WO2012096098A1 - Mobile radio communications signaling - Google Patents

Mobile radio communications signaling Download PDF

Info

Publication number
WO2012096098A1
WO2012096098A1 PCT/JP2011/079113 JP2011079113W WO2012096098A1 WO 2012096098 A1 WO2012096098 A1 WO 2012096098A1 JP 2011079113 W JP2011079113 W JP 2011079113W WO 2012096098 A1 WO2012096098 A1 WO 2012096098A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
access stratum
mobile radio
radio communications
location updating
Prior art date
Application number
PCT/JP2011/079113
Other languages
French (fr)
Inventor
Yannick Lair
Original Assignee
Nec Casio Mobile Communications, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Casio Mobile Communications, Ltd. filed Critical Nec Casio Mobile Communications, Ltd.
Priority to US13/977,767 priority Critical patent/US9094936B2/en
Priority to JP2013523393A priority patent/JP5867506B2/en
Priority to CN201180064546.8A priority patent/CN103299676B/en
Priority to EP11855272.8A priority patent/EP2664179B1/en
Publication of WO2012096098A1 publication Critical patent/WO2012096098A1/en
Priority to US14/747,759 priority patent/US9549431B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to mobile radio communications signaling and, in particular, to a mobile radio communications device User Equipment (UE), and a mobile radio communications network device arranged to transmit and receive signaling for the establishment/maintenance of network connections and to a particular signaling structure to be employed by such devices.
  • UE User Equipment
  • GSM Global System for Mobile communications
  • NAS Non-Access Stratum
  • Release-9 requires the addition of a Circuit Switched fallback Mobile Terminated call (CSMT) flag to be added to the LOCATION UPDATING REQUEST message whereas, in Release- 10, a Circuit Switched fallback Mobile Originated call (CSMO) flag was also added.
  • CSMT Circuit Switched fallback Mobile Terminated call
  • CSMO Circuit Switched fallback Mobile Originated call
  • REQUEST message has been identified as an appropriate host for an ever increasing amount of information and such requirement is likely to continue into the future.
  • REQUEST message sent when establishing a dedicated connection with the network exhibits a limitation of size of the message of twenty octets.
  • N201 The maximum number of octets partially or entirely available for the information field (N201) is:
  • N201 23;
  • N201 23 ;
  • the LOCATION UPDATING REQUEST message is one such message which exhibits a limitation in length which, at present, is as noted in the above-mentioned Technical Specification is twenty octets.
  • the present invention seeks to provide from a NAS signaling structure offering advantages over known such structures and, in particular, to a mobile radio
  • a mobile radio communications network device arranged to operate with such signaling in a manner exhibiting advantages over known devices and to related methods of operating.
  • a mobile radio communications device operative to signal a non-access stratum message to a mobile radio communications network device, for establishing and/or mamtaining network connection, the device being arranged to include within the message a flag indicating the availability of extended NAS messaging found within an additional message separate from, but forming an extension to the non-access stratum message.
  • any future information to be added to the non-access stratum message can actually be provided in a new/separate message.
  • This message can mirror the regular standard Layer 3 message configuration and content such as defined in 3 GPP TS 24.007.
  • the present invention can advantageously allow extension of the functionality of an initial non-access stratum message, without actually requiring an increase in length of the initial message.
  • non-access stratum message of all aspects of the present invention can comprise part of a location updating procedure.
  • the non-access stratum message can comprise an octet structure and which structure can be of limited length.
  • the flag can comprise a bit in one of the octets and also the non-access stratum message can comprise a LOCATION UPDATE REQUEST message.
  • the invention finds particular use in a device arranged for signaling in a GSM network. Then it can be arranged such that the flag is only used in GSM, i.e., in UMTS the flag bit will always be set to 0, and the device will just decode the initial NAS message in a regular way.
  • the device can be arranged also for signaling in a GSM or UMTS network and wherein the flag can serve to indicate the availability of extended NAS messaging found within an additional message separate to the initial NAS message.
  • a mobile radio communications network device operative to receive a non-access stratum message from a mobile radio communications device, for establishing and/or maintaining connection with the network, the network device being arranged to identify within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to, but forming an extension of, the non-access stratum message, and to await receipt of the additional message for receipt of the extended messaging.
  • the network device can be arranged to send a prompt for the additional message, which prompt can take the form of a request message.
  • the network device which can comprise a MSC, can be arranged to delay identification and/or authentication phases until after receipt of the additional message.
  • the flag can serve to indicate that an extended messaging exchange is required.
  • a non-access stratum message structure including a flag serving to indicate the availability of extended NAS messaging found within an additional message separate from, but forming and extension to, the non-access stratum message.
  • a method of signaling, from a mobile radio communications device, a non-access stratum message to a mobile radio communications network device, for establishing and/or mamtaining network connection including the step of providing within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to the non-access stratum message and to allow for signaling of the extended messaging.
