WO2012098203A1 - Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles - Google Patents
Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles Download PDFInfo
- Publication number
- WO2012098203A1 WO2012098203A1 PCT/EP2012/050814 EP2012050814W WO2012098203A1 WO 2012098203 A1 WO2012098203 A1 WO 2012098203A1 EP 2012050814 W EP2012050814 W EP 2012050814W WO 2012098203 A1 WO2012098203 A1 WO 2012098203A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tubulin
- cancer
- glu
- compound
- pharmaceutically acceptable
- Prior art date
Links
- 0 *OC[n]1c(-c2n[o]nc2[N+])nc2c1cccc2 Chemical compound *OC[n]1c(-c2n[o]nc2[N+])nc2c1cccc2 0.000 description 1
- NIPZLALJRAHABJ-IBGZPJMESA-N NCCCC[C@@H](C(Nc(cc1)ccc1C(C[n]1c(-c2n[o]nc2NCCC#N)nc2c1cccc2)=O)=O)N Chemical compound NCCCC[C@@H](C(Nc(cc1)ccc1C(C[n]1c(-c2n[o]nc2NCCC#N)nc2c1cccc2)=O)=O)N NIPZLALJRAHABJ-IBGZPJMESA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6872—Intracellular protein regulatory factors and their receptors, e.g. including ion channels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4245—Oxadiazoles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
- G01N33/5026—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on cell morphology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/44—Multiple drug resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- the present invention relates to use of glu-tubulin as a biomarker for predicting the response of a disease, such as a neoplastic or autoimmune disease, preferably cancer, to a compound of general formula I, such as 3-(4- ⁇ 1 -[2-(4-amino- phenyl)-2-oxo-ethyl]-1 H-benzoimidazol-2-yl ⁇ -furazan-3-ylamino)-propionitrile
- Microtubules are one of the components of the cell cytoskeleton and are composed of heterodimers of alpha and beta tubulin. Agents that target microtubules are among the most effective cytotoxic chemotherapeutic agents having a broad spectrum of activity.
- Microtubule destabilising agents e.g. the vinca-alkaloids such as vincristine, vinblastine and vinorelbine
- microtubule stabilising agents e.g. the taxanes such as paclitaxel, docetaxel
- solid tumours including breast, lung and prostate cancer.
- microtubule targeting agents can occur.
- the resistance can either be inherent or can be acquired after exposure to these agents. Such resistance therefore impacts patient survival rates, as well as choices of treatment regimes.
- Several potential mechanisms of resistance have been identified, and include defects in the microtubule targets, such as elevated levels of beta-tubulin subtype III and acquired mutations in beta-tubulin subtype I that are known to reduce taxane binding.
- defects in other cell proteins have been suggested to be associated with resistance to certain microtubule targeting agents, such as overexpression of the efflux pump P-glycoprotein (P-gp pump, also known as multi-drug resistance protein 1 or MDR1 ). Such factors may then be used as biomarkers of resistance to these conventional microtubule targeting agents.
- P-gp pump also known as multi-drug resistance protein 1 or MDR1
- R represents phenyl, thienyl or pyridinyl
- phenyl is optionally substituted by one or two substituents independently selected from alkyl, halo-lower alkyl, hydroxy-lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, phenyl, hydroxy, lower alkoxy, hydroxy-lower alkoxy, lower alkoxy-lower alkoxy, phenyl-lower alkoxy, lower alkylcarbonyloxy, amino,
- alkylcarbonylamino substituted amino wherein the two substituents on nitrogen form together with the nitrogen heterocyclyl, lower alkylcarbonyl, carboxy, lower alkoxycarbonyl, cyano, halogen, and nitro; and wherein two adjacent substituents are methylenedioxy;
- pyridinyl is optionally substituted by lower alkoxy, amino or halogen
- R 1 represents hydrogen, lower alkylcarbonyl, hydroxy-lower alkyl or cyano-lower alkyl
- R 2 , R 3 and R 6 represent hydrogen
- R 4 and R 5 independently of each other, represent hydrogen, lower alkyl or lower alkoxy
- R 4 and R 5 together represent methylenedioxy; and pharmaceutically acceptable salts thereof; or wherein R represents phenyl or pyridinyl
- phenyl is optionally substituted by one or two substituents independently selected from alkyi, halo-lower alkyi, hydroxy-lower alkyi, lower alkoxy-lower alkyi, acyloxy-lower alkyi, phenyl, hydroxy, lower alkoxy, hydroxy-lower alkoxy, lower alkoxy-lower alkoxy, phenyl-lower alkoxy, lower alkylcarbonyloxy, amino,
- alkylcarbonylamino substituted amino wherein the two substituents on nitrogen form together with the nitrogen heterocyclyl, lower alkylcarbonyl, carboxy, lower alkoxycarbonyl, formyl, cyano, halogen, and nitro; and wherein two adjacent substituents are methylenedioxy;
- pyridinyl is optionally substituted by lower alkoxy, amino or halogen
- X represents oxygen
- R 1 represents hydrogen, lower alkylcarbonyl, hydroxy-lower alkyi or cyano-lower alkyi;
- R 2 , R 3 and R 6 represent hydrogen
- R 4 and R 5 independently of each other, represent hydrogen, lower alkyi or lower alkoxy
- R 4 and R 5 together represent methylenedioxy; and pharmaceutically acceptable salts thereof; and wherein the prefix lower denotes a radical having up to and including a maximum of 7, especially up to and including a maximum of 4 carbon atoms.
- BAL27862 One compound falling within this class, known as BAL27862, and shown in WO2004/103994 A1 as example 58, and specifically incorporated by reference herein, has the structure and chemical name given below:
- BAL27862 has activity across a broad panel of experimental, solid tumour xenograft models. Moreover, activity is retained even against tumour models which were selected for resistance to conventional microtubule targeting agents (including the vinca-alkaloid microtubule destabihsers and the microtubule stabilisers paclitaxel and epothilone B). BAL27862 activity is not affected by over-expression of the P-gp pump in any models tested in vitro, nor in human mammary tumour xenografts.
- BAL27862 retained its activity despite elevated levels of beta-tubulin subtype III and mutations in tubulin subtype I.
- BAL27862 activity is not affected by a number of factors that confer resistance to conventional microtubule targeting agents.
- microtubule targeting agents vinblastine, colchicine, paclitaxel and nocodazole as seen in Figures 3B, 3C, 3D and 4, respectively.
- the microtubules were stained with an anti-alpha-tubulin antibody and the cells viewed at a 1000 x magnification ( Figures 3, 4).
- Figures 3, 4 For the cells treated with BAL27862, multiple dot-like structures are visible, whereas, in stark contrast, the other conventional drugs produce filamentous microtubule structures, or dense microtubule aggregate structures.
- BAL27862 elicits a dominant microtubule phenotype in the presence of the other microtubule targeting agents.
- combination treatment with BAL27862 for the last 4 hours resulted in disruption of these phenotypes; despite the continued presence of vinblastine, colchicine, paclitaxel, or nocodazole (Figure 5B, 5E, 5H, 6G-6J respectively).
- An object of the present invention is to identify factors which are associated with response to compounds of formula I or pharmaceutically acceptable derivatives thereof, for example to identify factors associated with resistance to compounds of general formula I, in particular BAL27862 or pharmaceutically acceptable derivatives thereof, as defined below.
- glu-tubulin may be used as a biomarker of response to treatment with a compound of general formula I or pharmaceutically acceptable derivatives thereof, as defined below.
- relatively high glu-tubulin levels in a tumour sample are associated with inherent and acquired resistance to BAL27862, as described below.
- Tubulin is subjected to a variety of posttranslational modifications, including detyrosination/tyrosination, acetylation, glutamylation, polyglycylation,
- tubulin carboxypeptidase tubulin carboxypeptidase or tubulin tyrosine
- TTCP carboxypeptidase
- alpha tubulin which does not have a tyrosine, but rather a glutamate at its C-terminal is known as glu-tubulin or glu tubulin or detyrosinated tubulin.
- glu-tubulin shall be used herein to refer to the form of alpha tubulin with a glutamate as the final amino acid at the C-terminal.
- the designation glu- tubulin shall also encompass forms wherein other post-translational modifications may additionally be present.
- the alpha tubulin which forms the basis for the glu- tubulin is known to exist in multiple variants, subtypes and isoforms, as well as there being multiple alpha tubulin genes which give rise to these, and all these shall also be included in the designation glu-tubulin, with the proviso that a glutamate is the final amino acid at the C-terminal.
- a glutamate is the final amino acid at the C-terminal.
- a glutamate not a tyrosine, is the final amino acid at the C-terminus of alpha tubulin after post-translational
- Subtypes of alpha tubulin include, but are not limited to, tubulin alpha 1A, tubulin alpha 1 B, tubulin alpha 1 C and tubulin alpha 3C/D.
- NCBI National Center for Biotechnology Information
- Glu-tubulin, as described above, does not have the tyrosine at the final amino acid at the C-terminus of the sequences presented in SEQ. ID. NO. 1 -4.
