WO2012113162A1 - 带有数字校正功能的功率变换器 - Google Patents

带有数字校正功能的功率变换器 Download PDF

Info

Publication number
WO2012113162A1
WO2012113162A1 PCT/CN2011/071566 CN2011071566W WO2012113162A1 WO 2012113162 A1 WO2012113162 A1 WO 2012113162A1 CN 2011071566 W CN2011071566 W CN 2011071566W WO 2012113162 A1 WO2012113162 A1 WO 2012113162A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
voltage
comparator
output voltage
error
Prior art date
Application number
PCT/CN2011/071566
Other languages
English (en)
French (fr)
Inventor
张波
甄少伟
罗萍
祝晓辉
李江昆
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to US13/637,298 priority Critical patent/US8947063B2/en
Publication of WO2012113162A1 publication Critical patent/WO2012113162A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to an integrated circuit, in particular to a buck switching power converter output voltage regulating circuit.
  • Integrated power converters are an important part of power integrated circuits and are widely used in a variety of electronic products.
  • the step-down switching power converter in the power converter can be divided into voltage mode control and current mode control.
  • the voltage mode control step-down switching power converter has a simple control loop that simplifies the design to a large extent.
  • a typical structure of a voltage mode control step-down switching power converter of the prior art is shown in FIG. 1 , including a control logic unit, an error amplifier (Error Amplifier EA), a PWM (pulse width modulation wave) comparator, and a driving unit. And output unit.
  • EA error amplifier
  • PWM pulse width modulation wave
  • the error amplifier EA is connected to the output voltage Vout and the reference voltage Vref, and provides error voltages VI and V2 to the P comparator comparator according to the output voltage Vout and the reference voltage Vref.
  • the other input of the P comparator is connected to the sawtooth signal, and the PWM comparator comp adjusts the duty cycle of the output pulse according to the error voltage V2.
  • the control logic unit performs power conversion on the input voltage Vin by a pair of transistors (MP and MN) driven by the drive unit to drive the output unit according to the pulse output from the PWM comparator comp to generate an output voltage Vout.
  • MP and MN transistors driven by the drive unit to drive the output unit according to the pulse output from the PWM comparator comp to generate an output voltage Vout.
  • the transistors MP and MN and the inductor L, capacitor C and load resistor R form a step-down switching power converter circuit.
  • integrated circuits are moving toward nanoscale processes. Driven by Moore's Law, it is inevitable to integrate switching power converters in SoCs (system-on-chips) under nanoscale processes.
  • SoCs system-on-chips
  • the analog circuit design under the nano-scale process faces many challenges such as intrinsic gain reduction and swing reduction.
  • the error amplifier in the traditional voltage mode converter requires higher gain to meet the load regulation requirements, but in the nano-scale process to meet the higher gain requirements, the error amplifier design will become difficult, and the load range is wide. When it is difficult to guarantee the load adjustment rate indicator.
  • the technical problem to be solved by the present invention is to provide a power converter that uses digital technology to adjust the output voltage in view of the problem that the gain of the prior art error amplifier is reduced and the load regulation rate cannot be met.
  • a power converter with a digital correction function includes a control logic unit, an error amplifier, a P-comparator, a driving unit and an output unit, and the error amplifier is according to an output unit.
  • the output voltage and the reference voltage give an error voltage
  • the P-Li comparator adjusts the duty ratio of the output pulse according to the error voltage
  • the control logic unit drives the output unit through the driving unit according to the pulse output by the P-Li comparator Power conversion of the input voltage to generate an output voltage; characterized in that it also includes a digital control list And the input end of the digital control unit is connected to the output voltage, and the output end is connected to the error voltage; when the output voltage exceeds the set range, the digital control unit changes the magnitude of the error voltage in a stepwise manner, so that The output voltage remains within the set range.
  • the output unit is composed of a PMOS transistor and an NMOS transistor.
  • the gates of the PMOS transistor and the NMOS transistor are connected to a driving unit, and the drains thereof are connected together as an output terminal, and the PMOS transistor source is An input voltage is connected, and the source of the ⁇ OS transistor is grounded.
  • the error amplifier uses a transconductance amplifier.
  • the digital control unit includes a first comparator, a second comparator, a correction module, and a current mirror; the first comparator and the second comparator input end are connected to an output voltage, and the output end is connected to the correction module,
  • the correction module is connected to the current mirror; the correction module controls the number of current mirrors to be turned on according to the output signals of the first comparator and the second comparator, so that the current flowing through the pull-up resistor connected to the error voltage changes, thereby The stepping mode changes the magnitude of the error voltage.
  • the first comparator is configured to detect a positive deviation of an output voltage
  • the second comparator is configured to detect a negative deviation of an output voltage; if the output voltage is a positive deviation within a set time, the current mirror is turned on. Quantity, if the output voltage is negatively biased within the set time, increase the number of current mirrors open.
  • the invention has the beneficial effects that the digital control circuit is added on the basis of the original analog control circuit, and the simple analog circuit and the complicated digital correction circuit are combined, so that the performance of the power converter can still be guaranteed under the nano-scale process.