  • the method can involve non-access stratum messages comprising part of a location updating procedure.
  • a method of receiving, at a mobile radio communications network device, a non-access stratum message from a mobile radio communications device, for establishing and/or maintaining connection with the network including identifying within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to the non-access stratum message, and further awaiting receipt of the additional message for receipt of the extended messaging.
  • the method can further include the step of sending a prompt from the network device for the additional message, and the method can then also include the step of the mobile radio communications device responding at the network communications device to the prompt by sending the additional message.
  • the additional, but separate, message can then comprise a so-called
  • LOCATION UPDATING REQUEST message can effectively be extended by use of the additional EXTENDED LOCATION UPDATING message once the 20 octet limited is reached and, advantageously, no change to the general configuration of the LOCATION UPDATING REQUEST message is required and its length remains at 20 octets or less. Any required protocol enhancements to the LOCATING UPDATE REQUEST message can therefore readily be accommodated by way of the EXTENDED LOCATION
  • FIG. 1 is an illustration of the content of a current LOCATION UPDATING REQUEST message
  • FIG. 2 illustrates NAS signaling arising during a location updating procedure
  • FIG 3 illustrates a LOCATION UPDATING REQUEST message according to one embodiment of the present invention
  • FIG. 4 illustrates NAS signaling arising in accordance with one embodiment of the present invention
  • FIG. 5 illustrates the NAS signaling arising in accordance with another embodiment of the present invention
  • FIG. 6 illustrates the potential structure of the LOCATION UPDATING
  • REQUEST message that can be employed by a device embodying the present invention within a UMTS environment
  • FIG 7 illustrates messaging structure according to an embodiment of the present invention
  • FIG 8 is a schematic illustration of a mobile radio communications device according to an embodiment of the present invention.
  • FIG 9 is a schematic illustration of a mobile radio communications network device according to an embodiment of the present invention.
  • FIG. 1 there is illustrated a current configuration of a
  • LOCATION UPDATING REQUEST message 10 having a maximum length of twenty octets A and wherein the allocation of each of the eight bits of the 19th and 20th octets, noted as containing the additional update parameters 12 and the device properties 14 octets as mentioned later, is also illustrated in enlarged form.
  • this octet has been employed by CSMT and CSMO flags in the first and second bit positions and this serves to limit any further extension of the LOCATION UPDATING REQUEST to the 20th octet 14 or to bit 3 or 4 from the 19th octet.
  • this single available octet can only serve minimal practical purpose in allowing for extension of the LOCATION UPDATING REQUEST message.
  • this last available octet is employed by an additional "device properties" information element as illustrated so that no octets are in fact then available for extension of the LOCATION UPDATING REQUEST message.
  • FIG. 2 there is provided clarification of a location updating sequence arising in accordance with, for example, 3GPP TS 24.008 between the mobile radio communications device such as a UE terminal 16 and a mobile radio
  • MSC Mobile Switching Centre
  • the procedure commences with a LOCATION UPDATING REQUEST 20 sent from the UE 16 to the MSC 18 and which, after an identification and authentication phase, leads to a LOCATION UPDATING ACCEPT message 22 being returned from the MSC 18 to the UE 16 prior to a message 24 from the UE 16 confirming completion of the location updating procedure.
  • FIG. 3 there is provided an illustration of a LOCATION UPDATING REQUEST message 26 having a structure defined by content arising in accordance with an embodiment of the present invention.
  • the LOCATION UPDATING REQUEST message 26 has a maximum length of twenty octets and in which the 1 th octet 28 employing additional update parameters can also, in accordance with Release 9 as mentioned above employ CSMT and CSMO flags as required.
  • the present invention appreciates that there are still spare bits located within those octets and the present invention advantageously employs such spare bits for the purpose of effectively extending the LOCATION UPDATING REQUEST message.
  • the 8-bit length is illustrated by way of numbered bits and it can be seen that the CSMT and CSMO flags are located at the first and second bit positions. This still leaves the third and fourth bit positions spare, as indeed are bit positions 2, 3 and 4 of the 20th octet 30 in accordance with the above- mentioned Release 10.
  • a new functional bit LAU EXT is introduced into the third bit position of the 19th octet 28 of the LOCATION UPDATING REQUEST message 26 although, of course, any other of the spare bits discussed above for the 19th and 20th octets could equally be employed.
  • the new LAU EXT bit illustrated at a third bit position of octet 28 serves as a flag indicating that an extended LOCATION UPDATING message exchange is required with the network.
  • FIG 4 is an illustration of signaling arising in accordance with a first embodiment of the present invention and between UE 32 and MSC 34.
  • the signaling again commences with a LOCATION UPDATING REQUEST signal 36 and wherein the LAU EXT bit illustrated in FIG 3 is set to "1 ".
