WO2012098835A1 - Optical fiber wiring structure and method for producing same - Google Patents

Optical fiber wiring structure and method for producing same Download PDF

Info

Publication number
WO2012098835A1
WO2012098835A1 PCT/JP2012/000117 JP2012000117W WO2012098835A1 WO 2012098835 A1 WO2012098835 A1 WO 2012098835A1 JP 2012000117 W JP2012000117 W JP 2012000117W WO 2012098835 A1 WO2012098835 A1 WO 2012098835A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
wiring structure
fiber wiring
structure according
filler
Prior art date
Application number
PCT/JP2012/000117
Other languages
French (fr)
Japanese (ja)
Inventor
生西 省吾
Original Assignee
三菱電線工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電線工業株式会社 filed Critical 三菱電線工業株式会社
Publication of WO2012098835A1 publication Critical patent/WO2012098835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3608Fibre wiring boards, i.e. where fibres are embedded or attached in a pattern on or to a substrate, e.g. flexible sheets
    • G02B6/3612Wiring methods or machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers

Definitions

  • the present invention relates to an optical fiber wiring structure and a manufacturing method thereof.
  • a device using a long optical fiber core such as a fiber laser or an optical fiber amplifier
  • a device in which an optical fiber core is wound around a reel is incorporated in the device, or on a resin sheet as a base material.
  • An optical fiber wiring sheet in which optical fiber cores are laid so as to form a predetermined wiring pattern is incorporated into the apparatus.
  • Patent Document 1 discloses a method for manufacturing an optical fiber wiring sheet, in which an ultraviolet curable resin is applied so as to cover the surface of an optical fiber, and ultraviolet rays are applied to the resin so that an uncrosslinked portion is present on the surface side of the resin. After configuring the remaining optical fiber cores, the optical fiber core wires are brought into close contact with each other and wound up on a mold, and then irradiated with ultraviolet rays again to cure the uncrosslinked resin. It is disclosed that the wires are bonded and integrated.
  • the optical fiber is wound in a circular shape and sandwiched between the first and second members made of a material having high thermal conductivity. It is disclosed to fill a material with high flexibility and high thermal conductivity.
  • the present invention is an optical fiber wiring structure comprising: a base material; and an optical fiber core wire laid so as to form a wiring pattern extending in parallel and spaced apart from each other on the base material. is there.
  • the present invention is a method for manufacturing an optical fiber wiring structure in which optical fiber cores are wired on a substrate so as to form a wiring pattern extending in parallel with a distance from each other.
  • FIG. 1 is a perspective view showing an optical fiber wiring structure according to Embodiment 1.
  • FIG. 1 is a plan view showing an optical fiber wiring structure according to Embodiment 1.
  • FIG. It is the III-III expanded sectional view in FIG. It is a perspective view of an optical fiber core wire.
  • It is a perspective view of a wiring apparatus. It is a perspective view which shows the optical fiber wiring structure which concerns on Embodiment 2.
  • FIG. It is an expanded sectional view equivalent to FIG. 3 in Embodiment 1 of the optical fiber wiring structure which concerns on Embodiment 2.
  • FIG. (A) And (b) is a top view which shows the modification of an optical fiber wiring structure. It is a side view which shows another modification of an optical fiber wiring structure. It is a graph which shows the relationship between the time of Example 1 and 2 and the temperature rise of an optical fiber wiring structure.
  • FIG. 1 to 3 show an optical fiber wiring structure A according to Embodiment 1.
  • FIG. The optical fiber wiring structure A according to the first embodiment is used for applications such as a fiber laser and an optical fiber amplifier.
  • the heat sink 10 constitutes a base material.
  • the surface of the rectangular main body plate 11 is a flat surface, and a plurality of plate-like fins 12 are provided on the rear surface of the main body plate 11 so as to extend in the normal direction at intervals d in the long side direction. It is provided integrally and has a comb shape when viewed from the side.
  • the material forming the heat sink 10 is preferably a metal having high thermal conductivity, and examples of such a material include aluminum and copper.
  • the heat sink 10 may be coated with an anodized film colored in black or the like in order to improve corrosion resistance and wear resistance, and in order to improve heat dissipation characteristics.
  • the main body plate 11 has, for example, a length of 50 to 300 mm, a width of 50 to 250 mm, and a thickness of 1 to 10 mm.
  • the fin 12 has a length extending from the main body plate 11 of 2 to 300 mm and a thickness of 5 to 50 mm.
  • EM / B / 150 thermal resistance 0.64 ° C./W
  • OK278 / B / 150 thermal resistance 0.48 ° C./W
  • the shapes, materials, and dimensions of the main body plate 11 and the fins 12 of the heat sink 10 are not limited to these, and may have other configurations.
  • the optical fiber core wire 20 is wired on the surface of the main body plate 11 of the heat sink 10 via the adhesive layer 30 (adhesive).
  • FIG. 4 shows the optical fiber core wire 20.
  • the optical fiber core wire 20 includes an optical fiber 21 and a coating layer 22 that covers the optical fiber 21.
  • the optical fiber core wire 20 has, for example, a length of 3 to 100 m and a core wire diameter of 50 to 1000 ⁇ m.
  • the optical fiber 21 has a core 21a having a relatively high refractive index at the center of the fiber and a clad 21b having a relatively low refractive index covering the core 21a.
  • the material forming the optical fiber 21 is typically quartz, but may be a resin such as an acrylic resin if the heat resistance is allowed depending on the use conditions, and the core 21a is quartz and the clad 21b is resin. May be.
  • the core 21a may be doped with a rare earth element such as erbium (Er), yttrium (Y), or neodymium (Nd) as a dopant, or may be doped with germanium (Ge), aluminum (Al), or the like. It may be.
  • the clad 21b may be doped with a dopant, or may not be doped with a dopant.
  • the dopant in the former case include boron (B) and fluorine (F) that lower the refractive index. It is done.
  • the optical fiber 21 has a fiber diameter of 50 to 800 ⁇ m, a core diameter of 3 to 600 ⁇ m, and a thickness of the cladding 21b of 25 to 100 ⁇ m.
  • the fiber diameter of the optical fiber 21 is preferably 125 ⁇ m or more.
  • the optical fiber 21 may be a combination of a plurality of cores and claddings for passing light of a plurality of wavelengths, or a cross section having a shape other than a circle such as a D-shape or a polygon.
  • Such optical fiber 21 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-151864, “Double-clad” fiber “laser” with “30 mW” output “power”, OSA “Trends” in “Optics” and “Photonics, vol. 16, p137-140 (1997). Is disclosed.
  • an ultraviolet curable acrylic resin can be cited as a general-purpose material, but among the resins, a thin polyimide resin is preferable from the viewpoint of efficiently dissipating heat generated by the optical fiber 21. From the viewpoint of efficiently dissipating heat generated by the optical fiber 21, metals such as aluminum, copper, and gold having high thermal conductivity are preferable.
  • the thickness of the covering layer 22 is, for example, 3 to 100 ⁇ m in the case of resin, and 30 to 200 ⁇ m in the case of metal.
  • a pair of optical fiber core wires 20 extend along the long side of the main body plate 11 of the heat sink 10 so as to surround a loop formed in the central portion in the length direction of the optical fiber core wire 20. Orbiting outwards to form a shape (track shape for athletics) having opposing straight portions and one semicircular portion connecting one end of them and the other semicircular portion connecting the other ends 6 to 200 laps).
  • the length of the straight line portion of the wiring pattern is the same on the inner side and the outer side, and is, for example, 30 to 200 mm.
  • the radius of curvature of the semicircular portion is longer on the outside than on the inside, for example, 15 to 150 mm.
  • the pair of optical fiber core wires 20 forming the outermost periphery of the wiring pattern is drawn to the outside of the heat sink 10, one of which is configured as an input end and the other as an output end.
  • the optical fiber core wires 20 that are adjacent to each other and extend in parallel are not in contact with each other in both the straight portion and the semicircular portion, and as shown in FIG. 20 are provided so as to extend in parallel with each other at a distance d.
  • the optical fiber core wires 20 are wired so as to form a wiring pattern extending in parallel with a distance d from each other. Since the heat sink 10 is used as a material, high heat dissipation can be obtained.
  • the spacing d between the optical fiber cores 20 may be wide or narrow along the wiring pattern, but the optical fiber core wires 20 are efficiently disposed in a limited space and the optical fiber core wires are arranged. From the viewpoint of eliminating heat storage between 20 and efficiently dissipating the heat generated by the optical fiber 21, it is preferable to be constant along the wiring pattern.
  • the distance d between the optical fiber cores 20 efficiently disposes the optical fiber core wires 20 in a limited space and eliminates heat storage between the optical fiber core wires 20 to efficiently generate heat from the optical fiber 21. From the viewpoint of heat dissipation, it is preferably 0.2 to 3.0 times the core wire diameter of the optical fiber core wire 20, and more preferably 0.5 to 1.5 times.
  • Examples of the material for forming the adhesive layer 30 include a silicone adhesive, a rubber adhesive, and an acrylic adhesive.
  • the adhesive layer 30 may be added with a filler such as metal powder or carbon that enhances thermal conductivity.
  • the optical fiber core wire 20 may be wired through an adhesive layer instead of the adhesive layer 30.
  • Examples of the material for forming the adhesive layer include a thermosetting resin adhesive and a thermoplastic resin system. Examples thereof include an adhesive and an elastomer-based adhesive.
  • the thickness of the adhesive layer 30 or the adhesive layer is preferably as thin as possible from the viewpoint of efficiently dissipating heat generated by the optical fiber 21 to the heat sink 10, but is, for example, 20 to 100 ⁇ m.
  • a fluid-solidified filler 40 is filled between the optical fiber cores 20 wired on the heat sink 10.
  • the filler 40 enhances heat transfer from the optical fiber 21.
  • the fluid-solidified filler 40 refers to a filler material in which the raw material has a liquid or paste fluidity and is solidified by reaction or solvent volatilization.
  • the fluid solidified filler 40 examples include thermosetting resins such as silicone rubber and epoxy resin, and thermoplastic resins. Of these, silicone rubber having excellent thermal conductivity is preferable from the viewpoint of efficiently dissipating heat generated by the optical fiber 21.
  • the viscosity of the filler 40 before solidification is preferably 50 to 200 Pa ⁇ s from the viewpoint of filling processability.
  • the hardness of the filler 40 after solidification is preferably 20 to 80 from the viewpoint of followability to a dimensional change due to heat of the optical fiber core wire 20.
  • the thermal conductivity (based on ISO 22007-2) of the filler 40 after solidification is preferably 0.2 to 2.5 W / m ⁇ K from the viewpoint of efficiently dissipating heat generated by the optical fiber 21.