  • Digital circuits are robust to process, ensuring high yield and stability.
  • the digital correction circuit of the invention can be used not only in the nano-scale process, but also has a wide application prospect for the power converter under the conventional process.
  • FIG. 1 is a schematic structural view of a prior art power converter
  • FIG. 2 is a schematic structural view of a power converter of an embodiment
  • FIG. 3 is a schematic diagram of state transition of a correction module
  • Figure 4 is a schematic diagram of the power converter output voltage correction effect.
  • the invention performs digital self-adjustment on the traditional analog loop switching converter, reduces the dependence on the process, makes the method portable, and has a simple self-adjusting principle. It combines the advantages of digital and analog circuits, and is ideal for nanoscale processes where high-performance analog circuits are difficult to obtain, as well as retrofitting traditional switching converters.
  • Example The power converter structure with digital correction function in this example is shown in Figure 2. It includes a control logic unit, an error amplifier EA, a PWM comparator Comp, a drive unit, an output unit, and a digital control unit.
  • the output unit of this example is composed of a PMOS transistor MP and a NMOS transistor MN.
  • the gates of the PMOS transistor MP and the NMOS transistor MN are connected to the driving unit in FIG. 2, and their drains are connected together as an output terminal, PM0S.
  • the source of the transistor MP is connected to the input voltage Vin, and the source of the NMOS transistor is grounded.
  • the digital control unit of this example includes a first comparator Comp1, a second comparator Comp2, a correction module, and a 3-row current mirror.
  • the first comparator Compl and the second comparator Comp2 are connected to the output voltage Vout, and the output terminal is connected to the correction module.
  • the output of the correction module is connected to the 3-row current mirror, and the number of current mirrors is controlled according to the signals Comp_H and Comp_L outputted by the first comparator Comp1 and the second comparator Comp2, so that the flow is connected to the error voltage V2.
  • the current of the pull-up resistor R2 changes, thereby changing the magnitude of the error voltage V2 in a stepwise manner.
  • the PWM comparator Comp adjusts the duty cycle of the output pulse according to the error voltage V2, outputs a pulse width modulation wave (PLi), and inputs the PWM input to the logic unit.
  • the control logic unit drives the PM0S transistor MP and the ⁇ OS transistor MN according to the pulse outputted by the PWM comparator Comp to power-convert the input voltage Vin to generate an output voltage Vout.
  • the output voltage Vout and the reference voltage Vref are the two input voltages of the error amplifier EA, and the error amplifier EA uses an operational amplifier (OTA).
  • the output of the EA is connected to the input of the PWM comparator comp.
  • One end of the resistors R1 and R2 is connected to the output of the EA, and one end is connected to the input voltage Vin.
  • the sawtooth current SAW generated by the oscillator in Figure 2 is connected to the R1 terminal of the resistor, and the PWM comparator comp generates a pulse width modulated wave.
  • the clock signal Clk generated by the oscillator is connected to the control logic unit and the correction unit to operate as a power converter.
  • the base clock is used to the clock.
  • the input of the control logic unit is Clk and PLi, and the output signal is connected to the driving unit to drive the PM0S transistor MP and the ⁇ OS transistor to complete the power conversion.
  • the first comparator compl and the second comparator comp2 are respectively used for detecting the positive deviation (Vref+e%) and the negative deviation (Vref_e%) of the output voltage, and the output signals thereof are denoted as Comp_H and Comp_L, respectively, which represent The relative position of the output voltage Vout.
  • the inputs of the calibration module in Figure 2 are Comp_H, Comp_L, and Clk.
  • N 8 in this example
  • Comp_H and CompJ ⁇ are high, and the output signal Trim is incremented by 1, increasing the number of current mirrors turned on.
  • the current flowing through the pull-up resistor R2 is increased, and the error voltage V2 is decreased.
  • the output signal Trim is decremented by 1, reducing the number of current mirrors turned on, causing the pull-up resistor to flow.
  • the current of R2 decreases and the error voltage V2 rises.
  • the output signal Trim controls the quantized current mirror through the control switches S0, S1, S2, thereby changing the magnitude of the error voltage V2 in a stepwise manner, and outputting the output through the PWM comparator Comp
  • the duty cycle of the pulse is fine tuned.
  • the three rows of current mirrors are connected to the lower end of the pull-up resistor R2, and the turn-on (the switches corresponding to the current mirrors S0, S1, and S2 are closed) directly controls the current flowing through the resistor R2, thereby making the error voltage V2 step by step. The way changes.
  • Figure 3 is a schematic diagram of the state transition of the calibration module.
  • the output signal Trim is maintained after the system is initialized. When the continuous N cycles Comp_H and Comp_L are detected to be high, the output signal Trim is incremented by 1; when consecutive N cycles Comp_H and Comp_L are detected Both are low, and its output signal Trim is decremented by one.
  • the output voltage fluctuation range is large in a wide load range, and when the digital correction technique of the present invention is adopted, the output voltage fluctuation is stabilized within 1%, and in different process conditions and It can be kept constant under temperature conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

