WO2012104911A1 - Collision detection apparatus - Google Patents

Collision detection apparatus Download PDF

Info

Publication number
WO2012104911A1
WO2012104911A1 PCT/JP2011/000580 JP2011000580W WO2012104911A1 WO 2012104911 A1 WO2012104911 A1 WO 2012104911A1 JP 2011000580 W JP2011000580 W JP 2011000580W WO 2012104911 A1 WO2012104911 A1 WO 2012104911A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
threshold
threshold value
value
protection device
Prior art date
Application number
PCT/JP2011/000580
Other languages
French (fr)
Japanese (ja)
Inventor
絢子 古田
山下 利幸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012555562A priority Critical patent/JP5236126B2/en
Priority to PCT/JP2011/000580 priority patent/WO2012104911A1/en
Publication of WO2012104911A1 publication Critical patent/WO2012104911A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/0133Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by integrating the amplitude of the input signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/01332Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis
    • B60R21/01336Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis using filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01322Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value comprising variable thresholds, e.g. depending from other collision parameters

Definitions

  • the present invention relates to a collision detection device that activates an occupant protection device by determining a collision from an output of a state measurement sensor in a vehicle.
  • an activation method of an occupant protection device such as an air bag
  • the output of sensors installed for measuring the state of a vehicle such as a speed sensor and an acceleration sensor
  • the integrated value is larger than a preset threshold value.
  • a method of starting when it is large is also known.
  • Patent Document 1 includes a first acceleration sensor installed in a vehicle interior (ctr) and a second acceleration sensor installed in a crash zone (crh) at the front of the vehicle, and the sensor outputs Gctr, Gcrh, respectively.
  • FIG. 12 shows a diagram for explaining a conventional activation method as in Patent Document 1.
  • the airbag activation condition (that is, the condition for determining a collision) is set to
  • the integral value Vctr of the first acceleration sensor
  • Vctr of the first acceleration sensor is subtracted from the integral value Vcrh of the second acceleration sensor, the difference becomes equal to or greater than the threshold value, so that it can be determined that the vehicle is in collision and the airbag is activated.
  • FIG. 12B since the difference is smaller than the threshold value, it can be determined that there is no collision, and the airbag is not activated.
  • the output of the acceleration sensor has only a positive component, but actually, the direction of acceleration may be reversed by vibration, and a negative component may be superimposed.
  • FIG. 13 shows an example where a negative component is superimposed on the sensor output. Again, the activation condition is
  • . When the negative component is superimposed, the difference ( Vcrh ⁇ Vctr) is equal to or larger than the threshold value at the time of collision as shown in FIG. 13A. Therefore, the collision can be correctly determined and the occupant protection device can be activated appropriately. . On the other hand, at the time of non-collision, as shown in FIG.
  • the present invention has been made in order to solve the above-described problems.
  • the object is to obtain a detection device.
  • the collision detection device acquires each output value of a pair of sensors, extracts a feature of each output value, and outputs each of the output values subjected to the linear operation from a predetermined first threshold value.
  • a large component is output as it is and a component equal to or lower than the first threshold is replaced with the first threshold, or a component smaller than a predetermined first threshold is output as it is and a component equal to or higher than the first threshold is replaced with the first threshold.
  • Clip processing a difference calculation unit that calculates a difference between the clipped output values, and a threshold comparison that determines whether the vehicle has collided by comparing the difference calculated by the difference calculation unit with a predetermined second threshold value
  • a protection device drive unit that outputs an operation signal to the protection device when it is determined that the threshold comparison unit has collided, and activates a protection device for passengers or pedestrians installed in the vehicle. It is intended.
  • the sensor output is clipped and the difference is calculated and used for collision determination. Therefore, even when a negative component is superimposed on the sensor output at the time of non-collision, it is used for passengers or pedestrians.
  • the protective device can be reliably deactivated.
  • FIG. 3 is a flowchart showing the operation of the collision detection apparatus according to the first embodiment. It is a figure explaining the process of the collision detection apparatus which concerns on Embodiment 1, and is an example at the time of the collision which should act
  • FIG. 10 is a block diagram illustrating a configuration of a collision detection device according to a third embodiment. 10 is a flowchart illustrating the operation of the collision detection device according to the third embodiment. It is a figure explaining the process of the conventional collision detection apparatus, and illustrates the case where the minus component is not superimposed on the sensor output. It is a figure explaining the process of the conventional collision detection apparatus, and illustrates the case where the minus component is superimposed on the sensor output.
  • FIG. 1 A collision detection device 1 shown in FIG. 1 includes a communication interface (hereinafter referred to as I / F) 2, a microcomputer (hereinafter referred to as microcomputer) 3, and an ECU (Electric Control Unit) including an occupant protection device drive circuit 10. Etc.
  • the collision detection device 1 performs the collision determination based on the magnitude relationship between the outputs of the first and second acceleration sensors 11 and 12 respectively installed on the left and right of the front portion of the vehicle. When it is determined that the first and second occupant protection devices 13 and 14 are operated.
  • the communication I / F 2 is an interface that inputs the outputs of the first and second acceleration sensors 11 and 12 to the microcomputer 3.
  • the first linear arithmetic processing unit 4 performs linear arithmetic processing such as integration processing and low-pass filter (hereinafter, LPF) processing on the output of the first acceleration sensor 11 to extract the characteristics of the sensor output.
  • the second linear arithmetic processing unit 5 similarly performs linear arithmetic processing on the output of the second acceleration sensor 12.
  • the first clip processing unit 6 outputs a component larger than the clip threshold value V THR1 (first threshold value) as it is for the output value of the first linear arithmetic processing unit 4, and replaces the component value below the first threshold value with the first threshold value. Perform clip processing.
  • the second clip processing unit 7 similarly performs clip processing on the output value of the second linear arithmetic processing unit 5.
  • the difference calculation unit 8 calculates the difference between the output value clipped by the first clip processing unit 6 and the output value clipped by the second clip processing unit 7.
  • the threshold value comparison unit 9 determines that the vehicle has collided when the difference calculated by the difference calculation unit 8 is larger than the collision determination threshold value V THR2p (second threshold value).
  • the occupant protection device drive circuit (protection device drive unit) 10 outputs an operation signal to the first and second occupant protection devices 13 and 14 when it is determined that the threshold comparison unit 9 has collided.
  • Each of the first and second acceleration sensors 11 and 12 measures and outputs an impact on the vehicle.
  • Each output is input from the communication I / F 2 to the microcomputer 3, and the output values G1 and G2 are acquired at each sampling time ⁇ t (step ST1).
  • the first linear arithmetic processing unit 4 performs linear arithmetic processing (for example, integration processing) on the output value G1 of the first acceleration sensor 11 to obtain the integral value V1 (step ST2).
  • the second linear arithmetic processing unit 5 performs linear arithmetic processing (for example, integration processing) on the output value G2 of the second acceleration sensor 12 to obtain the integral value V2 (step ST3).
  • linear arithmetic processing for example, integration processing
  • integration processing it is possible to extract the deceleration amount of the vehicle (integrated values V1, V2) as a feature of the sensor output.
  • the first clip processing unit 6 performs clip processing on the integrated value V1 of the first acceleration sensor 11 (steps ST4 and ST5). That is, preset clip threshold V THR1 larger component is output as it is, the following ingredients clip threshold V THR1 is replaced with the clip threshold V THR1.
  • the first clip processing unit 6 compares the integral value V1 with the clip threshold “0” and keeps the integral value V1 equal to or greater than the clip threshold “0” (step ST4 “YES”), The integral value V1 smaller than the clip threshold “0” is set to 0 (steps ST4 “NO”, ST5).
  • the second clip processing unit 7 performs the clip process on the integrated value V2 of the second acceleration sensor 12 in the same manner as described above (steps ST6 and ST7). Only positive components that are collision components can be extracted from the sensor output by the clip processing.
  • the difference calculation unit 8 obtains a difference value Vd by subtracting the integrated values V1 and V2 after the clipping process (step ST8).
  • the threshold value comparison unit 9 compares the difference value Vd with a preset collision determination threshold value V THR2p (step ST9). If the difference value Vd is equal to or greater than the collision determination threshold value V THR2p , it is determined that a collision has occurred (step ST9 " YES ”), a collision detection signal is output from the threshold comparison unit 9 to the occupant protection device drive circuit 10.
  • the occupant protection device drive circuit 10 When the occupant protection device drive circuit 10 receives the collision detection signal output from the threshold comparison unit 9, the occupant protection device drive circuit 10 outputs an operation signal to the first and second occupant protection devices 13 and 14, respectively. 13 and 14 are operated (step ST10). On the other hand, if the difference value Vd is smaller than the collision determination threshold value V THR2p , the threshold value comparison unit 9 determines that there is no collision ("NO" in step ST9) and returns to step ST1.
  • the operating condition of the first and second occupant protection devices 13 and 14 (that is, the condition for determining a collision) is set to
  • FIG. 4 is an example at the time of a collision.
  • the graph of FIG. 4A shows the integration value V1 obtained by the first linear arithmetic processing unit 4 performing integration processing on the output value G1 of the first acceleration sensor 11.
  • the graph of FIG. 4B shows an integrated value V2 obtained by the second linear arithmetic processing unit 5 performing the same integration process on the output value G2 of the second acceleration sensor 12.
  • Negative components are superimposed on the integral values V1 and V2. These integral values V1 and V2 are clipped, respectively, and after removing a negative component as shown in FIGS. 4C and 4D, a difference value Vd is calculated.
  • the collision determination of FIG. 4 (e) since the difference value Vd is equal to or greater than the collision determination threshold V THR2p, it is correctly determined that a collision has occurred, and the first and second occupant protection devices 13, 14 are activated.
  • FIG. 5 is an example when there is no collision. Also in FIG. 5, similarly to FIG. 4, the sensor output values G1, G2 on which the minus component is superimposed are integrated to obtain integrated values V1, V2, and the difference value Vd is calculated after clipping. In the collision determination of FIG. 5 (e), since the difference value Vd is smaller than the collision determination threshold V THR2p , it is correctly determined that there is no collision, and the first and second occupant protection devices 13, 14 do not operate. As described above, even when the minus component is superimposed, only the component of 0 or more is extracted by the clipping process, so that the sign is not reversed when the difference is calculated. Therefore, as shown in FIG.
  • the collision detection device 1 even when collision / non-collision is difficult to identify with the prior art, even when there is no collision and a negative component is superimposed on the integral value, the collision detection device 1 Then, it becomes possible to appropriately identify the collision / non-collision, and the occupant protection device can be deactivated at the time of non-collision. On the other hand, the occupant protection device can be reliably operated as shown in FIG. Therefore, the occupant protection device can be operated more accurately.
  • the collision detection apparatus 1 acquires the output values G1 and G2 from the first acceleration sensor 11 and the second acceleration sensor 12 installed in the vehicle and extracts the features.
  • First and second clip processing for outputting linear calculation processing units 4 and 5 and components larger than 0 that are the clipping threshold V THR1 as they are for the integrated values V1 and V2 subjected to linear calculation processing, and replacing components below 0 with 0.
  • the vehicle A threshold comparison unit 9 that determines that a collision has occurred, and an occupant protection device that outputs an operation signal to the first and second occupant protection devices 13 and 14 when it is determined that the threshold comparison unit 9 has collided And configured to include a drive circuit 10. For this reason, even when a negative component is redundant in the sensor output at the time of non-collision, the occupant protection device can be reliably deactivated.
  • the components greater than the clip threshold value V THR1 are output as they are for the integral values V1 and V2, and the component equal to or less than the clip threshold value V THR1 is output to the clip.
  • the threshold value V THR1 is replaced, on the contrary, a component smaller than the clip threshold value V THR1 may be output as it is, and a component equal to or higher than the clip threshold value V THR1 may be replaced with the clip threshold value V THR1 .
  • Which configuration is to be used may be determined according to the mounting direction of the first and second acceleration sensors 11 and 12 or the like.
