WO2012108427A1 - 超電導ケーブル線路 - Google Patents

超電導ケーブル線路 Download PDF

Info

Publication number
WO2012108427A1
WO2012108427A1 PCT/JP2012/052738 JP2012052738W WO2012108427A1 WO 2012108427 A1 WO2012108427 A1 WO 2012108427A1 JP 2012052738 W JP2012052738 W JP 2012052738W WO 2012108427 A1 WO2012108427 A1 WO 2012108427A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
superconducting
offset
superconducting cable
connection portion
Prior art date
Application number
PCT/JP2012/052738
Other languages
English (en)
French (fr)
Inventor
八木 正史
向山 晋一
朋哉 野村
Tokui YONEMURA (米村 徳偉)
Original Assignee
古河電気工業株式会社
公益財団法人国際超電導産業技術研究センター
米村 周夏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 公益財団法人国際超電導産業技術研究センター, 米村 周夏 filed Critical 古河電気工業株式会社
Priority to CN201280002041.3A priority Critical patent/CN103026569B/zh
Priority to US13/816,615 priority patent/US9570214B2/en
Priority to JP2012556898A priority patent/JP5909800B2/ja
Publication of WO2012108427A1 publication Critical patent/WO2012108427A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting cable line having a termination connection part or an intermediate connection part.
  • the superconducting cable is expected as a power cable capable of transmitting a large current with a low loss, and is being developed for practical use.
  • a superconducting cable 10 shown in FIG. 2 is a single-core superconducting cable in which a single cable core 11 is housed in a heat insulating tube 12.
  • the cable core 11 includes a former 111, a superconducting conductor layer 112, an electrical insulating layer 113, a superconducting shield layer 114, a normal conducting shield layer 115, a protective layer 116, and the like.
  • the superconducting conductor layer 112 is formed by spirally winding a plurality of superconducting wires on the former 111.
  • the superconducting shield layer 114 is formed by spirally winding a plurality of superconducting wires on the electrical insulating layer 113.
  • the superconducting wire forming the superconducting conductor layer 112 and the superconducting shield layer 114 has, for example, a laminated structure in which an intermediate layer, a superconducting layer, and a protective layer are sequentially formed on a tape-like metal substrate.
  • the superconductor constituting the superconducting layer for example, there is an RE-based superconductor (RE: rare earth element) that exhibits superconductivity at a liquid nitrogen temperature (at atmospheric pressure of ⁇ 196 ° C.) or higher.
  • RE rare earth element
  • an yttrium-based superconductor represented by the chemical formula YBa 2 Cu 3 O 7-y hereinafter referred to as a Y-based superconductor
  • Y-based superconductor yttrium-based superconductor represented by the chemical formula YBa 2 Cu 3 O 7-y
  • the heat insulating tube 12 has a double ring structure including an inner tube 121 and an outer tube 122.
  • a multilayer heat insulating layer (super insulation) 123 is interposed between the inner tube 121 and the outer tube 122 and is evacuated. Further, the outer periphery of the outer tube 122 is covered with an anticorrosion layer 124 such as polyvinyl chloride (PVC) or polyethylene.
  • PVC polyvinyl chloride
  • a refrigerant such as liquid nitrogen is circulated inside the inner pipe 121, and a transmission current flows through the superconducting conductor layer 112 in an extremely low temperature state.
  • Terminal processing using a terminal connection portion is performed at a location where such a superconducting cable 10 and a real system such as a power device are connected.
  • the end portion of the superconducting cable 10 is accommodated in a low temperature container serving as a low temperature portion, and is connected to an actual system serving as a normal temperature portion via a current lead.
  • the terminal process using an intermediate connection part is given to the location which connects the superconducting cables 10 mutually.
  • two superconducting cables 10 are introduced into the low temperature container, and the cable core 11 is connected in the low temperature container.
  • the superconducting cable 10 is cooled from room temperature to liquid nitrogen temperature or raised from liquid nitrogen temperature to room temperature at the time of assembly work or maintenance inspection. Under such a heat cycle, it is known that the cable core 11 thermally expands and contracts at about 0.3% of the superconducting cable length.
  • the cable core 11 is difficult to move in the longitudinal direction at the terminal connection portion or the intermediate connection portion, local stress is applied to the superconducting cable 10 when the cable core 11 is thermally expanded and contracted. And the performance of the superconducting cable 10 will fall remarkably by buckling generate
  • a technology to absorb the thermal expansion and contraction of the cable core by connecting the superconducting conductor layer and the current lead using a flexible connection terminal (flexible connection terminal) such as a braided wire at the terminal connection part is proposed.
  • a technique for absorbing thermal expansion and contraction of the cable core has been proposed by providing an offset in the superconducting cable in the terminal connection part or enabling the terminal connection part to slide in the longitudinal direction of the superconducting cable.
  • a method has been proposed in which offset parts are provided on both sides of the intermediate connection part, and when the superconducting cable is distorted due to thermal expansion and contraction of the cable core, the intermediate connection part is moved up and down to eliminate the distortion.
  • the offset portion means that the cable is meandered and installed, and is a method of absorbing thermal expansion and contraction of the cable.
  • the superconducting cable does not move over the whole line due to the thermal expansion and contraction of the cable core, but there is a non-moving area (area where the superconducting cable does not move). That is, the thermal expansion / contraction of the cable core in the region between the last immovable region has an influence on the terminal connection portion and the intermediate connection portion. Therefore, after estimating the immovable region in the superconducting cable line and estimating the thermal expansion / contraction distance of the cable core that appears in the termination connection portion and the intermediate connection portion, the termination connection portion and the intermediate connection portion of the cable are absorbed. Design is done.
  • the immobility region changes depending on the cooling method of the superconducting cable, the local inclination of the superconducting cable line, the friction coefficient, etc., it is necessary to accurately grasp the immobility region and It is difficult to estimate the thermal expansion / contraction distance. It is also known that the amount of heat shrinkage that occurs during the cooling process during assembly work and the amount of thermal expansion that occurs during the temperature rising process during maintenance and inspection are not the same (the immobile area changes between cooling and temperature rising). ing. As a result, it is necessary to design the terminal connection part or the intermediate connection part by estimating the thermal expansion / contraction distance more, and it is difficult to reduce the size of the terminal connection part or the intermediate connection part. In addition, if the terminal connection part or the intermediate connection part is movable, the connection to other devices and the fixing to the pedestal are hindered, so that practical application is difficult.
  • the present invention has been made to solve the above problems, and can easily estimate the thermal expansion / contraction distance of the cable core that appears in the terminal connection portion or the intermediate connection portion under the heat cycle, and the terminal connection portion or the intermediate connection portion.
  • An object of the present invention is to provide a superconducting cable line that can be reduced in size.
  • a superconducting cable in which a cable core having a former and a superconducting conductor layer is accommodated in a heat insulating tube including an outer tube and an inner tube of the cable, and this superconducting cable is connected to a terminal connection portion or an intermediate portion.
  • a superconducting cable line connected to the connection part In the vicinity of the terminal connection part or the intermediate connection part, the superconducting cable is provided with an offset part in which a curve is laid so that the thermal expansion / contraction distance of the superconducting cable core is absorbed, It has a fixed part which fixed a part of outer pipe of the offset part.
  • the “neighborhood” means, for example, a distance that enables a compact connection portion when the thermal expansion / contraction distance is within 10 cm, and is 30 m. Therefore, if the setting of the offset portion is allowed, it may be 50 m (thermal expansion / contraction distance is 15 cm) or 100 m (thermal expansion / contraction distance is 30 cm).
  • the invention according to claim 2 is the superconducting cable line according to claim 1, A region including a point on the curve shape of the arc that is farthest in the vertical direction with respect to a straight line connecting the inflection points of the curve that the fixed portion has at the end of the curve shape of the arc that constitutes the offset portion; or It lies in a region sandwiching the points on the curved shape between the inflection points.
  • the invention according to claim 3 is the superconducting cable line according to claim 2,
  • the length at 40 ° C. due to thermal expansion and contraction, which is generated in the length of the cable core from the point on the curve shape to the end of the cable at the end connection portion or the intermediate connection portion in the immediate vicinity of the point on the curve shape, is ⁇ 196.
  • the difference in length at ° C be a
  • the length of the cable core that can be accommodated in the terminal connection portion or the intermediate connection portion is x
  • the points on the curve shape are arranged in a range satisfying x ⁇ a.
  • accommodable means a state in which the electrical and mechanical performances in the connection part (terminal connection part or intermediate connection part) can be maintained.
  • “40 ° C.” refers to a temperature that assumes the temperature of summer outdoor air.
  • the invention according to claim 4 is the superconducting cable line according to claim 2,
  • the length of the cable core at ⁇ 196 ° C. from the point on the curve shape to the end of the cable at the end connection part or the intermediate connection part closest to the point on the curve shape is X
  • the length of the cable core that can be accommodated in the terminal connection portion or the intermediate connection portion is x
  • the points on the curve shape are arranged in a range satisfying x ⁇ X ⁇ 0.003.
  • accommodable means a state in which the electrical and mechanical performances in the connection part (terminal connection part or intermediate connection part) can be maintained.
  • the invention according to claim 5 is the superconducting cable line according to any one of claims 1 to 4,
  • the arc shape closest to the terminal connection portion or the intermediate connection portion, the curve shape of the next closest arc, or the curve shape of a plurality of arcs The fixed portion is provided on the curved shape of the arc having the longest length between the straight line connecting the inflection points and the point on the curved shape.
  • the curve shape of the arc constituting the offset portion refers to a curve shape divided by inflection points.
  • the invention according to claim 6 is the superconducting cable line according to any one of claims 1 to 5,
  • the offset part has a snake offset structure.
  • the invention according to claim 7 is the superconducting cable line according to any one of claims 1 to 5,
  • the offset portion has a bent offset structure.
  • the thermal expansion / contraction distance of the cable core at the terminal connection part or the intermediate connection part can be easily estimated and managed. Therefore, the design of the terminal connection portion or the intermediate connection portion is facilitated, and the size can be reduced.
  • FIG. 1 is a diagram illustrating a schematic configuration of a superconducting cable line according to the embodiment.
  • a superconducting cable 10 is laid on a pipe L provided in the ground.
  • termination connection portions 1 and 2 for drawing power to the actual system are arranged at both ends of the superconducting cable 10, and two superconducting cables 10 and 10 are connected by the intermediate connection portion 3 in the manhole MH.
  • a cooling system 4 is connected to the terminal connection portion 1 so that a refrigerant (for example, liquid nitrogen) can be circulated and supplied into the superconducting cable 10.
  • a refrigerant for example, liquid nitrogen
  • the present embodiment by providing an offset portion OS in the vicinity of the terminal connection portions 1, 2 or the intermediate connection portion 3 (for example, the region A in FIG. 1), and fixing the superconducting cable 10 at a specific portion in the offset portion OS,
  • the immovable region in the superconducting cable line S is intentionally formed.
  • FIG. 2 is a diagram illustrating an example of the superconducting cable 10 in the superconducting cable line S.
  • a superconducting cable 10 shown in FIG. 2 is a single-core superconducting cable in which a single cable core 11 is housed in a heat insulating tube 12.
  • the cable core 11 includes a former 111, a superconducting conductor layer 112, an electrical insulating layer 113, a superconducting shield layer 114, a normal conducting shield layer 115, a protective layer 116, and the like.
  • the former 111 is a winding core for forming the cable core 11, and is formed by twisting normal conductive wires such as copper wires, for example. In the former 111, an accident current flowing in the superconducting conductor layer 112 in the event of a short circuit accident is shunted.
  • the superconducting conductor layer 112 is formed by spirally winding a plurality of superconducting wires on the former 111.
  • the superconducting conductor layer 112 has a four-layer structure.
  • a power transmission current flows through superconducting conductor layer 112 during steady operation.
  • the superconducting wire constituting the superconducting conductor layer 112 has, for example, a laminated structure in which an intermediate layer, a superconducting layer, a protective layer, and the like are sequentially formed on a tape-shaped metal substrate.
  • an RE-based superconductor (RE: rare earth element) exhibiting superconductivity at a liquid nitrogen temperature or higher, for example, a Y-based superconductor represented by the chemical formula YBa 2 Cu 3 O 7-y can be applied. .
  • the electrical insulating layer 113 is made of, for example, insulating paper, semi-synthetic paper in which insulating paper and polypropylene film are joined, a polymer nonwoven fabric tape, and the like, and is formed by winding on the superconducting conductor layer 112.
  • the superconducting shield layer 114 is formed by spirally winding a plurality of superconducting wires on the electrical insulating layer 113.
  • the superconducting shield layer 114 has a two-layer structure. In the superconducting shield layer 114, substantially the same current as the conductor current flows in reverse phase by electromagnetic induction during steady operation.
  • the superconducting wire constituting the superconducting shield layer 114 can be the same as the superconducting conductor layer 112.
  • the normal conductive shield layer 115 is formed by winding a normal conductive wire such as a copper wire on the superconductive shield layer 114.
  • the normal conducting shield layer 115 is shunted with an accident current flowing in the superconducting shield layer 114 in the event of a short circuit accident.
  • the protective layer 116 is made of, for example, insulating paper, polymer nonwoven fabric, or the like, and is formed by winding on the normal conductive shield layer 115.
  • the heat insulating tube 12 has a double ring structure including an inner tube 121 that houses the cable core 11 and is filled with a refrigerant (for example, liquid nitrogen), and an outer tube 122 that is disposed so as to cover the outer periphery of the inner tube 121.
  • a refrigerant for example, liquid nitrogen
  • the inner tube 121 and the outer tube 122 are, for example, stainless corrugated tubes.
  • a multilayer heat insulation layer (super insulation) 123 made of a laminated body of polyethylene film deposited with aluminum is interposed, and kept in a vacuum state.
  • an anticorrosion layer 124 such as polyethylene.
  • FIG. 3 is a diagram illustrating an example of the termination connection portion 1 in the superconducting cable line S.
  • the configuration of the termination connection unit 2 is the same.
  • the end connection portion 1 has the end portion of the superconducting cable 10 accommodated in the cryogenic container 20 in a predetermined state, and the current flows through the conductor current lead 31 and the shield current lead 32. It is the structure pulled out by.
  • the superconducting conductor layer 112 of the superconducting cable 10 and the conductor current lead 31 are electrically connected via the conductor movable connection terminal 50 (conductor connection portion C1).
  • the conductor movable connection terminal 50 is a terminal for connecting the cable core 11 to the conductor current lead 31 while being movable in the longitudinal direction and rotatable in the circumferential direction.
