WO2012095981A2 - 放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置 - Google Patents

放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置 Download PDF

Info

Publication number
WO2012095981A2
WO2012095981A2 PCT/JP2011/050475 JP2011050475W WO2012095981A2 WO 2012095981 A2 WO2012095981 A2 WO 2012095981A2 JP 2011050475 W JP2011050475 W JP 2011050475W WO 2012095981 A2 WO2012095981 A2 WO 2012095981A2
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
response function
scintillator
radiation detector
detection position
Prior art date
Application number
PCT/JP2011/050475
Other languages
English (en)
French (fr)
Inventor
文彦 錦戸
山谷 泰賀
幹生 菅
Original Assignee
独立行政法人放射線医学総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人放射線医学総合研究所 filed Critical 独立行政法人放射線医学総合研究所
Priority to PCT/JP2011/050475 priority Critical patent/WO2012095981A2/ja
Priority to JP2012552581A priority patent/JPWO2012095981A1/ja
Publication of WO2012095981A2 publication Critical patent/WO2012095981A2/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1647Processing of scintigraphic data

Definitions

  • the present invention relates to a radiation detection position discrimination response function creation method, apparatus, and radiation position discrimination method and apparatus for a radiation detector, in particular, a PET detector, a SPECT detector, a gamma camera used in the field of nuclear medicine imaging,
  • the present invention relates to a radiation detection position discrimination response function creating method and apparatus suitable for application to a radiation detector used in the field of radiation measurement, and a radiation position discrimination method and apparatus using the same.
  • Non-Patent Document 1 As a radiation detector used in a positron emission tomography apparatus (PET apparatus), a depth-of-interaction (DOI) detector capable of detecting a position in the depth direction where radiation is incident has been developed (see Non-Patent Document 1).
  • DOI depth-of-interaction
  • Anger method a method of calculating the position of an event (event) by calculating the center of gravity
  • the intensity distribution of the signal changes if the position where the gamma rays interact with each other is different.
  • a method has also been proposed in which an output distribution (referred to as a response function) at each interaction position is measured in advance by using this, and an interaction position is obtained using a maximum likelihood estimation method (Non-Patent Document 2). reference).
  • the position discrimination method based on the maximum likelihood estimation method aims to pursue higher position discrimination performance than the Anger method.
  • a specific position discrimination method based on the maximum likelihood estimation method includes the following three steps as shown in FIG.
  • one-dimensional position discrimination is used.
  • the average light receiving element output fi (x) (response function) of the light receiving element i corresponding to the interaction position x between the scintillator 10 and the gamma ray is measured (step 100).
  • x) is calculated using the response function fi (x) of the light receiving element i and the actual light receiving element output zi (step 110).
  • N is the number of light receiving elements.
  • FIG. 3B shows an example of the average light receiving element output fi (x) in the case where the detection is performed
  • FIG. 3C shows a state where the coordinate X having the maximum value in the example of the likelihood function p (z
  • the maximum likelihood estimation method has been used in a detector using a large single scintillator as illustrated in FIG. Therefore, in order to create a response function, as shown in FIG. 4, the collimator 20 is used to limit a portion incident on the scintillator 10, and a spot of gamma rays is irradiated to one point of the scintillator 10 to receive light at each position.
  • a method has been employed in which the distribution of element outputs is created, the irradiation positions are moved by the number of necessary positions, and the response function is created at each position.
  • This method using spot irradiation has two problems. First, when gamma rays are made incident on the scintillator 10 through the collimator 20, many gamma rays are stopped by the collimator 20, and the amount of gamma rays incident on the scintillator 10 becomes very small. It takes a long time. Second, since gamma rays interact with each other at random, when a scintillator 10 long in the depth direction (gamma ray irradiation direction) as shown in FIG. 5 is used, the gamma rays interact at an arbitrary depth. The result of adding the response functions at each depth position is the light receiving element output, and the response function cannot be obtained correctly.
  • Non-Patent Document 3 A next-generation DOI detector called “Crystal Cube Detector” that is distributed is proposed (see Non-Patent Document 3).
  • 14 is a gap.
  • the present invention was made to solve the above-mentioned conventional problems, and without using a collimator, even with a detector that is long in the depth direction, a highly accurate response function can be obtained, Furthermore, it is an object to enable readjustment on site.
  • the present invention has been made on the basis of the above findings, and is a scintillator including an optical discontinuity point and a radiation detector composed of a light receiving element, in the scintillator using a response function of the light receiving element output.