带有数字校正功能的功率变换器 技术领域
本发明涉及集成电路, 特别涉及降压型开关功率变换器输出电压调节电路。
背景技术
集成功率变换器是功率集成电路的重要组成部分, 在各种电子产品中得到了广泛应 用。 功率变换器中的降压型开关功率变换器可分为电压模式控制和电流模式控制。 电压 模式控制降压型开关功率变换器的控制环路简单, 可较大程度上简化设计。 现有技术的 电压模式控制降压型开关功率变换器的典型结构如图 1所示, 包括控制逻辑单元、 误差 放大器 (Error Amplifier 简写为 EA)、 PWM (脉冲宽度调制波) 比较器、 驱动单元和输 出单元。图 1中,误差放大器 EA连接输出电压 Vout和参考电压 Vref,根据输出电压 Vout 和参考电压 Vref 向 P丽比较器 comp给出误差电压 VI和 V2。 P丽比较器 comp的另一输 入端连接锯齿波信号, PWM比较器 comp根据误差电压 V2调整输出脉冲的占空比。控制逻 辑单元根据 PWM比较器 comp输出的脉冲, 通过驱动单元驱动输出单元的一对晶体管(MP 和 MN)对输入电压 Vin进行功率变换, 产生输出电压 Vout。 这是一款典型的模拟控制功 率变换器电路, 晶体管 MP和丽以及电感 L、 电容 C和负载电阻 R构成降压型开关功率变 换器电路。 随着集成电路工艺技术的进步, 集成电路向纳米级工艺迈进。 在摩尔定律的 驱动下, 在纳米级工艺下的 SoC (系统级芯片) 中集成开关功率变换器成为必然。 但纳米 级工艺下的模拟电路设计面临着本征增益降低、 摆幅减小等诸多挑战。 传统电压模式变 换器中的误差放大器需要较高的增益以满足负载调整率的要求, 但在纳米级工艺下满足 较高增益要求, 误差放大器的设计将会变得困难, 而且在负载范围较宽时, 很难保证负 载调整率的指标。
发明内容
本发明所要解决的技术问题, 就是针对现有技术误差放大器增益降低, 不能满足负 载调整率要求的问题, 提供一种采用数字技术调整输出电压的功率变换器。
本发明解决所述技术问题, 采用的技术方案是, 带有数字校正功能的功率变换器, 包括控制逻辑单元、 误差放大器、 P丽比较器、 驱动单元和输出单元, 所述误差放大器根 据输出单元的输出电压和参考电压给出误差电压, 所述 P丽 比较器根据所述误差电压调 整输出脉冲的占空比, 所述控制逻辑单元根据 P丽 比较器输出的脉冲, 通过驱动单元驱 动输出单元对输入电压进行功率变换, 产生输出电压; 其特征在于, 还包括数字控制单 元, 所述数字控制单元输入端连接输出电压, 输出端连接误差电压; 当所述输出电压超 过设定范围时, 所述数字控制单元以步进方式改变所述误差电压的大小, 使所述输出电 压保持在所述设定范围。
具体的, 所述输出单元由一只 PM0S晶体管和一只 NM0S晶体管构成, 所述 PM0S晶体 管和 NM0S晶体管的栅极与驱动单元连接, 其漏极连接在一起作为输出端, 所述 PM0S晶 体管源极接输入电压, 所述匪 OS晶体管源极接地。
具体的, 所述误差放大器采用跨导放大器。
进一步的, 所述数字控制单元包括第一比较器、 第二比较器、 校正模块和电流镜; 所述第一比较器和第二比较器输入端连接输出电压, 输出端连接校正模块, 所述校正模 块连接电流镜; 所述校正模块根据所述第一比较器和第二比较器的输出信号控制电流镜 开启的数量, 使流过连接在误差电压上的上拉电阻的电流变化, 从而以步进方式改变所 述误差电压的大小。
具体的, 所述第一比较器用于检测输出电压的正偏差, 所述第二比较器用于检测输 出电压的负偏差; 如果在设定的时间内输出电压均为正偏差则减少电流镜开启的数量, 如果在设定的时间内输出电压均为负偏差则增加电流镜开启的数量。
本发明的有益效果是, 在原有模拟控制电路基础上, 增加了数字控制电路, 结合了 简洁的模拟电路和复杂的数字校正电路, 使功率变换器的性能在纳米级工艺下依然能够 得到保证。 数字电路的工艺鲁棒性强, 保证了较高的成品率和稳定性。 本发明数字校正 电路不仅可用到纳米级工艺中, 对传统工艺下的功率变换器仍然具有广泛的使用前景。 附图说明
图 1是现有技术功率变换器结构示意图;
图 2是实施例的功率变换器结构示意图;
图 3是校正模块状态转换示意图;
图 4是功率变换器输出电压校正效果示意图。
具体实施方式
下面结合附图及实施例, 详细描述本发明的技术方案。