  • the setting of whether to determine a collision when the difference value Vd is greater than the collision determination threshold V THR2p or to determine a collision when the difference value Vd is smaller may be determined according to the device configuration or the like.
  • first and second acceleration sensors 11 and 12 are arranged side by side on the left and right sides of the front part of the vehicle.
  • the present invention is not limited to this.
  • one may be installed in the front part of the vehicle and the other may be installed in the passenger compartment.
  • two or more acceleration sensors may be installed in the vehicle and used for collision determination.
  • a collision is determined based on the magnitude relationship between the outputs of the acceleration sensors A and B, and based on the magnitude relationship between the outputs of the acceleration sensors B and C.
  • the collision detection device 1 can use a plurality of pairs of acceleration sensors such that a collision is determined and a collision is determined based on the magnitude relationship between the outputs of the acceleration sensors C and A.
  • FIG. FIG. 6 is a block diagram showing the configuration of the collision detection apparatus 1 according to Embodiment 2 of the present invention.
  • the microcomputer 3 newly includes a first threshold value comparison unit 21, a second threshold value comparison unit 22, and a logical operation unit 23, and the first threshold value determination unit 9 separate from the main collision determination by the threshold value comparison unit 9.
  • the safing judgment by the 2nd threshold value comparison parts 21 and 22 is implemented. 6 that are the same as or equivalent to those in FIGS. 1 and 2 are given the same reference numerals, and descriptions thereof are omitted.
  • This safing determination is caused by a collision when the difference value Vd between the first and second acceleration sensors 11 and 12 becomes large, or is caused by a phenomenon that is not a collision (for example, either one of them) This is performed for the purpose of improving the deployment performance of the first and second occupant protection devices 13 and 14 by identifying hammering or the like in the vicinity of the sensor, or the sensor failure).
  • steps ST1 to ST9 in FIG. 7 are the same as steps ST1 to ST9 in FIG. 3 and thus will not be described.
  • the explanation will focus on steps ST21 to ST23 unique to the second embodiment.
  • the threshold value comparison unit 9 determines that the difference value Vd is equal to or greater than the collision determination threshold value V THR2p and is a collision (step ST9 “YES”), the first threshold value comparison unit 21 subsequently performs the clipping process on the first acceleration sensor 11.
  • the safing determination threshold value V THR3p is a threshold value that does not cause the first acceleration sensor 11 to be deployed during non-collision such as hammering, and is set to a value that does not frequently occur during normal vehicle travel.
  • step ST21 “YES”) If the integrated value V1 is greater than or equal to the safing determination threshold value V THR3p , the first threshold value comparing unit 21 determines that there is a collision (step ST21 “YES”), and proceeds to step ST22. On the other hand, if the integrated value V1 is smaller than the safing determination threshold value V THR3p , the first threshold value comparing unit 21 determines that there is no collision (step ST21 “NO”). In this case, the process returns to step ST1 and the process is repeated.
  • the second threshold value comparison unit 22 compares the integrated value V2 of the clipped second acceleration sensor 12 with a preset safing determination threshold value V THR3p to identify collision or non-collision (step ST22). At the time of collision (step ST22 “YES”), the process proceeds to step ST23.
  • the logical operation unit 23 determines that a collision has occurred only when signals are input from the threshold value comparison unit 9, the first threshold value comparison unit 21, and the second threshold value comparison unit 22, respectively. Is output to the occupant protection device drive circuit 10 (step ST23).
  • the occupant protection device drive circuit 10 outputs an operation signal to the first and second occupant protection devices 13 and 14 and operates them. That is, in the second embodiment, the threshold comparison unit that performs the final collision determination is configured by the threshold comparison unit 9, the first and second threshold comparison units 21 and 22, and the logical operation unit 23.
  • the logic operation unit 23 is non-collision. And return to step ST1.
  • the first and second occupant protection devices 13 and 14 can be deactivated in the actual non-collision case.
  • the threshold comparison unit 9 has the collision determination threshold V THR2p for determining the collision, and the first and second threshold comparison units 21 and 22 identify the collision and the non-collision.
  • the logic operation unit 23 has a determination threshold value V THR3p , the difference value Vd calculated by the difference calculation unit 8 in the threshold value comparison unit 9 is larger than the collision determination threshold value V THR2p , and the first and second threshold value comparison units 21, 22, when the output values V1 and V2 subjected to the linear calculation of the first and second linear calculation processing units 4 and 5 are larger than the safing determination threshold value V THR3p , it is determined that the vehicle has collided. For this reason, non-collisions such as hammering can be identified as collisions, and unnecessary operations of the first and second occupant protection devices 13 and 14 can be prevented.
  • the integration values V1 and V2 subjected to the linear calculation processing as the pre-processing for collision determination in the first and second linear calculation processing units 4 and 5 are used.
  • it was set as the structure compared with the safing determination threshold value VTHR3p it is not limited to this.
  • a configuration may be provided in which a dedicated linear arithmetic processing unit for performing optimal linear arithmetic processing as pre-processing for safing determination is separately provided.
  • FIG. 8 shows a modification of the collision detection apparatus 1 according to the second embodiment, and includes a configuration in which a third linear arithmetic processing unit 24 and a fourth linear arithmetic processing unit 25 that perform linear arithmetic processing exclusively for safing determination are added. It is.
  • These third and fourth linear arithmetic processing units 24 and 25 may be configured to perform, for example, LPF processing at a stage prior to step ST21 in FIG.
  • Embodiment 3 FIG.
  • the first and second acceleration sensors 11 and 12 are installed on the left and right of the front part of the vehicle to detect the acceleration generated in the vehicle at the time of the collision.
  • the first and second acceleration sensors 11 and 12 are installed in the left and right pillar portions in the center of the vehicle, so that the vehicle in a side collision It is configured to detect the generated acceleration.
  • the side collision is determined based on the magnitude relationship between the outputs of the first and second acceleration sensors 11, 12, and the direction of the side collision is determined, so that the left occupant protection device 35 installed on the left side of the vehicle or the right side One of the right occupant protection devices 36 installed in the vehicle is operated.
  • FIG. 10 is a block diagram showing the configuration of the collision detection apparatus 1 according to Embodiment 3 of the present invention.
  • the microcomputer 3 includes, in place of the threshold comparison unit 9, a left threshold comparison unit 31 that determines a side collision on the left side of the vehicle and a right threshold comparison unit 32 that determines a side collision on the right side of the vehicle.
  • the collision detection device 1 includes a left occupant protection device drive circuit (protection device drive unit) 33 that operates the left occupant protection device 35 and a right occupant protection device drive circuit (protection device drive) that operates the right occupant protection device 36. Part) 34. 10 that are the same as or equivalent to those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
  • the operating condition of the left occupant protection device 35 (that is, the condition for determining a side collision) is set to
  • the collision determination threshold value V THR2p ′ (second threshold value) is set.
  • the operating condition of the right occupant protection device 36 is
  • the threshold value comparison unit that performs final side collision determination is configured by the left and right threshold value comparison units 31 and 32.
  • the left threshold value comparison unit 31 compares the difference value Vd calculated by the difference calculation unit 8 with a preset side collision determination threshold value V THR2p ′ (step ST31), and the difference value Vd is equal to or greater than the side collision determination threshold value V THR2p ′ .
  • step ST31 “YES”) If there is, it is determined that a side collision has occurred on the left side of the vehicle (step ST31 “YES”), and a side collision detection signal is output from the left side threshold comparison unit 31 to the left occupant protection device drive circuit 33.
  • the left occupant protection device drive circuit 33 receives the side collision detection signal output from the left threshold value comparison unit 31, the left occupant protection device drive circuit 33 outputs an operation signal to the left occupant protection device 35 to operate (step ST32).
  • the right side threshold value comparison unit 32 compares the difference value Vd with a preset side collision determination threshold value V THR4m. (Step ST33) If the difference value Vd is equal to or less than the side collision determination threshold value V THR4m , it is determined that a side collision has occurred (step ST33 “YES”), and a side collision detection signal is sent from the right threshold comparison unit 32 to the right occupant protection device drive circuit 34 Is output. When the right occupant protection device drive circuit 34 receives the side collision detection signal output from the right threshold value comparison unit 32, it outputs an operation signal to the right occupant protection device 36 to operate (step ST34).
  • step ST33 “NO”) when the difference value Vd is smaller than the side collision determination threshold value V THR2p ′ and larger than the side collision determination threshold value V THR4m , both the left and right sides are non-side collisions (step ST33 “NO”), and step ST1. Return to.
  • the left and right threshold comparison units 31 and 32 include the side collision determination threshold value V THR2p ′ and the side collision determination threshold value V THR4m having a smaller value than the side collision determination threshold value V THR4m.
  • the difference value Vd calculated by 8 is larger than the side collision determination threshold value V THR2p ′ and smaller than the side collision determination threshold value V THR4m , it is determined that the vehicle has collided , and the left and right occupant protection device drive circuit 33 respectively.
  • the occupant protection device that should be activated can be made separately according to the result of the threshold comparison between the positive component and the negative component, the left occupant protection device is activated in the case of a left collision, and the right occupant protection device is activated in the case of a right collision. be able to.
  • the side collision is determined using the positive component side collision determination threshold and the negative component side collision determination threshold, and different occupant protection devices are operated.
  • the threshold is limited to this. It is not something.
  • the collision detection device 1 compares the threshold value with the difference value using two or more positive component collision determination threshold values that are different in size.
  • the strength of the operation of the single occupant protection device may be changed according to the size of the collision determination threshold.
  • the configuration example using the acceleration sensor that measures the acceleration of the vehicle as the state measurement sensor for detecting the collision or the side collision has been described.
  • the present invention is not limited to this.
  • a speed sensor that measures the speed of the vehicle or a pressure sensor that measures a change in the pressure of the vehicle may be used.
  • the physical quantity measured by the acceleration sensor is an impact applied to the vehicle, and as the linear calculation processing for the output value, integration processing, LPF processing, and the like are preferable.
  • the output value after integration processing represents the deceleration amount of the vehicle, and the output value after LPF processing represents the impact on the vehicle.
  • the physical quantity measured by the speed sensor is the amount of deceleration of the vehicle, and as the linear calculation process for this output value, equal-magnification processing, LPF processing, or the like is suitable. Note that the output value after the processing for both the equal magnification processing and the LPF processing represents the deceleration amount of the vehicle.
  • the pressure sensor is installed in a sealed space at a location where the vehicle is deformed at the time of a collision, thereby detecting a collision of the vehicle based on a pressure change in the space. That is, the physical quantity measured by the pressure sensor is the pressure change amount of the vehicle space that is deformed.
  • Proportional calculation processing is suitable as the linear calculation processing for the output value, and the output value after processing represents the volume change amount of the vehicle space to be deformed.
  • the collision detection device reliably determines non-collision even when a negative component is superimposed on the sensor output at the time of non-collision. It is suitable for use in a collision detection device or the like configured to perform collision determination by processing.
  • 1 collision detection device 2 communication I / F, 3 microcomputer, 4 first linear operation processing unit, 5 second linear operation processing unit, 6 first clip processing unit, 7 second clip processing unit, 8 differential operation unit, 9 Threshold comparison unit, 10 occupant protection device drive circuit, 11 first acceleration sensor, 12 second acceleration sensor, 13 first occupant protection device, 14 second occupant protection device, 21 first threshold comparison unit, 22 second threshold comparison unit , 23 logic operation unit, 24 third linear operation processing unit, 25 fourth linear operation processing unit, 31 left threshold comparison unit, 32 right threshold comparison unit, 33 left occupant protection device drive circuit, 34 right occupant protection device drive circuit, 35 Left passenger protection device, 36 Right passenger protection device.

