WO2012114161A1 - Determining device in-range proximity - Google Patents

Determining device in-range proximity Download PDF

Info

Publication number
WO2012114161A1
WO2012114161A1 PCT/IB2011/050829 IB2011050829W WO2012114161A1 WO 2012114161 A1 WO2012114161 A1 WO 2012114161A1 IB 2011050829 W IB2011050829 W IB 2011050829W WO 2012114161 A1 WO2012114161 A1 WO 2012114161A1
Authority
WO
WIPO (PCT)
Prior art keywords
client
client node
nodes
node
data
Prior art date
Application number
PCT/IB2011/050829
Other languages
French (fr)
Inventor
David Steer
Robert Novak
Dongsheng Yu
Original Assignee
Research In Motion Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research In Motion Limited filed Critical Research In Motion Limited
Priority to US13/643,241 priority Critical patent/US9084235B2/en
Priority to EP11859635.2A priority patent/EP2679034B1/en
Priority to CA2827866A priority patent/CA2827866C/en
Priority to PCT/IB2011/050829 priority patent/WO2012114161A1/en
Priority to CN201180070412.7A priority patent/CN103503493B/en
Publication of WO2012114161A1 publication Critical patent/WO2012114161A1/en
Priority to US14/750,633 priority patent/US9635695B2/en
Priority to US15/495,176 priority patent/US10278222B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0876Network architectures or network communication protocols for network security for authentication of entities based on the identity of the terminal or configuration, e.g. MAC address, hardware or software configuration or device fingerprint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • H04W36/033Reselecting a link using a direct mode connection in pre-organised networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data