本发明对传统模拟环路开关变换器进行了数字自调节, 对工艺的依赖性减少, 使该 方法的可移植性强, 并且自调节原理简单。 很好结合了数字电路和模拟电路的优势, 非 常适用于难以得到高性能模拟电路的纳米级工艺, 以及对传统开关变换器进行升级改造。
实施例 本例带有数字校正功能的功率变换器结构如图 2所示。 包括控制逻辑单元、 误差放 大器 EA、 PWM比较器 Comp、 驱动单元、 输出单元和数字控制单元。 本例输出单元由一只 PM0S晶体管 MP和一只匪 OS晶体管 MN构成, 图 2中 PM0S晶体管 MP和匪 OS晶体管 MN 的栅极与驱动单元连接,他们的漏极连接在一起作为输出端, PM0S晶体管 MP源极接输入 电压 Vin, 匪 OS晶体管丽源极接地。
由图 1与图 2比较可以看出,本例数字控制单元包括第一比较器 Compl、第二比较器 Comp2、 校正模块和 3排电流镜。 第一比较器 Compl和第二比较器 Comp2输入端连接输出 电压 Vout, 输出端连接校正模块。 图中, 校正模块输出端与 3排电流镜连接, 根据第一 比较器 Compl和第二比较器 Comp2输出的信号 Comp_H和 Comp_L控制电流镜开启的数量, 使流过连接在误差电压 V2上的上拉电阻 R2的电流变化, 从而以步进方式改变误差电压 V2的大小。 PWM比较器 Comp根据误差电压 V2调整输出脉冲的占空比, 输出脉冲宽度调 制波 (P丽), 并将该 PWM输入控制逻辑单元。 控制逻辑单元根据 PWM比较器 Comp输出的 脉冲,通过驱动单元驱动 PM0S晶体管 MP和匪 OS晶体管丽,对输入电压 Vin进行功率变 换, 产生输出电压 Vout。
本例中, 输出电压 Vout与参考电压 Vref为误差放大器 EA的两个输入电压, 误差放 大器 EA采用跨导放大器 (OTA, Operational Transconductance Amplifier)。 EA的输出 与 PWM比较器 comp的输入相连。电阻 R1、R2的一端接在 EA的输出,一端接输入电压 Vin。 图 2中振荡器产生的锯齿波电流 SAW接在电阻 R1—端, 用于 PWM比较器 comp产生脉冲 宽度调制波, 振荡器产生的时钟信号 Clk接控制逻辑单元和校正单元, 作为功率变换器 工作的基础时钟。 控制逻辑单元的输入为 Clk和 P丽, 其输出信号与驱动单元相连驱动 PM0S晶体管 MP和匪 OS晶体管丽,完成功率变换。第一比较器 compl和第二比较器 comp2 分别用于检测输出电压的正偏差 (Vref+e % )和负偏差 (Vref— e % ), 其输出信号分别 表记为 Comp_H和 Comp_L,他们代表了输出电压 Vout的相对位置。当输出电压 Vout出现 正偏差时, Comp_H和 Comp_L均为低 (=0); 当输出电压 Vout出现负偏差时 Comp_H和 Comp_L均为高 ( = 1 )。 图 2中校准模块的输入为 Comp_H、 Comp_L和 Clk, 当检测到连续 N个周期 (本例中 N=8) Comp_H和 CompJ^ 为高, 其输出信号 Trim加 1, 增加电流镜 开启的数量, 使流过上拉电阻 R2的电流增大, 误差电压 V2降低; 当检测到连续 N个周 期 Comp_H和 CompJ^ 为低, 输出信号 Trim减 1, 减少电流镜开启的数量, 使流过上拉 电阻 R2的电流减小, 误差电压 V2升高。 输出信号 Trim通过控制开关 S0、 Sl、 S2控制 量化的电流镜, 从而以步进方式改变误差电压 V2的大小, 通过 PWM比较器 Comp对输出 脉冲的占空比进行微调。 图 2中, 3排电流镜连接在上拉电阻 R2的下端, 其开启 (电流 镜对应的开关 S0、 Sl、 S2闭合) 数量直接控制流过电阻 R2的电流, 从而使误差电压 V2 以步进方式变化。
图 3是校准模块的状态转换示意图, 系统初始化后会保持输出信号 Trim, 当检测到 连续 N个周期 Comp_H和 Comp_L均为高, 其输出信号 Trim加 1 ; 当检测到连续 N个周期 Comp_H和 Comp_L均为低, 其输出信号 Trim减 1。
图 4为本发明带有数字校正功能的功率变换器的输出电压调节结果, 图中示出了变 化范围为 1 %的情况(即 e = l )。 在没有采用本发明的技术方案时, 在宽负载范围内输出 电压波动范围较大,而当采用本发明的数字校正技术后,输出电压波动被稳定在 1 %以内, 且在不同的工艺条件和温度情况下均可以保持不变。

