content in the element contained in the B site are each desirably 90 mol% or more.
  • the present invention is also meaningful in solving the problem of instability of the carbon dioxide reforming catalyst caused by such impurities.
  • the specific surface area is not particularly limited, but the catalytic activity tends to improve as the specific surface area increases. Therefore, the specific surface area is usually 1 m 2 / g or more. It is preferable to have.
  • the specific surface area of the carbon dioxide reforming catalyst of the present invention is usually , 6 m 2 / g or less is preferable.
  • NiO is reduced to metal Ni by heat treatment in an atmosphere gas containing hydrogen
  • NiO can be converted to metal by heat treatment in another reducing atmosphere. Needless to say, it may be configured to reduce to Ni.
  • the hydrocarbon to be carbon dioxide reformed is methane (CH 4 ).
  • hydrocarbons other than methane such as butane and propane are used.
  • the present invention can also be applied when carbon dioxide is reformed.
  • the present invention is not limited to the above-mentioned examples in other respects.
  • Various conditions are included within the scope of the invention regarding specific conditions for producing the carbon dioxide reforming catalyst of the present invention. It is possible to add applications and modifications.

Abstract

Provided is a carbon dioxide reforming catalyst for hydrocarbons, with which it is possible to efficiently reform carbon dioxide in hydrocarbons while suppressing the precipitation of carbon (for example by carbon dioxide reforming methane, to generate hydrogen and carbon monoxide). Also provided is a carbon dioxide reforming method for hydrocarbons, using same. The carbon dioxide reforming catalyst for hydrocarbons contains a complex oxide ABO3 having a perovskite structure (the element that constitutes the A site is Sr, and may partially contain B, Ca or Mg; the element that constitutes the B site is Ti, and may partially contain Zr), and Ni, wherein (a) the molar ratio A/B of the total quantity of elements that constitute the A site and the total quantity of elements that constitute the B site falls within the range of 0.90 ≦ A/B ≦ 1.20, and (b) the molar ratio Ni/B of the total quantities of elements that constitute the B site and Ni falls within the range 0.02 ≦ Ni/B ≦ 0.16.

Description

炭化水素の二酸化炭素改質用触媒および炭化水素の二酸化炭素改質方法Hydrocarbon carbon dioxide reforming catalyst and hydrocarbon carbon dioxide reforming method
 本発明は、炭化水素系の原料ガスを改質して、水素および一酸化炭素を含む合成ガスを製造する際に用いられる、炭化水素の二酸化炭素改質用触媒およびそれを用いた炭化水素の二酸化炭素改質方法に関する。 The present invention relates to a hydrocarbon carbon dioxide reforming catalyst used for producing a synthesis gas containing hydrogen and carbon monoxide by reforming a hydrocarbon-based source gas, and a hydrocarbon using the same. The present invention relates to a carbon dioxide reforming method.
 石油精製や石油化学などの技術分野では種々の炭化水素系ガスが発生するが、必ずしも効率よく種々の物質の原料ガスなどとして利用できておらず、より有効な物質に変換する方法が求められている。 Various hydrocarbon gases are generated in technical fields such as petroleum refining and petrochemistry, but they are not necessarily efficiently used as raw material gases for various substances, and a method for converting them into more effective substances is required. Yes.
 このような状況の下で、炭化水素系ガスを改質することによって水素および一酸化炭素を含む合成ガスを製造する方法として、炭化水素の二酸化炭素改質、炭化水素の水蒸気改質、飽和炭化水素に対して二酸化炭素と水蒸気の両方を触媒の存在下に反応させる二酸化炭素と水蒸気の併用改質などの方法が知られている。 Under such circumstances, hydrocarbon gas reforming, hydrocarbon steam reforming, saturated carbonization are methods for producing synthesis gas containing hydrogen and carbon monoxide by reforming hydrocarbon-based gas. There are known methods such as combined reforming of carbon dioxide and steam in which both carbon dioxide and steam react with hydrogen in the presence of a catalyst.
 炭化水素の二酸化炭素改質は、メタンなどの飽和炭化水素と二酸化炭素とを触媒の存在下に反応させ、比較的一酸化炭素濃度の高い合成ガスを製造するのに適している。 Carbon dioxide reforming of hydrocarbons is suitable for producing a synthesis gas having a relatively high carbon monoxide concentration by reacting a saturated hydrocarbon such as methane with carbon dioxide in the presence of a catalyst.
 一方、炭化水素の水蒸気改質は、メタンなどの飽和炭化水素と水蒸気とを触媒の存在下に反応させ、比較的水素濃度の高い合成ガスを製造するのに適している。 On the other hand, steam reforming of hydrocarbons is suitable for producing a synthesis gas having a relatively high hydrogen concentration by reacting a saturated hydrocarbon such as methane with steam in the presence of a catalyst.
 また、メタンなどの飽和炭化水素に対して二酸化炭素と水蒸気の両方を触媒の存在下に反応させる二酸化炭素と水蒸気の併用改質の方法には、二酸化炭素と水蒸気の割合を調整することで、製造される合成ガスの水素と一酸化炭素の比を調整できるという利点がある。 In addition, in the method of combined reforming of carbon dioxide and steam in which both carbon dioxide and steam react with saturated hydrocarbons such as methane in the presence of a catalyst, by adjusting the ratio of carbon dioxide and steam, There is an advantage that the ratio of hydrogen and carbon monoxide in the produced synthesis gas can be adjusted.
 これら炭化水素系ガスの改質では、炭化水素が分解する過程で触媒上に炭素が析出することがある。この炭素析出の程度は炭化水素改質条件によって異なり、炭化水素の二酸化炭素改質においては最も炭素が析出しやすく、炭化水素の水蒸気改質では比較的炭素析出量が少ないと言われている。しかしながら、触媒上に析出する炭素は徐々に蓄積して触媒活性を低下させ、多量に析出した場合には反応管を閉塞させるおそれがあり、炭化水素の水蒸気改質においても、一般的には水蒸気と炭化水素の比(以下「水蒸気/炭化水素比」)を高く設定し、水蒸気を過剰に導入することにより炭素析出を抑制している。 In the reforming of these hydrocarbon gases, carbon may be deposited on the catalyst during the process of hydrocarbon decomposition. The degree of carbon deposition varies depending on the hydrocarbon reforming conditions. It is said that carbon is most likely to precipitate in carbon dioxide reforming of hydrocarbons, and that the amount of carbon deposition is relatively small in hydrocarbon steam reforming. However, the carbon deposited on the catalyst gradually accumulates to reduce the catalytic activity, and if it is deposited in large quantities, the reaction tube may be clogged. And hydrocarbon ratio (hereinafter, “steam / hydrocarbon ratio”) is set high, and carbon deposition is suppressed by introducing excessive steam.
 そして、炭化水素の二酸化炭素または水蒸気改質触媒としては、アルミナなどの基体にニッケルを担持させたニッケル系触媒、ルテニウムを担持させたルテニウム系触媒(特許文献1参照)、さらには、アルミナなどの基体にロジウムを担持させたロジウム系触媒(特許文献2参照)などが知られている。 The hydrocarbon carbon dioxide or steam reforming catalyst includes a nickel-based catalyst in which nickel is supported on a substrate such as alumina, a ruthenium-based catalyst in which ruthenium is supported (see Patent Document 1), and further, such as alumina. A rhodium-based catalyst in which rhodium is supported on a substrate (see Patent Document 2) is known.
 また、炭素析出の抑制と低温での活性向上を目的に、ペロブスカイト型化合物であるアルミン酸ランタン、チタン酸ストロンチウム、チタン酸バリウムを用いた担体上に、ロジウム、コバルト、およびニッケルを活性成分として担持した触媒が知られている(特許文献3参照)。 Also, rhodium, cobalt, and nickel are supported as active components on a carrier using lanthanum aluminate, strontium titanate, and barium titanate, which are perovskite compounds, for the purpose of suppressing carbon deposition and improving activity at low temperatures. Such a catalyst is known (see Patent Document 3).
 炭化水素の水蒸気改質触媒として一般的な、アルミナなどの基体にニッケルを担持させたニッケル系触媒は、触媒上に炭素析出を起こしやすく、炭素析出による活性低下を抑えるために、炭化水素に対して水蒸気が過剰な、高い水蒸気/炭化水素比の条件下で、炭化水素の水蒸気改質反応を行う必要性がある。しかしながら、水蒸気を過剰にするために、水の気化過程においてエネルギー消費が増大するという問題点があり、また、製造される合成ガス組成中の一酸化炭素濃度が低下し、燃料合成などの一酸化炭素濃度の高い合成ガスを必要とする用途には適さないという問題点がある。さらに、炭化水素の二酸化炭素改質や、二酸化炭素と水蒸気の併用改質を試みる場合には、より炭素析出が発生しやすい改質反応であるため、上記ニッケル系触媒では安定かつ効率的な装置の運転が困難であるという問題点がある。 Nickel-based catalysts in which nickel is supported on a substrate such as alumina, which is common as a hydrocarbon steam reforming catalyst, are likely to cause carbon deposition on the catalyst. Therefore, there is a need to carry out a hydrocarbon steam reforming reaction under conditions of a high steam / hydrocarbon ratio with excess steam. However, excess water vapor has the problem of increased energy consumption during the water vaporization process, and the concentration of carbon monoxide in the synthesis gas composition to be produced decreases, resulting in monoxide oxidation such as fuel synthesis. There is a problem that it is not suitable for applications that require synthesis gas with a high carbon concentration. Furthermore, when trying to reform carbon dioxide of hydrocarbons or reforming carbon dioxide and steam together, this is a reforming reaction that is more likely to cause carbon deposition. There is a problem that it is difficult to drive.