  • the UE 32 indicates that it has to send additional LOCATION UPDATING REQUEST information to the MSC 34 and the MSC 34 can be arranged to delay the identification and authentications phases whilst waiting for the additional information carried by the separate EXTENDED LOCATION UPDATING message (illustrated in FIG 7).
  • the EXTENDED LOCATION UPDATING message 38 is then sent by the UE 32 and which can contain relevant new parameters sent to the MSC 34.
  • the MSC 34 is not able to implement the present invention, the
  • EXTENDED LOCATION UPDATING message could simply be ignored, or the MSC 34 can be arranged to send a STATUS message back to the UE 32.
  • This particular embodiment can prove favorable insofar as it employs minimal additional signaling although another embodiment is now discussed in relation to FIG. 5.
  • the signaling relating to this embodiment is illustrated in relation to a UE 44 and MSC 46 and, again commences with a LOCATION UPDATING REQUEST message 48 sent from the UE 44 to the MSC 46 and again in which the LAU EXT bit has been set to " 1 ". Again, the flag represented by the LAU EXT bit indicates that there is additional information to be sent to the MSC 46.
  • an additional signaling exchange C arises in which the MSC 46 sends a specific EXTENDED LOCATION UPDATING REQUEST message 50 to the UE 44 specifically requesting this additional information rather than simply awaiting its arrival as was the case with the embodiment of FIG. 4.
  • the UE 44 replies with the new/additional EXTENDED LOCATION UPDATING message comprising an EXTENDED
  • the MSC 46 when receiving the LOCATION UPDATING REQUEST message with the new LAU EXT bit, the MSC 46 is arranged to send a specific EXTENDED LOCATION UPDATING REQUEST message to the UE 44 specifically prompting the UE 44 to deliver the new/additional EXTENDED LOCATION UPDATING message.
  • LAU EXT While the present invention is directed particularly to the GSM environment, a similar LOCATION UPDATING REQUEST message content could be used in UMTS insofar as the flag represented by LAU EXT can serve to indicate the presence of additional information elements such as the Additional Elements D illustrated in FIG. 6.
  • FIG. 6 there is illustrated a LOCATION UPDATING REQUEST message 58 in which the LAU EXT bit is again employed as a flag.
  • the flag is set to "0" so as to indicate the presence of the
  • Additional Information elements D indicated as "Additional Information 1 and
  • the LAU EXT bit is set to "1" as discussed above and which serves to indicate the presence of an EXTENDED
  • RESPONSE message (in accordance with the second embodiment discussed above) 60 serves as an effective extension to the LOCATION UPDATING REQUEST message 26 of FIG 3.
  • FIG 8 there is provided a schematic illustration of a mobile radio communications device UE 62 in the form of a mobile phone handset and having a standard air interface comprising antenna 64 and reception/transmission 66 functionally connected within the handset to memory storage means 68, processing means 70 and user interface means 72.
  • the processor means 70 includes a LAU EXT bit setting function 74 which serves to set the bit to the appropriate value so as to flag the presence, or otherwise, of the separate EXTENDED LOCATION UPDATING messaging such as that 60 illustrated in FIG. 7, and which of course is arranged to be sent subsequently by the UE.
  • the present invention also provides for a network device such as MSC 76 arranged, for example, with an interface 78 to a Radio Network Controller and an interface 80 to a GSM network via a Base Station Controller (BSC), wherein the MSC 76 includes memory 82 and processing 84 functionality in which the processing
  • functionality 84 can include means 86 for responding to receipt of a LOCATION
  • UPDATING REQUEST message including a flag such as the LAU EXT flag discussed above.
  • the MSC 76 can then return, in response to identification of the LAU EXT flag, by way of the interface 78 and the related Radio Network Controller and base station or by way of the interface 80 and the related Base Station Controller, an EXTENDED LOCATION UPDATING REQUEST message specifically inviting a UE such as that of FIG. 8 to send its EXTENDED LOCATION UPDATING RESPONSE message.
  • the present invention can be embodied with any appropriate products supporting 2G/3G and CS services.
  • the present invention allows for the sending of additional information from the UE to the MSC during a location updating procedure, it can readily prove possible to retain the remaining spare bits in the existing LOCATION UPDATING REQUEST message for use in relation to critical information necessary at the MSC level.
  • the new EXTENDED LOCATION UPDATING message, or the EXTENDED LOCATION UPDATING RESPONSE according to the second embodiment, would then be employed for lesser or non-critical information, i.e. information which could be received by the MSC at a later stage during the location updating procedure, for example after the identification or authentication phase.
  • the messages concerned could employ quite different identities from the EXTENDED LOCATION UPDATING and EXTENDED LOCATION UPDATING RESPONSE identities noted above and could even be mapped to other existing messages if required.
  • the IDENTITY REQUEST message such as defined in 3 GPP TS 24.008 could be employed by the MSC to request additional information of the UE and consequently serve the same purpose as the new EXTENDED LOCATION UPDATING REQUEST message discussed above.
  • the existing IDENTITY RESPONSE message as defined also in 3GPP TS 24.008 could be extended to carry the required additional information from the UE to the MSC so as to serve the same purpose as the so- called EXTENDED LOCATION UPDATING RESPONSE message discussed above.
  • the identification and authentication phases could occur after the extended location updating exchange, and so, according to another arrangement, the MSC implementation may serve to request additional location updating information (via the EXTENDED LOCATION UPDATING REQUEST message) only after the identification and/or authentication phases.