Claims

权利要求书
1、 带有数字校正功能的功率变换器, 包括控制逻辑单元、 误差放大器、 P丽比较器、 驱动单元和输出单元,所述误差放大器根据输出单元的输出电压和参考电压给出误差电压, 所述 P丽比较器根据所述误差电压调整输出脉冲的占空比, 所述控制逻辑单元根据 P丽比 较器输出的脉冲, 通过驱动单元驱动输出单元对输入电压进行功率变换, 产生输出电压; 其特征在于, 还包括数字控制单元, 所述数字控制单元输入端连接输出电压, 输出端连接 误差电压; 当所述输出电压超过设定范围时, 所述数字控制单元以步进方式改变所述误差 电压的大小, 使所述输出电压保持在所述设定范围。
2、根据权利要求 1所述的带有数字校正功能的功率变换器, 其特征在于, 所述输出单 元由一只 PM0S晶体管和一只 NM0S晶体管构成, 所述 PM0S晶体管和 NM0S晶体管的栅极与 驱动单元连接, 其漏极连接在一起作为输出端, 所述 PM0S 晶体管源极接输入电压, 所述 NM0S晶体管源极接地。
3、根据权利要求 1或 2所述的带有数字校正功能的功率变换器, 其特征在于, 所述误 差放大器采用跨导放大器。
4、根据权利要求 3所述的带有数字校正功能的功率变换器, 其特征在于, 所述数字控 制单元包括第一比较器、 第二比较器、 校正模块和电流镜; 所述第一比较器和第二比较器 输入端连接输出电压, 输出端连接校正模块, 所述校正模块连接电流镜; 所述校正模块根 据所述第一比较器和第二比较器的输出信号控制电流镜开启的数量, 使流过连接在误差电 压上的上拉电阻的电流变化, 从而以步进方式改变所述误差电压的大小。
5、根据权利要求 4所述的带有数字校正功能的功率变换器, 其特征在于, 所述第一比 较器用于检测输出电压的正偏差, 所述第二比较器用于检测输出电压的负偏差; 如果在设 定的时间内输出电压均为正偏差则减少电流镜开启的数量, 如果在设定的时间内输出电压 均为负偏差则增加电流镜开启的数量。
PCT/CN2011/071566 2011-02-25 2011-03-07 带有数字校正功能的功率变换器 WO2012113162A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/637,298 US8947063B2 (en) 2011-02-25 2011-03-07 Power converter with the function of digital error correction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110046516.6 2011-02-25
CN201110046516A CN102075089B (zh) 2011-02-25 2011-02-25 带有数字校正功能的功率变换器

Publications (1)

Publication Number Publication Date
WO2012113162A1 true WO2012113162A1 (zh) 2012-08-30

Family

ID=44033471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071566 WO2012113162A1 (zh) 2011-02-25 2011-03-07 带有数字校正功能的功率变换器

Country Status (3)