Abstract

A first linear arithmetic processor (4) integrates and processes an output value of a first acceleration sensor (11), and a first clip processor (6) extracts a component (V1) that is greater than a clip threshold value (0). A second linear arithmetic processor (5) integrates and processes an output value of a second acceleration processor (12), and a second clip processor (7) extracts a component (V2) that is greater than the clip threshold value. A differential arithmetic unit (8) calculates the differential value of V1 and V2, a threshold value comparator (9) determines that a vehicle has undergone a collision when the differential value is greater than a collision determination threshold value, and a drive circuit (10) for occupant protection devices causes first and second occupant protection devices (13, 14) to operate.

Description

衝突検知装置Collision detection device
 この発明は、車両において、状態計測センサの出力より衝突を判定して乗員保護装置を作動させる衝突検知装置に関する。 The present invention relates to a collision detection device that activates an occupant protection device by determining a collision from an output of a state measurement sensor in a vehicle.
 従来、エアバッグ等の乗員保護装置の起動方法としては、速度センサおよび加速度センサなど、車両の状態を計測するために設置されたセンサの出力を積分し、この積分値が予め設定した閾値よりも大きい場合に起動させる方法が公知である。さらに、2個以上のセンサからの出力に対して、各々の積分値の差分が閾値よりも大きい場合に乗員保護装置を起動させる方法も公知である。 Conventionally, as an activation method of an occupant protection device such as an air bag, the output of sensors installed for measuring the state of a vehicle such as a speed sensor and an acceleration sensor is integrated, and the integrated value is larger than a preset threshold value. There is a known method of starting when it is large. Further, a method of starting an occupant protection device when the difference between the integrated values of the outputs from two or more sensors is larger than a threshold value is also known.
 例えば特許文献1では、車室内(ctr)に設置された第1加速度センサと、車両前部のクラッシュゾーン(crh)に設置された第2加速度センサとを有し、それぞれのセンサ出力Gctr,Gcrhの積分値Vctr,Vcrhを減算して、その差分(=Vcrh-Vctr)が予め設定された閾値以上のときにエアバッグを作動させる起動方法が開示されている。また、センサ出の差分(=Gcrh-Gctr)が予め設置された閾値以上のときにエアバッグを作動させる起動方法も開示されている。 For example, Patent Document 1 includes a first acceleration sensor installed in a vehicle interior (ctr) and a second acceleration sensor installed in a crash zone (crh) at the front of the vehicle, and the sensor outputs Gctr, Gcrh, respectively. A starting method is disclosed in which the airbag is activated when the integral values Vctr and Vcrh are subtracted and the difference (= Vcrh−Vctr) is equal to or greater than a preset threshold value. An activation method is also disclosed in which the airbag is activated when the difference in sensor output (= Gcrh−Gctr) is equal to or greater than a preset threshold value.
 図12に、特許文献1のような従来の起動方法を説明する図を示す。ここでは、エアバッグの起動条件(即ち、衝突と判定する条件)を|Vcrh|>|Vctr|とし、|Vcrh|<|Vctr|では起動させない。図12(a)において、第2加速度センサの積分値Vcrhから第1加速度センサの積分値Vctrを減算すると、差分が閾値以上になるので衝突と判定でき、エアバッグを起動させる。一方、図12(b)においては、差分が閾値より小さいので非衝突と判定でき、エアバッグを起動させない。 FIG. 12 shows a diagram for explaining a conventional activation method as in Patent Document 1. In FIG. Here, the airbag activation condition (that is, the condition for determining a collision) is set to | Vcrh |> | Vctr |, and is not activated when | Vcrh | <| Vctr |. In FIG. 12A, if the integral value Vctr of the first acceleration sensor is subtracted from the integral value Vcrh of the second acceleration sensor, the difference becomes equal to or greater than the threshold value, so that it can be determined that the vehicle is in collision and the airbag is activated. On the other hand, in FIG. 12B, since the difference is smaller than the threshold value, it can be determined that there is no collision, and the airbag is not activated.
特許第3541211号公報Japanese Patent No. 3542111
 図12の例では、加速度センサの出力はプラス成分のみであるが、実際には、振動により加速度の方向が逆になったりして、マイナス成分が重畳する場合がある。図13に、センサ出力にマイナス成分が重畳した場合の例を示す。ここでも、起動条件は|Vcrh|>|Vctr|である。
 マイナス成分が重畳した場合、衝突時には、図13(a)に示すように差分(=Vcrh-Vctr)が閾値以上になるので、正しく衝突を判定でき、乗員保護装置を適切に起動させることができる。
 一方、非衝突時には、図13(b)に示すように積分値Vctrのマイナス成分を減算すると符号が逆転し、差分(=Vcrh-Vctr)がプラス側に積算されて閾値以上になるので、衝突と非衝突とを適切に識別できない。そのため、乗員保護装置を起動すべきでない非衝突時であっても、乗員保護装置を起動させてしまう可能性があった。
In the example of FIG. 12, the output of the acceleration sensor has only a positive component, but actually, the direction of acceleration may be reversed by vibration, and a negative component may be superimposed. FIG. 13 shows an example where a negative component is superimposed on the sensor output. Again, the activation condition is | Vcrh |> | Vctr |.
When the negative component is superimposed, the difference (= Vcrh−Vctr) is equal to or larger than the threshold value at the time of collision as shown in FIG. 13A. Therefore, the collision can be correctly determined and the occupant protection device can be activated appropriately. .
On the other hand, at the time of non-collision, as shown in FIG. 13B, if the minus component of the integral value Vctr is subtracted, the sign is reversed, and the difference (= Vcrh−Vctr) is integrated on the plus side and becomes equal to or greater than the threshold value. And non-collision cannot be properly identified. For this reason, there is a possibility that the occupant protection device may be activated even when the occupant protection device should not be activated.
 このように、センサ出力にマイナス成分が重畳すると、衝突/非衝突を適切に識別できないという課題があった。
 なお、マイナス成分の影響は、センサを1個のみ使用する場合には発生せず、2個以上使用して差分処理を行う場合に特有の課題である。また、図示例ではマイナス成分の影響を説明するためにもっとも単純な例を示したが、実際の衝突においてはこのようなマイナス成分が繰り返し発生するケースもある。その場合、出力のばらつきを考慮しようとするとより複雑になり、閾値調整のみでは適切な衝突/非衝突の識別が難しい。
As described above, when a negative component is superimposed on the sensor output, there is a problem that collision / non-collision cannot be properly identified.
Note that the influence of the minus component does not occur when only one sensor is used, and is a problem peculiar when difference processing is performed using two or more sensors. In the illustrated example, the simplest example is shown to explain the influence of the negative component. However, in the actual collision, such a negative component may repeatedly occur. In this case, it becomes more complicated to consider output variation, and it is difficult to identify appropriate collision / non-collision only by adjusting the threshold.
 この発明は、上記のような課題を解決するためになされたもので、非衝突時のセンサ出力にマイナス成分が重畳している場合にも乗員保護装置を確実に非作動とすることのできる衝突検知装置を得ることを目的とする。 The present invention has been made in order to solve the above-described problems. A collision that can reliably deactivate the occupant protection device even when a negative component is superimposed on the sensor output at the time of non-collision. The object is to obtain a detection device.
 この発明に係る衝突検知装置は、一対のセンサの各出力値を取得し、当該各出力値の特徴を抽出する線形演算処理部と、線形演算処理した出力値それぞれについて、所定の第1閾値より大きい成分をそのまま出力すると共に当該第1閾値以下の成分を当該第1閾値に置き換えるか、所定の第1閾値より小さい成分をそのまま出力すると共に当該第1閾値以上の成分を当該第1閾値に置き換えるクリップ処理と、クリップ処理した出力値同士の差分を算出する差分演算部と、差分演算部が算出した差分を所定の第2閾値と比較して、車両が衝突したか否かを判定する閾値比較部と、閾値比較部が衝突したと判定した場合に保護装置へ作動信号を出力する保護装置駆動部とを備え、車両に設置された乗員用または歩行者用の保護装置を作動させるものである。 The collision detection device according to the present invention acquires each output value of a pair of sensors, extracts a feature of each output value, and outputs each of the output values subjected to the linear operation from a predetermined first threshold value. A large component is output as it is and a component equal to or lower than the first threshold is replaced with the first threshold, or a component smaller than a predetermined first threshold is output as it is and a component equal to or higher than the first threshold is replaced with the first threshold. Clip processing, a difference calculation unit that calculates a difference between the clipped output values, and a threshold comparison that determines whether the vehicle has collided by comparing the difference calculated by the difference calculation unit with a predetermined second threshold value And a protection device drive unit that outputs an operation signal to the protection device when it is determined that the threshold comparison unit has collided, and activates a protection device for passengers or pedestrians installed in the vehicle. It is intended.
 この発明によれば、センサ出力をクリップ処理した上で差分を算出し、衝突判定に用いるようにしたので、非衝突時のセンサ出力にマイナス成分が重畳している場合にも乗員用または歩行者用の保護装置を確実に非作動とすることができる。 According to the present invention, the sensor output is clipped and the difference is calculated and used for collision determination. Therefore, even when a negative component is superimposed on the sensor output at the time of non-collision, it is used for passengers or pedestrians. The protective device can be reliably deactivated.
この発明の実施の形態1に係る衝突検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the collision detection apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る衝突検知装置を搭載する車両の構成例を示す図である。It is a figure which shows the structural example of the vehicle carrying the collision detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る衝突検知装置の動作を示すフローチャートである。3 is a flowchart showing the operation of the collision detection apparatus according to the first embodiment. 実施の形態1に係る衝突検知装置の処理を説明する図であり、乗員保護装置を作動すべき衝突時の例である。It is a figure explaining the process of the collision detection apparatus which concerns on Embodiment 1, and is an example at the time of the collision which should act | operate a passenger | crew protection apparatus. 実施の形態1に係る衝突検知装置の処理を説明する図であり、乗員保護装置を非作動とすべき非衝突時の例である。It is a figure explaining the process of the collision detection apparatus which concerns on Embodiment 1, and is an example at the time of the non-collision which should make a passenger | crew protection apparatus non-operation. この発明の実施の形態2に係る衝突検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of the collision detection apparatus which concerns on Embodiment 2 of this invention. 実施の形態2に係る衝突検知装置の動作を示すフローチャートである。6 is a flowchart illustrating an operation of the collision detection device according to the second embodiment. 実施の形態2に係る衝突検知装置の変形例を示すブロック図である。It is a block diagram which shows the modification of the collision detection apparatus which concerns on Embodiment 2. FIG. この発明の実施の形態3に係る衝突検知装置を搭載する車両の構成例を示す図である。It is a figure which shows the structural example of the vehicle carrying the collision detection apparatus which concerns on Embodiment 3 of this invention. 実施の形態3に係る衝突検知装置の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a collision detection device according to a third embodiment. 実施の形態3に係る衝突検知装置の動作を示すフローチャートである。10 is a flowchart illustrating the operation of the collision detection device according to the third embodiment. 従来の衝突検知装置の処理を説明する図であり、センサ出力にマイナス成分が重畳していない場合を例示する。It is a figure explaining the process of the conventional collision detection apparatus, and illustrates the case where the minus component is not superimposed on the sensor output. 従来の衝突検知装置の処理を説明する図であり、センサ出力にマイナス成分が重畳している場合を例示する。It is a figure explaining the process of the conventional collision detection apparatus, and illustrates the case where the minus component is superimposed on the sensor output.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1に示す衝突検知装置1は、通信インタフェース(以下、I/F)2、マイクロコンピュータ(以下、マイコン)3、および乗員保護装置駆動回路10を備えるECU(Electric Control Unit)で構成され、車両等に搭載される。ここでは、衝突検知装置1が、図2に示すように車両前部の左右にそれぞれ設置された第1および第2加速度センサ11,12の出力の大小関係に基づいて衝突判定を実施し、衝突と判定した場合に第1および第2乗員保護装置13,14を作動させるようにする。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
A collision detection device 1 shown in FIG. 1 includes a communication interface (hereinafter referred to as I / F) 2, a microcomputer (hereinafter referred to as microcomputer) 3, and an ECU (Electric Control Unit) including an occupant protection device drive circuit 10. Etc. Here, as shown in FIG. 2, the collision detection device 1 performs the collision determination based on the magnitude relationship between the outputs of the first and second acceleration sensors 11 and 12 respectively installed on the left and right of the front portion of the vehicle. When it is determined that the first and second occupant protection devices 13 and 14 are operated.
 衝突検知装置1において、通信I/F2は、第1および第2加速度センサ11,12それぞれの出力をマイコン3へ入力するインタフェースである。
 第1線形演算処理部4は、第1加速度センサ11の出力に対して積分処理、ローパスフィルタ(以下、LPF)処理などの線形演算処理を行ってセンサ出力の特徴を抽出する。第2線形演算処理部5は、第2加速度センサ12の出力に対して同じく線形演算処理を行う。
 第1クリップ処理部6は、第1線形演算処理部4の出力値について、クリップ閾値VTHR1(第1閾値)より大きい成分をそのまま出力すると共に、第1閾値以下の成分は第1閾値に置き換えるクリップ処理を行う。第2クリップ処理部7は、第2線形演算処理部5の出力値について同じくクリップ処理を行う。
In the collision detection device 1, the communication I / F 2 is an interface that inputs the outputs of the first and second acceleration sensors 11 and 12 to the microcomputer 3.