Abstract

The present invention provides for a mobile radio communications device operative to signal a non-access stratum message to a mobile radio communications network device, for establishing and/or maintaining network connection, the device being arranged to include within the message a flag indicating the availability of extended NAS messaging found within an additional message separate from, but forming an extension to the non-access stratum message, and also for a signaling structure to be employed by such a device and a network device for exchanging signaling therewith and of course to related methods of such devices.

Description

DESCRIPTION
MOBILE RADIO COMMUNICATIONS SIGNALING INCORPORATION BY REFERENCE
Priority is claimed on United Kingdom Patent Application No.1100612.9, filed January 14, 2011, the content of which is incorporated herein by reference.
TECHNICAL FIELD
The present invention relates to mobile radio communications signaling and, in particular, to a mobile radio communications device User Equipment (UE), and a mobile radio communications network device arranged to transmit and receive signaling for the establishment/maintenance of network connections and to a particular signaling structure to be employed by such devices.
BACKGROUND ART
As mobile radio communications network technology continues to evolve, a large number of network users employ equipment operating in accordance with Second Generation (2G) specifications in addition, or alternatively, to Third Generation (3G) UMTS specifications. GSM specifications have offered stable functionality, in particular for the Circuit Switched (CS) domain, for many years.
However, with the ongoing development and system evolutions noted above and in accordance with the Third Generation Partnership Protocol (3 GPP), for example, for Evolved Packet System (EPS), it has been found that some modifications have become necessary even within the CS domain. In particular, it has become necessary to introduce further information into, for example, initial Non-Access Stratum (NAS) messages such as those arising as part of a location updating procedure, for example the so-called LOCATION UPDATING REQUEST message.
As noted in 3GPP TS 24.008, Release-9 requires the addition of a Circuit Switched fallback Mobile Terminated call (CSMT) flag to be added to the LOCATION UPDATING REQUEST message whereas, in Release- 10, a Circuit Switched fallback Mobile Originated call (CSMO) flag was also added.
Thus, it has been found that, for example, the LOCATION UPDATING
REQUEST message has been identified as an appropriate host for an ever increasing amount of information and such requirement is likely to continue into the future.
However, a particular issue arises when considering 2G/GSM operation in that the initial NAS messages sent by the UE, such as the LOCATION UPDATING
REQUEST message sent when establishing a dedicated connection with the network, exhibits a limitation of size of the message of twenty octets.
This limitation arises from the maximum number of octets in the information field of an Unnumbered Information-Frame (UI-Frame) when sent on the Standalone Dedicated Control Channel SDCCH.
This is clearly evidenced in the following excerpt from 3 GPP TS 44.006, "8.8.3 Maximum number of octets in an I, UI, SABM and UA frame partially or entirely available for the information field (N201)
The maximum number of octets partially or entirely available for the information field (N201) is:
- for frames of format A and B:
- for the SACCH: N201 = 18;
- for the FACCH and SDCCH: N201 = 20, - for frames of format Bbis:
- for BCCH, AGCH, NCH and PCH: N201 = 23;
- for frames of format Bter:
- for the SACCH: N201 = 21;
- for the FACCH and SDCCH: N201 = 23 ;
- for frames of format B4:
- for the SACCH: N201 = 19."
As noted above, the LOCATION UPDATING REQUEST message is one such message which exhibits a limitation in length which, at present, is as noted in the above-mentioned Technical Specification is twenty octets. The LOCATION
UPDATING REQUEST message has to remain compliant with this maximum length since, as noted in 3GPP TS 44.005, "for unacknowledged operation the data link layer does not offer segmentation services".
In further detail, and with reference to the 3 GPP TS 24.008 sub clause 9.2.15, in Release-8 only two octets are available for extending the LOCATION UPDATING REQUEST message and when employing the IMSI mobile entity. However, and as noted from the above mentioned references to Releases 9 and 10, these two available octets have already found use. While in Release-9, only one octet remained available for extending the LOCATION UPDATING REQUEST, in Release- 10, both the spare octets were employed, and no more octets remain available for further extending the content of the LOCATION UPDATING REQUEST message.
While proposals have been made to optimize the usage of any remaining bits within the LOCATION UPDATING REQUEST message, the actual size of the message nevertheless remains a limiting factor. DISCLOSURE OF INVENTION
The present invention seeks to provide from a NAS signaling structure offering advantages over known such structures and, in particular, to a mobile radio
communications device, and a mobile radio communications network device arranged to operate with such signaling in a manner exhibiting advantages over known devices and to related methods of operating.
According to a first aspect of the present invention, there is provided a mobile radio communications device operative to signal a non-access stratum message to a mobile radio communications network device, for establishing and/or mamtaining network connection, the device being arranged to include within the message a flag indicating the availability of extended NAS messaging found within an additional message separate from, but forming an extension to the non-access stratum message.
Advantageously, through the use of the flag, any future information to be added to the non-access stratum message can actually be provided in a new/separate message.
This message can mirror the regular standard Layer 3 message configuration and content such as defined in 3 GPP TS 24.007.
Since the length of the non-access stratum message is generally limited, particularly for GSM connectivity, the present invention can advantageously allow extension of the functionality of an initial non-access stratum message, without actually requiring an increase in length of the initial message.
Preferably the non-access stratum message of all aspects of the present invention can comprise part of a location updating procedure.
In one form, the non-access stratum message can comprise an octet structure and which structure can be of limited length.
In one particular embodiment of all aspects of the invention, the flag can comprise a bit in one of the octets and also the non-access stratum message can comprise a LOCATION UPDATE REQUEST message.
As will be appreciated the invention finds particular use in a device arranged for signaling in a GSM network. Then it can be arranged such that the flag is only used in GSM, i.e., in UMTS the flag bit will always be set to 0, and the device will just decode the initial NAS message in a regular way.
Of course, the device can be arranged also for signaling in a GSM or UMTS network and wherein the flag can serve to indicate the availability of extended NAS messaging found within an additional message separate to the initial NAS message.
According to another aspect of the invention, there is provided a mobile radio communications network device operative to receive a non-access stratum message from a mobile radio communications device, for establishing and/or maintaining connection with the network, the network device being arranged to identify within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to, but forming an extension of, the non-access stratum message, and to await receipt of the additional message for receipt of the extended messaging.
In one example, the network device can be arranged to send a prompt for the additional message, which prompt can take the form of a request message.
The network device, which can comprise a MSC, can be arranged to delay identification and/or authentication phases until after receipt of the additional message.
Within various embodiments of the invention, the flag can serve to indicate that an extended messaging exchange is required.
According to yet another aspect of the present invention there is provided a non-access stratum message structure including a flag serving to indicate the availability of extended NAS messaging found within an additional message separate from, but forming and extension to, the non-access stratum message.
