WO2012107419A1 - New iridium-based complexes for ecl - Google Patents

New iridium-based complexes for ecl Download PDF

Info

Publication number
WO2012107419A1
WO2012107419A1 PCT/EP2012/051996 EP2012051996W WO2012107419A1 WO 2012107419 A1 WO2012107419 A1 WO 2012107419A1 EP 2012051996 W EP2012051996 W EP 2012051996W WO 2012107419 A1 WO2012107419 A1 WO 2012107419A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
alkylammonium
alkylamino
antibody
Prior art date
Application number
PCT/EP2012/051996
Other languages
French (fr)
Inventor
Robert CYSEWSKI
Luisa De Cola
Jesus Miguel Fernandez Hernandez
Hans-Peter Josel
Eloisa Lopez-Calle
Toralf Zarnt
Original Assignee
Roche Diagnostics Gmbh
F. Hoffmann-La Roche Ag
Westfälische Wilhelms-Universität Münster
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020137021037A priority Critical patent/KR20140053834A/en
Application filed by Roche Diagnostics Gmbh, F. Hoffmann-La Roche Ag, Westfälische Wilhelms-Universität Münster filed Critical Roche Diagnostics Gmbh
Priority to MX2013008418A priority patent/MX342921B/en
Priority to CN201280008287.1A priority patent/CN103347888B/en
Priority to AU2012215497A priority patent/AU2012215497B2/en
Priority to EP12702549.2A priority patent/EP2673284B1/en
Priority to ES12702549.2T priority patent/ES2645765T3/en
Priority to BR112013019503-7A priority patent/BR112013019503B1/en
Priority to CA2822899A priority patent/CA2822899A1/en
Priority to SG2013060231A priority patent/SG192675A1/en
Priority to JP2013552933A priority patent/JP5786040B2/en
Publication of WO2012107419A1 publication Critical patent/WO2012107419A1/en
Priority to US13/961,401 priority patent/US8835637B2/en
Priority to US14/867,074 priority patent/US20160145281A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • G01N2458/30Electrochemically active labels

Definitions

  • the present invention relates to novel iridium-based Ir(III) luminescent complexes, conjugates comprising these complexes as a label and their application, e.g. in the electrochemiluminescence based detection of an analyte.
  • Electrogenerated chemiluminescence also called electrochemiluminescence and abbreviated ECL
  • ECL electrochemiluminescence and abbreviated ECL
  • OLEDs organic light emitting devices
  • ECL-based detection methods are based on the use of water-soluble ruthenium complexes, comprising Ru(II+) as metal ion.
  • the present invention discloses an iridium-based chemiluminescent compound of Formula I
  • R1-R16 is hydrogen, halide, cyano- or nitro-group, amino, alkylamino, substituted alkylamino, arylamino, substituted arylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituated or unsubstituated alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or R17, wherein R17 is aryl, substituted aryl, alkyl, substituted alkyl branched alkyl, substituted branched alkyl, arylalkyl, substituted arylalkyl
  • the present invention also discloses a conjugate comprising the above compound and covalently bound thereto an affinity binding agent.
  • the present invention further relates to the use of a compound or of a conjugate as disclosed in the present invention for performing a luminescence measurement or an electrochemiluminescence reaction in an aqueous solution, especially, in a electro-chemiluminescent device or electrochemiluminescent detection system.
  • the present invention discloses a method for measuring an analyte by an in vitro method, the method comprising the steps of (a) providing a sample suspected or known to comprise the analyte, (b) contacting said sample with a conjugate according to the present invention under conditions appropriate for formation of an analyte conjugate complex, and (c) measuring the complex formed in step (b) and thereby obtaining a measure of the analyte.
  • the present invention relates to an iridium-based chemiluminescent compound of Formula I
  • R1-R16 is hydrogen, halide, cyano- or nitro-group, amino, alkylamino, substituted alkylamino, arylamino, substituted arylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituated or unsubstituated alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or R17, wherein R17 is aryl, substituted aryl, alkyl, substituted alkyl branched alkyl, substituted branched alkyl, arylalkyl, substituted arylalkyl
  • At least one of Rl to R16 of the compound according to Formula I is substituted by at least one hydrophilic group.
  • substituents for substituted alkyloxy are ethylenoxy chains comprising 1-40 ethylenoxy units, or comprising 1-20 ethylenoxy units or comprising 1-10 ethylenoxy units.
  • Preferred hydrophilic groups are amino, alkylamino, with alkyl meaning a linear chain such as methyl, ethyl, propyl, butyl pentyl chain or a branched alkyl chain such as isopropyl, isobutyl, tert.
  • butyl preferably a linear alkyl chain such as methyl or ethyl, substituted alkylamino, this contains one or two for example a branched or linear chains bound to the N-atom, which are substituted by an additional hydrophilic group such as hydroxyl or sulfo, preferably this substituted alkylamino contains two hydroxypropyl or hydroxy ethyl residues, arylamino, with aryl referring to an aromatic residue, such as phenyl, or naphthyl, preferably phenyl, substituted arylamino, with aryl as defined above and an additional residue formed by a hydrophilic group, alkylammonium, with alkyl as defined above and preferably being a trimethylammonium residue or triethylammonium residue, subsituted alkylammonium, carboxy, carboxylic acid ester, preferably an alkyl ester such as methyl or ethyl ester, carbamoy
  • hydrophilic group is selected from amino, alkylamino, substituted alkylamino arylamino substituted arylamino, alkylammonium, subsituted alkylammonium, carboxy, hydroxy, sulfo, sulfeno, sulfonamide, sulfoxide, sulfodioxide and phosphonate, where applicable, each preferably as defined in the above paragraph.
  • the hydrophilic group is selected from sulfo, sulfonamide, sulfodioxide.
  • At least one of the groups Rl to R12 of Formula I is a sulfo group. In one embodiment at least one of Rl to R12 of the phenylphenantridine residues comprised in Formula I is substituted by at least one hydrophilic group.
  • phenylphenantridine residues comprised in Formula I are selected from the below given substituted phenylphenantridines.
  • the linker Q preferably has a backbone length of between 1 and 20 atoms.
  • the shortest connection between the pyridyl ring of Formula I and the functional group Y consists of 1 to 20 atoms.
  • the linker Q in the electrochemiluminescent complex of this invention is a straight or branched saturated, unsaturated, unsubstituted, substituted C1-C20 alkyl chain, or a C1-C20 arylalkyl chain (wherein e.g.
  • a phenylen ring accounts for a length of four carbon atoms
  • a 1 to 20 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S or a 1 to 20 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S comprising at least one aryl, heteroaryl, substituted aryl or substituted heteroaryl group (wherein e.g. a phenylen ring accounts for a length of four atoms).
  • the linker Q in a compound according to the present invention is a saturated C1-C12 alkyl chain, or a C1-C12 arylalkyl chain, or a 1 to 12 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S, or a 1 to 12 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S comprising at least one aryl, heteroaryl, substituted aryl or substituted heteroaryl group (wherein e.g. a phenylen ring accounts for a length of four atoms).
  • the functional group Y comprised in the iridium-based complex according to the present invention is selected from the group consisting of carboxylic acid, N-hydroxysuccinimide ester, amino group, halogen, sulfhydryl, maleimido, alkynyl, azide, and phosphoramidite.
  • a conjugate comprising an iridium-based electrochemiluminescent compound of Formula I as disclosed and defined herein above and covalently bound thereto a biological substance.
  • suitable biological substances are cells, viruses, subcellular particles, proteins, lipoproteins, glycoproteins, peptides, polypeptides, nucleic acids, peptidic nucleic acids (PNA), oligosaccharides, polysaccharides, lipopoly-saccharides, cellular metabolites, haptens, hormones, pharmacological substances, alkaloids, steroids, vitamins, amino acids and sugars.
  • the biological substance of a conjugate according to the present invention i.e., covalently bound to a compound according Formula I is an affinity binding agent.
  • an affinity binding agent i.e., covalently bound to a compound according Formula I
  • the functional group Y of the compound according to Formula I has been used to form a covalent bond with a group on the affinity binding agent.
  • an affinity binding reagent would not in itself contain an appropriate group for binding or reacting with the group Y, such group can be easily introduced into the affinity binding agent by relying on well-established procedures.
  • the affinity binding agent may comprise any of the following; an antigen, a protein, an antibody, biotin or biotin analogue and avidin or streptavidin, sugar and lectin, an enzyme, a polypeptide, an amino group, a nucleic acid or nucleic acid analogue and complementary nucleic acid, a nucleotide, a polynucleotide, a peptide nucleic acid (PNA), a polysaccharide, a metal-ion sequestering agent, receptor agonist, receptor antagonist, or any combination thereof.
  • the affinity binding agent can be one partner of a specific binding pair, where the other partner of said binding pair is associated with or is the target on a cell surface or an intracellular structure.
  • an affinity binding agent is, a partner or member of an affinity binding pair, or as it is also called by the skilled artisan, a partner or member of a specific binding pair.
  • An affinity binding agent has at least an affinity of 10 7 1/mol to its target, e.g. one member of a specific binding pair, like an antibody, to the other member of the specific binding pair, like its antigen.
  • An affinity binding agent preferably has an affinity of 10 8 1/mol or even more preferred of 10 9 1/mol for its target.
  • the present invention relates to a conjugate wherein the affinity binding agent is selected from the group consisting of antigen, antibody, biotin or biotin analogue, avidin or streptavidin, sugar, lectin, nucleic acid or nucleic acid analogue and complementary nucleic acid, receptor and ligand.
  • the affinity binding agent is selected from the group consisting of antigen, antibody, biotin or biotin analogue, avidin or streptavidin, sugar, lectin, nucleic acid or nucleic acid analogue and complementary nucleic acid, receptor and ligand.
  • the present invention relates to a conjugate wherein the affinity binding agent is selected from the group consisting of antibody, biotin or biotin analogue, avidin or streptavidin, and nucleic acid.
  • the conjugate according to the present invention comprises covalently linked a compound according to Formula I as disclosed and defined herein above and an affinity binding agent that either is an oligonucleotide or an antibody.
  • Biotin analogues are aminobiotin, iminobiotin or desthiobiotin.
  • oligonucleotide or "nucleic acid” as used herein, generally refers to short, generally single stranded, polynucleotides that comprise at least 8 nucleotides and at most about 1000 nucleotides. In a preferred embodiment an oligonucleotide will have a length of at least 9, 10, 11, 12, 15, 18, 21, 24, 27 or 30 nucleotides. In a preferred embodiment an oligonucleotide will have a length of no more than 200, 150, 100, 90, 80, 70, 60, 50, 45, 40, 35 or 30 nucleotides.
  • the term oligonucleotide is to be understood broadly and includes DNA and RNA as well as analogues and modification thereof.
  • a nucleic acid analogue may for example contain a substituted nucleotide carrying a substituent at the standard bases deoxyadenosine (dA), deoxyguanosine (dG), deoxycytosine (dC), deoxythymidine (dT), deoxyuracil (dU).
  • substituted nucleobases are: 5-substituted pyrimidines like 5 methyl dC, aminoallyl dU or dC, 5-(aminoethyl-3-acrylimido)-dU, 5-propinyl-dU or -dC, 5 halogenated - dU or -dC; N substituted pyrimidines like N4-ethyl-dC; N substituted purines like N6-ethyl-dA, N2-ethyl-dG; 8 substituted purines like 8-[6-amino)-hex-l-yl]-8- amino-dG or -dA, 8 halogenated dA or dG, 8 -alkyl dG or dA; and 2 substituted dA like 2 amino dA.
  • a nucleic acid analogue may contain a nucleotide or a nucleoside analogue.
  • nucleobase analogs like 5-Nitroindol d riboside; 3 nitro pyrrole d riboside, deoxyinosine (dl), deoyxanthosine (dX); 7 deaza -dG, -dA, -dl or -dX; 7-deaza-8-aza -dG, -dA, -dl or -dX; 8-aza -dA, -dG, -dl or -dX; d Formycin; pseudo dU; pseudo iso dC; 4 thio dT; 6 thio dG; 2 thio dT; iso dG; 5-methyl-iso-dC; N8-linked 8-aza- 7-deaza-dA; 5,6- dihydro-5
  • iso dG has to be in the complementary strand (e.g. (a')).
  • oligonucleotide backbone may be modified to contain substituted sugar residues, sugar analogs, modifications in the internucleoside phosphate moiety, and/or be a PNA.
  • An oligonucleotide may for example contain a nucleotide with a substituted deoxy ribose like 2'-methoxy, 2'-fluoro, 2'-methylseleno, 2'-allyloxy, 4'-methyl dN (wherein N is a nucleobase, e.g., A, G, C, T or U).
  • Sugar analogs are for example Xylose; 2', 4' bridged Ribose like (2'-0, 4'-C methylene)- (oligomer known as LNA) or (2'-0, 4'-C ethylene)- (oligomer known as ENA); L-ribose, L- d-ribose, hexitol (oligomer known as HNA); cyclohexenyl
  • oligomer known as CeNA altritol
  • ANA altritol
  • tricycloDNA oligomer known as tricycloDNA
  • GNA glycerin
  • Glucopyranose oligomer known as Homo DNA
  • carbaribose with a cyclopentan instead of a tetrahydrofuran subunit
  • hydroxymethyl- morpholin oligomers known as morpholino DNA
  • a great number of modification of the internucleosidic phosphate moiety are also known not to interfere with hybridization properties and such backbone modifications can also be combined with substituted nucleotides or nucleotide analogs. Examples are phosphorthioate, phosphordithioate, phosphoramidate and methylphosphonate oligonucleotides.
  • PNA having a backbone without phosphate and d-ribose
  • PNA can also be used as a DNA analog.
  • modified nucleotides, nucleotide analogs as well as oligonucleotide backbone modifications can be combined as desired in an oligonucleotide in the sense of the present invention.
  • antibody herein is used in the broadest sense and specifically covers monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies) formed from at least two intact antibodies, and antibody fragments so long as they exhibit the desired biological activity.
  • an “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with research, diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
  • an antibody is purified (1) to greater than 95% by weight of antibody as determined by, for example, the Lowry method, and in some embodiments, to greater than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of, for example, a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using, for example, Coomassie blue or silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
  • “Native antibodies” are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains.
  • VH variable domain
  • Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light-chain and heavy-chain variable domains.
  • the "variable region” or “variable domain” of an antibody refers to the amino- terminal domains of the heavy or light chain of the antibody.
  • the variable domain of the heavy chain may be referred to as "VH.”
  • the variable domain of the light chain may be referred to as "VL.”
  • variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions (HVRs) both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FR).
  • HVRs hypervariable regions
  • FR framework regions
  • the variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three HVRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure.
  • the HVRs in each chain are held together in close proximity by the FR regions and, with the
  • HVRs from the other chain contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, MD (1991)).
  • the constant domains are not involved directly in the binding of an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody- dependent cellular toxicity.
  • the "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa ( ⁇ ) and lambda ( ⁇ ), based on the amino acid sequences of their constant domains.
  • antibodies (immunoglobulins) can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgGl, IgG2, IgG3, IgG4, IgAl, and IgA2.
  • An antibody may be part of a larger fusion molecule, formed by covalent or non-covalent association of the antibody with one or more other proteins or peptides.
  • full-length antibody “intact antibody,” and “whole antibody” are used herein interchangeably to refer to an antibody in its substantially intact form, not antibody fragments as defined below.
  • Antibody fragments comprise a portion of an intact antibody, preferably comprising the antigen-binding region thereof. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies; single- chain antibody molecules; and multispecific antibodies formed from antibody fragments.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab” fragments, each with a single antigen-binding site, and a residual "Fc” fragment, whose name reflects its ability to crystallize readily.
  • Pepsin treatment yields a F(ab')2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
  • Fv is the minimum antibody fragment which contains a complete antigen- binding site.
  • a two-chain Fv species consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association.
  • one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a two-chain Fv species. It is in this configuration that the three HVRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six HVRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three HVRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • the Fab fragment contains the heavy- and light-chain variable domains and also contains the constant domain of the light chain and the first constant domain (CHI) of the heavy chain.
  • Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CHI domain including one or more cysteines from the antibody -hinge region.
  • Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group.
  • F(ab')2 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • Single-chain Fv or “scFv” antibody fragments comprise the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain.
  • the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains that enables the scFv to form the desired structure for antigen binding.
  • Plueckthun In: The Pharmacology of Monoclonal Antibodies, Vol. 113, Rosenburg and Moore (eds.), Springer- Verlag, New York (1994) pp. 269-315.
  • diabodies refers to antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL).
  • VH heavy-chain variable domain
  • VL light-chain variable domain
  • Diabodies may be bivalent or bispecific. Diabodies are described more fully in, for example, EP 0404 097;
  • a monoclonal antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible mutations, e.g., naturally occurring mutations, that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies.
  • such a monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences.
  • the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones, or recombinant DNA clones.
  • a selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target-binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention.
  • each monoclonal antibody of a monoclonal -antibody preparation is directed against a single determinant on an antigen.
  • monoclonal-antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins.
  • the compounds and conjugates as disclosed herein have quite favorable properties.
  • the disclosed compounds or conjugates, respectively show a high ECL efficiency.
  • This high efficiency is also present if the corresponding measurements are performed in an aqueous system as compared to many, many ECL-labels that only have shown high ECL-efficiency when analyzed in an organic solvent.
  • many OLED dyes usually are analyzed in acetonitrile and either are not soluble in an aequeous solution or, if soluble, due not show effiecient electrochemiluminescence in an aequeous solution.
  • the present invention relates the use of a compound or of a conjugate, respectively, as disclosed in the present invention for performing an electrochemiliuminescense reaction in an aqueous solution.
  • An aqueous solution is any solution comprising at least 90% water (weight by weight).
  • aqueous solution may contain in addition ingredients like buffer compounds, detergents and for example tertiary amines like tripropyl amine as electron donor in the ECL reaction.
  • the present invention relates to the use of a compound or of a conjugate, respectively, as disclosed in the present invention in an electrochemiluminescence based detection method. In one embodiment the present invention relates the use of a compound or of a conjugate, respectively, as disclosed in the present invention in the detection of an analyte.
  • An analyte according to the present invention may be any inorganic or organic molecule, including any biological substance of interest.
  • suitable biological substances that represent an analyte in the sense of the present invention are cells, viruses, subcellular particles, proteins, lipoproteins, glycoproteins, peptides, polypeptides, nucleic acids, oligosaccharides, polysaccharides, lipopoly- saccharides, cellular metabolites, haptens, hormones, pharmacological substances, alkaloids, steroids, vitamins, amino acids and sugars.
  • the analyte may be selected from the group consisting of a polypeptide, a carbohydrate, and an inorganic or organic drug molecule.
  • a polypeptide or protein is a molecule that is essentially composed of amino acids and that has at least two amino acids linked by peptidic linkage.
  • the polypeptide preferably will consist of at least 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, and 30 to up to about 10,000 amino acids.
  • the polypeptide will contain from 5 to 2,000, also preferred from 10 to 1,000 amino acids.
  • analyte is a nucleic acid
  • these nucleic acids preferably are naturally occurring DNA or RNA oligonucleotides.
  • the present invention relates to a method for measuring an analyte by an in vitro method, the method comprising the steps of (a) providing a sample suspected or known to comprise the analyte, (b) contacting said sample with a conjugate according between an affinity binding agent and a compound according to Formula I as disclosed in the present invention under conditions appropriate for formation of an analyte conjugate complex, (c) measuring the complex formed in step (b) and thereby obtaining a measure of the analyte.
  • the measurement in the above method for detection of an analyte is performed by using an electrochemiluminescence based detection procedure. Also preferred the method is practiced in an aqueous solution.
  • 6-(2-sulfophenyl) phenanthridine Procedure for the synthesis of 6-(2-sulfophenyl) phenanthridine
  • 6-(2-sulfophenyl)phenanthridine can be synthesized by gentle heating of arylaniline (0.01 mol) with 2-sulfobenzoic acid cyclic anhydride (0.01 mol) in CH 3 CN for 6 hours using the procedure as described by Nicolai, E., in Chem. Pharm. Bull. 42 (1994) 1617-1630.
  • the 6-phenyl-alkylsulfonyl phenanthridine can be synthesized by gentle heating of alkylsulfonyl-arylaniline (0.01 mol) with benzoic acid chloride (0.01 mol) in chloroform using the procedure as described by Lion, C, in Bull. Soc. Chim. Belg. 98 (1989) 557-566, see example 1.2.
  • the 6-(4-methylsulfophenyl)phenanthridine can be also prepared by following the procedure described by Cymerman, J., in J. Chem. Soc. (1949) 703-707.
  • the iridium dimers were synthesized as follow: IrCl 3 » 3H 2 0 and 2.5 equiv of 6- phenylphenanthridine were heated at 120 °C for 18 h under nitrogen in 2- ethoxyethanol/water mixture (3: 1, v/v). After being cooled to room temperature the precipitate was filtered off and successively washed with methanol and Et 2 0, dried to afford the desired dimer.
  • a chloro-cross-linked dimer complex 0.5 mmol, picolinate 1.25 mmol and Na 2 CC"3 3 mmol were mixed into 2-ethoxyethanol (12 ml) and heated at 120 °C for 15 hours.
  • the electrochemiluminescence signal of several metal complexes was assessed in an ELECSYS ® analyzer (Roche Diagnostics GmbH). Measurements were carried out homogeneously in the absence of streptavidin-coated paramagnetic microparticles. Stock solutions of each metal complex at 0.1 mg/ml DMSO were diluted with PBS buffer resulting in 10 nM solutions. The 10 nM solutions were handled as samples on the ELECSYS ® analyzer. 20 ⁇ sample was incubated together with 90 ⁇ Reagent 1 (ProCell) and 90 ⁇ Reagent 2 (ProCell) for 9 min at 37°C and subsequently the electrochemiluminescence signal was quantified.