The first linear arithmetic processing unit 4 performs linear arithmetic processing such as integration processing and low-pass filter (hereinafter, LPF) processing on the output of the first acceleration sensor 11 to extract the characteristics of the sensor output. The second linear arithmetic processing unit 5 similarly performs linear arithmetic processing on the output of the second acceleration sensor 12.
The first clip processing unit 6 outputs a component larger than the clip threshold value V THR1 (first threshold value) as it is for the output value of the first linear arithmetic processing unit 4, and replaces the component value below the first threshold value with the first threshold value. Perform clip processing. The second clip processing unit 7 similarly performs clip processing on the output value of the second linear arithmetic processing unit 5.
 差分演算部8は、第1クリップ処理部6がクリップ処理した出力値と第2クリップ処理部7がクリップ処理した出力値の差分を算出する。
 閾値比較部9は、差分演算部8が算出した差分が衝突判定閾値VTHR2p(第2閾値)より大きいとき、車両が衝突したと判定する。
 乗員保護装置駆動回路(保護装置駆動部)10は、閾値比較部9が衝突したと判定した場合に第1および第2乗員保護装置13,14へ作動信号を出力する。
The difference calculation unit 8 calculates the difference between the output value clipped by the first clip processing unit 6 and the output value clipped by the second clip processing unit 7.
The threshold value comparison unit 9 determines that the vehicle has collided when the difference calculated by the difference calculation unit 8 is larger than the collision determination threshold value V THR2p (second threshold value).
The occupant protection device drive circuit (protection device drive unit) 10 outputs an operation signal to the first and second occupant protection devices 13 and 14 when it is determined that the threshold comparison unit 9 has collided.
 次に、図3に示すフローチャートを用いて、実施の形態1に係る衝突検知装置1の動作を説明する。
 第1および第2加速度センサ11,12それぞれが、車両にかかる衝撃を計測し、出力する。各出力は通信I/F2からマイコン3へ入力して、サンプリング時間Δt毎に出力値G1,G2を取得する(ステップST1)。続いて第1線形演算処理部4が、第1加速度センサ11の出力値G1に対して線形演算処理(例えば、積分処理)を実施して積分値V1を求める(ステップST2)。また、第2線形演算処理部5が、第2加速度センサ12の出力値G2に対して線形演算処理(例えば、積分処理)を実施して積分値V2を求める(ステップST3)。例えば積分処理を実施することにより、センサ出力の特徴として車両の減速量(積分値V1,V2)を抽出することができる。
Next, the operation of the collision detection apparatus 1 according to the first embodiment will be described using the flowchart shown in FIG.
Each of the first and second acceleration sensors 11 and 12 measures and outputs an impact on the vehicle. Each output is input from the communication I / F 2 to the microcomputer 3, and the output values G1 and G2 are acquired at each sampling time Δt (step ST1). Subsequently, the first linear arithmetic processing unit 4 performs linear arithmetic processing (for example, integration processing) on the output value G1 of the first acceleration sensor 11 to obtain the integral value V1 (step ST2). Further, the second linear arithmetic processing unit 5 performs linear arithmetic processing (for example, integration processing) on the output value G2 of the second acceleration sensor 12 to obtain the integral value V2 (step ST3). For example, by performing integration processing, it is possible to extract the deceleration amount of the vehicle (integrated values V1, V2) as a feature of the sensor output.
 続いて第1クリップ処理部6が、第1加速度センサ11の積分値V1に対してクリップ処理を実施する(ステップST4,ST5)。即ち、予め設定したクリップ閾値VTHR1より大きい成分はそのまま出力し、クリップ閾値VTHR1以下の成分はこのクリップ閾値VTHR1に置き換える。図3の例では、第1クリップ処理部6が、積分値V1をクリップ閾値「0」と比較し、クリップ閾値「0」以上の積分値V1はそのままにし(ステップST4“YES”)、一方、クリップ閾値「0」より小さい積分値V1を0にする(ステップST4“NO”,ST5)。
 また、第2クリップ処理部7が、上記同様に、第2加速度センサ12の積分値V2に対してクリップ処理を実施する(ステップST6,ST7)。
 クリップ処理により、センサ出力のうち、衝突成分であるプラス成分のみを抽出することができる。
Subsequently, the first clip processing unit 6 performs clip processing on the integrated value V1 of the first acceleration sensor 11 (steps ST4 and ST5). That is, preset clip threshold V THR1 larger component is output as it is, the following ingredients clip threshold V THR1 is replaced with the clip threshold V THR1. In the example of FIG. 3, the first clip processing unit 6 compares the integral value V1 with the clip threshold “0” and keeps the integral value V1 equal to or greater than the clip threshold “0” (step ST4 “YES”), The integral value V1 smaller than the clip threshold “0” is set to 0 (steps ST4 “NO”, ST5).
Further, the second clip processing unit 7 performs the clip process on the integrated value V2 of the second acceleration sensor 12 in the same manner as described above (steps ST6 and ST7).
Only positive components that are collision components can be extracted from the sensor output by the clip processing.
 続いて差分演算部8が、クリップ処理後の積分値V1,V2を減算して差分値Vdを求める(ステップST8)。
 続いて閾値比較部9が、差分値Vdを予め設定した衝突判定閾値VTHR2pと比較し(ステップST9)、差分値Vdが衝突判定閾値VTHR2p以上であれば衝突したと判定し(ステップST9“YES”)、閾値比較部9から乗員保護装置駆動回路10へ衝突検知信号を出力する。乗員保護装置駆動回路10は、閾値比較部9の出力する衝突検知信号を受けると、第1および第2乗員保護装置13,14へ作動信号をそれぞれ出力して、第1および第2乗員保護装置13,14を作動させる(ステップST10)。
 一方、差分値Vdが衝突判定閾値VTHR2pより小さければ、閾値比較部9は非衝突と判定して(ステップST9“NO”)、ステップST1へ戻る。
Subsequently, the difference calculation unit 8 obtains a difference value Vd by subtracting the integrated values V1 and V2 after the clipping process (step ST8).
Subsequently, the threshold value comparison unit 9 compares the difference value Vd with a preset collision determination threshold value V THR2p (step ST9). If the difference value Vd is equal to or greater than the collision determination threshold value V THR2p , it is determined that a collision has occurred (step ST9 " YES ”), a collision detection signal is output from the threshold comparison unit 9 to the occupant protection device drive circuit 10. When the occupant protection device drive circuit 10 receives the collision detection signal output from the threshold comparison unit 9, the occupant protection device drive circuit 10 outputs an operation signal to the first and second occupant protection devices 13 and 14, respectively. 13 and 14 are operated (step ST10).
On the other hand, if the difference value Vd is smaller than the collision determination threshold value V THR2p , the threshold value comparison unit 9 determines that there is no collision ("NO" in step ST9) and returns to step ST1.
 ここで、衝突判定の例を、図4および図5に示すグラフを用いて説明する。ここでは、第1および第2乗員保護装置13,14の作動条件(即ち、衝突と判定する条件)を|V1|<|V2|とし、衝突判定用にプラス成分の衝突判定閾値VTHR2pを設定する。 Here, an example of collision determination will be described using the graphs shown in FIGS. Here, the operating condition of the first and second occupant protection devices 13 and 14 (that is, the condition for determining a collision) is set to | V1 | <| V2 |, and the collision determination threshold value V THR2p of a positive component is set for collision determination. To do.
 図4は、衝突時の例である。
 図4(a)のグラフは、第1線形演算処理部4が、第1加速度センサ11の出力値G1に対して積分処理を実施して求めた積分値V1を示す。また、図4(b)のグラフは、第2線形演算処理部5が、第2加速度センサ12の出力値G2に対して同じく積分処理を実施して求めた積分値V2を示す。積分値V1,V2ともマイナス成分が重畳している。
 これら積分値V1,V2をそれぞれクリップ処理して、図4(c),(d)に示すようにマイナス成分を除去した後、差分値Vdを算出する。図4(e)の衝突判定では、差分値Vdが衝突判定閾値VTHR2p以上であるため、衝突したと正しく判定され第1および第2乗員保護装置13,14が作動する。
FIG. 4 is an example at the time of a collision.
The graph of FIG. 4A shows the integration value V1 obtained by the first linear arithmetic processing unit 4 performing integration processing on the output value G1 of the first acceleration sensor 11. Further, the graph of FIG. 4B shows an integrated value V2 obtained by the second linear arithmetic processing unit 5 performing the same integration process on the output value G2 of the second acceleration sensor 12. Negative components are superimposed on the integral values V1 and V2.
These integral values V1 and V2 are clipped, respectively, and after removing a negative component as shown in FIGS. 4C and 4D, a difference value Vd is calculated. In the collision determination of FIG. 4 (e), since the difference value Vd is equal to or greater than the collision determination threshold V THR2p, it is correctly determined that a collision has occurred, and the first and second occupant protection devices 13, 14 are activated.
 図5は、非衝突時の例である。
 図5でも、図4と同様にマイナス成分の重畳している各センサ出力値G1,G2を積分処理して積分値V1,V2を求め、クリップ処理した後に差分値Vdを算出する。図5(e)の衝突判定では、差分値Vdが衝突判定閾値VTHR2pより小さいので、非衝突と正しく判定され第1および第2乗員保護装置13,14は作動しない。このように、マイナス成分が重畳していた場合でも、クリップ処理により0以上の成分のみ抽出しているので、差分算出の際に符号が逆転しない。よって、先立って説明した図13(b)のように従来技術では衝突/非衝突の識別が困難な、非衝突時であって積分値にマイナス成分が重畳している場合でも、衝突検知装置1では適切に衝突/非衝突を識別できるようになり、非衝突時に乗員保護装置を非作動とすることができる。一方、衝突時には図4のように乗員保護装置を確実に作動できる。従って、乗員保護装置をより正確に作動させることができる。
FIG. 5 is an example when there is no collision.
Also in FIG. 5, similarly to FIG. 4, the sensor output values G1, G2 on which the minus component is superimposed are integrated to obtain integrated values V1, V2, and the difference value Vd is calculated after clipping. In the collision determination of FIG. 5 (e), since the difference value Vd is smaller than the collision determination threshold V THR2p , it is correctly determined that there is no collision, and the first and second occupant protection devices 13, 14 do not operate. As described above, even when the minus component is superimposed, only the component of 0 or more is extracted by the clipping process, so that the sign is not reversed when the difference is calculated. Therefore, as shown in FIG. 13B described above, even when collision / non-collision is difficult to identify with the prior art, even when there is no collision and a negative component is superimposed on the integral value, the collision detection device 1 Then, it becomes possible to appropriately identify the collision / non-collision, and the occupant protection device can be deactivated at the time of non-collision. On the other hand, the occupant protection device can be reliably operated as shown in FIG. Therefore, the occupant protection device can be operated more accurately.
 以上より、実施の形態1に係る衝突検知装置1は、車両に設置された第1加速度センサ11および第2加速度センサ12から出力値G1,G2を取得して特徴を抽出する第1および第2線形演算処理部4,5と、線形演算処理した積分値V1,V2それぞれについてクリップ閾値VTHR1である0より大きい成分をそのまま出力すると共に0以下の成分を0に置き換える第1および第2クリップ処理部6,7と、クリップ処理した積分値V1,V2同士の差分値Vdを算出する差分演算部8と、差分演算部8が算出した差分値Vdが衝突判定閾値VTHR2pより大きいとき、車両が衝突したと判定する閾値比較部9と、閾値比較部9が衝突したと判定した場合に第1および第2乗員保護装置13,14へ作動信号を出力する乗員保護装置駆動回路10とを備えるように構成した。このため、非衝突時のセンサ出力にマイナス成分が冗長している場合にも、乗員保護装置を確実に非作動とすることができる。 As described above, the collision detection apparatus 1 according to the first embodiment acquires the output values G1 and G2 from the first acceleration sensor 11 and the second acceleration sensor 12 installed in the vehicle and extracts the features. First and second clip processing for outputting linear calculation processing units 4 and 5 and components larger than 0 that are the clipping threshold V THR1 as they are for the integrated values V1 and V2 subjected to linear calculation processing, and replacing components below 0 with 0. When the difference value Vd calculated by the difference calculation part 8 and the difference calculation part 8 which calculated the difference value Vd of the integrated values V1 and V2 between the parts 6 and 7 and the clip processing is larger than the collision determination threshold value V THR2p , the vehicle A threshold comparison unit 9 that determines that a collision has occurred, and an occupant protection device that outputs an operation signal to the first and second occupant protection devices 13 and 14 when it is determined that the threshold comparison unit 9 has collided And configured to include a drive circuit 10. For this reason, even when a negative component is redundant in the sensor output at the time of non-collision, the occupant protection device can be reliably deactivated.
 なお、上記実施の形態1の第1および第2クリップ処理部6,7では、積分値V1,V2についてクリップ閾値VTHR1より大きい成分をそのまま出力すると共に、クリップ閾値VTHR1以下の成分を当該クリップ閾値VTHR1に置き換えたが、反対に、クリップ閾値VTHR1より小さい成分をそのまま出力すると共に、クリップ閾値VTHR1以上の成分を当該クリップ閾値VTHR1に置き換えるようにしてもよい。どちらの構成にするかは、第1および第2加速度センサ11,12の取り付け向き等に応じて決定すればよい。
 同様に、差分値Vdが衝突判定閾値VTHR2pより大きいとき衝突と判定するか、小さいとき衝突と判定するかの設定も、装置構成等に応じて決定すればよい。
In the first and second clip processing units 6 and 7 of the first embodiment, the components greater than the clip threshold value V THR1 are output as they are for the integral values V1 and V2, and the component equal to or less than the clip threshold value V THR1 is output to the clip. Although the threshold value V THR1 is replaced, on the contrary, a component smaller than the clip threshold value V THR1 may be output as it is, and a component equal to or higher than the clip threshold value V THR1 may be replaced with the clip threshold value V THR1 . Which configuration is to be used may be determined according to the mounting direction of the first and second acceleration sensors 11 and 12 or the like.