  • the conductor movable connection terminal 50 includes, for example, a conductor plug 51 mounted on the outer periphery of the superconducting conductor layer 112 and a conductor socket 52 to which the conductor plug 51 is movably attached.
  • the end portion of the conductor plug 51 portion of the conductor movable connection terminal 50 in the terminal connection portion 1 corresponds to the cable end portion of the superconducting cable 10 (cable core 11).
  • the shield movable connection terminal 60 is a terminal for connecting the cable core 11 to the shield current lead 32 while being movable in the longitudinal direction and rotatable in the circumferential direction.
  • the shield movable connection terminal 60 includes a shield plug 61 attached to the outer periphery of the superconducting shield layer 114 and a shield socket 62 to which the shield plug 61 is movably attached. That is, in the terminal connection portion 1, the cable core 11 is supported by the conductor connection portion C1 and the shield connection portion C2, and is movable in the longitudinal direction and rotatable in the circumferential direction.
  • the cryogenic container 20 has a double structure including an inner refrigerant tank 21 and an outer vacuum tank 22, an accommodating part 20 a that accommodates the end of the superconducting cable 10, and a cylindrical shape that is suspended from the accommodating part 20 a.
  • the drawer sections 20b and 20c are partitioned.
  • the cryogenic container 20 (refrigerant tank 21 and vacuum tank 22) is formed with a hand hole (not shown) that can be hermetically sealed so that an operator can perform work during construction from the outside. Yes.
  • the conductor current lead 31 and the shield current lead 32 are conductors for drawing current from the superconducting cable 10 to the actual system, and are made of, for example, a copper pipe material.
  • the conductor current lead 31 is suspended from the lead portion 20b of the cryogenic vessel 20, and the shield current lead 32 is disposed to be suspended from the lead portion 20c.
  • the conductor current lead 31 and the shield current lead 32 may be made of a conductive solid wire.
  • a bushing 41 made of, for example, fiber reinforced plastic (FRP) is disposed on the outer periphery of the conductor current lead 31, and a lower end portion of the conductor current lead 31 (connection portion with the conductor movable connection terminal 50).
  • An electrode shield 42 is provided. That is, since a high voltage is applied to the conductor current lead 31, the bushing 41 and the electrode shield 42 are provided to maintain electrical insulation from the grounded cryogenic container 20.
  • an electric field relaxation layer 13 made of an epoxy bell mouth and a stress cone is formed on the outer periphery of the electrical insulating layer 113 of the cable core 11 located between the conductor connection portion C1 and the shield connection portion C2.
  • the end portion of the superconducting cable 10 is introduced into the accommodating portion 20a of the cryogenic container 20 and immersed in a refrigerant (for example, liquid nitrogen).
  • a refrigerant for example, liquid nitrogen
  • connection between the inner pipe 121 and the refrigerant tank 21 and the connection between the outer pipe 122 and the vacuum tank 22 are performed by, for example, welding or bolting.
  • the refrigerant is circulated and supplied to the inside of the inner pipe 121 of the superconducting cable 10 and the refrigerant tank 21 communicating therewith by the cooling system 4 (see FIG. 1).
  • the gap between the inner tube 121 and the outer tube 122 of the superconducting cable 10 and the vacuum tank 22 communicating with the inner tube 121 are held in a vacuum state by a vacuum pump (not shown).
  • the cable core 11 of the superconducting cable 10 is supported at three locations, that is, the conductor connection portion C1, the shield connection portion C2, and the cable connection portion C3.
  • the positions (heights) of the conductor connection portion C1, the shield connection portion C2, and the cable connection portion C3 are adjusted so that the cable core 11 is supported straight in the horizontal state.
  • the support interval of the cable core 11 by the conductor connection portion C1, the shield connection portion C2, and the cable connection portion C3 is too long, the cable core 11 may be bent and the horizontal state may be impaired.
  • the support interval is preferably within 2 m.
  • the cable core 11 expands and contracts in the radial direction. At that time, the expansion and contraction is only a few millimeters, so the conductor connection portion C1 and the shield If the positions of the connection portion C2 and the cable connection portion C3 are adjusted to be substantially the same, the horizontal state of the cable core 11 is not extremely impaired. That is, the movement of the cable core 11 in the longitudinal direction is not hindered by the thermal expansion and contraction of the cable core 11 in the radial direction.
  • FIG. 4 is a diagram illustrating an example of the intermediate connection portion 3 in the superconducting cable line S.
  • a substantially upper half of the intermediate connecting portion 3 is shown in cross section.
  • the subscripts a and b are added to the reference numerals of the components of each superconducting cable.
  • the intermediate connection portion 3 includes two superconducting cables 10 a and 10 b with cable ends accommodated in a low temperature container 70 in a predetermined state, and the cable corresponding to the cable end in the low temperature container 70.
  • the cores 11a and 11b are connected.
  • the formers 111a and 111b are connected by welding, for example, in a state where the end faces are brought together.
  • the superconducting conductor layers 112a and 112b are arranged with their end faces facing each other in a state where they are separated from each other by a predetermined length, and a superconducting wire material 117 for connecting conductors is installed from one superconducting conductor layer 112a to the other superconducting conductor layer 112b. They are connected by bonding by soldering.
  • Reinforced insulating paper (for example, craft paper) 118 is wound between the electrical insulating layers 113a and 113b.
  • the superconducting shield layers 114a and 114b are arranged with their end faces facing each other in a state of being separated by a predetermined length, similarly to the connection of the superconducting conductor layers 112a and 112b, and from one superconducting shield layer 114a to the other superconducting shield layer 114b.
  • a superconducting wire 119 for connecting the shield is laid over and bonded by soldering.
  • the normal conducting shield layers 115a and 115b are crimped and connected using copper braided wires (not shown).
  • a protective layer (not shown) is wound between the protective layers 116a and 116b.
  • the terminal connection portion 1 has the movable connection terminals (the movable connection terminal for conductor 50 and the movable connection terminal for shield 60), the thermal expansion / contraction distance of the cable core 11 can be absorbed to some extent.
  • the intermediate connection portion 3 has no movable connection terminal as in the termination connection portion 1.
  • the cable connection part of the intermediate connection part 3 is thicker than the other cable cores 11 and does not enter the inner pipe 121 of the cable, so that it is housed in a special box (cold container 70) (FIG. 4). reference).
  • the allowable thermal expansion / contraction absorption distance of the cable core 11 in the intermediate connection portion 3 is the deflection of the cable core connection portion in a range where the cable core connection portion in the box does not contact the inside of the box.
  • the cryogenic container 70 has a double structure composed of an inner refrigerant tank 71 and an outer vacuum tank 72. Similar to the terminal connection portion 1, the inner pipe 121 of the superconducting cable 10 is connected to the outer wall of the refrigerant tank 71, and the outer pipe 122 is connected to the outer wall of the vacuum tank 72.
  • the connection between the inner pipe 121 and the refrigerant tank 21 and the connection between the outer pipe 122 and the vacuum tank 22 are performed by, for example, welding or bolting.
  • the refrigerant is circulated and supplied to the inside of the inner pipe 121 of the superconducting cable 10 and the refrigerant tank 71 communicating therewith, and the gap between the inner pipe 121 and the outer pipe 122 of the superconducting cable 10 and the vacuum tank 72 communicating therewith It is kept in a vacuum state.
  • FIG. 5 is a diagram illustrating an example of the offset unit OS provided in the vicinity of the terminal connection unit 1 (for example, the region A in FIG. 1).
  • the offset portion OS1 shown in FIG. 5 is an S-shaped offset in which an upward convex arc CA1 and a downward convex arc CA2 are smoothly connected with a radius R 0 and a central angle ⁇ 0 .
  • the outer part of the superconducting cable 10 is removed by three fixing members K so that the maximum amplitude part P (or the maximum displacement part P) of the superconducting cable 10 corresponding to the center of the arc CA1 cannot be moved.
  • the tube 122 is fixed.
  • a portion where the outer tube 122 of the offset portion OS1 is fixed by the fixing member K is a fixing portion.
  • the maximum displacement portion P is a portion of the cable core that is most displaced in the vertical direction with respect to a straight line connecting between the inflection points of the curves included in the end portions of the arc shape of the arc constituting the offset portion OS1.
  • a cable cleat is usually used as the cable fixing member.
  • the outer tube 122 of the cable is fixed by sandwiching the cable with the cable cleat and fixing the cable cleat to a frame or the like. Fixing is performed at room temperature or during the cooling (heating) process. If performed at room temperature, the amount of expansion and contraction to the connecting portion can be reduced, but the amount of heat penetration at the fixed portion is increased. On the other hand, if it is performed during the cooling process, the amount of heat intrusion at the fixing portion becomes small, but the cable core moves until it is fixed, so that the amount of expansion and contraction to the connection portion increases.
  • the bending radius of the offset portion OS1 is preferably 15D to 20D or more.
  • the bending radius of the offset portion OS1 is set to 2250 mm to 3000 mm or more.
  • a is the thermal expansion / contraction distance for the cable length from the maximum amplitude part P to the cable end (51) in the terminal connection part 1 immediately adjacent to the offset part OS1, and the absorption allowance for the cable core 11 in the terminal connection part 1 to thermally expand and contract
  • the offset portion OS1 is installed in a range satisfying x ⁇ a.
  • the length of the cable core that can be accommodated in the terminal connection portion or the intermediate connection portion by adding from the length at ⁇ 196 ° C. is x, x
  • the points on the curve shape are arranged in a range satisfying ⁇ a. More specifically, the cable length from the maximum amplitude part P to the cable end (51) in the terminal connection part 1 closest to the offset part OS1 is X, and the allowable absorption distance by which the cable core 11 in the terminal connection part 1 is thermally expanded and contracted.
  • X is preferably set in a range satisfying x ⁇ X ⁇ 0.003 (0.3%). For example, the length of the cable core at ⁇ 196 ° C.
  • the maximum amplitude portion P is a point on the curve shape of the arc that is farthest in the vertical direction with respect to a straight line that connects between the inflection points of the curve of the arc shape that forms the offset portion OS1.
  • the inflection point refers to a point where the turning direction changes along a curved line in the offset portion as shown in FIGS. Specifically, it refers to the inflection point of the curved curve when the offset portion is fixed or reset.
  • the cable core 11 is thermally contracted during cooling and moves to the inside of the bending (in the direction in which the bending radius increases). .
  • the inner tube 121 is pressed against the cable core 11 and further the outer tube 122 is pressed, so that the superconducting cable 10 is entirely configured so that the bending radii of the arcs CA1 and CA2 are increased (approaching linear shapes). Deforms inward.
  • the cable core 11 is thermally stretched and moves to the outside of the bend (the direction in which the bend radius decreases).
  • the inner tube 121 is pressed against the cable core 11 and further the outer tube 122 is pressed, so that the superconducting cable 10 is entirely deformed outward so that the bending radii of the arcs CA1 and CA2 are reduced.
  • the amount of movement (displacement) of the superconducting cable 10 is maximized at the centers of the arcs CA1 and CA2, and the straight line connecting the inflection point at the end of CA1 and the inflection point at the end of CA2 is Has maximum amplitude.
  • the cable core 11 thermally expands and contracts, the cable core 11 first comes into contact with the inner tube 121 at the centers of the arcs CA1 and CA2, and then comes into contact with the adjacent parts in sequence.
  • the offset part OS1 is provided, and the superconducting cable 10 is deformed as a whole so that the thermal contraction of the cable core 11 is absorbed.
  • the maximum amplitude portion P of the superconducting cable 10 is fixed by the fixing member K so as not to move. Therefore, the superconducting cable 10 tends to be deformed inside the bend as a whole during cooling, but after the cable core 11 and the inner tube 121 move inside the bend and come into contact with the outer tube 122, the cable core 11 and The inner tube 121 is pressed against the outer tube 122. Therefore, a large frictional resistance is generated against the thermal contraction of the cable core 11, and the movement of the cable core 11 is restricted. That is, the maximum amplitude portion P of the superconducting cable 10 becomes a fixed point, and thereafter, the cable core 11 contracts toward the maximum amplitude portion P.
  • the superconducting cable 10 tends to be deformed to the outside of the bend as a whole, but after the cable core 11 and the inner tube 121 move to the outside of the bend and come into contact with the outer tube 122, the cable core 11 And the inner tube 121 is pressed against the outer tube 122. Therefore, a large frictional resistance is generated with respect to the thermal expansion of the cable core 11, and the movement of the cable core 11 is restricted. That is, the maximum amplitude portion P of the superconducting cable 10 becomes a fixed point, and after that, the cable core 11 extends toward the terminal connection portion 1 with the maximum amplitude portion P as a reference.
  • the center of the arc CA2 and the center of the circular arc CA2) is fixed so as not to move.
  • the specific portion (the portion on the right side of the maximum amplitude portion P (the side opposite to the termination connecting portion 1)) in the superconducting cable line S can be regarded as a stationary region at the time of cooling and temperature rising. It is possible to easily estimate the thermal expansion / contraction distance of the cable core 11 expressed in the above. That is, the maximum amplitude portion P is always included in the immovable region, and the length of the thermal expansion / contraction distance from the maximum amplitude point P to the cable end portion 51 may be considered. Therefore, the termination connection portion 1 can be easily designed based on the estimated thermal expansion / contraction distance, and the termination connection portion 1 can be downsized.
  • the lengths and positions of the conductor movable connection terminal 50 (conductor plug 51 and conductor socket 52) and the shield movable connection terminal 60 (shield plug 61 and shield socket 62) are determined during cooling or What is necessary is just to design to such an extent that the electrical connection of the cable core 11 and the current leads 31 and 32 is not inhibited at the time of temperature rising.
  • FIG. 7 is a diagram illustrating another example of the offset unit OS provided in the vicinity of the terminal connection unit 1 (for example, the region A in FIG. 1).
  • the offset part OS2 shown in FIG. 7 is a C-shaped offset obtained by extending the offset part OS1 shown in FIG.
  • the outer tube 122 of the superconducting cable 10 is fixed by the three fixing members K so that the maximum amplitude part P of the superconducting cable 10 corresponding to the lowest point of bending becomes immovable. Yes.
  • the bending radius of the offset portion OS2 is preferably 15D or more.
  • the thermal expansion / contraction distance for the cable length from the maximum amplitude portion P to the cable end (51) in the termination connection portion 1 closest to the offset portion OS2 is a, and the absorption allowance that the cable core 11 in the termination connection portion 1 thermally expands and contracts.
  • the offset unit OS2 is installed in a range satisfying x ⁇ a.
  • the cable length from the maximum amplitude part P to the cable end part (51) in the terminal connection part 1 closest to the offset part OS2 is X, and the allowable absorption distance by which the cable core 11 in the terminal connection part 1 thermally expands and contracts.
  • x it is preferable that the offset portion OS2 is installed in a range satisfying x ⁇ X ⁇ 0.003 (0.3%).
  • the cable core 11 is thermally contracted during cooling and moves to the inside of the bend (in the direction in which the bend radius increases). .