  • an estimated light emission position in each scintillator defined by the optical discontinuity point is obtained from a measurement result when the radiation detector is uniformly irradiated with radiation, and the radiation at the estimated light emission position in the scintillator is obtained. Solves the above problem by extracting a plurality of events that have interacted with each other, and adding and averaging the light receiving element outputs with respect to events in which the radiation interacts at the same light emission position in the scintillator. It is a thing.
  • the light emission position calculation method in the scintillator can be a maximum likelihood estimation method in which a likelihood function is created using a response function of the light receiving element output and the light emission position in the scintillator is calculated.
  • the scintillator is a laminated scintillator block configured by laminating a large number of crystals, or an optical discontinuous scintillator block in which a single scintillator block is partitioned by providing an optical discontinuous surface by laser processing. It can be.
  • the size of the section surrounded by the crystal or the optical discontinuous surface can be made smaller than the resolution of the light receiving element.
  • a position histogram can be created by a centroid calculation method, and a region of interest can be set for a spot on the position histogram.
  • the position histogram can be a three-dimensional or two-dimensional position histogram.
  • the radiation detector may be configured such that light receiving elements are distributed on a plurality of surfaces of a scintillator block formed in a polyhedron.
  • the Anger method can be used as the center of gravity calculation method.
  • the area on the histogram obtained by the centroid calculation can be limited.
  • the present invention also provides a radiation detector comprising a scintillator having a built-in optical discontinuity and a light receiving element, and a radiation detector based on a light emitting position calculation method in the scintillator using a response function of the light receiving element output.
  • a radiation detector comprising a scintillator having a built-in optical discontinuity and a light receiving element, and a radiation detector based on a light emitting position calculation method in the scintillator using a response function of the light receiving element output.
  • the response function generator for radiation detection position discrimination of Means for extracting an event interacting with radiation in each scintillator region from a measurement result when the radiation detector is uniformly irradiated with radiation; Means for averaging the light receiving element outputs for events interacting with radiation in the same scintillator region, and creating the response function;
  • the radiation detection position discriminating response function creating apparatus for the radiation detector is provided.
  • the present invention also creates a response function using the above-described radiation detection position discrimination response function creation method,
  • the present invention provides a radiation detection position discrimination method of a radiation detector, wherein a likelihood function is created using the response function and a light emission position in the scintillator is calculated.
  • a radiation detection position discriminating device for a radiation detector comprising:
  • the present invention it is not necessary to move the collimator and the gamma ray source with high accuracy, and the response function measurement time can be shortened.
  • a response function can be easily created even with a detector having a length in the depth direction, such as a DOI detector and a crystal cube detector, which have been difficult until now. Furthermore, not only at the time of factory shipment but also on-site readjustment is possible.
  • Sectional view showing the difference in light receiving element signal distribution due to the difference in interaction position in a radiation detector using a single scintillator Flow chart showing processing procedure for position discrimination by maximum likelihood estimation
  • conceptual diagram showing a conventional method for creating a response function by scanning a collimated gamma ray beam
  • Sectional view showing the case where collimated gamma rays are incident on a detector having a length in the depth direction
  • the perspective view which shows the example of the crystal cube detector which is an example of a three-dimensional radiation detector
  • Flow chart showing the processing procedure of the method of the present invention Conceptual diagram schematically showing the concept of the present invention in two dimensions
  • the figure which shows the result of having evaluated the difference of an ideal response function and the response function created using the method of this invention using simulation about the detector using a 3.0 mm crystal
  • step 200 uniform irradiation of a gamma ray radiation detector is performed (step 200).
  • a position histogram as shown in FIG. 8B (the figure shows a histogram in a predetermined section) is created (step 210).
  • the spots in the position histogram represent a collection of events that have interacted with each crystal
  • a region of interest is set for each spot, and events that have caused an interaction with each crystal as shown in FIG. 8C. Is extracted (step 220).
  • the average of the light receiving element outputs is calculated for each light receiving element, and the response function of the crystal is obtained (step 230).
  • FIGS. 9A and 9B show the three-dimensional state corresponding to FIGS. 8A and 8B.
  • FIG. 9C shows the state of addition corresponding to step 230.
  • the effectiveness of the method of the present invention was verified by simulation.