Similarly, the setting of whether to determine a collision when the difference value Vd is greater than the collision determination threshold V THR2p or to determine a collision when the difference value Vd is smaller may be determined according to the device configuration or the like.
 また、第1および第2加速度センサ11,12を車両前部の左右に並べて設置したが、これに限定されるものではなく、例えば車両後部の左右に並べて設置するようにしてもよいし、また例えば一方を車両前部に設置し他方を車室内に設置するようにしてもよい。
 さらに、車両に2個以上の加速度センサを設置して、衝突判定に用いるようにしてもよい。例えば、車両に3個の加速度センサA,B,Cが設置されている場合に、加速度センサA,Bの出力の大小関係に基づき衝突判定し、加速度センサB,Cの出力の大小関係に基づき衝突判定し、加速度センサC,Aの出力の大小関係に基づき衝突判定するというように、衝突検知装置1が複数対の加速度センサを利用することが可能である。
In addition, the first and second acceleration sensors 11 and 12 are arranged side by side on the left and right sides of the front part of the vehicle. However, the present invention is not limited to this. For example, one may be installed in the front part of the vehicle and the other may be installed in the passenger compartment.
Furthermore, two or more acceleration sensors may be installed in the vehicle and used for collision determination. For example, when three acceleration sensors A, B, and C are installed in the vehicle, a collision is determined based on the magnitude relationship between the outputs of the acceleration sensors A and B, and based on the magnitude relationship between the outputs of the acceleration sensors B and C. The collision detection device 1 can use a plurality of pairs of acceleration sensors such that a collision is determined and a collision is determined based on the magnitude relationship between the outputs of the acceleration sensors C and A.
実施の形態2.
 図6は、この発明の実施の形態2に係る衝突検知装置1の構成を示すブロック図である。図6に示すように、マイコン3は、新たに第1閾値比較部21、第2閾値比較部22、および論理演算部23を有し、閾値比較部9によるメインの衝突判定とは別に第1および第2閾値比較部21,22によるセーフィング判定を実施する。その他、図6において図1および図2と同一または相当の部分については同一の符号を付し説明を省略する。
Embodiment 2. FIG.
FIG. 6 is a block diagram showing the configuration of the collision detection apparatus 1 according to Embodiment 2 of the present invention. As shown in FIG. 6, the microcomputer 3 newly includes a first threshold value comparison unit 21, a second threshold value comparison unit 22, and a logical operation unit 23, and the first threshold value determination unit 9 separate from the main collision determination by the threshold value comparison unit 9. And the safing judgment by the 2nd threshold value comparison parts 21 and 22 is implemented. 6 that are the same as or equivalent to those in FIGS. 1 and 2 are given the same reference numerals, and descriptions thereof are omitted.
 このセーフィング判定は、第1および第2加速度センサ11,12の差分値Vdが大きくなった場合に、衝突に起因するものか、あるいは、衝突ではない現象に起因するもの(例えば、いずれか一方のセンサ付近におけるハンマリング等に起因するもの、センサの故障に起因するもの)を識別して、第1および第2乗員保護装置13,14の展開性能を向上させる目的で実施する。 This safing determination is caused by a collision when the difference value Vd between the first and second acceleration sensors 11 and 12 becomes large, or is caused by a phenomenon that is not a collision (for example, either one of them) This is performed for the purpose of improving the deployment performance of the first and second occupant protection devices 13 and 14 by identifying hammering or the like in the vicinity of the sensor, or the sensor failure).
 次に、図7に示すフローチャートを用いて、実施の形態2に係る衝突検知装置1の動作を説明する。なお、図7のステップST1~ST9は図3のステップST1~ST9と同じ処理のため説明を省略し、本実施の形態2に特有のステップST21~ST23を中心に説明する。
 閾値比較部9において、差分値Vdが衝突判定閾値VTHR2p以上であって衝突と判定した場合(ステップST9“YES”)、続いて第1閾値比較部21が、クリップ処理した第1加速度センサ11の積分値V1を、予め設定したセーフィング判定閾値VTHR3p(第3閾値)と比較して、衝突とハンマリング等の非衝突とを識別する(ステップST21)。
 このセーフィング判定閾値VTHR3pは、第1加速度センサ11について、ハンマリング等の非衝突時に展開させないような閾値であり、通常の車両走行時に頻繁に発生しないレベルの値に設定しておく。
Next, the operation of the collision detection apparatus 1 according to the second embodiment will be described using the flowchart shown in FIG. Note that steps ST1 to ST9 in FIG. 7 are the same as steps ST1 to ST9 in FIG. 3 and thus will not be described. The explanation will focus on steps ST21 to ST23 unique to the second embodiment.
When the threshold value comparison unit 9 determines that the difference value Vd is equal to or greater than the collision determination threshold value V THR2p and is a collision (step ST9 “YES”), the first threshold value comparison unit 21 subsequently performs the clipping process on the first acceleration sensor 11. Is compared with a predetermined safing determination threshold value V THR3p (third threshold value) to identify a collision and a non-collision such as hammering (step ST21).
The safing determination threshold value V THR3p is a threshold value that does not cause the first acceleration sensor 11 to be deployed during non-collision such as hammering, and is set to a value that does not frequently occur during normal vehicle travel.
 第1閾値比較部21は、積分値V1がセーフィング判定閾値VTHR3p以上であれば衝突と判定し(ステップST21“YES”)、ステップST22に進む。
 一方、積分値V1がセーフィング判定閾値VTHR3pより小さければ、第1閾値比較部21は非衝突と判定する(ステップST21“NO”)。この場合はステップST1に戻り、処理を繰り返す。
If the integrated value V1 is greater than or equal to the safing determination threshold value V THR3p , the first threshold value comparing unit 21 determines that there is a collision (step ST21 “YES”), and proceeds to step ST22.
On the other hand, if the integrated value V1 is smaller than the safing determination threshold value V THR3p , the first threshold value comparing unit 21 determines that there is no collision (step ST21 “NO”). In this case, the process returns to step ST1 and the process is repeated.
 同様に、第2閾値比較部22が、クリップ処理した第2加速度センサ12の積分値V2を、予め設定したセーフィング判定閾値VTHR3pと比較して、衝突、非衝突を識別し(ステップST22)、衝突時には(ステップST22“YES”)、ステップST23に進む。 Similarly, the second threshold value comparison unit 22 compares the integrated value V2 of the clipped second acceleration sensor 12 with a preset safing determination threshold value V THR3p to identify collision or non-collision (step ST22). At the time of collision (step ST22 “YES”), the process proceeds to step ST23.
 続いて論理演算部23が、閾値比較部9、第1閾値比較部21、および第2閾値比較部22それぞれから信号が入力された場合のみ、衝突したと判定して、最終的な衝突検知信号を乗員保護装置駆動回路10へ出力する(ステップST23)。乗員保護装置駆動回路10は、論理演算部23から衝突検知信号が入力された場合に、第1および第2乗員保護装置13,14へ作動信号をそれぞれ出力して作動させる。
 即ち、本実施の形態2では、最終的な衝突判定を行う閾値比較部を、閾値比較部9、第1および第2閾値比較部21,22、ならびに論理演算部23により構成している。
Subsequently, the logical operation unit 23 determines that a collision has occurred only when signals are input from the threshold value comparison unit 9, the first threshold value comparison unit 21, and the second threshold value comparison unit 22, respectively. Is output to the occupant protection device drive circuit 10 (step ST23). When a collision detection signal is input from the logic operation unit 23, the occupant protection device drive circuit 10 outputs an operation signal to the first and second occupant protection devices 13 and 14 and operates them.
That is, in the second embodiment, the threshold comparison unit that performs the final collision determination is configured by the threshold comparison unit 9, the first and second threshold comparison units 21 and 22, and the logical operation unit 23.
 一方、上記以外の場合、即ち閾値比較部9、第1閾値比較部21、および第2閾値比較部22のうちのいずれか一つでも信号が入力されない場合には、論理演算部23は非衝突と判定して、ステップST1に戻る。これにより、実際には非衝突の場合において、第1および第2乗員保護装置13,14を非作動とすることができる。 On the other hand, in cases other than the above, that is, when any one of the threshold value comparison unit 9, the first threshold value comparison unit 21, and the second threshold value comparison unit 22 is not input, the logic operation unit 23 is non-collision. And return to step ST1. As a result, the first and second occupant protection devices 13 and 14 can be deactivated in the actual non-collision case.
 以上より、実施の形態2によれば、閾値比較部9が衝突を判定する衝突判定閾値VTHR2pを有し、第1および第2閾値比較部21,22が衝突、非衝突を識別するセーフィング判定閾値VTHR3pを有し、論理演算部23は、閾値比較部9において差分演算部8の算出した差分値Vdが衝突判定閾値VTHR2pより大きく、かつ、第1および第2閾値比較部21,22において第1および第2線形演算処理部4,5の線形演算処理した出力値V1,V2それぞれがセーフィング判定閾値VTHR3pより大きいとき、車両が衝突したと判定するように構成した。このため、ハンマリング等の非衝突を衝突と識別でき、第1および第2乗員保護装置13,14の不要な作動を防止することができる。 As described above, according to the second embodiment, the threshold comparison unit 9 has the collision determination threshold V THR2p for determining the collision, and the first and second threshold comparison units 21 and 22 identify the collision and the non-collision. The logic operation unit 23 has a determination threshold value V THR3p , the difference value Vd calculated by the difference calculation unit 8 in the threshold value comparison unit 9 is larger than the collision determination threshold value V THR2p , and the first and second threshold value comparison units 21, 22, when the output values V1 and V2 subjected to the linear calculation of the first and second linear calculation processing units 4 and 5 are larger than the safing determination threshold value V THR3p , it is determined that the vehicle has collided. For this reason, non-collisions such as hammering can be identified as collisions, and unnecessary operations of the first and second occupant protection devices 13 and 14 can be prevented.
 なお、上記実施の形態2では、図6に示すように、第1および第2線形演算処理部4,5にて衝突判定の前処理として線形演算処理した積分値V1,V2を用いて、それぞれセーフィング判定閾値VTHR3pと比較する構成にしたが、これに限定されるものではない。例えば、セーフィング判定の前処理として最適な線形演算処理を実施するための、専用の線形演算処理部を別途設ける構成にしてもよい。
 図8は、実施の形態2に係る衝突検知装置1の変形例を示し、セーフィング判定専用に線形演算処理を実施する第3線形演算処理部24および第4線形演算処理部25を追加した構成である。これら第3および第4線形演算処理部24,25は、図7のステップST21より前の段階で、例えばLPF処理を実施する構成にすればよい。
In the second embodiment, as shown in FIG. 6, the integration values V1 and V2 subjected to the linear calculation processing as the pre-processing for collision determination in the first and second linear calculation processing units 4 and 5 are used. Although it was set as the structure compared with the safing determination threshold value VTHR3p , it is not limited to this. For example, a configuration may be provided in which a dedicated linear arithmetic processing unit for performing optimal linear arithmetic processing as pre-processing for safing determination is separately provided.
FIG. 8 shows a modification of the collision detection apparatus 1 according to the second embodiment, and includes a configuration in which a third linear arithmetic processing unit 24 and a fourth linear arithmetic processing unit 25 that perform linear arithmetic processing exclusively for safing determination are added. It is. These third and fourth linear arithmetic processing units 24 and 25 may be configured to perform, for example, LPF processing at a stage prior to step ST21 in FIG.
実施の形態3.
 上記実施の形態1,2の衝突検知装置1は、図2に示すように第1および第2加速度センサ11,12が車両前部の左右に設置され、衝突時の車両に発生する加速度を検出する構成であったが、本実施の形態3では、図9に示すように、第1および第2加速度センサ11,12が車両中央部の左右のピラー部分に設置され、側突時の車両に発生する加速度を検出する構成にする。そして、第1および第2加速度センサ11,12の出力の大小関係に基づき側突を判定すると共に、側突の方向を判定して、車両の左側に設置された左側乗員保護装置35、または右側に設置された右側乗員保護装置36のいずれか一方を作動させる。
Embodiment 3 FIG.
In the collision detection apparatus 1 of the first and second embodiments, as shown in FIG. 2, the first and second acceleration sensors 11 and 12 are installed on the left and right of the front part of the vehicle to detect the acceleration generated in the vehicle at the time of the collision. In the third embodiment, as shown in FIG. 9, the first and second acceleration sensors 11 and 12 are installed in the left and right pillar portions in the center of the vehicle, so that the vehicle in a side collision It is configured to detect the generated acceleration. Then, the side collision is determined based on the magnitude relationship between the outputs of the first and second acceleration sensors 11, 12, and the direction of the side collision is determined, so that the left occupant protection device 35 installed on the left side of the vehicle or the right side One of the right occupant protection devices 36 installed in the vehicle is operated.
 図10は、この発明の実施の形態3に係る衝突検知装置1の構成を示すブロック図である。図10に示すように、マイコン3は、閾値比較部9に代えて、車両左側の側突を判定する左側閾値比較部31および車両右側の側突を判定する右側閾値比較部32を有する。また、この衝突検知装置1は、左側乗員保護装置35を作動させる左側乗員保護装置駆動回路(保護装置駆動部)33と、右側乗員保護装置36を作動させる右側乗員保護装置駆動回路(保護装置駆動部)34とを有する。その他、図10において図1および図2と同一または相当の部分については同一の符号を付し説明を省略する。 FIG. 10 is a block diagram showing the configuration of the collision detection apparatus 1 according to Embodiment 3 of the present invention. As shown in FIG. 10, the microcomputer 3 includes, in place of the threshold comparison unit 9, a left threshold comparison unit 31 that determines a side collision on the left side of the vehicle and a right threshold comparison unit 32 that determines a side collision on the right side of the vehicle. Further, the collision detection device 1 includes a left occupant protection device drive circuit (protection device drive unit) 33 that operates the left occupant protection device 35 and a right occupant protection device drive circuit (protection device drive) that operates the right occupant protection device 36. Part) 34. 10 that are the same as or equivalent to those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