- One aspect of the present invention relates to use of glu-tubulin as a biomarker for predicting the response to a compound, wherein the compound is a compound of general formula I, wherein
- R represents phenyl, thienyl or pyridinyl
- phenyl is optionally substituted by one or two substituents independently selected from alkyl, halo-lower alkyl, hydroxy-lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, phenyl, hydroxy, lower alkoxy, hydroxy-lower alkoxy, lower alkoxy-lower alkoxy, phenyl-lower alkoxy, lower alkylcarbonyloxy, amino,
- alkylcarbonylamino substituted amino wherein the two substituents on nitrogen form together with the nitrogen heterocyclyl, lower alkylcarbonyl, carboxy, lower alkoxycarbonyl, cyano, halogen, and nitro; and wherein two adjacent substituents are methylenedioxy;
- pyridinyl is optionally substituted by lower alkoxy, amino or halogen
- R 1 represents hydrogen, lower alkylcarbonyl, hydroxy-lower alkyl or cyano-lower alkyl
- R 2 , R 3 and R 6 represent hydrogen
- R 4 and R 5 independently of each other, represent hydrogen, lower alkyl or lower alkoxy
- R 4 and R 5 together represent methylenedioxy; and pharmaceutically acceptable derivatives thereof, or wherein
- R represents phenyl or pyridinyl wherein phenyl is optionally substituted by one or two substituents independently selected from alkyi, halo-lower alkyi, hydroxy-lower alkyi, lower alkoxy-lower alkyi, acyloxy-lower alkyi, phenyl, hydroxy, lower alkoxy, hydroxy-lower alkoxy, lower alkoxy-lower alkoxy, phenyl-lower alkoxy, lower alkylcarbonyloxy, amino,
- alkylcarbonylamino substituted amino wherein the two substituents on nitrogen form together with the nitrogen heterocyclyl, lower alkylcarbonyl, carboxy, lower alkoxycarbonyl, formyl, cyano, halogen, and nitro; and wherein two adjacent substituents are methylenedioxy;
- pyridinyl is optionally substituted by lower alkoxy, amino or halogen
- X represents oxygen
- R 1 represents hydrogen, lower alkylcarbonyl, hydroxy-lower alkyi or cyano-lower alkyi;
- R 2 , R 3 and R 6 represent hydrogen
- R 4 and R 5 independently of each other, represent hydrogen, lower alkyi or lower alkoxy
- R 4 and R 5 together represent methylenedioxy; and pharmaceutically acceptable derivatives thereof; and wherein the prefix lower denotes a radical having up to and including a maximum of 7, especially up to and including a maximum of 4 carbon atoms.
- the response may be of a disease in a subject.
- the response may be to treatment, i.e. to treatment with the compound of general formula I or pharmaceutically acceptable derivatives thereof.
- the biomarker glu-tubulin is measured ex vivo in a sample or samples taken from the human or animal body, preferably taken from the human body.
- the invention relates to use of glu-tubulin as a biomarker for predicting the resistance of a disease in a subject to a compound of general formula I or pharmaceutically acceptable derivatives thereof as defined above.
- the pharmaceutically acceptable derivative is selected from the group consisting of a salt, solvate, pro-drug, salt of a pro-drug, polymorph and isomer of a compound of general formula I as defined above.
- Pro-drugs are preferably ester and amides of naturally occurring amino acids, small peptides or pegylated hydroxy acids. More preferably, the pro-drug is an amide formed from an amino group present within the R group of the compound of general formula I and the carboxy group of glycine, alanine or lysine.
- a pharmaceutically acceptable salt thereof preferably a hydrochloride salt thereof, most preferably a dihydrochloride salt thereof.
- Another aspect of the present invention relates to a method for predicting the response of a disease in a subject to a compound of general formula I or
- pharmaceutically acceptable derivatives thereof as defined above comprising the steps of: a) measuring a level of glu-tubulin in a sample pre-obtained from the subject to obtain a value or values representing this level; and b) comparing the value or values from step a) to a standard value or set of standard values.
- the response which is predicted is resistance.
- the measuring of a level or levels of glu-tubulin is performed ex-vivo in a sample or samples pre-obtained from the subject. Pre-obtained refers to the fact that the sample is obtained before it is subjected to any method involving measuring the level of the biomarker, and pre-obtained is not to be understood as in relation to treatment. In a preferred embodiment, a higher level of glu-tubulin in the sample from the subject relative to the standard value or set of standard values predicts resistance.
- the disease is a neoplastic or autoimmune disease. More preferably the disease is cancer.
- the cancer is selected from the group consisting of breast cancer, prostate cancer, cervical cancer, ovarian cancer, gastric cancer, colorectal cancer (i.e. including colon cancer and rectal cancer), pancreatic cancer, liver cancer, brain cancer, neuroendocrine cancer, lung cancer, kidney cancer, hematological malignancies, melanoma and sarcomas. More especially preferably the cancer is selected from the group consisting of breast cancer, cervical cancer, ovarian cancer, colorectal cancer, melanoma and lung cancer.
- the cancer is selected from the group consisting of lung cancer, melanoma, ovarian cancer and colorectal cancer.
- the cancer is selected from the group consisting of lung cancer, melanoma or colorectal cancer.
- the cancer is lung or ovarian cancer.
- the invention relates to a method of treating a neoplastic or autoimmune disease, preferably cancer, in a subject in need thereof, comprising measuring a level of glu-tubulin in a sample from the subject to obtain a value or values representing this level, and treating the subject with a compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above, if the level of glu-tubulin in said sample is not higher than a standard value or set of standard values.
- the invention relates to glu-tubulin for use in the treatment of a neoplastic or autoimmune disease, preferably cancer, comprising measuring a level of glu-tubulin in a sample from the subject to obtain a value or values representing this level, and treating the subject with a compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above, if the level of glu-tubulin is not higher than a standard value or set of standard values.
- the measuring of a level of glu-tubulin is performed ex-vivo in a sample pre- obtained from the subject.
- the invention also relates in another aspect to a method of treating a neoplastic or autoimmune disease, preferably cancer, by first decreasing the level of glu-tubulin in a subject that has a sample with a higher level of glu-tubulin compared to a standard level or set of standard levels, then treating the subject with a compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above.
- the invention relates to a kit for predicting the response to a compound of general formula I or a pharmaceutically acceptable derivative thereof, as defined above, comprising reagents necessary for measuring the level of glu-tubulin in a sample. More preferably the kit also comprises a comparator module which comprises a standard value or set of standard values to which the level of glu- tubulin in the sample is compared.
- the kit comprises a compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above.
- the kit comprises a compound of the following formula or a pharmaceutically acceptable salt thereof
- the pharmaceutically acceptable salt is a dihydrochloride salt.
- Another further aspect of the invention relates to a device for predicting the response to a compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above, comprising reagents necessary for measuring a level of glu-tubulin in a sample and a comparator module which comprises a standard value or set of standard values to which the level of glu-tubulin in the sample is compared.
- the reagents in the kit or device comprise a capture reagent comprising a detector for glu-tubulin, and a detector reagent.
- the capture reagent is an antibody.
- the disease is predicted to be resistant to treatment with said compound when glu-tubulin is higher relative to a standard value or set of standard values.
- the comparator module is included in instructions for use of the kit. In another preferred embodiment the comparator module is in the form of a display device.
- Figure 1 Shows the treatment of human tumour cell lines from different histotypes with 50 nM BAL27862.
- the microtubules of mitotic or G2/M arrested cells were stained after 24 hours treatment with 50 nM BAL27862 or vehicle control.
- Fig. 1A and 1 B A549 NSCLC cells
- Fig. 1 C and 1 D HeLa cervical cancer cells
- Fig. 1 E and 1 F SKBR3 breast cancer cells
- BAL27862 treatment Figures 1 B, 1 D & 1 F.
- Figure 2 Shows the treatment of A549 NSCLC cells with the Compounds B and C.
- the microtubules of mitotic or G2/M arrested A549 NSCLC cells were stained after 24 hours treatment with 80 nM or 20 nM of Compounds B and C, respectively.
- the white scale bar represents 10 micrometres.
- Fig. 2A treatment with 20 nM Compound C
- Fig. 2B treatment with 80 nM Compound B
- Figure 3 Shows a comparison of treatment of cells with BAL27862 compared to conventional microtubule targeting agents.
- Microtubules of mitotic or G2/M arrested A549 NSCLC cells were stained after 24 hours of treatment with 50 nM of A: BAL27862; B: vinblastine; C: colchicine; D: paclitaxel. Stacks of images taken every 1 pm were processed by using ImageJ software.
- Figure 4 Shows a comparison of treatment of A549 NSCLC cells with BAL27862 compared to nocodazole.
- Microtubules of mitotic or G2/M arrested cells were stained after 24 h of treatment with various concentrations of nocodazole (B, C & D) and BAL27862 (E, F & G).
- the white scale bar represents 10 micrometres. Representative images of the microtubule phenotypes observed are shown.
- Figure 5 Shows a combination of treatment with BAL27862 and
- Microtubules of mitotic or G2/M arrested A549 NSCLC cells were stained after treatment for the times indicated below. 50 nM BAL27862, 50 nM vinblastine, 50 nM colchicine and 25 nM paclitaxel were used. The white scale bar represents 10 micrometres.
- Fig. 5A 24 hours vinblastine treatment
- Fig. 5B 24 hours vinblastine treatment with the final 4 hours including BAL27862;
- Fig. 5C 24 hours BAL27862 treatment with the final 4 hours including vinblastine.
- Fig. 5D 24 hours colchicine treatment
- Fig. 5E 24 hours colchicine treatment with the final 4 hours including BAL27862;
- Fig. 5F 24 hours BAL27862 treatment with the final 4 hours including colchicine.
- Fig. 5G 24 hours paclitaxel treatment
- Fig. 5H 24 hours paclitaxel treatment with the final 4 hours including BAL27862;
- Fig. 51 24 hours BAL27862 treatment with the final 4 hours including paclitaxel.
- Figure 6 Shows a combination of treatment with BAL27862 and nocodazole. Microtubules of mitotic or G2/M arrested A549 NSCLC cells were stained after treatment for the times indicated below. 25 nM BAL27862 and nocodazole at the concentrations indicated below were used. The white scale bar represents 10 micrometers.
- Fig. 6A 24 hours control treatment
- Fig. 6B 24 hours of 25 nM BAL27862 treatment
- Fig. 6C 24 hours of 50 nM nocodazole treatment
- Fig. 6D 24 hours of 100 nM nocodazole treatment
- Fig. 6E 24 hours of 150 nM nocodazole treatment
- Fig. 6F 24 hours of 200 nM nocodazole treatment
- Fig. 6G 24 hours of 50 nM nocodazole treatment with the final 4 hours including 25 nM BAL27862;
- Fig. 6H 24 hours of 100 nM nocodazole treatment with the final 4 hours including 25 nM BAL27862;
- Fig. 61 24 hours of 150 nM nocodazole treatment with the final 4 hours including 25 nM BAL27862;
- Fig. 6J 24 hours of 200 nM nocodazole treatment with the final 4 hours including 25 nM BAL27862;
- Fig. 6K 24 hours of 25 nM BAL27862 treatment with the final 4 hours including 50 nM nocodazole;
- Fig. 6L 24 hours of 25 nM BAL27862 treatment with the final 4 hours including 100 nM nocodazole;
- Fig. 6M 24 hours of 25 nM BAL27862 treatment with the final 4 hours including 150 nM nocodazole;
- Fig. 6N 24 hours of 25 nM BAL27862 treatment with the final 4 hours including 200 nM nocodazole.