Abstract

The present invention relates to novel iridium-based Ir(III) luminescent complexes, conjugates comprising these complexes as a label and their application, e.g. in the electrochemiluminescence based detection of an analyte.

Description

New iridium-based complexes for ECL Background of the Invention
The present invention relates to novel iridium-based Ir(III) luminescent complexes, conjugates comprising these complexes as a label and their application, e.g. in the electrochemiluminescence based detection of an analyte. Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL) is the process whereby species generated at electrodes undergo high-energy electron-transfer reactions to form excited states that emit light. The first detailed ECL studies were described by Hercules and Bard et al. in the mid- 1960s. After about 40 years of study, ECL has now become a very powerful analytical technique and is widely used in the areas of, for example, immunoassay, food and water testing, and biowarfare agent detection.
There is a tremendeous number of compounds that appears to be of interest for use in organic light emitting devices (OLEDs). These compounds are appropriate for use in solid materials or may be dissolved in organic fluids. However, no conclusion can be drawn regarding their utility in an aqueous medium as e.g., required for detection of an analyte from a biological sample.
In general ECL-based detection methods are based on the use of water-soluble ruthenium complexes, comprising Ru(II+) as metal ion.
Despite significant improvements made over the past decades, still a tremendous need exists for more sensitive electrochemiluminescence-based in vitro diagnostic assays.
It has now been surprisingly found that certain iridium-based Ir(III+) luminescent complexes, represent very promising labels for future high sensitive ECL-based detection methods. Summary of the Invention
The present invention discloses an iridium-based chemiluminescent compound of Formula I
Figure imgf000003_0001
wherein R1-R16 is hydrogen, halide, cyano- or nitro-group, amino, alkylamino, substituted alkylamino, arylamino, substituted arylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituated or unsubstituated alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or R17, wherein R17 is aryl, substituted aryl, alkyl, substituted alkyl branched alkyl, substituted branched alkyl, arylalkyl, substituted arylalkyl, alkylaryl, substituted alkylaryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, wherein the substituent is selected from hydrogen, halide, cyano- or nitro-group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituated alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or, wherein within R1-R12 or/and within R13-R16, respectively, two adjacent Rs can form an aromatic ring or a substituted aromatic ring, wherein the substituent is selected from hydrogen, halide, cyano- or nitro-group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituted alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or, wherein within R1-R12 or/and within R13-R16, respectively, two adjacent Rs can form an aliphatic ring or a substituted aliphatic ring, wherein the substituent is selected from hydrogen, halide, cyano- or nitro-group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituted alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate and wherein at least one of R13-R16 is -Q-Y, wherein Q represents a linker and Y is a functional group.
The present invention also discloses a conjugate comprising the above compound and covalently bound thereto an affinity binding agent.
The present invention further relates to the use of a compound or of a conjugate as disclosed in the present invention for performing a luminescence measurement or an electrochemiluminescence reaction in an aqueous solution, especially, in a electro-chemiluminescent device or electrochemiluminescent detection system.
Further the present invention discloses a method for measuring an analyte by an in vitro method, the method comprising the steps of (a) providing a sample suspected or known to comprise the analyte, (b) contacting said sample with a conjugate according to the present invention under conditions appropriate for formation of an analyte conjugate complex, and (c) measuring the complex formed in step (b) and thereby obtaining a measure of the analyte. Detailed Description of the Invention
The present invention relates to an iridium-based chemiluminescent compound of Formula I
Figure imgf000005_0001
wherein R1-R16 is hydrogen, halide, cyano- or nitro-group, amino, alkylamino, substituted alkylamino, arylamino, substituted arylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituated or unsubstituated alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or R17, wherein R17 is aryl, substituted aryl, alkyl, substituted alkyl branched alkyl, substituted branched alkyl, arylalkyl, substituted arylalkyl, alkylaryl, substituted alkylaryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, wherein the substituent is selected from hydrogen, halide, cyano- or nitro-group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituated alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or, wherein within R1-R12 or/and within R13-R16, respectively, two adjacent Rs can form an aromatic ring or a substituted aromatic ring, wherein the substituent is selected from hydrogen, halide, cyano- or nitro-group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituted alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or, wherein within R1-R12 or/and within R13-R16, respectively, two adjacent Rs can form an aliphatic ring or a substituted aliphatic ring, wherein the substituent is selected from hydrogen, halide, cyano- or nitro- group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituted alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate and wherein at least one of R13-R16 is -Q-Y, wherein Q represents a linker and Y is a functional group.
In one embodiment at least one of Rl to R16 of the compound according to Formula I is substituted by at least one hydrophilic group.
In one embodiment preferred substituents for substituted alkyloxy are ethylenoxy chains comprising 1-40 ethylenoxy units, or comprising 1-20 ethylenoxy units or comprising 1-10 ethylenoxy units.
Preferred hydrophilic groups are amino, alkylamino, with alkyl meaning a linear chain such as methyl, ethyl, propyl, butyl pentyl chain or a branched alkyl chain such as isopropyl, isobutyl, tert. butyl, preferably a linear alkyl chain such as methyl or ethyl, substituted alkylamino, this contains one or two for example a branched or linear chains bound to the N-atom, which are substituted by an additional hydrophilic group such as hydroxyl or sulfo, preferably this substituted alkylamino contains two hydroxypropyl or hydroxy ethyl residues, arylamino, with aryl referring to an aromatic residue, such as phenyl, or naphthyl, preferably phenyl, substituted arylamino, with aryl as defined above and an additional residue formed by a hydrophilic group, alkylammonium, with alkyl as defined above and preferably being a trimethylammonium residue or triethylammonium residue, subsituted alkylammonium, carboxy, carboxylic acid ester, preferably an alkyl ester such as methyl or ethyl ester, carbamoyl, hydroxy, substituated or unsubstituated alkyloxy with alkyl and substituted alkyl being as defined above or aryloxy or substituted aryloxy wth aryl and substituted aryl being as defined above, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate.
Preferably such hydrophilic group is selected from amino, alkylamino, substituted alkylamino arylamino substituted arylamino, alkylammonium, subsituted alkylammonium, carboxy, hydroxy, sulfo, sulfeno, sulfonamide, sulfoxide, sulfodioxide and phosphonate, where applicable, each preferably as defined in the above paragraph.
In a further embodiment the hydrophilic group is selected from sulfo, sulfonamide, sulfodioxide.
In one embodiment at least one of the groups Rl to R12 of Formula I is a sulfo group. In one embodiment at least one of Rl to R12 of the phenylphenantridine residues comprised in Formula I is substituted by at least one hydrophilic group.
In one embodiment the phenylphenantridine residues comprised in Formula I are selected from the below given substituted phenylphenantridines.
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000008_0003
In the compound according to the present invention the linker Q preferably has a backbone length of between 1 and 20 atoms. With other words, the shortest connection between the pyridyl ring of Formula I and the functional group Y consists of 1 to 20 atoms. In one embodiment, the linker Q in the electrochemiluminescent complex of this invention is a straight or branched saturated, unsaturated, unsubstituted, substituted C1-C20 alkyl chain, or a C1-C20 arylalkyl chain (wherein e.g. a phenylen ring accounts for a length of four carbon atoms), or a 1 to 20 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S, or a 1 to 20 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S comprising at least one aryl, heteroaryl, substituted aryl or substituted heteroaryl group (wherein e.g. a phenylen ring accounts for a length of four atoms).
In one embodiment the linker Q in a compound according to the present invention is a saturated C1-C12 alkyl chain, or a C1-C12 arylalkyl chain, or a 1 to 12 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S, or a 1 to 12 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S comprising at least one aryl, heteroaryl, substituted aryl or substituted heteroaryl group (wherein e.g. a phenylen ring accounts for a length of four atoms).
In one embodiment the functional group Y comprised in the iridium-based complex according to the present invention is selected from the group consisting of carboxylic acid, N-hydroxysuccinimide ester, amino group, halogen, sulfhydryl, maleimido, alkynyl, azide, and phosphoramidite.
A conjugate comprising an iridium-based electrochemiluminescent compound of Formula I as disclosed and defined herein above and covalently bound thereto a biological substance. Examples of suitable biological substances are cells, viruses, subcellular particles, proteins, lipoproteins, glycoproteins, peptides, polypeptides, nucleic acids, peptidic nucleic acids (PNA), oligosaccharides, polysaccharides, lipopoly-saccharides, cellular metabolites, haptens, hormones, pharmacological substances, alkaloids, steroids, vitamins, amino acids and sugars.
In one embodiment the biological substance of a conjugate according to the present invention, i.e., covalently bound to a compound according Formula I is an affinity binding agent. As the skilled artisan will appreciate in a conjugate according to the present invention the functional group Y of the compound according to Formula I has been used to form a covalent bond with a group on the affinity binding agent. In case an affinity binding reagent would not in itself contain an appropriate group for binding or reacting with the group Y, such group can be easily introduced into the affinity binding agent by relying on well-established procedures.
Not wishing to be limited further, but in the interest of clarity, the affinity binding agent may comprise any of the following; an antigen, a protein, an antibody, biotin or biotin analogue and avidin or streptavidin, sugar and lectin, an enzyme, a polypeptide, an amino group, a nucleic acid or nucleic acid analogue and complementary nucleic acid, a nucleotide, a polynucleotide, a peptide nucleic acid (PNA), a polysaccharide, a metal-ion sequestering agent, receptor agonist, receptor antagonist, or any combination thereof. For example, the affinity binding agent can be one partner of a specific binding pair, where the other partner of said binding pair is associated with or is the target on a cell surface or an intracellular structure.
Preferably an affinity binding agent is, a partner or member of an affinity binding pair, or as it is also called by the skilled artisan, a partner or member of a specific binding pair. An affinity binding agent has at least an affinity of 107 1/mol to its target, e.g. one member of a specific binding pair, like an antibody, to the other member of the specific binding pair, like its antigen. An affinity binding agent preferably has an affinity of 108 1/mol or even more preferred of 109 1/mol for its target.