  • the inner tube 121 is pressed against the cable core 11 and further the outer tube 122 is pressed, so that the superconducting cable 10 is entirely moved so that the bending radius of the offset portion OS2 becomes larger (approaches linear). Deforms inward.
  • the cable core 11 thermally expands and contracts and moves to the outside of the bending (the direction in which the bending radius decreases). Accordingly, the inner tube 121 is pressed against the cable core 11 and further the outer tube 122 is pressed, so that the superconducting cable 10 is deformed outward as a whole so that the bending radius of the offset portion OS2 becomes smaller.
  • the moving amount (displacement) of the superconducting cable 10 is maximized at the lowest point of bending. That is, when the cable core 11 is thermally expanded and contracted, the cable core 11 first comes into contact with the inner tube 121 at the lowest bending point, and then sequentially comes into contact with a nearby portion.
  • the maximum amplitude portion P of the superconducting cable 10 is fixed by the fixing member K so as not to move. Therefore, the superconducting cable 10 tends to be deformed inside the bend as a whole during cooling, but after the cable core 11 and the inner tube 121 move inside the bend and come into contact with the outer tube 122, the cable core 11 and The inner tube 121 is pressed against the outer tube 122. Therefore, a large frictional resistance is generated against the thermal contraction of the cable core 11, and the movement of the cable core 11 is restricted. That is, the maximum amplitude portion P of the superconducting cable 10 becomes a fixed point, and thereafter, the cable core 11 contracts toward the maximum amplitude portion P.
  • the superconducting cable 10 tends to be deformed to the outside of the bend as a whole, but after the cable core 11 and the inner tube 121 move to the outside of the bend and come into contact with the outer tube 122, the cable core 11 And the inner tube 121 is pressed against the outer tube 122. Therefore, a large frictional resistance is generated with respect to the thermal expansion of the cable core 11, and the movement of the cable core 11 is restricted. That is, the maximum amplitude portion P of the superconducting cable 10 becomes a fixed point, and after that, the cable core 11 extends toward the terminal connection portion 1 with the maximum amplitude portion P as a reference.
  • the maximum amplitude portion P that maximizes the amount of movement of the superconducting cable accompanying the thermal expansion and contraction of the cable core 11 is immovable. It is fixed to.
  • this portion since the portion where the amount of movement of the superconducting cable accompanying the thermal expansion and contraction of the cable core 11 is maximum is one location at the lowest point of bending, this portion becomes the maximum amplitude portion.
  • the specific part (both sides of the maximum amplitude part P) in the superconducting cable line S can be regarded as a non-moving region at the time of cooling and temperature rising, the thermal expansion / contraction distance of the cable core 11 appearing in the terminal connection part 1 It can be easily guessed. That is, the maximum amplitude portion P is always included in the immovable region, and the length of the thermal expansion / contraction distance from the maximum amplitude point P to the cable end portion 51 may be considered. Therefore, the termination connection portion 1 can be easily designed based on the estimated thermal expansion / contraction distance, and the termination connection portion 1 can be downsized.
  • the offset portions OS1 and OS2 shown in FIGS. 5 and 7 are examples, and the shape of the offset portion OS provided in the vicinity of the termination connection portion 1 is not limited to this.
  • the offset portion OS provided in the vicinity of the terminal connection portion 1 when it is assumed that the superconducting cable 10 is movable, among the portions where the amount of movement of the superconducting cable 10 due to the thermal expansion and contraction of the cable core 11 is maximum.
  • the maximum amplitude portion P closest to the terminal connection portion 1 may be fixed so as not to move.
  • the heat insulating performance by the heat insulating tube 12 of the superconducting cable 10 is achieved. May be slightly reduced. In this case, as shown in FIG. 9, a decrease in heat insulation performance due to the heat insulation pipe 12 can be suppressed by using a snake-like offset.
  • FIG. 9 is a diagram illustrating another example of the offset unit OS provided in the vicinity of the terminal connection unit 1 (for example, the region A in FIG. 1).
  • the offset part OS3 shown in FIG. 9 is a snake offset obtained by extending the offset part OS2 shown in FIG.
  • the maximum amplitude portion P is fixed so as not to move in the offset portion OS2 on the termination connection portion 1 side, and the superconducting cable 10 is on the right side of the maximum amplitude portion P (on the opposite side to the termination connection portion 1). Is movable.
  • the stress remaining in the superconducting cable 10 when the cable core 11 thermally expands and contracts is reduced, and the cable core 11 and the inner tube 121 can be prevented from being excessively pressed against the outer tube 122.
  • the local heat intrusion is suppressed.
  • the termination connecting portion 1 is connected to one end of a superconducting cable 10 having an outer diameter of 150 mm and a cable length of 50 m, and the other end is a fixed end, from the end of the immobile region (corresponding to the fixed end) to the termination connecting portion 1.
  • a superconducting cable line was simulated (see FIG. 10). And in the case of providing offset portions OS having different shapes (including straight laying), the amount of thermal contraction when cooled from room temperature to liquid nitrogen temperature and the amount of thermal expansion when the temperature is raised from liquid nitrogen temperature to room temperature Compared.
  • the inside of the conductor movable connection terminal 50 in the terminal connection portion 1 is observed using an observation device using radiation such as X-rays or ⁇ rays, and the conductor plug 51 in the conductor socket 52 is observed.
  • the amount of movement of was measured.
  • the axial force generated at the fixed end during cooling was measured, and the residual stress generated in the superconducting cable 10 due to the thermal contraction of the cable core 11 was compared.
  • the offset portion OS when the superconducting cable 10 is fixed so that the maximum amplitude portion cannot be moved, the distance from the terminal connection portion 1 to the maximum amplitude portion is set to the following value.
  • the bending radius of the offset portion OS was 15D (D: outer diameter of the superconducting cable 10).
  • the following general formula (1) holds for the allowable bending radius (R), offset width (F), and offset length (L) of the cable. L ⁇ ⁇ (4RF ⁇ F 2 ) (1)
  • an S-shaped offset (see FIG. 5) is applied to the offset part OS, and the maximum amplitude part closest to the terminal connection part 1 is fixed so as not to move.
  • the cable outer diameter (D) 150 mm
  • the allowable bending radius (R) 2250 mm
  • the offset width (F) 300 mm
  • the amount of thermal shrinkage during cooling was 6 mm, and the amount of thermal expansion during temperature elevation was 5.5 mm.
  • the generated axial force at the fixed end was 8000N.
  • the amount of heat shrinkage at the time of cooling and the amount of thermal expansion at the time of temperature increase were both 5 mm.
  • the generated axial force at the fixed end was 2000N.
  • the amount of heat shrinkage at the time of cooling and the amount of thermal expansion at the time of temperature increase were both 5 mm.
  • the generated axial force at the fixed end was 500N.
  • Comparative Example 1 the superconducting cable 10 was laid in a straight line without providing the offset portion OS.
  • the amount of thermal shrinkage during cooling was 60 mm
  • the amount of thermal expansion during temperature elevation was 150 mm.
  • the generated axial force at the fixed end was 10000N.
  • Comparative Example 2 a C-shaped offset having the same shape as that of Example 2 was applied to the offset portion OS. However, the superconducting cable is not fixed in the offset portion OS. In this case, the amount of thermal shrinkage during cooling was 25 mm, and the amount of thermal expansion during temperature elevation was 50 mm. The generated axial force at the fixed end was 500N.
  • Table 1 shows the evaluation results.
  • the thermal expansion / contraction amount (thermal expansion / contraction distance) in Table 1 represents the amount of change before and after the temperature change.
  • Comparative Example 1 since the amount of change in thermal expansion / contraction at the time of temperature increase is larger than the amount of change in thermal expansion / contraction at the time of cooling, it is considered that the immobile region changes between cooling and temperature rising. That is, it is considered that the amount of change in thermal expansion / contraction at the time of temperature increase is higher than the amount of change in thermal expansion / contraction at the time of cooling because the portion that has been the non-moving region at the time of cooling does not become the fixed region at the time of temperature increase.
  • the amount of thermal expansion / contraction (thermal expansion / contraction distance) that appears in the terminal connection portion 1 is about 1/3 that in Comparative Example 1. That is, the thermal expansion and contraction of the cable core 11 is effectively absorbed by the shape change of the superconducting cable 10 in the offset portion OS. However, since the amount of thermal expansion / contraction (thermal expansion / contraction distance) that appears in the terminal connection portion 1 is different between cooling and temperature rise (it does not return to the offset shape before cooling after temperature rise), It is considered that the immobility area has changed.
  • the terminal connection portion 1 is designed by estimating a large amount of thermal expansion / contraction (thermal expansion / contraction distance). Therefore, it is difficult to reduce the size of the end connection 1.
  • the thermal expansion / contraction amount (thermal expansion / contraction distance) that appears in the terminal connection portion 1 is substantially the same. That is, since the thermal expansion and contraction at the time of cooling and the thermal expansion and contraction at the time of temperature rise have a reversible relationship, it is possible to accurately estimate the amount of thermal expansion and contraction (thermal expansion and contraction distance) that appears in the end connection portion 1. Therefore, the design of the terminal connection portion 1 is facilitated and the size can be reduced.
  • the superconducting cable 10 is movable at the offset portion on the right side of the fixed maximum amplitude portion, the thermal expansion and contraction is absorbed by the shape change of the superconducting cable 10 at this portion. .
  • the portion where the superconducting cable 10 is movable is larger than that in the first embodiment (the offset length is longer), so the residual stress generated in the superconducting cable 10 is reduced as compared with the first embodiment.
  • the portion where the superconducting cable 10 is movable is larger than that in Example 2 (the offset length is long), so that the residual stress generated in the superconducting cable 10 is further reduced.
  • the experiment was performed with the cable length set to 50 m. However, similar results were obtained when the cable length was set to 100 m and 200 m. That is, even if the cable lengths are different, it is only necessary to consider the length between the stationary region portion and the terminal portion by setting the stationary region by fixing the cable.
  • the thermal expansion / contraction distance that appears in the termination connection portion 1 depends on the distance from the fixed maximum amplitude portion to the termination connection portion 1 in the offset portion OS, so that the shorter this distance is, the shorter the distance is.
  • the thermal expansion / contraction distance appearing in the terminal connection portion 1 can be reduced.
  • the installation location of the offset portion OS in the superconducting cable line S is not particularly defined as long as the thermal expansion and contraction absorption amount in the terminal connection portion 1 is sufficient.
  • the superconducting cable 10 is fixed at three locations including the maximum amplitude portion so that the maximum amplitude portion cannot be moved. It is not limited to. For example, a plurality of locations in the vicinity of the maximum amplitude portion may be fixed so that the maximum amplitude portion cannot be moved as a result. Further, for example, when the generated axial force when the cable core 11 thermally expands and contracts increases, the superconducting cable 10 may be fixed at three or more locations.
  • the offset portion OS is provided in the vicinity of the termination connection portion 1 in the vicinity of the termination connection portion 1 in the vicinity of the termination connection portion 1 .
  • the maximum amplitude portion cannot be moved not only in the vicinity of the termination connection portion 2 but also in the vicinity of both ends of the intermediate connection portion 3.
  • a fixed offset portion OS may be provided. Thereby, the thermal expansion / contraction of the cable core 11 which appears in the termination
  • the fixing of the offset portion OS may be adjusted step by step when cooling or raising the temperature. For example, when cooling or raising the temperature, the fixing is temporarily released when the temperature reaches a predetermined temperature (eg, ⁇ 100 ° C.), the superconducting cable 10 is deformed to remove the residual stress, and then fixed again. Also good. Thereby, since the residual stress which arises in the superconducting cable 10 is reduced, the local heat penetration
  • a predetermined temperature eg, ⁇ 100 ° C.
  • Example 2 when the cooling and the temperature increase were performed by the method described above, the amount of heat shrinkage during cooling and the amount of thermal expansion during temperature increase were both 12 mm.
  • the generated axial force at the fixed end was 1000N.
  • the thermal expansion / contraction distance was about twice, but the generated axial force was 1 ⁇ 2, and it was confirmed that the residual stress generated in the superconducting cable 10 was reduced. Since the amount of heat shrinkage at the time of cooling and the amount of heat expansion at the time of temperature increase are the same, it is easy to estimate the heat expansion / contraction distance that appears in the terminal connection portion 1 as in the second embodiment.
  • the superconducting cable line S in which the single-core superconducting cable 10 is laid has been described.
  • the present invention provides a three-core superconducting cable in which three-core cable cores are collectively stored in a heat insulating tube.
  • the present invention can also be applied to the superconducting cable line S laid.
  • line S has is not limited to what was shown by embodiment.
  • the superconducting conductor layer 112 and the conductor current lead 31 of the cable core 11 or the superconducting shield layer 114 and the shield current lead 32 are connected to a flexible connection terminal (flexible connection terminal). ) May be used for connection.
  • the offset portion has been described by taking, as an example, an S-shaped offset (see FIGS. 5 and 6), a C-shaped offset (see FIGS. 7 and 8), and a snake offset (see FIG. 9).
  • the present invention can also be applied to the 90 ° bend offset shown in FIGS. 11 and 12 and the 180 ° bend offset shown in FIGS. That is, by fixing the outer tube of the superconducting cable in a region including the maximum amplitude portion P or a region sandwiching the maximum amplitude portion P, the maximum amplitude portion P is always included in the immobile region, and the thermal expansion / contraction distance is also increased. The length from the maximum amplitude point P to the cable end 51 may be taken into consideration.
  • an offset shape suitable for the installation location can be selected depending on the spatial restriction of the location where the offset is installed.
  • the offset portion means that the cable is meandered and installed, and is a method of absorbing thermal expansion and contraction of the cable.
  • the offset at the terminal connection portion has been described as an example, but the present invention can also be applied to the intermediate connection portion.
  • the terminal connection part in FIGS. 5 to 9 may be replaced with an intermediate connection part, and the cable end part may be set appropriately.
  • the maximum amplitude portion P in the embodiment refers to the curve shape of the arc that is farthest in the vertical direction with respect to the straight line connecting the inflection points of the curves that are included in the ends of the curve shape of the arc that constitutes the offset portion OS1. This is the point.
  • the inflection point refers to a point where the turning direction changes along a curved line in the offset portion as shown in FIGS. Specifically, it refers to the inflection point of the curved curve when the offset portion is fixed or reset.
  • the present invention is configured as described above, it can be used as a superconducting cable line.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