  • suitable commercially available fillers 40 include silicone rubber (trade name: KE-4890, etc.) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the protective film 50 is provided so as to cover the surface of the main body plate 11 of the heat sink 10 from above the optical fiber core wire 20 wired on the heat sink 10. Yes.
  • the optical fiber core wire 20 is protected from the outside by the protective film 50.
  • Examples of the material forming the protective film 50 include resins such as polyethylene resin, polypropylene resin, and polyethylene terephthalate resin.
  • the surface of the protective film 50 is tightly coated by the adhesiveness of the filler 40 filled between the optical fiber cores 20, but the surface may be tightly coated via an adhesive or an adhesive.
  • the thickness of the protective film 50 is, for example, 25 to 200 ⁇ m.
  • FIG. 5 shows a wiring device 100 used for manufacturing the optical fiber wiring structure A.
  • the structure of the wiring device 100 is also disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2002-31723, 2002-365447, and 2003-75654.
  • a movable stage 120 is provided at the center of a rectangular base 110, and a support member 130 is erected at the center of one side of the base 110.
  • the movable stage 120 includes a lower first linear movement stage 121 and an upper second linear movement stage 122.
  • the first linear moving stage 121 includes a first fixing member 121a fixed on the base 110 and a first moving base 121b provided thereon.
  • a guide convex portion 123 extending in the direction of arrow X in the drawing is provided on the upper surface side of the first fixing member 121a, while the guide convex portion 123 is engaged on the lower surface side of the first moving base 121b.
  • a guide recess 124 is provided.
  • the first moving base 121b is coupled to a motor (not shown), and by driving the first moving base 121b, the guide convex portion 123 and the guide concave portion 124 extend in the horizontal direction with respect to the first fixing member 121a, that is, It is configured to be able to reciprocate relatively in the direction of arrow X in the figure.
  • the second linear movement stage 122 also has the same structure as the first linear movement stage 121, and the moving direction is orthogonal to the moving direction of the first linear movement stage 121. That is, the second linear moving stage 122 includes a second fixing member 122a fixed on the first moving table 121b and a second moving table 122b provided thereon. On the upper surface side of the second fixing member 122a, a guide convex portion 125 extending in the direction of the arrow Y in the figure is provided, while on the lower surface side of the second moving base 122b, the guide convex portion 125 is engaged. A guide recess 126 is provided.
  • the upper surface of the second moving table 122b is configured such that the base material B can be attached and detached, and when the base material B is installed, the upper surface for laying the optical fiber core wire 20 is in a substantially horizontal state.
  • the second moving table 122b is coupled to a motor (not shown), and by driving the second moving table 122b, the guide convex portion 125 and the guide concave portion 126 extend in the horizontal direction with respect to the second fixing member 122a. It is configured to be able to reciprocate relatively in the direction of arrow Y in the figure. Note that the X direction and the Y direction are orthogonal to each other.
  • the support member 130 is an L-shaped member that includes a leg 131 that rises vertically upward from the base 110 and an arm 132 that extends horizontally from the upper end of the leg 131 toward the center of the base 110. It consists of The wiring part 140 is attached to the tip of the arm part 132 so as to be positioned above the movable stage 120.
  • the wiring section 140 accommodates an optical fiber bobbin (not shown) inside, and has a wiring head 141 at the lower end, and pulls out the optical fiber core wire F wound around the optical fiber bobbin to provide the wiring head.
  • 141 is configured to be supplied from the core wire supply port.
  • the wiring section 140 is configured to rotate around a rotation axis that is substantially perpendicular to the plane of the base 110 by a motor (not shown).
  • the movable stage 120 moves the base material B in the two directions orthogonal to the X direction and the Y direction in the XY plane by the first and second linear movement stages 122, and moves.
  • the optical fiber core wire F is wired on the base material B in a predetermined wiring pattern. It is configured.
  • the adhesive layer 30 is formed by attaching an adhesive to the surface of the main body plate 11 of the heat sink 10 as a base material.
  • the heat sink 10 is installed on the movable stage 120 of the wiring apparatus 100 so that the surface of the main body plate 11 provided with the adhesive layer 30 faces upward.
  • the heat sink 10 is moved in the XY plane by the movable stage 120, and the optical fiber core wire 20 is supplied from the wiring portion 140, so that a space d is provided on the main body plate 11 of the heat sink 10.
  • the optical fiber core wire 20 is wired so as to form a predetermined wiring pattern extending in parallel (wiring process).
  • the heat sink 10 is taken out from the wiring device 100, and the uncured liquid or paste filler 40 is filled between the optical fiber core wires 20 on the surface side of the main body plate 11 of the heat sink 10. Apply and cure (filler filling process).
  • the optical fiber wiring structure A according to the first embodiment is obtained by covering the surface of the main body plate 11 of the heat sink 10 so as to cover the surface of the main body plate 11 of the optical fiber core wire 20 and closely adhering it. Can do.
  • FIG. 1 shows an optical fiber wiring structure A (optical fiber sheet) according to the second embodiment.
  • the optical fiber wiring structure A according to the second embodiment is also used for applications such as a fiber laser and an optical fiber amplifier.
  • the part of the same name as Embodiment 1 is shown with the same code
  • FIG. 1 shows an optical fiber wiring structure A (optical fiber sheet) according to the second embodiment.
  • the optical fiber wiring structure A according to the second embodiment is also used for applications such as a fiber laser and an optical fiber amplifier.
  • the part of the same name as Embodiment 1 is shown with the same code
  • the resin sheet 60 constitutes a base material.
  • Examples of a material for forming the resin sheet 60 include resins such as polyethylene resin, polypropylene resin, and polyethylene terephthalate resin.
  • the thickness of the resin sheet 60 is, for example, 0.1 to 0.8 mm.
  • the base material of the optical fiber wiring structure A according to Embodiment 2 is the resin sheet 60, the optical fiber amplifier and the like can be reduced in weight and size.
  • optical fiber core wire 20 the adhesive layer 30, the filler 40, and the protective film 50, and the effects are the same as those of the first embodiment.
  • the wiring pattern is configured in a track shape for athletics, but is not particularly limited thereto, and the wiring pattern is configured in a circular shape as shown in FIG.
  • the wiring pattern is formed by adjoining the four straight portions extending along the four sides of the main body plate 11 or the resin sheet 60 of the heat sink 10. May be configured to have a substantially rectangular shape having a circular arc portion and a radius of curvature of the circular arc portion that is substantially the same from the inside to the outside.
  • the optical fiber core wire 20 which is longer than that in the first and second embodiments can be wired on the main body plate 11 or the resin sheet 60 of the heat sink 10.
  • the configuration is such that the optical fiber core wire 20 is wired on the surface of the main body plate 11 of the heat sink 10.
  • the present invention is not particularly limited thereto, and as shown in FIG.
  • One or a plurality of Peltier elements 13 may be attached on the plate 11, and the optical fiber core wire 20 may be wired on the heat sink 14 provided thereon. In such a configuration, not only heat dissipation but also temperature control can be performed.
  • the adhesive layer 30 (or the adhesive layer) is provided on the entire surface of the main body plate 11 or the resin sheet 60 of the heat sink 10.
  • the layer 30 (or the adhesive layer) may be configured to be provided at least in a portion where the optical fiber core wire 20 is wired, and the optical fiber core wire 20 is simply connected via an adhesive (or adhesive).
  • a wired configuration may also be used.
  • the filler 40 is filled between the optical fiber core wires 20.
  • the present invention is not limited to this, and the filler 40 is not filled and the optical fiber core wires are not filled.
  • a configuration in which a gap is provided between 20 may be used.
  • the protective film 50 was provided so that the wired optical fiber core wire 20 might be covered, it is not limited to this in particular, The protective film 50 is provided. Alternatively, the configuration may be such that the wired optical fiber 20 is exposed on the surface.
  • Example 1 An optical fiber wiring structure having the same configuration as that of the first embodiment was manufactured and used as Example 1.
  • model number manufactured by AAVID: EM / B / 150 (length 200 mm, width 150 mm, thickness (including fin length) 40 mm, thermal resistance 0.64 ° C./W)
  • As the optical fiber core wire 30 m having a core wire diameter of 250 ⁇ m, in which an optical fiber having a fiber diameter of 125 ⁇ m (core diameter of 8 ⁇ m) was coated with a coating layer of an ultraviolet curable acrylic resin, was used.
  • the adhesive layer a silicone-based adhesive was used with a layer thickness of 50 ⁇ m. Silicone rubber (trade name: KE-4890 etc.) manufactured by Shin-Etsu Chemical Co., Ltd. was used as the filler.
  • a polyethylene film having a thickness of 80 ⁇ m was used as the protective film.
  • Example 2 An optical fiber wiring structure having the same configuration as that of the second embodiment was manufactured and used as Example 2.
  • a polyethylene terephthalate resin sheet (length 200 mm, width 150 mm, and thickness 0.34 mm) was used as the resin sheet as the substrate.
  • the other configurations were the same as those in Example 1.
  • Example 1 (Test evaluation method) About each optical fiber wiring structure of Example 1 and 2, it heat-inputs so that a 1 W thermal load may be added uniformly to an optical fiber core wire wiring part, and the temperature of the optical fiber in an optical fiber wiring structure is 60 minutes Monitored. The temperature of the optical fiber in the optical fiber wiring structure was measured by measuring the length change due to the thermal expansion of the optical fiber and converting the length change into the temperature based on the relationship between the length and the temperature obtained in advance. .
  • FIG. 10 shows the relationship between the time of Examples 1 and 2 and the temperature rise of the optical fiber.
  • Example 1 the temperature rise in 60 minutes was just over 2 ° C, and in Example 2, the temperature rise in 60 minutes was just over 12 ° C.
  • Example 1 When the same test evaluation is performed by winding optical fiber cores having the same core length into a bundle, the temperature rise is estimated to be about 148 ° C. Compared with this, Examples 1 and 2 have extremely high heat dissipation. It turns out that it is excellent. In particular, it can be seen that Example 1 using a heat sink as a base material has significantly better heat dissipation than Example 2.
  • the present invention is useful for an optical fiber wiring structure and a manufacturing method thereof.
  • a Optical fiber wiring structure B Base material d Space