Of course this aspect of the invention can include any one or more of the various further features outlined above in relation to the earlier aspects of the invention.
According to still another aspect of the invention there is provided a method of signaling, from a mobile radio communications device, a non-access stratum message to a mobile radio communications network device, for establishing and/or mamtaining network connection, the method including the step of providing within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to the non-access stratum message and to allow for signaling of the extended messaging.
Of course, the method can involve non-access stratum messages comprising part of a location updating procedure.
According to a further aspect of the present invention there is provided a method of receiving, at a mobile radio communications network device, a non-access stratum message from a mobile radio communications device, for establishing and/or maintaining connection with the network, the method including identifying within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to the non-access stratum message, and further awaiting receipt of the additional message for receipt of the extended messaging.
The method can further include the step of sending a prompt from the network device for the additional message, and the method can then also include the step of the mobile radio communications device responding at the network communications device to the prompt by sending the additional message.
The additional, but separate, message can then comprise a so-called
EXTENDED LOCATION UPDATING message or, if prompting is involved, an EXTENDED LOCATION UPDATING RESPONSE.
Again, these further aspects of the invention can also include the further features discussed above in relation to the earlier aspects.
As will therefore be appreciated, by way of the present invention, the
LOCATION UPDATING REQUEST message can effectively be extended by use of the additional EXTENDED LOCATION UPDATING message once the 20 octet limited is reached and, advantageously, no change to the general configuration of the LOCATION UPDATING REQUEST message is required and its length remains at 20 octets or less. Any required protocol enhancements to the LOCATING UPDATE REQUEST message can therefore readily be accommodated by way of the EXTENDED LOCATION
UPDATING message as noted above, or the EXTENDED LOCATION UPDATING RESPONSE message also discussed above in the alternative.
Although it is appreciated that such additional messages will lead to an increase in the overall time required for the signaling procedure, it is envisaged that such a delay and additional signaling will not prove problematic. This holds particularly if the EXTENDED LOCATION UPDATING messages are used for machine type
communication information exchanges. Also, if, at some stage in the future, further device properties are defined, it is considered more appropriate not to use a Type Value Format for the information element but rather a Type-Length Value format. Although this latter format is identified as by far the more appropriate, it disadvantageously cannot be accommodated within the message such as the LOCATION UPDATING REQUEST message due to the size limitations discussed above. Use of the extended messages discussed herein therefore advantageously allows for the definition of further device properties that might be required in the future. BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the invention are described further hereinafter, by way of example only, with reference to the accompanying drawings in which;
FIG. 1 is an illustration of the content of a current LOCATION UPDATING REQUEST message;
FIG. 2 illustrates NAS signaling arising during a location updating procedure; FIG 3 illustrates a LOCATION UPDATING REQUEST message according to one embodiment of the present invention;
FIG. 4 illustrates NAS signaling arising in accordance with one embodiment of the present invention;
FIG. 5 illustrates the NAS signaling arising in accordance with another embodiment of the present invention;
FIG. 6 illustrates the potential structure of the LOCATION UPDATING
REQUEST message that can be employed by a device embodying the present invention within a UMTS environment;
FIG 7 illustrates messaging structure according to an embodiment of the present invention;
FIG 8 is a schematic illustration of a mobile radio communications device according to an embodiment of the present invention;
FIG 9 is a schematic illustration of a mobile radio communications network device according to an embodiment of the present invention.
EMBODIMENTS FOR CARRYING OUT THE INVENTION
Turning now to FIG. 1 , there is illustrated a current configuration of a
LOCATION UPDATING REQUEST message 10 having a maximum length of twenty octets A and wherein the allocation of each of the eight bits of the 19th and 20th octets, noted as containing the additional update parameters 12 and the device properties 14 octets as mentioned later, is also illustrated in enlarged form.
As will be appreciated from the full bit details of the 19th octet 12, this octet has been employed by CSMT and CSMO flags in the first and second bit positions and this serves to limit any further extension of the LOCATION UPDATING REQUEST to the 20th octet 14 or to bit 3 or 4 from the 19th octet.
However, as discussed above, this single available octet can only serve minimal practical purpose in allowing for extension of the LOCATION UPDATING REQUEST message. In accordance with 3GPP TS 24.008 Release 10, even this last available octet is employed by an additional "device properties" information element as illustrated so that no octets are in fact then available for extension of the LOCATION UPDATING REQUEST message.
With regard to FIG. 2, there is provided clarification of a location updating sequence arising in accordance with, for example, 3GPP TS 24.008 between the mobile radio communications device such as a UE terminal 16 and a mobile radio
communications network device such as a Mobile Switching Centre (MSC) 18.
As illustrated, the procedure commences with a LOCATION UPDATING REQUEST 20 sent from the UE 16 to the MSC 18 and which, after an identification and authentication phase, leads to a LOCATION UPDATING ACCEPT message 22 being returned from the MSC 18 to the UE 16 prior to a message 24 from the UE 16 confirming completion of the location updating procedure.
As will be appreciated from the following, the present invention provides enhancement to the signaling arising during a location updating sequence as initially illustrated by reference to FIGS. 1 and 2. Accordingly, and turning now to FIG. 3, there is provided an illustration of a LOCATION UPDATING REQUEST message 26 having a structure defined by content arising in accordance with an embodiment of the present invention.
Again, and assuming use within GSM network, the LOCATION UPDATING REQUEST message 26 has a maximum length of twenty octets and in which the 1 th octet 28 employing additional update parameters can also, in accordance with Release 9 as mentioned above employ CSMT and CSMO flags as required.
However, for both the 19th octet 28 and the 20th octet 30 illustrated in FIG 3, the present invention appreciates that there are still spare bits located within those octets and the present invention advantageously employs such spare bits for the purpose of effectively extending the LOCATION UPDATING REQUEST message.
Turning to the further details of octet 28 within FIG 3, the 8-bit length is illustrated by way of numbered bits and it can be seen that the CSMT and CSMO flags are located at the first and second bit positions. This still leaves the third and fourth bit positions spare, as indeed are bit positions 2, 3 and 4 of the 20th octet 30 in accordance with the above- mentioned Release 10.
In accordance with this illustrated embodiment of the present invention, a new functional bit LAU EXT is introduced into the third bit position of the 19th octet 28 of the LOCATION UPDATING REQUEST message 26 although, of course, any other of the spare bits discussed above for the 19th and 20th octets could equally be employed.
The new LAU EXT bit illustrated at a third bit position of octet 28 serves as a flag indicating that an extended LOCATION UPDATING message exchange is required with the network.
The potential signaling arising between the UE and the MSC in one particular embodiment of the present invention and which takes account of the new LAU EXT bit is illustrated further with reference to FIGS. 4 and 5.