Definitions

  • the present invention is directed in general to communications systems and methods for operating same.
  • the present invention relates to devices and methods for determining the proximity of client nodes within a wireless- enabled communication environment.
  • Figure 1 depicts an exemplary system in which the present invention may be implemented
  • Figure 2 shows a wireless-enabled communications environment including an embodiment of a client node
  • FIG. 3 is a simplified block diagram of an exemplary client node comprising a digital signal processor (DSP);
  • DSP digital signal processor
  • FIG. 4 is a simplified block diagram of a software environment that may be implemented by a DSP
  • Figure 5 is a simplified block diagram of a first client node as
  • Figures 6a and 6b are a generalized flowchart of operations performed by a first client node to determine the proximity of a second client node within a wireless- enabled communication environment.
  • a first client node comprises a database containing identification data associated with a plurality of wireless network access nodes and "fingerprint" data associated with the client node and a plurality of second client nodes.
  • RF radio frequency
  • signal fingerprint information is updated and is processed by the first client node to identify second client nodes that have matching, or similar, fingerprint information. Those that have matching, or similar, fingerprint information are determined to be within a viable device-to-device (D2D) communication range. Those that do not are determined to be outside of a viable D2D communication range.
  • D2D device-to-device
  • D2D device-to-device communication
  • Such configurations may comprise client nodes operating in Multiple Input Multiple Output (MIMO) configurations,
  • MIMO Multiple Input Multiple Output
  • CoMP Cooperative Multipoint
  • IC Interference Control
  • radio signal measurement operations are individually performed by the first and second client nodes to generate radio signal measurement data associated with individual wireless network access nodes.
  • the first and second client nodes then individually process identification data associated with the wireless access nodes and the radio signal measurement data to respectively generate their associated fingerprint data.
  • Global Positioning System (GPS) data and locale map data is likewise processed by the first and second client nodes to identify their respective locations.
  • the identification data, GPS data, locale map data, and fingerprint data associated with a plurality of second client nodes is stored in a server node accessible by the client node.
  • the identification data, GPS data, locale map data, and fingerprint data associated with the plurality of second client nodes is downloaded from the server node by the client node and stored in its local database.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • an application running on a computer and the computer itself can be a component.
  • One or more components may reside within a process or thread of execution and a component may be localized on one computer or distributed between two or more computers.
  • node broadly refers to a connection point, such as a redistribution point or a communication endpoint, of a communication environment, such as a network. Accordingly, such nodes refer to an active electronic device capable of sending, receiving, or forwarding information over a
  • nodes include data circuit-terminating equipment (DCE), such as a modem, hub, bridge or switch, and data terminal equipment (DTE), such as a handset, a printer or a host computer (e.g., a router, workstation or server).
  • DCE data circuit-terminating equipment
  • DTE data terminal equipment
  • LAN local area network
  • WAN wide area network
  • nodes include computers, packet switches, cable modems, Data Subscriber Line (DSL) modems, and wireless LAN (WLAN) access points.
  • DSL Data Subscriber Line
  • WLAN wireless LAN
  • Examples of Internet or Intranet nodes include host computers identified by an Internet Protocol (IP) address, bridges and WLAN access points.
  • IP Internet Protocol
  • examples of nodes in cellular communication include base stations, base station controllers, home location registers, Gateway GPRS Support Nodes (GGSN), and Serving GPRS Support Nodes (SGSN).
  • GGSN Gateway GPRS Support Nodes
  • SGSN Serving GPRS Support Nodes
  • nodes include client nodes, server nodes, peer nodes and access nodes.
  • a client node may refer to wireless devices such as mobile telephones, smart phones, personal digital assistants (PDAs), handheld devices, portable computers, tablet computers, and similar devices or other user equipment (UE) that has telecommunications capabilities.
  • PDAs personal digital assistants
  • client nodes may likewise refer to a mobile, wireless device, or conversely, to devices that have similar capabilities that are not generally transportable, such as desktop computers, set-top boxes, or sensors.
  • a server node refers to an information processing device (e.g., a host computer), or series of information processing devices, that perform information processing requests submitted by other nodes.
  • a peer node may sometimes serve as client node, and at other times, a server node.
  • a node that actively routes data for other networked devices as well as itself may be referred to as a supernode.
  • An access node refers to a node that provides a client node access to a communication environment.
  • Examples of access nodes include cellular network base stations and wireless broadband (e.g., WiFi, WiMAX, etc) access points, which provide corresponding cell and WLAN coverage areas.
  • a macrocell is used to generally describe a traditional cellular network cell coverage area. Such macrocells are typically found in rural areas, along highways, or in less populated areas.
  • a microcell refers to a cellular network cell with a smaller coverage area than that of a macrocell. Such micro cells are typically used in a densely populated urban area.
  • a picocell refers to a cellular network coverage area that is less than that of a microcell.
  • An example of the coverage area of a picocell may be a large office, a shopping mall, or a train station.
  • a femtocell as used herein, currently refers to the smallest commonly accepted area of cellular network coverage. As an example, the coverage area of a femtocell is sufficient for homes or small offices.
  • a coverage area of less than two kilometers typically corresponds to a microcell, 200 meters or less for a picocell, and on the order of 10 meters for a femtocell.
  • a client node communicating with an access node associated with a macrocell is referred to as a "macrocell client.”
  • a client node communicating with an access node associated with a microcell, picocell, or femtocell is respectively referred to as a "microcell client,” “picocell client,” or “femtocell client.”
  • computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips, etc.), optical disks such as a compact disk (CD) or digital versatile disk (DVD), smart cards, and flash memory devices (e.g., card, stick, etc.).
  • magnetic storage devices e.g., hard disk, floppy disk, magnetic strips, etc.
  • optical disks such as a compact disk (CD) or digital versatile disk (DVD)
  • smart cards e.g., card, stick, etc.
  • FIG. 1 illustrates an example of a system 100 suitable for implementing one or more embodiments disclosed herein.
  • the system 100 comprises a processor 1 10, which may be referred to as a central processor unit (CPU) or digital signal processor (DSP), network connectivity devices 120, random access memory (RAM) 130, read only memory (ROM) 140, secondary storage 150, and input/output (I/O) devices 160.
  • processor 1 10 may be referred to as a central processor unit (CPU) or digital signal processor (DSP), network connectivity devices 120, random access memory (RAM) 130, read only memory (ROM) 140, secondary storage 150, and input/output (I/O) devices 160.
  • CPU central processor unit
  • DSP digital signal processor
  • RAM random access memory
  • ROM read only memory
  • secondary storage 150 secondary storage
  • I/O input/output
  • I/O input/output
  • some of these components may not be present or may be combined in various combinations with one another or with other components not shown.
  • These components may be located in a single physical
  • the processor 1 10 executes instructions, codes, computer programs, or scripts that it might access from the network connectivity devices 120, RAM 130, or ROM 140. While only one processor 1 10 is shown, multiple processors may be present. Thus, while instructions may be discussed as being executed by a processor 1 10, the instructions may be executed simultaneously, serially, or otherwise by one or multiple processors 1 10 implemented as one or more CPU chips.
  • the network connectivity devices 120 may take the form of modems, modem banks, Ethernet devices, universal serial bus (USB) interface devices, serial interfaces, token ring devices, fiber distributed data interface (FDDI) devices, wireless local area network (WLAN) devices, radio transceiver devices such as code division multiple access (CDMA) devices, global system for mobile communications (GSM) radio transceiver devices, worldwide interoperability for microwave access (WiMAX) devices, and/or other well-known devices for connecting to networks, including Personal Area Networks (PANs) such as Bluetooth.
  • These network connectivity devices 120 may enable the processor 1 10 to connect to networks, including Personal Area Networks (PANs) such as Bluetooth.
  • PANs Personal Area Networks
  • the network connectivity devices 120 may also be capable of transmitting or receiving data wirelessly in the form of electromagnetic waves, such as radio frequency signals or microwave frequency signals.
  • Information transmitted or received by the network connectivity devices 120 may include data that has been processed by the processor 1 10 or instructions that are to be executed by processor 1 10. The data may be ordered according to different sequences as may be desirable for either processing or generating the data or transmitting or receiving the data.
  • the RAM 130 may be used to store volatile data and instructions that are executed by the processor 110.
  • the ROM 140 shown in Figure 1 may be used to store instructions and perhaps data that are read during execution of the instructions. Access to both RAM 130 and ROM 140 is typically faster than to secondary storage 150.
  • the secondary storage 150 is typically comprised of one or more disk drives or tape drives and may be used for non-volatile storage of data or as an over-flow data storage device if RAM 130 is not large enough to hold all working data. Secondary storage 150 may be used to store programs that are loaded into RAM 130 when such programs are selected for execution.
  • the I/O devices 160 may include liquid crystal displays (LCDs), Light Emitting Diode (LED) displays, Organic Light Emitting Diode (OLED) displays, projectors, televisions, touch screen displays, keyboards, keypads, switches, dials, mice, track balls, voice recognizers, card readers, paper tape readers, printers, video monitors, or other well-known input/output devices.
  • LCDs liquid crystal displays
  • LED Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • projectors televisions, touch screen displays, keyboards, keypads, switches, dials, mice, track balls, voice recognizers, card readers, paper tape readers, printers, video monitors, or other well- known input/output devices.
  • FIG. 2 shows a wireless-enabled communications environment including an embodiment of a client node as implemented in an embodiment of the invention.
  • the client node 202 may take various forms including a wireless handset, a pager, a smart phone, or a personal digital assistant (PDA).
  • the client node 202 may also comprise a portable computer, a tablet computer, a laptop computer, or any computing device operable to perform data communication operations. Many suitable devices combine some or all of these functions.
  • the client node 202 is not a general purpose computing device like a portable, laptop, or tablet computer, but rather is a special- purpose communications device such as a telecommunications device installed in a vehicle.
  • the client node 202 may likewise be a device, include a device, or be included in a device that has similar capabilities but that is not transportable, such as a desktop computer, a set-top box, or a network node. In these and other embodiments, the client node 202 may support specialized activities such as gaming, inventory control, job control, task management functions, and so forth.
  • the client node 202 includes a display 204.
  • the client node 202 may likewise include a touch- sensitive surface, a keyboard or other input keys 206 generally used for input by a user.
  • the input keys 206 may likewise be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY, and sequential keyboard types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad.
  • the input keys 206 may likewise include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function.
  • the client node 202 may likewise present options for the user to select, controls for the user to actuate, and cursors or other indicators for the user to direct.
  • the client node 202 may further accept data entry from the user, including numbers to dial or various parameter values for configuring the operation of the client node 202.
  • the client node 202 may further execute one or more software or firmware applications in response to user commands. These applications may configure the client node 202 to perform various customized functions in response to user interaction.
  • the client node 202 may be programmed or configured over-the-air (OTA), for example from a wireless network access node 'A' 210 through 'n' 216 (e.g., a base station), a server node 224 (e.g., a host computer), or a peer client node 202.
  • OTA over-the-air
  • the various applications executable by the client node 202 are a web browser, which enables the display 204 to display a web page.
  • the web page may be obtained from a server node 224 through a wireless connection with a wireless network 220.
  • the various applications may likewise be obtained from a peer client node 202 or other system over a connection to the wireless network 220 or any other wireless communication network or system.
  • the wireless network 220 comprises a plurality of wireless sub-networks (e.g., cells with corresponding coverage areas) 'A' 212 through 'n' 218.
  • the client node 202 transmits and receives communication signals, which are respectively communicated to and from the wireless network nodes 'A' 210 through 'n' 216 by wireless network antennas 'A' 208 through 'n' 214 (e.g., cell towers).
  • the communication signals are used by the wireless network access nodes 'A' 210 through 'n' 216 to establish a wireless communication session with the client node 202.
  • the wireless network access points 'A' 210 through 'n' 216 are respectively coupled to wireless sub-networks 'A' 212 through 'n' 218, which are connected to the wireless network 220.
  • the wireless network 220 is coupled to a physical network 222, such as the Internet. Via the wireless network 220 and the physical network 222, the client node 202 has access to information on various hosts, such as the server node 224. In these and other embodiments, the server node 224 may provide content that may be shown on the display 204. Alternately, the client node 202 may access the wireless network 220 through a peer client node 202 acting as an intermediary, in a relay type or hop type of connection. Alternately, the client node 202 is tethered and obtains its data from a tethered device that is connected to the wireless network 212. Skilled practitioners of the art will recognize that many such embodiments are possible and the foregoing is not intended to limit the spirit, scope, or intention of the disclosure.
  • FIG. 3 depicts a block diagram of an exemplary client node as implemented with a digital signal processor (DSP) in accordance with an embodiment of the invention. While various components of a client node 202 are depicted, various embodiments of the client node 202 may include a subset of the listed components or additional components not listed. As shown in Figure 3, the client node 202 includes a DSP 302 and a memory 304.
  • DSP digital signal processor
  • the client node 202 may further include an antenna and front end unit 306, a radio frequency (RF) transceiver 308, an analog baseband processing unit 310, a microphone 312, an earpiece speaker 314, a headset port 316, a bus 318, such as a system bus or an input/output (I/O) interface bus, a removable memory card 320, a universal serial bus (USB) port 322, a short range wireless communication sub-system 324, an alert 326, a keypad 328, a liquid crystal display (LCD) 330, which may include a touch sensitive surface, an LCD controller 332, a charge-coupled device (CCD) camera 334, a camera controller 336, and a global positioning system (GPS) sensor 338, and a power management module 340 operably coupled to a power storage unit, such as a battery 342.
  • the client node 202 may include another kind of display that does not provide a touch sensitive screen.
  • the DSP 302 communicate
  • the DSP 302 or some other form of controller or central processing unit (CPU) operates to control the various components of the client node 202 in accordance with embedded software or firmware stored in memory 304 or stored in memory contained within the DSP 302 itself.
  • the DSP 302 may execute other applications stored in the memory 304 or made available via information carrier media such as portable data storage media like the removable memory card 320 or via wired or wireless network communications.
  • the application software may comprise a compiled set of machine- readable instructions that configure the DSP 302 to provide the desired functionality, or the application software may be high-level software instructions to be processed by an interpreter or compiler to indirectly configure the DSP 302.
  • the antenna and front end unit 306 may be provided to convert between wireless signals and electrical signals, enabling the client node 202 to send and receive information from a cellular network or some other available wireless communications network or from a peer client node 202.
  • the antenna and front end unit 106 may include multiple antennas to support beam forming and/or multiple input multiple output (MIMO) operations.
  • MIMO operations may provide spatial diversity which can be used to overcome difficult channel conditions or to increase channel throughput.
  • the antenna and front end unit 306 may include antenna tuning or impedance matching components, RF power amplifiers, or low noise amplifiers.
  • the RF transceiver 308 provides frequency shifting, converting received RF signals to baseband and converting baseband transmit signals to RF.
  • a radio transceiver or RF transceiver may be understood to include other signal processing functionality such as modulation/ demodulation, coding/decoding, interleaving/ deinterleaving,
  • IFFT inverse fast Fourier transforming
  • FFT fast Fourier transforming
  • cyclic prefix appending/removal and other signal processing functions.
  • IFFT inverse fast Fourier transforming
  • FFT fast Fourier transforming
  • cyclic prefix appending/removal and other signal processing functions.
  • the description here separates the description of this signal processing from the RF and/or radio stage and conceptually allocates that signal processing to the analog baseband processing unit 310 or the DSP 302 or other central processing unit.
  • the RF Transceiver 108, portions of the Antenna and Front End 306, and the analog base band processing unit 310 may be combined in one or more processing units and/or application specific integrated circuits (ASICs).
  • ASICs application specific integrated circuits
  • the analog baseband processing unit 310 may provide various analog processing of inputs and outputs, for example analog processing of inputs from the microphone 312 and the headset 316 and outputs to the earpiece 314 and the headset 316.
  • the analog baseband processing unit 310 may have ports for connecting to the built-in microphone 312 and the earpiece speaker 314 that enable the client node 202 to be used as a cell phone.
  • the analog baseband processing unit 310 may further include a port for connecting to a headset or other hands-free microphone and speaker configuration.
  • the analog baseband processing unit 310 may provide digital-to-analog conversion in one signal direction and analog-to-digital conversion in the opposing signal direction.
  • at least some of the functionality of the analog baseband processing unit 310 may be provided by digital processing components, for example by the DSP 302 or by other central processing units.
  • the DSP 302 may perform modulation/demodulation, coding/decoding, interleaving/deinterleaving, spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions associated with wireless communications.
  • IFFT inverse fast Fourier transforming
  • FFT fast Fourier transforming
  • cyclic prefix appending/removal and other signal processing functions associated with wireless communications.
  • CDMA code division multiple access
  • the DSP 302 may perform modulation, coding, interleaving, inverse fast Fourier transforming, and cyclic prefix appending, and for a receiver function the DSP 302 may perform cyclic prefix removal, fast Fourier transforming, deinterleaving, decoding, and demodulation.
  • OFDMA orthogonal frequency division multiplex access
  • the DSP 302 may communicate with a wireless network via the analog baseband processing unit 310.
  • the communication may provide Internet connectivity, enabling a user to gain access to content on the Internet and to send and receive e-mail or text messages.
  • the input/output interface 318 interconnects the DSP 302 and various memories and interfaces.
  • the memory 304 and the removable memory card 320 may provide software and data to configure the operation of the DSP 302.
  • the interfaces may be the USB interface 322 and the short range wireless communication sub-system 324.
  • the USB interface 322 may be used to charge the client node 202 and may also enable the client node 202 to function as a peripheral device to exchange information with a personal computer or other computer system.
  • the short range wireless communication sub-system 324 may include an infrared port, a Bluetooth interface, an IEEE 802.1 1 compliant wireless interface, or any other short range wireless communication sub-system, which may enable the client node 202 to communicate wirelessly with other nearby client nodes and access nodes.