 超電導ケーブルが終端接続部又は中間接続部に接続される超電導ケーブル線路において、終端接続部又は中間接続部の近傍に、超電導ケーブルが曲線敷設されたオフセット部を設ける。そして、このオフセット部で超電導ケーブルが移動可能であると仮定したとき、ケーブルコアの熱伸縮に伴う超電導ケーブルの移動量が最大となる最大振幅部が移動不能となるように超電導ケーブルの外管を固定する。

Description

超電導ケーブル線路
 本発明は、終端接続部又は中間接続部を有する超電導ケーブル線路に関する。
 従来、極低温で超電導状態になる超電導線材を導体として用いた超電導ケーブルが知られている。超電導ケーブルは、大電流を低損失で送電可能な電力ケーブルとして期待されており、実用化に向けて開発が進められている。
 超電導ケーブルの一例を図2に示す。図2に示す超電導ケーブル10は、断熱管12内に一心のケーブルコア11が収納された単心型の超電導ケーブルである。
 ケーブルコア11は、フォーマ111、超電導導体層112、電気絶縁層113、超電導シールド層114、常電導シールド層115、保護層116等で構成される。超電導導体層112は、フォーマ111の上に複数条の超電導線材を螺旋状に巻回することにより形成される。同様に、超電導シールド層114は、電気絶縁層113の上に複数条の超電導線材を螺旋状に巻回することにより形成される。
 超電導導体層112及び超電導シールド層114を形成する超電導線材は、例えば、テープ状の金属基板上に中間層、超電導層、保護層が順に形成された積層構造を有している。超電導層を構成する超電導体としては、例えば液体窒素温度(大気圧で-196℃)以上で超電導を示すRE系超電導体(RE:希土類元素)がある。特に、化学式YBa2Cu37-yで表されるイットリウム系超電導体(以下、Y系超電導体)が代表的である。
 断熱管12は、内管121と外管122からなる二重環構造を有している。内管121と外管122の間には、多層断熱層(スーパーインシュレーション)123が介在され、かつ真空引きされている。また、外管122の外周はポリ塩化ビニル(PVC)やポリエチレンなどの防食層124で被覆されている。
 超電導ケーブル10の定常運転時には、内管121の内部に液体窒素などの冷媒が循環され、極低温状態で超電導導体層112に送電電流が流れることとなる。
 このような超電導ケーブル10と電力機器等の実系統を接続する箇所には、終端接続部を使用した端末処理が施される。終端接続部においては、低温部となる低温容器に超電導ケーブル10の端部が収容され、電流リードを介して常温部となる実系統に接続される。
 また、超電導ケーブル10同士を接続する箇所には、中間接続部を使用した端末処理が施される。中間接続部においては、2本の超電導ケーブル10が低温容器に導入され、この低温容器内でケーブルコア11が接続される。
 上述した終端接続部又は中間接続部を有する超電導ケーブル線路において、超電導ケーブル10は、組立施工時や保守点検時に、常温から液体窒素温度まで冷却され、又は液体窒素温度から常温まで昇温される。このようなヒートサイクル下では、ケーブルコア11が超電導ケーブル長の約0.3%で熱伸縮することが知られている。
 特に、終端接続部又は中間接続部において、ケーブルコア11が長手方向に移動困難となっている場合、ケーブルコア11が熱伸縮すると超電導ケーブル10に局所的な応力が加わる。そして、超電導導体層112や超電導シールド層114を構成する超電導線材に座屈が発生するなどして、超電導ケーブル10の性能が著しく低下してしまう。
 そこで、終端接続部において、編組線などの可とう性を有する接続端子(可とう接続端子)を用いて超電導導体層と電流リードを接続することにより、ケーブルコアの熱伸縮を吸収する技術が提案されている(例えば特許文献1)。また、終端接続部内で超電導ケーブルにオフセットを設けたり、超電導ケーブルの長手方向に終端接続部をスライド可能としたりすることにより、ケーブルコアの熱伸縮を吸収する技術が提案されている。
 さらには、中間接続部の両側にオフセット部を設けておき、ケーブルコアの熱伸縮により超電導ケーブルに歪みが生じた場合に、中間接続部を上下に移動させて歪みを解消する方法が提案されている(例えば特許文献2)。このようにオフセット部とは、ケーブルを蛇行させて布設する事を意味しており、ケーブルの熱伸縮を吸収する方法である。
特開2009-140912号公報 特開2000-331547号公報
 ところで、実際の超電導ケーブル線路においては、ケーブルコアの熱伸縮に伴い、超電導ケーブルが線路全体にわたって移動するのではなく、不動領域(超電導ケーブルが動かない領域)がある。つまり、終端接続部や中間接続部には、直近の不動領域との間の領域におけるケーブルコアの熱伸縮が影響を及ぼすこととなる。そのため、超電導ケーブル線路における不動領域を予測し、終端接続部や中間接続部に発現するケーブルコアの熱伸縮距離を推測した上で、この熱伸縮距離を吸収すべく終端接続部や中間接続部の設計が行われる。
 しかしながら、超電導ケーブルの冷却方法、超電導ケーブル線路における局所的な傾き、摩擦係数等によって不動領域は変化するため、不動領域を正確に把握して、終端接続部や中間接続部に発現するケーブルコアの熱伸縮距離を推測することは困難である。また、組立施工時の冷却工程で生じる熱収縮量と、保守点検時の昇温工程で生じる熱伸張量が同じとならない(冷却時と昇温時とで不動領域が変化する)ことも知られている。
 その結果、熱伸縮距離を多めに見積もって終端接続部又は中間接続部を設計する必要があるため、終端接続部や中間接続部の小型化が困難となる。また、終端接続部又は中間接続部を可動にすると、他の機器との接続や架台への固定に支障をきたすため、実用化が困難である。
 本発明は、上記課題を解決するためになされたもので、ヒートサイクル下において終端接続部又は中間接続部に発現するケーブルコアの熱伸縮距離を容易に推測できるとともに、終端接続部又は中間接続部の小型化を図ることができる超電導ケーブル線路を提供することを目的とする。
 請求項1に記載の発明は、フォーマと超電導導体層を有するケーブルコアがケーブルの外管と内管を含む断熱管内に収容されてなる超電導ケーブルが敷設され、この超電導ケーブルが終端接続部又は中間接続部に接続される超電導ケーブル線路であって、
 前記終端接続部又は前記中間接続部の近傍に、前記超電導ケーブルコアの熱伸縮距離が吸収されるように前記超電導ケーブルが曲線敷設されたオフセット部を備え、
 前記オフセット部の外管の一部を固定した固定部を有することを特徴とする。
 ここで、「近傍」とは、例えば熱伸縮距離を10cm以内とした場合、コンパクトな接続部が可能となる距離で30mである。よって、オフセット部の設定が許されるならば、50m(熱伸縮距離は、15cm)であってもよいし、100m(熱伸縮距離は、30cm)であってもよい。
 請求項2に記載の発明は、請求項1に記載の超電導ケーブル線路において、
 前記固定部が、前記オフセット部を構成する弧の曲線形状の端部に有する曲線の変極点間を結んだ直線に対し垂直方向に最も離れた前記弧の曲線形状上の点を含む領域、又は前記曲線形状上の点を前記変極点間で挟む領域にあることを特徴とする。
 請求項3に記載の発明は、請求項2に記載の超電導ケーブル線路において、
 前記曲線形状上の点から、前記曲線形状上の点の直近の前記終端接続部又は前記中間接続部におけるケーブル端部までのケーブルコアの長さに生じる、熱伸縮による40℃における長さと-196℃における長さの差をa、とし、
 前記-196℃における長さから追加して終端接続部又は中間接続部が収容可能なケーブルコアの長さをx、とし、
 x≧aを満たす範囲に、前記曲線形状上の点が配置されることを特徴とする。
 ここで、「収容可能」とは、接続部(終端接続部又は中間接続部)中の電気的・機械的性能を維持しうる状態をいう。
 また、「40℃」は夏の外気の温度を想定した温度をいう。
 請求項4に記載の発明は、請求項2に記載の超電導ケーブル線路において、
 前記曲線形状上の点から、前記曲線形状上の点の直近の前記終端接続部又は前記中間接続部におけるケーブル端部までの-196℃におけるケーブルコアの長さをX、とし、
 前記-196℃における長さから追加して終端接続部又は中間接続部が収容可能なケーブルコアの長さをx、とし、
 x≧X×0.003を満たす範囲に、前記曲線形状上の点が配置されることを特徴とする。
 ここで、「収容可能」とは、接続部(終端接続部又は中間接続部)中の電気的・機械的性能を維持しうる状態をいう。
 請求項5に記載の発明は、請求項1乃至4のいずれか一項に記載の超電導ケーブル線路において、
 前記オフセット部を構成する弧の曲線形状が複数ある場合に、前記終端接続部又は前記中間接続部に最も近い弧の曲線形状上、次に近い弧の曲線形状上、又は複数の弧の曲線形状の中で前記変極点間を結んだ直線と前記曲線形状上の点の間の長さが最も大きい弧の曲線形状上に前記固定部を有することを特徴とする。
 ここで、オフセット部を構成する弧の曲線形状とは、変極点で区切られた曲線形状をいう。
 請求項6に記載の発明は、請求項1乃至5のいずれか一項に記載の超電導ケーブル線路において、
 前記オフセット部は、スネークオフセット構造であることを特徴とする。
 請求項7に記載の発明は、請求項1乃至5のいずれか一項に記載の超電導ケーブル線路において、
 前記オフセット部は、曲がりオフセット構造であることを特徴とする。
 本発明によれば、本来、自由に移動させることによりケーブルコアの熱伸縮を吸収させていたオフセットを逆に固定させることにより、超電導ケーブル線路における特定部分を冷却時及び昇温時の不動領域とみなすことができるので、終端接続部又は中間接続部におけるケーブルコアの熱伸縮距離を容易に推測し管理することができる。したがって、終端接続部又は中間接続部の設計が容易となる上、小型化を図ることができる。
実施形態に係る超電導ケーブル線路の概略構成を示す図である。 超電導ケーブル線路における超電導ケーブルの一例を示す図である。 超電導ケーブル線路における終端接続部の一例を示す図である。 超電導ケーブル線路における中間接続部の一例を示す図である。 終端接続部の近傍に設けられるオフセット部の一例を示す図である。 図5のオフセット部における超電導ケーブルの変形状態を示す図である。 終端接続部の近傍に設けられるオフセット部の他の一例を示す図である。 図7のオフセット部における超電導ケーブルの変形状態を示す図である。 終端接続部の近傍に設けられるオフセット部の他の一例を示す図である。 実施例に係る超電導ケーブル線路を示す図である。 終端接続部の近傍に設けられるオフセット部の一例を示す図である。 図11のオフセット部における超電導ケーブルの変形状態を示す図である。 終端接続部の近傍に設けられるオフセット部の一例を示す図である。 図13のオフセット部における超電導ケーブルの変形状態を示す図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、実施形態に係る超電導ケーブル線路の概略構成を示す図である。図1に示すように、超電導ケーブル線路Sでは、地中に設けられた管路Lに超電導ケーブル10が敷設されている。そして、超電導ケーブル10の両端には実系統に電力を引き出すための終端接続部1、2が配設され、マンホールMH内では2本の超電導ケーブル10、10が中間接続部3で接続されている。また、終端接続部1には、冷却システム4が接続され、超電導ケーブル10内に冷媒(例えば液体窒素)を循環供給できるようになっている。
 本実施形態では、終端接続部1、2又は中間接続部3の近傍(例えば、図1の領域A)にオフセット部OSを設け、オフセット部OSにおける特定部位で超電導ケーブル10を固定することにより、超電導ケーブル線路Sにおける不動領域を意図的に形成する。これにより、終端接続部又は中間接続部に発現するケーブルコアの熱伸縮距離を容易に推測することができるので、終端接続部又は中間接続部の設計が容易となる上、小型化を図ることができる。
 図2は、超電導ケーブル線路Sにおける超電導ケーブル10の一例を示す図である。図2に示す超電導ケーブル10は、断熱管12内に一心のケーブルコア11が収納された単心型の超電導ケーブルである。ケーブルコア11は、フォーマ111、超電導導体層112、電気絶縁層113、超電導シールド層114、常電導シールド層115、保護層116等により構成される。