In one embodiment the present invention relates to a conjugate wherein the affinity binding agent is selected from the group consisting of antigen, antibody, biotin or biotin analogue, avidin or streptavidin, sugar, lectin, nucleic acid or nucleic acid analogue and complementary nucleic acid, receptor and ligand.
In one embodiment the present invention relates to a conjugate wherein the affinity binding agent is selected from the group consisting of antibody, biotin or biotin analogue, avidin or streptavidin, and nucleic acid.
In one embodiment the conjugate according to the present invention comprises covalently linked a compound according to Formula I as disclosed and defined herein above and an affinity binding agent that either is an oligonucleotide or an antibody. Biotin analogues are aminobiotin, iminobiotin or desthiobiotin.
The term "oligonucleotide" or "nucleic acid" as used herein, generally refers to short, generally single stranded, polynucleotides that comprise at least 8 nucleotides and at most about 1000 nucleotides. In a preferred embodiment an oligonucleotide will have a length of at least 9, 10, 11, 12, 15, 18, 21, 24, 27 or 30 nucleotides. In a preferred embodiment an oligonucleotide will have a length of no more than 200, 150, 100, 90, 80, 70, 60, 50, 45, 40, 35 or 30 nucleotides. The term oligonucleotide is to be understood broadly and includes DNA and RNA as well as analogues and modification thereof.
A nucleic acid analogue may for example contain a substituted nucleotide carrying a substituent at the standard bases deoxyadenosine (dA), deoxyguanosine (dG), deoxycytosine (dC), deoxythymidine (dT), deoxyuracil (dU). Examples of such substituted nucleobases are: 5-substituted pyrimidines like 5 methyl dC, aminoallyl dU or dC, 5-(aminoethyl-3-acrylimido)-dU, 5-propinyl-dU or -dC, 5 halogenated - dU or -dC; N substituted pyrimidines like N4-ethyl-dC; N substituted purines like N6-ethyl-dA, N2-ethyl-dG; 8 substituted purines like 8-[6-amino)-hex-l-yl]-8- amino-dG or -dA, 8 halogenated dA or dG, 8 -alkyl dG or dA; and 2 substituted dA like 2 amino dA.
A nucleic acid analogue may contain a nucleotide or a nucleoside analogue. I.e. the naturally occurring nucleobases can be exchanged by using nucleobase analogs like 5-Nitroindol d riboside; 3 nitro pyrrole d riboside, deoxyinosine (dl), deoyxanthosine (dX); 7 deaza -dG, -dA, -dl or -dX; 7-deaza-8-aza -dG, -dA, -dl or -dX; 8-aza -dA, -dG, -dl or -dX; d Formycin; pseudo dU; pseudo iso dC; 4 thio dT; 6 thio dG; 2 thio dT; iso dG; 5-methyl-iso-dC; N8-linked 8-aza- 7-deaza-dA; 5,6- dihydro-5-aza-dC; and etheno-dA or pyrollo-dC. As obvious to the skilled artisan, the nucleobase in the complementary strand has to be selected in such manner that duplex formation is specific. If, for example, 5-methyl-iso-dC is used in one strand
(e.g. (a)) iso dG has to be in the complementary strand (e.g. (a')).
In a nucleic acid analogue the oligonucleotide backbone may be modified to contain substituted sugar residues, sugar analogs, modifications in the internucleoside phosphate moiety, and/or be a PNA. An oligonucleotide may for example contain a nucleotide with a substituted deoxy ribose like 2'-methoxy, 2'-fluoro, 2'-methylseleno, 2'-allyloxy, 4'-methyl dN (wherein N is a nucleobase, e.g., A, G, C, T or U).
Sugar analogs are for example Xylose; 2', 4' bridged Ribose like (2'-0, 4'-C methylene)- (oligomer known as LNA) or (2'-0, 4'-C ethylene)- (oligomer known as ENA); L-ribose, L- d-ribose, hexitol (oligomer known as HNA); cyclohexenyl
(oligomer known as CeNA); altritol (oligomer known as ANA); a tricyclic ribose analog where C3' and C5' atoms are connected by an ethylene bridge that is fused to a cyclopropane ring (oligomer known as tricycloDNA); glycerin (oligomer known as GNA); Glucopyranose (oligomer known as Homo DNA); carbaribose (with a cyclopentan instead of a tetrahydrofuran subunit); hydroxymethyl- morpholin (oligomers known as morpholino DNA)
A great number of modification of the internucleosidic phosphate moiety are also known not to interfere with hybridization properties and such backbone modifications can also be combined with substituted nucleotides or nucleotide analogs. Examples are phosphorthioate, phosphordithioate, phosphoramidate and methylphosphonate oligonucleotides.
PNA (having a backbone without phosphate and d-ribose) can also be used as a DNA analog. The above mentioned modified nucleotides, nucleotide analogs as well as oligonucleotide backbone modifications can be combined as desired in an oligonucleotide in the sense of the present invention.
The term "antibody" herein is used in the broadest sense and specifically covers monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies) formed from at least two intact antibodies, and antibody fragments so long as they exhibit the desired biological activity.
An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with research, diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In some embodiments, an antibody is purified (1) to greater than 95% by weight of antibody as determined by, for example, the Lowry method, and in some embodiments, to greater than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of, for example, a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using, for example, Coomassie blue or silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
"Native antibodies" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light-chain and heavy-chain variable domains. The "variable region" or "variable domain" of an antibody refers to the amino- terminal domains of the heavy or light chain of the antibody. The variable domain of the heavy chain may be referred to as "VH." The variable domain of the light chain may be referred to as "VL." These domains are generally the most variable parts of an antibody and contain the antigen-binding sites. The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions (HVRs) both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three HVRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure. The HVRs in each chain are held together in close proximity by the FR regions and, with the
HVRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, MD (1991)). The constant domains are not involved directly in the binding of an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody- dependent cellular toxicity.
The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains. Depending on the amino acid sequences of the constant domains of their heavy chains, antibodies (immunoglobulins) can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgGl, IgG2, IgG3, IgG4, IgAl, and IgA2. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known and described generally in, for example, Abbas et al., Cellular and Mol. Immunology, 4th ed., W.B. Saunders, Co. (2000). An antibody may be part of a larger fusion molecule, formed by covalent or non-covalent association of the antibody with one or more other proteins or peptides.
The terms "full-length antibody," "intact antibody," and "whole antibody" are used herein interchangeably to refer to an antibody in its substantially intact form, not antibody fragments as defined below. The terms particularly refer to an antibody with heavy chains that contain an Fc region. "Antibody fragments" comprise a portion of an intact antibody, preferably comprising the antigen-binding region thereof. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies; single- chain antibody molecules; and multispecific antibodies formed from antibody fragments. Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields a F(ab')2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen. "Fv" is the minimum antibody fragment which contains a complete antigen- binding site. In one embodiment, a two-chain Fv species consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv (scFv) species, one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a two-chain Fv species. It is in this configuration that the three HVRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six HVRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three HVRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
The Fab fragment contains the heavy- and light-chain variable domains and also contains the constant domain of the light chain and the first constant domain (CHI) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CHI domain including one or more cysteines from the antibody -hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')2 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
"Single-chain Fv" or "scFv" antibody fragments comprise the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains that enables the scFv to form the desired structure for antigen binding. For a review of scFv, see, e.g., Plueckthun, In: The Pharmacology of Monoclonal Antibodies, Vol. 113, Rosenburg and Moore (eds.), Springer- Verlag, New York (1994) pp. 269-315.
The term "diabodies" refers to antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies may be bivalent or bispecific. Diabodies are described more fully in, for example, EP 0404 097;
WO 1993/01161; Hudson, P.J. et al., Nat. Med. 9 (2003) 129-134; and Holliger, P. et al., PNAS USA 90 (1993) 6444-6448. Triabodies and tetrabodies are also described in Hudson, P.J. et al., Nat. Med. 9 (2003) 129-134.
The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible mutations, e.g., naturally occurring mutations, that may be present in minor amounts. Thus, the modifier "monoclonal" indicates the character of the antibody as not being a mixture of discrete antibodies. In certain embodiments, such a monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones, or recombinant DNA clones. It should be understood that a selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target-binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention. In contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal -antibody preparation is directed against a single determinant on an antigen. In addition to their specificity, monoclonal-antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins.
As mentioned, the compounds and conjugates as disclosed herein have quite favorable properties. For example the disclosed compounds or conjugates, respectively, show a high ECL efficiency. This high efficiency is also present if the corresponding measurements are performed in an aqueous system as compared to many, many ECL-labels that only have shown high ECL-efficiency when analyzed in an organic solvent. E.g., many OLED dyes usually are analyzed in acetonitrile and either are not soluble in an aequeous solution or, if soluble, due not show effiecient electrochemiluminescence in an aequeous solution.
In one preferred embodiment the present invention relates the use of a compound or of a conjugate, respectively, as disclosed in the present invention for performing an electrochemiliuminescense reaction in an aqueous solution. An aqueous solution is any solution comprising at least 90% water (weight by weight). Obviously such aqueous solution may contain in addition ingredients like buffer compounds, detergents and for example tertiary amines like tripropyl amine as electron donor in the ECL reaction.
In one embodiment the present invention relates to the use of a compound or of a conjugate, respectively, as disclosed in the present invention in an electrochemiluminescence based detection method. In one embodiment the present invention relates the use of a compound or of a conjugate, respectively, as disclosed in the present invention in the detection of an analyte.
An analyte according to the present invention may be any inorganic or organic molecule, including any biological substance of interest. Examples of suitable biological substances that represent an analyte in the sense of the present invention are cells, viruses, subcellular particles, proteins, lipoproteins, glycoproteins, peptides, polypeptides, nucleic acids, oligosaccharides, polysaccharides, lipopoly- saccharides, cellular metabolites, haptens, hormones, pharmacological substances, alkaloids, steroids, vitamins, amino acids and sugars.