  • the input/output interface 318 may further connect the DSP 302 to the alert 326 that, when triggered, causes the client node 202 to provide a notice to the user, for example, by ringing, playing a melody, or vibrating.
  • the alert 326 may serve as a mechanism for alerting the user to any of various events such as an incoming call, a new text message, and an appointment reminder by silently vibrating, or by playing a specific pre-assigned melody for a particular caller.
  • the keypad 328 couples to the DSP 302 via the I/O interface 318 to provide one mechanism for the user to make selections, enter information, and otherwise provide input to the client node 202.
  • the keyboard 328 may be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY and sequential types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad.
  • the input keys may likewise include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function.
  • Another input mechanism may be the LCD 330, which may include touch screen capability and also display text and/or graphics to the user.
  • the LCD controller 332 couples the DSP 302 to the LCD 330.
  • the CCD camera 334 if equipped, enables the client node 202 to take digital pictures.
  • the DSP 302 communicates with the CCD camera 334 via the camera controller 336.
  • a camera operating according to a technology other than Charge Coupled Device cameras may be employed.
  • the GPS sensor 338 is coupled to the DSP 302 to decode global positioning system signals, thereby enabling the client node 202 to determine its position.
  • Various other peripherals may also be included to provide additional functions, such as radio and television reception.
  • FIG 4 illustrates a software environment 402 that may be implemented by a digital signal processor (DSP).
  • DSP digital signal processor
  • the DSP 302 shown in Figure 3 executes an operating system 404, which provides a platform from which the rest of the software operates.
  • the operating system 404 likewise provides the client node 202 hardware with standardized interfaces (e.g., drivers) that are accessible to application software.
  • the operating system 404 likewise comprises application management services (AMS) 406 that transfer control between applications running on the client node 202.
  • AMS application management services
  • Also shown in Figure 4 are a web browser application 408, a media player application 410, and Java applets 412.
  • the web browser application 408 configures the client node 202 to operate as a web browser, allowing a user to enter information into forms and select links to retrieve and view web pages.
  • the media player application 410 configures the client node 202 to retrieve and play audio or audiovisual media.
  • the Java applets 412 configure the client node 202 to provide games, utilities, and other functionality.
  • the short range wireless communication subsystem 324 in conjunction with the DSP 302 and other elements of the client node 202 illustrated in Figure 3 are implemented for determining the proximity between two client nodes 202.
  • the aforementioned elements of the client node 202 are controlled by the in-range measurement and analysis module 416, which selects the channels to be measured, records the results, and then performs analysis operations to determine the in-range proximity of two mobile devices.
  • Information from a database of wireless access node (AN) IDs, GPS, locale maps, and radio signal fingerprints received from other client nodes, as described in greater detail herein, may be managed by the AN ID, GPS, locale map, and fingerprint data management module 418 for provision to the in-range measurement and analysis module 416.
  • the client node 202, the wireless network nodes 'A' 210 through 'n' 216, and the server node 224 shown in Figure 2 may likewise include a processing component that is capable of executing instructions related to the actions described above.
  • Figure 4 is a simplified block diagram of a first client node as
  • a client node e.g., a mobile device
  • a locale e.g., a building
  • conventional navigational signals e.g. satellite GPS
  • an in-range measurement and analysis module 416 is implemented in the client node to detect and measure various aspects of the radio signal environment at its current location. These measurements are then analyzed by comparing them to those from other client nodes known to be relatively proximate to the client node.
  • the client nodes that measure the same, or similar, radio signal fingerprints of the radio environment are determined to be within sufficiently close proximity to one another for device-to-device (D2D)
  • the in-range measurement and analysis module 416 may make use of information managed by the AN ID, Locale Map and Fingerprint Management Module 418.
  • the Locale Map and Fingerprint Management Module 418 manages the tracking and updating of fingerprints associated with other client nodes.
  • Figure 5 is a simplified block diagram of a wireless-enabled
  • an Internet protocol (IP)-based services network 520 such as the Internet, comprises a wireless network access node data server 526, which further comprises a repository of wireless access node ID, GPS, locale map, and client node fingerprint data 528.
  • IP Internet protocol
  • the IP -based services network 520 likewise comprises a satellite ground station 522 operable to initiate, and subsequently conduct, a communications session with a communications session with a communications satellite 524.
  • the communications satellite 524 is operable to initiate, and subsequently conduct, a communications session with a client node, such as client node 'x' 530.
  • the IP-based services network 520 is interconnected to a mobile wireless access network 502, such as a cellular network, and to a fixed wireless access network 512, such as a network based on IEEE 802.1 lx or IEEE 802.16x technologies.
  • the mobile wireless access network 502 comprises mobile wireless access nodes 'A' 504 and 'B' 508, which are interconnected and have respective mobile wireless coverage areas 'A' 506 and 'B' 510.
  • the client nodes 'x' 530 and 'y' 532 able to initiate, and subsequently conduct, a mobile wireless communications session within the mobile wireless coverage area 'A' 506 through the mobile wireless access node 'A' 504.
  • the client node 'z' 534 is able to initiate, and subsequently conduct, a mobile wireless communications session within the mobile wireless coverage area 'B' 510 through the mobile wireless access node 'B' 508.
  • the fixed wireless access network 512 comprises fixed wireless access nodes ⁇ ' 514, '2' 516, and '3' 518, all of which are interconnected and are likewise connected to the IP-Based Services Network 520.
  • the fixed wireless access nodes T 514 and '3' 518 respectively reside within the mobile wireless coverage areas 'A' 506 and 'B' 510.
  • the client nodes 'x' 530 and 'y' 532 which likewise reside within the mobile wireless coverage area 'A' 506, are respectively able to initiate, and subsequently conduct, a fixed wireless communications sessions through the fixed wireless access node ⁇ ' 514.
  • the client node 'z' 534 which likewise resides within the mobile wireless coverage area 'B' 510, is able to initiate, and subsequently conduct, a fixed wireless communications sessions through the fixed wireless access node '3' 518.
  • the fixed wireless access node '2' 516 resides at the intersection of the mobile wireless coverage areas 'A' 506 and 'B' 510.
  • both client nodes 'x' 530 and 'z' 534 are able to initiate, and subsequently conduct, a fixed wireless communications sessions through the fixed wireless access nodes '2' 516.
  • each of the client nodes 530, 532 and 534 respectively comprises its own repository 540, 542 and 544 of wireless access node ID, GPS, locale map, and client node fingerprint data.
  • the client node 'x' 530 uses its radio receivers to scan and measure the signals of the mobile wireless access node 'A' 504 and the fixed wireless access nodes T 514 and '2' 516.
  • the fixed wireless access nodes T 514 and '2' 516 may be wireless local area network (WLAN) access points operated by individuals, enterprises or network operators.
  • the fixed wireless access nodes T 514 and '2' 516 may be home-Node-B (h-NodeB) operating from a multiplicity of local homes and network operators.
  • h-NodeB home-Node-B
  • the radio signal scanning and measurements performed by the client node 'x' 530 may be initiated by an event, such as an event at the client node 'x' 530 itself (e.g. change of environment, switch-on, service request, user request etc.) or an event at the mobile wireless access network 502 (e.g. cell handover, switch-on, etc.).
  • the scans and measurement operations may be performed by the client node 'x' 530 periodically, or aperiodically, to determine the signal strength, channel and ID of the fixed wireless access nodes T 514 and '2' 516, or other received radio signals, during the scanning operations.
  • the client node 'x' 530 likewise measures the signal strength and cell site identification, including sector information, of the mobile wireless access node 'A' 504 to which it is connected, and neighboring mobile wireless access nodes (e.g., the mobile wireless access node 'B' 508). In one embodiment, the client node 'x' 530 measures the signal strength and other information associated a spot beam of the communications satellite 524.
  • the previously-described measurements may include not only the serving mobile and physical wireless access nodes 'A' 504, ⁇ ' 514, and '2' 516, but also signals from mobile and physical wireless access nodes 'B' 508 and '3' 518 that may be received by the client node 'x' 530.
  • Those of skill in the art will be aware that such measurements of the serving and the neighboring mobile and physical wireless access points are typically made by client nodes for the purpose of managing mobility among various access nodes.
  • knowledge of the neighboring mobile and physical wireless access points 'B' 508 and '3' 518 can be used by the client node 'x' 530 to assist in identify itself within the mobile wireless coverage area 'A' 506 and to likewise ascertain proximity to other devices when they are in the mobile wireless coverage area 'A' 510.
  • client node 'x' 530 when determining the proximity of client nodes 'y' 532 and 'z' 534.
  • the neighboring beam information also may likewise assist in identifying client nodes (e.g., client node 'y' 532) generally within the beam coverage area.
  • the measurements are complementary to other information (e.g. GPS and cell site positioning estimation), that may be available for some of the access nodes.
  • time stamps are reported together with the fingerprints so that the most recent information can be compared.
  • the data delivery services implemented within the IP-based services network 520 are used to communicate the previously described measurements for reporting.
  • the measurement format and related content are configured by the IP -based services network 520 for optimal in-range location and communication of the measurements to the client nodes 'x' 530, 'y' 532, and 'z' 534.
  • the information associated with the signals measured in proximity to the client node 'x' 530 e.g.
  • the fingerprint of the radio signals related to the mobile and physical wireless access nodes 'A' 504, 'B' 508, ' 1 ' 514, '2' 516, and '3' 518) are communicated to client nodes 'y' 532 and 'z' 534.
  • the fingerprints are communicated to the wireless network access node data server 526 for storage in the repository of wireless access node ID, GPS, locale map, and client node fingerprint data 528.
  • a local community of interest refers to a set of client nodes (e.g., client nodes 'x' 530 and 'y' 532) that reside in the same mobile wireless coverage area (e.g., mobile wireless coverage area 'A' 506).
  • the local community of interest likewise refers to wireless coverage areas sufficiently close together such that D2D communication is possible between at least some access nodes (e.g., access node 'z' 534) are in adjacent or mobile wireless coverage areas (e.g., mobile wireless coverage area 'B' 510). Access nodes that are outside this range are determined to be beyond proximity range for viable D2D communications.
  • the measured information is only exchanged between the client nodes 'x' 530, 'y' 532, 'z' 534 or with the wireless network access node data server 526 if there was mutual agreement to be part of the same local community of interest.
  • a proprietary protocol is implemented to communicate among the client nodes 'x' 530, 'y' 532, 'z' 534 or with the wireless network access node data server 526.
  • the client nodes that share a common proximity area as determined by the mobile wireless coverage areas 'A' 506 and 'B' 510, and that have shared their local measured fingerprint information compare fingerprints to determine their relative proximity to each other.
  • Client nodes having fingerprints that substantively match, or are correlated, are considered to be within in-range proximity for possible D2D communications.
  • a substantial match would include the same set of mobile or physical wireless access points that have been measured and shown to have similar signal strengths.
  • the number of measured mobile wireless access nodes is small (e.g. 1 or 2) then the previously referenced signal strength should be above a predetermined threshold to assure that the client nodes are close to each other and not on opposite (i.e., more distant) sides of the physical wireless access network node.
  • FIGS 6a and 6b are a generalized flowchart of operations performed by a first client node as implemented in accordance with an embodiment of the invention to determine the proximity of a second client node within a wireless-enabled communication environment.
  • operations to determine the proximity range between a first client node and a second client node are begun in step 602, followed by the acquisition of measurement information in, as described in greater detail herein, for the two client nodes in step 604.
  • a determination is then made in step 606 whether Global Positioning System (GPS) information is available for both client nodes.
  • GPS Global Positioning System
  • the availability of GPS navigational signals to the client nodes serves as a first order estimation of the each client node's location.
  • the first order estimation may be a current location fix that is of low accuracy, or a fix from some pervious time such as when a client node enters a building.
  • GPS fixes may thus indicate that the client nodes are within the same building but not provide their proximity to each other within the building.
  • step 606 If it is determined in step 606 that GPS information is available for both client nodes, then a determination is made in step 612 whether the GPS information associated with the two client nodes correlates, there by indicating they are proximate to one another. If not, then it is determined in step 628 that device-to-device (D2D) communications between the two client nodes is not viable. A determination is then made in step 630 whether to continue proximity range determination operations. If so, then the process is continued, proceeding with step 604. If not, then proximity range determination operations are ended in step 632.
  • D2D device-to-device
  • step 612 determines whether the GPS information associated with the two client nodes correlates. If it is determined in step 612 that the GPS information associated with the two client nodes correlates, then a determination is made in step 614 whether altitude information is available for both client nodes. For example, even if GPS signals are available and provide highly accurate positioning information, the corresponding altitude information might not be available. Therefore, if it is determined in step 614 that altitude information for the two client nodes is not available then the process is continued, proceeding with step 628. Otherwise, a determination is made in step 616 whether the altitude information correlates, thereby indicating that the two client nodes are proximate to one another. For example, the error range of the corresponding altitude information might be correspondingly large, such as when the two client nodes are on different levels of a sports stadium or auditorium.
  • step 616 If it is determined in step 616 that the altitude information is not correlated, then the process is continued, proceeding with step 628. Otherwise, it is determined in step 622 that D2D communications between the two client nodes is viable, followed by a determination being made in step 624 whether to establish a D2D communication session. If not, then the process is continued, proceeding with step 630. Otherwise, a D2D communication session is established between the two client nodes in step 626 and the process is continued, proceeding with step 630.
  • step 606 determines whether GPS information is not available for both client nodes. If it is determined in step 606 that GPS information is not available for both client nodes then a determination is made in step 608 whether cell and sector identification information is available for both client nodes. For example, if GPS and altitude information are not available, either or both of the client nodes may be indoors or under shadowing. If it is determined in step 608 that cell and sector information is available, then a determination is made in step 610 whether the cell and sector information associated with the two client nodes correlates, thereby indicating that they are proximate to one another. If not, then the process is continued, proceeding with step 628. Otherwise, or if it was determined in step 608 that cell and sector information, or in step 614 that altitude information, is not available for the two nodes, then a determination is made in step 618 whether fingerprint information is available for the two nodes.
  • cell site-based location information which usually is available both indoors and outdoors but has a large estimation error, is used as a second order positioning value when GPS is not available (e.g. spots inside a building and nearby).
  • local radio measurement fingerprints provide next-level location information in various embodiments. If it is determined in step 618 that radio fingerprint information is not available for both client devices, then the process is continued, proceeding with step 628. Otherwise, a determination is made in step 620 whether the radio fingerprint information associated with the two client nodes correlates, thereby indicating that they are proximate to one another. As an example, client nodes with highly correlated fingerprints are most likely located nearby (e.g. on the same floor).
  • step 620 If it is determined in step 620 that the radio fingerprint information is not correlated, then the process is continued, proceeding with step 628, otherwise, it is determined in step 622 that D2D communications between the two client nodes is viable, followed by a determination being made in step 624 whether to establish a D2D communication session. If not, then the process is continued, proceeding with step 630. Otherwise, a D2D communication session is established between the two client nodes in step 626 and the process is continued, proceeding with step 630.
  • a client node may not be able to measure any fixed wireless access nodes at its current location.
  • the client node is not considered to be within a viable D2D communications range of other client nodes associated with its community of interest. For example, this may be the case when some client nodes are inside a building and others are outside.
  • the matching of fingerprints from different client nodes as described in 620 is based upon the identification of physical wireless access nodes reported by each client node.
  • the respective signal strengths of mobile wireless access nodes are not reported.
  • the matching of mobile wireless access nodes is based upon the identification of mobile wireless access nodes reported by each client node.
  • the radio measurement fingerprints are compared at a server associated with the wireless network that is accessed via a communication session with the client nodes. In another embodiment, the radio measurement fingerprints are compared within client nodes that receive measurement reports from other client nodes.
  • a D2D communication session is established in different radio spectrum channels than those of a cellular network. For example, the D2D communication session may use a variety of Public Safety Agency (PSA) channels, Private Mobile Radio (PMR) channels, government channels, satellite channels, or WLAN channels. In various other embodiments, the D2D communication session uses cellular network channels that are available within the coverage area location areas of the client nodes.
  • PSA Public Safety Agency
  • PMR Private Mobile Radio
  • WLAN Wireless Local Area Network
  • the client nodes may use a different mode of the radio access technology (e.g. TDD or FDD) than that used for the mobile wireless network.
  • the client node appears to the mobile wireless network as a "mobile home-Node-B," or mobile network relay device, and makes use of channels designated by the network operator for those operations.
  • the D2D communication session makes use of channels supervised by another mobile wireless network operator.
  • information is available related to operational the details of the physical wireless network access nodes.
  • the locale map may also include information about walls, doors, windows and interior partitions that may affect the propagation of radio communications signals within the structure.
  • the client may use information about physical wireless network access nodes positions within the building to determine its proximity to other client nodes and in relation to the floor plan. This information may be available from a database of physical wireless network access nodes IDs and floor plans stored in a repository of wireless access node ID, GPS, locale map, and client node fingerprint data as described in greater detail herein.
  • the information is provided to the client node using the data communications facilities of an associated communications network.
  • the repository may be preloaded, or otherwise stored, in the client node. Accordingly, the client node matches the physical wireless access node's ID from its fingerprint to those of the building map (i.e., a locale map) to help determine its proximity to other client nodes within the building. It will be appreciated that such information may assist the client node in determining if it is on the same floor as another client node.
  • the client node may compare pre-stored survey information of measurements (e.g., radio environment fingerprints) made at positions within the building to its measured fingerprints.
  • the fingerprints stored for comparison would be a subset of the available physical wireless network access nodes, wherein the client node uses only this subset for the purpose of determining is proximity to other client nodes.