Country Link
US (1) US8947063B2 (zh)
CN (1) CN102075089B (zh)
WO (1) WO2012113162A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946189B (zh) * 2011-08-15 2016-04-27 伊博电源(杭州)有限公司 一种数字电源控制系统的控制方法
CN103390992B (zh) * 2012-05-10 2015-09-30 华润矽威科技(上海)有限公司 开关电源及提高其输出电流调整率的电路
CN102882374B (zh) * 2012-09-17 2015-08-26 电子科技大学 一种面积优化的混合信号伪三型补偿电路
CN104702103B (zh) * 2013-12-10 2017-04-26 展讯通信(上海)有限公司 Dcdc转换装置
KR101822280B1 (ko) * 2016-05-04 2018-01-26 현대자동차주식회사 저전압 직류 변환기의 출력전압 센싱 오차 보정 방법
CN108123606B (zh) * 2016-11-30 2020-05-01 赤多尼科两合股份有限公司 开关电源的控制电路
US10812060B2 (en) * 2018-05-30 2020-10-20 Texas Instruments Incorporated Managing pulse-width modulation trip signals from multiple sources
CN119376307A (zh) * 2018-12-30 2025-01-28 德州仪器公司 管理来自多个源的脉冲宽度调制跳闸信号
JP7393311B2 (ja) * 2020-09-15 2023-12-06 株式会社デンソー スイッチング電源回路
CN113607329B (zh) * 2021-07-13 2022-10-18 复旦大学 压力传感器信号温度补偿方法及压力传感器
CN114779868B (zh) * 2022-06-22 2022-10-14 成都信息工程大学 一种适用于高速数字电路的低噪声稳压电源电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1922779A (zh) * 2004-11-26 2007-02-28 株式会社理光 开关调节器和用于切换其输出电压的方法
CN1980024A (zh) * 2005-12-09 2007-06-13 美国芯源系统股份有限公司 开关型调节器和用于软启动开关型调节器的方法
US20090322303A1 (en) * 2008-06-25 2009-12-31 Ricoh Company, Ltd. Switching regulator
CN101656473A (zh) * 2008-08-21 2010-02-24 立锜科技股份有限公司 改善动态反应的pwm电源转换器及其控制方法
JP2010142060A (ja) * 2008-12-15 2010-06-24 Ricoh Co Ltd 電源回路及びその動作制御方法
WO2010125983A1 (en) * 2009-04-27 2010-11-04 Ricoh Company, Ltd. Switching regulator and operation control method thereof
CN101951151A (zh) * 2010-08-05 2011-01-19 复旦大学 一种双模的具有高轻负载效率的全集成高频降压电源

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914633A (en) * 1997-08-08 1999-06-22 Lucent Technologies Inc. Method and apparatus for tuning a continuous time filter
US7521913B2 (en) * 2004-09-10 2009-04-21 Primarion Corporation Active transient response circuits, system and method for digital multiphase pulse width modulated regulators
US8008901B2 (en) * 2006-02-28 2011-08-30 Infineon Technologies Austria Ag Regulated power supply with multiple regulators sharing the total current supplied to a load
US7262628B2 (en) * 2004-07-02 2007-08-28 Primarion, Inc. Digital calibration with lossless current sensing in a multiphase switched power converter