The analyte may be selected from the group consisting of a polypeptide, a carbohydrate, and an inorganic or organic drug molecule.
A polypeptide or protein is a molecule that is essentially composed of amino acids and that has at least two amino acids linked by peptidic linkage. In case the analyte of interest to be investigated in a method disclosed here, the polypeptide preferably will consist of at least 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, and 30 to up to about 10,000 amino acids. Preferably the polypeptide will contain from 5 to 2,000, also preferred from 10 to 1,000 amino acids.
In case the analyte is a nucleic acid, these nucleic acids preferably are naturally occurring DNA or RNA oligonucleotides.
In one embodiment the present invention relates to a method for measuring an analyte by an in vitro method, the method comprising the steps of (a) providing a sample suspected or known to comprise the analyte, (b) contacting said sample with a conjugate according between an affinity binding agent and a compound according to Formula I as disclosed in the present invention under conditions appropriate for formation of an analyte conjugate complex, (c) measuring the complex formed in step (b) and thereby obtaining a measure of the analyte.
In one embodiment the measurement in the above method for detection of an analyte is performed by using an electrochemiluminescence based detection procedure. Also preferred the method is practiced in an aqueous solution.
The following examples are provided to aid the understanding of the present invention, the true scope of which is set forth in the appended claims. It is understood that modifications can be made in the procedures set forth without departing from the spirit of the invention.
Example 1
Synthesis of substituted phenyl-phenanthridines Example 1.1
General procedure for the synthesis of substituted 2-aminobiphenyls:
With the Suzuki-Miyaura coupling reaction as described by Youn, S.W., in Tetrahedron Lett. 50 (2009) 4598-4601 between commercially available 2- bromoaniline derivates and the corresponding arylboronic acid the appropriate 2- aminobiphenyls can be synthesized, which are required for further reactions to phenanthridines.
Typical procedure:
Figure imgf000018_0001
a: 10 mol % PdCl2(PPh3)2, K2C03, DMF/H20 (5/1), 80 °C, 24 h
Other Examples:
Figure imgf000018_0002
Example 1.2
General procedure for the synthesis of substituted phenanthridines:
To the ice-cooled solution of 2-arylaniline 1 (0.01 mol) in chloroform (20 ml) was added aryl acid chloride 2 (0.01 mol) and stirred under inert condition for 30 min at room temperature. The resulting mixture was refluxed with stirring for the next 2 hours. The reaction mixture was treated by the dropwise addition of pyridine (0.02 mol in 10 ml chloroform) over a period of 60 minutes. The mixture was allowed to cool to room temperature and stirred overnight. The mixture was washed well with 0.5 M HCl, dried over MgS04 and concentrated in vacuum. The crude product was purified by flash chromatography on silica gel, 3 :2 hexane/ethyl acetate to give pure product 3 in 66% yield.
Benzamido-2-biphenyl 3 (0.01 mol) and POCl3 (5 ml) in 20 ml of toluene were refluxed and stirred under nitrogen for 18 hours, following the procedure described by Lion, C, in Bull. Soc. Chim. Belg. 98 (1989) 557-566. The cooled reaction mixture was diluted with CH2C12 (30 ml) and poured into ice, washed with 25% H4OH and distilled water. The organic layer was dried over MgS04 and concentrated in vacuo, followed by flash chromatography (silica gel, 1 : 1 hexane/ethyl acetate) gave the product 4, 6-phenylphenanthridine.
Figure imgf000019_0001
4
Yield: 52%. White solid. 1H MR (CDC13, 400 MHz) δ 7.54-7.85 (m, 9H), 8.10 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 7.9 Hz, 1H), 8.62 (d, J = 8.4 Hz, 1H), 8.67 (d, J = 8.4 Hz, 1H).
Using 2-naphthalen-2-yl-phenylamine instead of 2-aryl-aniline:
Figure imgf000019_0002
1H-NMR (400 MHz, CDC13) δ 8.64 (d, J = 9.1 Hz, 2H), 8.29 (d, J = 8.1 Hz, 1H), 8.16 (d, J = 8.92 Hz, 1H), 7.92 (d, J = 7.48 Hz, 1H), 7.79-7.75 (m, 2H), 7.69 (t, J = 14.0, 8.2 Hz, 1H), 7.63-7.61 (m, 2H), 7.53-7.46 (m, 4H), 7.19 (t, J
1H).
MS: [M+H]+ 306.3
Using naphthalene-carbonyl chloride instead of phenyl acid chloride
Figure imgf000020_0001
1H-NMR (400 MHz, CDC13) δ 8.74 (d, J = 8.3 Hz, 1H), 8.65 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 8.1 Hz, 1H), 8.23 (s, 1H), 8.15 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.97-7.94 (m, 2H), 7.90-7.85 (m, 2H), 7.80-7.69 (m, 2H), 7.62 (t, J= 14.2, 7.1 Hz, 1H), 7.59-7.55 (m, 2H).
MS: [M+H]+ 306.3 Example 1.3
Procedure for the synthesis of 6-(2-sulfophenyl) phenanthridine The 6-(2-sulfophenyl)phenanthridine can be synthesized by gentle heating of arylaniline (0.01 mol) with 2-sulfobenzoic acid cyclic anhydride (0.01 mol) in CH3CN for 6 hours using the procedure as described by Nicolai, E., in Chem. Pharm. Bull. 42 (1994) 1617-1630.
After purification the product can be converted to the appropriate phenanthridine based on the method described in example 1.2.
Figure imgf000020_0002
Example 1.4
Procedure for the synthesis of 6-phenyl-alkylsulfonyl phenanthridine
The 6-phenyl-alkylsulfonyl phenanthridine can be synthesized by gentle heating of alkylsulfonyl-arylaniline (0.01 mol) with benzoic acid chloride (0.01 mol) in chloroform using the procedure as described by Lion, C, in Bull. Soc. Chim. Belg. 98 (1989) 557-566, see example 1.2.
After purification the product can be converted to the appropriate phenanthridine based on the method described in example 1.2.
Figure imgf000021_0001
1H- MR (400 MHz, CDC13) δ 8.92 (d, J = 8.7 Hz, 1H), 8.75 (d, J = 1.9 Hz, 1H), 8.68 (d, J = 7.0 Hz, 1H), 8.35 (dd, J = 8.7, 2.0 Hz, 1H), 8.30 (d, J = 7.2 Hz, 1H), 7.89 (t, J = 15.3, 7.1 Hz, 1H), 7.81-7.73 (m, 3H), 7.64-7.56 (m, 3H) 3.12 (s, 3H).
MS: [M+H]+ 334,3
The 6-(4-methylsulfophenyl)phenanthridine can be also prepared by following the procedure described by Cymerman, J., in J. Chem. Soc. (1949) 703-707.
Example 1.5
Synthesis of 6-[4-(2-{2-[2-(2-Methoxy-ethoxy)-ethoxy]-ethoxy}-ethoxy)- phenylj-phenanthridine
Figure imgf000022_0001
Synthesis of 2,5,8,1 l-tetraoxatridecan-13-ol tosylate:
Procedure: (JACS, 2007, 129, 13364) To a solution of 2,5,8,11-tetraoxatridecan- 13-ol (7 g, 33.6 mmol) and triethylamine (4.9 ml, 35.3 mmol) in dry CH2C12 (100 ml), 4-toluenesulfonyl chloride (6.7 g, 35.3 mmol) and DMAP (120 mg) were added. The mixture was stirred at room temperature for 20 h. The reaction mixture was washed with 80 mL of HCl (1M) and then water. The extract was dried over anhydrous MgS04, filtrated, and the filtrate was evaporated. The residue was used in the next step without further purification.
Yield: 11.0 g (90%)
NMR:
1H NMR (400 MHz, CDC13) δ 7.75 - 7.64 (m, 2H), 7.31 - 7.26 (m, 2H), 4.16 -
4.06 (m, 2H), 3.62 (m 2H), 3.59 - 3.40 (m, 10H), 3.30 (s, 3H), 2.38 (s, 3H).
13C{1H} NMR (101 MHz, CDC13) δ 144.75 (s), 132.90 (s), 129.77 (s), 127.8 (s), 71.82 (s), 70.60 (s), 70.48 (s), 70.47 (s), 70.41 (s), 70.39 (s), 69.23 (s), 68.55 (s), 58.90 (s), 21.53 (s). Synthesis of 4-PEG4-benzoic acid ethyl ester:
Procedure: (JACS, 2007, 129, 13364) A mixture of compound ethyl 2,5,8, 11- tetraoxatridecan-13-yl 4-methylbenzenesulfonate (8.1 g, 22.3 mmol), 4- hydroxtybenzoic acid ethyl ester (3.7 g, 22.3 mmol), K2C03 (15.4 g, 111.5 mmol) and 18-crown-6 (0.59 g, 2.2 mmol) was refluxed in acetone (120 ml) for 22 h. The reaction mixture was concentrated and extracted with ethyl acetate. The extract was washed with H20, dried over anhydrous MgS04, and filtrated. The filtrate was evaporated to dryness and the residue was purified by column chromatography on silica gel (dichloromethane/methanol = 100: 1) to obtain the compound (1.93 g, 88%).
Yield: 7 g (88%) NMR:
1H NMR (400 MHz, CDC13) δ 8.01 - 7.84 (m, 2H), 6.96 - 6.85 (m, 2H), 4.29 (q, J = 7.1 Hz, 2H), 4.12 (dd, J = 5.4, 4.3 Hz, 2H), 3.82 (dd, J= 5.4, 4.2 Hz, 2H), 3.71 - 3.56 (m, 10H), 3.51 - 3.45 (m, 2H), 3.32 (s, 3H), 1.32 (t, J= 7.1 Hz, 3H). 13C{1H} NMR (101 MHz, CDC13) δ 166.29 (s), 162.47 (s), 131.45 (s), 123.01 (s),
114.11 (s), 71.90 (s), 70.84 (s), 70.60 (s), 70.59 (s), 70.58 (s), 70.48 (s), 69.51 (s), 67.54 (s), 60.57 (s), 58.98 (s), 14.35 (s).
MS(+):
[M+Na+]+ = calc. 379.1727, found 379.1743
Synthesis of 4-PEG4-benzoic acid:
Procedure: (JACS, 2007, 129, 13364) A mixture of compound ethyl 4-(2,5,8, l l- tetraoxatridecan-13-yloxy)benzoate (7 g, 19.6 mmol), and KOH (2.3 g, 41.24 mmol) in 200 mL of EtOH/H20 (1 : 1 v/v) was reflux overnight. After cooling down, the mixture was neutralized with HC1 (2N). The resulting mixture was extracted with EtOAc and evaporated to dryness. The resulting white solid was recrystallized in EtOAc/hexanes.
Yield: 5.3 g (85%)
NMR:
1H NMR (300 MHz, CDC13) δ 11.17 (s, 1H), 8.14 - 7.89 (m, 2H), 7.03 - 6.75 (m,
2H), 4.29 - 4.02 (m, 2H), 3.92 - 3.81 (m, 2H), 3.78 - 3.57 (m, 10H), 3.57 - 3.46 (m, 2H), 3.35 (s, 3H).
UC{1} NMR (75 MHz, CDC13) δ 171.46 (s), 163.24 (s), 132.30 (s), 121.98 (s), 114.33 (s), 71.96 (s), 70.91 (s), 70.67 (s), 70.66 (s), 70.64 (s), 70.54 (s), 69.55 (s), 67.66 (s), 59.08 (s).
MS(-):
[M-H]" = calc. 327.1438, found 327.1456 Synthesis of N-Biphenyl-2-yl-4-(2-{2- [2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}- ethoxy)-benzamide:
Procedure: To a solution of 4-(2,5,8, l l-tetraoxatridecan-13-yloxy)benzoic acid (3 g, 9.14 mmol), 0.2 mL of DMF in 30 mL dry DCM at 0°C, oxalyl chloride (1.05 mL, 12.34 mmol) was added. The reaction mixture was stirred at 0°C for 1 h. The solution was concentrated to dryness. The oily residue was used without further purification in the next step.
A solution of 2-phenylaniline (1.6 g), pyridine (2.4 mL) in chloroform (80 mL) under inert atmosphere was cooled down to 0 °C. (phenyl-4-(2,5,8,l l- tetraoxatridecan-13-yloxy)benzoyl chloride (3.1 g, 9.14 mmol) in 20 mL was slowly added to the solution and the final mixture allowed to reach room temperature. The solution was reflux for 2 h and stirred overnight at room temperature. The reaction mixture was extracted with HC1 (1 M, 2 x 100 mL), NaHC03 (100 mL) and water (50 mL). The organic phase was dried with MgS04 and purified by chromatography in silica gel (EtOAc/hexane).
Yield: 4.1 (90%) NMR:
1H NMR (400 MHz, CDC13) δ 8.49 (dd, J = 8.3, 0.9 Hz, 1H), 7.94 (s, 1H), 7.61 - 7.35 (m, 9H), 7.33 - 7.25 (m, 1H), 7.19 (m, 1H), 6.91 - 6.84 (m, 2H), 4.16 - 4.10 (m, 2H), 3.85 (m, 2H), 3.77 - 3.58 (m, 10H), 3.56 - 3.49 (m, 2H), 3.36 (s, 3H).
13C{1H} NMR (101 MHz, CDC13) δ 164.56 (s), 161.65 (s), 138.18 (s), 135.12 (s), 132.32 (s), 129.97 (s), 129.39 (s), 129.22 (s), 128.66 (s), 128.57 (s), 128.16 (s), 127.13 (s), 124.18 (s), 121.23 (s), 114.57 (s), 71.95 (s), 70.89 (s), 70.64 (s), 70.63 (s), 70.54 (s), 69.54 (s), 67.63 (s), 59.04 (s), 53.51 (s). MS(+)
[M+H]+ = calc. 480.2386 found. 480.2383; [M+Na]+ = calc. 502.2200, found 502.2204
Synthesis of 6-[4-(2-{2-[2-(2-Methoxy-ethoxy)-ethoxy]-ethoxy}-ethoxy)- phenylj-phenanthridine: Procedure: N-Biphenyl-2-yl-4-(2-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}- ethoxy)-benzamide (4 g, 8.34 mmol), POC13 (10 ml) in 10 ml toluene were refluxed for 20 h. The mixture was cooled down to room temperature, and 100 ml of dichloromethane were added. The solution was poured into ice and the mixture neutralized with H40H (20%). The organic phase was extracted and washed successively with destilled water and brine, and dried over MgS04. The resulting solution was purified by flash chromatography (silica gel, in ethyl acetate/hexane 1 : 1, Rf = 0.14).
Yield: 1 g (25%)
NMR:
1H MR (300 MHz, CDC13) δ 8.68 (d, J = 8.3 Hz, 1H), 8.59 (dd, J = 8.1, 1.4 Hz, 1H), 8.23 (dd, J = 8.1, 1.1 Hz, 1H), 8.15 (dd, J = 8.3, 0.7 Hz, 1H), 7.84 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 7.79 - 7.57 (m, 5H), 7.15 - 7.03 (m, 2H), 4.29 - 4.19 (m, 2H),
3.93-3.90 (m, 2H), 3.80 - 3.60 (m, 12H), 3.59 - 3.49 (m, 2H), 3.37 (s, 3H).
13C{1H} NMR (75 MHz, CDC13) δ 160.92 (s), 159.45 (s), 143.84 (s), 133.59 (s), 131.26 (s), 130.61 (s), 130.26 (s), 129.05 (s), 128.90 (s), 127.19 (s), 126.85 (s), 125.39 (s), 123.70 (s), 122.29 (s), 122.01 (s), 114.68 (s), 72.02 (s), 70.97 (s), 70.74 (s), 70.72 (s), 70.69, 70.62 (s), 69.80 (s), 67.68 (s), 59.15 (s).
MS (+) JM358-F5, [M+H]+ calc = 462,2280, found 462.2275 Example 2