- Figure 7 Shows protein extracts prepared from patient-derived colorectal cancer (Fig. 7A), lung cancer (Fig. 7B) and melanoma (Fig. 7C) tumours obtained from subcutaneous xenografted mice, and analysed by immunoblotting for glu-tubulin expression, with actin included as a loading control. Three independent tumours were analysed in each case (1 - 3). BAL27862, paclitaxel and vinblastine resistance and sensitivity is as defined in Table 1 .
- Figure 8 Shows by immunohistochemistry that glu-tubulin levels in tumour cells are increased in a patient-derived xenografted colorectal tumour defined as
- BAL27862 resistant by ex vivo colony outgrowth analysis Patient-derived tumour xenografts (maintained in nude mice) were prepared, fixed and stained for glu-tubulin protein expression using immunohistochemistry. BAL27862, paclitaxel and vinblastine resistance and sensitivity is defined in Table 1 .
- FIG. 9 Shows tumour cell lines which were selected for resistance to BAL27862 through in vitro cultivation in the presence of the compound. Based on IC50 determinations, BAL27862 resistance factors versus parental lines were: A549 (3.0 fold); SKOV3 (7.6 fold - resistant 1 line); H460 (5.3 fold) (see Table 2). Whole cell protein extracts were prepared from parental and resistant lines and analysed by immunoblotting for glu-tubulin expression. Actin levels were included as a loading control.
- Figure 10 Shows that increased glu-tubulin protein levels are maintained in
- SKOV3 tumour lines during resistance development were selected for resistance to BAL27862 through in vitro cultivation in the presence of BAL27862 for increasing time periods. Based on IC50 determinations, BAL27862 resistance factors versus parental lines were: SKOV3 resistant 1 (7.6 fold), SKOV3 resistant 2 (1 1 .6 fold) (see Table 2). Whole cell protein extracts were prepared from parental and resistant lines and analysed by immunoblot for glu-tubulin expression. Actin levels act as a loading control.
- Figure 1 1 Shows the protein sequence of tubulin alpha-1 A chain [Homo sapiens] (SEQ. ID. No. 1 )
- Figure 12 Shows the protein sequence of tubulin alpha-1 B chain [Homo sapiens] (SEQ ID No. 2)
- Figure 13 Shows the protein sequence of tubulin alpha-1 C chain [Homo sapiens] (SEQ. ID. NO. 3)
- Figure 14 Shows the protein sequence of Tubulin alpha-3C/D chain [Homo sapiens] (SEQ. ID NO. 4) Detailed Description
- R represents phenyl, thienyl or pyridinyl
- phenyl is optionally substituted by one or two substituents independently selected from alkyl, halo-lower alkyl, hydroxy-lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, phenyl, hydroxy, lower alkoxy, hydroxy-lower alkoxy, lower alkoxy-lower alkoxy, phenyl-lower alkoxy, lower alkylcarbonyloxy, amino,
- alkylcarbonylamino substituted amino wherein the two substituents on nitrogen form together with the nitrogen heterocyclyl, lower alkylcarbonyl, carboxy, lower alkoxycarbonyl, cyano, halogen, and nitro; and wherein two adjacent substituents are methylenedioxy;
- pyridinyl is optionally substituted by lower alkoxy, amino or halogen
- R 1 represents hydrogen, lower alkylcarbonyl, hydroxy-lower alkyl or cyano-lower alkyl
- R 2 , R 3 and R 6 represent hydrogen;
- R 4 and R 5 independently of each other, represent hydrogen, lower alkyi or lower alkoxy;
- R 4 and R 5 together represent methylenedioxy; and pharmaceutically acceptable derivatives thereof, or wherein
- R represents phenyl or pyridinyl
- phenyl is optionally substituted by one or two substituents independently selected from alkyi, halo-lower alkyi, hydroxy-lower alkyi, lower alkoxy-lower alkyi, acyloxy-lower alkyi, phenyl, hydroxy, lower alkoxy, hydroxy-lower alkoxy, lower alkoxy-lower alkoxy, phenyl-lower alkoxy, lower alkylcarbonyloxy, amino,
- alkylcarbonylamino substituted amino wherein the two substituents on nitrogen form together with the nitrogen heterocyclyl, lower alkylcarbonyl, carboxy, lower alkoxycarbonyl, formyl, cyano, halogen, and nitro; and wherein two adjacent substituents are methylenedioxy;
- pyridinyl is optionally substituted by lower alkoxy, amino or halogen;
- X represents oxygen;
- R 1 represents hydrogen, lower alkylcarbonyl, hydroxy-lower alkyi or cyano-lower alkyi;
- R 2 , R 3 and R 6 represent hydrogen
- R 4 and R 5 independently of each other, represent hydrogen, lower alkyi or lower alkoxy
- R 4 and R 5 together represent methylenedioxy; and pharmaceutically acceptable derivatives thereof; and wherein the prefix lower denotes a radical having up to and including a maximum of 7, especially up to and including a maximum of 4 carbon atoms.
- Heterocyclyl designates preferably a saturated, partially saturated or unsaturated, mono- or bicyclic ring containing 4-10 atoms comprising one, two or three heteroatoms selected from nitrogen, oxygen and sulfur, which may, unless otherwise specified, be carbon or nitrogen linked, wherein a ring nitrogen atom may optionally be substituted by a group selected from lower alkyi, amino-lower alkyi, aryl, aryl-lower alkyi and acyl, and a ring carbon atom may be substituted by lower alkyi, amino-lower alkyi, aryl, aryl-lower alkyi, heteroaryl, lower alkoxy, hydroxy or oxo.
- heterocyclyl examples include pyrrolidinyl, oxazolidinyl, thiazolidinyl, piperidinyl, morpholinyl, piperazinyl, dioxolanyl and tetrahydropyranyl.
- Acyl designates, for example, alkylcarbonyl, cyclohexylcarbonyl,
- Lower acyl is preferably lower alkylcarbonyl, in particular propionyl or acetyl.
- the compound of general formula I according to the invention is defined as wherein R 1 is selected from the group consisting of hydrogen, acetyl, CH 2 CH 2 CN and CH2CH2CH2OH.
- the compound of general formula I according to the invention is selected from the group consisting of:
- the compound of general formula I according to the invention is selected from the group consisting of: wherein
- R, Y and R 1 are defined as follows :
- the compound of general formula I according to the invention is selected from the group consisting of:
- R and R 1 are as defined below
- the compound of general formula I according to the invention is:
- R, R 4 and R 5 are as defined below
- the compound according to the invention is a compound of general formula I
- R represents phenyl or pyridinyl
- phenyl is optionally substituted by one or two substituents independently selected from lower alkyl, lower alkoxy, amino, acetylamino, halogen and nitro;
- pyridinyl is optionally substituted by amino or halogen
- R 1 represents hydrogen or cyano-lower alkyl;
- R 2 , R 3 , R 4 , R 5 and R 6 represent hydrogen; and pharmaceutically acceptable derivatives thereof, and wherein the prefix lower denotes a radical having up to and including a maximum of 7, especially up to and including a maximum of 4 carbon atoms.
- the compound according to the invention is represented by the following formula
- R, Y and R 1 are defined as follows :
- R, Y and R1 are defined as follows:
- the compound according to the invention is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N
- derivative or derivatives in the phrase "pharmaceutically acceptable derivative” or “pharmaceutically acceptable derivatives” of compounds of general formula I relates to salts, solvates and complexes thereof and to solvates and complexes of salts thereof, as well as to pro-drugs, polymorphs, and isomers thereof (including optical, geometric and tautomeric isomers) and also salts of prodrugs thereof. In a more preferred embodiment, it relates to salts and pro-drugs, as well as to salts of pro-drugs thereof. Salts are preferably acid addition salts. Salts are formed, preferably with organic or inorganic acids, from compounds of formula (I) with a basic nitrogen atom, especially the pharmaceutically acceptable salts.
- Suitable inorganic acids are, for example, halogen acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid.
- Suitable organic acids are, for example, carboxylic, phosphonic, sulfonic or sulfamic acids, for example acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, glycolic acid, lactic acid, fumaric acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, malic acid, tartaric acid, citric acid, amino acids, such as glutamic acid or aspartic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, cyclohexanecarboxylic acid, adamantanecarboxylic acid, benzoic acid, salicylic acid, 4-aminosalicylic acid, phthalic acid, phenylacetic acid, mandelic acid, cinnamic acid,
- the compound according to the invention may be administered in the form of a pro-drug which is broken down in the human or animal body to give a compound of the formula I.
- pro-drugs include in vivo hydrolysable esters and amides of a compound of the formula I.
- Particular pro-drugs considered are ester and amides of naturally occurring amino acids and ester or amides of small peptides, in particular small peptides consisting of up to five, preferably two or three amino acids as well as esters and amides of pegylated hydroxy acids, preferably hydroxy acetic acid and lactic acid.
- Pro-drug esters are formed from the acid function of the amino acid or the C terminal of the peptide and suitable hydroxy group(s) in the compound of formula I.
- Pro-drug amides are formed from the amino function of the amino acid or the N terminal of the peptide and suitable carboxy group(s) in the compound of formula I, or from the acid function of the amino acid or the C terminal of the peptide and suitable amino group(s) in the compound of formula I.
- the pro-drug amides are formed from the amino group(s) present within the R group of formula I. More preferably, the pro-drug is formed by the addition of glycine, alanine or lysine to the compound of formula I.