 ここでは、左側乗員保護装置35の作動条件(即ち、側突と判定する条件)を|V1|<|V2|とし、左側閾値比較部31には、左側の側突判定用にプラス成分の側突判定閾値VTHR2p’(第2閾値)を設定する。他方、右側乗員保護装置36の作動条件は|V1|>|V2|とし、右側閾値比較部32には、右側の側突判定用にマイナス成分の側突判定閾値VTHR4m(第4閾値)を設定する。即ち、本実施の形態3では、最終的な側突判定を行う閾値比較部を、左側および右側閾値比較部31,32により構成している。 Here, the operating condition of the left occupant protection device 35 (that is, the condition for determining a side collision) is set to | V1 | <| V2 |, and the left threshold comparison unit 31 has a positive component side for determining a left side collision. The collision determination threshold value V THR2p ′ (second threshold value) is set. On the other hand, the operating condition of the right occupant protection device 36 is | V1 |> | V2 |, and the right side threshold comparison unit 32 sets a negative component side collision determination threshold V THR4m (fourth threshold) for right side collision determination. Set. That is, in the third embodiment, the threshold value comparison unit that performs final side collision determination is configured by the left and right threshold value comparison units 31 and 32.
 次に、図11に示すフローチャートを用いて、実施の形態3に係る衝突検知装置1の動作を説明する。なお、図11のステップST1~ST8は図3のステップST1~ST8と同じ処理のため説明を省略し、本実施の形態3に特有のステップST31~ST34を中心に説明する。
 左側閾値比較部31は、差分演算部8が算出した差分値Vdを、予め設定した側突判定閾値VTHR2p’と比較し(ステップST31)、差分値Vdが側突判定閾値VTHR2p’以上であれば車両左側に側突したと判定し(ステップST31“YES”)、左側閾値比較部31から左側乗員保護装置駆動回路33へ側突検知信号を出力する。左側乗員保護装置駆動回路33は、左側閾値比較部31の出力する側突検知信号を受けると、左側乗員保護装置35へ作動信号を出力して作動させる(ステップST32)。
Next, the operation of the collision detection apparatus 1 according to the third embodiment will be described using the flowchart shown in FIG. Since steps ST1 to ST8 in FIG. 11 are the same as steps ST1 to ST8 in FIG. 3, the description thereof will be omitted, and steps ST31 to ST34 peculiar to the third embodiment will be mainly described.
The left threshold value comparison unit 31 compares the difference value Vd calculated by the difference calculation unit 8 with a preset side collision determination threshold value V THR2p ′ (step ST31), and the difference value Vd is equal to or greater than the side collision determination threshold value V THR2p ′ . If there is, it is determined that a side collision has occurred on the left side of the vehicle (step ST31 “YES”), and a side collision detection signal is output from the left side threshold comparison unit 31 to the left occupant protection device drive circuit 33. When the left occupant protection device drive circuit 33 receives the side collision detection signal output from the left threshold value comparison unit 31, the left occupant protection device drive circuit 33 outputs an operation signal to the left occupant protection device 35 to operate (step ST32).
 一方、差分値Vdが側突判定閾値VTHR2p’より小さい場合(ステップST31“NO”)、続いて右側閾値比較部32がこの差分値Vdを、予め設定した側突判定閾値VTHR4mと比較し(ステップST33)、差分値Vdが側突判定閾値VTHR4m以下であれば側突と判定し(ステップST33“YES”)、右側閾値比較部32から右側乗員保護装置駆動回路34へ側突検知信号を出力する。右側乗員保護装置駆動回路34は、右側閾値比較部32の出力する側突検知信号を受けると、右側乗員保護装置36へ作動信号を出力して作動させる(ステップST34)。 On the other hand, when the difference value Vd is smaller than the side collision determination threshold value V THR2p ′ (step ST31 “NO”), the right side threshold value comparison unit 32 compares the difference value Vd with a preset side collision determination threshold value V THR4m. (Step ST33) If the difference value Vd is equal to or less than the side collision determination threshold value V THR4m , it is determined that a side collision has occurred (step ST33 “YES”), and a side collision detection signal is sent from the right threshold comparison unit 32 to the right occupant protection device drive circuit 34 Is output. When the right occupant protection device drive circuit 34 receives the side collision detection signal output from the right threshold value comparison unit 32, it outputs an operation signal to the right occupant protection device 36 to operate (step ST34).
 他方、差分値Vdが側突判定閾値VTHR2p’より小さく、かつ、側突判定閾値VTHR4mより大きい場合には、左右どちら側も非側突であるので(ステップST33“NO”)、ステップST1へ戻る。 On the other hand, when the difference value Vd is smaller than the side collision determination threshold value V THR2p ′ and larger than the side collision determination threshold value V THR4m , both the left and right sides are non-side collisions (step ST33 “NO”), and step ST1. Return to.
 以上より、実施の形態3によれば、左側および右側閾値比較部31,32は、側突判定閾値VTHR2p’とこれより値の小さい側突判定閾値VTHR4mとを有して、差分演算部8が算出した差分値Vdが側突判定閾値VTHR2p’より大きいとき、および側突判定閾値VTHR4mより小さいときに、それぞれ車両が側突したと判定し、左側および右側乗員保護装置駆動回路33,34は、差分値Vdが側突判定閾値VTHR2p’より大きいときの左側突判定では左側乗員保護装置35へ作動信号を出力し、差分値Vdが側突判定閾値VTHR4mより小さいときの右側突判定では右側乗員保護装置36へ作動信号を出力するように構成した。これにより、差分値Vdのプラス成分の閾値比較とマイナス成分の閾値比較を行って、左右両方の側突判定が可能となる。さらに、プラス成分とマイナス成分の閾値比較の結果に応じて作動すべき乗員保護装置を別々にできるので、左側突時には左側の乗員保護装置を作動させ、右側突時には右側の乗員保護装置を作動させることができる。 As described above, according to the third embodiment, the left and right threshold comparison units 31 and 32 include the side collision determination threshold value V THR2p ′ and the side collision determination threshold value V THR4m having a smaller value than the side collision determination threshold value V THR4m. When the difference value Vd calculated by 8 is larger than the side collision determination threshold value V THR2p ′ and smaller than the side collision determination threshold value V THR4m , it is determined that the vehicle has collided , and the left and right occupant protection device drive circuit 33 respectively. , 34 outputs an operation signal to the left occupant protection device 35 in the left side collision determination when the difference value Vd is larger than the side collision determination threshold value V THR2p ′ , and the right side when the difference value Vd is smaller than the side collision determination threshold value V THR4m. In the collision determination, an operation signal is output to the right occupant protection device 36. Thereby, the threshold comparison of the plus component of the difference value Vd and the threshold comparison of the minus component are performed, and the left and right side collision determination becomes possible. Furthermore, since the occupant protection device that should be activated can be made separately according to the result of the threshold comparison between the positive component and the negative component, the left occupant protection device is activated in the case of a left collision, and the right occupant protection device is activated in the case of a right collision. be able to.
 なお、上記実施の形態3では、プラス成分の側突判定閾値とマイナス成分の側突判定閾値を用いて側突判定し、異なる乗員保護装置を作動させる構成にしたが、閾値はこれに限定されるものではない。例えば、2個の加速度センサと1個の乗員保護装置が設置された車両において、衝突検知装置1が大小異なる二つ以上のプラス成分の衝突判定閾値を用いて差分値とそれぞれ閾値比較するようにして、衝突判定閾値の大きさに応じて上記1個の乗員保護装置の作動の強さを変化させてもよい。 In the third embodiment, the side collision is determined using the positive component side collision determination threshold and the negative component side collision determination threshold, and different occupant protection devices are operated. However, the threshold is limited to this. It is not something. For example, in a vehicle in which two acceleration sensors and one occupant protection device are installed, the collision detection device 1 compares the threshold value with the difference value using two or more positive component collision determination threshold values that are different in size. Thus, the strength of the operation of the single occupant protection device may be changed according to the size of the collision determination threshold.
 なお、上記実施の形態1~3では、衝突または側突を検知するための状態計測センサとして、車両の加速度を計測する加速度センサを利用する構成例を説明したが、これに限定されるものではなく、車両の速度を計測する速度センサ、または車両の圧力変化を計測する圧力センサを利用してもよい。
 上記実施の形態1で詳述したように、加速度センサにより計測される物理量は車両にかかる衝撃であり、この出力値に対する線形演算処理としては積分処理、LPF処理などが好適である。なお、積分処理後の出力値(判定に用いる物理量)は車両の減速量を表し、LPF処理後の出力値は車両にかかる衝撃を表す。
 速度センサにより計測される物理量は車両の減速量であり、この出力値に対する線形演算処理としては等倍処理、LPF処理などが好適である。なお、等倍処理およびLPF処理とも処理後の出力値は車両の減速量を表す。
 圧力センサは、車両において衝突時に変形する箇所で密閉した空間内に設置することで、車両の衝突をその空間内の圧力変化により検知する。即ち、圧力センサにより計測される物理量は変形する車両空間の圧力変化量である。この出力値に対する線形演算処理としては比例演算処理が好適であり、処理後の出力値は変形する車両空間の体積変化量を表す。
In the first to third embodiments, the configuration example using the acceleration sensor that measures the acceleration of the vehicle as the state measurement sensor for detecting the collision or the side collision has been described. However, the present invention is not limited to this. Alternatively, a speed sensor that measures the speed of the vehicle or a pressure sensor that measures a change in the pressure of the vehicle may be used.
As described in detail in the first embodiment, the physical quantity measured by the acceleration sensor is an impact applied to the vehicle, and as the linear calculation processing for the output value, integration processing, LPF processing, and the like are preferable. The output value after integration processing (physical quantity used for determination) represents the deceleration amount of the vehicle, and the output value after LPF processing represents the impact on the vehicle.
The physical quantity measured by the speed sensor is the amount of deceleration of the vehicle, and as the linear calculation process for this output value, equal-magnification processing, LPF processing, or the like is suitable. Note that the output value after the processing for both the equal magnification processing and the LPF processing represents the deceleration amount of the vehicle.
The pressure sensor is installed in a sealed space at a location where the vehicle is deformed at the time of a collision, thereby detecting a collision of the vehicle based on a pressure change in the space. That is, the physical quantity measured by the pressure sensor is the pressure change amount of the vehicle space that is deformed. Proportional calculation processing is suitable as the linear calculation processing for the output value, and the output value after processing represents the volume change amount of the vehicle space to be deformed.
 また、衝突または側突を検知した場合に車両に搭載された乗員保護装置を作動させる構成例を説明したが、これに限定されるものではなく、車両に搭載された歩行者保護装置を作動させてもよい。 Moreover, although the example of a structure which operates the passenger | crew protection device mounted in the vehicle when a collision or a side collision is detected was demonstrated, it is not limited to this, The pedestrian protection device mounted in the vehicle is operated. May be.
 上記以外にも、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In addition to the above, within the scope of the invention, the invention of the present application can be freely combined with each embodiment, modified any component of each embodiment, or omitted any component in each embodiment. Is possible.
 以上のように、この発明に係る衝突検知装置は、非衝突時のセンサ出力にマイナス成分が重畳している場合にも確実に非衝突と判定するようにしたので、2個以上のセンサを差分処理して衝突判定を行う構成の衝突検知装置などに用いるのに適している。 As described above, the collision detection device according to the present invention reliably determines non-collision even when a negative component is superimposed on the sensor output at the time of non-collision. It is suitable for use in a collision detection device or the like configured to perform collision determination by processing.
 1 衝突検知装置、2 通信I/F、3 マイコン、4 第1線形演算処理部、5 第2線形演算処理部、6 第1クリップ処理部、7 第2クリップ処理部、8 差分演算部、9 閾値比較部、10 乗員保護装置駆動回路、11 第1加速度センサ、12 第2加速度センサ、13 第1乗員保護装置、14 第2乗員保護装置、21 第1閾値比較部、22 第2閾値比較部、23 論理演算部、24 第3線形演算処理部、25 第4線形演算処理部、31 左側閾値比較部、32 右側閾値比較部、33 左側乗員保護装置駆動回路、34 右側乗員保護装置駆動回路、35 左側乗員保護装置、36 右側乗員保護装置。 1 collision detection device, 2 communication I / F, 3 microcomputer, 4 first linear operation processing unit, 5 second linear operation processing unit, 6 first clip processing unit, 7 second clip processing unit, 8 differential operation unit, 9 Threshold comparison unit, 10 occupant protection device drive circuit, 11 first acceleration sensor, 12 second acceleration sensor, 13 first occupant protection device, 14 second occupant protection device, 21 first threshold comparison unit, 22 second threshold comparison unit , 23 logic operation unit, 24 third linear operation processing unit, 25 fourth linear operation processing unit, 31 left threshold comparison unit, 32 right threshold comparison unit, 33 left occupant protection device drive circuit, 34 right occupant protection device drive circuit, 35 Left passenger protection device, 36 Right passenger protection device.