  • the light receiving element output signal was created using a detector simulator (see Non-Patent Document 4) assuming a crystal cube detector.
  • the structure of the radiation detector assumed for verifying the method of the present invention is the same as that shown in FIG. Three types of scintillator blocks 10 on which the light receiving elements are arranged are assumed.
  • One is an LSO crystal of 3.0 ⁇ 3.0 ⁇ 3.0 mm 3 arranged in 6 ⁇ 6 ⁇ 6, and the second is an LSO crystal of 2.0 ⁇ 2.0 ⁇ 2.0 mm 3 in 9 X 9 x 9 array and 1.0 x 1.0 x 1.0 mm 3 LSO crystals arranged in 16 x 16 x 16
  • the light receiving elements 12 are arranged 4 ⁇ 4 on the surface of all six surfaces of each scintillator block 10, and reflective materials are arranged on the other surfaces.
  • An air layer 14 was assumed between crystals forming a set of optical discontinuities.
  • the difference between the ideal response function and the response function created using the method of the present invention was evaluated using simulation.
  • an ideal response function scintillation light was generated isotropically from the center of a single crystal, and the response function was derived from the distribution of the number of detected photons in each element.
  • the results when using a 3.0 mm crystal are shown in FIG.
  • a comparison of the output distribution of the light receiving element in each crystal of the third layer from the gamma ray incident surface is shown.
  • the upper part shows an ideal response function
  • the lower part shows a response function created by using the method of the present invention.
  • One map shows the output of 96 channels of all 6 surfaces, and the position of each surface is shown in the lower right figure. It can be seen from the figure that a response function similar to the ideal case can be obtained even when the method of the present invention is used at any position.
  • the crystal recognition accuracy rate was defined as the ratio of correctly identified gamma rays to the number of incident gamma rays in each crystal.
  • FIGS. (B) of each figure shows the crystal identification correct answer rate by two kinds of position discrimination methods, and (A) shows the crystal position noticed in (B).
  • Table 1 shows the average crystal identification correct answer rate for each method and each crystal size.
  • the correct answer rate decreased for both the maximum likelihood estimation method using the method of the present invention and the Anger method compared to 3 mm, but the correct answer rate of the method of the present invention tended to be higher overall. .
  • the average correct answer rate was also larger than the difference between the two methods, which was 6.1 points and 3 mm.
  • the difference between the maximum likelihood estimation method using the method of the present invention and the Anger method is wider than when the other two crystal sizes are used.
  • the difference in the average correct answer rate between the two methods was 10.9 points, which is the largest difference between the two methods.
  • the method of the present invention can be an effective method even in a structure in which light receiving elements are dispersedly arranged in a three-dimensionally assembled crystal block.
  • the present invention can be applied not only at the time of factory shipment but also at the time of readjustment on site.
  • the position histogram is divided into grids, and all regions on the position histogram are associated with crystal positions.
  • the modification illustrated in FIG. By limiting to the vicinity of the periphery, it is possible to improve the accuracy except for multiple scattering.
  • the method of creating the histogram by calculating the position from the ratio of the received light signals is not limited to the anger calculation method.
  • the method for specifying the interaction position is applicable not only when a plurality of histograms are created using not only a three-dimensional histogram but also a two-dimensional histogram or waveform discrimination.
  • the position calculation method using the response function is not limited to the maximum likelihood estimation method.
  • the object is not limited to the crystal cube detector, and a general DOI detector having a multi-stage crystal, a DOI detector in which a discontinuous surface is formed inside a single crystal, as illustrated in FIG.
  • the present invention can be similarly applied to a sandwich type detector in which a strip scintillator 60 and a light guide 66 are sandwiched between upper and lower light receiving elements 62 and 64, and a two-dimensional detector having one stage of crystals. Even in the case of a two-dimensional detector, it is not necessary to use a collimator according to the present invention, so that a response function can be obtained quickly.
  • the position of the reflective material is not limited to the crystal surface, and may be in the whole or part of the crystal.
  • the application target of the radiation detector is not limited to the PET apparatus, and can be applied to other nuclear medicine imaging apparatuses such as a SPECT apparatus and a gamma camera, and radiation measuring apparatuses in general.
  • the method of the present invention is superior to the Anger calculation in terms of crystal discrimination, it is expected that it will be used as the signal processing circuit advances. Since sensitivity is a very important factor in a PET apparatus, it is necessary to lengthen the detector in the depth direction. Since this method is simpler and more accurate than spot irradiation, it is considered that the present invention is surely used as a response function creation method.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Description