- the compound of general formula I is in the form of a pro-drug selected from the compounds of formulae:
- the compound according to the invention is a pharmaceutically acceptable salt, preferably a hydrochloride salt, most preferably a dihydrochloride salt, of a compound of the following formula
- the pharmaceutically active metabolite in vivo in this case is BAL27862.
- pro-drugs may be prepared by processes that are known per se, in particular, a process, wherein a compound of formula (II)
- R 1 is defined as for formula (I) and Z is CH or N, or a derivative of such a compound comprising functional groups in protected form,
- R 10 is selected from hydrogen (Gly); methyl (Ala) and protected aminobutyl (Lys) and R 11 is a suitable amino protecting group, and
- said pro-drug is converted into a salt by treatment with an acid, or a salt of a compound of formula (II) is converted into the corresponding free compound of formula (II) or into another salt, and/or a mixture of isomeric product compounds is separated into the individual isomers.
- Acylation of a compound of formula (II) with an amino acid of formula (III) is performed in a manner known per se, usually in the presence of a suitable polar or dipolar aprotic solvent, with cooling or heating as required, for example in a temperature range from approximately minus 80°C to approximately plus 150°C, more preferably from minus 30°C to plus 120°C, especially in a range from
- a suitable base is added, in particularly an aromatic base like pyridine or collidine or a tertiary amine base such as triethylamine or diisopropylethylamine, or an inorganic basic salt, e.g. potassium or sodium carbonate.
- Acylation may be accomplished under conditions used for amide formation known per se in peptide chemistry, e.g.
- activating agents for the carboxy group such as carbodiimides like ⁇ , ⁇ '-diethyl-, ⁇ , ⁇ '-dipropyl-, ⁇ , ⁇ '-diisopropyl-, ⁇ , ⁇ '- dicyclohexylcarbodiimide and N-(3-dimethylaminoisopropyl)-N'-ethylcarbodiimide- hydrochloride (EDC), or with agents such as 1 -hydroxybenzotriazole (HOBt), benzotriazol-1 -yloxytris(dimethylamino)-phosphonium hexafluorophosphate (BOP),
- activating agents for the carboxy group such as carbodiimides like ⁇ , ⁇ '-diethyl-, ⁇ , ⁇ '-dipropyl-, ⁇ , ⁇ '-diisopropyl-, ⁇ , ⁇ '- dicyclohexylcarbodiimide and N-(3-di
- HATU O-(7-aza-benzotriazol-1 -yl)-N,N,N',N'-tetramethyl-uronium hexafluorophosphate
- TPTU 2-(2-oxo-1 -(2H)-pyridyl)-1 , 1 ,3,3-tetramethyluronium tetrafluoroborate
- the carboxy group may also be activated as acyl halogenide, preferably as acyl chloride, e.g. by reaction with thionylchloride or oxalylchloride, or as symmetrical or unsymmetrical anhydride, e.g.
- halogeno formates like ethyl chloroformate
- suitable bases catalysts or co-reagents.
- protecting groups for example carboxy, hydroxy or amino
- these protecting groups are usually applied in the synthesis of amides like, in particular peptide compounds, cephalosporins, penicillins, nucleic acid derivatives and sugars, which are known to the skilled persons.
- Suitable protecting groups for amino groups are for example t- butyl carbamate, benzyl carbamate or 9-fluorenylmethyl carbamate.
- the protecting groups may already be present in precursors and should protect the functional groups concerned against unwanted secondary reactions, such as alkylations, acylations, etherifications, esterifications, oxidations, solvolysis, and similar reactions. It is a characteristic of protecting groups that they lend themselves readily, i.e. without undesired secondary reactions, to removal, typically by solvolysis, reduction, photolysis or also by enzyme activity, for example under conditions analogous to physiological conditions, and that they are not present in the end products.
- the specialist knows, or can easily establish, which protecting groups are suitable with the reactions mentioned hereinabove and hereinafter.
- the compounds of general formula I according to the invention have been shown to arrest cell proliferation and induce cell death, for example by apoptosis. Dysregulation of cell proliferation, or lack of appropriate cell death, has wide ranging clinical implications. A number of diseases associated with such
- dysregulation involve hyperproliferation, inflammation, tissue remodeling and repair. Familiar indications in this category include cancers, restenosis, neointimal hyperplasia, angiogenesis, endometriosis, lymphoproliferative disorders,
- transplantation related pathologies graft rejection
- polyposis loss of neural function in the case of tissue remodeling and the like.
- Cancer is associated with abnormal cell proliferation and cell death rates. As apoptosis is inhibited or delayed in most types of proliferative, neoplastic diseases, induction of apoptosis is an option for treatment of cancer, especially in cancer types which show resistance to classic chemotherapy, radiation and immunotherapy (Apoptosis and Cancer Chemotherapy, Hickman and Dive, eds., Blackwell
- autoimmune and transplantation related diseases and pathologies compounds inducing apoptosis may be used to restore normal cell death processes and therefore can eradicate the symptoms and might cure the diseases.
- Further applications of compounds inducing apoptosis may be in restenosis, i.e. accumulation of vascular smooth muscle cells in the walls of arteries, and in persistent infections caused by a failure to eradicate bacteria- and virus-infected cells.
- apoptosis can be induced or reestablished in epithelial cells, in endothelial cells, in muscle cells, and in others which have lost contact with extracellular matrix.
- a compound according to general formula I or pharmaceutically acceptable derivatives thereof may be used for the prophylactic or especially therapeutic treatment of the human or animal body, in particular for treating a neoplastic disease, autoimmune disease, transplantation related pathology and/or degenerative disease.
- neoplastic diseases include, but are not limited to, epithelial neoplasms, squamous cell neoplasms, basal cell neoplasms, transitional cell papillomas and carcinomas, adenomas und adenocarcinomas, adnexal and skin appendage neoplasms, mucoepidermoid neoplasms, cystic neoplasms, mucinous and serous neoplasms, ducal-, lobular and medullary neoplasms, acinar cell neoplasms, complex epithelial neoplasms, specialized gonadal neoplasms, paragangliomas and glomus tumours, naevi and melanomas, soft tissue tumours and sarcomas, fibromatous neoplasms, myxomatous neoplasms, lipomatous neoplasms, myomato
- the compounds of general formula I or pharmaceutically acceptable derivatives thereof may be used to treat autoimmune diseases.
- autoimmune diseases include, but are not limited to, systemic, discoid or subacute cutaneous lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, CREST, progressive systemic sclerosis, mixed connective tissue disease (Sharp syndrome), Reiter's syndrome, juvenile arthritis, cold agglutinin disease, essential mixed cryoglobulinemia, rheumatic fever, ankylosing spondylitis, chronic polyarthritis, myasthenia gravis, multiple sclerosis, chronic inflammatory demyelinating
- autoimmune hemolytic anemia thrompocytopenic purpura, neutropenia, type I diabetes mellitus, thyroiditis (including Hashimoto's and Grave'disease), Addison's disease, polyglandular syndrome, pemphigus (vulgaris, foliaceus, sebaceous and vegetans), bullous and cicatricial pemphigoid, pemphigoid gestationis, epidermolysis bullosa acquisita, linear IgA disease, lichen sclerosus et atrophicus, morbus Duhring, psoriasis vulgaris, guttate, generalized pustular and localized pustular psoriasis, vitiligo, alopecia areata, primary biliary cirrhosis, autoimmune hepatitis, all forms of glomerulonephritis, pulmonal hemorrhage (goodpasture syndrome), IgA
- nephropathy pernicious anemia and autoimmune gastritis, inflammatory bowel diseases (including colitis ulcerosa and morbus Crohn), Behcet's disease, Celic-
- autoimmune pathogensesis such as pyoderma gangrensosum, lichen ruber, sarcoidosis (including Lofgren and cutaneous/subcutaneous type), granuloma anulare, allergic type I and type IV immunolgical reaction, asthma bronchiale, pollinosis, atopic, contact and airborne dermatitis, large vessel vasculitis (giant cell and Takayasu's arteritis), medium sized vessel vasculitis (polyarteritis nodosa, Kawasaki disease), small vessel vasculitis (Wegener's granulomatosis, Churg Strauss syndrome, microscopic polangiitis, HenochSchoenlein purpura, essential cryoglobul
- Steps-Johnson syndrome erythema multiforme
- diseases due to drug side effects all forms of cutaneous, organ-specific and systemic effects due to type l-vu (Coombs classification) immunologic forms of reaction, transplantation related pathologies, such as acute and chronic graft versus host and host versus graft disease, involving all organs (skin, heart, kidney, bone marrow, eye, liver, spleen, lung, muscle, central and peripheral nerve system, connective tissue, bone, blood and lymphatic vessel, genito-urinary system, ear, cartillage, primary and secondary lymphatic system including bone marrow, lymph node, thymus, gastrointestinal tract, including oro-pharynx, esophageus, stomach, small intestine, colon, and rectum, including parts of above mentioned organs down to single cell level and
- the disease according to the invention is a neoplastic or autoimmune disease.
- the disease is cancer.
- cancers in terms of the organs and parts of the body affected include, but are not limited to, the breast, cervix, ovaries, colon, rectum, (including colon and rectum i.e. colorectal cancer), lung, (including small cell lung cancer, non- small cell lung cancer, large cell lung cancer and mesothelioma), bone, endocrine system, adrenal gland, thymus, liver, stomach, intestine, (including gastric cancer), pancreas, bone marrow, hematological malignancies, (such as lymphoma, leukemia, myeloma or lymphoid malignancies), bladder, urinary tract, kidneys, skin, thyroid, brain, head, neck, prostate and testis.
- lung including small cell lung cancer, non- small cell lung cancer, large cell lung cancer and mesothelioma
- the cancer is selected from the group consisting of breast cancer, prostate cancer, cervical cancer, ovarian cancer, gastric cancer, colorectal cancer, pancreatic cancer, liver cancer, brain cancer, neuroendocrine cancer, lung cancer, kidney cancer, hematological malignancies, melanoma and sarcomas.