Claims (5)

  1.  車両に設置され当該車両の状態を計測する複数のセンサの出力を用いて当該車両の衝突を判定し、衝突したと判定した場合、当該車両に設置された乗員用または歩行者用の保護装置を作動させる衝突検知装置であって、
     一対のセンサの各出力値を取得し、当該各出力値の特徴を抽出する線形演算処理部と、
     前記線形演算処理した出力値それぞれについて、所定の第1閾値より大きい成分をそのまま出力すると共に当該第1閾値以下の成分を当該第1閾値に置き換えるか、所定の第1閾値より小さい成分をそのまま出力すると共に当該第1閾値以上の成分を当該第1閾値に置き換えるクリップ処理部と、
     前記クリップ処理した出力値同士の差分を算出する差分演算部と、
     前記差分演算部が算出した差分を所定の第2閾値と比較して、前記車両が衝突したか否かを判定する閾値比較部と、
     前記閾値比較部が衝突したと判定した場合に前記保護装置へ作動信号を出力する保護装置駆動部とを備えることを特徴とする衝突検知装置。
    When a collision of the vehicle is determined using outputs of a plurality of sensors that are installed in the vehicle and measure the state of the vehicle, a protection device for an occupant or pedestrian installed in the vehicle is determined. A collision detection device to be operated,
    A linear operation processing unit that acquires each output value of the pair of sensors and extracts a feature of each output value;
    For each of the output values subjected to the linear calculation processing, a component larger than a predetermined first threshold is output as it is, and a component equal to or lower than the first threshold is replaced with the first threshold, or a component smaller than the predetermined first threshold is output as it is. And a clip processing unit that replaces a component equal to or higher than the first threshold with the first threshold;
    A difference calculation unit for calculating a difference between the clipped output values;
    A threshold comparison unit that compares the difference calculated by the difference calculation unit with a predetermined second threshold and determines whether or not the vehicle has collided;
    A collision detection device comprising: a protection device driving unit that outputs an operation signal to the protection device when it is determined that the threshold comparison unit has collided.
  2.  線形演算処理部は、センサの出力値に対して、積分処理およびローパスフィルタ処理のいずれか一方、または両方を実施することを特徴とする請求項1記載の衝突検知装置。 The collision detection apparatus according to claim 1, wherein the linear arithmetic processing unit performs one or both of integration processing and low-pass filter processing on the output value of the sensor.
  3.  閾値比較部は、衝突を判定する所定の第2閾値と第3閾値とを有し、差分演算部が算出した差分を前記第2閾値と比較して衝突を判定すると共に、線形演算処理部が線形演算処理した出力値それぞれを前記第3閾値と比較して衝突を判定し、
     保護装置駆動部は、前記第2閾値および前記第3閾値に基づき衝突したと判定された場合に保護装置へ作動信号を出力することを特徴とする請求項1記載の衝突検知装置。
    The threshold value comparison unit has a predetermined second threshold value and a third threshold value for determining collision, compares the difference calculated by the difference calculation unit with the second threshold value to determine collision, and the linear calculation processing unit Each of the output values subjected to linear calculation processing is compared with the third threshold value to determine a collision,
    The collision detection device according to claim 1, wherein the protection device driving unit outputs an operation signal to the protection device when it is determined that a collision has occurred based on the second threshold and the third threshold.
  4.  クリップ処理部の有する第1閾値を0とすることを特徴とする請求項1記載の衝突検知装置。 The collision detection apparatus according to claim 1, wherein the first threshold of the clip processing unit is set to 0.
  5.  閾値比較部は、所定の第2閾値と、当該第2閾値より値の小さい第4閾値とを有し、差分演算部が算出した差分を前記第2閾値と比較して衝突を判定すると共に、当該差分を前記第4閾値と比較して衝突を判定し、
     保護装置駆動部は、前記第2閾値に基づき衝突したと判定された場合と前記第4閾値に基づき衝突したと判定された場合とで異なる保護装置へ作動信号を出力することを特徴とする請求項1記載の衝突検知装置。
    The threshold value comparison unit has a predetermined second threshold value and a fourth threshold value that is smaller than the second threshold value, and compares the difference calculated by the difference calculation unit with the second threshold value to determine a collision, The difference is compared with the fourth threshold to determine a collision,
    The protection device driving unit outputs an operation signal to different protection devices when it is determined that the collision has occurred based on the second threshold value and when it has been determined that the collision has occurred based on the fourth threshold value. Item 2. The collision detection device according to Item 1.
PCT/JP2011/000580 2011-02-02 2011-02-02 Collision detection apparatus WO2012104911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012555562A JP5236126B2 (en) 2011-02-02 2011-02-02 Collision detection device
PCT/JP2011/000580 WO2012104911A1 (en) 2011-02-02 2011-02-02 Collision detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000580 WO2012104911A1 (en) 2011-02-02 2011-02-02 Collision detection apparatus