放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置
 本発明は、放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置に係り、特に、核医学イメージングの分野で用いるPET検出器、SPECT検出器、ガンマカメラや、放射線計測の分野で用いる放射線検出器に適用するのに好適な、放射線検出器の放射線検出位置弁別用応答関数作成方法、装置、及び、これを用いた放射線位置弁別方法、装置に関する。
 陽電子放出断層装置(PET装置)に用いられる放射線検出器として、放射線が入射した深さ方向の位置を検出可能なDepth of interaction(DOI)検出器が開発されている(非特許文献1参照)。このDOI検出器に放射線が入射して発光した位置を検出するため、一般的に、重心演算して事象(イベント)の位置を計算する方法(アンガー法と称する)が知られている(特許文献1-5参照)。
 図1(A)、(B)に示す通りにシンチレータ10と多数の受光素子(読出しチャネル)12からなる放射線検出器では、ガンマ線が相互作用を起こした位置が異なると信号の強度分布が変化する。それを利用して事前に各相互作用位置での出力分布(応答関数と称する)を測定しておき、最尤推定法を用いて相互作用位置を求める手法も提案されている(非特許文献2参照)。この最尤推定法による位置弁別手法は、アンガー法よりも高い位置弁別性能を追求することを目的としている。
 具体的な最尤推定法による位置弁別手法は、図2に示すように、以下の3つのステップから構成される。ここでは、説明を簡略化するため、1次元の位置弁別としている。
 (1)シンチレータ10とガンマ線との相互作用位置xに応じた受光素子iの平均受光素子出力fi(x)(応答関数)を計測する(ステップ100)。
 (2)受光素子iの応答関数fi(x)と実際の受光素子出力ziを用いて尤度関数p(z|x)を計算する(ステップ110)。
Figure JPOXMLDOC01-appb-M000001
 ここでi(=1・・・N)は受光素子番号、Nは受光素子数である。
 (3)尤度関数p(z|x)が最大値をとるxを探し、相互作用位置Xと推定する(ステップ120)。
 検出器構造を図3(A)に示す、受光素子12の数N(=4)、受光素子出力zi(i=1・・・4)のモノリシックシンチレータ(分割されていない一塊のシンチレータ)10とした場合の平均受光素子出力fi(x)の例を図3(B)、尤度関数p(z|x)の一例における最大値をとる座標Xを検出位置と推定する様子を図3(C)に示す。
 この最尤推定法を用いるには、事前にガンマ線の相互作用位置と各受光素子での信号出力分布(応答関数)を一対一に対応づけるためのテーブルを実験的に作成しておく必要がある。
 従来、最尤推定法は、図3に例示したような、大きな単一のシンチレータを用いた検出器で使用されてきた。そのため応答関数の作成には、図4に例示する如く、コリメータ20を使用することでシンチレータ10に入射する部分を制限して、シンチレータ10の1点にガンマ線をスポット照射し、各位置での受光素子出力の分布の作成を行い、必要な位置の数だけ照射位置を動かして、それぞれの位置での応答関数の作成を行う手法がとられてきた。
特開2005-43104号公報 米国特許第3,011,057号明細書 特開平7-325156号公報 特開2008-51701号公報 特表2008-523381号公報
Mutayama H, Ishimashi H, Omura T: Depth encoding multicrystal detectors for PET. IEEE Trans Nucl Sci 45: 1152-1157, 1998 T.D. Milster,et al,"DIGITAL POSITION ESTIMATION FOR THE MODULAR SCINTILLATION CAMERA",IEEE Transactions on Nuclear Science,Vol. NS-32,No. 1,February 1985. Yujiro Yazaki,et al, "Preliminary Study on a New DOI PET Detector with Limited Number of Photo-Detectors", The 5th KOREA-JAPAN Joint Meeting on Medical Physics, YI-R2-3, 2008. 横山貴弘、錦戸文彦、矢崎祐次郎、他:受光素子の3次元配置最適化に向けたDOI検出器シミュレータの開発.医学物理(Jpn J Med Phys)29: 179-180,2009
 このスポット照射を用いる手法は2つの問題点を有する。1つ目は、コリメータ20を通してシンチレータ10にガンマ線を入射させる際に、多くのガンマ線はコリメータ20で止められてしまい、シンチレータ10に入射するガンマ線が非常に少なくなる為に応答関数の作成に非常に長い時間がかかってしまうことである。2つ目は、ガンマ線は確率的に相互作用を起こす為に、図5の様な深さ方向(ガンマ線の照射方向)に長いシンチレータ10を用いた場合に任意の深さで相互作用をさせることが出来ず、各深さ位置での応答関数を足しあわせた結果が受光素子出力となり、正しく応答関数を取得することができないことである。また、相互作用位置の推定の精度は照射位置の精度に依存するため、コリメータやガンマ線源の位置や角度を高い精度で制御する大規模なシステムが必要となる。そのためPET装置を使用する病院等の現場において検出器の調整を行うことは現実的ではない。
 出願人らは、シンチレーション結晶ブロックの1面のみに受光素子を配置する従来のDOI検出器(非特許文献1参照)に加えて、図6に例示する如く、受光素子12を結晶ブロック10全面に分散して配置する、「クリスタルキューブ検出器」と称する次世代型のDOI検出器を提案している(非特許文献3参照)。図において、14は空隙である。