Abstract

An optical fiber wiring structure (A) in which optical fiber cores (20) are laid so as to form a wiring pattern on a base (10), in said wiring pattern the optical fiber cores (20) extending parallel to each other at an interval.

Description

光ファイバ布線構造体及びその製造方法Optical fiber wiring structure and manufacturing method thereof
 本発明は光ファイバ布線構造体及びその製造方法に関する。 The present invention relates to an optical fiber wiring structure and a manufacturing method thereof.
 ファイバレーザや光ファイバ増幅器等のように長尺の光ファイバ心線を用いる装置では、例えば、リールに光ファイバ心線を巻き付けたものを装置内に組み込んだり、或いは、基材となる樹脂シート上に光ファイバ心線を所定の布線パターンを形成するように布線した光ファイバ布線シートを装置内に組み込んだりすることが行われる。 In a device using a long optical fiber core such as a fiber laser or an optical fiber amplifier, for example, a device in which an optical fiber core is wound around a reel is incorporated in the device, or on a resin sheet as a base material. An optical fiber wiring sheet in which optical fiber cores are laid so as to form a predetermined wiring pattern is incorporated into the apparatus.
 特許文献1には、光ファイバ布線シートの製造方法について、光ファイバの表面を覆うように紫外線硬化型の樹脂を塗布し、これに紫外線を照射して樹脂の表面側に未架橋の部分が残った光ファイバ心線を構成した上で、この光ファイバ心線を互いに密着させて型枠に巻き取った後、再度、紫外線を照射して、未架橋の樹脂を硬化させることにより光ファイバ心線同士を接着して一体化させることが開示されている。 Patent Document 1 discloses a method for manufacturing an optical fiber wiring sheet, in which an ultraviolet curable resin is applied so as to cover the surface of an optical fiber, and ultraviolet rays are applied to the resin so that an uncrosslinked portion is present on the surface side of the resin. After configuring the remaining optical fiber cores, the optical fiber core wires are brought into close contact with each other and wound up on a mold, and then irradiated with ultraviolet rays again to cure the uncrosslinked resin. It is disclosed that the wires are bonded and integrated.
 また、特許文献2には、光ファイバの放熱を目的として、光ファイバを円形に巻回し、それを熱伝導性の高い材質の第1及び第2の部材で挟んだ状態で、それらの隙間に柔軟性が高く且つ熱伝導性の高い材料を充填することが開示されている。 Further, in Patent Document 2, for the purpose of heat dissipation of the optical fiber, the optical fiber is wound in a circular shape and sandwiched between the first and second members made of a material having high thermal conductivity. It is disclosed to fill a material with high flexibility and high thermal conductivity.
特開2000-329944号公報JP 2000-329944 A 特開2001-274489号公報JP 2001-274489 A
 本発明は、基材と、該基材上に相互に間隔をおいて並行に延びる布線パターンを形成するように布線された光ファイバ心線と、を備えた光ファイバ布線構造体である。 The present invention is an optical fiber wiring structure comprising: a base material; and an optical fiber core wire laid so as to form a wiring pattern extending in parallel and spaced apart from each other on the base material. is there.
 本発明は、基材上に、光ファイバ心線を、相互に間隔をおいて並行に延びる布線パターンを形成するように布線する光ファイバ布線構造体の製造方法である。 The present invention is a method for manufacturing an optical fiber wiring structure in which optical fiber cores are wired on a substrate so as to form a wiring pattern extending in parallel with a distance from each other.
実施形態1に係る光ファイバ布線構造体を示す斜視図である。1 is a perspective view showing an optical fiber wiring structure according to Embodiment 1. FIG. 実施形態1に係る光ファイバ布線構造体を示す平面図である。1 is a plan view showing an optical fiber wiring structure according to Embodiment 1. FIG. 図2におけるIII-III拡大断面図である。It is the III-III expanded sectional view in FIG. 光ファイバ心線の斜視図である。It is a perspective view of an optical fiber core wire. 布線装置の斜視図である。It is a perspective view of a wiring apparatus. 実施形態2に係る光ファイバ布線構造体を示す斜視図である。It is a perspective view which shows the optical fiber wiring structure which concerns on Embodiment 2. FIG. 実施形態2に係る光ファイバ布線構造体の実施形態1における図3に相当する拡大断面図である。It is an expanded sectional view equivalent to FIG. 3 in Embodiment 1 of the optical fiber wiring structure which concerns on Embodiment 2. FIG. (a)及び(b)は光ファイバ布線構造体の変形例を示す平面図である。(A) And (b) is a top view which shows the modification of an optical fiber wiring structure. 光ファイバ布線構造体の別の変形例を示す側面図である。It is a side view which shows another modification of an optical fiber wiring structure. 実施例1及び2の時間と光ファイバ布線構造体の温度上昇との関係を示すグラフである。It is a graph which shows the relationship between the time of Example 1 and 2 and the temperature rise of an optical fiber wiring structure.
 以下、実施形態について図面に基づいて詳細に説明する。 Hereinafter, embodiments will be described in detail based on the drawings.
 (実施形態1)
 図1~3は実施形態1に係る光ファイバ布線構造体Aを示す。この実施形態1に係る光ファイバ布線構造体Aは、例えばファイバレーザや光ファイバ増幅器等の用途に用いられるものである。
(Embodiment 1)
1 to 3 show an optical fiber wiring structure A according to Embodiment 1. FIG. The optical fiber wiring structure A according to the first embodiment is used for applications such as a fiber laser and an optical fiber amplifier.
 実施形態1に係る光ファイバ布線構造体Aでは、ヒートシンク10が基材を構成している。 In the optical fiber wiring structure A according to the first embodiment, the heat sink 10 constitutes a base material.
 ヒートシンク10は、長方形の本体プレート11の表面が平坦面である一方、その裏面に複数の板状のフィン12が長辺方向に間隔dをおいてそれぞれ法線方向に延びるように本体プレート11に一体に設けられ、側面視櫛形の形状を有している。ヒートシンク10を形成する材料は熱伝導率の高い金属であることが好ましく、かかる材料としては、例えば、アルミニウム、銅等が挙げられる。ヒートシンク10は、耐蝕性及び耐摩耗性を向上させるため、また、放熱特性を向上させるため、黒などに着色された陽極酸化皮膜により被覆されていてもよい。本体プレート11は、例えば、長さが50~300mm、幅が50~250mm、及び厚さが1~10mmである。フィン12は、例えば、本体プレート11から延びる長さが2~300mm、及び厚さが5~50mmである。市販の好適なヒートシンク10としては、例えば、AAVID社製の型番:EM/B/150(熱抵抗0.64℃/W)や型番:OK278/B/150(熱抵抗0.48℃/W)等が挙げられる。なお、ヒートシンク10の本体プレート11やフィン12の形状、材料、及び寸法はこれらに限定されるものではなく、他の構成を有していてもよい。 In the heat sink 10, the surface of the rectangular main body plate 11 is a flat surface, and a plurality of plate-like fins 12 are provided on the rear surface of the main body plate 11 so as to extend in the normal direction at intervals d in the long side direction. It is provided integrally and has a comb shape when viewed from the side. The material forming the heat sink 10 is preferably a metal having high thermal conductivity, and examples of such a material include aluminum and copper. The heat sink 10 may be coated with an anodized film colored in black or the like in order to improve corrosion resistance and wear resistance, and in order to improve heat dissipation characteristics. The main body plate 11 has, for example, a length of 50 to 300 mm, a width of 50 to 250 mm, and a thickness of 1 to 10 mm. For example, the fin 12 has a length extending from the main body plate 11 of 2 to 300 mm and a thickness of 5 to 50 mm. As a commercially available heat sink 10, for example, model number: EM / B / 150 (thermal resistance 0.64 ° C./W) manufactured by AAVID, or model number: OK278 / B / 150 (thermal resistance 0.48 ° C./W) Etc. The shapes, materials, and dimensions of the main body plate 11 and the fins 12 of the heat sink 10 are not limited to these, and may have other configurations.
 実施形態1に係る光ファイバ布線構造体Aでは、ヒートシンク10の本体プレート11の表面に光ファイバ心線20が粘着層30(粘着剤)を介して布線されている。 In the optical fiber wiring structure A according to the first embodiment, the optical fiber core wire 20 is wired on the surface of the main body plate 11 of the heat sink 10 via the adhesive layer 30 (adhesive).
 図4は光ファイバ心線20を示す。 FIG. 4 shows the optical fiber core wire 20.
 光ファイバ心線20は、光ファイバ21とそれを被覆する被覆層22とを有する。光ファイバ心線20は、例えば、長さが3~100m、及び心線径が50~1000μmである。 The optical fiber core wire 20 includes an optical fiber 21 and a coating layer 22 that covers the optical fiber 21. The optical fiber core wire 20 has, for example, a length of 3 to 100 m and a core wire diameter of 50 to 1000 μm.
 光ファイバ21は、ファイバ中心の相対的に高屈折率のコア21aとそれを被覆する相対的に低屈折率のクラッド21bとを有する。光ファイバ21を形成する材料は典型的には石英であるが、使用条件によって耐熱性能が許せばアクリル樹脂等の樹脂であってもよく、また、コア21aが石英で且つクラッド21bが樹脂であってもよい。コア21aには、例えば、ドーパントとしてエルビウム(Er)、イットリウム(Y)、ネオジム(Nd)等の希土類元素がドープされていてもよく、その他、ゲルマニウム(Ge)やアルミニウム(Al)等がドープされていてもよい。クラッド21bには、ドーパントがドープされていてもよく、また、ドーパントがドープされていなくてもよいが、前者の場合のドーパントとして例えば屈折率を下げるホウ素(B)やフッ素(F)等が挙げられる。光ファイバ21は、例えば、ファイバ径が50~800μm、コア径が3~600μm、及びクラッド21bの厚さが25~100μmである。但し、光ファイバ21の放熱性を高める観点からは、光ファイバ21のファイバ径は125μm以上であることが好ましい。また、光ファイバ21は、複数の波長の光を通すためのコア及びクラッドが複数組み合わされたものや、断面がD字型や多角形など円形以外のものであってもよい。かかる光ファイバ21については、例えば、特開2002-151764号公報や”Double-clad  fiber  laser  with  30mW  output  power”,OSA  Trends  in  Optics and  Photonics,vol.16,p137~140(1997).に開示されている。 The optical fiber 21 has a core 21a having a relatively high refractive index at the center of the fiber and a clad 21b having a relatively low refractive index covering the core 21a. The material forming the optical fiber 21 is typically quartz, but may be a resin such as an acrylic resin if the heat resistance is allowed depending on the use conditions, and the core 21a is quartz and the clad 21b is resin. May be. For example, the core 21a may be doped with a rare earth element such as erbium (Er), yttrium (Y), or neodymium (Nd) as a dopant, or may be doped with germanium (Ge), aluminum (Al), or the like. It may be. The clad 21b may be doped with a dopant, or may not be doped with a dopant. Examples of the dopant in the former case include boron (B) and fluorine (F) that lower the refractive index. It is done. For example, the optical fiber 21 has a fiber diameter of 50 to 800 μm, a core diameter of 3 to 600 μm, and a thickness of the cladding 21b of 25 to 100 μm. However, from the viewpoint of improving the heat dissipation of the optical fiber 21, the fiber diameter of the optical fiber 21 is preferably 125 μm or more. Further, the optical fiber 21 may be a combination of a plurality of cores and claddings for passing light of a plurality of wavelengths, or a cross section having a shape other than a circle such as a D-shape or a polygon. Such optical fiber 21 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-151864, “Double-clad” fiber “laser” with “30 mW” output “power”, OSA “Trends” in “Optics” and “Photonics, vol. 16, p137-140 (1997). Is disclosed.