Abstract

Devices and methods are provided for determining the proximity of client nodes within a wireless-enabled communication environment. A first client node comprises a database containing identification data associated with a plurality of wireless network access nodes and fingerprint data associated with the client node and a plurality of second client nodes. As the fingerprint information is updated, it is processed by the first client node to identify second client nodes that have matching, or similar, fingerprint information. Those that do are determined to be within a viable device-to-device (D2D) communication range.

Description

DETERMINING DEVICE IN-RANGE PROXIMITY
CROSS REFERENCE TO RELATED APPLICATIONS
[0001 ] PCT Patent Application No. , entitled "Inter-Device Session
Connectivity Enhancement" by inventors Robert Novak, David Steer, and Dongsheng Yu, Attorney Docket No. 37818-WO-PCT, filed on even date herewith, describes exemplary methods and systems and is incorporated by reference in its entirety.
BACKGROUND OF THE INVENTION
Field of the Invention
[0002] The present invention is directed in general to communications systems and methods for operating same. In one aspect, the present invention relates to devices and methods for determining the proximity of client nodes within a wireless- enabled communication environment.
Description of the Related Art
[0003] The use of mobile devices for inter-personal communication and access to information of all kinds has become increasingly popular in recent years. In general, users of mobile devices largely communicate with a community of interest. In many cases, it is not unusual for members of the community to be within close proximity to one another when communicating.
[0004] Nonetheless, traditional wireless communications technologies typically route a communication stream between two mobile devices through a base station or access point, even when they are in close proximity. This approach is wasteful of network resources as it consumes two radio channels for the access links when one could be sufficient if the mobile devices could communicate with each other directly.
[0005] However, there are issues associated with initiating local inter-device links to support device-to-device (D2) communication sessions. For example, mobile devices currently have no way of knowing whether they are close enough to one another for a direct, inter-device communication link to be practical. Furthermore, the proximity of mobile devices is particularly difficult to determine if the devices are within a building or other structure where signals used by common location systems to locate mobile devices, such as Global Positioning System (GPS), are not receivable.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The present invention may be understood, and its numerous objects, features and advantages obtained, when the following detailed description is considered in conjunction with the following drawings, in which:
[0007] Figure 1 depicts an exemplary system in which the present invention may be implemented;
[0008] Figure 2 shows a wireless-enabled communications environment including an embodiment of a client node;
[0009] Figure 3 is a simplified block diagram of an exemplary client node comprising a digital signal processor (DSP);
[0010] Figure 4 is a simplified block diagram of a software environment that may be implemented by a DSP;
[001 1] Figure 5 is a simplified block diagram of a first client node as
implemented to determine the proximity of a second client node within a wireless- enabled communication environment; and
[0012] Figures 6a and 6b are a generalized flowchart of operations performed by a first client node to determine the proximity of a second client node within a wireless- enabled communication environment.
DETAILED DESCRIPTION
[0013] Devices and methods are provided for determining the proximity of client nodes within a wireless-enabled communication environment. In various embodiments, a first client node comprises a database containing identification data associated with a plurality of wireless network access nodes and "fingerprint" data associated with the client node and a plurality of second client nodes. As will be understood by those of skill in the art, radio frequency (RF) "fingerprinting" is a process that identifies a cellular phone's location by the unique "fingerprint" characterizing its received signal environment. Accordingly, RF fingerprinting has been shown to be effective for accurately calculating the position of client nodes within a few meters within a ceil.
[0014] In various embodiments of the present disclosure, signal fingerprint information is updated and is processed by the first client node to identify second client nodes that have matching, or similar, fingerprint information. Those that have matching, or similar, fingerprint information are determined to be within a viable device-to-device (D2D) communication range. Those that do not are determined to be outside of a viable D2D communication range.
[0015] In these various embodiments, device-to-device communication (D2D) includes configurations of client nodes requiring cooperation of transmissions among client nodes that are in a similar local area. Such configurations may comprise client nodes operating in Multiple Input Multiple Output (MIMO) configurations,
Cooperative Multipoint (CoMP) configurations, Interference Control (IC), direct device-to-device communications, and relaying of information among client nodes.
[0016] In these and other embodiments, radio signal measurement operations are individually performed by the first and second client nodes to generate radio signal measurement data associated with individual wireless network access nodes. The first and second client nodes then individually process identification data associated with the wireless access nodes and the radio signal measurement data to respectively generate their associated fingerprint data. In certain of these various embodiments, Global Positioning System (GPS) data and locale map data is likewise processed by the first and second client nodes to identify their respective locations. In one embodiment the identification data, GPS data, locale map data, and fingerprint data associated with a plurality of second client nodes is stored in a server node accessible by the client node. In another embodiment, the identification data, GPS data, locale map data, and fingerprint data associated with the plurality of second client nodes is downloaded from the server node by the client node and stored in its local database. [0017] Various illustrative embodiments of the present invention will now be described in detail with reference to the accompanying figures. While various details are set forth in the following description, it will be appreciated that the present invention may be practiced without these specific details, and that numerous implementation-specific decisions may be made to the invention described herein to achieve the inventor's specific goals, such as compliance with process technology or design-related constraints, which will vary from one implementation to another. While such a development effort might be complex and time-consuming, it would nevertheless be a routine undertaking for those of skill in the art having the benefit of this disclosure. For example, selected aspects are shown in block diagram and flow chart form, rather than in detail, in order to avoid limiting or obscuring the present invention. In addition, some portions of the detailed descriptions provided herein are presented in terms of algorithms or operations on data within a computer memory. Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art.
[0018] As used herein, the terms "component," "system," and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer. By way of illustration, both an application running on a computer and the computer itself can be a component. One or more components may reside within a process or thread of execution and a component may be localized on one computer or distributed between two or more computers.
[0019] As likewise used herein, the term "node" broadly refers to a connection point, such as a redistribution point or a communication endpoint, of a communication environment, such as a network. Accordingly, such nodes refer to an active electronic device capable of sending, receiving, or forwarding information over a
communications channel. Examples of such nodes include data circuit-terminating equipment (DCE), such as a modem, hub, bridge or switch, and data terminal equipment (DTE), such as a handset, a printer or a host computer (e.g., a router, workstation or server). Examples of local area network (LAN) or wide area network (WAN) nodes include computers, packet switches, cable modems, Data Subscriber Line (DSL) modems, and wireless LAN (WLAN) access points.
[0020] Examples of Internet or Intranet nodes include host computers identified by an Internet Protocol (IP) address, bridges and WLAN access points. Likewise, examples of nodes in cellular communication include base stations, base station controllers, home location registers, Gateway GPRS Support Nodes (GGSN), and Serving GPRS Support Nodes (SGSN).
[0021] Other examples of nodes include client nodes, server nodes, peer nodes and access nodes. As used herein, a client node may refer to wireless devices such as mobile telephones, smart phones, personal digital assistants (PDAs), handheld devices, portable computers, tablet computers, and similar devices or other user equipment (UE) that has telecommunications capabilities. Such client nodes may likewise refer to a mobile, wireless device, or conversely, to devices that have similar capabilities that are not generally transportable, such as desktop computers, set-top boxes, or sensors. Likewise, a server node, as used herein, refers to an information processing device (e.g., a host computer), or series of information processing devices, that perform information processing requests submitted by other nodes. As likewise used herein, a peer node may sometimes serve as client node, and at other times, a server node. In a peer-to-peer or overlay network, a node that actively routes data for other networked devices as well as itself may be referred to as a supernode.
[0022] An access node, as used herein, refers to a node that provides a client node access to a communication environment. Examples of access nodes include cellular network base stations and wireless broadband (e.g., WiFi, WiMAX, etc) access points, which provide corresponding cell and WLAN coverage areas. As used herein, a macrocell is used to generally describe a traditional cellular network cell coverage area. Such macrocells are typically found in rural areas, along highways, or in less populated areas. As likewise used herein, a microcell refers to a cellular network cell with a smaller coverage area than that of a macrocell. Such micro cells are typically used in a densely populated urban area. Likewise, as used herein, a picocell refers to a cellular network coverage area that is less than that of a microcell. An example of the coverage area of a picocell may be a large office, a shopping mall, or a train station. A femtocell, as used herein, currently refers to the smallest commonly accepted area of cellular network coverage. As an example, the coverage area of a femtocell is sufficient for homes or small offices.
[0023] In general, a coverage area of less than two kilometers typically corresponds to a microcell, 200 meters or less for a picocell, and on the order of 10 meters for a femtocell. As likewise used herein, a client node communicating with an access node associated with a macrocell is referred to as a "macrocell client." Likewise, a client node communicating with an access node associated with a microcell, picocell, or femtocell is respectively referred to as a "microcell client," "picocell client," or "femtocell client."
[0024] The term "article of manufacture" (or alternatively, "computer program product") as used herein is intended to encompass a computer program accessible from any computer-readable device or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips, etc.), optical disks such as a compact disk (CD) or digital versatile disk (DVD), smart cards, and flash memory devices (e.g., card, stick, etc.).
[0025] The word "exemplary" is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects or designs. Those of skill in the art will recognize many modifications may be made to this configuration without departing from the scope, spirit or intent of the claimed subject matter. Furthermore, the disclosed subject matter may be implemented as a system, method, apparatus, or article of manufacture using standard programming and engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer or processor-based device to implement aspects detailed herein.
[0026] Figure 1 illustrates an example of a system 100 suitable for implementing one or more embodiments disclosed herein. In various embodiments, the system 100 comprises a processor 1 10, which may be referred to as a central processor unit (CPU) or digital signal processor (DSP), network connectivity devices 120, random access memory (RAM) 130, read only memory (ROM) 140, secondary storage 150, and input/output (I/O) devices 160. In some embodiments, some of these components may not be present or may be combined in various combinations with one another or with other components not shown. These components may be located in a single physical entity or in more than one physical entity. Any actions described herein as being taken by the processor 1 10 might be taken by the processor 110 alone or by the processor 1 10 in conjunction with one or more components shown or not shown in Figure 1.
[0027] The processor 1 10 executes instructions, codes, computer programs, or scripts that it might access from the network connectivity devices 120, RAM 130, or ROM 140. While only one processor 1 10 is shown, multiple processors may be present. Thus, while instructions may be discussed as being executed by a processor 1 10, the instructions may be executed simultaneously, serially, or otherwise by one or multiple processors 1 10 implemented as one or more CPU chips.
[0028] In various embodiments, the network connectivity devices 120 may take the form of modems, modem banks, Ethernet devices, universal serial bus (USB) interface devices, serial interfaces, token ring devices, fiber distributed data interface (FDDI) devices, wireless local area network (WLAN) devices, radio transceiver devices such as code division multiple access (CDMA) devices, global system for mobile communications (GSM) radio transceiver devices, worldwide interoperability for microwave access (WiMAX) devices, and/or other well-known devices for connecting to networks, including Personal Area Networks (PANs) such as Bluetooth. These network connectivity devices 120 may enable the processor 1 10 to
communicate with the Internet or one or more telecommunications networks or other networks from which the processor 1 10 might receive information or to which the processor 1 10 might output information.
[0029] The network connectivity devices 120 may also be capable of transmitting or receiving data wirelessly in the form of electromagnetic waves, such as radio frequency signals or microwave frequency signals. Information transmitted or received by the network connectivity devices 120 may include data that has been processed by the processor 1 10 or instructions that are to be executed by processor 1 10. The data may be ordered according to different sequences as may be desirable for either processing or generating the data or transmitting or receiving the data.
[0030] In various embodiments, the RAM 130 may be used to store volatile data and instructions that are executed by the processor 110. The ROM 140 shown in Figure 1 may be used to store instructions and perhaps data that are read during execution of the instructions. Access to both RAM 130 and ROM 140 is typically faster than to secondary storage 150. The secondary storage 150 is typically comprised of one or more disk drives or tape drives and may be used for non-volatile storage of data or as an over-flow data storage device if RAM 130 is not large enough to hold all working data. Secondary storage 150 may be used to store programs that are loaded into RAM 130 when such programs are selected for execution. The I/O devices 160 may include liquid crystal displays (LCDs), Light Emitting Diode (LED) displays, Organic Light Emitting Diode (OLED) displays, projectors, televisions, touch screen displays, keyboards, keypads, switches, dials, mice, track balls, voice recognizers, card readers, paper tape readers, printers, video monitors, or other well- known input/output devices.
[0031] Figure 2 shows a wireless-enabled communications environment including an embodiment of a client node as implemented in an embodiment of the invention. Though illustrated as a mobile phone, the client node 202 may take various forms including a wireless handset, a pager, a smart phone, or a personal digital assistant (PDA). In various embodiments, the client node 202 may also comprise a portable computer, a tablet computer, a laptop computer, or any computing device operable to perform data communication operations. Many suitable devices combine some or all of these functions. In some embodiments, the client node 202 is not a general purpose computing device like a portable, laptop, or tablet computer, but rather is a special- purpose communications device such as a telecommunications device installed in a vehicle. The client node 202 may likewise be a device, include a device, or be included in a device that has similar capabilities but that is not transportable, such as a desktop computer, a set-top box, or a network node. In these and other embodiments, the client node 202 may support specialized activities such as gaming, inventory control, job control, task management functions, and so forth.
[0032] In various embodiments, the client node 202 includes a display 204. In these and other embodiments, the client node 202 may likewise include a touch- sensitive surface, a keyboard or other input keys 206 generally used for input by a user. The input keys 206 may likewise be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY, and sequential keyboard types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad. The input keys 206 may likewise include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function. The client node 202 may likewise present options for the user to select, controls for the user to actuate, and cursors or other indicators for the user to direct.