 このクリスタルキューブ検出器では、シンチレーション結晶ブロック内には反射材を挿入せず、シンチレーション光の信号を3次元的にとらえることにより、従来のDOI検出器では困難であった等方的な分解能向上を目指している。3次元的な検出器内相互作用位置の特定は、PET装置における高感度・高分解能の両立に大きく貢献する。
 現在までにシミュレーションにおいて図6の様な深さ方向にも多数の結晶を組上げているクリスタルキューブ検出器でも、理想的な応答関数を用いれば、アンガー計算よりも最尤推定法のほうが優れた結晶弁別能を得られるという計算機シミュレーション結果が得られている。しかしながら前述の通り、クリスタルキューブ検出器の様に深さ方向に長い分割結晶型の3次元放射線検出器を用いる際には、スポット照射を用いた応答関数作成法では、ガンマ線の深さ方向での相互作用位置を制御して任意の結晶のみに照射できないため、各結晶での応答関数を得ることができない。
 以上のように、最尤推定方法では、結晶ブロックの発光位置に応じた受光素子出力信号の応答関数を実測する必要があるが、3次元検出器であるDOI検出器やクリスタルキューブ検出器では、従来2次元検出器で行われるガンマ線スポット照射を適用できないという問題点を有していた。
 本発明は、前記従来の問題点を解決するべくなされたもので、コリメータを使用することなく、且つ、深さ方向に長い検出器であっても、高精度の応答関数を得ることが出来、更に、現場での再調整も可能とすることを課題とする。
 本発明は、上記知見に基いてなされたもので、光学的不連続点を内蔵するシンチレータと、受光素子から構成される放射線検出器で、前記受光素子出力の応答関数を用いた前記シンチレータ内の発光位置演算手法において、前記放射線検出器に放射線を一様照射した時の測定結果から、前記光学的不連続点により区画される各シンチレータ内推定発光位置を求め、該シンチレータ内推定発光位置において放射線が相互作用を起こした複数のイベントを抽出し、同じシンチレータ内発光位置で放射線が相互作用したイベントに対し前記受光素子出力を加算平均して、前記応答関数を作成することにより、前記課題を解決したものである。
 ここで、前記シンチレータ内発光位置演算手法を、前記受光素子出力の応答関数を用いて尤度関数を作成し、前記シンチレータ内の発光位置を演算する、最尤推定法とすることができる。
 又、前記シンチレータを、多数の結晶が積層されて構成された積層シンチレータブロック、あるいは、一つのシンチレータ塊にレーザー加工によりその内部が光学的不連続面を設けて区画された光学的不連続シンチレータブロックとすることができる。
 又、前記結晶あるいは光学的不連続面で囲まれた区画の大きさを、前記受光素子の分解能よりも小さくすることができる。
 又、各シンチレータ領域で放射線と相互作用したイベントを抽出する方法として、重心演算法により位置ヒストグラムを作成し、該位置ヒストグラム上のスポットに対し関心領域を設定することができる。
 又、放射線の入射面に対して垂直な方向にも放射線検出器位置弁別を可能とし、前記位置ヒストグラムを3次元又は2次元位置ヒストグラムとすることができる。
 又、前記放射線検出器を、多面体に形成されたシンチレータブロックの複数面に受光素子を分散して配置したものとすることができる。
 又、前記重心演算法として、アンガー法を用いることができる。
 又、前記重心演算によって得られたヒストグラム上の領域を限定することができる。
 本発明は、又、光学的不連続点を内蔵するシンチレータと、受光素子から構成される放射線検出器で、前記受光素子出力の応答関数を用いた前記シンチレータ内の発光位置演算手法による放射線検出器の放射線検出位置弁別用応答関数作成装置において、
 前記放射線検出器に放射線を一様照射した時の測定結果から、各シンチレータ領域で放射線と相互作用したイベントを抜き出す手段と、
 同じシンチレータ領域で放射線と相互作用したイベントに対し前記受光素子出力を加算平均して、前記応答関数を作成する手段と、
 を備えたことを特徴とする放射線検出器の放射線検出位置弁別用応答関数作成装置を提供するものである。
 本発明は、又、前記の放射線検出位置弁別用応答関数作成方法を用いて応答関数を作成し、
 該応答関数を用いて、尤度関数を作成し、前記シンチレータ内の発光位置を演算することを特徴とする放射線検出器の放射線検出位置弁別方法を提供するものである。
 又、前記の放射線検出位置弁別用応答関数作成方法を用いて作成された応答関数を記憶する手段と、
 該応答関数を用いて、尤度関数を作成し、前記シンチレータ内の発光位置を演算する手段と、
 を備えたことを特徴とする放射線検出器の放射線検出位置弁別装置を提供するものである。
 本発明を利用することで、コリメータとガンマ線源を精度良く動かす必要がなくなり、応答関数の測定時間を短縮することが可能になる。加えて、今まで困難であったDOI検出器やクリスタルキューブ検出器の様に深さ方向に長さを持つ検出器でも容易に応答関数が作成できるようになる。更に、工場出荷時だけでなく、現場での再調整も可能となる。
単一シンチレータを用いた放射線検出器での、相互作用位置の違いによる受光素子信号分布の違いを示す断面図 最尤推定法による位置弁別の処理手順を示す流れ図 同じく概念図 従来のコリメートしたガンマ線ビームをスキャンして応答関数を作成する手法を示す断面図 深さ方向に長さを持つ検出器にコリメートしたガンマ線を入射させた場合を示す断面図 3次元放射線検出器の一例であるクリスタルキューブ検出器の例を示す斜視図 本発明手法の処理手順を示す流れ図 本発明の概念を2次元で模式的に示す概念図 同じく3次元で模式的に示す概念図 3.0mmの結晶を用いた検出器について、理想的な応答関数と本発明法を用いて作成した応答関数の差をシミュレーションを用いて評価した結果を示す図 本発明の3×3×3mm3結晶を用いた検出器への適用結果を示す図 本発明の2×2×2mm3結晶を用いた検出器への適用結果を示す図 本発明の1×1×1mm3結晶を用いた検出器への適用結果を示す図 応答関数を求める領域の変形例を示す図 本発明の他の適用対象を示す断面図