 被覆層22を形成する材料としては、例えば、汎用材料では紫外線硬化型のアクリル樹脂が挙げられるが、樹脂の中では光ファイバ21の発熱を効率的に放熱する観点から薄いポリイミド樹脂が好ましく、また、光ファイバ21の発熱を効率的に放熱する観点から高い熱伝導性を有するアルミニウムや銅や金などの金属が好ましい。被覆層22の厚さは、樹脂の場合例えば3~100μmであり、金属の場合例えば30~200μmである。 As a material for forming the covering layer 22, for example, an ultraviolet curable acrylic resin can be cited as a general-purpose material, but among the resins, a thin polyimide resin is preferable from the viewpoint of efficiently dissipating heat generated by the optical fiber 21. From the viewpoint of efficiently dissipating heat generated by the optical fiber 21, metals such as aluminum, copper, and gold having high thermal conductivity are preferable. The thickness of the covering layer 22 is, for example, 3 to 100 μm in the case of resin, and 30 to 200 μm in the case of metal.
 布線パターンは、光ファイバ心線20の長さ方向の中央部分に形成したループを囲うように、一対の光ファイバ心線20が、ヒートシンク10の本体プレート11の長辺に沿って延びる一対の対向する直線部分とそれらの一端同士を連結する一方の半円部分及び他端同士を連結する他方の半円部分とを有する形状(陸上競技のトラック形状)を形成するように外側に周回(例えば6~200周)したパターンである。この布線パターンの直線部分の長さは、内側及び外側で同一であって、例えば30~200mmである。半円部分の曲率半径は、内側よりも外側が長く、例えば15~150mmである。なお、布線パターンの最外周を形成した一対の光ファイバ心線20は、ヒートシンク10の外側に引き出されており、一方が入力端及び他方が出力端に構成されている。 In the wiring pattern, a pair of optical fiber core wires 20 extend along the long side of the main body plate 11 of the heat sink 10 so as to surround a loop formed in the central portion in the length direction of the optical fiber core wire 20. Orbiting outwards to form a shape (track shape for athletics) having opposing straight portions and one semicircular portion connecting one end of them and the other semicircular portion connecting the other ends 6 to 200 laps). The length of the straight line portion of the wiring pattern is the same on the inner side and the outer side, and is, for example, 30 to 200 mm. The radius of curvature of the semicircular portion is longer on the outside than on the inside, for example, 15 to 150 mm. In addition, the pair of optical fiber core wires 20 forming the outermost periphery of the wiring pattern is drawn to the outside of the heat sink 10, one of which is configured as an input end and the other as an output end.
 ところで、EDF(Erbium Doped Fiber)などを用いたファイバレーザや光ファイバ増幅器等では、光ファイバの発熱による特性低下を抑制することが求められる。しかしながら、上記布線パターンでは、直線部分及び半円部分のいずれでも、相互に隣接して並行に延びる光ファイバ心線20同士は接触しておらず、図3に示すように、光ファイバ心線20が相互に間隔dをおいて並行に延びるように設けられている。このように光ファイバ心線20が相互に間隔dをおいて並行に延びる布線パターンを形成するように布線されているので、光ファイバ心線20間に蓄熱されることがなく、しかも基材としてヒートシンク10を用いているおり、そのため高い放熱性を得ることができる。そして、これによって、ファイバレーザ用途場合にはハイパワー化が可能となり、また、光ファイバ増幅器用途の場合には特性の安定化が図られることとなる。光ファイバ心線20相互間の間隔dは、布線パターンに沿って広狭を有していてもよいが、光ファイバ心線20を限られたスペースに効率的に配設すると共に光ファイバ心線20間の蓄熱を排除して光ファイバ21の発熱を効率的に放熱する観点から、布線パターンに沿って一定であることが好ましい。光ファイバ心線20相互間の間隔dは、光ファイバ心線20を限られたスペースに効率的に配設すると共に光ファイバ心線20間の蓄熱を排除して光ファイバ21の発熱を効率的に放熱する観点から、光ファイバ心線20の心線径の0.2~3.0倍であることが好ましく、0.5~1.5倍であることがより好ましい。 By the way, in a fiber laser or an optical fiber amplifier using EDF (Erbium Doped Fiber) or the like, it is required to suppress deterioration in characteristics due to heat generation of the optical fiber. However, in the above-described wiring pattern, the optical fiber core wires 20 that are adjacent to each other and extend in parallel are not in contact with each other in both the straight portion and the semicircular portion, and as shown in FIG. 20 are provided so as to extend in parallel with each other at a distance d. Thus, the optical fiber core wires 20 are wired so as to form a wiring pattern extending in parallel with a distance d from each other. Since the heat sink 10 is used as a material, high heat dissipation can be obtained. As a result, high power can be achieved for fiber laser applications, and stabilization of characteristics can be achieved for optical fiber amplifier applications. The spacing d between the optical fiber cores 20 may be wide or narrow along the wiring pattern, but the optical fiber core wires 20 are efficiently disposed in a limited space and the optical fiber core wires are arranged. From the viewpoint of eliminating heat storage between 20 and efficiently dissipating the heat generated by the optical fiber 21, it is preferable to be constant along the wiring pattern. The distance d between the optical fiber cores 20 efficiently disposes the optical fiber core wires 20 in a limited space and eliminates heat storage between the optical fiber core wires 20 to efficiently generate heat from the optical fiber 21. From the viewpoint of heat dissipation, it is preferably 0.2 to 3.0 times the core wire diameter of the optical fiber core wire 20, and more preferably 0.5 to 1.5 times.
 粘着層30を形成する材料としては、例えば、シリコーン系粘着剤、ゴム系粘着剤、アクリル系粘着剤等が挙げられる。粘着層30には、熱伝導性を高める金属粉やカーボン等のフィラーが添加されていてもよい。なお、粘着層30の代わりに接着層を介して光ファイバ心線20が布線されていてもよく、かかる接着層を形成する材料としては、例えば、熱硬化性樹脂接着剤、熱可塑性樹脂系接着剤、エラストマー系接着剤等が挙げられる。粘着層30或いは接着層の厚さは、光ファイバ21の発熱を効率的にヒートシンク10に放熱する観点から可能な限り薄いことが好ましいが、例えば20~100μmである。 Examples of the material for forming the adhesive layer 30 include a silicone adhesive, a rubber adhesive, and an acrylic adhesive. The adhesive layer 30 may be added with a filler such as metal powder or carbon that enhances thermal conductivity. The optical fiber core wire 20 may be wired through an adhesive layer instead of the adhesive layer 30. Examples of the material for forming the adhesive layer include a thermosetting resin adhesive and a thermoplastic resin system. Examples thereof include an adhesive and an elastomer-based adhesive. The thickness of the adhesive layer 30 or the adhesive layer is preferably as thin as possible from the viewpoint of efficiently dissipating heat generated by the optical fiber 21 to the heat sink 10, but is, for example, 20 to 100 μm.
 実施形態1に係る光ファイバ布線構造体Aでは、ヒートシンク10上に布線された光ファイバ心線20相互間に流体固化型の充填材40が充填されている。この充填材40によって、光ファイバ21からの熱の伝熱性が高められる。ここで、流体固化型の充填材40は、原材料が液体状乃至ペースト状の流動性を有する性状を示し、反応や溶媒揮発等により固化する充填材材料を意味する。 In the optical fiber wiring structure A according to the first embodiment, a fluid-solidified filler 40 is filled between the optical fiber cores 20 wired on the heat sink 10. The filler 40 enhances heat transfer from the optical fiber 21. Here, the fluid-solidified filler 40 refers to a filler material in which the raw material has a liquid or paste fluidity and is solidified by reaction or solvent volatilization.
 かかる流体固化型の充填材40としては、例えば、シリコーンゴム、エポキシ樹脂などの熱硬化性樹脂、熱可塑性樹脂等が挙げられる。これらのうち光ファイバ21の発熱を効率的に放熱する観点から熱伝導性が優れるシリコーンゴムが好ましい。固化前の充填材40の粘度は、充填加工性の観点から50~200Pa・sであることが好ましい。固化後の充填材40の硬さ(デュロメータA、JIS K 6249準拠)は、光ファイバ心線20の熱による寸法変化に対する追随性の観点から20~80であることが好ましい。固化後の充填材40の熱伝導率(ISO22007-2準拠)は、光ファイバ21の発熱を効率的に放熱する観点から0.2~2.5W/m・Kであることが好ましい。市販の好適な充填材40としては、例えば、信越化学工業社製のシリコーンゴム(商品名:KE-4890等)が挙げられる。 Examples of the fluid solidified filler 40 include thermosetting resins such as silicone rubber and epoxy resin, and thermoplastic resins. Of these, silicone rubber having excellent thermal conductivity is preferable from the viewpoint of efficiently dissipating heat generated by the optical fiber 21. The viscosity of the filler 40 before solidification is preferably 50 to 200 Pa · s from the viewpoint of filling processability. The hardness of the filler 40 after solidification (in accordance with durometer A, JIS K 6249) is preferably 20 to 80 from the viewpoint of followability to a dimensional change due to heat of the optical fiber core wire 20. The thermal conductivity (based on ISO 22007-2) of the filler 40 after solidification is preferably 0.2 to 2.5 W / m · K from the viewpoint of efficiently dissipating heat generated by the optical fiber 21. Examples of suitable commercially available fillers 40 include silicone rubber (trade name: KE-4890, etc.) manufactured by Shin-Etsu Chemical Co., Ltd.
 実施形態1に係る光ファイバ布線構造体Aでは、ヒートシンク10上に布線された光ファイバ心線20の上からヒートシンク10の本体プレート11の表面を被覆するように保護フィルム50が設けられている。この保護フィルム50によって光ファイバ心線20が外部から保護される。 In the optical fiber wiring structure A according to the first embodiment, the protective film 50 is provided so as to cover the surface of the main body plate 11 of the heat sink 10 from above the optical fiber core wire 20 wired on the heat sink 10. Yes. The optical fiber core wire 20 is protected from the outside by the protective film 50.