[0033] The client node 202 may further accept data entry from the user, including numbers to dial or various parameter values for configuring the operation of the client node 202. The client node 202 may further execute one or more software or firmware applications in response to user commands. These applications may configure the client node 202 to perform various customized functions in response to user interaction. Additionally, the client node 202 may be programmed or configured over-the-air (OTA), for example from a wireless network access node 'A' 210 through 'n' 216 (e.g., a base station), a server node 224 (e.g., a host computer), or a peer client node 202.
[0034] Among the various applications executable by the client node 202 are a web browser, which enables the display 204 to display a web page. The web page may be obtained from a server node 224 through a wireless connection with a wireless network 220. The various applications may likewise be obtained from a peer client node 202 or other system over a connection to the wireless network 220 or any other wireless communication network or system. In various embodiments, the wireless network 220 comprises a plurality of wireless sub-networks (e.g., cells with corresponding coverage areas) 'A' 212 through 'n' 218. In these and other embodiments, the client node 202 transmits and receives communication signals, which are respectively communicated to and from the wireless network nodes 'A' 210 through 'n' 216 by wireless network antennas 'A' 208 through 'n' 214 (e.g., cell towers). In turn, the communication signals are used by the wireless network access nodes 'A' 210 through 'n' 216 to establish a wireless communication session with the client node 202. In turn, the wireless network access points 'A' 210 through 'n' 216 are respectively coupled to wireless sub-networks 'A' 212 through 'n' 218, which are connected to the wireless network 220. [0035] In various embodiments, the wireless network 220 is coupled to a physical network 222, such as the Internet. Via the wireless network 220 and the physical network 222, the client node 202 has access to information on various hosts, such as the server node 224. In these and other embodiments, the server node 224 may provide content that may be shown on the display 204. Alternately, the client node 202 may access the wireless network 220 through a peer client node 202 acting as an intermediary, in a relay type or hop type of connection. Alternately, the client node 202 is tethered and obtains its data from a tethered device that is connected to the wireless network 212. Skilled practitioners of the art will recognize that many such embodiments are possible and the foregoing is not intended to limit the spirit, scope, or intention of the disclosure.
[0036] Figure 3 depicts a block diagram of an exemplary client node as implemented with a digital signal processor (DSP) in accordance with an embodiment of the invention. While various components of a client node 202 are depicted, various embodiments of the client node 202 may include a subset of the listed components or additional components not listed. As shown in Figure 3, the client node 202 includes a DSP 302 and a memory 304. As shown, the client node 202 may further include an antenna and front end unit 306, a radio frequency (RF) transceiver 308, an analog baseband processing unit 310, a microphone 312, an earpiece speaker 314, a headset port 316, a bus 318, such as a system bus or an input/output (I/O) interface bus, a removable memory card 320, a universal serial bus (USB) port 322, a short range wireless communication sub-system 324, an alert 326, a keypad 328, a liquid crystal display (LCD) 330, which may include a touch sensitive surface, an LCD controller 332, a charge-coupled device (CCD) camera 334, a camera controller 336, and a global positioning system (GPS) sensor 338, and a power management module 340 operably coupled to a power storage unit, such as a battery 342. In various embodiments, the client node 202 may include another kind of display that does not provide a touch sensitive screen. In one embodiment, the DSP 302 communicates directly with the memory 304 without passing through the input/output interface 318.
[0037] In various embodiments, the DSP 302 or some other form of controller or central processing unit (CPU) operates to control the various components of the client node 202 in accordance with embedded software or firmware stored in memory 304 or stored in memory contained within the DSP 302 itself. In addition to the embedded software or firmware, the DSP 302 may execute other applications stored in the memory 304 or made available via information carrier media such as portable data storage media like the removable memory card 320 or via wired or wireless network communications. The application software may comprise a compiled set of machine- readable instructions that configure the DSP 302 to provide the desired functionality, or the application software may be high-level software instructions to be processed by an interpreter or compiler to indirectly configure the DSP 302.
[0038] The antenna and front end unit 306 may be provided to convert between wireless signals and electrical signals, enabling the client node 202 to send and receive information from a cellular network or some other available wireless communications network or from a peer client node 202. In an embodiment, the antenna and front end unit 106 may include multiple antennas to support beam forming and/or multiple input multiple output (MIMO) operations. As is known to those skilled in the art, MIMO operations may provide spatial diversity which can be used to overcome difficult channel conditions or to increase channel throughput. Likewise, the antenna and front end unit 306 may include antenna tuning or impedance matching components, RF power amplifiers, or low noise amplifiers.
[0039] In various embodiments, the RF transceiver 308 provides frequency shifting, converting received RF signals to baseband and converting baseband transmit signals to RF. In some descriptions a radio transceiver or RF transceiver may be understood to include other signal processing functionality such as modulation/ demodulation, coding/decoding, interleaving/ deinterleaving,
spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions. For the purposes of clarity, the description here separates the description of this signal processing from the RF and/or radio stage and conceptually allocates that signal processing to the analog baseband processing unit 310 or the DSP 302 or other central processing unit. In some embodiments, the RF Transceiver 108, portions of the Antenna and Front End 306, and the analog base band processing unit 310 may be combined in one or more processing units and/or application specific integrated circuits (ASICs). [0040] The analog baseband processing unit 310 may provide various analog processing of inputs and outputs, for example analog processing of inputs from the microphone 312 and the headset 316 and outputs to the earpiece 314 and the headset 316. To that end, the analog baseband processing unit 310 may have ports for connecting to the built-in microphone 312 and the earpiece speaker 314 that enable the client node 202 to be used as a cell phone. The analog baseband processing unit 310 may further include a port for connecting to a headset or other hands-free microphone and speaker configuration. The analog baseband processing unit 310 may provide digital-to-analog conversion in one signal direction and analog-to-digital conversion in the opposing signal direction. In various embodiments, at least some of the functionality of the analog baseband processing unit 310 may be provided by digital processing components, for example by the DSP 302 or by other central processing units.
[0041] The DSP 302 may perform modulation/demodulation, coding/decoding, interleaving/deinterleaving, spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions associated with wireless communications. In an embodiment, for example in a code division multiple access (CDMA) technology application, for a transmitter function the DSP 302 may perform modulation, coding, interleaving, and spreading, and for a receiver function the DSP 302 may perform despreading, deinterleaving, decoding, and demodulation. In another embodiment, for example in an orthogonal frequency division multiplex access (OFDMA) technology application, for the transmitter function the DSP 302 may perform modulation, coding, interleaving, inverse fast Fourier transforming, and cyclic prefix appending, and for a receiver function the DSP 302 may perform cyclic prefix removal, fast Fourier transforming, deinterleaving, decoding, and demodulation. In other wireless technology applications, yet other signal processing functions and combinations of signal processing functions may be performed by the DSP 302.
[0042] The DSP 302 may communicate with a wireless network via the analog baseband processing unit 310. In some embodiments, the communication may provide Internet connectivity, enabling a user to gain access to content on the Internet and to send and receive e-mail or text messages. The input/output interface 318 interconnects the DSP 302 and various memories and interfaces. The memory 304 and the removable memory card 320 may provide software and data to configure the operation of the DSP 302. Among the interfaces may be the USB interface 322 and the short range wireless communication sub-system 324. The USB interface 322 may be used to charge the client node 202 and may also enable the client node 202 to function as a peripheral device to exchange information with a personal computer or other computer system. The short range wireless communication sub-system 324 may include an infrared port, a Bluetooth interface, an IEEE 802.1 1 compliant wireless interface, or any other short range wireless communication sub-system, which may enable the client node 202 to communicate wirelessly with other nearby client nodes and access nodes.
[0043] The input/output interface 318 may further connect the DSP 302 to the alert 326 that, when triggered, causes the client node 202 to provide a notice to the user, for example, by ringing, playing a melody, or vibrating. The alert 326 may serve as a mechanism for alerting the user to any of various events such as an incoming call, a new text message, and an appointment reminder by silently vibrating, or by playing a specific pre-assigned melody for a particular caller.
[0044] The keypad 328 couples to the DSP 302 via the I/O interface 318 to provide one mechanism for the user to make selections, enter information, and otherwise provide input to the client node 202. The keyboard 328 may be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY and sequential types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad. The input keys may likewise include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function. Another input mechanism may be the LCD 330, which may include touch screen capability and also display text and/or graphics to the user. The LCD controller 332 couples the DSP 302 to the LCD 330.
[0045] The CCD camera 334, if equipped, enables the client node 202 to take digital pictures. The DSP 302 communicates with the CCD camera 334 via the camera controller 336. In another embodiment, a camera operating according to a technology other than Charge Coupled Device cameras may be employed. The GPS sensor 338 is coupled to the DSP 302 to decode global positioning system signals, thereby enabling the client node 202 to determine its position. Various other peripherals may also be included to provide additional functions, such as radio and television reception.
[0046] Figure 4 illustrates a software environment 402 that may be implemented by a digital signal processor (DSP). In this embodiment, the DSP 302 shown in Figure 3 executes an operating system 404, which provides a platform from which the rest of the software operates. The operating system 404 likewise provides the client node 202 hardware with standardized interfaces (e.g., drivers) that are accessible to application software. The operating system 404 likewise comprises application management services (AMS) 406 that transfer control between applications running on the client node 202. Also shown in Figure 4 are a web browser application 408, a media player application 410, and Java applets 412. The web browser application 408 configures the client node 202 to operate as a web browser, allowing a user to enter information into forms and select links to retrieve and view web pages. The media player application 410 configures the client node 202 to retrieve and play audio or audiovisual media. The Java applets 412 configure the client node 202 to provide games, utilities, and other functionality.
[0047] In various embodiments, the short range wireless communication subsystem 324, in conjunction with the DSP 302 and other elements of the client node 202 illustrated in Figure 3 are implemented for determining the proximity between two client nodes 202. In these and other embodiments, the aforementioned elements of the client node 202 are controlled by the in-range measurement and analysis module 416, which selects the channels to be measured, records the results, and then performs analysis operations to determine the in-range proximity of two mobile devices. Information from a database of wireless access node (AN) IDs, GPS, locale maps, and radio signal fingerprints received from other client nodes, as described in greater detail herein, may be managed by the AN ID, GPS, locale map, and fingerprint data management module 418 for provision to the in-range measurement and analysis module 416. In various embodiments, the client node 202, the wireless network nodes 'A' 210 through 'n' 216, and the server node 224 shown in Figure 2 may likewise include a processing component that is capable of executing instructions related to the actions described above.
[0048] Figure 4 is a simplified block diagram of a first client node as
implemented in accordance with an embodiment of the invention to determine the proximity of a second client node within a wireless-enabled communication environment. In various embodiments, a client node (e.g., a mobile device) automatically determines the in-range proximity of other client nodes when in a locale (e.g., a building) that does not allow the receipt of conventional navigational signals (e.g. satellite GPS). In these and other embodiments, an in-range measurement and analysis module 416 is implemented in the client node to detect and measure various aspects of the radio signal environment at its current location. These measurements are then analyzed by comparing them to those from other client nodes known to be relatively proximate to the client node. The client nodes that measure the same, or similar, radio signal fingerprints of the radio environment are determined to be within sufficiently close proximity to one another for device-to-device (D2D)
communications. The in-range measurement and analysis module 416 may make use of information managed by the AN ID, Locale Map and Fingerprint Management Module 418. In these various embodiments the Locale Map and Fingerprint Management Module 418 manages the tracking and updating of fingerprints associated with other client nodes.
[0049] Figure 5 is a simplified block diagram of a wireless-enabled
communication environment and networks in which a first client node as
implemented in accordance with an embodiment of the invention operates to determine the proximity of a second client node. In this embodiment, an Internet protocol (IP)-based services network 520, such as the Internet, comprises a wireless network access node data server 526, which further comprises a repository of wireless access node ID, GPS, locale map, and client node fingerprint data 528. The IP -based services network 520 likewise comprises a satellite ground station 522 operable to initiate, and subsequently conduct, a communications session with a communications session with a communications satellite 524. In turn, the communications satellite 524 is operable to initiate, and subsequently conduct, a communications session with a client node, such as client node 'x' 530. [0050] As shown in Figure 5, the IP-based services network 520 is interconnected to a mobile wireless access network 502, such as a cellular network, and to a fixed wireless access network 512, such as a network based on IEEE 802.1 lx or IEEE 802.16x technologies. As likewise shown in Figure 5, the mobile wireless access network 502 comprises mobile wireless access nodes 'A' 504 and 'B' 508, which are interconnected and have respective mobile wireless coverage areas 'A' 506 and 'B' 510. As shown in Figure 5, the client nodes 'x' 530 and 'y' 532 able to initiate, and subsequently conduct, a mobile wireless communications session within the mobile wireless coverage area 'A' 506 through the mobile wireless access node 'A' 504. Likewise, the client node 'z' 534 is able to initiate, and subsequently conduct, a mobile wireless communications session within the mobile wireless coverage area 'B' 510 through the mobile wireless access node 'B' 508. As likewise shown in Figure 5, the fixed wireless access network 512 comprises fixed wireless access nodes Ί ' 514, '2' 516, and '3' 518, all of which are interconnected and are likewise connected to the IP-Based Services Network 520. As shown in Figure 5, the fixed wireless access nodes T 514 and '3' 518 respectively reside within the mobile wireless coverage areas 'A' 506 and 'B' 510.
[0051] The client nodes 'x' 530 and 'y' 532, which likewise reside within the mobile wireless coverage area 'A' 506, are respectively able to initiate, and subsequently conduct, a fixed wireless communications sessions through the fixed wireless access node Ί ' 514. The client node 'z' 534, which likewise resides within the mobile wireless coverage area 'B' 510, is able to initiate, and subsequently conduct, a fixed wireless communications sessions through the fixed wireless access node '3' 518. Likewise, the fixed wireless access node '2' 516 resides at the intersection of the mobile wireless coverage areas 'A' 506 and 'B' 510. Accordingly, as shown in Figure 5, both client nodes 'x' 530 and 'z' 534 are able to initiate, and subsequently conduct, a fixed wireless communications sessions through the fixed wireless access nodes '2' 516. As likewise shown in Figure 5, each of the client nodes 530, 532 and 534 respectively comprises its own repository 540, 542 and 544 of wireless access node ID, GPS, locale map, and client node fingerprint data.