 また、特許文献1に示されているようなルテニウム系触媒は、炭素析出を抑制する作用を持つため、ニッケル系触媒と比較すると炭素の析出が少なく、活性の維持も容易であるが、エチレンなどの不飽和炭化水素が原料中に共存すると、熱的炭素析出および活性の低下が起こりやすく、ルテニウム系触媒が炭素析出抑制効果を持っていても、原料ガス中に含まれる不飽和炭化水素などによって被毒し、活性が低下するという問題点がある。 In addition, since the ruthenium-based catalyst as shown in Patent Document 1 has an action of suppressing carbon deposition, carbon deposition is less than that of a nickel-based catalyst and the activity can be easily maintained. When unsaturated hydrocarbons coexist in the raw material, thermal carbon deposition and activity decrease are likely to occur, and even if the ruthenium-based catalyst has an effect of suppressing carbon deposition, it may be caused by unsaturated hydrocarbons contained in the raw material gas. There is a problem that poisoning and activity decrease.
 また、特許文献2に示されているような、アルミナなどの基体にロジウムを担持させたロジウム系触媒にも同様の問題点があるとされている。 Also, the rhodium-based catalyst in which rhodium is supported on a substrate such as alumina as shown in Patent Document 2 is said to have similar problems.
 また、特許文献3に示されているようなペロブスカイト型複合酸化物を担体とする触媒は高い活性を有するため、水蒸気改質において水蒸気の供給量を減らしても、炭素析出を抑えることは可能であるが、より炭素析出が起こりやすい二酸化炭素改質において炭素析出を抑制できるには至っていない。 In addition, since a catalyst using a perovskite type complex oxide as shown in Patent Document 3 has high activity, it is possible to suppress carbon deposition even if the amount of steam supplied is reduced in steam reforming. However, it has not yet been possible to suppress carbon deposition in carbon dioxide reforming where carbon deposition is more likely to occur.
特開平8-231204号公報JP-A-8-231204 特開平9-168740号公報JP-A-9-168740 特開2006-346598号公報JP 2006-346598 A
 本発明は、上記課題を解決するものであり、炭素の析出を抑制しつつ、炭化水素を効率よく二酸化炭素改質する(例えば、メタンを二酸化炭素改質して、水素および一酸化炭素を生成させる)ことが可能な、炭化水素の二酸化炭素改質用触媒およびそれを用いた炭化水素の二酸化炭素改質方法を提供することを目的とする。 The present invention solves the above problems, and efficiently reforms hydrocarbons with carbon dioxide while suppressing carbon deposition (for example, reforming methane to carbon dioxide to produce hydrogen and carbon monoxide. It is an object of the present invention to provide a hydrocarbon carbon dioxide reforming catalyst and a hydrocarbon carbon dioxide reforming method using the same.
 上記課題を解決するために、本発明の炭化水素の二酸化炭素改質用触媒は、
 ペロブスカイト構造を持つ複合酸化物ABO3(Aサイトを構成する元素は主としてSrであってBa,Ca,Mgを含んでもよく、Bサイトを構成する元素は主としてTiでありZrを含んでもよい)と、Niとを含む触媒であって、
 (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.90≦A/B≦1.20の範囲にあり、
 (b)前記Niと、前記Bサイトを構成する元素の合計量のモル比:Ni/Bが、0.02≦Ni/B≦0.16の範囲にあること
 を特徴としている。
In order to solve the above-described problems, the hydrocarbon carbon dioxide reforming catalyst of the present invention comprises:
Complex oxide ABO 3 having a perovskite structure (the element constituting the A site is mainly Sr and may contain Ba, Ca, Mg, and the element constituting the B site is mainly Ti and may contain Zr) A catalyst containing Ni,
(a) molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.90 ≦ A / B ≦ 1.20,
(b) A molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in a range of 0.02 ≦ Ni / B ≦ 0.16.
 また、請求項2の炭化水素の二酸化炭素改質用触媒は、
 (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.90≦A/B≦1.20の範囲にあり、
 (b)前記Niと、前記Bサイトを構成する元素の合計量のモル比:Ni/Bが、0.04≦Ni/B≦0.16の範囲にあること
 を特徴としている。
The hydrocarbon carbon dioxide reforming catalyst according to claim 2 comprises:
(a) molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.90 ≦ A / B ≦ 1.20,
(b) The molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.04 ≦ Ni / B ≦ 0.16.
 また、請求項3の炭化水素の二酸化炭素改質用触媒は、
 (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.96≦A/B≦1.20の範囲にあり、
 (b)前記Niと、前記Bサイトを構成する元素の合計量のモル比:Ni/Bが、0.04≦Ni/B≦0.13の範囲にあること
 を特徴としている。
The hydrocarbon carbon dioxide reforming catalyst according to claim 3 is:
(a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.96 ≦ A / B ≦ 1.20,
(b) The molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.04 ≦ Ni / B ≦ 0.13.
 また、請求項4の炭化水素の二酸化炭素改質用触媒は、
 (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.98≦A/B≦1.20の範囲にあり、
 (b)前記Niと、前記Bサイトを構成する元素の合計量のモル比:Ni/Bが、0.04≦Ni/B≦0.08の範囲にあること
 を特徴としている。
The hydrocarbon carbon dioxide reforming catalyst according to claim 4
(a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.98 ≦ A / B ≦ 1.20,
(b) A molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.04 ≦ Ni / B ≦ 0.08.
 また、請求項5の炭化水素の二酸化炭素改質用触媒は、
 (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.98≦A/B≦1.01の範囲にあり、
 (b)前記Niと、前記Bサイトを構成する元素の合計量のモル比:Ni/Bが、0.04≦Ni/B≦0.08の範囲にあること
 を特徴としている。
The hydrocarbon carbon dioxide reforming catalyst according to claim 5
(a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.98 ≦ A / B ≦ 1.01,
(b) A molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.04 ≦ Ni / B ≦ 0.08.
 また、請求項6の炭化水素の二酸化炭素改質用触媒は、
 (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、1.01≦A/B≦1.04の範囲にあり、
 (b)前記Niと前記Bサイト元素の合計量のモル比:Ni/Bが、0.08≦Ni/B≦0.12の範囲にあること
 を特徴としている。
The hydrocarbon carbon dioxide reforming catalyst according to claim 6
(a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 1.01 ≦ A / B ≦ 1.04,
(b) The molar ratio of the total amount of Ni and the B site element: Ni / B is in the range of 0.08 ≦ Ni / B ≦ 0.12.
 また、請求項7の炭化水素の二酸化炭素改質用触媒は、前記Niの少なくとも一部が、前記複合酸化物ABO3に固溶していることを特徴としている。 The hydrocarbon carbon dioxide reforming catalyst according to claim 7 is characterized in that at least a part of the Ni is dissolved in the composite oxide ABO 3 .
 また、請求項8の炭化水素の二酸化炭素改質方法は、炭化水素と二酸化炭素からなる原料ガスを、上記請求項1~7のいずれかに記載の炭化水素の二酸化炭素改質用触媒を使用して改質を行い、水素とCOから成る合成ガスを製造することを特徴としている。 The hydrocarbon carbon dioxide reforming method according to claim 8 uses the hydrocarbon carbon dioxide reforming catalyst according to any one of claims 1 to 7 as a raw material gas comprising hydrocarbon and carbon dioxide. Then, reforming is performed to produce a synthesis gas composed of hydrogen and CO.
 請求項1の発明によれば、炭素の析出を抑制しつつ、炭化水素を効率よく二酸化炭素改質する(例えば、メタンを二酸化炭素改質して、水素および一酸化炭素を生成させる)ことが可能な炭化水素の二酸化炭素改質用触媒を提供することが可能になる。
 具体的には、例えば、900℃で二酸化炭素改質を行う場合において、炭素析出を十分に抑えることが可能な、炭化水素の二酸化炭素改質用触媒を提供することができる。
According to the invention of claim 1, the carbon dioxide is efficiently reformed with carbon dioxide while suppressing carbon deposition (for example, methane is reformed with carbon dioxide to generate hydrogen and carbon monoxide). It becomes possible to provide a catalyst for carbon dioxide reforming of a possible hydrocarbon.