 保護フィルム50を形成する材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂等の樹脂が挙げられる。保護フィルム50は、光ファイバ心線20相互間に充填された充填材40の粘着性によって表面を密着被覆しているが、粘着材或いは接着剤を介して表面を密着被覆していてもよい。保護フィルム50の厚さは例えば25~200μmである。 Examples of the material forming the protective film 50 include resins such as polyethylene resin, polypropylene resin, and polyethylene terephthalate resin. The surface of the protective film 50 is tightly coated by the adhesiveness of the filler 40 filled between the optical fiber cores 20, but the surface may be tightly coated via an adhesive or an adhesive. The thickness of the protective film 50 is, for example, 25 to 200 μm.
 次に、実施形態1に係る光ファイバ布線構造体Aの製造方法について説明する。 Next, a method for manufacturing the optical fiber wiring structure A according to Embodiment 1 will be described.
 図5は光ファイバ布線構造体Aの製造に用いる布線装置100を示す。なお、布線装置100の構造については、例えば、特開2002-31723号公報、特開2002-365447号公報、特開2003-75654号公報等にも開示されている。 FIG. 5 shows a wiring device 100 used for manufacturing the optical fiber wiring structure A. The structure of the wiring device 100 is also disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2002-31723, 2002-365447, and 2003-75654.
 この布線装置100は、矩形の基台110の中央に可動ステージ120が設けられていると共に、基台110の一辺の中央部に支持部材130が立設されている。 In this wiring apparatus 100, a movable stage 120 is provided at the center of a rectangular base 110, and a support member 130 is erected at the center of one side of the base 110.
 可動ステージ120は、下側の第1直線移動ステージ121と上側の第2直線移動ステージ122とで構成されている。 The movable stage 120 includes a lower first linear movement stage 121 and an upper second linear movement stage 122.
 第1直線移動ステージ121は、基台110上に固定された第1固定部材121aとその上に設けられた第1移動台121bとからなる。第1固定部材121aの上面側には、図中の矢印Xの方向に延びるガイド凸部123が設けられている一方、第1移動台121bの下面側には、ガイド凸部123に係合するガイド凹部124が設けられている。第1移動台121bは不図示のモータに結合しており、その駆動によって第1移動台121bが第1固定部材121aに対して水平方向でガイド凸部123及びガイド凹部124が延びる方向、つまり、図中の矢印Xの方向に相対的に往復移動可能に構成されている。 The first linear moving stage 121 includes a first fixing member 121a fixed on the base 110 and a first moving base 121b provided thereon. A guide convex portion 123 extending in the direction of arrow X in the drawing is provided on the upper surface side of the first fixing member 121a, while the guide convex portion 123 is engaged on the lower surface side of the first moving base 121b. A guide recess 124 is provided. The first moving base 121b is coupled to a motor (not shown), and by driving the first moving base 121b, the guide convex portion 123 and the guide concave portion 124 extend in the horizontal direction with respect to the first fixing member 121a, that is, It is configured to be able to reciprocate relatively in the direction of arrow X in the figure.
 第2直線移動ステージ122も第1直線移動ステージ121と同じ構造を有しており、移動する方向が第1直線移動ステージ121の移動方向と直交している。すなわち、第2直線移動ステージ122は、第1移動台121b上に固定された第2固定部材122aとその上に設けられた第2移動台122bとからなる。第2固定部材122aの上面側には、図中の矢印Yの方向に延びるガイド凸部125が設けられている一方、第2移動台122bの下面側には、ガイド凸部125と係合するガイド凹部126が設けられている。第2移動台122bの上面は、基材Bの着脱が可能で、且つ基材Bが設置された際には、その光ファイバ心線20を布線する上面が略水平状態となるように構成されている。第2移動台122bは不図示のモータに結合しており、その駆動によって第2移動台122bが第2固定部材122aに対して水平方向でガイド凸部125及びガイド凹部126が延びる方向、つまり、図中の矢印Yの方向に相対的に往復移動可能に構成されている。なお、X方向とY方向とは直交している。 The second linear movement stage 122 also has the same structure as the first linear movement stage 121, and the moving direction is orthogonal to the moving direction of the first linear movement stage 121. That is, the second linear moving stage 122 includes a second fixing member 122a fixed on the first moving table 121b and a second moving table 122b provided thereon. On the upper surface side of the second fixing member 122a, a guide convex portion 125 extending in the direction of the arrow Y in the figure is provided, while on the lower surface side of the second moving base 122b, the guide convex portion 125 is engaged. A guide recess 126 is provided. The upper surface of the second moving table 122b is configured such that the base material B can be attached and detached, and when the base material B is installed, the upper surface for laying the optical fiber core wire 20 is in a substantially horizontal state. Has been. The second moving table 122b is coupled to a motor (not shown), and by driving the second moving table 122b, the guide convex portion 125 and the guide concave portion 126 extend in the horizontal direction with respect to the second fixing member 122a. It is configured to be able to reciprocate relatively in the direction of arrow Y in the figure. Note that the X direction and the Y direction are orthogonal to each other.
 支持部材130は、基台110から垂直に上方に立ち上がった脚部131とその脚部131の上端から基台110の中央部に向かって水平に延びた腕部132とからなるL字状の部材で構成されている。腕部132の先端には、布線部140が可動ステージ120の上方に位置付けられるように取り付けられている。 The support member 130 is an L-shaped member that includes a leg 131 that rises vertically upward from the base 110 and an arm 132 that extends horizontally from the upper end of the leg 131 toward the center of the base 110. It consists of The wiring part 140 is attached to the tip of the arm part 132 so as to be positioned above the movable stage 120.
 布線部140は、内部に図示しない光ファイバボビンを収容していると共に、下端に布線ヘッド141を有しており、光ファイバボビンに巻かれた光ファイバ心線Fを引き出して布線ヘッド141の心線供給口から供給するように構成されている。また、布線部140は、不図示のモータにより基台110平面に対して略垂直な回転軸回りに回転するように構成されている。 The wiring section 140 accommodates an optical fiber bobbin (not shown) inside, and has a wiring head 141 at the lower end, and pulls out the optical fiber core wire F wound around the optical fiber bobbin to provide the wiring head. 141 is configured to be supplied from the core wire supply port. The wiring section 140 is configured to rotate around a rotation axis that is substantially perpendicular to the plane of the base 110 by a motor (not shown).
 以上により、布線装置100は、可動ステージ120が第1及び第2直線移動ステージ122により基材BをXY平面内でX方向及びY方向の直交する2方向に移動させ、そして、その移動する基材B上に、支持部材130に支持された布線部140から光ファイバ心線Fを供給することにより、基材B上に所定の布線パターンで光ファイバ心線Fを布線するように構成されている。 As described above, in the wiring apparatus 100, the movable stage 120 moves the base material B in the two directions orthogonal to the X direction and the Y direction in the XY plane by the first and second linear movement stages 122, and moves. By supplying the optical fiber core wire F from the wiring section 140 supported by the support member 130 on the base material B, the optical fiber core wire F is wired on the base material B in a predetermined wiring pattern. It is configured.
 実施形態1に係る光ファイバ布線構造体Aを製造する際には、まず、基材としてのヒートシンク10の本体プレート11の表面に粘着剤を付着させて粘着層30を形成する。 When manufacturing the optical fiber wiring structure A according to the first embodiment, first, the adhesive layer 30 is formed by attaching an adhesive to the surface of the main body plate 11 of the heat sink 10 as a base material.
 次いで、上記布線装置100の可動ステージ120に、ヒートシンク10を、粘着層30を設けた本体プレート11の表面が上方を向くように設置する。 Next, the heat sink 10 is installed on the movable stage 120 of the wiring apparatus 100 so that the surface of the main body plate 11 provided with the adhesive layer 30 faces upward.
 続いて、可動ステージ120によりヒートシンク10をXY平面内で移動させると共に、布線部140から光ファイバ心線20を供給することにより、ヒートシンク10の本体プレート11上に、相互に間隔dをおいて並行に延びる所定の布線パターンを形成するように光ファイバ心線20を布線する(布線工程)。 Subsequently, the heat sink 10 is moved in the XY plane by the movable stage 120, and the optical fiber core wire 20 is supplied from the wiring portion 140, so that a space d is provided on the main body plate 11 of the heat sink 10. The optical fiber core wire 20 is wired so as to form a predetermined wiring pattern extending in parallel (wiring process).
 そして、布線装置100からヒートシンク10を取り出し、ヒートシンク10の本体プレート11の表面側に、未硬化の液体状乃至ペースト状の充填材40を、光ファイバ心線20相互間に充填されるように塗布し、それを硬化させる(充填材充填工程)。 Then, the heat sink 10 is taken out from the wiring device 100, and the uncured liquid or paste filler 40 is filled between the optical fiber core wires 20 on the surface side of the main body plate 11 of the heat sink 10. Apply and cure (filler filling process).
 最後に、光ファイバ心線20の上からヒートシンク10の本体プレート11の表面を被覆するように保護フィルム50を被せて密着させることにより、実施形態1に係る光ファイバ布線構造体Aを得ることができる。 Finally, the optical fiber wiring structure A according to the first embodiment is obtained by covering the surface of the main body plate 11 of the heat sink 10 so as to cover the surface of the main body plate 11 of the optical fiber core wire 20 and closely adhering it. Can do.
 (実施形態2)
 図6及び7は実施形態2に係る光ファイバ布線構造体A(光ファイバシート)を示す。この実施形態2に係る光ファイバ布線構造体Aもまた、例えばファイバレーザや光ファイバ増幅器等の用途に用いられるものである。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
(Embodiment 2)
6 and 7 show an optical fiber wiring structure A (optical fiber sheet) according to the second embodiment. The optical fiber wiring structure A according to the second embodiment is also used for applications such as a fiber laser and an optical fiber amplifier. In addition, the part of the same name as Embodiment 1 is shown with the same code | symbol as Embodiment 1. FIG.
 実施形態2に係る光ファイバ布線構造体Aでは、樹脂シート60が基材を構成している。 In the optical fiber wiring structure A according to the second embodiment, the resin sheet 60 constitutes a base material.