US6603356B1 (en) * 2001-12-07 2003-08-05 Lsi Logic Corporation Method and circuit for controlling quiescent current of amplifier
US7315152B1 (en) * 2004-08-20 2008-01-01 Rf Micro Devices, Inc. System for detecting current in an output stage of a power amplifier
KR100699828B1 (ko) * 2004-10-11 2007-03-27 삼성전자주식회사 임피던스 교정 회로와 이를 포함하는 집적 회로 및 이를이용한 출력 드라이버의 임피던스 조절 방법
DE102005015992B4 (de) * 2005-04-07 2011-09-15 Texas Instruments Deutschland Gmbh DC-DC-Wandler
US7342451B2 (en) * 2005-08-05 2008-03-11 Siemens Medical Soluitions Usa, Inc. System for logarithmically controlling multiple variable gain amplifiers
US7312654B2 (en) * 2005-12-20 2007-12-25 Freescale Semiconductor, Inc. Quiet power up and power down of a digital audio amplifier
WO2008018095A1 (en) * 2006-08-07 2008-02-14 Stmicroelectronics S.R.L. Fixed-off-time power factor correction controller
US7622820B1 (en) * 2007-03-16 2009-11-24 Aleksandar Prodic Switch-mode power supply (SMPS) with auto-tuning using limit-cycle oscillation response evaluation
US7863841B2 (en) * 2007-06-15 2011-01-04 Paolo Menegoli Class H drive
US8207711B2 (en) * 2008-08-15 2012-06-26 Analog Modules, Inc. Biphase laser diode driver and method
US7760124B2 (en) * 2008-12-02 2010-07-20 Infineon Technologies Ag System and method for A/D conversion
TWI409683B (zh) * 2010-02-04 2013-09-21 Chunghwa Picture Tubes Ltd 觸控面板偵測電路
CN102141817B (zh) * 2011-02-18 2012-10-03 电子科技大学 具有负载最小能量消耗点追踪电路的降压式稳压电路
US8981753B2 (en) * 2012-03-22 2015-03-17 Intersil Americas LLC Current-sensing auto-calibration in power converters
US8604962B1 (en) * 2012-11-28 2013-12-10 Lewyn Consulting Inc ADC first stage combining both sample-hold and ADC first stage analog-to-digital conversion functions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1922779A (zh) * 2004-11-26 2007-02-28 株式会社理光 开关调节器和用于切换其输出电压的方法
CN1980024A (zh) * 2005-12-09 2007-06-13 美国芯源系统股份有限公司 开关型调节器和用于软启动开关型调节器的方法
US20090322303A1 (en) * 2008-06-25 2009-12-31 Ricoh Company, Ltd. Switching regulator
CN101656473A (zh) * 2008-08-21 2010-02-24 立锜科技股份有限公司 改善动态反应的pwm电源转换器及其控制方法
JP2010142060A (ja) * 2008-12-15 2010-06-24 Ricoh Co Ltd 電源回路及びその動作制御方法
WO2010125983A1 (en) * 2009-04-27 2010-11-04 Ricoh Company, Ltd. Switching regulator and operation control method thereof
CN101951151A (zh) * 2010-08-05 2011-01-19 复旦大学 一种双模的具有高轻负载效率的全集成高频降压电源