General procedure for the synthesis of chloro-cross-linked dimer complex: The general procedure was published by Nonoyama, M., J. Organomet. Chem. 86 (1975) 263-267.
The iridium dimers were synthesized as follow: IrCl3 »3H20 and 2.5 equiv of 6- phenylphenanthridine were heated at 120 °C for 18 h under nitrogen in 2- ethoxyethanol/water mixture (3: 1, v/v). After being cooled to room temperature the precipitate was filtered off and successively washed with methanol and Et20, dried to afford the desired dimer.
Figure imgf000026_0001
[(6-phenylphenanthridine)2IrCl]2. Yield: 71%. Brown solid. 1H MR (DMSO-d6, 400 MHz) δ 6.45 (d, J = 6.8, 4H),
6.58 (t, J = 7.1, 13.9 Hz, 4H), 6.95 (t, J = 7.1, 14.2 Hz, 4H), 7.56 (t, J = 7.4, 16.0 Hz, 4H), 7.68 (t, J = 8.1, 16.2 Hz, 4H), 7.93 (t, J = 8.0, 14.6 Hz, 4H), 8.07-8.13 (m, 8H), 8.80 (d, J = 7.3 Hz, 4H), 8.93-9.01 (m, 12H).
Example 2.2
Complex with substituted phenylphenanthridine
A mixture of 6-[4-(2-{2-[2-(2-Methoxy-ethoxy)-ethoxy]-ethoxy}-ethoxy)-phenyl]- phenanthridine (1 g, 2.16 mmol), IrCl3 3H20 (346 mg, 0.98 mmol) in 16 ml of 2- EtOEtOH:H20 (12:4) was refluxed overnight under nitrogen atmosphere. The reaction mixture was cooled down to room temperature and 60 ml of water were added to obtain an oily precipitate. The supemadant was discarded and 50 ml of water were added to the residue. The mixture was stirred for 1 h to obtain a red- brownish precipitate. The solid was filtrated and washed with water (50 ml) and Et20 (30 ml). The brown solid was dissolved in the smaller amount of dichloromethane and precipitated upon addition of Et20. It was used in the next step without further purification.
Yield: 550 mg (50%) NMR:
1H NMR (300 MHz, CDC13) δ 8.74 (d, J = 8.1 Hz, 4H), 8.36 (dd, J = 8.0, 5.2 Hz,
8H), 7.90 (dd, J = 14.7, 7.7 Hz, 8H), 7.81 (d, J = 9.0 Hz, 4H), 7.79 - 7.67 (m, 4H), 6.78 - 6.65 (m, 4H), 6.32 (dd, J = 8.8, 2.5 Hz, 4H), 5.89-5.83 (m, 4H), 5.28 (d, J = 2.5 Hz, 4H), 3.67-3.10 (m, 100H, PEG Chain, contains some impurities)
MS(ESI-MS(+)):
[M+2Na+]2+ calc. 1171.3463, found 1171.3473; [(CAN)2Ir]+ = calc. 1113.3877, found 1113.3892
Example 3
A) Synthesis of Carboxyalkylenoxy-picolinic acid derivatives:
A mixture of the 3 -hydroxy -2-pyridinecarboxylic acid (0.01 mol), the ethyl 4- bromobutanoate or ethyl 6-bromohexanoate (0.021 mol), and a mixture of potassium carbonate (5 eq.) in DMF (20 ml) was heated at 90 °C for 20 hours under nitrogen. After cooling, the reaction mixture was poured into ice-water mixture and extracted three times with dichloromethane (30 ml), dried over anhydrous MgS04, filtered, and the solvent was evaporated to dryness. Purified by flash chromatography (silica, hexane/ethyl acetate 3: 1) to afford the product (based on Patent US 5,219,847).
The formed ester was hydrolyzed by NaOH in MeOH (pH = 10). The pH of the solution was then adjusted to 6.0 and stirred at r.t. overnight. The solvent was removed in vacuo and the residue was crystallized from hexane/acetone to give the desired product.
Figure imgf000027_0001
3-(Carboxy-pentyloxy)-pyridine-2-carboxylic acid. Yield: 51%. Gray solid. 1H MR (DMSO-dg, 400 MHz) δ 1.39-1.45 (m, 2H), 1.51-1.57 (m, 2H), 1.67-1.74 (m, 2H), 2.19-2.23 (m, 2H), 4.04-4.07 (m, 2H), 7.47-7.50 (m, 1H), 7.61 (d, J = 8.1 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H). B) Synthesis of 5-[4-(2-Carboxy-ethyl)-phenyl]-pyridine-2-carboxylic acid
Under an argon atmosphere, to 4 ml 1,2-dimethoxy ethane are added 5-bromo- pyridine-2-carboxylic acid (93 mg, 0.46 mmol), 4-(2-carboxyethyl)benzeneboronic acid (106 mg, 0.55 mmol), 0.51 ml of a 2M aqueous sodium carbonate solution and dichlorobis- (triphenylphosphin) palladium (II) (20 mg, 0.03 mmol). The mixture is stirred at 90 °C overnight, cooled and quenched with water. Ethyl acetate is added and the mixture adjusted to pH = 2 with 1M hydrochloric acid. After threefold extraction with ethyl acetate, the combined organic layers are dried over magnesium sulfate, filtered, and evaporated in vacuo. The residue is purified by silica gel chromatography (eluent: dichloromethane/methanol 5: 1).
Figure imgf000028_0001
1H-NMR (400 MHz, DMSO-d6) δ 9.00 (d, J = 2 Hz, 1H), 8.25 (dd, J = 8.2, 2.3 Hz, 1H), 8.11 (d, J= 8.1 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 2.91 (t, J = 15, 7.5 Hz, 2H), 2.61 (t, J = 15.1, 7.6 Hz, 2H).
MS: [M+H]+ 272.3
Example 4
General procedure for the synthesis of Iridium complexes
A chloro-cross-linked dimer complex 0.5 mmol, picolinate 1.25 mmol and Na2CC"3 3 mmol were mixed into 2-ethoxyethanol (12 ml) and heated at 120 °C for 15 hours.
To the cooled mixture distilled water was added (25 ml), the crude product was then filtered off and washed with water, followed by portions of n-hexane and Et20. The product was purified by column chromatography (silica, n- hexane/dichloromethane) to give a red powder.
(based on Lamansky, S., Inorg. Chem. 40 (2001) 1704-1711)
Figure imgf000029_0001
Ir(6-phenylphenanthridine)2 Pyridine-2-carboxylic acid:
1H MR (400 MHz, CDC13) δ 9.17 (d, J = 7.8 Hz, 1H), 9.09 (d, J = 8.2 Hz, 1H), 8.71 (d, J = 8.2 Hz, 1H), 8.62 (t, J = 14.8, 7.8 Hz, 2H), 8.43-8.33 (m, 4H), 8.23 (d, J = 8.1 Hz, 1H), 7.92-7.77 (m, 4H), 7.65 (t, J = 15, 7.9 Hz, 2H), 7.57-7.46 (m, 3H), 7.36 (t, J = 14.8, 7.8 Hz, 1H), 7.19-7.16 (m, 2H), 7.10 (d, J = 7.8 Hz, 1H), 7.04 (t, J = 14.2, 6.8 Hz, 1H), 6.92 (t, J = 14.1, 6.7 Hz, 1H), 6.80 (t, J = 13.7, 6.8 Hz, 1H), 6.67 (t, J = 13.7, 6.6 Hz, 1H), 6.51 (d, J = 6.8 Hz, 1H).
MS: [M+H]+ 826.4
Figure imgf000029_0002
Ir(6-phenylphenanthridine)2 5-(Methoxy)pyridine-2-carboxylic acid:
1H-NMR (400 MHz, CDC13) δ 9.15 (d, J = 8.2 Hz, 1H), 9.09 (d, J = 8.2 Hz, 1H), 8.70 (d, J = 7.8 Hz, 1H), 8.61 (d, J = 8.2 Hz, 2H), 8.44-8.35 (m, 3H), 8.21 (d, J =
8.0 Hz, 1H), 7.97 (d, J = 2.7, 1H), 7.91-7.86 (m, 2H), 7.82-7.80 (m, 2H), 7.68 (d, J = 8.6 Hz, 1H), 7.57-7.53 (m, 3H), 7.36 (t, J = 15.2, 7.2 Hz, 1H), 7.14 (t, J = 15.1, 7.6 Hz, 1H), 7.08-6.93 (m, 4H), 6.78 (t, J = 14.9, 7.6 Hz, 1H), 6.65 (t, J = 14.8, 7.6 Hz, 1H), 6.49 (d, J = 7.6 Hz, 1H), 3.63 (s, 3H). MS: [M+H]+ 854.2
Figure imgf000030_0001
Ir(6-phenylphenanthridine)24-(Hydroxymethyl)pyridine-2-carboxylic acid:
1H-NMR (400 MHz, DMSO-d6) δ 9.14 (d, J = 8.1 Hz, 2H), 8.96 (d, J = 8.0 Hz, 1H), 8.87 (d, J = 7.7 Hz, 1H), 8.73 (d, J = 7.7 Hz, 1H), 8,68 (d, J = 7.8 Hz, 1H), 8.51 (d, J = 8.6 Hz, 1H), 8.37 (d, J = 8.2 Hz, 1H), 8.26-8.24 (m, 2H), 8.10 (t, J =
14.7, 7.3 Hz, 1H), 8.02-7.96 (m, 3H), 7.68 (d, J = 8.4 Hz, 1H), 7.62 (t, J = 15.2, 7.1 Hz, 1H), 7.53-7.48 (m, 2H), 7.39-7.37 (m, 2H), 7.16 (t, J = 15.3, 7.2 Hz, 1H), 7.10- 7.04 (m, 2H), 6.86 (d, J = 6.8 Hz, 1H), 6.78 (t, J = 14.2, 7.1 Hz, 1H), 6.67 (t, J = 14.9, 7.3 Hz, 1H), 6.35 (d, J = 6.8 Hz, 1H), 5.32 (s, 1H), 4.33 (s, 2H).
MS: [M+H]+ 854.2
Figure imgf000030_0002
Ir(6-phenylphenanthridine)23-Hydroxypyridine-2-carboxylic acid:
1H-NMR (400 MHz, CDC13) δ 9.15 (d, J = 8.3 Hz, 1H), 9.06 (d, J = 8.2 Hz, 1H), 8.65-8.57 (m, 3H), 8.46-8.41 (m, 2H), 8.34 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.94-7.78 (m, 5H), 7.72 (d, J = 7.8 Hz, 1H), 7.58-7.55 (m, 2H), 7.40 (t, J = 14.0, 7.0 Hz, 1H), 7.15 (t, J = 15.2, 7.0 Hz, 1H), 7.05-6,95 (m, 5H), 6.77 (t, J = 13.7, 7.0 Hz, 1H), 6.66 (t, J = 13.6, 6.4 Hz, 1H), 6.50 (d, J = 6.6 Hz, 1H).
MS: [M+H]+ 839.2
Figure imgf000031_0001
Ir(6-phenyl-benzophenanthridine)2 Pyridine-2-carboxylic acid:
1H MR (400 MHz, CDC13) δ 9.04 (m, 4H), 8.82 (m, 2H), 8.77-8.70 (m, 1H), 8.41 (d, J = 8.0 Hz, 1H), 8.29-8.27 (m, 2H), 8.15-8.09 (m, 4H), 7.85 (d, J = 8.3 Hz, 1H), 7.78-7.71 (m, 4H), 7.65 (d, J = 7.7 Hz, 1H), 7.62-7.553 (m, 2H), 7.45-7.40 (m, 2H), 7.23-7.17 (m, 1H), 7.13-7.05 (m, 3H), 7.05-7.00 (m, 1H), 6.83 (dd, J = 10.8, 4.0 Hz, 1H), 6.68 (dd, J = 10.9, 3.8 Hz, 1H), 6.51 (dd, J = 7.6, 0.9 Hz, 1H).
MS: [M+H]+ 924.2
Figure imgf000031_0002
Ir(6-phenylphenanthridine)22-(Carboxyethyl-phenyl)pyridine-2-carboxylic acid: 1H-NMR (400 MHz, DMSO-d6) δ 9.24 (m, 1H), 9.15 (d, J = 8.0 Hz, 1H), 8.97 (d, J = 8.4 Hz, 1H), 8.88 (d, J = 8.1 Hz, 1H), 8.73 (d, J = 7.6 Hz, 1H), 8.68 (d, J = 7.4 Hz, 1H), 8.50 (d, J = 7.8 Hz, 1H), 8.45 (d, J = 7.9 Hz, 1H), 8.34 (d, J = 2.0 Hz, 1H), 8.28 (d, J = 7.9 Hz, 1H), 8.13-8.00 (m, 4H), 7.92 (dd, J = 8.1, 2.1 Hz, 1H), 7.63 (t, J
= 15.2, 7.0 Hz, 2H), 7.54-7.42 (m, 3H), 7.35 (d, J = 8.2 Hz, 2H), 7.17 (t, J = 15.2, 7.0 Hz, 1H), 7.10-7.06 (m, 3H), 7.02 (t, J = 15.7, 7.3 Hz, 1H), 6.89 (d, J = 6.7 Hz, 1H), 6.77 (t, J = 14.0, 7.1 Hz, 1H), 6.71 (t, J = 14.8, 7.0 Hz, 1H), 6.45 (d, J = 6.7 Hz, 1H), 2.86 (t, J = 15.2, 7.5 Hz, 2H), 2.55 (t, J = 15.4, 7.7 Hz, 2H).
MS: [M+H]+ 972
Synthesis of JM 360:
Figure imgf000032_0001
A suspension of Ir-dimer (150 mg, 0,065 mmol), picolinic acid (17 mg, 0.137 mmol) and Na2CC"3 (70 mg, 0.65 mmol) in 20 mL dichloromethane/ethanol (4: 1) was refluxed overnight. After cooling down, the mixture was concentrated to dryness. The residue was purified by flash cromatography in dichloromethane/MeOH (gradient from 100:0 to 10: 1). The compound was recrystallized in dichloromethane/Et20.
Yield: 30%. NMR:
1H NMR (300 MHz, CDC13) δ 9.06 (d, J = 8.2 Hz, 1H), 8.98 (d, J = 8.1 Hz, 1H), 8.61 (m, 3H), 8.46 - 8.21 (m, 4H), 8.13 (d, J= 8.9 Hz, 1H), 7.83 (m, 4H), 7.61 (m, 2H), 7.57 - 7.41 (m, 3H), 7.30 (d, J= 7.2 Hz, 1H), 7.24 - 7.12 (m, 1H), 6.89 (t, J = 7.2 Hz, 1H), 6.76 (dd, J = 8.9, 2.5 Hz, 1H), 6.61 (dd, J = 8.8, 2.6 Hz, 1H), 6.54 (d, J = 2.5 Hz, 1H), 5.99 (d, J = 2.6 Hz, 1H), 3.85 - 3.41 (m, 32H), 3.34 (s, 3H), 3.33 (s, 3H).
MS: [2M+2Na]2+ calc. 1258.4012, found 1258.4030. [M+H]+ calc. 1236.4197, found 1236.4227
Example 5
ECL with a novel Iridium complex
The electrochemiluminescence signal of several metal complexes was assessed in an ELECSYS® analyzer (Roche Diagnostics GmbH). Measurements were carried out homogeneously in the absence of streptavidin-coated paramagnetic microparticles. Stock solutions of each metal complex at 0.1 mg/ml DMSO were diluted with PBS buffer resulting in 10 nM solutions. The 10 nM solutions were handled as samples on the ELECSYS® analyzer. 20 μΐ sample was incubated together with 90 μΐ Reagent 1 (ProCell) and 90 μΐ Reagent 2 (ProCell) for 9 min at 37°C and subsequently the electrochemiluminescence signal was quantified.
ECL results:
Reference Ru(bpy)3 = 10000 counts in 10 nmolar concentration - JM 360 = 31258 counts 10 nmolar concentration
- RC 72 = 45512 count in 10 nmolar concentration
RC 72
Figure imgf000033_0001
Example 6
Synthesis of an Iridium complex with reactive group for bioconjugation
Ir(6-phenylphenanthridine)2 2-(Carboxyethyl-phenyl)pyridine-2-carboxylic acid (15 mg) was dissolved in a mixture of dry acetonitrile 5mL and dry pyridine 0.01 mL. Disuccinimidyl carbonate (DSC) (1.5 eq) was added and the mixture was stirred under nitrogen at room temperature overnight. The solution was added to chloroform (10 mL), washed with 0.5 M HC1 (1 x 2 mL), saturated aqueous NaHC03 (1 x 2 mL) and water (2 x 5 mL) dried over MgS04, and concentrated in vacuo to yield a red powder.
Figure imgf000034_0001
Ir(6-phenylphenanthridine)2 2-(Carboxyethyl-phenyl)pyridine-2-carboxylic acid N- succinimidyl ester: 1H- MR (400 MHz, CD3CN) δ 9.25 (m, 1H), 9.17 (d, J = 8.0 Hz, 1H), 8.83 (d, J =
8.4 Hz, 1H), 8.75-8.68 (m, 1H), 8.60-8.54 (m, 3H), 8.47 (d, J = 8.1 Hz, 1H), 8.43 (d, J = 2.1 Hz, 1H), 8.30 (d, J = 8.1 Hz, 1H), 8.06 (t, J = 15.4, 7.2 Hz, 1H), 7.97- 7.95 (m, 3H), 7.77-7.70 (m, 2H), 7,61 (t, J = 15.2, 7.0 Hz, 1H), 7.52-7.44 (m, 3H), 7.36 (d, J = 8.3 Hz, 2H), 7.18 (t, J = 15.2, 7.0 Hz, 1H), 7.12-7.09 (m, 3H), 7.04- 6.98 (m, 2H), 6.78 (t, J = 14.9, 7.2 Hz, 1H), 6.71 (t, J = 14.8, 7.5 Hz, 1H), 6.57 (d, J
= 7.6 Hz, 1H), 3,07-3,01 (m, 4H), 2,80 (s, 4H).
MS: [M+H]+ 1069.3 Example 7
Synthesis of an Iridium-complex conjugate with biotin
Ir(6-phenylphenanthridine)2 2-(Carboxyethyl-phenyl)pyridine-2-carboxylic acid NHS ester (12 mg) and 4mg of N-Biotinyl-3,6-dioxaoctane-l,8-diamine trifluoroacetate was dissolved in a dry DMF 5mL. Pyridine (0.016 mL in 2mL
DMF) was added and the mixture was stirred under nitrogen at room temperature overnight. The solution was added to chloroform (10 mL), washed with 0.5 M HC1 (1 x 2 mL), saturated aqueous NaHC03 (1 x 2 mL) and water (2 x 5 mL) dried over MgS04, and concentrated in vacuo to yield a red powder. The product was purified by column chromatography (silica, n-hexane/ethyl acetate) to give red powder.
Figure imgf000035_0001
MS: [M+H]+ 1328.6