 フォーマ111は、ケーブルコア11を形成するための巻心であり、例えば銅線等の常電導線材を撚り合わせて構成される。フォーマ111には、短絡事故時に超電導導体層112に流れる事故電流が分流される。
 超電導導体層112は、フォーマ111の上に複数条の超電導線材を螺旋状に巻回することにより形成される。図2では、超電導導体層112を4層の積層構造としている。超電導導体層112には、定常運転時に送電電流が流れる。
 超電導導体層112を構成する超電導線材は、例えば、テープ状の金属基板上に中間層、超電導層、保護層等が順に形成された積層構造を有している。超電導層を構成する超電導体には、液体窒素温度以上で超電導を示すRE系超電導体(RE:希土類元素)、例えば化学式YBa2Cu37-yで表されるY系超電導体を適用できる。
 電気絶縁層113は、例えば絶縁紙、絶縁紙とポリプロピレンフィルムを接合した半合成紙、高分子不織布テープなどで構成され、超電導導体層112の上に巻回することにより形成される。
 超電導シールド層114は、電気絶縁層113の上に複数条の超電導線材を螺旋状に巻回することにより形成される。図2では、超電導シールド層114を2層の積層構造としている。超電導シールド層114には、定常運転時に電磁誘導によって導体電流とほぼ同じ電流が逆位相で流れる。超電導シールド層114を構成する超電導線材には、超電導導体層112と同様のものを適用できる。
 常電導シールド層115は、超電導シールド層114の上に銅線などの常電導線材を巻回することにより形成される。常電導シールド層115には、短絡事故時に超電導シールド層114に流れる事故電流が分流される。
 保護層116は、例えば絶縁紙、高分子不織布などで構成され、常電導シールド層115の上に巻回することにより形成される。
 断熱管12は、ケーブルコア11を収容するとともに冷媒(例えば液体窒素)が充填される内管121と、内管121の外周を覆うように配設された外管122からなる二重環構造を有している。
 内管121及び外管122は、例えばステンレス製のコルゲート管である。内管121と外管122の間には、例えばアルミを蒸着したポリエチレンフィルムの積層体で構成された多層断熱層(スーパーインシュレーション)123が介在され、真空状態に保持される。また、外管122の外周はポリエチレンなどの防食層124で被覆されている。
 図3は、超電導ケーブル線路Sにおける終端接続部1の一例を示す図である。なお、終端接続部2の構成も同様である。
 図3に示すように、終端接続部1は、低温容器20に超電導ケーブル10の端部が所定の状態で収容され、導体用電流リード31及びシールド用電流リード32を介して電流が実系統側に引き出される構成となっている。
 終端接続部1では、超電導ケーブル10の超電導導体層112と導体用電流リード31とが、導体用可動接続端子50を介して電気的に接続されている(導体接続部C1)。導体用可動接続端子50は、ケーブルコア11を、長手方向に移動可能で、かつ周方向に回転可能な状態で、導体用電流リード31に接続するための端子である。導体用可動接続端子50は、例えば超電導導体層112の外周に装着される導体用プラグ51と、この導体用プラグ51が移動可能に取り付けられる導体用ソケット52で構成される。
 この終端接続部1における導体用可動接続端子50の導体用プラグ51部分の端部が、超電導ケーブル10(ケーブルコア11)のケーブル端部に相当する。
 また、超電導ケーブル10の超電導シールド層114とシールド用電流リード32とが、シールド用可動接続端子60を介して電気的に接続されている(シールド接続部C2)。シールド用可動接続端子60は、ケーブルコア11を、長手方向に移動可能で、かつ周方向に回転可能な状態で、シールド用電流リード32に接続するための端子である。シールド用可動接続端子60は、超電導シールド層114の外周に装着されるシールド用プラグ61と、このシールド用プラグ61が移動可能に取り付けられるシールド用ソケット62で構成されている。
 つまり、終端接続部1では、ケーブルコア11が導体接続部C1とシールド接続部C2で支持され、長手方向に移動可能で、かつ周方向に回転可能となっている。
 低温容器20は、内側の冷媒槽21と、外側の真空槽22からなる二重構造を有し、超電導ケーブル10の端部を収容する収容部20aと、収容部20aに垂設された円筒状の引き出し部20b、20cに区画される。また、低温容器20(冷媒槽21、真空槽22)には、作業者が施工時の作業等を外部から行うことができるように、気密に密閉可能なハンドホール(図示略)が形成されている。
 導体用電流リード31、シールド用電流リード32は、超電導ケーブル10から実系統に電流を引き出すための導体であり、例えば銅製のパイプ材等で構成される。導体用電流リード31は、低温容器20の引き出し部20bに垂下して配設され、シールド用電流リード32は、引き出し部20cに垂下して配設されている。なお、導体用電流リード31、シールド用電流リード32を、導電性の中実線材で構成するようにしてもよい。
 導体用電流リード31の外周には、例えば繊維強化プラスチック(FRP:Fiber Reinforced Plastics)からなるブッシング41が配設され、導体用電流リード31の下端部(導体用可動接続端子50との接続部)には、電極シールド42が配設されている。すなわち、導体用電流リード31には高電圧が印加されるため、ブッシング41及び電極シールド42を配設することで、接地される低温容器20との電気的絶縁を保持するようにしている。
 導体接続部C1とシールド接続部C2の間に位置するケーブルコア11の電気絶縁層113の外周には、エポキシベルマウスとストレスコーンからなる電界緩和層13が形成されている。この超電導ケーブル10の端部が低温容器20の収容部20aに導入され、冷媒(例えば液体窒素)に浸漬される。このとき、超電導ケーブル10の内管121が冷媒槽21の外壁に接続され、外管122が真空槽22の外壁に接続される(ケーブル接続部C3)。内管121と冷媒槽21の接続、外管122と真空槽22の接続は、例えば溶接やボルト止めによって行われる。
 定常運転時には、超電導ケーブル10の内管121の内部及びこれに連通する冷媒槽21には、冷却システム4(図1参照)により冷媒が循環供給される。また、超電導ケーブル10の内管121と外管122の間隙及びこれに連通する真空槽22は、真空ポンプ(図示略)により真空状態に保持される。
 終端接続部1においては、超電導ケーブル10のケーブルコア11が、導体接続部C1、シールド接続部C2、及びケーブル接続部C3の3箇所で支持されることとなる。
 なお、ケーブルコア11が水平状態で真っ直ぐに支持されるように、導体接続部C1、シールド接続部C2、及びケーブル接続部C3の位置(高さ)は調整される。また、導体接続部C1、シールド接続部C2、及びケーブル接続部C3によるケーブルコア11の支持間隔が長すぎると、ケーブルコア11が撓んで水平状態が損なわれるおそれがあるので、これらによるケーブルコア11の支持間隔は2m以内とするのが望ましい。
 組立施工時や保守点検時の冷却工程又は昇温工程では、ケーブルコア11が径方向にも伸縮することとなるが、そのときの伸縮量はわずか数mmであるので、導体接続部C1、シールド接続部C2、及びケーブル接続部C3の位置がほぼ同じに調整されていれば、ケーブルコア11の水平状態が極端に損なわれることはない。すなわち、ケーブルコア11の径方向の熱伸縮によって、ケーブルコア11の長手方向の移動は妨げられない。
 このように、終端接続部1においては、ケーブルコア11が長手方向に移動可能となっているので、組立施工時や保守点検時の冷却工程又は昇温工程で生じるケーブルコア11の熱伸縮を効果的に吸収することができる。さらに、ケーブルコア11が周方向に回転可能となっているので、超電導ケーブル10の製造時や敷設時の残留応力によりケーブルコア11に加わる捻れも吸収することができる。したがって、ケーブルコア11の熱伸縮や捻れに伴い局所的に応力が集中して、超電導導体層112や超電導シールド層114が座屈することはないので、超電導ケーブル10の健全性が維持される。
 図4は、超電導ケーブル線路Sにおける中間接続部3の一例を示す図である。図4では、中間接続部3の略上半分を断面で示している。また、接続される2本の超電導ケーブルを区別する場合は、各超電導ケーブルの構成要素の符号に添字a、bを付している。
 図4に示すように、中間接続部3は、2本の超電導ケーブル10a、10bのケーブル端部が低温容器70に所定の状態で収容され、この低温容器70内でケーブル端部に相当するケーブルコア11a、11bが接続された構成を有する。
 フォーマ111a、111bは、端面同士を付き合わせた状態で、例えば溶接により接続されている。超電導導体層112a、112bは、所定長だけ離間させた状態で端面同士を対向させて配置され、一方の超電導導体層112aから他方の超電導導体層112bにわたって導体接続用の超電導線材117を架設して半田付けで接着することにより接続されている。
 電気絶縁層113a、113b間には、補強絶縁紙(例えばクラフト紙)118が巻回されている。超電導シールド層114a、114bは、超電導導体層112a、112bの接続と同様に、所定長だけ離間させた状態で端面同士を対向させて配置され、一方の超電導シールド層114aから他方の超電導シールド層114bにわたってシールド接続用の超電導線材119を架設して半田付けで接着することにより接続されている。
 常電導シールド層115a、115bは、銅編組線(図示略)を用いて圧着接続されている。また、保護層116a、116b間には、保護層(図示略)が巻回されている。
 なお、前述したように、終端接続部1には、可動接続端子(導体用可動接続端子50、シールド用可動接続端子60)があることにより、ケーブルコア11の熱伸縮距離をある程度吸収できる。
 一方、中間接続部3には、終端接続部1にあるような可動接続端子は存在しない。
 ところで、中間接続部3のケーブル接続部分は、他のケーブルコア11に比べ太くなっており、ケーブルの内管121に入らないため、特別なボックス(低温容器70)に収納されている(図4参照)。このケーブル接続部分のスロープ部分(太くなっている部分)がケーブルコア11の熱伸縮により、内管121やボックスの内側に当たることにより形がくずれると、接続部分の絶縁機能が期待通り発揮されない。従って、ボックスに収納されたまま、あまり動かない状態が好ましい。そのため、オフセットは、中間接続部3の両側にあることが望ましく、また、ケーブルコア11の熱伸縮が予測でき、両側の熱伸縮が同じになるように調節できることが求められている。
 したがって、中間接続部3における許容されるケーブルコア11の熱伸縮の吸収許容距離は、ボックス内のケーブルコア接続部分が、ボックス内の内側に接しない範囲のケーブルコア接続部分のたわみとなる。これは、(1)中間接続部3のケーブルコア11の熱伸縮の許容距離には限度があること(ボックスの内側にあたるから)と、(2)中間接続部3の両側のケーブルコア11の熱伸縮距離が同程度であることが求められていること(ボックスから管側にずれて、通常のケーブルコアに比べ太い接続部分が、狭い管内にはさまってしまうから)による。
 低温容器70は、内側の冷媒槽71と、外側の真空槽72からなる二重構造を有している。終端接続部1と同様に、超電導ケーブル10の内管121が冷媒槽71の外壁に接続され、外管122が真空槽72の外壁に接続される。内管121と冷媒槽21の接続、外管122と真空槽22の接続は、例えば溶接やボルト止めによって行われる。
 定常運転時には、超電導ケーブル10の内管121の内部及びこれに連通する冷媒槽71に冷媒が循環供給され、超電導ケーブル10の内管121と外管122の間隙及びこれに連通する真空槽72は真空状態に保持される。
 図5は、終端接続部1の近傍(例えば図1の領域A)に設けられるオフセット部OSの一例を示す図である。図5に示すオフセット部OS1は、半径R0、中心角θ0で上に凸の円弧CA1と下に凸の円弧CA2を滑らかに連設したS字オフセットである。そして、このオフセット部OS1において、円弧CA1の中心に対応する超電導ケーブル10の最大振幅部P(または最大変位部P)が移動不能となるように、3個の固定部材Kで超電導ケーブル10の外管122を固定している。この固定部材Kでオフセット部OS1の外管122の一部を固定した箇所が固定部である。