Publications (1)

Publication Number Publication Date
WO2012104911A1 true WO2012104911A1 (en) 2012-08-09

Family

ID=46602164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000580 WO2012104911A1 (en) 2011-02-02 2011-02-02 Collision detection apparatus

Country Status (2)

Country Link
JP (1) JP5236126B2 (en)
WO (1) WO2012104911A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629872A (en) * 2019-09-24 2021-04-09 沃尔沃汽车公司 Low impact collision detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189127A (en) * 1997-10-20 1999-07-13 Autoliv Japan Kk Operation control device for air bag device
JPH11192918A (en) * 1997-12-27 1999-07-21 Autoliv Japan Kk Operation control device for inflator for air bag device
JP2004517002A (en) * 2001-01-27 2004-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for sensing side impact in vehicles
JP3541211B2 (en) * 1997-09-17 2004-07-07 オートリブ・ジャパン株式会社 Airbag activation judgment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3541211B2 (en) * 1997-09-17 2004-07-07 オートリブ・ジャパン株式会社 Airbag activation judgment device
JPH11189127A (en) * 1997-10-20 1999-07-13 Autoliv Japan Kk Operation control device for air bag device
JPH11192918A (en) * 1997-12-27 1999-07-21 Autoliv Japan Kk Operation control device for inflator for air bag device
JP2004517002A (en) * 2001-01-27 2004-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for sensing side impact in vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629872A (en) * 2019-09-24 2021-04-09 沃尔沃汽车公司 Low impact collision detection
US11541882B2 (en) 2019-09-24 2023-01-03 Volvo Car Corporation Low-impact collision detection

Also Published As

Publication number Publication date
JPWO2012104911A1 (en) 2014-07-03
JP5236126B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US6438475B1 (en) Crash detection system
US8249779B2 (en) Device and method for activating passenger protection means
JP2015536867A (en) Method and apparatus for controlling actuatable restraint devices using multi-region enhanced identification
JP2008074127A (en) Starting control device of occupant crash protection device for vehicle
US9889808B2 (en) Method and device for activating a pedestrian protection means for a vehicle, and restraint system for a vehicle
KR100492501B1 (en) Passive safety system background of the invention
US8527150B2 (en) Method and control device for triggering passenger protection means for a vehicle
KR101628830B1 (en) Apparatus and method for protection of vehicle passenger
JP2000159055A (en) Method for aligning trigger threshold of occupant crash protection device
JP2015009774A (en) Collision detection device for vehicle
US8655552B2 (en) Method and control device for triggering passenger protection means for a vehicle
US9725058B2 (en) Method and control unit for triggering passenger protection means for a vehicle
JP5236126B2 (en) Collision detection device
US20100256873A1 (en) Method and control unit for triggering occupant protection means for a vehicle
US9475442B2 (en) Method and device for triggering at least one passenger protection means of a vehicle
US20060138758A1 (en) Device for controlling a retaining system
JP2008080979A (en) Control method for occupant protection control device
JP4298643B2 (en) Operation control method for occupant protection device
JP4800351B2 (en) Vehicle occupant protection system
CN113602225A (en) Method for determining a collision type of a vehicle
JP5511528B2 (en) Collision signal processing device for vehicle front collision acceleration sensor
JP2006327370A (en) Start determination device for occupant crash protector of vehicle
ATE363419T1 (en) SAFETY LOGIC UNIT FOR VEHICLE ROLLOVER DETECTION SYSTEMS AND METHOD FOR DETECTING NEAR ROLLOVERS
JP2010228524A (en) Side collision determining device and occupant protection device
JP2013154838A (en) Occupant protection control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012555562

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857950

Country of ref document: EP

Kind code of ref document: A1