Claims

Figure imgf000036_0001
wherein R1-R16 is hydrogen, halide, cyano- or nitro-group, amino, alkylamino, substituted alkylamino, arylamino, substituted arylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituated or unsubstituated alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or R17, wherein R17 is aryl, substituted aryl, alkyl, substituted alkyl branched alkyl, substituted branched alkyl, arylalkyl, substituted arylalkyl, alkylaryl, substituted alkylaryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, wherein the substituent is selected from hydrogen, halide, cyano- or nitro-group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituated alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or, wherein within R1-R12 or/and within R13-R16, respectively, two adjacent Rs can form an aromatic ring or a substituted aromatic ring, wherein the substituent is selected from hydrogen, halide, cyano- or nitro-group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituted alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate or, wherein within R1-R12 or/and within R13-R16, respectively, two adjacent Rs can form an aliphatic ring or a substituted aliphatic ring, wherein the substituent is selected from hydrogen, halide, cyano- or nitro-group, a hydrophilic group, like amino, alkylamino, substituted alkylamino, alkylammonium, substituted alkylammonium, carboxy, carboxylic acid ester, carbamoyl, hydroxy, substituted or unsubstituted alkyloxy, substituted or unsubstituted aryloxy, sulfanyl, alkylsulfonyl, arylsulfonyl, sulfo, sulfino, sulfeno, sulfonamide, sulfoxide, sulfodioxide, phosphonate, phosphinate and wherein at least one of R13-R16 is -Q-Y, wherein Q represents a linker and Y is a functional group.
The compound according to claim 1, wherein the linker Q is a straight or branched saturated, unsaturated, unsubstituted or substituted C1-C20 alkyl chain, or a 1 to 20 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S.
The compound according to claim 1, wherein the linker Q is a saturated Cl- C12 alkyl chain or a 1 to 12 atom chain with a backbone consisting of carbon atoms and one or more heteroatoms selected from O, N and S.
The compound according to claim 1 or 2, wherein the functional group Y is selected from the group consisting of carboxylic acid, N-hydroxysuccinimide ester, amino group, halogen, sulfhydryl, maleimido, alkynyl, azide and phosphoramidite.
5. A conjugate comprising a compound according to any of claims 1 to 4 and covalently bound thereto an affinity binding agent.
6. The conjugate of claim 5, wherein the affinity binding agent is selected from the group consisting of antigen and antibody, biotin or biotin analogue and avidin or streptavidin, sugar and lectin, nucleic acid or nucleic acid analogue and complementary nucleic acid and receptor and ligand.
7. The conjugate according to claim 5 or 6, wherein said affinity binding agent is a nucleic acid or an antibody.
8 Use of a compound according to any of claims 1 to 4 or of a conjugate according to any of claims 5 to 7 for performing an electrochemiluminescence reaction in an aqueous solution.
9. Use of a compound according to any of claims 1 to 4 or of a conjugate according to any of claims 5 to 7 in an electrochemiluminescence based detection method.
10. Use of a compound according to any of claims 1 to 4 or of a conjugate according to any of claims 5 to 7 in the detection of an analyte.
11. A method for measuring an analyte by an in vitro method, the method comprising the steps of a) providing a sample suspected or known to comprise the analyte b) contacting said sample with a conjugate according to any of claims 5 to 7 under conditions appropriate for formation of an analyte conjugate complex,
c) measuring the complex formed in step (b) and thereby obtaining a measure of the analyte.
PCT/EP2012/051996 2011-02-09 2012-02-07 New iridium-based complexes for ecl WO2012107419A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
ES12702549.2T ES2645765T3 (en) 2011-02-09 2012-02-07 New iridium-based complexes for ECL
MX2013008418A MX342921B (en) 2011-02-09 2012-02-07 New iridium-based complexes for ecl.
CN201280008287.1A CN103347888B (en) 2011-02-09 2012-02-07 New complex based on iridium for ECL
AU2012215497A AU2012215497B2 (en) 2011-02-09 2012-02-07 New iridium-based complexes for ECL
EP12702549.2A EP2673284B1 (en) 2011-02-09 2012-02-07 New iridium-based complexes for ecl
KR1020137021037A KR20140053834A (en) 2011-02-09 2012-02-07 New iridium-based complexes for ecl
BR112013019503-7A BR112013019503B1 (en) 2011-02-09 2012-02-07 iridium-based chemiluminescent compound, conjugate, uses of a compound and method for measuring an analyte
JP2013552933A JP5786040B2 (en) 2011-02-09 2012-02-07 New iridium-based complexes for ECL
SG2013060231A SG192675A1 (en) 2011-02-09 2012-02-07 New iridium-based complexes for ecl
CA2822899A CA2822899A1 (en) 2011-02-09 2012-02-07 New iridium-based complexes for ecl
US13/961,401 US8835637B2 (en) 2011-02-09 2013-08-07 Iridium-based complexes for ECL
US14/867,074 US20160145281A1 (en) 2011-02-09 2015-09-28 New iridium-based complexes for ecl