Specifically, for example, when carbon dioxide reforming is performed at 900 ° C., a hydrocarbon carbon dioxide reforming catalyst capable of sufficiently suppressing carbon deposition can be provided.
 本発明の二酸化炭素改質用触媒が、炭化水素の二酸化炭素改質において有効に機能するためには、Niは、少なくともその一部が金属Niにまで還元されていることが必要であるが、本発明の二酸化炭素改質用触媒を製造するにあたってはNi原料として、例えば、NiOを用いることが可能である。その場合、触媒を二酸化炭素改質に使用する際に、還元処理を施して、Niの少なくとも一部を金属Niに還元することにより、二酸化炭素改質用触媒として有効な状態とすることができる。 In order for the carbon dioxide reforming catalyst of the present invention to function effectively in the carbon dioxide reforming of hydrocarbons, Ni must be at least partially reduced to metallic Ni, In producing the carbon dioxide reforming catalyst of the present invention, for example, NiO can be used as the Ni raw material. In that case, when the catalyst is used for carbon dioxide reforming, it can be made into an effective state as a catalyst for carbon dioxide reforming by performing a reduction treatment and reducing at least a part of Ni to metal Ni. .
 また、請求項2の発明によれば、さらに確実に、炭素の析出を抑制しつつ、効率よく炭化水素を二酸化炭素改質することが可能な二酸化炭素改質用触媒を提供することが可能になる。 In addition, according to the invention of claim 2, it is possible to provide a carbon dioxide reforming catalyst capable of reforming hydrocarbons with carbon dioxide efficiently while suppressing carbon deposition more reliably. Become.
 また、請求項3の発明によれば、実質的に、炭素を析出させることなく、極めて効率よく炭化水素を二酸化炭素改質することが可能な二酸化炭素改質用触媒を提供することが可能になる。 Further, according to the invention of claim 3, it is possible to provide a carbon dioxide reforming catalyst capable of reforming hydrocarbons with carbon dioxide extremely efficiently without substantially depositing carbon. Become.
 また、請求項4の発明によれば、実質的に、炭素を析出させることなく、極めて効率よく炭化水素を二酸化炭素改質することが可能な二酸化炭素改質用触媒を提供することが可能になる。
 具体的には、例えば、800℃で二酸化炭素改質を行う場合において、炭素析出をほぼ完全に防止しつつ、極めて効率よく炭化水素を二酸化炭素改質することが可能な二酸化炭素改質用触媒を提供することが可能になる。
According to the invention of claim 4, it is possible to provide a carbon dioxide reforming catalyst capable of reforming hydrocarbons with carbon dioxide extremely efficiently without substantially depositing carbon. Become.
Specifically, for example, when carbon dioxide reforming is performed at 800 ° C., a carbon dioxide reforming catalyst capable of reforming hydrocarbons with carbon dioxide extremely efficiently while preventing carbon precipitation almost completely. It becomes possible to provide.
 また、請求項5の発明によれば、実質的に、炭素を析出させることなく、請求項4の二酸化炭素改質用触媒よりもさらに効率よく炭化水素を二酸化炭素改質することが可能な二酸化炭素改質用触媒を提供することが可能になる。 Further, according to the invention of claim 5, the carbon dioxide capable of reforming hydrocarbons with carbon dioxide more efficiently than the carbon dioxide reforming catalyst of claim 4 without substantially depositing carbon. It becomes possible to provide a carbon reforming catalyst.
 また、請求項6の発明によれば、改質温度域で触媒の熱収縮や表面積の変動や熱衝撃による触媒の割れ・カケを抑制するために、触媒を改質温度域に比べてより高温で焼成した場合でも、触媒の炭素析出の抑制や触媒の活性が低下しない。したがって、より効率よく炭化水素を二酸化炭素改質することが可能な二酸化炭素改質用触媒を提供することが可能になる。 According to the invention of claim 6, the catalyst is heated at a higher temperature than the reforming temperature range in order to suppress thermal contraction, surface area variation, cracking and cracking of the catalyst due to thermal shock in the reforming temperature range. Even when calcined with, the carbon deposition of the catalyst and the activity of the catalyst are not reduced. Therefore, it is possible to provide a carbon dioxide reforming catalyst capable of reforming hydrocarbons with carbon dioxide more efficiently.
 なお、請求項7の発明の二酸化炭素改質用触媒において、Ni成分はペロブスカイト構造を持つ複合酸化物ABO3に固溶していることが望ましく、Ni成分の多くが、担体である複合酸化物ABO3に固溶していることにより、炭素析出耐性を改善することが可能になる。 In the carbon dioxide reforming catalyst of the invention of claim 7, the Ni component is preferably dissolved in the composite oxide ABO 3 having a perovskite structure, and the Ni oxide is a composite oxide in which most of the Ni component is a support. By being dissolved in ABO 3 , it becomes possible to improve the resistance to carbon deposition.
 また、請求項8の発明によれば、炭素析出を防止しつつ、炭化水素系の原料ガスを極めて効率よく二酸化炭素改質することができる。 Further, according to the invention of claim 8, it is possible to reform the hydrocarbon-based source gas with carbon dioxide extremely efficiently while preventing carbon deposition.
 例えば、本発明の二酸化炭素改質用触媒を用いて、メタン(炭化水素)を二酸化炭素改質する場合、二酸化炭素改質反応は、下記の式(1)のように進行する。
 CH4 + CO2 ⇒ 2H2 + 2CO    ……(1)
 その結果、メタン(CH4)と二酸化炭素ガス(CO2)を原料として、水素(H2)と一酸化炭素(CO)からなる合成ガスを効率よく製造することが可能になる。
For example, when carbon dioxide reforming of methane (hydrocarbon) using the carbon dioxide reforming catalyst of the present invention, the carbon dioxide reforming reaction proceeds as shown in the following formula (1).
CH 4 + CO 2 ⇒ 2H 2 + 2CO (1)
As a result, it is possible to efficiently produce a synthesis gas composed of hydrogen (H 2 ) and carbon monoxide (CO) using methane (CH 4 ) and carbon dioxide gas (CO 2 ) as raw materials.
本発明の実施例にかかる二酸化炭素改質用触媒を用いてメタン(炭化水素)の二酸化炭素改質するにあたって用いた試験装置の概略構成を示す図である。It is a figure which shows schematic structure of the test apparatus used in performing the carbon dioxide reforming of methane (hydrocarbon) using the catalyst for carbon dioxide reforming concerning the Example of this invention.
 以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。 Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.
[1]二酸化炭素改質用触媒の製造
 (1)表1の触媒1の製造
 触媒原料として炭酸ストロンチウム(SrCO3)と、酸化チタン(TiO2)と、酸化ニッケル(NiO)とを用意し、
 (a)TiO2に対するSrCO3のモル比、すなわち、ABO3で表されるペロブスカイト型複合酸化物のAサイトを構成するSrと、Bサイトを構成するTiのモル比(A/B)が、A/B=0.80、
 (b)TiO2に対するNiOのモル比、すなわち、ABO3で表されるペロブスカイト型複合酸化物のBサイトを構成するTiと、Niのモル比(Ni/B)が、Ni/B=0.05
 となるようにSrCO3と、TiO2と、NiOとを秤量した。
[1] Manufacture of carbon dioxide reforming catalyst (1) Manufacture of catalyst 1 of Table 1 As catalyst raw materials, strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and nickel oxide (NiO) are prepared.
(a) The molar ratio of SrCO 3 to TiO 2 , that is, the molar ratio (A / B) of Sr constituting the A site of the perovskite complex oxide represented by ABO 3 and Ti constituting the B site (A / B), A / B = 0.80,
(b) The molar ratio of NiO to TiO 2 , that is, the molar ratio (Ni / B) of Ti and Ni constituting the B site of the perovskite complex oxide represented by ABO 3 is Ni / B = 0. 05
SrCO 3 , TiO 2 and NiO were weighed so that
 そして、秤量した原料に対して、玉石と水とバインダーを加えて混合することにより、上記原料の混合物を得た。それから、この混合物を、120℃のオーブン中で乾燥し、粉砕・分級することにより、粒径が1.5~2.5mmの粒状試料を得た。 Then, cobblestone, water and a binder were added to the weighed raw materials and mixed to obtain a mixture of the above raw materials. Then, the mixture was dried in an oven at 120 ° C., and pulverized and classified to obtain a granular sample having a particle size of 1.5 to 2.5 mm.
 次に、この粒状試料を、空気中にて1100℃/1hの条件で焼成することにより表1の触媒(二酸化炭素改質用触媒)1を得た。
 なお、この二酸化炭素改質用触媒(以下、単に「触媒」ともいう)1は、上述のA/B(モル比)が本発明の要件を満たさない比較例としての触媒である。
Next, this granular sample was calcined in air under the conditions of 1100 ° C./1 h to obtain a catalyst (carbon dioxide reforming catalyst) 1 shown in Table 1.