Also Published As

Publication number Publication date
CN102075089A (zh) 2011-05-25
US20130335045A1 (en) 2013-12-19
US8947063B2 (en) 2015-02-03
CN102075089B (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2012113162A1 (zh) 带有数字校正功能的功率变换器
JP4710749B2 (ja) Dc−dcコンバータの制御回路及び方法
US8564272B2 (en) Integrated soft start circuits
CN103051186B (zh) 一种快速瞬态响应的数字开关变换器及其控制方法
US8829876B2 (en) Switching regulator and operation control method thereof
US9413243B2 (en) Non-insulating type switching power supply device
US10554127B2 (en) Control circuit and control method for multi-output DC-DC converter
US20120091981A1 (en) Switching regulator
JP5708202B2 (ja) Dc−dcコンバータの制御方法およびdc−dcコンバータの制御回路
JP2019514330A (ja) Dc−dcコンバータ及び制御回路
CN102195477A (zh) Dc-dc转换器和其控制方法
JP2006006004A (ja) 昇降圧型dc−dcコンバータ
US8493042B2 (en) Switching regulator
CN101079574A (zh) 能够避免输入讯号发生电压突降的电压转换器与相关方法
TWI473400B (zh) 直流轉直流控制器及其控制方法
CN102386893A (zh) 一种可调节的方波信号发生电路以及应用其的开关型调节器
TWI435519B (zh) 電源轉換器與其控制方法
CN102136799B (zh) 一种带有自校准输出的电流模式变换器
JP2005354860A (ja) 昇降圧型dc−dcコンバータの制御装置
JP3892333B2 (ja) Pfm制御スイッチングレギュレータ制御回路
CN102412713A (zh) 切换式电源供应器及其控制电路与控制方法
JP6239266B2 (ja) Dc−dcコンバータ制御回路およびdc−dcコンバータ
TWI483520B (zh) 避免電源轉換電路的輸出電壓信號產生漣波的控制電路
WO2017156840A1 (zh) 直流-直流转换器的控制电路
JP5062188B2 (ja) 電源回路、電子機器、半導体集積回路装置及び電源回路の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13637298

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859586

Country of ref document: EP

Kind code of ref document: A1