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11153913.6 2011-02-09
EP11153913 2011-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/961,401 Continuation US8835637B2 (en) 2011-02-09 2013-08-07 Iridium-based complexes for ECL

Publications (1)

Publication Number Publication Date
WO2012107419A1 true WO2012107419A1 (en) 2012-08-16

Family

ID=44065590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/051996 WO2012107419A1 (en) 2011-02-09 2012-02-07 New iridium-based complexes for ecl

Country Status (12)

Country Link
US (2) US8835637B2 (en)
EP (1) EP2673284B1 (en)
JP (1) JP5786040B2 (en)
KR (1) KR20140053834A (en)
CN (1) CN103347888B (en)
AU (1) AU2012215497B2 (en)
BR (1) BR112013019503B1 (en)
CA (1) CA2822899A1 (en)
ES (1) ES2645765T3 (en)
MX (1) MX342921B (en)
SG (1) SG192675A1 (en)
WO (1) WO2012107419A1 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081161A1 (en) * 2012-11-21 2014-05-30 주식회사 두산 Iridium (iii) complex compound, and organic electroluminescence device comprising same
WO2014112450A1 (en) * 2013-01-17 2014-07-24 Canon Kabushiki Kaisha Organic light-emitting element
EP2945958A4 (en) * 2013-01-21 2016-08-31 Canon Kk Organometallic complex and organic light-emitting element using the complex
EP2946421A4 (en) * 2013-01-21 2016-09-07 Canon Kk Organic light-emitting element
EP2939288A4 (en) * 2012-12-27 2016-10-26 Canon Kk Organic light-emitting device and display apparatus
WO2017050889A1 (en) 2015-09-25 2017-03-30 F. Hoffmann-La Roche Ag Recombinant immunoglobulin heavy chains comprising a sortase conjugation loop and conjugates thereof
EP3208260A1 (en) * 2016-02-17 2017-08-23 Clariant International Ltd Alkoxylated hydroxybenzoic acid esters or amides
WO2017148854A1 (en) 2016-02-29 2017-09-08 Roche Diagnostics Gmbh Igfbp-7 as a marker in preeclampsia
WO2017153574A1 (en) 2016-03-11 2017-09-14 Roche Diagnostics Gmbh Branched-chain amines in electrochemiluminescence detection
WO2017216387A1 (en) 2016-06-17 2017-12-21 Roche Diagnostics Gmbh Circulating angiopoietin-2 (ang-2) for the prediction of recurrence of atrial fibrillation
EP3279665A1 (en) 2016-08-04 2018-02-07 Roche Diagnostics GmbH Circulating esm-1 (endocan) in the assessment of atrial fibrillation
WO2018037060A1 (en) 2016-08-25 2018-03-01 Roche Diagnostics Gmbh Multifunctionalized silicon nanoparticles, processes for their preparation and uses thereof in electrochemiluminescence based detection methods
WO2018189214A1 (en) 2017-04-12 2018-10-18 F. Hoffmann-La Roche Ag A method for labeling of aldehyde containing target molecules
WO2018229051A1 (en) 2017-06-13 2018-12-20 Roche Diagnostics Gmbh Fatty acid binding protein 3 for the assessment of atrial fibrillation (af)
WO2019012019A1 (en) 2017-07-13 2019-01-17 F. Hoffmann-La Roche Ag New binding agent and assay for pivka
US10227366B2 (en) 2012-08-02 2019-03-12 Roche Diagnostics Operations, Inc. Bis-iridium-complexes for manufacturing of ECL-labels
US10231639B2 (en) 2016-04-19 2019-03-19 Roche Diagnostics Operations, Inc. Algorithm of NTproBNP and hand held ECG to detect arrhythmia in an elderly population
WO2019077113A1 (en) 2017-10-20 2019-04-25 F. Hoffmann-La Roche Ag Copy protection for antibodies
WO2019115620A1 (en) 2017-12-13 2019-06-20 Roche Diagnostics Gmbh Circulating angiopoietin-2 (ang-2) and insulin-like growth factor-binding protein 7 (igfbp7) for the prediction of stroke
WO2019175131A1 (en) 2018-03-14 2019-09-19 F. Hoffmann-La Roche Ag Method for affinity maturation of antibodies
WO2019175127A1 (en) 2018-03-14 2019-09-19 F. Hoffmann-La Roche Ag Novel anti-troponint antibodies
WO2019201901A1 (en) 2018-04-18 2019-10-24 F. Hoffmann-La Roche Ag Novel anti-thymidine kinase antibodies
WO2020016441A1 (en) 2018-07-20 2020-01-23 Roche Diagnostics Gmbh Prediction of preeclampsia based on igfbp-7
WO2020025689A1 (en) 2018-07-31 2020-02-06 F. Hoffmann-La Roche Ag Circulating dkk3 (dickkopf-related protein 3) in the assessment of atrial fibrillation
WO2020030803A1 (en) 2018-08-10 2020-02-13 F. Hoffmann-La Roche Ag Ces-2 (carboxylesterase-2) for the assessment of afib related stroke
WO2020035588A1 (en) 2018-08-16 2020-02-20 Roche Diagnostics Gmbh Circulating tfpi-2 (tissue factor pathway inhibitor 2) in the assessment of atrial fibrillation and anticoagulation therapy
WO2020035605A1 (en) 2018-08-17 2020-02-20 Roche Diagnostics Gmbh Circulating bmp10 (bone morphogenic protein 10) in the assessment of atrial fibrillation
WO2020039001A1 (en) 2018-08-22 2020-02-27 Roche Diagnostics Gmbh Circulating spon-1 (spondin-1) in the assessment of atrial fibrillation
WO2020039085A1 (en) 2018-08-24 2020-02-27 Roche Diagnostics Gmbh Circulating fgfbp-1 (fibroblast growth factor-binding protein 1) in the assessment of atrial fibrillation and for the prediction of stroke
WO2020043868A1 (en) 2018-08-31 2020-03-05 F. Hoffmann-La Roche Ag Thymidine kinase (tk-1) in prognostic indices for dlbcl
WO2020234451A1 (en) 2019-05-23 2020-11-26 Roche Diagnostics Gmbh IGFBP7 RATIO FOR HFpEF
WO2021013786A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag S100a6 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021013783A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag S100a12 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021013784A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag S100a8 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021013785A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag S100a9 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021013781A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag Substance p as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021083872A1 (en) 2019-10-28 2021-05-06 F. Hoffmann-La Roche Ag Sepsis management
WO2021094409A1 (en) 2019-11-15 2021-05-20 F. Hoffmann-La Roche Ag Derivatization of beta-lactam antibiotics for massspec measurements in patient samples
WO2021165465A1 (en) 2020-02-20 2021-08-26 Universiteit Maastricht Detection method of circulating bmp10 (bone morphogenetic protein 10)
WO2021185976A1 (en) 2020-03-18 2021-09-23 Roche Diagnostics Gmbh Ret (rearranged during transfection) for the assessment of stroke
EP3943946A1 (en) 2020-07-20 2022-01-26 F. Hoffmann-La Roche AG Gdf-15 for predicting the disease severity of a patient with covid-19
WO2022034159A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Igfbp7 for the assessment of silent brain infarcts and cognitive decline
WO2022034172A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Multimarker panel for the assessment of silent brain infarcts and cognitive decline
WO2022034162A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Esm-1 for the assessment of silent brain infarcts and cognitive decline
WO2022090455A1 (en) 2020-11-02 2022-05-05 F. Hoffmann-La Roche Ag Sars-cov-2 nucleocapsid antibodies
WO2022089710A1 (en) 2020-10-30 2022-05-05 F. Hoffmann-La Roche Ag Timp1 as a marker for cholangiocarcinoma
WO2022207628A1 (en) 2021-03-30 2022-10-06 F. Hoffmann-La Roche Ag Scf as blood biomarker for the non-invasive diagnosis of endometriosis
WO2022207685A1 (en) 2021-04-01 2022-10-06 F. Hoffmann-La Roche Ag Psp94 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2022243210A1 (en) 2021-05-17 2022-11-24 F. Hoffmann-La Roche Ag sFRP4 AS BLOOD BIOMARKER FOR THE NON-INVASIVE DIAGNOSIS OF ADENOMYOSIS
WO2023072904A1 (en) 2021-10-26 2023-05-04 F. Hoffmann-La Roche Ag Monoclonal antibodies specific for sars-cov-2 rbd
WO2023083895A1 (en) 2021-11-10 2023-05-19 F. Hoffmann-La Roche Ag Hydrophilic azadibenzocyclooctyne derivatives and metal-free click reactions with these hydrophilic azadibenzocyclooctyne derivatives
WO2023111168A1 (en) 2021-12-17 2023-06-22 F. Hoffmann-La Roche Ag A novel antibody for detection of amyloid beta 42 (aβ42)
WO2023131594A1 (en) 2022-01-05 2023-07-13 F. Hoffmann-La Roche Ag Derivatization of compounds in patient samples for therapeutic drug monitoring (tdm)
WO2023247752A1 (en) 2022-06-23 2023-12-28 F. Hoffmann-La Roche Ag Method for diagnosing endometriosis and for classifying the stage of endometriosis
WO2024017983A1 (en) 2022-07-22 2024-01-25 F. Hoffmann-La Roche Ag Meteorin-like protein (metrnl) as (blood) biomarker for the diagnosis of polycystic ovarian syndrome
WO2024017985A1 (en) 2022-07-22 2024-01-25 F. Hoffmann-La Roche Ag Fibroblast growth factor binding protein 1 (fgfbp1) as (blood) biomarker for the diagnosis of polycystic ovarian syndrome
WO2024017982A1 (en) 2022-07-22 2024-01-25 F. Hoffmann-La Roche Ag Leukotriene a4 hydrolase (lta4h) as (blood) biomarker for the diagnosis of polycystic ovarian syndrome

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2605384T3 (en) * 2012-08-02 2017-03-14 F. Hoffmann-La Roche Ag New iridium-based complexes for ECL
EP2882823B1 (en) * 2012-08-02 2017-02-22 Roche Diagnostics GmbH New iridium-based complexes for ecl

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404097A2 (en) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof
WO1993001161A1 (en) 1991-07-11 1993-01-21 Pfizer Limited Process for preparing sertraline intermediates
US5219847A (en) 1989-06-12 1993-06-15 Shiseido Company, Ltd. Antipruritic composition
EP1418217A1 (en) * 2001-06-04 2004-05-12 Sanyo Electric Co., Ltd. Organo-electroluminescence element, luminescent material and organic compound
WO2005118606A1 (en) * 2004-06-04 2005-12-15 National Institute Of Advanced Industrial Science And Technology Fluorine-substituted iridium complex and luminescent material made with the same
JP2007169474A (en) 2005-12-22 2007-07-05 Showa Denko Kk Polymer light-emitting material, organic electroluminescent element and display

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354352B (en) * 2008-08-28 2010-08-25 江南大学 Sensor for detecting ammonium based on iridium complex electrogenerated chemiluminescence method
CN101451954A (en) * 2008-12-11 2009-06-10 复旦大学 Phosphorescent chemical sensor for qualitatively detecting contrast of aminothiopropionic acid and homocysteine and use thereof
CN101787054B (en) * 2010-03-23 2013-04-17 上海师范大学 Water-soluble cationic iridium complex phosphorescence probe and preparation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219847A (en) 1989-06-12 1993-06-15 Shiseido Company, Ltd. Antipruritic composition
EP0404097A2 (en) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof
WO1993001161A1 (en) 1991-07-11 1993-01-21 Pfizer Limited Process for preparing sertraline intermediates
EP1418217A1 (en) * 2001-06-04 2004-05-12 Sanyo Electric Co., Ltd. Organo-electroluminescence element, luminescent material and organic compound
WO2005118606A1 (en) * 2004-06-04 2005-12-15 National Institute Of Advanced Industrial Science And Technology Fluorine-substituted iridium complex and luminescent material made with the same
JP2007169474A (en) 2005-12-22 2007-07-05 Showa Denko Kk Polymer light-emitting material, organic electroluminescent element and display

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ABBAS ET AL.: "Cellular and Mol. Immunology", 2000, W.B. SAUNDERS, CO.
CYMERMAN, J., J. CHEM. SOC., 1949, pages 703 - 707
HOLLIGER, P. ET AL., PNAS USA, vol. 90, 1993, pages 6444 - 6448
HUDSON, P.J. ET AL., NAT. MED., vol. 9, 2003, pages 129 - 134
JACS, vol. 129, 2007, pages 13364
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NATIONAL INSTITUTE OF HEALTH
LION, C., BULL. SOC. CHIM. BELG., vol. 98, 1989, pages 557 - 566
NICOLAI, E., CHEM. PHARM. BULL., vol. 42, 1994, pages 1617 - 1630
NONOYAMA, M., J. ORGANOMET. CHEM., vol. 86, 1975, pages 263 - 267
PLUECKTHUN: "The Pharmacology of Monoclonal Antibodies", vol. 113, 1994, SPRINGER-VERLAG, pages: 269 - 315
YOUN, S.W., TETRAHEDRON LETT., vol. 50, 2009, pages 4598 - 4601