 樹脂シート60を形成する材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂等の樹脂が挙げられる。樹脂シート60の厚さは例えば0.1~0.8mmである。 Examples of a material for forming the resin sheet 60 include resins such as polyethylene resin, polypropylene resin, and polyethylene terephthalate resin. The thickness of the resin sheet 60 is, for example, 0.1 to 0.8 mm.
 実施形態2に係る光ファイバ布線構造体Aは、基材が樹脂シート60であるので、光ファイバ増幅器等の軽量化及びコンパクト化が可能である。 Since the base material of the optical fiber wiring structure A according to Embodiment 2 is the resin sheet 60, the optical fiber amplifier and the like can be reduced in weight and size.
 その他の光ファイバ心線20、粘着層30、充填材40、及び保護フィルム50の構成、並びに作用効果は実施形態1と同一である。 Other configurations of the optical fiber core wire 20, the adhesive layer 30, the filler 40, and the protective film 50, and the effects are the same as those of the first embodiment.
 (その他の実施形態)
 上記実施形態1及び2では、布線パターンを陸上競技のトラック形状に構成したが、特にこれに限定されるものではなく、図8(a)に示すように、布線パターンを円形状に構成してもよく、また、図8(b)に示すように、布線パターンを、ヒートシンク10の本体プレート11或いは樹脂シート60の4つの辺に沿って延びる4本の直線部分と隣接する直線部分を連結する角部が円弧部分とを有し、円弧部分の曲率半径が内側から外側において略同一である略矩形状に構成してもよい。後者の構成の場合、ヒートシンク10の本体プレート11或いは樹脂シート60に上記実施形態1及び2に比べて長尺の光ファイバ心線20を布線することができる。
(Other embodiments)
In the first and second embodiments, the wiring pattern is configured in a track shape for athletics, but is not particularly limited thereto, and the wiring pattern is configured in a circular shape as shown in FIG. Alternatively, as shown in FIG. 8B, the wiring pattern is formed by adjoining the four straight portions extending along the four sides of the main body plate 11 or the resin sheet 60 of the heat sink 10. May be configured to have a substantially rectangular shape having a circular arc portion and a radius of curvature of the circular arc portion that is substantially the same from the inside to the outside. In the case of the latter configuration, the optical fiber core wire 20 which is longer than that in the first and second embodiments can be wired on the main body plate 11 or the resin sheet 60 of the heat sink 10.
 上記実施形態1では、ヒートシンク10の本体プレート11の表面に光ファイバ心線20を布線した構成としたが、特にこれに限定されるものではなく、図9に示すように、ヒートシンク10の本体プレート11上に1つ乃至複数のペルチェ素子13を取り付け、その上に設けた放熱板14上に光ファイバ心線20を布線した構成であってもよい。このような構成の場合、単に放熱だけでなく、温度の制御を行うことができる。 In the first embodiment, the configuration is such that the optical fiber core wire 20 is wired on the surface of the main body plate 11 of the heat sink 10. However, the present invention is not particularly limited thereto, and as shown in FIG. One or a plurality of Peltier elements 13 may be attached on the plate 11, and the optical fiber core wire 20 may be wired on the heat sink 14 provided thereon. In such a configuration, not only heat dissipation but also temperature control can be performed.
 上記実施形態1及び2では、粘着層30(或いは接着層)がヒートシンク10の本体プレート11或いは樹脂シート60の表面全体に設けられた構成としたが、特にこれに限定されるものではなく、粘着層30(或いは接着層)が少なくとも光ファイバ心線20が布線される部分に設けられた構成であってもよく、さらに、光ファイバ心線20が単に粘着剤(或いは接着剤)を介して布線された構成であってもよい。 In the first and second embodiments, the adhesive layer 30 (or the adhesive layer) is provided on the entire surface of the main body plate 11 or the resin sheet 60 of the heat sink 10. The layer 30 (or the adhesive layer) may be configured to be provided at least in a portion where the optical fiber core wire 20 is wired, and the optical fiber core wire 20 is simply connected via an adhesive (or adhesive). A wired configuration may also be used.
 上記実施形態1及び2では、光ファイバ心線20相互間に充填材40が充填された構成としたが、特にこれに限定されるものではなく、充填材40が充填されず、光ファイバ心線20相互間に空隙が設けられた構成であってもよい。 In the first and second embodiments, the filler 40 is filled between the optical fiber core wires 20. However, the present invention is not limited to this, and the filler 40 is not filled and the optical fiber core wires are not filled. A configuration in which a gap is provided between 20 may be used.
 上記実施形態1及び2では、布線された光ファイバ心線20を被覆するように保護フィルム50が設けられた構成としたが、特にこれに限定されるものではなく、保護フィルム50が設けられず、布線された光ファイバ心線20が表面に露出した構成であってもよい。 In the said Embodiment 1 and 2, although it was set as the structure by which the protective film 50 was provided so that the wired optical fiber core wire 20 might be covered, it is not limited to this in particular, The protective film 50 is provided. Alternatively, the configuration may be such that the wired optical fiber 20 is exposed on the surface.
 (光ファイバ布線構造体)
 <実施例1>
 上記実施形態1と同様の構成の光ファイバ布線構造体を作製し、それを実施例1とした。基材としてのヒートシンクには、AAVID社製の型番:EM/B/150(長さ200mm、幅150mm、及び厚さ(フィンの長さを含む)40mm、熱抵抗0.64℃/W)を用いた。光ファイバ心線には、ファイバ径125μm(コア径8μm)の光ファイバを紫外線硬化型アクリル樹脂の被覆層で被覆した心線径250μmのもの30mを用いた。粘着層には、シリコーン系粘着剤を層厚さ50μmとして用いた。充填材には、信越化学工業社製のシリコーンゴム(商品名:KE-4890等)を用いた。保護フィルムには、厚さ80μmのポリエチレンフィルムを用いた。
(Optical fiber wiring structure)
<Example 1>
An optical fiber wiring structure having the same configuration as that of the first embodiment was manufactured and used as Example 1. For the heat sink as the base material, model number manufactured by AAVID: EM / B / 150 (length 200 mm, width 150 mm, thickness (including fin length) 40 mm, thermal resistance 0.64 ° C./W) Using. As the optical fiber core wire, 30 m having a core wire diameter of 250 μm, in which an optical fiber having a fiber diameter of 125 μm (core diameter of 8 μm) was coated with a coating layer of an ultraviolet curable acrylic resin, was used. For the adhesive layer, a silicone-based adhesive was used with a layer thickness of 50 μm. Silicone rubber (trade name: KE-4890 etc.) manufactured by Shin-Etsu Chemical Co., Ltd. was used as the filler. A polyethylene film having a thickness of 80 μm was used as the protective film.
 <実施例2>
 上記実施形態2と同様の構成の光ファイバ布線構造体を作製し、それを実施例2とした。基材としての樹脂シートには、ポリエチレンテレフタレート樹脂シート(長さ200mm、幅150mm、及び厚さ0.34mm)を用いた。その他は実施例1と同一構成とした。
<Example 2>
An optical fiber wiring structure having the same configuration as that of the second embodiment was manufactured and used as Example 2. A polyethylene terephthalate resin sheet (length 200 mm, width 150 mm, and thickness 0.34 mm) was used as the resin sheet as the substrate. The other configurations were the same as those in Example 1.
 (試験評価方法)
 実施例1及び2のそれぞれの光ファイバ布線構造体について、光ファイバ心線配線部に均一に1Wの熱負荷が加わるように入熱し、光ファイバ布線構造体における光ファイバの温度を60分間モニタした。光ファイバ布線構造体における光ファイバの温度は、光ファイバの熱膨張による長さ変化を測定し、予め求めておいた長さと温度の関係より、長さ変化を温度に換算する手法により測定した。
(Test evaluation method)
About each optical fiber wiring structure of Example 1 and 2, it heat-inputs so that a 1 W thermal load may be added uniformly to an optical fiber core wire wiring part, and the temperature of the optical fiber in an optical fiber wiring structure is 60 minutes Monitored. The temperature of the optical fiber in the optical fiber wiring structure was measured by measuring the length change due to the thermal expansion of the optical fiber and converting the length change into the temperature based on the relationship between the length and the temperature obtained in advance. .
 (試験評価結果)
 図10は実施例1及び2の時間と光ファイバの温度上昇との関係を示す。
(Test evaluation results)
FIG. 10 shows the relationship between the time of Examples 1 and 2 and the temperature rise of the optical fiber.
 これによれば、実施例1では60分間での温度上昇が2℃強であり、実施例2では60分間での温度上昇が12℃強であった。 According to this, in Example 1, the temperature rise in 60 minutes was just over 2 ° C, and in Example 2, the temperature rise in 60 minutes was just over 12 ° C.
 同じ心線長の光ファイバ心線を束状に巻き取って同様の試験評価を行った場合の温度上昇は約148℃と見積もられ、これに比べると実施例1及び2は放熱性が極めて優れることが分かる。特に、ヒートシンクを基材とした実施例1は実施例2と比べても放熱性が著しく優れることが分かる。 When the same test evaluation is performed by winding optical fiber cores having the same core length into a bundle, the temperature rise is estimated to be about 148 ° C. Compared with this, Examples 1 and 2 have extremely high heat dissipation. It turns out that it is excellent. In particular, it can be seen that Example 1 using a heat sink as a base material has significantly better heat dissipation than Example 2.
 本発明は光ファイバ布線構造体及びその製造方法について有用である。 The present invention is useful for an optical fiber wiring structure and a manufacturing method thereof.
A 光ファイバ布線構造体
B 基材
d 間隔
F 光ファイバ心線
10 ヒートシンク
11 本体プレート
12 フィン
13 ペルチェ素子
14 放熱板
20 光ファイバ心線
21 光ファイバ
21a コア
21b クラッド
22 被覆層
30 粘着層
40 充填材
50 保護フィルム
60 樹脂シート
100 布線装置
110 基台
120 可動ステージ
121 第1直線移動ステージ
121a 第1固定部材
121b 第1移動台
122 第2直線移動ステージ
122a 第2固定部材
122b 第2移動台
123,125 ガイド凸部
124,126 ガイド凹部
130 支持部材
131 脚部
132 腕部
140 布線部
141 布線ヘッド
A Optical fiber wiring structure B Base material d Space | interval F Optical fiber core wire 10 Heat sink 11 Main body plate 12 Fin 13 Peltier element 14 Heat sink 20 Optical fiber core wire 21 Optical fiber 21a Core 21b Clad 22 Coating layer 30 Adhesion layer 40 Filling Material 50 Protective film 60 Resin sheet 100 Wiring device 110 Base 120 Movable stage 121 First linear moving stage 121a First fixed member 121b First moving table 122 Second linear moving stage 122a Second fixed member 122b Second moving table 123 , 125 Guide convex part 124, 126 Guide concave part 130 Support member 131 Leg part 132 Arm part 140 Wiring part 141 Wiring head