 以下、図面を参照して本発明の実施形態を詳細に説明する。
 本実施形態では、図7に示す様な手順で応答関数を作成する。
 まず本発明の概念を2次元的に示す図8(A)に示す如く、ガンマ線の放射線検出器への一様照射を行う(ステップ200)。
 次いで、重み付け計算(例えばアンガー計算)を用いて、図8(B)に示すような位置ヒストグラム(図は所定断面におけるヒストグラムを示す)を作成する(ステップ210)。
 位置ヒストグラムのスポットは各結晶で相互作用が起きたイベントの集りを表しているため、各スポットで関心領域を設定し、図8(C)に示すように、各結晶で相互作用を起こしたイベントを抽出する(ステップ220)。このように位置ヒストグラム上で関心領域を取ることで、ある一つの結晶で相互作用を起こしたイベントを抽出できる。
 次いで、抽出されたある一つの結晶で相互作用を起こした全てのイベントを用いて、各受光素子ごとに受光素子出力の加算平均を算出し、その結晶の応答関数を求める(ステップ230)。
 図8(A)、(B)に対応する3次元の状態を図9(A)、(B)に示す。図9(C)は、ステップ230に対応する加算の様子を示したものである。
 本発明法の有効性をシミュレーションにより検証した。受光素子出力信号は、クリスタルキューブ検出器を想定した検出器シミュレータ(非特許文献4参照)を用いて作成した。本発明手法を検証するために想定した放射線検出器の構造は、図6と同様である。受光素子を配置するシンチレータブロック10は3種想定した。一つは3.0×3.0×3.0mm3のLSO結晶を6×6×6に配列したもの、二つ目は2.0×2.0×2.0mm3のLSO結晶を9×9×9に配列したもの、そして1.0×1.0×1.0mm3のLSO結晶を16×16×16に配列したものである。各シンチレータブロック10の全6面の表面には、受光素子12を4×4に配列し、それ以外の表面には反射材を配置した。光学的不連続点の集合を形成する結晶間は空気層14を想定した。
 はじめに理想的な応答関数と本発明法を用いて作成した応答関数の差をシミュレーションを用いて評価を行った。理想的な応答関数は、ある一つの結晶の中心から等方的にシンチレーション光を発生させ、各素子での検出光子数の分布から応答関数を導出した。3.0mmの結晶を用いた場合の結果を図10に示す。ガンマ線入射面から3層目の各結晶での受光素子の出力分布の比較を示す。上段に理想的な応答関数を下段に本発明法を用いて作成した応答関数を示した。1つのマップに全6面の96chの出力を示してあり、各面の位置は右下図に示してある。図からどの位置でも本発明法を用いた場合でも理想的な場合と同様の応答関数が得られることが分る。
 また、本発明法を用いて応答関数を作成した最尤推定法とアンガー法での結晶識別正答率を比較した。結晶識別正答率は各結晶における入射ガンマ線数に対する正しく判別されたガンマ線の割合と定義した。
 3種類のシンチレーション結晶サイズに対する結果を図11~13に示す。各図の(B)は2種類の位置弁別手法による結晶識別正答率を示し、(A)は(B)で注目した結晶位置を示している。また、表1に各手法、各結晶サイズにおける平均結晶識別正答率を示す。
Figure JPOXMLDOC01-appb-T000002
 結晶サイズが3mmの場合では両手法に大きな差はなく、平均正答率も本発明法を用いた最尤推定法がアンガー法より3.2ポイント高い結果となった。正答率が高い、または低い結晶は両手法ともほぼ同様となった。
 結晶サイズが2mmの場合では3mmに比べると、本発明法を用いた最尤推定法、アンガー法共に正答率は低下したが、全体的に本発明法の方が正答率は高い傾向となった。平均正答率も両手法の差が6.1ポイントと3mmの時よりも差は大きくなった。
 結晶サイズが1mmの場合では他の2種類の結晶サイズ時よりも本発明法を用いた最尤推定法、アンガー法との差は広がった。両手法の平均正答率の差は10.9ポイントと最も両手法の差が開いた。
 以上の結果より3次元に組み上げた結晶ブロックに受光素子を分散配置した構造においても本発明法は有効な手法となりうる。
 更に、校正用ソフトウェアに本発明手法を組込むことにより、工場出荷時だけでなく、現場での再調整時にも、本発明を適用できる。
 なお、前記説明では、位置ヒストグラムを桝目状に区切って、位置ヒストグラム上の全ての領域を結晶位置に対応付けていたが、図14に例示する変形例の如く、位置ヒストグラム上の領域を各点の周囲近傍に限定することにより、多重散乱を除いて精度を高めることも可能である。
 又、受光信号の比から位置演算してヒストグラムを作成する方法も、アンガー計算法に限定されない。
 又、相互作用位置を特定する方法も、3次元ヒストグラムだけでなく、2次元ヒストグラムや波形弁別等を用いて複数のヒストグラムを作成する場合にも適用可能である。
 又、応答関数を使う位置演算法も、最尤推定法に限定されない。
 更に、対象もクリスタルキューブ検出器に限定されず、結晶が多段の一般的なDOI検出器や、一つの結晶の内側に不連続面を形成したDOI検出器の他、図15に例示するような、上下の受光素子62、64の間に短冊形シンチレータ60とライトガイド66が挟まれたサンドイッチ型の検出器や、結晶が1段の2次元の検出器にも同様に適用可能である。2次元検出器の場合であっても、本発明によりコリメータを使用する必要が無くなるので、応答関数を迅速に求めることが可能になる。
 反射材の位置も結晶表面のみに限定されず、結晶間の全部又は一部に入っていても良い。
 放射線検出器の適用対象もPET装置に限定されず、SPECT装置、ガンマカメラ等、他の核医学イメージング装置や、放射線計測装置一般に適用できる。
 本発明法はアンガー計算より結晶弁別能の点では優れている為、信号処理回路が進歩すれば使われることになることが予想される。PET装置では感度は非常に重要な要素であるため、検出器は深さ方向に長くする必要がある。スポット照射と比べて簡易かつ高精度な手法であるため、応答関数作成法として本発明は確実に利用されると考えられる。
 10…シンチレータ
 12…受光素子

Claims (20)

  1.  光学的不連続点を内蔵するシンチレータと、受光素子から構成される放射線検出器で、前記受光素子出力の応答関数を用いた前記シンチレータ内の発光位置演算手法において、
     前記放射線検出器に放射線を一様照射した時の測定結果から、前記光学的不連続点により区画される各シンチレータ内推定発光位置を求め、該シンチレータ内推定発光位置において放射線が相互作用を起こした複数のイベントを抽出し、
     同じシンチレータ内発光位置で放射線が相互作用したイベントに対し前記受光素子出力を加算平均して、前記応答関数を作成することを特徴とする放射線検出器の放射線検出位置弁別用応答関数作成方法。
  2.  前記シンチレータ内発光位置演算手法が、前記受光素子出力の応答関数を用いて尤度関数を作成し、前記シンチレータ内の発光位置を演算する、最尤推定法であることを特徴とする請求項1に記載の放射線検出器の放射線検出位置弁別用応答関数作成方法。
  3.  前記シンチレータが、多数の結晶が積層されて構成された積層シンチレータブロック、あるいは、一つのシンチレータ塊にレーザー加工によりその内部が光学的不連続面を設けて区画された光学的不連続シンチレータブロックであることを特徴とする請求項1又は2に記載の放射線検出器の放射線検出位置弁別用応答関数作成方法。
  4.  前記結晶あるいは光学的不連続面で囲まれた区画の大きさが、前記受光素子の分解能よりも小さいことを特徴とする請求項3に記載の放射線検出器の放射線検出位置弁別用応答関数作成方法。
  5.  各シンチレータ領域で放射線と相互作用したイベントを抽出する方法として、重心演算法により位置ヒストグラムを作成し、該位置ヒストグラム上のスポットに対し関心領域を設定することを特徴とする請求項1乃至4のいずれかに記載の放射線検出器の放射線検出位置弁別用応答関数作成方法。
  6.  放射線の入射面に対して垂直な方向にも放射線検出器位置弁別が可能であり、前記位置ヒストグラムが3次元又は2次元位置ヒストグラムであることを特徴とする請求項5に記載の放射線検出器の放射線検出位置弁別用応答関数作成方法。
  7.  前記放射線検出器が、多面体に形成されたシンチレータブロックの複数面に受光素子を分散して配置したものであることを特徴とする請求項3に記載の放射線検出器の放射線検出位置弁別用応答関数作成方法。
  8.  前記重心演算法として、アンガー法を用いることを特徴とする請求項5に記載の放射線検出器の放射線検出位置弁別用応答関数作成方法。
  9.  前記重心演算によって得られたヒストグラム上の領域を限定することを特徴とする請求項5又は8に記載の放射線検出器の放射線検出位置弁別用応答関数作成方法。
  10.  光学的不連続点を内蔵するシンチレータと、受光素子から構成される放射線検出器で、前記受光素子出力の応答関数を用いた前記シンチレータ内の発光位置演算手法による放射線検出器の放射線検出位置弁別用応答関数作成装置において、
     前記放射線検出器に放射線を一様照射した時の測定結果から、各シンチレータ領域で放射線と相互作用したイベントを抜き出す手段と、
     同じシンチレータ領域で放射線と相互作用したイベントに対し前記受光素子出力を加算平均して、前記応答関数を作成する手段と、
     を備えたことを特徴とする放射線検出器の放射線検出位置弁別用応答関数作成装置。
  11.  前記シンチレータ内発光位置演算が、前記受光素子出力の応答関数を用いて尤度関数を作成し、前記シンチレータ内の発光位置を演算する、最尤推定法により行われることを特徴とする請求項10に記載の放射線検出器の放射線検出位置弁別用応答関数作成装置。
  12.  前記シンチレータが、多数の結晶が積層されて構成された積層シンチレータブロック、あるいは、一つのシンチレータ塊にレーザー加工によりその内部が光学的不連続面を設けて区画された光学的不連続シンチレータブロックであることを特徴とする請求項10又は11に記載の放射線検出器の放射線検出位置弁別用応答関数作成装置。
  13.  前記結晶あるいは光学的不連続面で囲まれた区画の大きさが、前記受光素子の分解能より小さいことを特徴とする請求項12に記載の放射線検出器の放射線検出位置弁別用応答関数作成装置。
  14.  各シンチレータ領域で放射線と相互作用したイベントを抽出する方法として、重心演算法により位置ヒストグラムを作成し、該位置ヒストグラム上のスポットに対し関心領域を設定することを特徴とする請求項10乃至13のいずれかに記載の放射線検出器の放射線検出位置弁別用応答関数作成装置。
  15.  放射線の入射面に対して垂直な方向にも放射線検出器位置弁別が可能であり、前記位置ヒストグラムが3次元又は2次元位置ヒストグラムであることを特徴とする請求項14に記載の放射線検出器の放射線検出位置弁別用応答関数作成装置。
  16.  前記放射線検出器が、多面体に形成されたシンチレータブロックの複数面に受光素子を分散して配置したものであることを特徴とする請求項12に記載の放射線検出器の放射線検出位置弁別用応答関数作成装置。
  17.  前記重心演算法として、アンガー法を用いることを特徴とする請求項14に記載の放射線検出器の放射線検出位置弁別用応答関数作成装置。
  18.  前記重心演算によって得られたヒストグラム上の領域を限定することを特徴とする請求項14又は17に記載の放射線検出器の放射線検出位置弁別用応答関数作成装置。
  19.  請求項1乃至9のいずれかに記載の放射線検出位置弁別用応答関数作成方法を用いて応答関数を作成し、
     該応答関数を用いて、尤度関数を作成し、前記シンチレータ内の発光位置を演算することを特徴とする放射線検出器の放射線検出位置弁別方法。
  20.  請求項1乃至9のいずれかに記載の放射線検出位置弁別用応答関数作成方法を用いて作成された応答関数を記憶する手段と、
     該応答関数を用いて、尤度関数を作成し、前記シンチレータ内の発光位置を演算する手段と、
     を備えたことを特徴とする放射線検出器の放射線検出位置弁別装置。
PCT/JP2011/050475 2011-01-13 2011-01-13 放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置 WO2012095981A2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/050475 WO2012095981A2 (ja) 2011-01-13 2011-01-13 放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置
JP2012552581A JPWO2012095981A1 (ja) 2011-01-13 2011-01-13 放射線検出器の放射線検出位置弁別用応答関数作成装置及び放射線検出位置弁別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050475 WO2012095981A2 (ja) 2011-01-13 2011-01-13 放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置

Publications (1)

Publication Number Publication Date
WO2012095981A2 true WO2012095981A2 (ja) 2012-07-19

Family

ID=46507524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050475 WO2012095981A2 (ja) 2011-01-13 2011-01-13 放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置

Country Status (2)

Country Link
JP (1) JPWO2012095981A1 (ja)
WO (1) WO2012095981A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527782A (ja) * 2015-03-17 2017-09-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 放射線粒子検出器におけるシンチレーションイベント位置決定

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011590B2 (ja) * 2007-08-28 2012-08-29 独立行政法人放射線医学総合研究所 放射線位置検出器
US9029789B2 (en) * 2008-04-09 2015-05-12 National Institute Of Radiological Sciences Method for detecting radiation, device thereof, and positron emission tomography scanner
JP4803565B2 (ja) * 2008-07-16 2011-10-26 独立行政法人放射線医学総合研究所 Doi型放射線検出器
WO2010041313A1 (ja) * 2008-10-08 2010-04-15 独立行政法人放射線医学総合研究所 Doi型放射線検出器
JP5225051B2 (ja) * 2008-12-11 2013-07-03 浜松ホトニクス株式会社 シンチレータ、放射線検出器、およびシンチレータの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527782A (ja) * 2015-03-17 2017-09-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 放射線粒子検出器におけるシンチレーションイベント位置決定
US9903960B1 (en) 2015-03-17 2018-02-27 Koninklijke Philips N.V. Scintillation event position determination in a radiation particle detector

Also Published As

Publication number Publication date
JPWO2012095981A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
RU2691126C2 (ru) Конструкция из сцинтилляторов рет-детектора со светоделением и оценочной глубиной взаимодействия
Muñoz et al. Performance evaluation of MACACO: a multilayer Compton camera
McCleskey et al. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy
Borghi et al. Sub-3 mm, near-200 ps TOF/DOI-PET imaging with monolithic scintillator detectors in a 70 cm diameter tomographic setup
Amaldi et al. Construction, test and operation of a proton range radiography system
US11294077B2 (en) Method and device for multi-dimensional direction measurement of gamma radiation in the far field
Habte et al. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography
JP6990412B2 (ja) ガンマ線画像取得装置およびガンマ線画像取得方法
Blanco et al. RPC-PET: a new very high resolution PET technology
KR20220151697A (ko) 감마선 검출 시스템 및 그 보정 방법
WO2009136174A2 (en) Positron emission detection and imaging
US20230288586A1 (en) Calibration Method and System for Photon or Particle Counting Detectors
US7482593B2 (en) Method to determine the depth-of-interaction function for PET detectors
JP2005208057A (ja) ガンマ線検出器及びガンマ線撮像装置
Bläckberg et al. Light spread manipulation in scintillators using laser induced optical barriers
Vaquero et al. Performance characteristics of a compact position-sensitive LSO detector module
JP2005043104A (ja) 放射線位置検出器の校正方法
Manfredi et al. The single-volume scatter camera
JP7109168B2 (ja) 放射線位置検出方法、放射線位置検出器及びpet装置
Goel et al. Spatial calibration via imaging techniques of a novel scanning system for the pulse shape characterisation of position sensitive HPGe detectors
Bettiol et al. A Depth-of-Interaction encoding method for SPECT monolithic scintillation detectors
WO2012095981A2 (ja) 放射線検出器の放射線検出位置弁別用応答関数作成方法、装置及び放射線位置弁別方法、装置
Ruch et al. Position sensitivity within a bar of stilbene coupled to silicon photomultipliers
US6740881B2 (en) Anisotropic transfer function for event location in an imaging device
CN109891268B (zh) 具有视差补偿的伽马辐射探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855334

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2012552581

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855334

Country of ref document: EP

Kind code of ref document: A2