- the cancer is selected from the group consisting of breast cancer, cervical cancer, ovarian cancer, colorectal cancer, melanoma and lung cancer. More especially preferably the cancer is selected from the group consisting of lung cancer, melanoma, ovarian cancer and colorectal cancer.
- the cancer is lung cancer or ovarian cancer.
- the cancer is selected from the group consisting of colorectal cancer, lung cancer or melanoma.
- the measurement of the level of glu-tubulin may be performed in vitro, on a sample of biological tissue derived from the subject.
- the sample may be any biological material separated from the body such as, for example, normal tissue, tumour tissue, cell lines, whole blood, serum, plasma, cerebrospinal fluid, lymph fluid, circulating tumour cells, cell lysate, tissue lysate, urine and aspirates.
- the sample is derived from normal tissue, tumour tissue, or circulating tumour cells. More preferably the sample is derived from tumour tissue or circulating tumour cells. In one particularly preferred embodiment the sample is derived from tumour tissue.
- the level of glu-tubulin may be measured in a fresh, frozen or formalin fixed/paraffin embedded tumour tissue sample.
- the sample is pre-obtained from the subject before the sample is subjected to the method steps involving measuring the level of the biomarker.
- the methods for removal of the sample are well known in the art, and it may for example be removed from the subject by biopsy, for example by punch biopsy, core biopsy or aspiration fine needle biopsy, endoscopic biopsy, or surface biopsy. Blood may be collected by venipuncture and further processed according to standard techniques. Circulating tumour cells may also be obtained from blood based on, for example, size (e.g. ISET - Isolation by Size of Epithelial Tumour cells) or immunomagnetic cell enrichment. (e.g. Cellsearch®, Veridex, Raritan, NJ)
- sample comparison The subject according to the invention may be human or animal. Preferably the subject is human.
- the biomarker glu-tubulin is measured ex vivo in a sample or samples taken from the human or animal body, preferably taken from the human body.
- the sample or samples are pre-obtained from the human or animal body, preferably pre-obtained from the human body before the sample is subjected to the method steps involving measuring the level of the biomarker.
- a biomarker is in general a substance that is used as an indicator of a biological response, preferably as an indicator of the susceptibility to a given treatment, which in the present application is treatment with a compound of general formula I or a pharmaceutically acceptable derivative thereof.
- glu-tubulin levels in the sample relative to a standard value or set of standard values predicts resistance.
- an increase or relatively high or high or higher levels relative to a standard level or set of standard levels means the amount or concentration of the biomarker in a sample is detectably greater in the sample relative to the standard level or set of standard levels. This encompasses at least an increase of, or higher level of, about 1 % relative to the standard, preferably at least an increase of about 5% relative to the standard. More preferably it is an increase of, or higher level of, at least about 10% relative to the standard. More particularly preferably it is an increase of, or higher level of, at least about 20% relative to the standard.
- such an increase of, or higher level of may include, but is not limited to, at least about 1 %, about 10%, about 20%, about 30%, about 50%, about 70%, about 80%, about 100%, about 150% or about 200% or more relative to the standard.
- higher glu-tubulin levels in a sample or samples i) relative to a standard value or set of standard values from subjects with the same tumour histotype; or ii) taken after treatment initiation and compared to a sample or samples taken from the same subject before treatment initiation; or iii) relative to a standard value or set of standard values from normal cells or tissue; are predictive of resistance.
- the measuring of a level of glu-tubulin is performed ex-vivo in a sample pre- obtained from the subject. Further preferably the response which is to be predicted is resistance.
- higher glu-tubulin levels in a sample or samples i) relative to a standard value or set of standard values from subjects with the same tumour histotype; or ii) taken after treatment initiation and compared to a sample or samples taken from the same subject before treatment initiation; are predictive of resistance.
- higher glu-tubulin levels in a sample or samples relative to a standard value or set of standard values from subjects with the same tumour histotype are predictive of resistance.
- the standard value or set of standard values are established from samples from a population of subjects with that cancer type.
- the samples from these standard subjects may for example be derived from the tumour tissue, circulating tumour cells or blood, as long as the origin of the sample is consistent between the standard and the sample to be compared.
- the measurement is compared in a sample or samples taken after treatment initiation and compared to a sample or samples taken from the same subject before treatment initiation, it is measured preferably to predict acquired resistance.
- the samples are compared to cells or tissue from the same biological origin. The prediction of acquired resistance would then indicate that the treatment with the compound should be discontinued.
- the biomarker is thus used to monitor whether further treatment with the compound is likely to give the required response (e.g. reduction of abnormal cells), or whether the cells have become non-responsive or resistant to such treatment.
- the required response e.g. reduction of abnormal cells
- the standard value or set of standard values may be established from a sample of normal (e.g. non-tumourous) cells or tissue or body fluid. Such data may be gathered from a population of subjects in order to develop the standard value or set of standard values.
- the standard value or set of standard values may then be correlated with the response data of the same cell lines, or same subjects, to treatment with a compound of general formula I or a pharmaceutically acceptable derivative thereof.
- a comparator module for example in the form of a relative scale or scoring system, optionally including cut-off or threshold values, can be established which indicates the levels of biomarker associated with a spectrum of response levels to the compound of formula I or a pharmaceutically acceptable derivative thereof.
- the spectrum of response levels may comprise relative sensitivity to the therapeutic activity of the compound, (e.g. high sensitivity to low sensitivity), as well as resistance to the therapeutic activity.
- this comparator module comprises a cut-off value or set of values which predicts resistance to treatment.
- standard values may be in the form of a scoring system. Such a system might take into account the percentage of cells in which staining for glu-tubulin is present. The system may also take into account the relative intensity of staining in the individual cells.
- the standard values or set of standard values of the level of glu-tubulin may then be correlated with data indicating the response, especially resistance, of the subject or tissue or cell line to the therapeutic activity of a compound of formula I or a pharmaceutically acceptable derivative thereof. Such data may then form part of a comparator module.
- Response is the reaction of the cell lines, or preferably of the subject, or more preferably of the disease in a subject, to the therapeutic activity of a compound of general formula I or a pharmaceutically acceptable derivative thereof.
- the spectrum of response levels may comprise relative sensitivity to the therapeutic activity of the compound, (e.g. high sensitivity to low sensitivity), as well as resistance to the therapeutic activity.
- the response data may for example be monitored in terms of: objective response rates, time to disease progression, progression free survival, and overall survival.
- the response of a cancerous disease may be evaluated by using criteria well known to a person in the field of cancer treatment, for example but not restricted to, Response Evaluation Criteria in Solid Tumors (RECIST) Guidelines, Source:
- Resistance is associated with there not being an observable and/or measurable reduction in, or absence of, one or more of the following: reduction in the number of abnormal cells, preferably cancerous cells; or absence of the abnormal cells, preferably cancerous cells; for cancerous diseases: reduction in tumour size; inhibition (i.e., slowed to some extent and preferably stopped) of further tumour growth; reduction in the levels of tumour markers such as PSA and CA-125, inhibition
- cancer cell infiltration into other organs including the spread of cancer into soft tissue and bone
- inhibition i.e., slowed to some extent and preferably stopped
- tumour metastasis alleviation of one or more of the symptoms associated with the specific cancer
- reduced morbidity and mortality i.e., slowed to some extent and preferably stopped
- resistance means there is no observable and/or measurable reduction in, or absence of, one or more of the following criteria:
- tumour size reduction in tumour size; inhibition of further tumour growth, inhibition of cancer cell infiltration into other organs; and inhibition of tumour metastasis.
- resistance refers to one or more of the following criteria: no reduction in tumour size; no inhibition of further tumour growth, no inhibition of cancer cell infiltration into other organs; and no inhibition of tumour metastasis.
- Measurement of the aforementioned resistance criteria is according to clinical guidelines well known to a person in the field of cancer treatment, such as those listed above for measuring the response of a cancerous disease.
- C) TUNEL assay (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay), a fluorescence method for evaluating cells undergoing apoptosis or necrosis by measuring DNA fragmentation by labeling the terminal end of nucleic acids.
- D) MTS proliferation assay measuring the metabolic activity of cells. Viable cells are metabolically active whereas cells with a compromised respiratory chain show a reduced activity in this test.
- G YO-PRO assay which involves a membrane impermeable, fluorescent, monomeric cyanine, nucleic acid stain, which permits analysis of dying (e.g. apoptotic) cells without interfering with cell viability. Overall effects on cell number can also be analysed after cell permeabilisation.
- H Propidium iodide staining for cell cycle distribution which shows alterations in distribution among the different phases of the cell cycle. Cell cycle arresting points can be determined.
- I Anchorage-independent growth assays, such as colony outgrowth assays which assess the ability of single cell suspensions to grow into colonies in soft agar.
- resistance means there is no decrease in the proliferation rate of abnormal cells and/or reduction in the number of abnormal cells. More preferably resistance means there is no decrease in the proliferation rate of cancerous cells and/or no reduction in the number of cancerous cells.
- the reduction in the number of abnormal, preferably cancerous, cells may occur through a variety of programmed and non-programmed cell death mechanisms. Apoptosis, caspase-independent programmed cell death and autophagic cell death are examples of programmed cell death. However the cell death criteria involved in embodiments of the invention are not to be taken as limited to any one cell death mechanism.
- Alpha tubulin is a precursor of glu-tubulin. As described previously, the glu-tubulin itself has the C-terminal tyrosine removed.
- the term glu-tubulin also encompasses homologues, mutant forms, allelic variants, isoforms, splice variants and equivalents of the sequences represented by SEQ ID NO 1 -4, with the proviso that a glutamate is the final amino acid at the C- terminal.
- glu-tubulin The level of glu-tubulin may be assayed in the sample by protein analysis techniques well known to a skilled person.