The carbon dioxide reforming catalyst (hereinafter also simply referred to as “catalyst”) 1 is a catalyst as a comparative example in which the above-mentioned A / B (molar ratio) does not satisfy the requirements of the present invention.
 (2)表1の触媒2~16の製造
 上記(1)の触媒1の場合と同様に、触媒原料としてSrCO3と、TiO2と、NiOとを用意した。
 そして、TiO2に対するSrCO3のモル比(A/B)および、TiO2に対するNiOのモル比(Ni/B)が、表1の触媒2~16の比率となるように、SrCO3と、TiO2と、NiOの各原料を秤量した。
(2) Production of Catalysts 2 to 16 in Table 1 As in the case of Catalyst 1 in (1) above, SrCO 3 , TiO 2 and NiO were prepared as catalyst raw materials.
Then, the molar ratio of SrCO 3 with respect to TiO 2 (A / B) and, as the molar ratio of NiO with respect to TiO 2 (Ni / B) becomes the ratio of Table 1 catalyst 2 to 16, and SrCO 3, TiO 2 and NiO raw materials were weighed.
 それから、上述のような割合で秤量した原料を用いて、上記(1)の触媒1を製造する場合と同じ手順、同じ条件で、混合、乾燥、粉砕・分級、焼成などの処理を行って、触媒(二酸化炭素改質用触媒)2~16を製造した。
 なお、触媒2~16は、いずれも、上述のA/B(モル比)、およびNi/B(モル比)の値が、本発明の要件を満たす触媒である。
Then, using the raw materials weighed in the proportions as described above, the same procedures and conditions as in the production of the catalyst 1 of the above (1) are performed, and mixing, drying, pulverization / classification, firing and the like are performed. Catalysts (carbon dioxide reforming catalysts) 2 to 16 were produced.
Each of the catalysts 2 to 16 is a catalyst in which the above-mentioned values of A / B (molar ratio) and Ni / B (molar ratio) satisfy the requirements of the present invention.
[2]結晶相の確認
 上述のようにして作製した触媒1~16について、XRD測定により結晶相の確認を行った。その結果、いずれの触媒もNiOとSrTiO3を主成分とする触媒であることが確認された。
 また、TEM(透過型電子顕微鏡)による観察分析、および、EDX(エネルギー分散X線分光法)による測定の結果、SrTiO3にNiの一部が固溶したNi-SrTiO3固溶体となっていることが確認された。
[2] Confirmation of Crystal Phase With respect to the catalysts 1 to 16 produced as described above, the crystal phase was confirmed by XRD measurement. As a result, it was confirmed that all the catalysts were mainly composed of NiO and SrTiO 3 .
Also, TEM (transmission electron microscope) observation and analysis by, and, EDX (energy dispersive X-ray spectroscopy) results of measurement by, a part of Ni in SrTiO 3 is a Ni-SrTiO 3 solid solution with a solid solution Was confirmed.
 なお、表1の触媒1(A/B=0.80)と、触媒2(A/B=0.90)では、NiTiO3相の回折線が検出され、また、触媒4(A/B=1.10)と、触媒5(A/B=1.20)では、Sr2TiO4相の回折線が検出された。このことから、担体であるペロブスカイト型複合酸化物の組成、すなわち、AサイトとBサイトのモル比(A/B)が、A/B=1.00から大きく外れると、NiTiO3相もしくはSr2TiO4相が異相として混入する傾向があることが確認された。 Note that a diffraction line of NiTiO 3 phase was detected in catalyst 1 (A / B = 0.80) and catalyst 2 (A / B = 0.90) in Table 1, and catalyst 4 (A / B = 1.10) and catalyst 5 (A / B = 1.20), Sr 2 TiO 4 phase diffraction lines were detected. From this, when the composition of the perovskite complex oxide as the carrier, that is, the molar ratio (A / B) between the A site and the B site deviates greatly from A / B = 1.00, the NiTiO 3 phase or the Sr 2 It was confirmed that the TiO 4 phase tends to be mixed as a different phase.
[3]炭化水素の二酸化炭素改質試験
 (1)触媒の還元前処理
 上述のようにして作製した触媒1~16について、水素5%を含有する窒素中にて、500℃で熱処理を行うことにより、触媒中のNiOを金属Niに還元する還元処理を行った。
 なお、還元処理は、図1に示す、本発明の触媒を用いたメタンの二酸化炭素改質試験を行うのに用いた試験装置の金属製の反応管1に、上述のようにして製造した触媒を充填し、水素5%を含有する窒素を流通させながらヒーター2により500℃に加熱することにより行った。
[3] Carbon dioxide reforming test of hydrocarbon (1) Pretreatment for catalyst reduction Catalysts 1 to 16 prepared as described above are heat-treated at 500 ° C. in nitrogen containing 5% hydrogen. Thus, a reduction treatment for reducing NiO in the catalyst to metallic Ni was performed.
In addition, the reduction treatment is carried out by using the catalyst manufactured as described above in the metal reaction tube 1 of the test apparatus used for conducting the carbon dioxide reforming test of methane using the catalyst of the present invention shown in FIG. And heated to 500 ° C. with heater 2 while flowing nitrogen containing 5% hydrogen.
 (2)二酸化炭素改質試験
 上記還元処理済みの二酸化炭素改質用触媒を用いて、炭化水素(この実施例ではメタン(CH4))の二酸化炭素改質試験を行い、特性を調べた。
(2) Carbon dioxide reforming test Using the carbon dioxide reforming catalyst after the reduction treatment, a carbon dioxide reforming test of hydrocarbons (methane (CH 4 ) in this example) was conducted to investigate the characteristics.
 なお、メタン(CH4)の二酸化炭素改質試験は、図1に示す装置を用いて行った。
 具体的には、外部にヒーター2を備えた金属製の反応管1に、上記のようにして製造し、還元処理を行った各二酸化炭素改質用触媒(図1では触媒を符号3で示している)を2cc充填し、ヒーター2により900℃の温度に加熱した状態で、CH4/CO2=1(モル比)の原料ガスを、入口4から反応管1に供給し、167ml/minの速度(SV=5000/h相当)で、75時間連続して原料ガスを流通させることにより行った。
The carbon dioxide reforming test of methane (CH 4 ) was performed using the apparatus shown in FIG.
Specifically, each carbon dioxide reforming catalyst manufactured as described above and subjected to reduction treatment in a metal reaction tube 1 provided with an external heater 2 (in FIG. 1, the catalyst is denoted by reference numeral 3). 2 cc), and heated to a temperature of 900 ° C. by the heater 2, a raw material gas of CH 4 / CO 2 = 1 (molar ratio) is supplied to the reaction tube 1 from the inlet 4 and is 167 ml / min. The material gas was circulated for 75 hours at a speed of (SV = 5000 / h equivalent).
 なお、試験中は、反応管1の出口5から排出されるガスを分析装置に導入してガス濃度を測定した。 During the test, the gas discharged from the outlet 5 of the reaction tube 1 was introduced into the analyzer and the gas concentration was measured.
 また、900℃、75時間の試験終了後に、反応管1から、図1において符号3で示される触媒を取り出し、試験前後の触媒重量差から、75時間にわたる二酸化炭素改質試験における炭素析出量を求めた。 Further, after completion of the test at 900 ° C. for 75 hours, the catalyst indicated by reference numeral 3 in FIG. 1 is taken out from the reaction tube 1, and the amount of carbon deposited in the carbon dioxide reforming test over 75 hours is calculated from the difference in catalyst weight before and after the test. Asked.
 さらに、改質温度:900℃の条件よりも炭素析出が生じやすい、改質温度:800℃の条件でも、メタン(CH4)の二酸化炭素改質試験を行った。なお、改質温度:800℃での改質試験は、900℃で75時間の二酸化炭素改質試験を行った後の触媒2ccを、反応管1に充填し、ヒーター2により800℃の温度に加熱した状態で、CH4/CO2=1(モル比)の原料ガスを、入口4から反応管1に供給し、167ml/minの速度(SV=5000/h相当)で、6時間連続して原料ガスを流通させることにより行った。 Furthermore, the carbon dioxide reforming test of methane (CH 4 ) was also performed under the condition of reforming temperature: 800 ° C., where carbon deposition is more likely to occur than the reforming temperature: 900 ° C. The reforming test at a reforming temperature of 800 ° C. is performed by filling 2 cc of the catalyst after the carbon dioxide reforming test at 900 ° C. for 75 hours into the reaction tube 1 and setting the temperature to 800 ° C. by the heater 2. In a heated state, a raw material gas of CH 4 / CO 2 = 1 (molar ratio) is supplied from the inlet 4 to the reaction tube 1 and continuously for 6 hours at a rate of 167 ml / min (equivalent to SV = 5000 / h). The raw material gas was circulated.