 なお、最大変位部Pとは、オフセット部OS1を構成する弧の曲線形状の端部に有する曲線の変極点間を結んだ直線に対し垂直方向に最も変位するケーブルコアの部分をいう。
 ケーブルの固定部材には、通常ケーブルクリートが使用される。ケーブルクリートでケーブルを挟み込んで、このケーブルクリートを架台等に固定する事で、ケーブルの外管122が固定される。固定は、室温時か冷却(昇温)過程中に行う。室温時に行えば、接続部への伸縮量を小さくできるが、固定部での熱侵入量は大きくなる。一方、冷却過程中に行えば、固定部での熱侵入量は小さくなるが、固定するまではケーブルコアは移動するので接続部への伸縮量は大きくなる。
 超電導ケーブル10の外径をDとしたとき、オフセット部OS1の曲げ半径は15D~20D以上であることが望ましい。例えば、超電導ケーブル10の平均外径が150mmの場合、オフセット部OS1の曲げ半径を2250mm~3000mm以上とする。これらの数値は、従来のケーブルの曲げ半径の開発試験に必要な数値と同様の値を使用している(JEC規格 JEC-3401)。
 例えば、最大振幅部Pからオフセット部OS1直近の終端接続部1におけるケーブル端部(51)までのケーブル長さについての熱伸縮距離をa、終端接続部1におけるケーブルコア11が熱伸縮する吸収許容距離をx、とした場合、x≧aを満たす範囲に、オフセット部OS1が設置されることが好ましい。例えば、オフセット部OS1を構成する弧の曲線形状上の点から、その曲線形状上の点の直近の終端接続部又は中間接続部におけるケーブル端部までのケーブルコアの長さに生じる、熱伸縮による25℃における長さと-196℃における長さの差をa、-196℃における長さから追加して終端接続部又は中間接続部が収容可能なケーブルコアの長さをx、とした場合、x≧aを満たす範囲に、曲線形状上の点が配置されるようになっている。
 より具体的には、最大振幅部Pからオフセット部OS1直近の終端接続部1におけるケーブル端部(51)までのケーブル長さをX、終端接続部1におけるケーブルコア11が熱伸縮する吸収許容距離をx、とした場合、x≧X×0.003(0.3%)を満たす範囲に、オフセット部OS1が設置されることが好ましい。例えば、オフセット部OS1を構成する弧の曲線形状上の点から、その曲線形状上の点の直近の終端接続部又は中間接続部におけるケーブル端部までの-196℃におけるケーブルコアの長さをX、-196℃における長さから追加して終端接続部又は中間接続部が収容可能なケーブルコアの長さをx、とした場合、x≧X×0.003を満たす範囲に、曲線形状上の点が配置されるようになっている。
 これにより、終端接続部1に発現する熱伸縮距離が小さくなるので、この熱伸縮距離をより精度良く推測することができるとともに、終端接続部1の小型化を図ることができる。
 なお、最大振幅部Pとは、オフセット部OS1を構成する弧の曲線形状の端部に有する曲線の変極点間を結んだ直線に対し垂直方向に最も離れた弧の曲線形状上の点である。また、変極点とは、図5,9等(黒点)に示すようにオフセット部における曲線形状の曲線で曲がる方向が変わる点をいう。具体的にはオフセット部を固定させる際、または再設定させる際における曲線形状の曲線の変極点をいう。
 ここで、オフセット部OS1で超電導ケーブル10が移動可能となっている場合、図6に示すように、冷却時にはケーブルコア11が熱収縮して曲げの内側(曲げ半径が大きくなる方向)に移動する。そして、これに伴い内管121がケーブルコア11に押圧され、さらには外管122が押圧されて、円弧CA1、CA2の曲げ半径が大きくなる(直線状に近づく)ように超電導ケーブル10が全体的に内側に変形する。一方、昇温時にはケーブルコア11が熱伸張して曲げの外側(曲げ半径が小さくなる方向)に移動する。そして、これに伴い内管121がケーブルコア11に押圧され、さらには外管122が押圧されて、円弧CA1、CA2の曲げ半径が小さくなるように超電導ケーブル10が全体的に外側に変形する。
 このとき、オフセット部OS1では、円弧CA1、CA2の中心で超電導ケーブル10の移動量(変位)が最大となり、CA1の端部の変極点とCA2の端部の変極点を結んだ直線に対し、最大振幅をもつ。ケーブルコア11が熱伸縮するとき、ケーブルコア11はまず円弧CA1、CA2の中心で内管121に当接し、その後近傍の部位で順次当接していくこととなる。従来の超電導ケーブル線路では、オフセット部OS1を設け、超電導ケーブル10を全体的に変形させることにより、ケーブルコア11の熱収縮が吸収されるようにしている。
 これに対して、本実施形態では、超電導ケーブル10の最大振幅部Pが固定部材Kによって移動不能に固定されている。したがって、冷却時には超電導ケーブル10が全体的に曲げの内側に変形しようとするが、ケーブルコア11及び内管121が曲げの内側に移動して外管122に当接した後は、ケーブルコア11及び内管121が外管122に対して押し付けられる。そのため、ケーブルコア11の熱収縮に対して大きな摩擦抵抗が生じることとなり、ケーブルコア11の移動が制限される。つまり、超電導ケーブル10の最大振幅部Pが不動点となり、それ以降はケーブルコア11が最大振幅部Pに向かって収縮することとなる。
 また、昇温時には超電導ケーブル10が全体的に曲げの外側に変形しようとするが、ケーブルコア11及び内管121が曲げの外側に移動して外管122に当接した後は、ケーブルコア11及び内管121が外管122に対して押し付けられる。そのため、ケーブルコア11の熱伸張に対して大きな摩擦抵抗が生じることとなり、ケーブルコア11の移動が制限される。つまり、超電導ケーブル10の最大振幅部Pが不動点となり、それ以降はケーブルコア11が最大振幅部Pを基準として終端接続部1側に伸張することとなる。
 このように、図5に示すオフセット部OS1では、超電導ケーブル10が移動可能であると仮定したとき、ケーブルコア11の熱伸縮に伴う超電導ケーブル10の移動量が最大となる最大振幅部(円弧CA1の中心及び円弧CA2の中心)のうち、終端接続部1に最も近い最大振幅部Pが移動不能に固定されている。
 これにより、超電導ケーブル線路Sにおける特定部分(最大振幅部Pの右側(終端接続部1と反対側)の部分)を冷却時及び昇温時の不動領域とみなすことができるので、終端接続部1に発現するケーブルコア11の熱伸縮距離を容易に推測することができる。
 つまり、最大振幅部Pが必ず不動領域に含まれる構成になっており、熱伸縮距離も最大振幅点Pからケーブル端部51までの長さを考慮すればよい。
 したがって、推測された熱伸縮距離に基づいて終端接続部1を容易に設計することができるとともに、終端接続部1の小型化を図ることができる。具体的には、導体用可動接続端子50(導体用プラグ51及び導体用ソケット52)とシールド用可動接続端子60(シールド用プラグ61及びシールド用ソケット62)の長さや位置等を、冷却時又は昇温時にケーブルコア11と電流リード31、32との電気的接続が阻害されない程度に設計すればよい。
 図7は、終端接続部1の近傍(例えば図1の領域A)に設けられるオフセット部OSの他の一例を示す図である。図7に示すオフセット部OS2は、図5に示すオフセット部OS1を線対称に延設したC字オフセットである。そして、このオフセット部OS2において、曲げの最下点に対応する超電導ケーブル10の最大振幅部Pが移動不能となるように、3個の固定部材Kで超電導ケーブル10の外管122を固定している。
 図5で示したS字オフセットの場合と同様に、超電導ケーブル10の外径をDとしたとき、オフセット部OS2の曲げ半径は、15D以上であることが望ましい。
 例えば、最大振幅部Pからオフセット部OS2直近の終端接続部1におけるケーブル端部(51)までのケーブル長さについての熱伸縮距離をa、終端接続部1におけるケーブルコア11が熱伸縮する吸収許容距離をx、とした場合、x≧aを満たす範囲に、オフセット部OS2が設置されることが好ましい。
 より具体的には、最大振幅部Pからオフセット部OS2直近の終端接続部1におけるケーブル端部(51)までのケーブル長さをX、終端接続部1におけるケーブルコア11が熱伸縮する吸収許容距離をx、とした場合、x≧X×0.003(0.3%)を満たす範囲に、オフセット部OS2が設置されることが好ましい。
 ここで、オフセット部OS2で超電導ケーブル10が移動可能となっている場合、図8に示すように、冷却時にはケーブルコア11が熱収縮して曲げの内側(曲げ半径が大きくなる方向)に移動する。そして、これに伴い内管121がケーブルコア11に押圧され、さらには外管122が押圧されて、オフセット部OS2の曲げ半径が大きくなる(直線状に近づく)ように超電導ケーブル10が全体的に内側に変形する。一方、昇温時にはケーブルコア11が熱伸縮して曲げの外側(曲げ半径が小さくなる方向)に移動する。そして、これに伴い内管121がケーブルコア11に押圧され、さらには外管122が押圧されて、オフセット部OS2の曲げ半径が小さくなるように超電導ケーブル10が全体的に外側に変形する。
 このとき、オフセット部OS2では、曲げの最下点で超電導ケーブル10の移動量(変位)が最大となる。つまり、ケーブルコア11が熱伸縮するとき、ケーブルコア11はまず曲げの最下点で内管121に当接し、その後近傍の部位で順次当接していくこととなる。
 これに対して、本実施形態では、超電導ケーブル10の最大振幅部Pが固定部材Kによって移動不能に固定されている。したがって、冷却時には超電導ケーブル10が全体的に曲げの内側に変形しようとするが、ケーブルコア11及び内管121が曲げの内側に移動して外管122に当接した後は、ケーブルコア11及び内管121が外管122に対して押し付けられる。そのため、ケーブルコア11の熱収縮に対して大きな摩擦抵抗が生じることとなり、ケーブルコア11の移動が制限される。つまり、超電導ケーブル10の最大振幅部Pが不動点となり、それ以降はケーブルコア11が最大振幅部Pに向かって収縮することとなる。
 また、昇温時には超電導ケーブル10が全体的に曲げの外側に変形しようとするが、ケーブルコア11及び内管121が曲げの外側に移動して外管122に当接した後は、ケーブルコア11及び内管121が外管122に対して押し付けられる。そのため、ケーブルコア11の熱伸張に対して大きな摩擦抵抗が生じることとなり、ケーブルコア11の移動が制限される。つまり、超電導ケーブル10の最大振幅部Pが不動点となり、それ以降はケーブルコア11が最大振幅部Pを基準として終端接続部1側に伸張することとなる。
 このように、図7に示すオフセット部OS2では、超電導ケーブル10が移動可能であると仮定したとき、ケーブルコア11の熱伸縮に伴う超電導ケーブルの移動量が最大となる最大振幅部Pが移動不能に固定されている。オフセット部OS2では、ケーブルコア11の熱伸縮に伴う超電導ケーブルの移動量が最大となる部位は曲げの最下点の一箇所なので、この部位が最大振幅部となる。
 これにより、超電導ケーブル線路Sにおける特定部分(最大振幅部Pの両側)を冷却時及び昇温時の不動領域とみなすことができるので、終端接続部1に発現するケーブルコア11の熱伸縮距離を容易に推測することができる。
 つまり、最大振幅部Pが必ず不動領域に含まれる構成になっており、熱伸縮距離も最大振幅点Pからケーブル端部51までの長さを考慮すればよい。
 したがって、推測された熱伸縮距離に基づいて終端接続部1を容易に設計することができるとともに、終端接続部1の小型化を図ることができる。
 図5、図7で示したオフセット部OS1、OS2は一例であり、終端接続部1の近傍に設けられるオフセット部OSの形状はこれに限定されない。つまり、終端接続部1の近傍に設けたオフセット部OSにおいて、超電導ケーブル10が移動可能であると仮定したとき、ケーブルコア11の熱伸縮に伴う超電導ケーブル10の移動量が最大となる部位のうち、終端接続部1に最も近い最大振幅部Pが移動不能に固定されるようにすればよい。
 また、オフセット部OS1、OS2では、ケーブルコア11が熱伸縮するときに、ケーブルコア11及び内管121が外管122に対して押し付けられることとなるので、超電導ケーブル10の断熱管12による断熱性能が若干低下するおそれがある。この場合、図9に示すように、スネーク状のオフセットを利用することで断熱管12による断熱性能の低下を抑制できる。