[0052] Referring now to Figure 5, the client node 'x' 530 uses its radio receivers to scan and measure the signals of the mobile wireless access node 'A' 504 and the fixed wireless access nodes T 514 and '2' 516. In various embodiments, the fixed wireless access nodes T 514 and '2' 516 may be wireless local area network (WLAN) access points operated by individuals, enterprises or network operators. Likewise, the fixed wireless access nodes T 514 and '2' 516 may be home-Node-B (h-NodeB) operating from a multiplicity of local homes and network operators. Those of skill in the art will recognize that many such examples of fixed wireless access nodes T 514 and '2' 516 are possible and that the foregoing is not intended to limit the spirit, scope or intent of the invention.
[0053] In these and other embodiments, the radio signal scanning and measurements performed by the client node 'x' 530 may be initiated by an event, such as an event at the client node 'x' 530 itself (e.g. change of environment, switch-on, service request, user request etc.) or an event at the mobile wireless access network 502 (e.g. cell handover, switch-on, etc.). In various embodiments, the scans and measurement operations may be performed by the client node 'x' 530 periodically, or aperiodically, to determine the signal strength, channel and ID of the fixed wireless access nodes T 514 and '2' 516, or other received radio signals, during the scanning operations. The client node 'x' 530 likewise measures the signal strength and cell site identification, including sector information, of the mobile wireless access node 'A' 504 to which it is connected, and neighboring mobile wireless access nodes (e.g., the mobile wireless access node 'B' 508). In one embodiment, the client node 'x' 530 measures the signal strength and other information associated a spot beam of the communications satellite 524.
[0054] In these various embodiments, the previously-described measurements may include not only the serving mobile and physical wireless access nodes 'A' 504, Ί ' 514, and '2' 516, but also signals from mobile and physical wireless access nodes 'B' 508 and '3' 518 that may be received by the client node 'x' 530. Those of skill in the art will be aware that such measurements of the serving and the neighboring mobile and physical wireless access points are typically made by client nodes for the purpose of managing mobility among various access nodes. Accordingly, knowledge of the neighboring mobile and physical wireless access points 'B' 508 and '3' 518 can be used by the client node 'x' 530 to assist in identify itself within the mobile wireless coverage area 'A' 506 and to likewise ascertain proximity to other devices when they are in the mobile wireless coverage area 'A' 510.
[0055] Skilled practitioners of the art will likewise recognize that such location information may entail some degree of uncertainty due to the practical effects of multi-path propagation and shadowing by man-made and natural objects (e.g., buildings, hills, or other obstructions). Nonetheless, it is still useful for client node 'x' 530 when determining the proximity of client nodes 'y' 532 and 'z' 534. Likewise, when the client node 'x' 530 is operating within spot beams of the communications satellite 524, the neighboring beam information also may likewise assist in identifying client nodes (e.g., client node 'y' 532) generally within the beam coverage area. In various embodiments the measurements are complementary to other information (e.g. GPS and cell site positioning estimation), that may be available for some of the access nodes. In one embodiment, time stamps are reported together with the fingerprints so that the most recent information can be compared.
[0056] In various embodiments, the data delivery services implemented within the IP-based services network 520 are used to communicate the previously described measurements for reporting. In these and other embodiments, the measurement format and related content are configured by the IP -based services network 520 for optimal in-range location and communication of the measurements to the client nodes 'x' 530, 'y' 532, and 'z' 534. In these various embodiments, the information associated with the signals measured in proximity to the client node 'x' 530 (e.g. the fingerprint of the radio signals related to the mobile and physical wireless access nodes 'A' 504, 'B' 508, ' 1 ' 514, '2' 516, and '3' 518) are communicated to client nodes 'y' 532 and 'z' 534. In various other embodiments, the fingerprints are communicated to the wireless network access node data server 526 for storage in the repository of wireless access node ID, GPS, locale map, and client node fingerprint data 528.
[0057] As used herein, a local community of interest refers to a set of client nodes (e.g., client nodes 'x' 530 and 'y' 532) that reside in the same mobile wireless coverage area (e.g., mobile wireless coverage area 'A' 506). The local community of interest likewise refers to wireless coverage areas sufficiently close together such that D2D communication is possible between at least some access nodes (e.g., access node 'z' 534) are in adjacent or mobile wireless coverage areas (e.g., mobile wireless coverage area 'B' 510). Access nodes that are outside this range are determined to be beyond proximity range for viable D2D communications. In various embodiments, the measured information is only exchanged between the client nodes 'x' 530, 'y' 532, 'z' 534 or with the wireless network access node data server 526 if there was mutual agreement to be part of the same local community of interest. In certain of these various embodiments, a proprietary protocol is implemented to communicate among the client nodes 'x' 530, 'y' 532, 'z' 534 or with the wireless network access node data server 526.
[0058] In various embodiments, the client nodes that share a common proximity area as determined by the mobile wireless coverage areas 'A' 506 and 'B' 510, and that have shared their local measured fingerprint information, compare fingerprints to determine their relative proximity to each other. Client nodes having fingerprints that substantively match, or are correlated, are considered to be within in-range proximity for possible D2D communications. As an example, a substantial match would include the same set of mobile or physical wireless access points that have been measured and shown to have similar signal strengths. Those of skill in the art will appreciate that if the number of measured mobile wireless access nodes is small (e.g. 1 or 2) then the previously referenced signal strength should be above a predetermined threshold to assure that the client nodes are close to each other and not on opposite (i.e., more distant) sides of the physical wireless access network node.
[0059] Figures 6a and 6b are a generalized flowchart of operations performed by a first client node as implemented in accordance with an embodiment of the invention to determine the proximity of a second client node within a wireless-enabled communication environment. In this embodiment, operations to determine the proximity range between a first client node and a second client node are begun in step 602, followed by the acquisition of measurement information in, as described in greater detail herein, for the two client nodes in step 604. A determination is then made in step 606 whether Global Positioning System (GPS) information is available for both client nodes. In various embodiments, the availability of GPS navigational signals to the client nodes serves as a first order estimation of the each client node's location. As an example, the first order estimation may be a current location fix that is of low accuracy, or a fix from some pervious time such as when a client node enters a building. Such GPS fixes may thus indicate that the client nodes are within the same building but not provide their proximity to each other within the building.
[0060] If it is determined in step 606 that GPS information is available for both client nodes, then a determination is made in step 612 whether the GPS information associated with the two client nodes correlates, there by indicating they are proximate to one another. If not, then it is determined in step 628 that device-to-device (D2D) communications between the two client nodes is not viable. A determination is then made in step 630 whether to continue proximity range determination operations. If so, then the process is continued, proceeding with step 604. If not, then proximity range determination operations are ended in step 632.
[0061] However, if it is determined in step 612 that the GPS information associated with the two client nodes correlates, then a determination is made in step 614 whether altitude information is available for both client nodes. For example, even if GPS signals are available and provide highly accurate positioning information, the corresponding altitude information might not be available. Therefore, if it is determined in step 614 that altitude information for the two client nodes is not available then the process is continued, proceeding with step 628. Otherwise, a determination is made in step 616 whether the altitude information correlates, thereby indicating that the two client nodes are proximate to one another. For example, the error range of the corresponding altitude information might be correspondingly large, such as when the two client nodes are on different levels of a sports stadium or auditorium.
[0062] If it is determined in step 616 that the altitude information is not correlated, then the process is continued, proceeding with step 628. Otherwise, it is determined in step 622 that D2D communications between the two client nodes is viable, followed by a determination being made in step 624 whether to establish a D2D communication session. If not, then the process is continued, proceeding with step 630. Otherwise, a D2D communication session is established between the two client nodes in step 626 and the process is continued, proceeding with step 630.
[0063] However, if it is determined in step 606 that GPS information is not available for both client nodes then a determination is made in step 608 whether cell and sector identification information is available for both client nodes. For example, if GPS and altitude information are not available, either or both of the client nodes may be indoors or under shadowing. If it is determined in step 608 that cell and sector information is available, then a determination is made in step 610 whether the cell and sector information associated with the two client nodes correlates, thereby indicating that they are proximate to one another. If not, then the process is continued, proceeding with step 628. Otherwise, or if it was determined in step 608 that cell and sector information, or in step 614 that altitude information, is not available for the two nodes, then a determination is made in step 618 whether fingerprint information is available for the two nodes.
[0064] In various embodiments, cell site-based location information, which usually is available both indoors and outdoors but has a large estimation error, is used as a second order positioning value when GPS is not available (e.g. spots inside a building and nearby). As described in greater detail herein, local radio measurement fingerprints provide next-level location information in various embodiments. If it is determined in step 618 that radio fingerprint information is not available for both client devices, then the process is continued, proceeding with step 628. Otherwise, a determination is made in step 620 whether the radio fingerprint information associated with the two client nodes correlates, thereby indicating that they are proximate to one another. As an example, client nodes with highly correlated fingerprints are most likely located nearby (e.g. on the same floor). If it is determined in step 620 that the radio fingerprint information is not correlated, then the process is continued, proceeding with step 628, otherwise, it is determined in step 622 that D2D communications between the two client nodes is viable, followed by a determination being made in step 624 whether to establish a D2D communication session. If not, then the process is continued, proceeding with step 630. Otherwise, a D2D communication session is established between the two client nodes in step 626 and the process is continued, proceeding with step 630.
[0065] In various embodiments, a client node may not be able to measure any fixed wireless access nodes at its current location. In these embodiments, the client node is not considered to be within a viable D2D communications range of other client nodes associated with its community of interest. For example, this may be the case when some client nodes are inside a building and others are outside. In various other embodiments, it may not be possible to measure the signal strengths of various fixed wireless access nodes. Therefore, they may not be reported. In these embodiments, the matching of fingerprints from different client nodes as described in 620 is based upon the identification of physical wireless access nodes reported by each client node. In various embodiments, the respective signal strengths of mobile wireless access nodes are not reported. In these embodiments, the matching of mobile wireless access nodes is based upon the identification of mobile wireless access nodes reported by each client node.
[0066] In one embodiment, the radio measurement fingerprints are compared at a server associated with the wireless network that is accessed via a communication session with the client nodes. In another embodiment, the radio measurement fingerprints are compared within client nodes that receive measurement reports from other client nodes. In various embodiments, a D2D communication session is established in different radio spectrum channels than those of a cellular network. For example, the D2D communication session may use a variety of Public Safety Agency (PSA) channels, Private Mobile Radio (PMR) channels, government channels, satellite channels, or WLAN channels. In various other embodiments, the D2D communication session uses cellular network channels that are available within the coverage area location areas of the client nodes. In some embodiments, the client nodes may use a different mode of the radio access technology (e.g. TDD or FDD) than that used for the mobile wireless network. In certain of these embodiments, the client node appears to the mobile wireless network as a "mobile home-Node-B," or mobile network relay device, and makes use of channels designated by the network operator for those operations. In other embodiments, the D2D communication session makes use of channels supervised by another mobile wireless network operator.
[0067] In various embodiments, information is available related to operational the details of the physical wireless network access nodes. For example, there may be locale maps or floor plans indicating the position of the physical wireless network access nodes within a building. The locale map may also include information about walls, doors, windows and interior partitions that may affect the propagation of radio communications signals within the structure. The client may use information about physical wireless network access nodes positions within the building to determine its proximity to other client nodes and in relation to the floor plan. This information may be available from a database of physical wireless network access nodes IDs and floor plans stored in a repository of wireless access node ID, GPS, locale map, and client node fingerprint data as described in greater detail herein. In these various embodiments, the information is provided to the client node using the data communications facilities of an associated communications network. Alternatively, the repository may be preloaded, or otherwise stored, in the client node. Accordingly, the client node matches the physical wireless access node's ID from its fingerprint to those of the building map (i.e., a locale map) to help determine its proximity to other client nodes within the building. It will be appreciated that such information may assist the client node in determining if it is on the same floor as another client node.
[0068] Likewise, the presence of walls and other architectural features that affect propagation may also be used to determine the possibility of D2D communications in the presence of these features. Accordingly, the client node may compare pre-stored survey information of measurements (e.g., radio environment fingerprints) made at positions within the building to its measured fingerprints. In some embodiments, the fingerprints stored for comparison would be a subset of the available physical wireless network access nodes, wherein the client node uses only this subset for the purpose of determining is proximity to other client nodes.
[0069] Although the described exemplary embodiments disclosed herein are described with reference to determining the proximity of client nodes within a wireless-enabled communication environment, the present invention is not necessarily limited to the example embodiments which illustrate inventive aspects of the present invention that are applicable to a wide variety of authentication algorithms. Thus, the particular embodiments disclosed above are illustrative only and should not be taken as limitations upon the present invention, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Accordingly, the foregoing description is not intended to limit the invention to the particular form set forth, but on the contrary, is intended to cover such alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims so that those skilled in the art should understand that they can make various changes, substitutions and alterations without departing from the spirit and scope of the invention in its broadest form.

Claims

WHAT IS CLAIMED IS: 1. A client node, comprising:
a database comprising identification data associated with a plurality of
wireless network access nodes and fingerprint data associated with the client node and a plurality of second client nodes;
processing logic operable process the signal fingerprint data to identify an individual second client node of said plurality of second client nodes within a viable device-to-device (D2D) communication range;
wherein said processing logic is further operable to initiate a D2D
communications session with said individual second client node that is within said viable D2D communication range.
2. The client node of claim 1, wherein radio signal measurement operations are individually performed by said client node and said plurality of second client nodes to generate radio signal measurement data associated with individual wireless network access nodes of said plurality of wireless network access nodes.
3. The client node of claim 2, wherein said client node and said second client nodes individually process said identification data and said radio signal measurement data to respectively generate said associated fingerprint data.
4. The client node of claim 1, wherein said processing logic is further operable to process Global Positioning System (GPS) data with said fingerprint data to identify the physical locations of said client node and said individual second client node.
5. The client node of claim 4, wherein said GPS information comprises altitude information.
6. The client node of claim 5 wherein said processing logic is further operable to process locale map data with said GPS data and with said fingerprint data to identify said physical locations of said client node and said individual second client node.
7. The client node of claim 1, wherein said identification data, said GPS data, said locale map data, and said fingerprint data associated with said plurality of second client nodes is communicated and stored in a server node accessible by said client node.
8. The client node of claim 7, wherein said identification data, said GPS data, said locale map data, and said fingerprint data associated with said plurality of second client nodes stored in said server node is downloaded from said server node and stored in said client node.
9. The client node of claim 1, wherein said plurality of wireless network access nodes comprises a mobile wireless network access node.
10. The client node of claim 1, wherein said plurality of wireless access network nodes comprises a fixed wireless network access node.
1 1. The client node of claim 1 , wherein said initiated D2D
communications session comprises one of the set of:
data communications directly between client nodes;
Multiple Input Multiple Output (MIMO) configurations;
Cooperative Multipoint (CoMP) configurations;
Interference Control (IC); and
relaying of information among client nodes.
12. A method for using a client node to initiate a device-to-device (D2D) communications session, comprising:
using a database comprising identification data associated with a plurality of wireless network access nodes and signal fingerprint data associated with the client node and a plurality of second client nodes;
using processing logic to process the signal fingerprint data to identify an individual second client node of said plurality of second client nodes within a viable D2D communication range; wherein said processing logic is further used to initiate a D2D
communications session with said individual second client node that is within said viable D2D communication range.
13. The method of claim 12, wherein radio signal measurement operations are individually performed by said client node and said plurality of second client nodes to generate radio signal measurement data associated with individual wireless network access nodes of said plurality of wireless network access nodes.
14. The method of claim 13, wherein said client node and said second client nodes individually process said identification data and said radio signal measurement data to respectively generate said associated fingerprint data:
15. The method of claim 12, wherein said processing logic is further operable to process Global Positioning System (GPS) data with said fingerprint data to identify the physical locations of said client node and said individual second client node.
16. The method of claim 15, wherein said GPS information comprises altitude information.
17. The method of claim 16, wherein said processing logic is further operable to process locale map data with said GPS data and with said fingerprint data to identify said physical locations of said client node and said individual second client node.
18. The method of claim 12, wherein said identification data, said GPS data, said locale map data, and said fingerprint data associated with said plurality of second client nodes is communicated and stored in a server node accessible by said client node.
19. The method of claim 18, wherein said identification data, said GPS data, said locale map data, and said fingerprint data associated with said plurality of second client nodes stored in said server node is downloaded from said server node and stored in said client node.
20. The method of claim 12, wherein said plurality of wireless network access nodes comprises a mobile wireless network access node.
21. The method of claim 12, wherein said plurality of wireless access network nodes comprises a fixed wireless network access node.
22. The method of claim 12, wherein said initiated D2D communications session comprises one of the set of:
data communications directly between client nodes;
Multiple Input Multiple Output (MIMO) configurations;
Cooperative Multipoint (CoMP) configurations;
Interference Control (IC); and
relaying of information among client nodes.
PCT/IB2011/050829 2011-02-25 2011-02-25 Determining device in-range proximity WO2012114161A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/643,241 US9084235B2 (en) 2011-02-25 2011-02-25 Determining device in-range proximity
EP11859635.2A EP2679034B1 (en) 2011-02-25 2011-02-25 Determining device in-range proximity
CA2827866A CA2827866C (en) 2011-02-25 2011-02-25 Determining device in-range proximity
PCT/IB2011/050829 WO2012114161A1 (en) 2011-02-25 2011-02-25 Determining device in-range proximity
CN201180070412.7A CN103503493B (en) 2011-02-25 2011-02-25 Determining device in-range proximity
US14/750,633 US9635695B2 (en) 2011-02-25 2015-06-25 Determining device in-range proximity
US15/495,176 US10278222B2 (en) 2011-02-25 2017-04-24 Determining device in-range proximity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2011/050829 WO2012114161A1 (en) 2011-02-25 2011-02-25 Determining device in-range proximity

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/643,241 A-371-Of-International US9084235B2 (en) 2011-02-25 2011-02-25 Determining device in-range proximity
US14/750,633 Continuation US9635695B2 (en) 2011-02-25 2015-06-25 Determining device in-range proximity

Publications (1)

Publication Number Publication Date
WO2012114161A1 true WO2012114161A1 (en) 2012-08-30

Family

ID=46720159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/050829 WO2012114161A1 (en) 2011-02-25 2011-02-25 Determining device in-range proximity

Country Status (5)

Country Link
US (3) US9084235B2 (en)
EP (1) EP2679034B1 (en)
CN (1) CN103503493B (en)
CA (1) CA2827866C (en)
WO (1) WO2012114161A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298107A (en) * 2013-05-10 2013-09-11 朱旭东 Indoor wireless positioning AP (access point) rapid deployment method based on weighted undirected graph
EP2665326A1 (en) * 2012-05-15 2013-11-20 Telefonaktiebolaget L M Ericsson (publ) Apparatus and method thereof for setting up device-to-device communication
WO2014032552A1 (en) * 2012-08-31 2014-03-06 中兴通讯股份有限公司 Method and device for processing d2d equipment identification
WO2014033350A1 (en) * 2012-08-28 2014-03-06 Nokia Corporation Discovery method and apparatuses and system for discovery
WO2014043760A1 (en) 2012-09-21 2014-03-27 University Of South Australia Communication system and method
WO2014051791A1 (en) * 2012-09-28 2014-04-03 Intel Corporation Wireless wide area network (wwan) managed device to device communication using narrowband wi-fi in a licensed band
EP2770798A1 (en) * 2013-02-20 2014-08-27 Koninklijke KPN N.V. Multi-network terminal-proximity discovery using joint spectrum
CN104066112A (en) * 2013-03-21 2014-09-24 中兴通讯股份有限公司 Inter-terminal device-to-device communication method and system
US9648483B2 (en) 2012-08-28 2017-05-09 Nokia Technologies Oy Discovery method and apparatuses and system for discovery
US9756493B2 (en) 2013-03-26 2017-09-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for cooperative positioning in a wireless communication network
EP3291618A1 (en) * 2016-08-25 2018-03-07 Samsung Electronics Co., Ltd. Method for recognizing location and electronic device implementing the same
CN110943848A (en) * 2012-10-05 2020-03-31 华为技术有限公司 Method for virtual communication between wireless network and multiple UEs
US11481551B2 (en) 2016-10-21 2022-10-25 Samsung Electronics Co., Ltd. Device and method for providing recommended words for character input

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669854B2 (en) 2009-11-09 2015-02-18 マーベル ワールド トレード リミテッド Method and apparatus for transmitting feedback data to a base station using coordinated transmission, and system comprising a base station using coordinated transmission scheme and a mobile communication terminal for transmitting feedback data
JP5637486B2 (en) 2009-12-17 2014-12-10 マーベル ワールド トレード リミテッド MIMO feedback scheme for cross-polarized antennas
JP5258002B2 (en) 2010-02-10 2013-08-07 マーベル ワールド トレード リミテッド Device, mobile communication terminal, chipset, and method in MIMO communication system
US9048970B1 (en) 2011-01-14 2015-06-02 Marvell International Ltd. Feedback for cooperative multipoint transmission systems
WO2012114160A1 (en) 2011-02-25 2012-08-30 Research In Motion Limited Inter-device session connectivity enhancement
CA2827866C (en) 2011-02-25 2016-07-12 Blackberry Limited Determining device in-range proximity
JP6019502B2 (en) 2011-03-31 2016-11-02 マーベル ワールド トレード リミテッド Channel feedback for coordinated multipoint transmission
WO2013068974A1 (en) 2011-11-10 2013-05-16 Marvell World Trade Ltd. Differential cqi encoding for cooperative multipoint feedback
US9220087B1 (en) * 2011-12-08 2015-12-22 Marvell International Ltd. Dynamic point selection with combined PUCCH/PUSCH feedback
EP2824848B1 (en) * 2012-03-06 2019-05-15 LG Electronics Inc. Method and apparatus for transmitting/receiving control information for device to device (d2d) communication in a wireless communications system
US9143951B2 (en) 2012-04-27 2015-09-22 Marvell World Trade Ltd. Method and system for coordinated multipoint (CoMP) communication between base-stations and mobile communication terminals
US9307564B2 (en) * 2012-05-18 2016-04-05 Qualcomm Incorporated Automatic device-to-device connection control by environmental information
US9635657B2 (en) 2012-12-21 2017-04-25 Blackberry Limited Resource scheduling in direct device to device communications systems
US9271302B2 (en) 2012-12-21 2016-02-23 Blackberry Limited Network-managed direct device to device communications
US9295044B2 (en) 2012-12-21 2016-03-22 Blackberry Limited Resource scheduling in direct device to device communications systems
US9699589B2 (en) 2012-12-21 2017-07-04 Blackberry Limited Managing sessions for direct device to device communications
US9930592B2 (en) 2013-02-19 2018-03-27 Mimosa Networks, Inc. Systems and methods for directing mobile device connectivity
US9179336B2 (en) 2013-02-19 2015-11-03 Mimosa Networks, Inc. WiFi management interface for microwave radio and reset to factory defaults
WO2014137370A1 (en) 2013-03-06 2014-09-12 Mimosa Networks, Inc. Waterproof apparatus for cables and cable interfaces
US9362629B2 (en) 2013-03-06 2016-06-07 Mimosa Networks, Inc. Enclosure for radio, parabolic dish antenna, and side lobe shields
US10742275B2 (en) 2013-03-07 2020-08-11 Mimosa Networks, Inc. Quad-sector antenna using circular polarization
US9191081B2 (en) 2013-03-08 2015-11-17 Mimosa Networks, Inc. System and method for dual-band backhaul radio
US9295103B2 (en) 2013-05-30 2016-03-22 Mimosa Networks, Inc. Wireless access points providing hybrid 802.11 and scheduled priority access communications
US10938110B2 (en) 2013-06-28 2021-03-02 Mimosa Networks, Inc. Ellipticity reduction in circularly polarized array antennas
US9220121B2 (en) * 2013-11-19 2015-12-22 Nokia Technologies Oy Device to device interference triggered handover
US20150162942A1 (en) * 2013-12-06 2015-06-11 Sony Corporation Power control scheme for device to device networks
US9001689B1 (en) 2014-01-24 2015-04-07 Mimosa Networks, Inc. Channel optimization in half duplex communications systems
US9780892B2 (en) 2014-03-05 2017-10-03 Mimosa Networks, Inc. System and method for aligning a radio using an automated audio guide
US9998246B2 (en) 2014-03-13 2018-06-12 Mimosa Networks, Inc. Simultaneous transmission on shared channel
US9964409B1 (en) * 2014-05-27 2018-05-08 Apple Inc. Localized map generation
CN104038899B (en) * 2014-06-11 2019-02-22 北京智谷睿拓技术服务有限公司 Proximity relations determines method and device
CN104023310A (en) * 2014-06-11 2014-09-03 北京智谷睿拓技术服务有限公司 Method and device of determining proximity relation
EP3165044B1 (en) * 2014-07-01 2018-03-21 Telefonaktiebolaget LM Ericsson (publ) Methods, nodes and user equipments for finding neighboring user equipments with which a first user equipment may be able to communicate directly
US10958332B2 (en) 2014-09-08 2021-03-23 Mimosa Networks, Inc. Wi-Fi hotspot repeater
US10333562B2 (en) * 2015-03-06 2019-06-25 Huawei Technologies, Co., Ltd. Radio signal processing system, method, and apparatus, radio transformation module, router, and user equipment
CN106162545A (en) * 2015-04-24 2016-11-23 北京智谷睿拓技术服务有限公司 Transmission control method and forwarding controller
US9826460B2 (en) * 2015-05-14 2017-11-21 Qualcomm Incorporated Measurement of D2D channels
EP3375229B1 (en) * 2015-11-10 2022-03-30 Telefonaktiebolaget LM Ericsson (PUBL) Method and system of a wireless communication network for detecting neighbouring ues, of a first ue
US10237309B2 (en) * 2015-11-25 2019-03-19 International Business Machines Corporation Managing virtual desktop infrastructure data sharing
US10531228B2 (en) * 2015-12-16 2020-01-07 Sk Planet Co., Ltd. Approaching user detection, user authentication and location registration method and apparatus based on RF fingerprint
WO2017123558A1 (en) 2016-01-11 2017-07-20 Mimosa Networks, Inc. Printed circuit board mounted antenna and waveguide interface
ES2854926T3 (en) * 2016-03-23 2021-09-23 Radio Systems Corp RF beacon proximity determination enhancement
WO2018022526A1 (en) 2016-07-29 2018-02-01 Mimosa Networks, Inc. Multi-band access point antenna array
US10511074B2 (en) 2018-01-05 2019-12-17 Mimosa Networks, Inc. Higher signal isolation solutions for printed circuit board mounted antenna and waveguide interface
US11069986B2 (en) 2018-03-02 2021-07-20 Airspan Ip Holdco Llc Omni-directional orthogonally-polarized antenna system for MIMO applications
US11289821B2 (en) 2018-09-11 2022-03-29 Air Span Ip Holdco Llc Sector antenna systems and methods for providing high gain and high side-lobe rejection
CN110381436B (en) * 2019-06-25 2020-10-16 东南大学 Rapid fingerprint positioning method based on large-scale MIMO single station system
CN113784277A (en) * 2021-01-15 2021-12-10 北京京东振世信息技术有限公司 System, method and apparatus for storing location information