 また、800℃、6時間の試験終了後に、反応管1から触媒を取り出し、800℃での改質試験前後の触媒重量差から、800℃で6時間の二酸化炭素改質試験における炭素析出量を求めた。 Further, after completion of the test at 800 ° C. for 6 hours, the catalyst is taken out from the reaction tube 1 and the amount of carbon deposited in the carbon dioxide reforming test at 800 ° C. for 6 hours is calculated from the catalyst weight difference before and after the reforming test at 800 ° C. Asked.
 改質温度:900℃での改質試験における出口メタン濃度と、改質温度:900℃、75時間の改質試験における炭素析出量、および、改質温度:800℃、6時間の改質試験における炭素析出量を表1に示す。 Reforming temperature: outlet methane concentration in reforming test at 900 ° C., reforming temperature: 900 ° C., carbon deposition amount in reforming test for 75 hours, and reforming temperature: 800 ° C., reforming test for 6 hours Table 1 shows the amount of deposited carbon.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1の「炭素析出量」は、下記の式(2)に示すように、改質試験の前後の触媒重量差(重量増加量)ΔWを、改質試験後の触媒重量Wで除して100を乗じた値である。
 炭素析出量(%)=(ΔW/W)×100……(2)
The “carbon deposition amount” in Table 1 is obtained by dividing the catalyst weight difference (weight increase) ΔW before and after the reforming test by the catalyst weight W after the reforming test, as shown in the following formula (2). And multiplied by 100.
Carbon precipitation (%) = (ΔW / W) × 100 (2)
 また、活性が高い触媒ほど、原料ガス中のメタンがよく反応して、出口メタン濃度が低くなり、また、炭素析出耐性が高い触媒ほど、炭素の析出が抑制され、炭素析出量が少なくなることから、表1において、出口メタン濃度が低い触媒は触媒活性が高く、炭素析出量が少ない触媒は炭素析出耐性が高いことを示している。 In addition, the higher the activity of the catalyst, the more the methane in the raw material gas reacts and the lower the outlet methane concentration, and the higher the carbon deposition resistance, the more the carbon deposition is suppressed and the carbon deposition amount decreases. From Table 1, it is shown that a catalyst having a low outlet methane concentration has a high catalytic activity, and a catalyst having a small amount of carbon deposition has a high resistance to carbon deposition.
 表1の触媒1~5においては、A/B値が大きいほど炭素析出量が少なくなる(炭素析出耐性が高くなる)傾向のあることが確認された。 In the catalysts 1 to 5 in Table 1, it was confirmed that the larger the A / B value, the smaller the carbon deposition amount (the higher the carbon deposition resistance).
 また、AサイトとBサイトのモル比が、A/B=1.00付近で、触媒活性が最大となり、A/B=1.00から外れるほど触媒活性が低下する(出口メタン濃度が高くなる)傾向のあることが確認された。 Further, when the molar ratio of the A site and the B site is around A / B = 1.00, the catalytic activity becomes maximum, and the catalytic activity decreases as it deviates from A / B = 1.00 (the outlet methane concentration increases). ) Confirmed a tendency.
 また、表1の触媒3および6~10より、触媒中のNiとBサイトを構成する元素(この実施例1ではTi)のモル比:Ni/B値が小さいほど、炭素析出耐性は高くなる傾向のあることが確認された。 Further, from the catalysts 3 and 6 to 10 in Table 1, as the molar ratio of the elements constituting Ni and B sites in the catalyst (Ti in this Example 1): Ni / B value is smaller, the carbon deposition resistance is higher. It was confirmed that there was a tendency.
 また、Ni/B値が大きいほど触媒活性が高くなる(出口メタン濃度が低下する)傾向のあることが確認された。 It was also confirmed that the catalyst activity tends to increase (the outlet methane concentration decreases) as the Ni / B value increases.
 なお、Ni/B≧0.08(表1の触媒7~10)においてNi含有量が増加するにもかかわらず、出口メタン濃度が変化しないのは、出口濃度が900℃におけるメタンの平衡濃度:0.8vol%に到達しているためである。 It should be noted that the outlet methane concentration does not change in spite of the increase in Ni content when Ni / B ≧ 0.08 (catalysts 7 to 10 in Table 1). The equilibrium concentration of methane when the outlet concentration is 900 ° C .: This is because it has reached 0.8 vol%.
 上述の結果から明らかなように、炭化水素の二酸化炭素改質用触媒の炭素析出耐性と触媒活性は、Ni含有量、すなわち、Ni/B値のみではなく、担体であるペロブスカイト構造を持つ複合酸化物ABO3の組成、すなわち、A/B値によっても大きく変化する。
 したがって、炭素析出耐性が高く、触媒活性に優れた触媒を得るためには、「担体である複合酸化物ABO3の組成:A/B値」と「Ni含有量:Ni/B値」の両方を適切な範囲に設定することが重要になる。
As is clear from the above results, the carbon deposition resistance and catalytic activity of the hydrocarbon carbon dioxide reforming catalyst is not only the Ni content, that is, the Ni / B value, but also the composite oxidation having the perovskite structure as the support. It also varies greatly depending on the composition of the product ABO 3 , that is, the A / B value.
Therefore, in order to obtain a catalyst having high carbon deposition resistance and excellent catalytic activity, both “composition of composite oxide ABO 3 as support: A / B value” and “Ni content: Ni / B value” It is important to set to an appropriate range.
 かかる見地から、上記の各触媒について行った二酸化炭素改質試験の結果を検討すると、本発明の請求項1において規定されている組成範囲、すなわち、
 「0.90≦A/B≦1.20、かつ、0.02≦Ni/B≦0.16」
の組成範囲では、900℃で75時間の二酸化炭素改質試験後における上述の「炭素析出量」は1wt%以下であり、請求項1において規定されている組成範囲の触媒は、例えば1000℃以上の温度条件で炭化水素の二酸化炭素改質を実施する用途に適応した場合に有意義である。
From this point of view, when examining the results of the carbon dioxide reforming test conducted for each of the above catalysts, the composition range defined in claim 1 of the present invention, that is,
“0.90 ≦ A / B ≦ 1.20 and 0.02 ≦ Ni / B ≦ 0.16”
In the composition range, the above-mentioned “carbon deposition amount” after the carbon dioxide reforming test at 900 ° C. for 75 hours is 1 wt% or less, and the catalyst in the composition range defined in claim 1 is, for example, 1000 ° C. or more. This is significant when applied to applications in which carbon dioxide reforming of hydrocarbons is performed under the following temperature conditions.
 また、Ni/B値が小さい組成範囲(すなわち、Ni含有量が少ない組成範囲)では、触媒活性が低くなることから、炭素析出耐性が優れていることに加えて、十分な触媒活性が求められる用途に適用する場合には、本発明の請求項2において規定されている組成範囲、すなわち、
 「0.90≦A/B≦1.20、かつ、0.04≦Ni/B≦0.16」
の組成範囲とすることが好ましい。
Further, in a composition range where the Ni / B value is small (that is, a composition range where the Ni content is low), the catalytic activity is low, so that sufficient catalytic activity is required in addition to excellent carbon deposition resistance. When applied to applications, the composition range defined in claim 2 of the present invention, that is,
“0.90 ≦ A / B ≦ 1.20 and 0.04 ≦ Ni / B ≦ 0.16”
It is preferable to set it as the composition range.
 また、本発明の請求項3において規定されている組成範囲、すなわち、
 「0.96≦A/B≦1.20、かつ、0.04≦Ni/B≦0.13」
の組成範囲では、900℃で75時間の二酸化炭素改質試験後における上述の「炭素析出量」は0wt%であり、請求項3において規定されている組成範囲の触媒は、例えば900℃以上の温度条件で炭化水素の二酸化炭素改質を実施する用途への適応が有効であると考えられる。
The composition range defined in claim 3 of the present invention, that is,
“0.96 ≦ A / B ≦ 1.20 and 0.04 ≦ Ni / B ≦ 0.13”
In the above composition range, the above-mentioned “carbon deposition amount” after the carbon dioxide reforming test at 900 ° C. for 75 hours is 0 wt%, and the catalyst in the composition range defined in claim 3 is, for example, 900 ° C. or more. It is considered effective to be applied to applications in which hydrocarbons undergo carbon dioxide reforming under temperature conditions.
 さらに、本発明の請求項4において規定されている組成範囲、すなわち、
 「0.98≦A/B≦1.20、かつ、0.04≦Ni/B≦0.08」
の組成範囲では、800℃で6時間の二酸化炭素改質試験後における上述の「炭素析出量」は0wt%であり、請求項4において規定されている組成範囲の触媒は、例えば800℃以上の温度条件で炭化水素の二酸化炭素改質を実施する用途への適応が有効であると考えられる。
Furthermore, the composition range defined in claim 4 of the present invention, i.e.
“0.98 ≦ A / B ≦ 1.20 and 0.04 ≦ Ni / B ≦ 0.08”
In the above composition range, the above-mentioned “carbon deposition amount” after the carbon dioxide reforming test at 800 ° C. for 6 hours is 0 wt%, and the catalyst in the composition range defined in claim 4 is, for example, 800 ° C. or more. It is considered effective to be applied to applications in which hydrocarbons undergo carbon dioxide reforming under temperature conditions.
 また、二酸化炭素改質試験における温度(改質温度)が低くなるほど触媒活性が低くなる傾向があるので、800℃程度の低温における炭素析出耐性が優れていることに加えて十分な触媒活性が求められる用途では、本発明の請求項5において規定されている組成範囲、すなわち、
 「0.98≦A/B≦1.01、かつ、0.04≦Ni/B≦0.08」
の組成範囲とすることが好ましい。
Further, since the catalytic activity tends to decrease as the temperature (reforming temperature) in the carbon dioxide reforming test decreases, sufficient catalytic activity is required in addition to excellent resistance to carbon deposition at a low temperature of about 800 ° C. In the intended application, the composition range defined in claim 5 of the present invention, i.e.
“0.98 ≦ A / B ≦ 1.01 and 0.04 ≦ Ni / B ≦ 0.08”
It is preferable that the composition range be
[1]二酸化炭素改質用触媒(表2の触媒17~21)の製造
 上記実施例1の(1)の触媒1を製造する場合と同様に、触媒原料としてSrCO3と、TiO2と、NiOとを用意した。
 そして、TiO2に対するSrCO3のモル比(A/B)および、TiO2に対するNiOのモル比(Ni/B)が、表2の触媒17~21の比率となるように、SrCO3と、TiO2と、NiOの各原料を秤量した。
[1] Production of carbon dioxide reforming catalyst (Catalysts 17 to 21 in Table 2) Similar to the production of catalyst 1 of Example 1 (1), SrCO 3 , TiO 2 as catalyst raw materials, NiO was prepared.
Then, the molar ratio of SrCO 3 with respect to TiO 2 (A / B) and, as the molar ratio of NiO with respect to TiO 2 (Ni / B) becomes the ratio of Table 2 catalysts 17-21, and SrCO 3, TiO 2 and NiO raw materials were weighed.
 それから、上述のような割合で秤量した原料を用いて、上記実施例1の(1)の触媒1を製造する場合と同じ手順、同じ条件で、混合、乾燥、粉砕・分級などの処理を行い、粒径が1.5~2.5mmの粒状試料を得た。 Then, using the raw materials weighed in the proportions as described above, processing such as mixing, drying, pulverization and classification is performed in the same procedure and under the same conditions as in the production of the catalyst 1 of Example 1 (1). A granular sample having a particle size of 1.5 to 2.5 mm was obtained.
 次に、この粒状試料を、空気中にて1300℃/1hの条件で焼成することにより表2の触媒(二酸化炭素改質用触媒)17~21を得た。
 なお、触媒17~21は、いずれも、上述のA/B(モル比)、およびNi/B(モル比)の値が、本発明の要件を満たす触媒である。
Next, the granular samples were calcined in air under the conditions of 1300 ° C./1 h to obtain catalysts (carbon dioxide reforming catalysts) 17 to 21 shown in Table 2.
Each of the catalysts 17 to 21 is a catalyst that satisfies the requirements of the present invention in the values of A / B (molar ratio) and Ni / B (molar ratio) described above.
 [2]炭化水素の二酸化炭素改質試験
 (1)触媒の還元前処理
 上述のようにして作製した触媒17~21について、水素5%を含有する窒素中にて、500℃で熱処理を行うことにより、触媒中のNiOを金属Niに還元する還元処理を行った。
 なお、還元処理は、図1に示す、本発明の触媒を用いたメタンの二酸化炭素改質試験を行うのに用いた試験装置の金属製の反応管1に、上述のようにして製造した触媒を充填し、水素5%を含有する窒素を流通させながらヒーター2により500℃に加熱することにより行った。
[2] Carbon dioxide reforming test of hydrocarbon (1) Pretreatment for catalyst reduction Catalysts 17 to 21 prepared as described above are heat-treated at 500 ° C. in nitrogen containing 5% hydrogen. Thus, a reduction treatment for reducing NiO in the catalyst to metallic Ni was performed.
In addition, the reduction treatment is carried out by using the catalyst manufactured as described above in the metal reaction tube 1 of the test apparatus used for conducting the carbon dioxide reforming test of methane using the catalyst of the present invention shown in FIG. And heated to 500 ° C. with heater 2 while flowing nitrogen containing 5% hydrogen.
 (2)二酸化炭素改質試験
 上記還元処理済みの二酸化炭素改質用触媒を用いて、炭化水素(この実施例ではメタン(CH4))の二酸化炭素改質試験を行い、特性を調べた。
(2) Carbon dioxide reforming test The carbon dioxide reforming test for hydrocarbons (methane (CH4) in this example) was conducted using the above-described reduction-treated carbon dioxide reforming catalyst, and the characteristics were examined.
 なお、メタン(CH4)の二酸化炭素改質試験は、図1に示すものと同じ構成の装置であって、反応管の径が実施例1で用いたものよりも小さい装置を用いて行った。
 具体的には、外部にヒーター2を備えた金属製の反応管1に、上記のようにして製造し、還元処理を行った各二酸化炭素改質用触媒3を1cc充填し、ヒーター2により900℃の温度に加熱した状態で、CH4/CO2=1(モル比)の原料ガスを、入口4から反応管1に供給し、167ml/minの速度(SV=10000/h相当)で、50時間連続して原料ガスを流通させることにより行った。
The carbon dioxide reforming test of methane (CH 4 ) was performed using an apparatus having the same configuration as that shown in FIG. 1 and having a smaller reaction tube diameter than that used in Example 1. .
Specifically, 1 cc of each carbon dioxide reforming catalyst 3 produced as described above and subjected to reduction treatment is charged into a metal reaction tube 1 provided with a heater 2 outside and subjected to reduction treatment. In a state heated to a temperature of ° C., a raw material gas of CH 4 / CO 2 = 1 (molar ratio) is supplied from the inlet 4 to the reaction tube 1 at a rate of 167 ml / min (equivalent to SV = 10000 / h), It was performed by circulating the source gas continuously for 50 hours.
 なお、試験中は、反応管1の出口5から排出されるガスを分析装置に導入してガス濃度を測定した。 During the test, the gas discharged from the outlet 5 of the reaction tube 1 was introduced into the analyzer and the gas concentration was measured.
 また、900℃、50時間の試験終了後に、反応管1から、図1において符号3で示される触媒を取り出し、試験前後の触媒重量差から、50時間にわたる二酸化炭素改質試験における炭素析出量を求めた。 Further, after the test at 900 ° C. for 50 hours is completed, the catalyst indicated by reference numeral 3 in FIG. 1 is taken out from the reaction tube 1, and the amount of carbon deposited in the carbon dioxide reforming test over 50 hours is calculated from the difference in catalyst weight before and after the test. Asked.
 改質温度:900℃での改質試験における出口メタン濃度と、改質温度:900℃、50時間の改質試験における炭素析出量を表2に示す。 Table 2 shows the outlet methane concentration in the reforming test at the reforming temperature: 900 ° C. and the carbon deposition amount in the reforming test at the reforming temperature: 900 ° C. for 50 hours.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表2の「炭素析出量」は、下記の式(2)に示すように、改質試験の前後の触媒重量差(重量増加量)ΔWを、改質試験後の触媒重量Wで除して100を乗じた値である。
 炭素析出量(%)=(ΔW/W)×100……(2)
The “carbon deposition amount” in Table 2 is obtained by dividing the catalyst weight difference (weight increase) ΔW before and after the reforming test by the catalyst weight W after the reforming test, as shown in the following formula (2). And multiplied by 100.
Carbon precipitation (%) = (ΔW / W) × 100 (2)
 また、活性が高い触媒ほど、原料ガス中のメタンがよく反応して、出口メタン濃度が低くなり、また、炭素析出耐性が高い触媒ほど、炭素の析出が抑制され、炭素析出量が少なくなることから、表2において、出口メタン濃度が低い触媒は触媒活性が高く、炭素析出量が少ない触媒は炭素析出耐性が高いことを示している。 In addition, the higher the activity of the catalyst, the more the methane in the raw material gas reacts and the lower the outlet methane concentration, and the higher the carbon deposition resistance, the more the carbon deposition is suppressed and the carbon deposition amount decreases. From Table 2, it is shown that a catalyst with a low outlet methane concentration has a high catalytic activity, and a catalyst with a small amount of carbon deposition has a high resistance to carbon deposition.
 上述の結果から明らかなように、上記の各触媒について行った二酸化炭素改質試験の結果を検討すると、本発明の請求項6において規定されている組成範囲、すなわち、
 「1.01≦A/B≦1.04、かつ、0.08≦Ni/B≦0.12」の組成範囲では、900℃で50時間の二酸化炭素改質試験後における上述の「炭素析出量」は2wt%以下であり、請求項6において規定されている組成範囲の触媒は、例えば1000℃以上の温度条件で炭化水素の二酸化炭素改質を実施する用途に適応した場合に有意義である。
As is apparent from the above results, when the results of the carbon dioxide reforming test conducted for each of the above catalysts are examined, the composition range defined in claim 6 of the present invention, that is,
In the composition range of “1.01 ≦ A / B ≦ 1.04 and 0.08 ≦ Ni / B ≦ 0.12,” the above-mentioned “carbon precipitation” after the carbon dioxide reforming test at 900 ° C. for 50 hours. The amount ”is 2 wt% or less, and the catalyst having the composition range defined in claim 6 is significant when applied to an application in which carbon dioxide reforming of hydrocarbon is performed at a temperature condition of, for example, 1000 ° C. or more. .
 また、実施例2では触媒の焼成温度を1300℃にしているため、実施例1と比較すると、触媒の熱強度が向上している。したがって、900℃以上の高温の改質温度条件で炭化水素の二酸化炭素改質を実施する用途に有効である。 Further, in Example 2, since the firing temperature of the catalyst is 1300 ° C., the thermal strength of the catalyst is improved as compared with Example 1. Therefore, the present invention is effective for applications in which carbon dioxide reforming of hydrocarbons is performed under a high reforming temperature condition of 900 ° C. or higher.
 なお、一般的に、より高温で触媒を焼成した場合には、焼結が進むことにより、表面積の低下や金属成分の凝集が原因となり、触媒の炭素析出耐性や活性が低下することが考えられるが、表2の結果から明らかなように、本発明の請求項6の組成範囲であれば、触媒の炭素析出の抑制や触媒の活性が低下することはない。 In general, when the catalyst is calcined at a higher temperature, the progress of the sintering may cause a decrease in the surface area and agglomeration of the metal component, thereby reducing the carbon deposition resistance and activity of the catalyst. However, as is clear from the results in Table 2, if the composition is in the range of claim 6 of the present invention, the carbon deposition of the catalyst and the activity of the catalyst are not reduced.
 なお、上記実施例では、ペロブスカイト構造を持つ複合酸化物ABO3として、Aサイトを構成する元素がSrであり、Bサイトを構成する元素がTiである場合を例にとって説明したが、AサイトのSrを置換し、あるいは、BサイトのTiを置換する添加物や、意図して添加しなくても混入する不純物に関し、特別の制約はない。 In the above embodiment, the case where the element constituting the A site is Sr and the element constituting the B site is Ti as an example of the composite oxide ABO 3 having a perovskite structure has been described. There are no particular restrictions on the additive that substitutes Sr or Ti at the B site and the impurities that are mixed without intentional addition.
 特に、ペロブスカイト構造を持つ複合酸化物ABO3のAサイトに入る元素:例えばBa,Ca,Mgは、SrTiO3中のSrと置換してSrと同様に作用することから、触媒中に添加物もしくは不純物としてBa,Ca,Mgが存在することに問題はない。
 また同様に、ペロブスカイト構造を持つ複合酸化物ABO3のBサイトに入る元素:例えばZrは、SrTiO3中のTiと置換してTiと同様に作用することから、触媒中に添加物もしくは不純物としてZrが存在することに問題はない。
In particular, an element that enters the A site of the composite oxide ABO 3 having a perovskite structure: for example, Ba, Ca, Mg substitutes Sr in SrTiO 3 and acts in the same manner as Sr. There is no problem that Ba, Ca, and Mg are present as impurities.
Similarly, an element entering the B site of the composite oxide ABO 3 having a perovskite structure: for example, Zr replaces Ti in SrTiO 3 and acts in the same way as Ti, so that it can be used as an additive or impurity in the catalyst. There is no problem that Zr exists.
 したがって、これらの添加物もしくは不純物が存在する場合には、「Sr,Ba,Ca,Mgの合計モル数をA」、「Ti,Zrの合計モル数をB」として、A/BおよびNi/Bの値を選択することにより、この実施例の場合と同様の炭素析出抑制効果を得ることができる。 Therefore, when these additives or impurities are present, “A is the total number of moles of Sr, Ba, Ca, Mg” and “B is the total number of moles of Ti and Zr”, and A / B and Ni / By selecting the value of B, it is possible to obtain the same carbon deposition suppression effect as in this example.
 なお、Aサイトに含まれる元素中のSr含有量と、Bサイトに含まれる元素中のTi含有量は、それぞれ90mol%以上であることが望ましい。 The Sr content in the element contained in the A site and the Ti content in the element contained in the B site are each desirably 90 mol% or more.
 また、一般的な工業用の素材中には不純物として同族の元素が混入しており、上述の、Ba,Ca,MgあるいはZrのような不純物によるA/B値の補正を行わない場合には、最適組成からのズレが発生し、意図するような触媒特性を得ることができない場合もある。
 したがって、本発明は、このような不純物が原因となる二酸化炭素改質用触媒の不安定性の問題を解決する点でも有意義である。
In addition, in a general industrial material, elements of the same family are mixed as impurities, and when the above-described correction of the A / B value by impurities such as Ba, Ca, Mg or Zr is not performed. In some cases, deviation from the optimum composition occurs and the intended catalytic properties cannot be obtained.
Therefore, the present invention is also meaningful in solving the problem of instability of the carbon dioxide reforming catalyst caused by such impurities.
 また、本発明の二酸化炭素改質用触媒において、比表面積には特別の制約はないが、触媒活性は比表面積が大きいほど向上する傾向があることから、通常は1m2/g以上の比表面積を有していることが好ましい。 In the carbon dioxide reforming catalyst of the present invention, the specific surface area is not particularly limited, but the catalytic activity tends to improve as the specific surface area increases. Therefore, the specific surface area is usually 1 m 2 / g or more. It is preferable to have.
 また、800℃以上の温度で長時間の安定運転を行うためには、適切な焼結が行われていることが必要であることから、本発明の二酸化炭素改質用触媒の比表面積は通常、6m2/g以下であることが好ましい。 In addition, in order to perform stable operation for a long time at a temperature of 800 ° C. or higher, it is necessary that appropriate sintering is performed. Therefore, the specific surface area of the carbon dioxide reforming catalyst of the present invention is usually , 6 m 2 / g or less is preferable.
 また、上記実施例では、水素を含む雰囲気ガス中で熱処理することによりNiOを金属Niに還元するようにした場合を例にとって説明したが、他の還元性雰囲気中で熱処理することによりNiOを金属Niに還元するように構成することも可能であることはいうまでもない。 In the above embodiment, the case where NiO is reduced to metal Ni by heat treatment in an atmosphere gas containing hydrogen has been described as an example. However, NiO can be converted to metal by heat treatment in another reducing atmosphere. Needless to say, it may be configured to reduce to Ni.
 また、上記実施例では、二酸化炭素改質を行う対象である炭化水素がメタン(CH4)である場合を例にとって説明したが、本発明はメタン以外の炭化水素、 例えば、ブタンやプロパンなどを二酸化炭素改質する場合にも適用することが可能である。 In the above embodiment, the case where the hydrocarbon to be carbon dioxide reformed is methane (CH 4 ). However, in the present invention, hydrocarbons other than methane such as butane and propane are used. The present invention can also be applied when carbon dioxide is reformed.
 本発明はさらにその他の点においても、上記の実施例に限定されるものではなく、本発明の二酸化炭素改質用触媒を製造する際の具体的な条件などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 In addition, the present invention is not limited to the above-mentioned examples in other respects. Various conditions are included within the scope of the invention regarding specific conditions for producing the carbon dioxide reforming catalyst of the present invention. It is possible to add applications and modifications.
 1     反応管
 2     ヒーター
 3     二酸化炭素改質用触媒
 4     反応管の入口
 5     反応管の出口
1 Reaction tube 2 Heater 3 Carbon dioxide reforming catalyst 4 Reaction tube inlet 5 Reaction tube outlet

Claims (8)

  1.  ペロブスカイト構造を持つ複合酸化物ABO3(Aサイトを構成する元素はSrであってその一部にBa,Ca,Mgを含んでもよく、Bサイトを構成する元素はTiでありその一部にZrを含んでもよい)と、Niとを含む触媒であって、
     (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.90≦A/B≦1.20の範囲にあり、
     (b)前記Niと、前記Bサイトを構成する元素の合計量のモル比:Ni/Bが、0.02≦Ni/B≦0.16の範囲にあること
     を特徴とする、炭化水素の二酸化炭素改質用触媒。
    Composite oxide ABO 3 having a perovskite structure (the element constituting the A site is Sr, part of which may contain Ba, Ca, Mg, the element constituting the B site is Ti, part of which is Zr And a catalyst containing Ni,
    (a) molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.90 ≦ A / B ≦ 1.20,
    (b) A molar ratio of the total amount of Ni and the elements constituting the B site: Ni / B is in the range of 0.02 ≦ Ni / B ≦ 0.16. Carbon dioxide reforming catalyst.