 図9は、終端接続部1の近傍(例えば図1の領域A)に設けられるオフセット部OSの他の一例を示す図である。図9に示すオフセット部OS3は、図7に示すオフセット部OS2を線対称に延設したスネークオフセットである。オフセット部OS3では、終端接続部1側のオフセット部OS2において最大振幅部Pが移動不能となるように固定されており、最大振幅部Pの右側(終端接続部1と反対側)では超電導ケーブル10が移動可能となっている。
 したがって、ケーブルコア11が熱伸縮したときに超電導ケーブル10に残留する応力が低減され、ケーブルコア11及び内管121が外管122に対して過度に押し付けられるのを防止できるので、ケーブルコア11への局所的な熱侵入が抑制される。特に、冷却時にケーブルコア11への局所的な熱侵入が抑制されるので、熱侵入により超電導ケーブル10の送電性能が低下するのを防止できる。
[実施例]
 実施例では、外径150mm、ケーブル長50mの超電導ケーブル10の一端に終端接続部1を接続し、他端を固定端として、不動領域の端部(固定端に相当)から終端接続部1までを模擬した超電導ケーブル線路を構築した(図10参照)。そして、異なる形状のオフセット部OSを設けた場合(直線敷設を含む)について、室温から液体窒素温度まで冷却したときの熱収縮量と、液体窒素温度から室温まで昇温させたときの熱伸張量を比較した。具体的には、X線やγ線等の放射線を利用した観察装置を用いて、終端接続部1における導体用可動接続端子50の内部を観察し、導体用ソケット52内での導体用プラグ51の移動量を測定した。また、冷却時に固定端に発生する軸力を測定し、ケーブルコア11の熱収縮に伴い超電導ケーブル10に生じる残留応力を比較した。
 ここでは、オフセット部OSにおいて、最大振幅部が移動不能となるように超電導ケーブル10を固定する場合、終端接続部1から最大振幅部までの距離が以下の値となるようにした。
 なお、オフセット部OSの曲げ半径は15D(D:超電導ケーブル10の外径)とした。
 また、ケーブルの許容曲げ半径(R)、オフセット幅(F)、オフセット長さ(L)には、以下の一般式(1)の関係が成り立つ。
 L≧√(4RF-F) ・・・(1)
 実施例1では、オフセット部OSにS字オフセット(図5参照)を適用し、終端接続部1に最も近い最大振幅部が移動不能となるように固定した。
 ここで、ケーブル外径(D)=150mm、許容曲げ半径(R)=2250mm、オフセット幅(F)=300mmであり、オフセット長は式(1)に基づき、オフセット長さ(L)=1615.5mmであった。
 図5は、一例として、一般式(1)においてL=√(4RF-F)が成り立つ場合のオフセット長を例示した。
 この場合、冷却時の熱収縮量は6mmで、昇温時の熱伸張量は5.5mmであった。また、固定端における発生軸力は8000Nであった。
 実施例2では、オフセット部OSにC字オフセット(図7参照)を適用し、最大振幅部が移動不能となるように固定した。
 図7は図5のオフセット形状を左右対称の形状としたものである。それゆえ図7のオフセットの長さは、図5のオフセットの長さの2倍となる。よって、オフセット長さ(L)=1615.5mm×2mm=3231mmであった。
 (なお、図7は図5の形状を応用したものであり、図7は図5のオフセット形状を左右対称の形状としただけゆえ、一般式(1)でL=√(4RF-F)は成立しない。)
 この場合、冷却時の熱収縮量、昇温時の熱伸張量は、何れも5mmであった。また、固定端における発生軸力は2000Nであった。
 実施例3では、オフセット部OSにスネークオフセット(図9参照)を適用し、終端接続部1に最も近い最大振幅部が移動不能となるように固定した。
 図9は図7のオフセット形状を左右対称の形状としたものである。それゆえ図9のオフセットの長さは、図7のオフセットの長さの2倍となる。よって、オフセット長さ(L)=3231mm×2mm=6462mmであった。
 (なお、図9は図5の形状を応用したものであり、図9は図7のオフセット形状を左右対称の形状としただけゆえ、一般式(1)でL=√(4RF-F)は成立しない。)
 この場合、冷却時の熱収縮量、昇温時の熱伸張量は、何れも5mmであった。また、固定端における発生軸力は500Nであった。
 比較例1では、オフセット部OSを設けずに、超電導ケーブル10を一様に直線敷設した。この場合、冷却時の熱収縮量は60mmで、昇温時の熱伸張量は150mmであった。また、固定端における発生軸力は10000Nであった。
 比較例2では、オフセット部OSに実施例2と同形状のC字オフセットを適用した。ただし、オフセット部OSにおいて、超電導ケーブルは固定していない。この場合、冷却時の熱収縮量は25mmで、昇温時の熱伸張量は50mmであった。また、固定端における発生軸力は500Nであった。
Figure JPOXMLDOC01-appb-T000001
 表1に評価結果を示す。表1における熱伸縮量(熱伸縮距離)は、温度変化前後における変化量を表す。比較例1において、昇温時の熱伸縮の変化量が冷却時の熱伸縮の変化量より増大していることから、冷却時と昇温時とで不動領域が変化していると考えられる。つまり、冷却時に不動領域となっていた部分が、昇温時には不動領域とならなかったために、冷却時の熱伸縮の変化量よりも昇温時の熱伸縮の変化量が増大したと考えられる。
 比較例2では、終端接続部1に発現する熱伸縮量(熱伸縮距離)が比較例1の場合の1/3程度になっている。すなわち、オフセット部OSにおける超電導ケーブル10の形状変化により、ケーブルコア11の熱伸縮が効果的に吸収されている。しかし、冷却時と昇温時で終端接続部1に発現する熱伸縮量(熱伸縮距離)が異なっている(昇温後に冷却前のオフセット形状に戻らない)ことから、冷却時と昇温時とで不動領域が変化していると考えられる。
 比較例1、2のように、冷却時の熱伸縮と昇温時の熱伸縮が可逆的な関係にない場合、熱伸縮量(熱伸縮距離)を多めに見積もって終端接続部1を設計しなければならないため、終端接続部1の小型化が困難となる。
 一方、実施例1~3では、終端接続部1に発現する熱伸縮量(熱伸縮距離)がほぼ同じとなっている。つまり、冷却時の熱伸縮と昇温時の熱伸縮が可逆的な関係にあるため、終端接続部1に発現する熱伸縮量(熱伸縮距離)を精度良く推測することができる。したがって、終端接続部1の設計が容易となる上、小型化を図ることができる。
 また、実施例1~3では、固定された最大振幅部よりも右側のオフセット部で超電導ケーブル10が移動可能となっているので、この部分で超電導ケーブル10の形状変化により熱伸縮が吸収される。実施例2では、超電導ケーブル10が移動可能となっている部分が実施例1よりも大きい(オフセット長が長い)ので、超電導ケーブル10に発生する残留応力が実施例1よりも低減される。同様に、実施例3では、超電導ケーブル10が移動可能となっている部分が実施例2よりも大きい(オフセット長が長い)ので、さらに超電導ケーブル10に発生する残留応力が低減される。
 また、上述した実施例では、ケーブル長を50mとして実験したが、ケーブル長を100m、200mとした場合にも同様の結果が得られている。即ち、ケーブル長が異なっても、ケーブルを固定することで不動領域を設定することにより、不動領域の部分と終端部の間の長さのみを考慮すればよい。
 以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
 実施形態で示したように、終端接続部1に発現する熱伸縮距離は、オフセット部OSにおける固定された最大振幅部から終端接続部1までの距離に依存するため、この距離が短ければ短いほど、終端接続部1に発現する熱伸縮距離を小さくできる。ただし、終端接続部1での熱伸縮の吸収量が十分であれば、超電導ケーブル線路S内でのオフセット部OSの設置箇所は特に規定されない。
 また、実施形態では、オフセット部OSにおいて、最大振幅部を含む3箇所で超電導ケーブル10を固定することにより、最大振幅部が移動不能となるようにしているが、固定箇所の数や配置はこれに限定されない。例えば、最大振幅部の近傍の複数個所が固定されて結果的に最大振幅部が移動不能となるようにしてもよい。また例えば、ケーブルコア11が熱伸縮するときの発生軸力が大きくなる場合には、3箇所以上で超電導ケーブル10を固定するようにしてもよい。
 また、実施形態では、終端接続部1の近傍にオフセット部OSを設けた場合について示したが、終端接続部2の近傍はもとより、中間接続部3の両端近傍に、最大振幅部が移動不能に固定されたオフセット部OSを設けるようにしてもよい。これにより、終端接続部2及び中間接続部3に発現するケーブルコア11の熱伸縮を容易に推測し、管理することができる。
 また、超電導ケーブル線路Sにオフセット部OSを設ける場合、冷却時又は昇温時にオフセット部OSの固定を段階的に調整するようにしてもよい。例えば、冷却時又は昇温時に、所定温度(例えば-100℃)になった段階で一時的に固定を解除し、超電導ケーブル10を変形させて残留応力を除去した後、再固定するようにしてもよい。
 これにより、超電導ケーブル10に生じる残留応力が低減されるので、冷却時にケーブルコア11への局所的な熱侵入が抑制される。したがって、熱侵入により超電導ケーブル10の送電性能が低下するのを防止できる。
 実施例2において、上述した方法で冷却及び昇温を行ったところ、冷却時の熱収縮量、昇温時の熱伸張量は、何れも12mmであった。また、固定端における発生軸力は1000Nであった。実施例2の結果に比較すると、熱伸縮距離は約2倍であるが、発生軸力は1/2であり、超電導ケーブル10に生じる残留応力が低減されることが確認された。
 なお、冷却時の熱収縮量と昇温時の熱伸張量は同じであるので、実施例2と同様に、終端接続部1に発現する熱伸縮距離を推測することは容易である。
 また、実施形態では単心型の超電導ケーブル10を敷設した超電導ケーブル線路Sについて説明したが、本発明は、3心のケーブルコアを一括して断熱管内に収納した3心一括型の超電導ケーブルを敷設した超電導ケーブル線路Sにおいても適用できる。
 また、超電導ケーブル線路Sが有する終端接続部1、2又は中間接続部3の構成は、実施形態で示したものに限定されない。例えば、終端接続部1、2において、ケーブルコア11の超電導導体層112と導体用電流リード31、又は超電導シールド層114とシールド用電流リード32を、可とう性を有する接続端子(可とう接続端子)を用いて接続するようにしてもよい。
 また、実施形態ではオフセット部として、S字オフセット(図5、図6参照)、C字オフセット(図7、図8参照)、スネークオフセット(図9参照)を例に挙げて説明したが、図11、12に示す90°曲がりオフセットや、図13、14に示す180°曲がりオフセットにも、本発明を適用することができる。即ち、それぞれ、最大振幅部Pを含む領域、又は最大振幅部Pを挟む領域で超電導ケーブルの外管を固定することで、最大振幅部Pが必ず不動領域に含まれる構成となり、熱伸縮距離も最大振幅点Pからケーブル端部51までの長さを考慮すればよいことになる。なお、図11、12、図13、14の曲げ半径Roは、Ro≧R(許容曲げ半径)を満たす必要がある。また、オフセットを布設する場所の空間的制限等によって、布設場所に適したオフセット形状を選ぶことが出来る。このようにオフセット部とは、ケーブルを蛇行させて布設する事を意味しており、ケーブルの熱伸縮を吸収する方法である。
 また、実施形態では、終端接続部でのオフセットを例に説明したが、本発明は中間接続部にも適用できる。その場合、例えば、図5~図9における終端接続部を中間接続部に置き換えて、適宜ケーブル端部を設定すればよい。
 また、実施形態でいう最大振幅部Pとは、オフセット部OS1を構成する弧の曲線形状の端部に有する曲線の変極点間を結んだ直線に対し垂直方向に最も離れた弧の曲線形状上の点である。また、変極点とは、図5,9等(黒点)に示すようにオフセット部における曲線形状の曲線で曲がる方向が変わる点をいう。具体的にはオフセット部を固定させる際、または再設定させる際における曲線形状の曲線の変極点をいう。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、以上のように構成されていることから、超電導ケーブル線路として利用できる。
1、2 終端接続部
3 中間接続部
4 冷却システム
10 超電導ケーブル
11 ケーブルコア
12 断熱管
111 フォーマ
112 超電導導体層
L 管路
MH マンホール
OS(OS1、OS2、OS3)オフセット部
P 最大振幅部
S 超電導ケーブル線路