- Examples of methods known in the art which are suitable to measure the level of glu-tubulin at the protein level include, but are not limited to, i) immunohistochemistry (IHC) analysis, ii) western blotting iii) immunoprecipitation iv) enzyme linked immunosorbant assay (ELISA) v)
- the antibodies involved in some of the above methods may be monoclonal or polyclonal antibodies, antibody fragments, and/or various types of synthetic antibodies, including chimeric antibodies.
- the antibody may be labelled to enable it to be detected or capable of detection following reaction with one or more further species, for example using a secondary antibody that is labelled or capable of producing a detectable result.
- Antibodies specific to the glu-tubulin form of alpha tubulin are available commercially from Milipore or can be prepared via conventional antibody generation methods well known to a skilled person.
- Preferred methods of protein analysis are ELISA, mass spectrometry techniques, immunohistochemistry and western blotting, more preferably western blotting and immunohistochemistry.
- western blotting also known as
- labelled antibodies may be used to assess levels of protein, where the intensity of the signal from the detectable label corresponds to the amount of protein, and can be quantified for example by densitometry.
- Immunohistochemistry again uses labelled antibodies to detect the presence and relative amount of the biomarker. It can be used to assess the percentage of cells for which the biomarker is present. It can also be used to assess the localisation or relative amount of the biomarker in individual cells, the latter is seen as a function of the intensity of staining.
- ELISA stands for enzyme linked immunosorbant assay, since it uses an enzyme linked to an antibody or antigen for the detection of a specific protein.
- ELISA is typically performed as follows (although other variations in methodology exist): a solid substrate such as a 96 well plate is coated with a primary antibody, which recognises the biomarker. The bound biomarker is then recognised by a secondary antibody specific for the biomarker. This may be directly joined to an enzyme or a third anti-immunoglobulin antibody may be used which is joined to an enzyme. A substrate is added and the enzyme catalyses a reaction, yielding a specific colour. By measuring the optical density of this colour, the presence and amount of the biomarker can be determined.
- the biomarker may be used to predict inherent resistance of the disease in a subject to the compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above.
- the biomarker may be used to predict acquired resistance of the disease in a subject to the compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above.
- the biomarker may be used to select subjects suffering or predisposed to suffering from a disease, preferably cancer, for treatment with a compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above.
- the levels of such a biomarker may be used to identify subjects likely to respond or to not respond or to continue to respond or to not continue to respond to treatment with such agents. Stratification of subjects may be made in order to avoid unnecessary treatment regimes.
- the biomarker may be used to identify subjects from whom a sample or samples do not display a higher level of glu-tubulin, relative to a standard level or set of standard levels, whereupon such subjects may then be selected for treatment with the compound of formula I or a pharmaceutically acceptable derivative thereof as defined above.
- the biomarker may also be used to assist in the determination of treatment regimes, regarding amounts and schedules of dosing. Additionally, the biomarker may be used to assist in the selection of a combination of drugs to be given to a subject, including a compound or compounds of general formula I or a
- the biomarker may be used to assist in the determination of therapy strategies in a subject including whether a compound of general formula I or a pharmaceutically acceptable derivative thereof is to be administered in combination with targeted therapy, endocrine therapy, radiotherapy, immunotherapy or surgical intervention, or a combination of these.
- Glu-tubulin may also be used in combination with other biomarkers to predict the response to a compound of general formula I or a pharmaceutically acceptable derivative thereof and to determine treatment regimes. It may furthermore be used in combination with chemo-sensitivity testing to predict resistance and to determine treatment regimes. Chemo-sensitivity testing involves directly applying a compound of general formula I to cells taken from the subject, for example from a subject with haematological malignancies or accessible solid tumours, for example breast, head and neck cancers or melanomas, to determine the response of the cells to the compound.
- the invention also involves in some aspects a method of treatment and glu- tubulin for use in a method of treatment, wherein the level of glu-tubulin is first established relative to a standard level or set of standard levels or pre-treatment initiation levels and then a compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above, is administered if the level of glu- tubulin in said sample is not higher than a standard value or set of standard values or has not increased relative to pre-treatment initiation levels respectively.
- the compound of formula I or a pharmaceutically acceptable derivative thereof may be administered in a pharmaceutical composition, as is well known to a person skilled in the art. Suitable compositions and dosages are for example disclosed in WO
- compositions for enteral administration such as nasal, buccal, rectal or, especially, oral administration
- parenteral administration such as intravenous, intramuscular or subcutaneous administration, to warm-blooded animals, especially humans, are especially preferred. More particularly, compositions for intravenous administration are preferred.
- compositions comprise the active ingredient and a pharmaceutically acceptable carrier.
- a composition includes, but is not limited to, the following: 5000 soft gelatin capsules, each comprising as active ingredient 0.05 g of one of the compounds of general formula (I), are prepared as follows: 250 g pulverized active ingredient is suspended in 2 liter Lauroglykol® (propylene glycol laurate, Gattefosse S.A., Saint Priest, France) and ground in a wet pulverizer to produce a particle size of about 1 to 3 pm. 0.419 g portions of the mixture are then introduced into soft gelatin capsules using a capsule-filling machine.
- Lauroglykol® propylene glycol laurate, Gattefosse S.A., Saint Priest, France
- the invention also relates in one aspect to a method of treating a neoplastic or autoimmune disease, preferably cancer, by first decreasing the level of glu-tubulin in a subject that has a sample with a higher level of glu-tubulin compared to a standard level or set of standard levels or pre-treatment initiation levels, then treating the subject with a compound of general formula I or a pharmaceutically acceptable derivative as defined above.
- the level of glu-tubulin may be decreased by direct or indirect chemical or genetic means. Examples of such methods are treatment with a drug that results in reduced glu-tubulin expression, targeted delivery of viral, plasmid or peptide constructs, or antibody or siRNA or antisense to downregulate the level of glu-tubulin.
- siRNA may be used to reduce the level of TTCP or delivery of a plasmid may be used to increase the expression of TTL, and thereby reduce the level of glu-tubulin in the cell.
- the subject may then be treated with a compound of general formula I or a pharmaceutically acceptable derivative thereof.
- a compound of general formula I or a pharmaceutically acceptable derivative thereof can be administered alone or in combination with one or more other therapeutic agents.
- Possible combination therapy may take the form of fixed combinations, or the administration of a compound of the invention and one or more other therapeutic agents which are staggered or given independently of one another, or the combined administration of fixed combinations and one or more other therapeutic agents.
- a compound of general formula I or a pharmaceutically acceptable derivative thereof can, besides or in addition, be administered especially for tumour therapy in combination with chemotherapy (cytotoxic therapy), targeted therapy, endocrine therapy, radiotherapy, immunotherapy, surgical intervention, or a combination of these.
- chemotherapy cytotoxic therapy
- targeted therapy endocrine therapy
- radiotherapy immunotherapy
- surgical intervention or a combination of these.
- Long-term therapy is equally possible as is adjuvant therapy in the context of other treatment strategies, as described above.
- Other possible treatments are therapy to maintain the patient's status after tumour regression, or even chemo-preventive therapy, for example in patients at risk.
- the invention relates to a kit and in another aspect to a device for predicting the response, preferably of a disease in a subject, to a compound of general formula I or a pharmaceutically acceptable derivative thereof as defined above, comprising reagents necessary for measuring the level of glu-tubulin in a sample.
- the reagents comprise a capture reagent comprising a detector for glu-tubulin and a detector reagent.
- the kit and device may also preferably comprise a comparator module which comprises a standard value or set of standard values to which the level of glu- tubulin in the sample is compared.
- the comparator module is included in instructions for use of the kit.
- the comparator module is in the form of a display device, for example a strip of colour or numerically coded material which is designed to be placed next to the readout of the sample measurement to indicate resistance levels.
- the standard value or set of standard values may be determined as described above.
- the reagents are preferably antibodies or antibody fragments which selectively bind to glu-tubulin. These may for example be in the form of one specific primary antibody which binds to glu-tubulin and a secondary antibody which binds to the primary antibody, and which is itself labelled for detection. Alternatively, the primary antibody may also be labelled for direct detection.
- the kits or devices may optionally also contain a wash solution(s) that selectively allows retention of the bound biomarker to the capture reagent as compared with other biomarkers after washing. Such kits can then be used in ELISA, western blotting, flow cytometry, immunohistochemistry or other immunochemical methods to detect the level of the biomarker.
- the kit comprises a compound of general formula I, or a pharmaceutically acceptable derivative thereof as defined above.
- This compound may then be administered to the subject, in accordance with the level of the biomarker in the sample from the subject, as measured by the reagents comprised in the kit. Therefore the kit according to the invention may be used in the method of treatment according to the invention, as defined above.
- the kit comprises a compound of the following formula or a
- the pharmaceutically acceptable salt is a dihydrochloride salt.
- the invention relates to the use of such a kit as described above.
- the device may comprise imaging devices or measurement devices (for example, but not restricted to, measurement of fluorescence) which further process the measured signals and transfer them into a scale in a comparator module.
- imaging devices or measurement devices for example, but not restricted to, measurement of fluorescence
- NSCLC human non-small cell lung cancer
- CCL-185 cells
- HeLa cervical cancer cells ATCC reference number CCL-2
- SKBR3 breast carcinoma cells ATCC reference number HTB-30
- RPMI- 1640 10 % FCS (also referred to as FBS) at 37°C, 5% C0 2 .
- Compounds to be tested were dissolved in DMSO.
- the cell culture medium was replaced with medium containing the diluted compound(s) (paclitaxel, vinblastine, colchicine and nocodazole were purchased from Sigma-Aldrich) or vehicle.
- coverslips were washed and cells were fixed in methanol/acetone (1 : 1 ) for 5 minutes at room temperature and subsequently incubated in blocking buffer (0.5% BSA and 0.1 % TX-100 in PBS) for 30 minutes at room temperature. Specimens were then incubated with anti-alpha- tubulin (Sigma, 1 :2000) for 1 hour at room temperature in blocking buffer. After several washing steps cells were incubated with AlexaFluor-488 goat-anti-mouse IgG (Molecular Probes, 1 :3000) for 1 hour at room temperature followed by several washing steps with blocking buffer. Specimens were then mounted with ProLong Gold antifade (Molecular Probes, sealed with nail polish and examined with a Leica immunofluorescence microscope. Images were captured with a cooled CCD-camera and processed by ImageJ software.
- Colony Outgrowth Assay Single cell suspensions of patient-derived tumour xenografts (maintained in nude mice) were prepared. For colony outgrowth assays, cells were plated in soft agar in 24-well plates according to the assay introduced by Hamburger & Salmon (Primary bioassay of human tumour stem cells, Science, 1977, 197:461 -463). 2x10 4 - 6x10 4 cells in 0.2 mL medium containing 0.4% agar were plated out on a bottom layer of 0.75% agar. Test compounds were applied in 0.2 mL culture medium. Every 24-well plate contained untreated controls and samples in triplicates. Cultures were incubated at 37°C and 7.5% CO2 for 5 - 28 days.
- Relative drug effects were expressed by the ratio of the mean number of colonies in the treated wells and the control wells. IC 7 o-values were determined by plotting compound concentrations versus relative colony counts.
- BAL27862-resistant sublines of human non-small cell lung cancer H460 ATCC reference HTB-177; A549 ATCC reference CCL-185), ovarian cancer (SKOV3 ATCC reference HTB-77) lines were generated by long-term selection in complete cell culture medium (RPMI-1640 containing 10% FCS; Sigma-Aldrich) by stepwise increasing concentrations of BAL27862.
- complete cell culture medium RPMI-1640 containing 10% FCS; Sigma-Aldrich
- the selection process was carried out for 8-12 months in order to achieve resistance factors (ratio of IC50 of resistant cell line and appropriate wild-type cell line) between 3 and 1 1.6.
- the resistant sublines were expanded at the highest tolerated BAL27862
- Cells were seeded in 96 well plates at the following densities: A549: 2000, H460: 1000, SKOV3: 2000 and, after 24 hours incubation, were incubated for 72 hours with DMSO, BAL27862, colchicine, nocodazole, paclitaxel or vinblastine diluted in complete medium (final concentration DMSO max. 0.5 %). After medium was removed, cells were fixed and stained by adding 50 ⁇ Crystal Violet Staining (0.2 % Crystal Violet in 50 % Methanol) per well. Plates were incubated for 1 hour at room temperature. Subsequently the stain was decanted and plates were washed 4 times with double-distilled water. Plates were air-dried for several hours. Stain was dissolved by adding 100 ⁇ buffer (0.1 M Tris pH 7.5, 0.2 % SDS, 20 % Ethanol) per well and shaking the plates. Absorbance at 590 nm was measured using a
- SpectraMax M2e plate reader (Molecular Devices). Anti-proliferative IC50 values were calculated from concentration response curves using GraphPad Prism software. Resistance factors were calculated as a ratio of BAL27862 IC50 in the resistant line variant versus the IC50 in the parental line.
- Tumour extraction Tumours were extracted in ice-cold lysis buffer containing 50 mM HEPES (pH 7.5), 150 mM NaCI, 25 mM ⁇ -glycerophosphate, 25 mM NaF, 5 mM EGTA, 1 mM EDTA, 0.1 % NP40, 15 mM pyrophosphate, 2 mM sodium orthovanadate, 10 mM sodium molybdate, leupeptin (10 pg/mL), aprotinin (10 Mg/mL) and 1 mM phenylmethylsulphonyl fluoride (PMSF)(1 ml_ extraction volume per 45 mg tumour).
- PMSF phenylmethylsulphonyl fluoride
- Tumour cell line extraction Cells were washed with ice-cold PBS containing 1 mM PMSF and with ice-cold lysis buffer (see above) without NP40. Cells were extracted in the same lysis buffer containing 1 % NP40. After homogenisation, lysates were clarified by centrifugation and frozen at -80°C.
- Immunoblotting was performed using 20 ⁇ g of total protein per lane. Total protein concentration was determined with the BCA Protein Assay (Pierce). Protein was separated on a 10% SDS-gel and transferred to a PVDF membrane using Semidry Blotting (90 min, 50 mA/gel). The primary antibodies used for
- Glu-tubulin antibody available from Milipore, reference number AB3201
- rabbit polyclonal dilution 1 : 1000
- buffer conditions 3% BSA in PBS/0.1 % Tween
- Actin antibody available from Chemicon, reference number MAB1501
- mouse monoclonal dilution 1 :5000
- buffer conditions 3% BSA in PBS/0.1 % Tween
- the secondary antibodies used for immunoblotting were peroxidase- conjugated goat anti-rabbit or goat anti-mouse (available from Jackson
- Paraffin sections of approximately 2 pm were cut and processed by using the automated immunostainer Benchmark XT® (Roche) running the standard processing steps.
- the visualisation of the specific antibody staining was done with DAB (3,3-diaminobenzidine) as chromogenic substrate at a concentration of 5 mg/ml.
- DAB 3,3-diaminobenzidine
- Example 1 A Distinct Mitotic Phenotype Induced by compounds of general formula I
- BAL27862 was tested in combination with vinblastine, colchicine and paclitaxel (Figure 5) and nocodazole ( Figure 6) using A549 cells. Treatment with vinblastine, colchicine, paclitaxel or nocodazole alone induced the mitotic microtubule phenotypes
- Example 3 Association of high glu-tubulin expression levels with patient- derived tumour cells resistant to BAL27862 treatment.
- BAL27862-sensitive or relatively resistant tumour cells were identified from melanoma and colorectal and lung cancer (see Table 1 ). Concentrations at which 70% growth inhibition was observed versus controls (IC70) are shown in Table 1 .
- BAL27862- sensitive tumour cells have IC70 values in the low nanomolar range, while BAL27862- resistant tumour cells are defined by IC70 values >600 nanomolar.
- Paclitaxel and vinblastine data using the same ex vivo assay, was available for 5 of the 6 tumour models. Of these 5 models, all were resistant to treatment with paclitaxel, while 4 of 5 of these tumours were sensitive to treatment with vinblastine.
- Immunoblotting analysis was performed in order to measure glu-tubulin levels in the same tumours maintained as xenografts, using the Milipore antibody ( Figure 7). The actin levels were included on the immunoblot as a loading control.
- glu-tubulin is shown to be higher only in the resistant tumours and not the sensitive tumours derived from the same tumour histotype. Increased levels were therefore consistently indicative of resistance to BAL27862.
- glu-tubulin levels were shown to be a biomarker of resistance for the compound according to the invention, BAL27862.
- Example 5 Higher glu-tubulin expression is observed in tumour lines selected for resistance to a compound of general formula I
- A549 human non-small cell lung cancer cell line A549 human non-small cell lung cancer cell line
- FCS/FBS foetal calf / foetal bovine serum
- Hoe33342 2'-(4'-Ethoxyphenyl)-5-(4-methylpiperazin-1 -yl)-2,5'-bis-1 H- benzimidazole trihydrochloride trihydrate
- RPMI-1640 cell culture medium used for culturing transformed and non-transformed eukaryotic cells and cell lines
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2822530A CA2822530C (en) | 2011-01-21 | 2012-01-19 | Glu-tubulin as a biomarker for furazanobenzimidazoles |
US13/980,208 US9995754B2 (en) | 2011-01-21 | 2012-01-19 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles |
ES12700494.3T ES2608315T3 (en) | 2011-01-21 | 2012-01-19 | Use of glu-tubulin as a biomarker of the drug response to furazanobenzimidazoles |
DK12700494.3T DK2666014T3 (en) | 2011-01-21 | 2012-01-19 | USE OF GLU-tubulin as a biomarker of PHARMACEUTICAL RESPONSE TO FURAZANOBENZIMIDAZOLER |
EP12700494.3A EP2666014B1 (en) | 2011-01-21 | 2012-01-19 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles |
NZ611525A NZ611525B2 (en) | 2011-01-21 | 2012-01-19 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles |
CN201280005860.3A CN103460042B (en) | 2011-01-21 | 2012-01-19 | GLU-tubulin is as the purposes of the biomarker of the drug response to furazano benzimidazole |
JP2013549810A JP6270481B2 (en) | 2011-01-21 | 2012-01-19 | Use of glu-tubulin as a biomarker of drug response to flazanobenzimidazole |
AU2012208516A AU2012208516B2 (en) | 2011-01-21 | 2012-01-19 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles |
HK14105637.2A HK1192323A1 (en) | 2011-01-21 | 2014-06-13 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles glu- |
US15/986,577 US10656162B2 (en) | 2011-01-21 | 2018-05-22 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11151681.1 | 2011-01-21 | ||
EP11151681 | 2011-01-21 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/980,208 A-371-Of-International US9995754B2 (en) | 2011-01-21 | 2012-01-19 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles |
US15/986,577 Division US10656162B2 (en) | 2011-01-21 | 2018-05-22 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012098203A1 true WO2012098203A1 (en) | 2012-07-26 |
Family
ID=43928137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/050814 WO2012098203A1 (en) | 2011-01-21 | 2012-01-19 | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles |
Country Status (13)
Country | Link |
---|---|
US (2) | US9995754B2 (en) |
EP (1) | EP2666014B1 (en) |
JP (1) | JP6270481B2 (en) |
CN (1) | CN103460042B (en) |
AU (1) | AU2012208516B2 (en) |
CA (2) | CA2822530C (en) |
DK (1) | DK2666014T3 (en) |
ES (1) | ES2608315T3 (en) |
HK (1) | HK1192323A1 (en) |
HU (1) | HUE031162T2 (en) |
PL (1) | PL2666014T3 (en) |
PT (1) | PT2666014T (en) |
WO (1) | WO2012098203A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017068182A1 (en) | 2015-10-22 | 2017-04-27 | Basilea Pharmaceutica Ag | Use of eb1 as a biomarker of drug response |
WO2018197475A1 (en) | 2017-04-26 | 2018-11-01 | Basilea Pharmaceutica International AG | Processes for the preparation of furazanobenzimidazoles and crystalline forms thereof |
WO2022053549A1 (en) | 2020-09-10 | 2022-03-17 | Basilea Pharmaceutica International AG | Use of c-myc as a biomarker of drug response |
US11419856B2 (en) | 2017-11-20 | 2022-08-23 | Basilea Pharmaceutica International AG | Pharmaceutical combinations for use in the treatment of neoplastic diseases |
US11633383B2 (en) | 2017-05-16 | 2023-04-25 | Basilea Pharmaceutica International AG | Dosage principle for drugs useful for treating neoplastic diseases |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2691533B1 (en) * | 2011-03-29 | 2017-04-05 | Basilea Pharmaceutica AG | Use of phospho-akt as a biomarker of drug response |
US10170419B2 (en) * | 2016-06-22 | 2019-01-01 | International Business Machines Corporation | Biconvex low resistance metal wire |
CN109053584B (en) * | 2018-09-12 | 2022-03-18 | 南京大学 | Preparation and application of 1, 2-diaryl benzimidazole derivatives |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004103994A1 (en) | 2003-05-23 | 2004-12-02 | Basilea Pharmaceutica Ag | Furazanobenzimidazoles |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE315789T1 (en) * | 1999-11-16 | 2006-02-15 | Genentech Inc | ELISA FOR VEGF |
CA2532722C (en) * | 2003-07-17 | 2016-10-04 | Pacific Edge Biotechnology, Ltd. | Cystatin sn (cst1) and other markers for detection of gastric cancer |
WO2005098446A2 (en) * | 2004-03-31 | 2005-10-20 | The Johns Hopkins University | Biomarkers for ovarian cancer |
US8193238B2 (en) * | 2006-03-08 | 2012-06-05 | University Of Maryland, Baltimore | Inhibition of microtubule protrusion in cancer cells |
US20110165178A1 (en) * | 2007-01-23 | 2011-07-07 | Centre National De La Recherche Scientifique (Cnrs) | Diagnosis of prostate cancer |
UA106763C2 (en) | 2009-07-27 | 2014-10-10 | Базілеа Фармас'Ютіка Аг | Furazanobenzimidazoles as prodrugs to treat neoplastic or autoimmune diseases |
-
2012
- 2012-01-19 CN CN201280005860.3A patent/CN103460042B/en active Active
- 2012-01-19 WO PCT/EP2012/050814 patent/WO2012098203A1/en active Application Filing
- 2012-01-19 AU AU2012208516A patent/AU2012208516B2/en not_active Ceased
- 2012-01-19 CA CA2822530A patent/CA2822530C/en active Active
- 2012-01-19 EP EP12700494.3A patent/EP2666014B1/en active Active
- 2012-01-19 ES ES12700494.3T patent/ES2608315T3/en active Active
- 2012-01-19 HU HUE12700494A patent/HUE031162T2/en unknown
- 2012-01-19 DK DK12700494.3T patent/DK2666014T3/en active
- 2012-01-19 US US13/980,208 patent/US9995754B2/en active Active
- 2012-01-19 PT PT127004943T patent/PT2666014T/en unknown
- 2012-01-19 CA CA3142744A patent/CA3142744A1/en not_active Abandoned
- 2012-01-19 PL PL12700494T patent/PL2666014T3/en unknown
- 2012-01-19 JP JP2013549810A patent/JP6270481B2/en active Active
-
2014
- 2014-06-13 HK HK14105637.2A patent/HK1192323A1/en not_active IP Right Cessation
-
2018
- 2018-05-22 US US15/986,577 patent/US10656162B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004103994A1 (en) | 2003-05-23 | 2004-12-02 | Basilea Pharmaceutica Ag | Furazanobenzimidazoles |
Non-Patent Citations (14)
Title |
---|
"Apoptosis and Cancer Chemotherapy", 1999, BLACKWELL PUBLISHING |
"Methoden der organischen Chemie", vol. 15/1, 1974, GEORG THIEME VERLAG |
ALLEY MC ET AL., LIFE SCI., vol. 31, 1982, pages 3071 - 3078 |
DURAN GEORGE E ET AL: "In vitro activity of the novel tubulin active agent BAL27862 in MDR1(+) and MDR1(-) human breast and ovarian cancer variants selected for resistance to taxanes", PROCEEDINGS OF THE ANNUAL MEETING OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH; 101ST ANNUAL MEETING OF THE AMERICAN-ASSOCIATION-FOR-CANCER-RESEARCH; WASHINGTON, DC, USA; APRIL 17 -21, 2010, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 51, 1 April 2010 (2010-04-01), pages 1 - 2, XP008135859, ISSN: 0197-016X * |
ESTEVE MARIE-ANNE ET AL: "BAL27862: A unique microtubule-targeted drug that suppresses microtubule dynamics, severs microtubules, and overcomes BcI-2-and tubulin subtype-related drug resistance", PROCEEDINGS OF THE ANNUAL MEETING OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH; 101ST ANNUAL MEETING OF THE AMERICAN-ASSOCIATION-FOR-CANCER-RESEARCH; WASHINGTON, DC, USA; APRIL 17 -21, 2010, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 51, 1 April 2010 (2010-04-01), pages 1 - 2, XP008135858, ISSN: 0197-016X * |
GOKMEN-POLAR YESIM ET AL: "beta-Tubulin mutations are associated with resistance to 2-methoxyestradiol in MDA-MB-435 cancer cells", CANCER RESEARCH, vol. 65, no. 20, October 2005 (2005-10-01), pages 9406 - 9414, XP002636771, ISSN: 0008-5472 * |
J CLIN ONCOL., vol. 26, no. 7, 2008, pages 1148 - 59 |
J NATL CANCER INST., vol. 96, no. 6, 2004, pages 487 - 8 |
J. F. W. MCOMIE: "Protective Groups in Organic Chemistry", 1973, PLENUM PRESS |
KREIS T E: "MICROTUBULES CONTAINING DETYROSINATED TUBULIN ARE LESS DYNAMIC", EMBO JOURNAL, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 6, no. 9, 1 January 1987 (1987-01-01), pages 2597 - 2606, XP008135816, ISSN: 0261-4189 * |
MELLI G ET AL: "Erythropoietin protects sensory axons against paclitaxel-induced distal degeneration", NEUROBIOLOGY OF DISEASE, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 24, no. 3, 1 December 2006 (2006-12-01), pages 525 - 530, XP024901475, ISSN: 0969-9961, [retrieved on 20061201], DOI: DOI:10.1016/J.NBD.2006.08.014 * |
SCIENCE, vol. 197, 1977, pages 461 - 463 |
T. W. GREENE; G. M. WUTS: "Protective Groups in Organic Synthesis", 2006, WILEY |
WEN PY; MACDONALD DR; REARDON DA; CLOUGHESY TF; SORENSEN AG; GALANIS E; DEGROOT J; WICK W; GILBERT MR; LASSMAN AB: "Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group", J CLIN ONCOL., vol. 28, no. 11, 2010, pages 1963 - 72 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017068182A1 (en) | 2015-10-22 | 2017-04-27 | Basilea Pharmaceutica Ag | Use of eb1 as a biomarker of drug response |
WO2018197475A1 (en) | 2017-04-26 | 2018-11-01 | Basilea Pharmaceutica International AG | Processes for the preparation of furazanobenzimidazoles and crystalline forms thereof |
US11633383B2 (en) | 2017-05-16 | 2023-04-25 | Basilea Pharmaceutica International AG | Dosage principle for drugs useful for treating neoplastic diseases |
US11419856B2 (en) | 2017-11-20 | 2022-08-23 | Basilea Pharmaceutica International AG | Pharmaceutical combinations for use in the treatment of neoplastic diseases |
WO2022053549A1 (en) | 2020-09-10 | 2022-03-17 | Basilea Pharmaceutica International AG | Use of c-myc as a biomarker of drug response |
Also Published As
Publication number | Publication date |
---|---|
CA2822530C (en) | 2023-02-21 |
US20140024686A1 (en) | 2014-01-23 |
HK1192323A1 (en) | 2014-08-15 |
JP2014505876A (en) | 2014-03-06 |
US20180364254A1 (en) | 2018-12-20 |
PL2666014T3 (en) | 2017-07-31 |
CN103460042B (en) | 2015-12-02 |
CN103460042A (en) | 2013-12-18 |
EP2666014B1 (en) | 2016-10-05 |
US9995754B2 (en) | 2018-06-12 |
CA3142744A1 (en) | 2012-07-26 |
DK2666014T3 (en) | 2017-01-09 |
JP6270481B2 (en) | 2018-01-31 |
US10656162B2 (en) | 2020-05-19 |
NZ611525A (en) | 2015-06-26 |
EP2666014A1 (en) | 2013-11-27 |
ES2608315T3 (en) | 2017-04-07 |
AU2012208516A1 (en) | 2013-06-20 |
PT2666014T (en) | 2016-12-22 |
CA2822530A1 (en) | 2012-07-26 |
HUE031162T2 (en) | 2017-07-28 |
AU2012208516B2 (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10067120B2 (en) | Use of acetylated tubulin as a biomarker of drug response to furazanobenzimidazoles | |
US10656162B2 (en) | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles | |
US10724072B2 (en) | Use of phospho-Akt as a biomarker of drug response | |
EP2666015B1 (en) | Use of stathmin as a biomarker of drug response to furazanobenzimidazoles | |
AU2012208520B2 (en) | Use of BUBR1 as a biomarker of drug response to furazanobenzimidazoles | |
AU2012208521B9 (en) | Use of stathmin as a biomarker of drug response to furazanobenzimidazoles | |
NZ611525B2 (en) | Use of glu-tubulin as a biomarker of drug response to furazanobenzimidazoles | |
NZ613022B2 (en) | Use of acetylated tubulin as a biomarker of drug response to furazanobenzimidazoles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12700494 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012208516 Country of ref document: AU Date of ref document: 20120119 Kind code of ref document: A Ref document number: 2822530 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013549810 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012700494 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012700494 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13980208 Country of ref document: US |