  2.  (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.90≦A/B≦1.20の範囲にあり、
     (b)前記Niと前記Bサイト元素の合計量のモル比:Ni/Bが、0.04≦Ni/B≦0.16の範囲にあること
     を特徴とする、請求項1記載の炭化水素の二酸化炭素改質用触媒。
    (a) molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.90 ≦ A / B ≦ 1.20,
    (b) Hydrocarbon according to claim 1, wherein the molar ratio of the total amount of Ni and the B site element: Ni / B is in the range of 0.04 ≦ Ni / B ≦ 0.16. Carbon dioxide reforming catalyst.
  3.  (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.96≦A/B≦1.20の範囲にあり、
     (b)前記Niと前記Bサイト元素の合計量のモル比:Ni/Bが、0.04≦Ni/B≦0.13の範囲にあること
     を特徴とする、請求項1記載の炭化水素の二酸化炭素改質用触媒。
    (a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.96 ≦ A / B ≦ 1.20,
    The hydrocarbon according to claim 1, wherein (b) molar ratio of the total amount of Ni and B site elements: Ni / B is in the range of 0.04 ≦ Ni / B ≦ 0.13. Carbon dioxide reforming catalyst.
  4.  (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.98≦A/B≦1.20の範囲にあり、
     (b)前記Niと前記Bサイト元素の合計量のモル比:Ni/Bが、0.04≦Ni/B≦0.08の範囲にあること
     を特徴とする、請求項1記載の炭化水素の二酸化炭素改質用触媒。
    (a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.98 ≦ A / B ≦ 1.20,
    (b) Hydrocarbon according to claim 1, characterized in that the molar ratio of the total amount of Ni and B site elements: Ni / B is in the range of 0.04 ≦ Ni / B ≦ 0.08. Carbon dioxide reforming catalyst.
  5.  (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、0.98≦A/B≦1.01の範囲にあり、
     (b)前記Niと前記Bサイト元素の合計量のモル比:Ni/Bが、0.04≦Ni/B≦0.08の範囲にあること
     を特徴とする、請求項1記載の炭化水素の二酸化炭素改質用触媒。
    (a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 0.98 ≦ A / B ≦ 1.01,
    (b) The hydrocarbon according to claim 1, wherein the molar ratio of the total amount of Ni and the B site element: Ni / B is in the range of 0.04 ≦ Ni / B ≦ 0.08. Carbon dioxide reforming catalyst.
  6.  (a)前記Aサイトを構成する元素の合計量と、前記Bサイトを構成する元素の合計量のモル比:A/Bが、1.01≦A/B≦1.04の範囲にあり、
     (b)前記Niと前記Bサイト元素の合計量のモル比:Ni/Bが、0.08≦Ni/B≦0.12の範囲にあること
     を特徴とする、請求項1記載の炭化水素の二酸化炭素改質用触媒。
    (a) The molar ratio of the total amount of elements constituting the A site and the total amount of elements constituting the B site: A / B is in the range of 1.01 ≦ A / B ≦ 1.04,
    The hydrocarbon according to claim 1, wherein (b) molar ratio of the total amount of Ni and B site elements: Ni / B is in the range of 0.08 ≦ Ni / B ≦ 0.12. Carbon dioxide reforming catalyst.
  7.  前記Niの少なくとも一部は、前記複合酸化物ABO3に固溶していることを特徴とする、上記請求項1~6のいずれかに記載の炭化水素の二酸化炭素改質用触媒。 7. The hydrocarbon carbon dioxide reforming catalyst according to claim 1, wherein at least part of the Ni is dissolved in the composite oxide ABO 3 .
  8.  炭化水素と二酸化炭素からなる原料ガスを、上記請求項1~7のいずれかに記載の炭化水素の二酸化炭素改質用触媒を使用して改質を行い、水素とCOから成る合成ガスを製造することを特徴とする、炭化水素の二酸化炭素改質方法。 A raw material gas comprising hydrocarbon and carbon dioxide is reformed using the hydrocarbon carbon dioxide reforming catalyst according to any one of claims 1 to 7 to produce a synthesis gas comprising hydrogen and CO. A method for reforming hydrocarbons with carbon dioxide, comprising:
PCT/JP2012/054431 2011-02-25 2012-02-23 Carbon dioxide reforming catalyst for hydrocarbons and carbon dioxide reforming method for hydrocarbons WO2012115193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013501121A JP5626446B2 (en) 2011-02-25 2012-02-23 Hydrocarbon carbon dioxide reforming catalyst and hydrocarbon carbon dioxide reforming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-039609 2011-02-25
JP2011039609 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115193A1 true WO2012115193A1 (en) 2012-08-30

Family

ID=46720967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054431 WO2012115193A1 (en) 2011-02-25 2012-02-23 Carbon dioxide reforming catalyst for hydrocarbons and carbon dioxide reforming method for hydrocarbons

Country Status (2)

Country Link
JP (1) JP5626446B2 (en)
WO (1) WO2012115193A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189006A1 (en) * 2013-05-21 2014-11-27 株式会社村田製作所 Catalyst for reforming hydrocarbon-based gas and method for reforming hydrocarbon-based gas using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182201A (en) * 1984-07-31 1994-07-05 Hitachi Ltd Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JP2006346598A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Steam reforming catalyst
JP2007523737A (en) * 2003-04-29 2007-08-23 エイチアールディー コーポレイション Perovskite-based catalysts, their preparation, and their use for the conversion of methane to ethylene
WO2008084785A1 (en) * 2007-01-09 2008-07-17 Murata Manufacturing Co., Ltd. Carbon dioxide reforming catalyst and method for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182201A (en) * 1984-07-31 1994-07-05 Hitachi Ltd Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JP2007523737A (en) * 2003-04-29 2007-08-23 エイチアールディー コーポレイション Perovskite-based catalysts, their preparation, and their use for the conversion of methane to ethylene
JP2006346598A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Steam reforming catalyst
WO2008084785A1 (en) * 2007-01-09 2008-07-17 Murata Manufacturing Co., Ltd. Carbon dioxide reforming catalyst and method for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189006A1 (en) * 2013-05-21 2014-11-27 株式会社村田製作所 Catalyst for reforming hydrocarbon-based gas and method for reforming hydrocarbon-based gas using same

Also Published As

Publication number Publication date
JPWO2012115193A1 (en) 2014-07-07
JP5626446B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
Boukha et al. Behaviour of Rh supported on hydroxyapatite catalysts in partial oxidation and steam reforming of methane: on the role of the speciation of the Rh particles
Franchini et al. Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming
JP5126560B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
JP6187282B2 (en) Hydrocarbon reforming catalyst
Fang et al. Highly active and stable Ni/Y2Zr2O7 catalysts for methane steam reforming: On the nature and effective preparation method of the pyrochlore support
JP5327323B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
WO2011065194A1 (en) Anti-shift reaction catalyst, and process for production of synthetic gas using same
Silva et al. Hydrogen production through steam reforming of toluene over Ni supported on MgAl mixed oxides derived from hydrotalcite-like compounds
WO2020012687A1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
Bkour et al. Nickel nanoparticles supported on silica for the partial oxidation of isooctane
Nuvula et al. Selective substitution of Ni by Ti in LaNiO3 perovskites: A parameter governing the oxy-carbon dioxide reforming of methane
Izadi et al. Preparation of highly stable bimetallic ni–cu catalyst for simultaneous production of hydrogen and fish-bone carbon nanofibers: Optimization, effect of catalyst preparation methods and deactivation
Kikuchi et al. Novel nickel catalysts based on spinel-type mixed oxides for methane and propane steam reforming
Bai et al. Design of Ni‐substituted La2 (CeZrNi) 2O7 pyrochlore catalysts for methane dry reforming
JP5626446B2 (en) Hydrocarbon carbon dioxide reforming catalyst and hydrocarbon carbon dioxide reforming method
Liu et al. Ni/Ce1− xMx catalyst generated from metallo-organic network for autothermal reforming of diesel surrogate
WO2013187436A1 (en) Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas
JP6794811B2 (en) Steam reforming catalyst, methane reforming catalyst, catalyst production method and hydrogen production method
JP7318734B2 (en) Hydrocarbon reforming catalyst and hydrocarbon reformer
JP7347541B2 (en) Hydrocarbon reforming catalyst, hydrocarbon reformer, and method for recovering sulfur deterioration of hydrocarbon reforming catalyst
US11628426B2 (en) Catalyst for chemical looping combustion
WO2014189006A1 (en) Catalyst for reforming hydrocarbon-based gas and method for reforming hydrocarbon-based gas using same
US20220105495A1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
JP2015229125A (en) Method for pretreating hydrocarbon reforming catalyst, hydrocarbon reforming catalyst, and method for reforming hydrocarbon
JP5479307B2 (en) Catalyst and reformed gas production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013501121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749704

Country of ref document: EP

Kind code of ref document: A1