Claims (7)

  1.  フォーマと超電導導体層を有するケーブルコアがケーブルの外管と内管を含む断熱管内に収容されてなる超電導ケーブルが敷設され、この超電導ケーブルが終端接続部又は中間接続部に接続される超電導ケーブル線路であって、
     前記終端接続部又は前記中間接続部の近傍に、前記超電導ケーブルコアの熱伸縮距離が吸収されるように前記超電導ケーブルが曲線敷設されたオフセット部を備え、
     前記オフセット部の外管の一部を固定した固定部を有することを特徴とする超電導ケーブル線路。
  2.  前記固定部が、前記オフセット部を構成する弧の曲線形状の端部に有する曲線の変極点間を結んだ直線に対し垂直方向に最も離れた前記弧の曲線形状上の点を含む領域、又は前記曲線形状上の点を前記変極点間で挟む領域にあることを特徴とする請求項1に記載の超電導ケーブル線路。
  3.  前記曲線形状上の点から、前記曲線形状上の点の直近の前記終端接続部又は前記中間接続部におけるケーブル端部までのケーブルコアの長さに生じる、熱伸縮による40℃における長さと-196℃における長さの差をa、とし、
     前記-196℃における長さから追加して終端接続部又は中間接続部が収容可能なケーブルコアの長さをx、とし、
     x≧aを満たす範囲に、前記曲線形状上の点が配置されることを特徴とする請求項2に記載の超電導ケーブル線路。
  4.  前記曲線形状上の点から、前記曲線形状上の点の直近の前記終端接続部又は前記中間接続部におけるケーブル端部までの-196℃におけるケーブルコアの長さをX、とし、
     前記-196℃における長さから追加して終端接続部又は中間接続部が収容可能なケーブルコアの長さをx、とし、
     x≧X×0.003を満たす範囲に、前記曲線形状上の点が配置されることを特徴とする請求項2に記載の超電導ケーブル線路。
  5.  前記オフセット部を構成する弧の曲線形状が複数ある場合に、前記終端接続部又は前記中間接続部に最も近い弧の曲線形状上、次に近い弧の曲線形状上、又は複数の弧の曲線形状の中で前記変極点間を結んだ直線と前記曲線形状上の点の間の長さが最も大きい弧の曲線形状上に前記固定部を有することを特徴とする請求項1乃至4のいずれか一項に記載の超電導ケーブル線路。
  6.  前記オフセット部は、スネークオフセット構造であることを特徴とする請求項1乃至5のいずれか一項に記載の超電導ケーブル線路。
  7.  前記オフセット部は、曲がりオフセット構造であることを特徴とする請求項1乃至5のいずれか一項に記載の超電導ケーブル線路。
PCT/JP2012/052738 2011-02-08 2012-02-07 超電導ケーブル線路 WO2012108427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280002041.3A CN103026569B (zh) 2011-02-08 2012-02-07 超导电缆线路
US13/816,615 US9570214B2 (en) 2011-02-08 2012-02-07 Superconducting cable line
JP2012556898A JP5909800B2 (ja) 2011-02-08 2012-02-07 超電導ケーブル線路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-024536 2011-02-08
JP2011024536 2011-02-08

Publications (1)

Publication Number Publication Date
WO2012108427A1 true WO2012108427A1 (ja) 2012-08-16

Family

ID=46638640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052738 WO2012108427A1 (ja) 2011-02-08 2012-02-07 超電導ケーブル線路

Country Status (4)

Country Link
US (1) US9570214B2 (ja)
JP (1) JP5909800B2 (ja)
CN (1) CN103026569B (ja)
WO (1) WO2012108427A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150051141A (ko) * 2013-10-31 2015-05-11 엘에스전선 주식회사 초전도 전력 시스템 및 초전도 케이블 포설방법
JP2015204338A (ja) * 2014-04-11 2015-11-16 昭和電線ケーブルシステム株式会社 超電導電流リード及び超電導電流リードの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102325498B1 (ko) * 2015-04-29 2021-11-11 엘에스전선 주식회사 초전도 기기용 접속함
JP6837680B2 (ja) * 2016-05-26 2021-03-03 学校法人中部大学 超伝導ケーブル敷設方法およびフォーマ
US10731778B2 (en) * 2018-01-26 2020-08-04 Panduit Corp. Cable management assembly
CN110429517B (zh) * 2019-09-02 2024-08-13 国网上海市电力公司 一种用于超导电缆敷设的装置及系统
US12014843B2 (en) * 2020-11-30 2024-06-18 Ls Cable & System Ltd. Joining structure of different kinds of conductors, joining method of different kinds of conductors, and joint of power cables

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115488U (ja) * 1975-03-12 1976-09-18
JPS5265890A (en) * 1975-11-26 1977-05-31 Sumitomo Electric Ind Ltd Power cable line with aluminum coated
JPS6154810A (ja) * 1984-08-24 1986-03-19 株式会社フジクラ 高熱抵抗トラフ
JPH0449808A (ja) * 1990-06-15 1992-02-19 Sumitomo Electric Ind Ltd 高電圧電力ケーブルの人孔内接続方法
JP2006014547A (ja) * 2004-06-29 2006-01-12 Tokyo Electric Power Co Inc:The 超電導ケーブル接続装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115488A (en) 1975-04-01 1976-10-12 Aquitaine Total Organico Production of pure nn alkylllactam
JP4496509B2 (ja) 1999-05-21 2010-07-07 住友電気工業株式会社 高温超電導ケーブルの熱歪除去方法
JP4593933B2 (ja) * 2004-01-22 2010-12-08 住友電気工業株式会社 多相超電導ケーブルの接続構造
JP2007089343A (ja) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd 超電導ケーブルの中間接続構造の組立方法
JP4927804B2 (ja) 2007-11-14 2012-05-09 住友電気工業株式会社 超電導ケーブルの端末接続構造
US8630690B2 (en) * 2009-05-05 2014-01-14 Electric Power Research Institute, Inc. Thermal contraction compensation for superconducting and cryo-resistive cables

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115488U (ja) * 1975-03-12 1976-09-18
JPS5265890A (en) * 1975-11-26 1977-05-31 Sumitomo Electric Ind Ltd Power cable line with aluminum coated
JPS6154810A (ja) * 1984-08-24 1986-03-19 株式会社フジクラ 高熱抵抗トラフ
JPH0449808A (ja) * 1990-06-15 1992-02-19 Sumitomo Electric Ind Ltd 高電圧電力ケーブルの人孔内接続方法
JP2006014547A (ja) * 2004-06-29 2006-01-12 Tokyo Electric Power Co Inc:The 超電導ケーブル接続装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150051141A (ko) * 2013-10-31 2015-05-11 엘에스전선 주식회사 초전도 전력 시스템 및 초전도 케이블 포설방법
KR102272723B1 (ko) * 2013-10-31 2021-07-06 엘에스전선 주식회사 초전도 전력 시스템 및 초전도 케이블 포설방법
JP2015204338A (ja) * 2014-04-11 2015-11-16 昭和電線ケーブルシステム株式会社 超電導電流リード及び超電導電流リードの製造方法
WO2016060343A1 (ko) * 2014-10-16 2016-04-21 엘에스전선 주식회사 초전도 전력 시스템 및 초전도 케이블 포설방법
US9837808B2 (en) 2014-10-16 2017-12-05 Ls Cable & System Ltd. Superconducting power system and installing method of superconducting cable

Also Published As

Publication number Publication date
CN103026569A (zh) 2013-04-03
JPWO2012108427A1 (ja) 2014-07-03
US9570214B2 (en) 2017-02-14
JP5909800B2 (ja) 2016-04-27
CN103026569B (zh) 2016-07-06
US20130165326A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5909800B2 (ja) 超電導ケーブル線路
JP5909799B2 (ja) 超電導ケーブルの終端接続部
JP4689984B2 (ja) 直流超伝導送電ケーブル及び送電システム
JP6778766B2 (ja) 電気エネルギーのための伝送リンクをセットアップする方法
JP2018530853A (ja) 超伝導線材
JPWO2013157513A1 (ja) 超電導ケーブルの接続構造
EP3208903B1 (en) Superconducting power system and method for installing superconducting cable
JP2013143823A (ja) 常温絶縁型超電導ケーブルの接続構造
JP4956271B2 (ja) 超電導ケーブル
KR102366614B1 (ko) 냉매관 및 이를 구비하는 초전도 케이블
JP2013069585A (ja) 超電導ケーブルの製造方法
JP2016054116A (ja) 電力ケーブル
KR102328369B1 (ko) 초전도 케이블
KR102351544B1 (ko) 초전도 케이블 및 이를 구비하는 초전도 전력 시스템
JP5252323B2 (ja) 常温絶縁型超電導ケーブル、およびその製造方法
US20120103659A1 (en) Superconducting cable system
KR102608511B1 (ko) 진공부 구획장치 및 이를 구비하는 초전도 케이블
JP5273572B2 (ja) 超電導ケーブルの布設方法
KR102573476B1 (ko) 초전도 케이블의 중간 접속을 위한 중간 접속구조
US10163550B2 (en) Superconducting cable and superconducting cable manufacturing method
JP6697677B2 (ja) 超電導ケーブルの中間接続構造
JP2008287897A (ja) 超電導ケーブル
KR20160128655A (ko) 초전도 기기용 접속함
JP2003187651A (ja) 高温超電導ケーブル
JP6345995B2 (ja) 超電導ケーブルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002041.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012556898

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13816615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745216

Country of ref document: EP

Kind code of ref document: A1