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227366B2 (en) 2012-08-02 2019-03-12 Roche Diagnostics Operations, Inc. Bis-iridium-complexes for manufacturing of ECL-labels
KR101520527B1 (en) * 2012-11-21 2015-05-14 주식회사 두산 Iridium complex compound and organic electroluminescent device comprising the same
WO2014081161A1 (en) * 2012-11-21 2014-05-30 주식회사 두산 Iridium (iii) complex compound, and organic electroluminescence device comprising same
EP2939288A4 (en) * 2012-12-27 2016-10-26 Canon Kk Organic light-emitting device and display apparatus
US9960370B2 (en) 2012-12-27 2018-05-01 Canon Kabushiki Kaisha Organic light-emitting device and display apparatus
WO2014112450A1 (en) * 2013-01-17 2014-07-24 Canon Kabushiki Kaisha Organic light-emitting element
JP2014138100A (en) * 2013-01-17 2014-07-28 Canon Inc Organic light-emitting element
US9466804B2 (en) 2013-01-17 2016-10-11 Canon Kabushiki Kaisha Organic light-emitting element
US9899613B2 (en) 2013-01-21 2018-02-20 Canon Kabushiki Kaisha Organic light-emitting element
EP2945958A4 (en) * 2013-01-21 2016-08-31 Canon Kk Organometallic complex and organic light-emitting element using the complex
EP2946421A4 (en) * 2013-01-21 2016-09-07 Canon Kk Organic light-emitting element
US9917264B2 (en) 2013-01-21 2018-03-13 Canon Kabushiki Kaisha Organometallic complex and organic light-emitting element using the complex
WO2017050889A1 (en) 2015-09-25 2017-03-30 F. Hoffmann-La Roche Ag Recombinant immunoglobulin heavy chains comprising a sortase conjugation loop and conjugates thereof
US11136376B2 (en) 2015-09-25 2021-10-05 Roche Diagnostics Operations, Inc. Recombinant immunoglobulin heavy chains comprising a sortase conjugation loop and conjugates thereof
CN108698971A (en) * 2016-02-17 2018-10-23 科莱恩国际有限公司 Alkoxylated hydroxybenzoate or amide
WO2017140510A1 (en) * 2016-02-17 2017-08-24 Clariant International Ltd Alkoxylated hydroxybenzoic acid esters or amides
EP3208260A1 (en) * 2016-02-17 2017-08-23 Clariant International Ltd Alkoxylated hydroxybenzoic acid esters or amides
WO2017148854A1 (en) 2016-02-29 2017-09-08 Roche Diagnostics Gmbh Igfbp-7 as a marker in preeclampsia
US11874282B2 (en) 2016-02-29 2024-01-16 Roche Diagnostics Operations, Inc. IGFBP-7 as a marker of preeclampsia
WO2017153574A1 (en) 2016-03-11 2017-09-14 Roche Diagnostics Gmbh Branched-chain amines in electrochemiluminescence detection
US11125695B2 (en) 2016-03-11 2021-09-21 Roche Diagnostics Operations, Inc. Branched-chain amines in electrochemiluminescence detection
US10231639B2 (en) 2016-04-19 2019-03-19 Roche Diagnostics Operations, Inc. Algorithm of NTproBNP and hand held ECG to detect arrhythmia in an elderly population
WO2017216387A1 (en) 2016-06-17 2017-12-21 Roche Diagnostics Gmbh Circulating angiopoietin-2 (ang-2) for the prediction of recurrence of atrial fibrillation
US11644472B2 (en) 2016-06-17 2023-05-09 Roche Diagnostics Operations, Inc. Circulating Angiopoietin-2 (Ang-2) for the prediction of recurrence of atrial fibrillation
WO2018024905A1 (en) 2016-08-04 2018-02-08 Roche Diagnostics Gmbh Circulating esm-1 (endocan) in the assessment of atrial fibrillation and stroke
EP3279665A1 (en) 2016-08-04 2018-02-07 Roche Diagnostics GmbH Circulating esm-1 (endocan) in the assessment of atrial fibrillation
WO2018037060A1 (en) 2016-08-25 2018-03-01 Roche Diagnostics Gmbh Multifunctionalized silicon nanoparticles, processes for their preparation and uses thereof in electrochemiluminescence based detection methods
US11267827B2 (en) 2016-08-25 2022-03-08 Roche Diagnostics Operations, Inc. Multifunctionalized silicon nanoparticles, process for their preparation and uses thereof in electrochemiluminescence based detection methods
US11236386B2 (en) 2017-04-12 2022-02-01 Roche Diagnostics Operations, Inc. Method for labeling of aldehyde containing target molecules
WO2018191389A1 (en) 2017-04-12 2018-10-18 Roche Sequencing Solutions, Inc. A method for sequencing reaction with tagged nucleoside obtained via pictet spengler reaction
WO2018189214A1 (en) 2017-04-12 2018-10-18 F. Hoffmann-La Roche Ag A method for labeling of aldehyde containing target molecules
WO2018229051A1 (en) 2017-06-13 2018-12-20 Roche Diagnostics Gmbh Fatty acid binding protein 3 for the assessment of atrial fibrillation (af)
WO2019012019A1 (en) 2017-07-13 2019-01-17 F. Hoffmann-La Roche Ag New binding agent and assay for pivka
US11466098B2 (en) 2017-07-13 2022-10-11 Roche Diagnostics Operations, Inc. Binding agent and assay for PIVKA
WO2019077113A1 (en) 2017-10-20 2019-04-25 F. Hoffmann-La Roche Ag Copy protection for antibodies
US11491236B2 (en) 2017-10-20 2022-11-08 Roche Diagnostics Operations, Inc. Copy protection for antibodies
US11730821B2 (en) 2017-10-20 2023-08-22 Roche Diagnostics Operations, Inc. Methods of protecting the sequence of an antibody conjugate from being determined
US11946938B2 (en) 2017-12-13 2024-04-02 Roche Diagnostics Operations, Inc. Circulating Angiopoietin-2 (Ang-2) and insulin-like growth factor-binding protein 7 (IGFBP7) for the prediction of stroke
WO2019115620A1 (en) 2017-12-13 2019-06-20 Roche Diagnostics Gmbh Circulating angiopoietin-2 (ang-2) and insulin-like growth factor-binding protein 7 (igfbp7) for the prediction of stroke
WO2019175127A1 (en) 2018-03-14 2019-09-19 F. Hoffmann-La Roche Ag Novel anti-troponint antibodies
WO2019175131A1 (en) 2018-03-14 2019-09-19 F. Hoffmann-La Roche Ag Method for affinity maturation of antibodies
WO2019201901A1 (en) 2018-04-18 2019-10-24 F. Hoffmann-La Roche Ag Novel anti-thymidine kinase antibodies
WO2020016441A1 (en) 2018-07-20 2020-01-23 Roche Diagnostics Gmbh Prediction of preeclampsia based on igfbp-7
WO2020025689A1 (en) 2018-07-31 2020-02-06 F. Hoffmann-La Roche Ag Circulating dkk3 (dickkopf-related protein 3) in the assessment of atrial fibrillation
WO2020030803A1 (en) 2018-08-10 2020-02-13 F. Hoffmann-La Roche Ag Ces-2 (carboxylesterase-2) for the assessment of afib related stroke
WO2020035588A1 (en) 2018-08-16 2020-02-20 Roche Diagnostics Gmbh Circulating tfpi-2 (tissue factor pathway inhibitor 2) in the assessment of atrial fibrillation and anticoagulation therapy
WO2020035605A1 (en) 2018-08-17 2020-02-20 Roche Diagnostics Gmbh Circulating bmp10 (bone morphogenic protein 10) in the assessment of atrial fibrillation
WO2020039001A1 (en) 2018-08-22 2020-02-27 Roche Diagnostics Gmbh Circulating spon-1 (spondin-1) in the assessment of atrial fibrillation
WO2020039085A1 (en) 2018-08-24 2020-02-27 Roche Diagnostics Gmbh Circulating fgfbp-1 (fibroblast growth factor-binding protein 1) in the assessment of atrial fibrillation and for the prediction of stroke
WO2020043868A1 (en) 2018-08-31 2020-03-05 F. Hoffmann-La Roche Ag Thymidine kinase (tk-1) in prognostic indices for dlbcl
WO2020234451A1 (en) 2019-05-23 2020-11-26 Roche Diagnostics Gmbh IGFBP7 RATIO FOR HFpEF
WO2021013781A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag Substance p as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021013785A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag S100a9 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021013786A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag S100a6 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021013783A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag S100a12 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021013784A1 (en) 2019-07-22 2021-01-28 F. Hoffmann-La Roche Ag S100a8 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2021083872A1 (en) 2019-10-28 2021-05-06 F. Hoffmann-La Roche Ag Sepsis management
WO2021094409A1 (en) 2019-11-15 2021-05-20 F. Hoffmann-La Roche Ag Derivatization of beta-lactam antibiotics for massspec measurements in patient samples
WO2021165465A1 (en) 2020-02-20 2021-08-26 Universiteit Maastricht Detection method of circulating bmp10 (bone morphogenetic protein 10)
WO2021185976A1 (en) 2020-03-18 2021-09-23 Roche Diagnostics Gmbh Ret (rearranged during transfection) for the assessment of stroke
EP3943946A1 (en) 2020-07-20 2022-01-26 F. Hoffmann-La Roche AG Gdf-15 for predicting the disease severity of a patient with covid-19
WO2022017980A1 (en) 2020-07-20 2022-01-27 F. Hoffmann-La Roche Ag Gdf-15 for predicting the disease severity of a patient with covid-19
WO2022034172A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Multimarker panel for the assessment of silent brain infarcts and cognitive decline
WO2022034162A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Esm-1 for the assessment of silent brain infarcts and cognitive decline
WO2022034159A1 (en) 2020-08-14 2022-02-17 F. Hoffmann-La Roche Ag Igfbp7 for the assessment of silent brain infarcts and cognitive decline
WO2022089710A1 (en) 2020-10-30 2022-05-05 F. Hoffmann-La Roche Ag Timp1 as a marker for cholangiocarcinoma
WO2022090455A1 (en) 2020-11-02 2022-05-05 F. Hoffmann-La Roche Ag Sars-cov-2 nucleocapsid antibodies
WO2022207628A1 (en) 2021-03-30 2022-10-06 F. Hoffmann-La Roche Ag Scf as blood biomarker for the non-invasive diagnosis of endometriosis
WO2022207685A1 (en) 2021-04-01 2022-10-06 F. Hoffmann-La Roche Ag Psp94 as blood biomarker for the non-invasive diagnosis of endometriosis
WO2022243210A1 (en) 2021-05-17 2022-11-24 F. Hoffmann-La Roche Ag sFRP4 AS BLOOD BIOMARKER FOR THE NON-INVASIVE DIAGNOSIS OF ADENOMYOSIS
WO2023072904A1 (en) 2021-10-26 2023-05-04 F. Hoffmann-La Roche Ag Monoclonal antibodies specific for sars-cov-2 rbd
WO2023083895A1 (en) 2021-11-10 2023-05-19 F. Hoffmann-La Roche Ag Hydrophilic azadibenzocyclooctyne derivatives and metal-free click reactions with these hydrophilic azadibenzocyclooctyne derivatives
WO2023111168A1 (en) 2021-12-17 2023-06-22 F. Hoffmann-La Roche Ag A novel antibody for detection of amyloid beta 42 (aβ42)
WO2023131594A1 (en) 2022-01-05 2023-07-13 F. Hoffmann-La Roche Ag Derivatization of compounds in patient samples for therapeutic drug monitoring (tdm)
WO2023247752A1 (en) 2022-06-23 2023-12-28 F. Hoffmann-La Roche Ag Method for diagnosing endometriosis and for classifying the stage of endometriosis
WO2024017983A1 (en) 2022-07-22 2024-01-25 F. Hoffmann-La Roche Ag Meteorin-like protein (metrnl) as (blood) biomarker for the diagnosis of polycystic ovarian syndrome
WO2024017985A1 (en) 2022-07-22 2024-01-25 F. Hoffmann-La Roche Ag Fibroblast growth factor binding protein 1 (fgfbp1) as (blood) biomarker for the diagnosis of polycystic ovarian syndrome
WO2024017982A1 (en) 2022-07-22 2024-01-25 F. Hoffmann-La Roche Ag Leukotriene a4 hydrolase (lta4h) as (blood) biomarker for the diagnosis of polycystic ovarian syndrome

Also Published As

Publication number Publication date
BR112013019503B1 (en) 2021-05-25
CN103347888A (en) 2013-10-09
MX2013008418A (en) 2013-09-13
US20160145281A1 (en) 2016-05-26
AU2012215497A1 (en) 2013-07-04
JP2014506571A (en) 2014-03-17
JP5786040B2 (en) 2015-09-30
EP2673284A1 (en) 2013-12-18
US20130323719A1 (en) 2013-12-05
EP2673284B1 (en) 2017-08-30
KR20140053834A (en) 2014-05-08
US8835637B2 (en) 2014-09-16
BR112013019503A2 (en) 2020-11-10
ES2645765T3 (en) 2017-12-07
AU2012215497B2 (en) 2016-07-28
CA2822899A1 (en) 2012-08-16
CN103347888B (en) 2016-12-21
SG192675A1 (en) 2013-09-30
MX342921B (en) 2016-10-19

Similar Documents

Publication Publication Date Title
AU2012215497B2 (en) New iridium-based complexes for ECL
EP2880042B1 (en) New iridium-based complexes for ecl
US8772486B2 (en) Iridium-based complexes for ECL
US9416150B2 (en) Iridium-based complexes for ECL
US9403859B2 (en) Iridium-based complexes for ECL
EP2882764B1 (en) New iridium-based complexes for ecl

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12702549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2822899

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012215497

Country of ref document: AU

Date of ref document: 20120207

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012702549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012702549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/008418

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137021037

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013552933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013019503

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013019503

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130731