FIG 4 is an illustration of signaling arising in accordance with a first embodiment of the present invention and between UE 32 and MSC 34.
The signaling again commences with a LOCATION UPDATING REQUEST signal 36 and wherein the LAU EXT bit illustrated in FIG 3 is set to "1 ".
In this manner, the UE 32 indicates that it has to send additional LOCATION UPDATING REQUEST information to the MSC 34 and the MSC 34 can be arranged to delay the identification and authentications phases whilst waiting for the additional information carried by the separate EXTENDED LOCATION UPDATING message (illustrated in FIG 7).
The EXTENDED LOCATION UPDATING message 38 is then sent by the UE 32 and which can contain relevant new parameters sent to the MSC 34. Of course, if for some reason the MSC 34 is not able to implement the present invention, the
EXTENDED LOCATION UPDATING message could simply be ignored, or the MSC 34 can be arranged to send a STATUS message back to the UE 32.
Subsequently, and after the identification and authentication phases, the
LOCATION UPDATING ACCEPT 40 and LOCATION UPDATING COMPLETE 42 signaling exchanges between the UE 32 and the MSC 34 complete the location update procedure as illustrated.
In accordance with this first embodiment, it should be appreciated that the MSC
34 is simply arranged to wait for the additional information which the UE 32 sends in the separate additional EXTENDED LOCATION UPDATING message.
This particular embodiment can prove favorable insofar as it employs minimal additional signaling although another embodiment is now discussed in relation to FIG. 5. The signaling relating to this embodiment is illustrated in relation to a UE 44 and MSC 46 and, again commences with a LOCATION UPDATING REQUEST message 48 sent from the UE 44 to the MSC 46 and again in which the LAU EXT bit has been set to " 1 ". Again, the flag represented by the LAU EXT bit indicates that there is additional information to be sent to the MSC 46.
However, in this further embodiment, an additional signaling exchange C arises in which the MSC 46 sends a specific EXTENDED LOCATION UPDATING REQUEST message 50 to the UE 44 specifically requesting this additional information rather than simply awaiting its arrival as was the case with the embodiment of FIG. 4.
In response to the request 50, the UE 44 replies with the new/additional EXTENDED LOCATION UPDATING message comprising an EXTENDED
LOCATION UPDATING RESPONSE 52 and containing the required new parameters to be sent to the MSC 46.
Then, subsequent to the identification and authentication phase, the LOCATION UPDATING ACCEPT 54 and the LOCATION UPDATING COMPLETE 56 signaling exchanges again conclude the procedure as before.
As will therefore be appreciated, in this second embodiment of the present invention, when receiving the LOCATION UPDATING REQUEST message with the new LAU EXT bit, the MSC 46 is arranged to send a specific EXTENDED LOCATION UPDATING REQUEST message to the UE 44 specifically prompting the UE 44 to deliver the new/additional EXTENDED LOCATION UPDATING message.
While the present invention is directed particularly to the GSM environment, a similar LOCATION UPDATING REQUEST message content could be used in UMTS insofar as the flag represented by LAU EXT can serve to indicate the presence of additional information elements such as the Additional Elements D illustrated in FIG. 6.
Turning therefore to FIG. 6 in greater detail, there is illustrated a LOCATION UPDATING REQUEST message 58 in which the LAU EXT bit is again employed as a flag. In this example, the flag is set to "0" so as to indicate the presence of the
Additional Information elements D indicated as "Additional Information 1 and
Additional Information 2".
However, when operating in GSM, and responsive to the limitation on the length of the LOCATION UPDATING REQUEST message, the LAU EXT bit is set to "1" as discussed above and which serves to indicate the presence of an EXTENDED
LOCATING UPDATING message (with the first embodiment discussed above) or an EXTENDED LOCATION UPDATING RESPONSE message (in accordance with the second embodiment discussed above) 60 as illustrated in FIG. 7.
This separate new EXTENDED LOCATION UPDATING message (with the first embodiment discussed above) or EXTENDED LOCATION UPDATING
RESPONSE message (in accordance with the second embodiment discussed above) 60 serves as an effective extension to the LOCATION UPDATING REQUEST message 26 of FIG 3.
With reference to FIG 8 there is provided a schematic illustration of a mobile radio communications device UE 62 in the form of a mobile phone handset and having a standard air interface comprising antenna 64 and reception/transmission 66 functionally connected within the handset to memory storage means 68, processing means 70 and user interface means 72.
Within the illustrated embodiment, the processor means 70 includes a LAU EXT bit setting function 74 which serves to set the bit to the appropriate value so as to flag the presence, or otherwise, of the separate EXTENDED LOCATION UPDATING messaging such as that 60 illustrated in FIG. 7, and which of course is arranged to be sent subsequently by the UE. The present invention also provides for a network device such as MSC 76 arranged, for example, with an interface 78 to a Radio Network Controller and an interface 80 to a GSM network via a Base Station Controller (BSC), wherein the MSC 76 includes memory 82 and processing 84 functionality in which the processing
functionality 84 can include means 86 for responding to receipt of a LOCATION
UPDATING REQUEST message including a flag such as the LAU EXT flag discussed above. The MSC 76 can then return, in response to identification of the LAU EXT flag, by way of the interface 78 and the related Radio Network Controller and base station or by way of the interface 80 and the related Base Station Controller, an EXTENDED LOCATION UPDATING REQUEST message specifically inviting a UE such as that of FIG. 8 to send its EXTENDED LOCATION UPDATING RESPONSE message.
From the above it should be appreciated that the present invention can be embodied with any appropriate products supporting 2G/3G and CS services. Of course, insofar as the present invention allows for the sending of additional information from the UE to the MSC during a location updating procedure, it can readily prove possible to retain the remaining spare bits in the existing LOCATION UPDATING REQUEST message for use in relation to critical information necessary at the MSC level. The new EXTENDED LOCATION UPDATING message, or the EXTENDED LOCATION UPDATING RESPONSE according to the second embodiment, would then be employed for lesser or non-critical information, i.e. information which could be received by the MSC at a later stage during the location updating procedure, for example after the identification or authentication phase.
Of course, it should be appreciated that the present inventions is not restricted to the details of the forgoing description and can be employed, as appropriate, in relation to any NAS signaling message and, in particular, any signaling message employed as part of the location updating procedure.
Thus, the messages concerned could employ quite different identities from the EXTENDED LOCATION UPDATING and EXTENDED LOCATION UPDATING RESPONSE identities noted above and could even be mapped to other existing messages if required.
For example, the IDENTITY REQUEST message such as defined in 3 GPP TS 24.008 could be employed by the MSC to request additional information of the UE and consequently serve the same purpose as the new EXTENDED LOCATION UPDATING REQUEST message discussed above. Also, the existing IDENTITY RESPONSE message as defined also in 3GPP TS 24.008 could be extended to carry the required additional information from the UE to the MSC so as to serve the same purpose as the so- called EXTENDED LOCATION UPDATING RESPONSE message discussed above.
As yet a further alternative, the identification and authentication phases could occur after the extended location updating exchange, and so, according to another arrangement, the MSC implementation may serve to request additional location updating information (via the EXTENDED LOCATION UPDATING REQUEST message) only after the identification and/or authentication phases.
While preferred embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, omissions, substitutions, and other modifications can be made without departing from the scope of the present invention. Accordingly, the invention is not to be considered as being limited by the foregoing description, and is only limited by the scope of the appended claims.