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666661A (en) 1994-03-10 1997-09-09 Motorola, Inc. Method for automatically bypassing the use of a communication system infrastructure
WO2001015387A1 (en) 1999-08-26 2001-03-01 Nokia Corporation Direct mode communication method between two mobile terminals in access point controlled wireless lan systems
US20020029258A1 (en) * 1998-05-29 2002-03-07 Gary Mousseau System and method for redirecting data to a wireless device over a plurality of communication paths
GB2390510A (en) 2002-07-05 2004-01-07 Nokia Corp Direct mode communication between mobiles
EP1385345A1 (en) 2002-07-25 2004-01-28 Nec Corporation Method and device for selecting between telecommunication networks
US20060148502A1 (en) 2004-12-31 2006-07-06 Korneluk Jose E Switching a call from a network assisted communication mode to a direct communication mode
US20060240855A1 (en) * 2005-04-22 2006-10-26 Amit Kalhan Systems and methods for updating presence in a mobile communication network
US20100085947A1 (en) * 2007-03-07 2010-04-08 British Telecommunications Public Limited Company Method of transmitting data to a mobile device
US20100261469A1 (en) * 2009-04-08 2010-10-14 Nokia Corporation Apparatus and method for mode selection for device-to-device communications

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515027B2 (en) 1999-10-14 2004-04-05 三菱電機株式会社 Wireless terminal management device
US7027820B2 (en) 2001-01-31 2006-04-11 Hewlett-Packard Development Company, L.P. Location data validation by static entities receiving location data items by short-range communication
US7248625B2 (en) 2002-09-05 2007-07-24 Silicon Storage Technology, Inc. Compensation of I-Q imbalance in digital transceivers
US7256711B2 (en) 2003-02-14 2007-08-14 Networks In Motion, Inc. Method and system for saving and retrieving spatial related information
CN1549613A (en) 2003-05-19 2004-11-24 �ʼҷ����ֵ��ӹɷ����޹�˾ Method and apparatus for soft switching between P2P communication mode and traditional communication mode in radio communication system
US8639819B2 (en) * 2004-02-05 2014-01-28 Nokia Corporation Ad-hoc connection between electronic devices
CA2573214C (en) 2004-07-09 2013-06-11 Codemate Aps Peer of a peer-to-peer network and such network
US7444137B1 (en) 2005-11-01 2008-10-28 At&T Mobility Ii Llc Cell broadcast via encoded message to an embedded client
US20080139114A1 (en) 2006-12-06 2008-06-12 Motorola, Inc. Method for determining user location based on association with seamless mobility context
US7812717B1 (en) * 2007-02-02 2010-10-12 Resource Consortium Limited Situational network
US8522019B2 (en) * 2007-02-23 2013-08-27 Qualcomm Incorporated Method and apparatus to create trust domains based on proximity
US7944905B2 (en) 2007-05-29 2011-05-17 Motorola Solutions, Inc. Method for dynamically identifying locations of mobile nodes in a time division multiple access based ad hoc communication network
US8254350B2 (en) 2007-06-14 2012-08-28 International Business Machines Corporation Routing packets in an ad hoc wireless network
US20080318592A1 (en) 2007-06-22 2008-12-25 International Business Machines Corporation Delivering telephony communications to devices proximate to a recipient after automatically determining the recipient's location
US8521194B2 (en) * 2007-07-10 2013-08-27 Qualcomm Incorporated Performing paging in a wireless peer-to-peer network
GB2454645B (en) 2007-08-31 2012-05-09 Ericsson Telefon Ab L M Location update of a mobile node
CN201173970Y (en) * 2008-04-08 2008-12-31 北京浩澜高科科技发展有限公司 Monitoring positioning terminal and monitoring positioning system having finger print identity verification
US8554200B2 (en) * 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
US8010131B2 (en) * 2008-09-16 2011-08-30 Rothschild Leigh M System and method for enabling social interactive wireless communications
US8818861B2 (en) 2008-10-01 2014-08-26 Nokia Corporation Finding mobile station for device-to-device communication
GB2466049A (en) 2008-12-10 2010-06-16 Symbian Software Ltd Distance determination between two or more communicating devices
EP2358801A1 (en) 2008-12-18 2011-08-24 ExxonMobil Chemical Patents Inc. Polymer compositions comprising terephthalates
US8385240B2 (en) 2009-09-03 2013-02-26 Qualcomm Incorporated Selection and utilization of shared wireless wide area network modems
US8666403B2 (en) * 2009-10-23 2014-03-04 Nokia Solutions And Networks Oy Systems, methods, and apparatuses for facilitating device-to-device connection establishment
US8884817B2 (en) 2009-12-31 2014-11-11 CSR Technology Holdings Inc. GPS with aiding from ad-hoc peer-to-peer bluetooth networks
US8588803B2 (en) * 2010-06-18 2013-11-19 Nokia Corporation Method and apparatus for resource scheduling for network controlled D2D communications
CA2827866C (en) 2011-02-25 2016-07-12 Blackberry Limited Determining device in-range proximity
WO2012114160A1 (en) 2011-02-25 2012-08-30 Research In Motion Limited Inter-device session connectivity enhancement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666661A (en) 1994-03-10 1997-09-09 Motorola, Inc. Method for automatically bypassing the use of a communication system infrastructure
US20020029258A1 (en) * 1998-05-29 2002-03-07 Gary Mousseau System and method for redirecting data to a wireless device over a plurality of communication paths
WO2001015387A1 (en) 1999-08-26 2001-03-01 Nokia Corporation Direct mode communication method between two mobile terminals in access point controlled wireless lan systems
GB2390510A (en) 2002-07-05 2004-01-07 Nokia Corp Direct mode communication between mobiles
EP1385345A1 (en) 2002-07-25 2004-01-28 Nec Corporation Method and device for selecting between telecommunication networks
US20060148502A1 (en) 2004-12-31 2006-07-06 Korneluk Jose E Switching a call from a network assisted communication mode to a direct communication mode
US20060240855A1 (en) * 2005-04-22 2006-10-26 Amit Kalhan Systems and methods for updating presence in a mobile communication network
US20100085947A1 (en) * 2007-03-07 2010-04-08 British Telecommunications Public Limited Company Method of transmitting data to a mobile device
US20100261469A1 (en) * 2009-04-08 2010-10-14 Nokia Corporation Apparatus and method for mode selection for device-to-device communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
COHEN, ALAN: "RF fingerprinting pinpoints location", 11 October 2004 (2004-10-11), Retrieved from the Internet <URL:http://www.networkworld.com/news/tech/2004/101104techupdate.html> [retrieved on 20110801] *
See also references of EP2679034A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665326A1 (en) * 2012-05-15 2013-11-20 Telefonaktiebolaget L M Ericsson (publ) Apparatus and method thereof for setting up device-to-device communication
WO2014033350A1 (en) * 2012-08-28 2014-03-06 Nokia Corporation Discovery method and apparatuses and system for discovery
US9648483B2 (en) 2012-08-28 2017-05-09 Nokia Technologies Oy Discovery method and apparatuses and system for discovery
US9538357B2 (en) 2012-08-31 2017-01-03 Zte Corporation Method and apparatus for processing D2D device identity
WO2014032552A1 (en) * 2012-08-31 2014-03-06 中兴通讯股份有限公司 Method and device for processing d2d equipment identification
WO2014043760A1 (en) 2012-09-21 2014-03-27 University Of South Australia Communication system and method
US10778325B2 (en) 2012-09-21 2020-09-15 Myriota Pty Ltd Communication system and method
JP2015534754A (en) * 2012-09-21 2015-12-03 ユニバーシティー オブ サウス オーストラリアUniversity Of South Australia Communication system and method
EP2898728A4 (en) * 2012-09-21 2016-06-08 Univ South Australia Communication system and method
US9923624B2 (en) 2012-09-21 2018-03-20 University Of South Australia Communication system and method
AU2013317705B2 (en) * 2012-09-21 2017-11-16 Myriota Pty Ltd Communication system and method
EP3496464A2 (en) 2012-09-21 2019-06-12 Myriota Pty Ltd Communication system and method
US10320469B2 (en) 2012-09-21 2019-06-11 Myriota Pty Ltd Communication system and method
US9026051B2 (en) 2012-09-28 2015-05-05 Intel Corporation Wireless wide area network (WWAN) managed device to device communication using narrowband Wi-Fi in a licensed band
WO2014051791A1 (en) * 2012-09-28 2014-04-03 Intel Corporation Wireless wide area network (wwan) managed device to device communication using narrowband wi-fi in a licensed band
CN110943848B (en) * 2012-10-05 2022-06-07 华为技术有限公司 Method and equipment for virtual communication between wireless network and multiple UEs
CN110943848A (en) * 2012-10-05 2020-03-31 华为技术有限公司 Method for virtual communication between wireless network and multiple UEs
EP2770798A1 (en) * 2013-02-20 2014-08-27 Koninklijke KPN N.V. Multi-network terminal-proximity discovery using joint spectrum
CN104066112A (en) * 2013-03-21 2014-09-24 中兴通讯股份有限公司 Inter-terminal device-to-device communication method and system
US10440552B2 (en) 2013-03-26 2019-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for cooperative positioning in a wireless communication network
US9756493B2 (en) 2013-03-26 2017-09-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for cooperative positioning in a wireless communication network
CN103298107A (en) * 2013-05-10 2013-09-11 朱旭东 Indoor wireless positioning AP (access point) rapid deployment method based on weighted undirected graph
US10219102B2 (en) 2016-08-25 2019-02-26 Samsung Electronics Co., Ltd. Method for recognizing location and electronic device implementing the same
CN107787026A (en) * 2016-08-25 2018-03-09 三星电子株式会社 For identifying the method for position and realizing the electronic installation of this method
EP3291618A1 (en) * 2016-08-25 2018-03-07 Samsung Electronics Co., Ltd. Method for recognizing location and electronic device implementing the same
CN107787026B (en) * 2016-08-25 2021-08-17 三星电子株式会社 Method for identifying position and electronic device implementing the same
US11481551B2 (en) 2016-10-21 2022-10-25 Samsung Electronics Co., Ltd. Device and method for providing recommended words for character input

Also Published As

Publication number Publication date
US20170325272A1 (en) 2017-11-09
EP2679034A1 (en) 2014-01-01
CA2827866A1 (en) 2012-08-30
CN103503493A (en) 2014-01-08
US20140051357A1 (en) 2014-02-20
EP2679034B1 (en) 2018-08-01
EP2679034A4 (en) 2016-09-21
US10278222B2 (en) 2019-04-30
US9635695B2 (en) 2017-04-25
CA2827866C (en) 2016-07-12
US20150296555A1 (en) 2015-10-15
CN103503493B (en) 2017-04-12
US9084235B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
US10278222B2 (en) Determining device in-range proximity
US9468032B2 (en) Inter-device session connectivity enhancement
US8792825B2 (en) Terminal apparatus and communication method, information processing apparatus and method, non-transitory storing medium storing program, and information processing system
CN101779505B (en) Registration of wireless node
US20140057598A1 (en) Automatic access to network nodes
CN102625232B (en) Additional data usable in apparatus positioning
CN102106175B (en) Methods and apparatus for location based services in wireless networks
CN103563453A (en) Method and apparatus for sharing connectivity settings via social networks
EP3804362B1 (en) Device-based access point association and tracking of physical addresses
CN105453615B (en) Wireless terminal, search processing method of wireless terminal, and wireless communication system
US20130265889A1 (en) Optimized Uplink Performance via Antenna Selection
US20140321566A1 (en) Antenna polarization optimization for wireless communications
Zhou et al. Enhancing indoor positioning accuracy by utilizing signals from both the mobile phone network and the wireless local area network
CA2782780C (en) Collaborative media sharing
US8903908B2 (en) Collaborative media sharing
US8059614B2 (en) Pseudorandom noise selection method for mobile communication sites
JP2011151730A (en) Radio communication terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2827866

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011859635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13643241

Country of ref document: US