Claims (20)

  1.  基材と、
     上記基材上に相互に間隔をおいて並行に延びる布線パターンを形成するように布線された光ファイバ心線と、
    を備えた光ファイバ布線構造体。
    A substrate;
    An optical fiber core wire arranged to form a wiring pattern extending in parallel with each other on the substrate;
    An optical fiber wiring structure comprising:
  2.  請求項1に記載された光ファイバ布線構造体において、
     上記光ファイバ心線相互間の間隔が該光ファイバ心線の心線径の0.2~3.0倍である光ファイバ布線構造体。
    In the optical fiber wiring structure according to claim 1,
    An optical fiber wiring structure in which the distance between the optical fiber cores is 0.2 to 3.0 times the core diameter of the optical fiber cores.
  3.  請求項1又は2に記載された光ファイバ布線構造体において、
     上記光ファイバ心線相互間の間隔が上記布線パターンに沿って一定である光ファイバ布線構造体。
    In the optical fiber wiring structure according to claim 1 or 2,
    An optical fiber wiring structure in which an interval between the optical fiber cores is constant along the wiring pattern.
  4.  請求項1乃至3のいずれかに記載された光ファイバ布線構造体において、
     上記基材がヒートシンクである光ファイバ布線構造体。
    In the optical fiber wiring structure according to any one of claims 1 to 3,
    An optical fiber wiring structure in which the substrate is a heat sink.
  5.  請求項4に記載された光ファイバ布線構造体において、
     上記基材であるヒートシンクがアルミニウム又は銅で形成されている光ファイバ布線構造体。
    In the optical fiber wiring structure according to claim 4,
    An optical fiber wiring structure in which a heat sink as the base material is formed of aluminum or copper.
  6.  請求項4又は5に記載された光ファイバ布線構造体において、
     上記基材であるヒートシンクが陽極酸化皮膜により被覆されている光ファイバ布線構造体。
    In the optical fiber wiring structure according to claim 4 or 5,
    An optical fiber wiring structure in which a heat sink as the substrate is coated with an anodized film.
  7.  請求項1乃至3のいずれかに記載された光ファイバ布線構造体において、
     上記基材が樹脂シートである光ファイバ布線構造体。
    In the optical fiber wiring structure according to any one of claims 1 to 3,
    An optical fiber wiring structure in which the substrate is a resin sheet.
  8.  請求項1乃至7のいずれかに記載された光ファイバ布線構造体において、
     上記光ファイバ心線は、光ファイバとそれを被覆する被覆層とを有する光ファイバ布線構造体。
    In the optical fiber wiring structure according to any one of claims 1 to 7,
    The said optical fiber core wire is an optical fiber wiring structure which has an optical fiber and the coating layer which coat | covers it.
  9.  請求項8に記載された光ファイバ布線構造体において、
     上記光ファイバのファイバ径が125μm以上である光ファイバ布線構造体。
    In the optical fiber wiring structure according to claim 8,
    An optical fiber wiring structure in which a fiber diameter of the optical fiber is 125 μm or more.
  10.  請求項8又は9に記載された光ファイバ布線構造体において、
     上記被覆層がポリイミド樹脂、アルミニウム、銅、又は金で形成されている光ファイバ布線構造体。
    In the optical fiber wiring structure according to claim 8 or 9,
    An optical fiber wiring structure in which the coating layer is formed of polyimide resin, aluminum, copper, or gold.
  11.  請求項1乃至10のいずれかに記載された光ファイバ布線構造体において、
     上記光ファイバ心線が接着層又は粘着層を介して上記基材上に布線されている光ファイバ布線構造体。
    In the optical fiber wiring structure according to any one of claims 1 to 10,
    An optical fiber wiring structure in which the optical fiber core wire is wired on the substrate via an adhesive layer or an adhesive layer.
  12.  請求項11に記載された光ファイバ布線構造体において、
     上記接着層又は粘着層の厚さが20~100μmである光ファイバ布線構造体。
    In the optical fiber wiring structure according to claim 11,
    An optical fiber wiring structure in which the adhesive layer or the adhesive layer has a thickness of 20 to 100 μm.
  13.  請求項1乃至12のいずれかに記載された光ファイバ布線構造体において、
     上記基材上に布線された上記光ファイバ心線相互間に流体固化型の充填材が充填されている光ファイバ布線構造体。
    In the optical fiber wiring structure according to any one of claims 1 to 12,
    An optical fiber wiring structure in which a fluid-solidified filler is filled between the optical fiber cores wired on the substrate.
  14.  請求項13に記載された光ファイバ布線構造体において、
     上記充填材がシリコーンゴムである光ファイバ布線構造体。
    In the optical fiber wiring structure according to claim 13,
    An optical fiber wiring structure in which the filler is silicone rubber.
  15.  請求項13又は14に記載された光ファイバ布線構造体において、
     上記充填材のJIS K 6249に準拠してデュロメータAにより測定される硬さが20~80である光ファイバ布線構造体。
    The optical fiber wiring structure according to claim 13 or 14,
    An optical fiber wiring structure having a hardness measured by a durometer A in accordance with JIS K 6249 of the filler of 20 to 80.
  16.  請求項13乃至15のいずれかに記載された光ファイバ布線構造体において、
     上記充填材のISO22007-2に準拠して測定される熱伝導率が0.2~2.5W/m・Kである光ファイバ布線構造体。
    The optical fiber wiring structure according to any one of claims 13 to 15,
    An optical fiber wiring structure having a thermal conductivity of 0.2 to 2.5 W / m · K measured in accordance with ISO 22007-2 of the filler.
  17.  請求項1乃至16のいずれかに記載された光ファイバ布線構造体において、
     上記基材上に布線された上記光ファイバ心線の上から該基材の表面を被覆するように保護フィルムが設けられている光ファイバ布線構造体。
    The optical fiber wiring structure according to any one of claims 1 to 16,
    An optical fiber wiring structure in which a protective film is provided so as to cover the surface of the optical fiber core wire wired on the base material.
  18.  基材上に、光ファイバ心線を、相互に間隔をおいて並行に延びる布線パターンを形成するように布線する布線工程を含む光ファイバ布線構造体の製造方法。 The manufacturing method of the optical fiber wiring structure including the wiring process which arrange | positions an optical fiber core wire on a base material so that the wiring pattern extended in parallel at intervals may be formed.
  19.  請求項18に記載された光ファイバ布線構造体の製造方法において、
     上記布線工程の後、基材上に布線された光ファイバ心線相互間に流体固化型の充填材を充填する充填材充填工程をさらに含む光ファイバ布線構造体の製造方法。
    In the manufacturing method of the optical fiber wiring structure described in Claim 18,
    The manufacturing method of the optical fiber wiring structure further including the filler filling process which fills the fluid solidification type filler between the optical fiber core wires wired on the base material after the said wiring process.
  20.  請求項19に記載された光ファイバ布線構造体の製造方法において、
     上記充填材充填工程で用いる充填材の固化前の粘度が50~200Pa・sである光ファイバ布線構造体の製造方法。
    In the manufacturing method of the optical fiber wiring structure described in Claim 19,
    A method for producing an optical fiber wiring structure, wherein the filler used in the filler filling step has a viscosity before solidification of 50 to 200 Pa · s.
PCT/JP2012/000117 2011-01-20 2012-01-11 Optical fiber wiring structure and method for producing same WO2012098835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011010207A JP2012150360A (en) 2011-01-20 2011-01-20 Optical fiber wiring structure and manufacturing method thereof
JP2011-010207 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012098835A1 true WO2012098835A1 (en) 2012-07-26

Family

ID=46515471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000117 WO2012098835A1 (en) 2011-01-20 2012-01-11 Optical fiber wiring structure and method for producing same

Country Status (2)

Country Link
JP (1) JP2012150360A (en)
WO (1) WO2012098835A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997238A1 (en) * 2012-10-22 2014-04-25 Commissariat Energie Atomique OPTICAL FIBER LASER AND METHOD FOR MANUFACTURING OPTICAL FIBER LASER
WO2015094467A1 (en) * 2013-12-18 2015-06-25 Raytheon Company Thermal management for high-power optical fibers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034720B2 (en) * 2013-02-27 2016-11-30 株式会社フジクラ Optical amplification component and fiber laser device
CN103472531B (en) * 2013-09-25 2015-11-18 长飞光纤光缆股份有限公司 A kind of low decay high-temperature resistant optical fiber

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146916A (en) * 1984-08-10 1986-03-07 Furukawa Electric Co Ltd:The Optical fiber cable provided with gas dam
JPH04152303A (en) * 1990-10-17 1992-05-26 Toray Ind Inc Production of optical fiber sheet
JPH11506546A (en) * 1995-06-01 1999-06-08 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Optical fiber ribbon cable and method of manufacturing the same
JP2001507813A (en) * 1996-12-31 2001-06-12 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Flexible optical circuit applique
JP2001274489A (en) * 2000-03-27 2001-10-05 Toshiba Corp Heat dissipating device for optical fiber
JP2003090922A (en) * 2001-09-19 2003-03-28 Nitto Denko Corp Optical fiber wiring sheet, self-adhesive sheet therefor, and manufacturing method thereof
JP2004045937A (en) * 2002-07-15 2004-02-12 Tomoegawa Paper Co Ltd Coated optical fiber ribbon
JP2004356421A (en) * 2003-05-29 2004-12-16 Fujikura Ltd Optical fiber laser
JP2005537509A (en) * 2002-08-29 2005-12-08 住友電気工業株式会社 Tape-like optical fiber core assembly, manufacturing method thereof, connector with tape core assembly, optical fiber array with tape core assembly, and optical wiring system
JP2010239038A (en) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The Holding structure of optical fiber
JP2010237574A (en) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The Optical fiber holding structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146916A (en) * 1984-08-10 1986-03-07 Furukawa Electric Co Ltd:The Optical fiber cable provided with gas dam
JPH04152303A (en) * 1990-10-17 1992-05-26 Toray Ind Inc Production of optical fiber sheet
JPH11506546A (en) * 1995-06-01 1999-06-08 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Optical fiber ribbon cable and method of manufacturing the same
JP2001507813A (en) * 1996-12-31 2001-06-12 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Flexible optical circuit applique
JP2001274489A (en) * 2000-03-27 2001-10-05 Toshiba Corp Heat dissipating device for optical fiber
JP2003090922A (en) * 2001-09-19 2003-03-28 Nitto Denko Corp Optical fiber wiring sheet, self-adhesive sheet therefor, and manufacturing method thereof
JP2004045937A (en) * 2002-07-15 2004-02-12 Tomoegawa Paper Co Ltd Coated optical fiber ribbon
JP2005537509A (en) * 2002-08-29 2005-12-08 住友電気工業株式会社 Tape-like optical fiber core assembly, manufacturing method thereof, connector with tape core assembly, optical fiber array with tape core assembly, and optical wiring system
JP2004356421A (en) * 2003-05-29 2004-12-16 Fujikura Ltd Optical fiber laser
JP2010239038A (en) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The Holding structure of optical fiber
JP2010237574A (en) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The Optical fiber holding structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997238A1 (en) * 2012-10-22 2014-04-25 Commissariat Energie Atomique OPTICAL FIBER LASER AND METHOD FOR MANUFACTURING OPTICAL FIBER LASER
WO2014064383A1 (en) * 2012-10-22 2014-05-01 Commissariat à l'énergie atomique et aux énergies alternatives Optical fiber laser and method for manufacturing an optical fiber laser
US9252553B2 (en) 2012-10-22 2016-02-02 Commissariat à l'énergie atomique et aux énergies alternatives Optical fiber laser and method for manufacturing an optical fiber laser
WO2015094467A1 (en) * 2013-12-18 2015-06-25 Raytheon Company Thermal management for high-power optical fibers
US9606311B2 (en) 2013-12-18 2017-03-28 Raytheon Company Thermal management for high-power optical fibers

Also Published As

Publication number Publication date
JP2012150360A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2012098835A1 (en) Optical fiber wiring structure and method for producing same
US7957623B2 (en) Deformable thermal pads for optical fibers
US6798792B2 (en) Laser device and light signal amplifying device using the same
JP6298165B2 (en) Thermal management of high power optical fiber
JP2016149432A (en) Fiber laser device and method of manufacturing coil for amplification
JP2009175506A (en) Optical fiber part and laser processing machine
US20160159000A1 (en) Method of making adhesion between thermoset and thermoplastic polymers
JP2012022061A (en) Optical fiber unit manufacturing method and manufacturing apparatus
JP2017040841A (en) Optical waveguide element and optical integrated circuit device
JP2005062645A (en) Optical connection structure body and its manufacturing method
JP2012198339A (en) Optical fiber wiring structure and manufacturing method thereof
WO2012057731A1 (en) Photonics module and method of manufacturing
WO2021109161A1 (en) Integrated fiber laser engine
JP2015125362A (en) Optical fiber
JPH11326726A (en) Production of optical fiber multiribbon dividable to at least two optical fiber ribbons
JP2016529725A (en) Apparatus for coupling pump light into a fiber and method of manufacturing the same
JP2006208651A (en) Coated plastic optical fiber ribbon
WO2012140958A1 (en) Manufacturing method for optical module
JP2012208311A (en) Manufacturing apparatus and manufacturing method of optical fiber tape cores
JP6277761B2 (en) Reactor manufacturing method and reactor
JP2017120282A (en) Fusion-spliced part reinforcing structure and method of manufacturing fusion-spliced part reinforcing structure
CN210779478U (en) Integrated optical fiber laser engine
JP2007156292A (en) Optical fiber branching cord and manufacturing method
KR102068498B1 (en) Clading Mode Stripper and Fiber Laser Having the Same
JP2004304205A (en) Optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736150

Country of ref document: EP

Kind code of ref document: A1