Claims

1. A mobile radio communications device operative to signal a non-access stratum message to a mobile radio communications network device, for establishing and/or maintaining network connection, the device being arranged to include within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to the non-access stratum message.
2. A device as claimed in Claim 1 , wherein the non-access stratum message comprises part of a location updating procedure.
3. A device as claimed in Claim 1 or 2, wherein the non-access stratum message comprises an octet structure.
4. A device as claimed in Claim 3, wherein the octet structure is of limited length.
5. A device as claimed in Claim 2 or 3, wherein the flag comprises a bit in one of the octets.
6. A device as claimed in any one or more of the preceding claims wherein the non-access stratum message comprises a LOCATION UPDATE REQUEST message.
7. A device as claimed in any one or more of the preceding claims and arranged for signaling in a GSM and/or UMTS network.
8. A device as claimed in any one or more of Claims 1 - 6, wherein the flag is employed only for signaling in a GSM network.
9. A device as claimed in any one or more of the preceding claims and arranged to receive prompt message from the mobile radio communications network device for the additional message.
10. A device as claimed in Claim 9, wherein the prompt comprises a request message.
11. A mobile radio communications network device operative to receive a non-access stratum message from a mobile radio communications device, for
establishing and/or maintaining connection with the network, the network device being arranged to identify within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to the non-access stratum message, and to await receipt of the additional message for receipt of the extended messaging.
12. A device as claimed in Claim 11 , wherein the non-access stratum message comprises part of a location updating procedure
13. A device as claimed in Claim 11 or 12, wherein the non-access stratum message comprises an octet structure.
14. A device as claimed in Claim 13, wherein the octet structure is of limited length.
15. A device as claimed in Claim 12 or 13, wherein the flag comprises a bit located in one of the octets.
16. A device as claimed in any one or more of Claims 11 to 15, wherein said non- access stratum message comprises a LOCATION UPDATE REQUEST message.
17. A device as claimed in any one or more of Claims 11 to 16, and arranged to send a prompt for the additional message.
18. A device as claimed in Claim 17 wherein the prompt comprises a request message.
19. A device as claimed in any one or more of Claims 11 to 18, and comprising a mobile switching centre.
20. A device as claimed in any one or more of Claims 11 to 19, and arranged to delay identification and/or authentication phases until after receipt of the additional message.
21. A device as claimed in any one or more of the preceding claims wherein the flag serves to indicate that an extended messaging exchange is required.
22. A non-access stratum message structure including a flag serving to indicate the availability of extended NAS messaging found within an additional message separate to the non-access stratum message.
23. A message structure as claimed in Claim 22, wherein the message comprises part of a location updating procedure.
24. A message structure as claimed in Claim 22 or 23 and comprising an octet structure.
25. A message of structure as claimed in Claim 24 wherein the octet structure has limited length.
26. A message structure as claimed in Claim 22, 23, 24 or 25, wherein the flag comprises a bit in one of the octets.
27. A message structure as claimed in any one or more of Claims 22 to 26 and comprising a LOCATION UPDATE REQUEST message.
28. A method of signaling, from a mobile radio communications device, a non-access stratum message to a mobile radio communications network device, for establishing and/or maintaining network connection, the method including the step of providing within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to the non-access stratum message and to allow for signaling of the extended messaging.
29. A method as claimed in Claim 28, wherein the non-access stratum message comprises part of a location updating procedure.
30. A method as claimed in Claim 28 or 29, wherein the non-access stratum message comprises an octet structure.
31. A method as claimed in Claim 28, 29 or 30, wherein the octet structure has limited length.
32. A method as claimed in Claim 28, 29, 30 or 31 , wherein the flag comprises a bit located in one of the octets.
33. A method as claimed in any one or more of Claims 28 - 32, and comprising a LOCATION UPDATE REQUEST.
34. A method of receiving, at a mobile radio communications network device, a non-access stratum message from a mobile radio communications device, for establishing and/or maintaining connection with the network, the method including the step of identifying within the message a flag indicating the availability of extended NAS messaging found within an additional message separate to the non-access stratum message, and further awaiting receipt of the additional message for receipt of the extended messaging.
35. A method as claimed in Claim 34, wherein the non-access stratum message comprises part of a location updating procedure.
36. A method as claimed in Claim 34 or 35, wherein the non-access stratum message comprises an octet structure.
37. A method as claimed in Claim 36, wherein the octet structure has limited length.
38. A method as claimed in Claim 34, 35 or 36, wherein the flag comprises A bit in one of octets.
39. A method as claimed in any one or more of Claims 34 to 38, wherein the non- access stratum Message comprises a LOCATION UPDATE REQUEST.
40. A method as claimed in any one or more of Claims 34 to 39, and including the step of sending a prompt from the mobile radio communications network device for the additional message.
41. A method as claimed in Claim 40, and including the step of responding at the network communications device to the prompt by sending the additional message.
42. A method as claimed in any one or more of Claims 34 to 41 and wherein the mobile radio communications network device comprises a mobile switching centre.
PCT/JP2011/079113 2011-01-14 2011-12-09 Mobile radio communications signaling WO2012096098A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/977,767 US9094936B2 (en) 2011-01-14 2011-12-09 Mobile radio communications signaling
JP2013523393A JP5867506B2 (en) 2011-01-14 2011-12-09 Mobile wireless communication device, mobile wireless communication network device and method.
CN201180064546.8A CN103299676B (en) 2011-01-14 2011-12-09 Mobile radio signaling
EP11855272.8A EP2664179B1 (en) 2011-01-14 2011-12-09 Methods and apparatuses for mobile radio communications non-access stratum (nas) signaling
US14/747,759 US9549431B2 (en) 2011-01-14 2015-06-23 Mobile radio communications signaling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1100612.9A GB201100612D0 (en) 2011-01-14 2011-01-14 Mobile radio communictions signalling
GB1100612.9 2011-01-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/977,767 A-371-Of-International US9094936B2 (en) 2011-01-14 2011-12-09 Mobile radio communications signaling
US14/747,759 Continuation US9549431B2 (en) 2011-01-14 2015-06-23 Mobile radio communications signaling

Publications (1)

Publication Number Publication Date
WO2012096098A1 true WO2012096098A1 (en) 2012-07-19

Family

ID=43736432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079113 WO2012096098A1 (en) 2011-01-14 2011-12-09 Mobile radio communications signaling

Country Status (6)

Country Link
US (2) US9094936B2 (en)
EP (1) EP2664179B1 (en)
JP (1) JP5867506B2 (en)
CN (1) CN103299676B (en)
GB (1) GB201100612D0 (en)
WO (1) WO2012096098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2563071B1 (en) * 2011-08-22 2023-02-15 BlackBerry Limited Methods, apparatuses and computer program products for use in communicating supplemental non access stratum (NAS) information

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151272A1 (en) * 2015-03-20 2016-09-29 Kabushiki Kaisha Toshiba Managing traffic load in a distributed antenna system
WO2018130889A1 (en) * 2017-01-16 2018-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Tracking area update in rrc_inactive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022764A1 (en) * 1999-09-24 2001-03-29 Nokia Corporation Handover between wireless telecommunication networks/systems
WO2007109695A1 (en) * 2006-03-20 2007-09-27 Qualcomm Incorporated Extended capability transfer between a user equipment and a wireless network

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986937B2 (en) * 2001-12-20 2011-07-26 Microsoft Corporation Public access point
US7236784B2 (en) * 2004-03-23 2007-06-26 Telefonaktiebolaget Lm Ericsson (Publ) Method of and system for selecting a PLMN for network sharing
US20100099439A1 (en) * 2008-03-17 2010-04-22 Interdigital Patent Holdings, Inc. Method and apparatus for realization of a public warning system
CA2721275C (en) * 2008-04-14 2014-05-20 Research In Motion Limited Apparatus, and associated method, for facilitating radio control system operation with an ics-capable wireless device
CN101616493B (en) * 2008-06-27 2011-12-07 华为技术有限公司 Data transmission method, network system and corresponding device
US20120033565A1 (en) 2008-08-15 2012-02-09 Samsung Electronics Co., Ltd. Non-access stratum protocol operation supporting method in a mobile telecommunication system, and the system thereof
US7998846B2 (en) 2008-09-12 2011-08-16 Spansion Llc 3-D integrated circuit system and method
US8032164B2 (en) 2008-09-22 2011-10-04 Interdigital Patent Holdings, Inc. Method and apparatus for communicating short message service and supplementary services messages
WO2010078255A1 (en) * 2008-12-29 2010-07-08 Interdigital Patent Holdings, Inc. Method and apparatus for tracking area update procedure and eps bearer contexts representation
EP2387862B1 (en) * 2009-01-15 2019-03-13 BlackBerry Limited System and method for determining establishment causes
CA2764455A1 (en) 2009-06-03 2010-12-09 Research In Motion Limited Voice service in evolved packet system
WO2010141787A1 (en) 2009-06-03 2010-12-09 Research In Motion Ltd Voice service in evolved packet system
ES2736773T3 (en) 2009-06-03 2020-01-07 3G Licensing Sa Voice service in an evolved package system
WO2011083151A1 (en) * 2010-01-08 2011-07-14 Research In Motion Limited Emergency radio connection setup

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022764A1 (en) * 1999-09-24 2001-03-29 Nokia Corporation Handover between wireless telecommunication networks/systems
WO2007109695A1 (en) * 2006-03-20 2007-09-27 Qualcomm Incorporated Extended capability transfer between a user equipment and a wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2664179A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2563071B1 (en) * 2011-08-22 2023-02-15 BlackBerry Limited Methods, apparatuses and computer program products for use in communicating supplemental non access stratum (NAS) information

Also Published As

Publication number Publication date
EP2664179A4 (en) 2017-07-19
JP5867506B2 (en) 2016-02-24
JP2014502795A (en) 2014-02-03
CN103299676B (en) 2017-06-09
EP2664179A1 (en) 2013-11-20
US20150289313A1 (en) 2015-10-08
EP2664179B1 (en) 2021-07-28
US9094936B2 (en) 2015-07-28
US9549431B2 (en) 2017-01-17
CN103299676A (en) 2013-09-11
US20130288726A1 (en) 2013-10-31
GB201100612D0 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US9715379B2 (en) Methods and apparatus to trigger firmware update request in response to a failure event
EP2519040A1 (en) Methods and apparatuses for transmission of PDP context activation rejection cause codes to the UICC
JP6367975B2 (en) Method for updating RPLMN information and user equipment
EP2885930A1 (en) Methods, systems and devices for dynamic hplmn configuration
KR101196545B1 (en) Apparatuses and methods for handling timers for routing areara update procedures or attachment procedures without integrity protection
JP2019520748A (en) Wireless communication method and device
CN110301130A (en) Initial internet protocol multi-media sub-system registration improves
WO2012136160A2 (en) Method, user equipment and wireless router device for wifi communications
EP2704456A1 (en) Method of Handling Non-Access Stratum Message and Related Communication Device
WO2012071835A1 (en) Method for managing wireless services of single-chip dual-card code division multiple access terminal, and cdma terminal thereof
US20200275511A1 (en) Connection recovery method for recovering a connection between a communications apparatus and a data network and the associated communications apparatus
US9549431B2 (en) Mobile radio communications signaling
KR101673833B1 (en) Double-mode and double-standby mobile terminal and communication method thereof
WO2013026873A1 (en) Methods and apparatus for use in communicating supplemental non access stratum (nas) information
TW201112826A (en) Method of handling paging
US10334553B2 (en) Wireless communications network registration method and terminal
CN107211274B (en) Equipment association method and related equipment
CN105813175A (en) Terminal and terminal residing method
JP2012080543A (en) Method of handling network initiated detach procedure
CN102348173A (en) Method of handling emergency session and related communication device
CN107682310B (en) Packet domain voice service registration method, device, storage medium and mobile terminal
RU2735386C1 (en) Communication method, a terminal device and a network access device
CN112438058B (en) System message updating method, device and storage medium
KR101485801B1 (en) Method and system for supporting authentication and security protected non-access stratum protocol in mobile telecommunication system
CN101610207B (en) Method, network, equipment and system for acquiring and sending user identification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523393

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011855272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13977767

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE