WO2012093485A1 - Signal modulation circuit, signal modulation device and signal modulation method - Google Patents

Signal modulation circuit, signal modulation device and signal modulation method Download PDF

Info

Publication number
WO2012093485A1
WO2012093485A1 PCT/JP2011/050129 JP2011050129W WO2012093485A1 WO 2012093485 A1 WO2012093485 A1 WO 2012093485A1 JP 2011050129 W JP2011050129 W JP 2011050129W WO 2012093485 A1 WO2012093485 A1 WO 2012093485A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
output
time interval
difference
Prior art date
Application number
PCT/JP2011/050129
Other languages
French (fr)
Japanese (ja)
Inventor
歓 時
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012551777A priority Critical patent/JP5505520B2/en
Priority to PCT/JP2011/050129 priority patent/WO2012093485A1/en
Publication of WO2012093485A1 publication Critical patent/WO2012093485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3015Structural details of digital delta-sigma modulators
    • H03M7/302Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M7/3024Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M7/3028Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a single bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3015Structural details of digital delta-sigma modulators
    • H03M7/3031Structural details of digital delta-sigma modulators characterised by the order of the loop filter, e.g. having a first order loop filter in the feedforward path

Definitions

  • the present invention relates to a signal modulation circuit, a signal modulation device, and a signal modulation method.
  • a technique using a ⁇ digital modulator that modulates an analog signal into a digital signal is known.
  • a technique of a servo driver or a power amplifier that supplies power according to an analog signal input from the outside is known.
  • the ⁇ digital modulator used in such a technique samples an analog signal input from the outside at a predetermined frequency, and modulates the sampled analog signal into a PDM (Pulse Density Modulation) signal.
  • the ⁇ digital modulator transmits the modulated PDM signal to a power element circuit that supplies power to a servo motor or the like.
  • the power element circuit has an FET (Field Effect Transistor), operates the FET in accordance with the PDM signal transmitted from the ⁇ digital modulator, and supplies power to the servo motor and the like.
  • FIG. 15 is a block diagram for explaining the ⁇ digital modulator.
  • the ⁇ digital modulator samples the value of the input analog signal and calculates a difference value between the sampled analog signal value and a value fed back from a quantization circuit described later.
  • the ⁇ digital modulator has an integration circuit that calculates the sum of the difference value calculated by the difference circuit and the integration value held in its own device, and holds the calculated total as a new integration value.
  • the ⁇ digital modulator has a quantization circuit that outputs a pulse of the PDM signal when the integration value calculated by the integration circuit exceeds a predetermined threshold.
  • FIG. 16 is a diagram (1) for explaining an example of the operation of the ⁇ modulator.
  • FIG. 17 is a diagram (2) for explaining an example of the operation of the ⁇ modulator.
  • FIG. 18 is a diagram (3) for explaining an example of the operation of the ⁇ modulator.
  • the sampling frequency is 100 MHz and a value of “1024” or more is output from the integrating circuit, the quantizing circuit outputs a pulse.
  • the integration circuit outputs a value of “1024” at a cycle of 0.4 ⁇ 10 ⁇ 7 seconds.
  • the quantization circuit outputs a pulse having a wavelength of 0.1 ⁇ 10 ⁇ 7 seconds as a PDM signal at a cycle of 0.4 ⁇ 10 ⁇ 7 seconds.
  • the integration circuit outputs a value of “1024” with a period of once every 0.2 ⁇ 10 ⁇ 7 seconds.
  • the quantization circuit outputs a pulse having a wavelength of 0.1 ⁇ 10 ⁇ 7 seconds as a PDM signal at a cycle of once every 0.2 ⁇ 10 ⁇ 7 seconds.
  • the integration circuit outputs a value of “1024” or more three times in 0.4 ⁇ 10 ⁇ 7 seconds.
  • the quantization circuit outputs a pulse having a wavelength of 0.3 ⁇ 10 ⁇ 7 seconds as a PDM signal with a period of once every 0.4 ⁇ 10 ⁇ 7 seconds.
  • FIG. 19 is a diagram (1) for explaining an example of the output of the ⁇ digital modulator.
  • FIG. 20 is a diagram (2) for explaining an example of the output of the ⁇ digital modulator.
  • the ⁇ digital modulator has a sampling frequency of 100 kHz, an input resolution of 10 bits, and converts a 1 kHz analog signal indicated by a dotted line in FIG. 19 into a PDM signal.
  • the PDM signal indicated by the solid line is output.
  • the ⁇ digital modulator converts the 10 Hz analog signal shown by the dotted line in FIG. 9 into a PDM signal with a sampling frequency of 1000 Hz and an input resolution of 10 bits.
  • a PDM signal indicated by a solid line is output.
  • the ⁇ digital modulator outputs a high-frequency PDM signal in a range where the change in the input analog signal is large, and in a range where the change in the input analog signal is small.
  • a low frequency PDM signal is output.
  • the frequency Fcyc of the PDM signal output from the ⁇ digital modulator is expressed by the following equation (1) ).
  • the ⁇ digital modulator when the sampling frequency is 100 MHz, the input resolution is 10 bits, and the numerical value from 1 to 1023 is modulated, as shown in A in FIG. 21, when the input value is “512”. Output the highest frequency PDM signal.
  • FIG. 21 is a diagram for explaining an input value and an output frequency.
  • the FET that performs power switching since the FET that performs power switching has time characteristics, when the PDM signal having a frequency higher than a predetermined frequency is received, the FET cannot appropriately perform power switching. For this reason, a technique is known in which the frequency of the PDM signal output from the ⁇ digital modulator is lowered by lowering the frequency at which the analog signal is sampled.
  • FIG. 22 is a diagram for explaining an operable region of the power element circuit.
  • the frequency at which the pulse of the PDM signal is output is reduced regardless of the value of the input analog signal.
  • the ⁇ digital modulator has a problem that the range in which the power element circuit can perform an appropriate operation is narrowed when the minimum frequency is set for power switching performed by the power element circuit. .
  • the minimum frequency for switching power is determined in advance as shown by D in FIG. 23 in order to maintain the responsiveness to the input analog signal.
  • the ⁇ digital modulator reduces the frequency of the PDM signal by half regardless of the value of the input analog signal when the sampling frequency is lowered by half. To lower. For this reason, the ⁇ digital modulator widens the range in which the PDM signal having a frequency lower than the lowest frequency is output. As a result, as shown by E in FIG. 23, the power element circuit can perform an appropriate operation. Will narrow.
  • FIG. 23 is a diagram for explaining the problem of the ⁇ digital modulator.
  • the technology disclosed in the present application widens the range in which the power element circuit can perform an appropriate operation.
  • the technology disclosed in the present application is a signal modulation circuit including an integration circuit that integrates and outputs a differential signal corresponding to an input value that is continuously input at a predetermined time interval.
  • the signal modulation circuit also includes a quantization circuit that outputs a quantized signal obtained by quantizing the output of the integration circuit.
  • the signal modulation circuit when the quantized signal is output by the quantizing circuit, after a predetermined time interval has passed since the quantized signal was output, the difference corresponding to the quantized signal and the input value It has a difference circuit that calculates a signal and inputs the calculated difference signal to the integration circuit.
  • the signal modulation circuit also includes a determination circuit that monitors the input value and determines whether or not the input value falls within a predetermined range.
  • the integration circuit included in the signal modulation circuit integrates the differential signal after a predetermined time interval elapses when the determination circuit determines that the input value falls within the predetermined range. And output. Further, the difference circuit included in the signal modulation circuit calculates the difference signal according to the quantized signal and the input value when the determination circuit determines that the input value is included in the predetermined range. The difference signal is input to the integration circuit after a time interval obtained by extending a predetermined time interval elapses.
  • FIG. 1 is a diagram for explaining the signal modulation circuit according to the first embodiment.
  • FIG. 2 is a diagram for explaining a range in which the frequency of the output PDM signal does not exceed a predetermined frequency.
  • FIG. 3 is a diagram for explaining a circuit that executes the same processing as in the prior art.
  • FIG. 4 is a diagram for explaining a range in which the frequency of the output PDM signal is lowered.
  • FIG. 5 is a diagram for explaining a circuit that executes processing for reducing the frequency of the PDM signal.
  • FIG. 6 is a diagram for comparing the integral value calculated by the conventional ⁇ digital modulator with the integral value calculated by the signal modulation circuit according to the first embodiment.
  • FIG. 7 is a diagram for explaining a PDM signal output from a conventional ⁇ digital modulator.
  • FIG. 8 is a diagram for explaining the PDM signal output from the signal modulation circuit according to the first embodiment.
  • FIG. 9 is a diagram illustrating the frequency of the PDM signal output from the signal modulation circuit according to the first embodiment.
  • FIG. 10 is a diagram for comparing the frequency of the PDM signal output from the signal modulation circuit according to the first embodiment and the frequency of the PDM signal output from the conventional ⁇ digital modulator.
  • FIG. 11 is a diagram for comparing the integrated value of the PDM signal output from the signal modulation circuit according to the first embodiment and the integrated value of the PDM signal output from the conventional ⁇ digital modulator.
  • FIG. 12 is a diagram for explaining an integral value of the output PDM signal.
  • FIG. 13 is a diagram for explaining the ⁇ digital modulation circuit having the signal modulation circuit according to the first embodiment.
  • FIG. 14 is a flowchart for explaining the flow of processing executed by the signal modulation circuit.
  • FIG. 15 is a block diagram for explaining the ⁇ digital modulator.
  • FIG. 16 is a diagram (1) for explaining an example of the operation of the ⁇ modulator.
  • FIG. 17 is a diagram (2) for explaining an example of the operation of the ⁇ modulator.
  • FIG. 18 is a diagram (3) for explaining an example of the operation of the ⁇ modulator.
  • FIG. 19 is a diagram (1) for explaining an example of the output of the ⁇ digital modulator.
  • FIG. 20 is a diagram (2) for explaining an example of the output of the ⁇ digital modulator.
  • FIG. 21 is a diagram for explaining an input value and an output frequency.
  • FIG. 22 is a diagram for explaining an operable region of the power element circuit.
  • FIG. 23 is a diagram for explaining the problem of the ⁇ digital modulator
  • FIG. 1 is a diagram for explaining the signal modulation circuit according to the first embodiment.
  • the signal modulation circuit 10 includes a difference circuit 11, an integration circuit 15, an XOR (exclusive or / exclusive disjunction) circuit 20, a counter 21, a quantization circuit 23, and a delay circuit 24.
  • the signal modulation circuit 10 is connected to a Din 22 that is a memory that holds an input value obtained by sampling an analog signal.
  • the difference circuit 11 includes a first differentiator 12, a second differencer 13, and a switch 14.
  • the integration circuit 15 includes an adder 16, a first flip-flop 17, a second flip-flop 18, and a switch 19.
  • the signal modulation circuit 10 modulates an input analog signal into a PDM (Pulse Density Modulation) signal with an input resolution of 10 bits and a sampling frequency of 100 MHz.
  • PDM Pulse Density Modulation
  • each of the units 11 to 21 included in the signal modulation circuit 10 operates according to the synchronization signal Fs having the same frequency as the sampling frequency. That is, it is assumed that the timings of the processes executed by the units 11 to 24 included in the signal modulation circuit 10 are synchronized. Further, it is assumed that the FET (Field Effect Transistor) of the power element circuit installed at the subsequent stage of the quantization circuit 23 can appropriately operate at a frequency of 25 MHz or less.
  • FET Field Effect Transistor
  • the difference circuit 11 converts the PDM signal and the value held in the Din 22 after a time corresponding to one synchronization signal has elapsed since the output of the PDM signal. The corresponding difference value is calculated. Then, the difference circuit 11 inputs the calculated difference value to the integration circuit 15. In addition, when the difference circuit 11 determines that the value held in the Din 22 by the XOR 20 is included in the predetermined range, the difference circuit 11 calculates the difference after a time interval longer than one synchronization signal has elapsed. The value is input to the integrating circuit 15.
  • the integration circuit 15 calculates an integration value obtained by integrating the difference value input by the difference circuit 11 at a time interval corresponding to one synchronization signal, and outputs the calculated integration value. Further, when the integration circuit 15 determines that the value held in the Din 22 by the XOR 20 is included within a predetermined range, the integration circuit 15 integrates and outputs the difference value at a time interval longer than one synchronization signal. .
  • the XOR 20 monitors the value held in the Din 22, and determines whether or not the value held in the Din 22 is included in a predetermined range.
  • the counter 21 outputs a counter signal at a time interval longer than the synchronization signal.
  • the quantization circuit 23 outputs a PDM signal obtained by quantizing the output of the integration circuit 15.
  • the delay circuit 24 delays the feedback signal output from the quantization circuit 23 by one synchronization signal and inputs the delayed signal to the difference circuit 11.
  • the first differentiator 12 responds to the PDM signal and the value held in the Din 22 after a predetermined time interval has elapsed since the output of the PDM signal.
  • the difference signal obtained is calculated.
  • the first differentiator 12 outputs the calculated difference signal after a predetermined time interval has elapsed.
  • the first differentiator 12 calculates a value obtained by subtracting a value indicated by a feedback signal acquired from the delay circuit 24 described later from the value held in the Din 22. Then, the first differentiator 12 transmits the calculated value to the switch 14.
  • the delay circuit 24 delays the feedback signal by one synchronization signal. That is, the first differentiator 12 calculates the difference signal according to the feedback signal corresponding to the PDM signal and the value held in the Din 22 after the time corresponding to one synchronization signal has elapsed since the output of the PDM signal. To do.
  • the second differentiator 13 When the PDM signal is output by the quantization circuit 23, the second differentiator 13 responds to the PDM signal and the value held in the Din 22 after a predetermined time interval has elapsed since the output of the PDM signal. The difference signal obtained is calculated.
  • the second subtractor 13 outputs the calculated difference signal after a time interval longer than one synchronization signal has elapsed. That is, the second differentiator 13 operates at a frequency slower than that of the first differentiator 12, and a value held in Din 22 that is a value obtained by sampling an analog signal and feedback received from a delay circuit 24 described later. The difference from the value indicated by the signal is calculated.
  • the second differentiator 13 when the second differentiator 13 does not receive the counter signal from the counter 21 described later, the value indicated by the feedback signal acquired from the delay circuit 20 described later from the value held in the Din 22. The value obtained by subtracting is calculated. Then, the second differentiator 13 transmits the calculated value to the switch 14. The second subtractor 13 holds the calculated value in its own device. Further, when the second subtractor 13 receives a counter signal from the counter 21 described later, the second subtractor 13 calculates the value immediately before and transmits the held value to the switch 14. That is, the second subtractor 13 is a subtractor that outputs the calculated difference signal after receiving the next output signal when the counter signal output by the counter 21 is received.
  • the second difference 13 is half of the first difference 12. It is a differentiator that operates at a frequency.
  • the switch 14 determines that the value held in Din 22 by the XOR 20 described later is not included in the predetermined range, the switch 14 adds the difference signal output by the first differentiator 12 to the adder 16 of the integration circuit 15. To enter. Further, when the switch 14 determines that the value held in the Din 22 by the XOR 20 is included within a predetermined range, the switch 14 converts the difference signal output by the second differentiator 13 into the adder 16 of the integrating circuit 15. To enter.
  • the switch 14 receives the value calculated by the first subtractor 12 and the value calculated by the second subtractor 13.
  • the switch 14 receives a signal for selecting the first subtractor 12 or a signal for selecting the second subtractor 13 from the XOR circuit 20 described later.
  • the switch 14 transmits the value received from the first subtractor 12 to the adder 16 of the integration circuit 15 described later.
  • the switch 14 receives a signal for selecting the second differentiator 13 from the XOR circuit 20
  • the switch 14 transmits the value received from the second differentiator 13 to the adder 16 of the integrating circuit 15 described later.
  • the difference circuit 11 is a difference circuit that operates at the same frequency as the difference circuit included in the conventional ⁇ digital modulator when outputting the value calculated by the first differencer 12. Further, the difference circuit 11 is a difference circuit that operates at a half frequency of the difference circuit included in the conventional ⁇ digital modulator when the value calculated by the second difference unit 13 is output.
  • the adder 16 calculates a value obtained by adding a value received from the switch 14 and a value received from the switch 19 described later at a predetermined time interval. Then, the adder 16 transmits the calculated value to the first flip-flop 17, the second flip-flop 18, and the quantization circuit 23. That is, the adder 16 calculates the integral value of the difference calculated by the difference circuit 11 and transmits the calculated integral value to the first flip-flop 17, the second flip-flop 18, and the quantization circuit 23.
  • the first flip-flop 17 When a new integration value is calculated by the adder 16, the first flip-flop 17 temporarily holds the calculated integration value, and after the predetermined time interval has elapsed, Output. Specifically, the first flip-flop 17 receives the value calculated by the adder 16 when receiving the synchronization signal. When receiving the synchronization signal again, the first flip-flop 17 transmits the received value to the switch 19 and acquires the value newly calculated by the adder 16. In other words, the first flip-flop 17 is a delay circuit that receives a signal indicating the value calculated by the adder 16, delays the received signal by one synchronization signal, and then feeds back the signal to the adder 16.
  • the second flip-flop 18 When a new integrated value is calculated by the adder 16, the second flip-flop 18 temporarily holds the calculated integrated value, a predetermined time interval has elapsed, and the predetermined time interval has been extended. After the time interval elapses, the held integral value is output. Specifically, the second flip-flop 18 acquires the value calculated by the adder 16. When the second flip-flop 18 does not receive the counter signal from the counter 21, the second flip-flop 18 transmits the value acquired from the adder 16 to the switch 19 and holds the transmitted value.
  • the second flip-flop 18 transmits the value held immediately before to the switch 19 and obtains the value newly calculated by the adder 16. That is, when the second flip-flop 18 receives the counter signal from the counter 21, the second flip-flop 18 outputs the held value and holds the value acquired from the adder 16 until the next output signal is received. Holding circuit.
  • the switch 19 transmits the integrated value output from the first flip-flop 17 to the adder 16. In addition, when the XOR 20 determines that the input value is included in the predetermined range, the switch 19 transmits the integrated value output by the second flip-flop 18 to the adder 16. Specifically, the value transmitted from the first flip-flop 17 is received. The switch 19 receives the value transmitted from the second flip-flop 18. The switch 19 receives a signal for selecting the first flip-flop 17 or a signal for selecting the second flip-flop 18 from the XOR circuit 20 described later.
  • the switch 19 When the switch 19 receives a signal for selecting the first flip-flop 17 from the XOR circuit 20, the switch 19 transmits the value received from the first flip-flop 17 to the adder 16. When the switch 19 receives a signal for selecting the second flip-flop 18 from the XOR circuit 20, the switch 19 transmits the value received from the second flip-flop 18 to the adder 16.
  • the integration circuit 15 is an integration circuit that operates at the same frequency as the integration circuit of the conventional ⁇ digital modulator when the integration value is calculated using the first flip-flop 17. Further, the integration circuit 15 is an integration circuit that operates at a half frequency of the integration circuit included in the conventional ⁇ digital modulator when the integration value is calculated using the second flip-flop 18.
  • the XOR circuit 20 monitors the value held in the Din 22 and determines whether or not the value held in the Din 22 is included in a predetermined range. Specifically, the XOR 20 compares the two most significant bits among the values held in the Din 22, and determines whether or not the two bits are the same value. If the XOR circuit 20 determines that the two most significant bits are both the same value, the XOR circuit 20 transmits a signal for selecting the first differentiator 12 to the switch 14. If the XOR circuit 20 determines that the two most significant bits have the same value, the XOR circuit 20 transmits a signal for selecting the first flip-flop 17 to the switch 19.
  • the XOR circuit 20 determines that the values of the two most significant bits are different, the XOR circuit 20 transmits a signal for selecting the second differentiator 13 to the switch 14. Further, when the XOR circuit 20 determines that the values of the two most significant bits are different, the XOR circuit 20 transmits a signal for selecting the second flip-flop 18 to the switch 19.
  • the value obtained by sampling the analog signal with “10” bits is within the range of “1 to 255” or “768 to 1023”. Indicates that The case where the most significant two bits of the values held in Din22 are different means that the value obtained by sampling the analog signal with “10” bits is within the range of “256 to 767”.
  • the signal modulation circuit 10 uses the first differentiator 12 and the first flip-flop 17 when the value obtained by sampling the analog signal is included in the range of “1 to 255” or “768 to 1023”. Perform analog signal modulation. Further, the signal modulation circuit 10 modulates the analog signal using the second differentiator 13 and the second flip-flop 18 when the sampled value of the analog signal is included in the range of “256 to 767”. Execute.
  • the conventional ⁇ digital modulation circuit has an analog signal sampled value in the range of “256 to 767” and is 25 MHz or more from Equation (1).
  • the PDM signal is transmitted.
  • the signal modulation circuit 10 uses the second differentiator 13 that operates at half the frequency of the first differencer 12, The difference circuit 11 is operated. Further, when the value obtained by sampling the analog signal is included in the range of “256 to 767”, the signal modulation circuit 10 uses the second flip-flop 18 that operates at half the frequency of the first flip-flop 17. The integrating circuit 15 is operated.
  • the signal modulation circuit 10 when the value obtained by sampling the analog signal is included in the range of “256 to 767”, the signal modulation circuit 10 outputs the PDM signal at half the frequency of the PDM signal output by the conventional ⁇ digital modulator. . Further, when the value obtained by sampling the analog signal is in the range of “1 to 255” or “768 to 1023”, the signal modulation circuit 10 has the same frequency as the PDM signal output from the conventional ⁇ digital modulator. PDM signal is output.
  • the signal modulation circuit 10 when the frequency of the PDM signal to be output exceeds the frequency range in which the FET can be appropriately operated, the signal modulation circuit 10 outputs the PDM signal while suppressing the frequency to one half. Further, the signal modulation circuit 10 outputs the PDM signal at the same frequency as the conventional ⁇ digital modulator when the frequency of the PDM signal to be output is included in the frequency range in which the FET can be appropriately operated.
  • the signal modulation circuit 10 maintains the responsiveness to the input analog signal even when controlling the servo system, and sets the frequency of the output PDM to a frequency at which the FET can appropriately operate. Can fit. For this reason, the signal modulation circuit 10 can widen the range in which the power element circuit can perform an appropriate operation.
  • the counter 21 outputs a signal to the second differentiator 13 and the second flip-flop 18 at a time interval longer than the synchronization signal. That is, the counter 21 outputs a counter signal to the second differentiator 13 and the second flip-flop 18 at a frequency lower than the sampling frequency. Specifically, the counter 21 acquires an arbitrary initial value “m” preset by the user. Further, the counter 21 sets the counter value to the initial value “m”, and counts down the counter value every time the synchronization signal Fs is received.
  • the counter 21 transmits a counter signal to the second differentiator 13 and the second flip-flop 18 and resets the counter value.
  • the quantizing circuit 23 outputs a pulse having a predetermined length as a PDM signal when the integrated value calculated by the integrating circuit 15 is larger than a predetermined value.
  • the quantization circuit 23 transmits a feedback signal to the delay circuit 24 when the integration value calculated by the integration circuit 15 is larger than a predetermined value.
  • the quantization circuit 23 acquires the integration value calculated by the integration circuit 15. When the acquired integral value is “1024” or more, the quantization circuit 23 outputs a pulse having a wavelength of 0.1 ⁇ 10 ⁇ 7 seconds and indicating the value “1”. Further, when the acquired integral value is “1024” or more, the quantization circuit 23 transmits a feedback signal indicating “1024” to the delay circuit 24. Further, when the acquired integral value is less than “1024”, the quantization circuit 23 does not transmit a feedback signal to the delay circuit 24.
  • the delay circuit 24 is a delay circuit that, when receiving a feedback signal from the quantization circuit 23, delays the received feedback signal by one synchronization signal and transmits it to the difference circuit 11.
  • FIG. 2 is a diagram for explaining a range in which the frequency of the PDM signal to be output does not exceed a predetermined frequency.
  • FIG. 3 is a diagram for explaining a circuit that executes the same processing as in the prior art.
  • the frequency of the output PDM signal is 25 MHz or less. Therefore, the same processing as the conventional ⁇ digital modulator is performed.
  • the signal modulation circuit 10 when the value of the input analog signal is included in the range of “1 to 255” and “768 to 1023”, the signal modulation circuit 10 includes the first subtractor as shown by the solid line in FIG. 12. The difference between the input analog signals is calculated using a circuit including the switch 14. Further, when the value of the analog signal is included in the range of “1 to 255” and “768 to 1023”, the signal modulation circuit 10 adds the adder 16 and the first flip-flop as indicated by the solid line in FIG. The integrated value of the calculated difference is calculated using a circuit including the switch 17 and the switch 19.
  • the signal modulation circuit 10 outputs a pulse as a PDM signal from the quantization circuit 23 based on the calculated integration value. That is, the signal modulation circuit 10 outputs a PDM signal having the same frequency as the PDM signal output from the conventional ⁇ digital modulator.
  • FIG. 4 is a diagram for explaining a range in which the frequency of the output PDM signal is lowered.
  • FIG. 5 is a diagram for explaining a circuit that executes processing for reducing the frequency of the PDM signal.
  • the signal modulation circuit 10 performs processing by a circuit equivalent to a conventional ⁇ digital modulator when the value of the input analog signal is included in the range of “256 to 767”. In this case, the frequency of the output PDM signal exceeds 25 MHz. For this reason, the signal modulation circuit 10 modulates an analog signal into a PDM signal using a circuit that operates at a half frequency compared to the circuit indicated by the dotted line in FIG.
  • the signal modulation circuit 10 when the value of the input analog signal is included in the range of “256 to 767”, the signal modulation circuit 10 includes the second differentiator 13 and the switch as indicated by the solid line in FIG. 14 is used to calculate the difference between the input analog signals.
  • the signal modulation circuit 10 adds the adder 16, the second flip-flop 18, as shown by the dotted line in FIG. An integrated value of the calculated difference is calculated using a circuit including the switch 19.
  • the signal modulation circuit 10 has a first modulation circuit that modulates an analog signal into a PDM signal and outputs the modulated PDM signal. Further, as shown by a solid line in FIG. 5, the signal modulation circuit 10 modulates a PDM signal having a frequency lower than that of the PDM signal output by the first modulation circuit, and outputs a modulated PDM signal. A modulation circuit is included.
  • the signal modulation circuit 10 determines whether or not the value held in Din 22 is within the range of “256 to 767”. Thereafter, when the signal modulation circuit 10 determines that the value held in Din 22 is within the range of “256 to 767”, the signal modulation circuit 10 modulates the analog signal into the PDM signal using the second modulation circuit. If the signal modulation circuit 10 determines that the value held in Din 22 is outside the range of “256 to 767”, the signal modulation circuit 10 modulates the analog signal into a PDM signal using the first modulation circuit.
  • FIG. 6 is a diagram for comparing the integral value calculated by the conventional ⁇ digital modulator with the integral value calculated by the signal modulation circuit according to the first embodiment.
  • the integration circuit of the conventional ⁇ digital modulator has an integration value every 0.1 ⁇ 10 ⁇ 7 seconds when the input value “256” is input to the ⁇ digital modulation signal. “256”, “512”, “768”, and “1024” are repeatedly calculated.
  • the clock signal is 1
  • the second differentiator 13 and the second flip-flop 18 output the same value as the value output immediately before, as indicated by F in FIG.
  • the integration circuit 15 of the signal modulation circuit 10 outputs “1024”, which is the same as the value output immediately before, as indicated by G in FIG. Further, as shown by H in FIG. 6, the second differentiator 13 and the second flip-flop 18 output a new value when the clock signal is not received. Therefore, the integration circuit 15 of the signal modulation circuit 10 outputs a new integration value “256” as indicated by I in FIG. That is, the integration circuit 15 of the signal modulation circuit 10 repeatedly calculates integration values “256”, “512”, “768”, and “1024” every 0.2 ⁇ 10 ⁇ 7 seconds.
  • FIG. 7 is a diagram for explaining a PDM signal output from a conventional ⁇ digital modulator.
  • the conventional ⁇ digital modulator repeatedly calculates integral values “256”, “512”, “768”, and “1024” every 0.1 ⁇ 10 ⁇ 7 seconds. Therefore, the conventional ⁇ digital modulator outputs a pulse having a wavelength of 0.1 ⁇ 10 ⁇ 7 seconds with a period of 0.4 ⁇ 10 ⁇ 7 seconds.
  • FIG. 8 is a diagram for explaining the PDM signal output from the signal modulation circuit according to the first embodiment.
  • the signal modulation circuit 10 repeatedly calculates integral values “256”, “512”, “768”, and “1024” every 0.2 ⁇ 10 ⁇ 7 seconds. Therefore, the signal modulation circuit 10 outputs a pulse having a wavelength of 0.2 ⁇ 10 ⁇ 7 seconds with a cycle of 0.8 ⁇ 10 ⁇ 7 seconds.
  • the signal modulation circuit 10 outputs a PDM signal having a frequency lower than that of the PDM signal output from the conventional ⁇ digital modulator and having the same duty ratio as the PDM signal output from the conventional ⁇ digital modulator. To do. As a result, as indicated by the hatched portion in FIG. 7 and the hatched portion in FIG. 8, the value obtained by integrating the PDM signal output from the signal modulation circuit 10 is integrated with the PDM signal output from the conventional ⁇ digital modulator. The same value can be maintained. As a result, the signal modulation circuit 10 can keep the amount of power supplied by the power element circuit at the same amount as before even when the PDM signal is output at half the conventional frequency.
  • FIG. 9 is a diagram illustrating the frequency of the PDM signal output from the signal modulation circuit according to the first embodiment.
  • the signal modulation circuit 10 suppresses the frequency of the output PDM signal to 1 ⁇ 2 when the value of the input analog signal is included in the range of “256 to 767”. .
  • the signal modulation circuit 10 can appropriately operate the power element circuit as a result of suppressing the frequency of the PDM signal to be equal to or lower than the frequency at which the FET operates appropriately.
  • the signal modulation circuit 10 when the value of the input analog signal is included in the range of “1 to 255” and “768 to 1023”, the signal modulation circuit 10 outputs a PDM signal having the same frequency as that of the conventional ⁇ digital modulator. Output. That is, since the signal modulation circuit 10 outputs a PDM signal having the same frequency as that of a conventional ⁇ digital modulator within a range where it is not necessary to lower the frequency of the PDM signal, the signal modulation circuit 10 maintains responsiveness to the input analog signal. Can do. As a result, the signal modulation circuit 10 can widen the range in which the frequency of the PDM signal falls within an appropriate range, as indicated by K in FIG.
  • FIG. 10 is a diagram for comparing the frequency of the PDM signal output from the signal modulation circuit according to the first embodiment and the frequency of the PDM signal output from the conventional ⁇ digital modulator. As shown by the dotted line in FIG. 10, the conventional ⁇ digital modulator reduces the frequency of the PDM signal uniformly to one half when the sampling frequency is halved. As indicated by L, the range in which the power element circuit can perform an appropriate operation is narrowed.
  • the signal modulation circuit 10 can suppress the frequency of the PDM signal to half only when the value of the analog signal is included in the range of “256 to 767”. .
  • the signal modulation circuit 10 can widen the range in which the power element circuit can perform an appropriate operation, as indicated by M in FIG.
  • FIG. 11 is a diagram for comparing the integrated value of the PDM signal output from the signal modulation circuit according to the first embodiment and the integrated value of the PDM signal output from the conventional ⁇ digital modulator.
  • the conventional ⁇ digital modulator has a wavelength of 0.1 ⁇ 10 ⁇ 7 seconds with a period of 0.4 ⁇ 10 ⁇ 7 seconds when the input value is “256”. Output a pulse.
  • the signal modulation circuit 10 outputs a pulse having a wavelength of 0.2 ⁇ 10 ⁇ 7 seconds with a period of 0.8 ⁇ 10 ⁇ 7 seconds. Therefore, when the time scale at which the input value changes is sufficiently larger than 0.8 ⁇ 10 ⁇ 7 seconds, the value obtained by integrating the pulse of the PDM signal output from the conventional ⁇ digital modulator and the signal modulation circuit 10 Is the same value as the integrated value of the pulse of the PDM signal output from the.
  • the conventional ⁇ digital modulator has a wavelength of 0.1 ⁇ 10 ⁇ 7 seconds with a period of 0.2 ⁇ 10 ⁇ 7 seconds when the input value is “512”. Is output.
  • the signal modulation circuit 10 outputs a pulse having a wavelength of 0.4 ⁇ 10 ⁇ 7 seconds with a period of 0.4 ⁇ 10 ⁇ 7 seconds. For this reason, when the time scale at which the input value changes is sufficiently larger than 0.2 ⁇ 10 ⁇ 7 seconds, the value obtained by integrating the pulse of the PDM signal output from the conventional ⁇ digital modulator and the signal modulation circuit 10 Is the same value as the integrated value of the pulse of the PDM signal output from the.
  • the conventional ⁇ digital modulator has a wavelength of 0.3 ⁇ 10 ⁇ 7 seconds with a period of 0.4 ⁇ 10 ⁇ 7 seconds. Is output.
  • the signal modulation circuit 10 outputs a pulse having a wavelength of 0.6 ⁇ 10 ⁇ 7 seconds with a period of 0.8 ⁇ 10 ⁇ 7 seconds. Therefore, when the time scale at which the input value changes is sufficiently larger than 0.8 ⁇ 10 ⁇ 7 seconds, the value obtained by integrating the pulse of the PDM signal output from the conventional ⁇ digital modulator and the signal modulation circuit 10 Is the same value as the integrated value of the pulse of the PDM signal output from the.
  • the signal modulation circuit 10 has the same integration value as the pulse of the PDM signal output from the conventional ⁇ digital modulator regardless of the value of the input value, and the conventional ⁇ digital modulator outputs it.
  • a PDM signal having a frequency lower than that of the PDM signal is output. Therefore, as shown in FIG. 12, the signal modulation circuit 10 can cause the power element circuit to supply appropriate power regardless of the value of the input analog signal.
  • FIG. 12 is a diagram for explaining an integrated value of the output PDM signal.
  • FIG. 13 is a diagram for explaining the ⁇ digital modulation circuit having the signal modulation circuit according to the first embodiment.
  • the conventional ⁇ digital modulation circuit operates the difference circuit and the integration circuit regardless of the input value.
  • the ⁇ digital modulation circuit in which the range indicated by the dotted line in FIG. 13 is replaced with the signal modulation circuit 10 according to the first embodiment can transmit a low-frequency PDM signal while maintaining the duty ratio according to the input value. it can.
  • Such a ⁇ digital modulation circuit transmits a PDM signal at a frequency in a range in which the power element circuit in the subsequent stage appropriately operates, so that a range in which the power element circuit can perform an appropriate operation is widened.
  • FIG. 14 is a flowchart for explaining the flow of processing executed by the signal modulation circuit.
  • the signal modulation circuit 10 starts processing when the power is input.
  • the signal modulation circuit 10 is determined by the user so that Fcyc_max, which is the maximum value of the frequency of the PDM signal to be output, is set to “1/2” (step S101).
  • the signal modulation circuit 10 identifies a range in which the frequency of the output PDM signal is “1 ⁇ 2” (step S102).
  • the signal modulation circuit 10 determines whether or not the input value is held in the Din 22 (step S103). If the signal modulation circuit 10 determines that the input value is held in Din 22 (Yes in step S103), is the input value included in the range in which the frequency of the PDM signal is “1/2”? It is determined whether or not (step S104).
  • step S104 when the signal modulation circuit 10 determines that the input value is included in the range where the frequency of the PDM signal is “1 ⁇ 2” (Yes in step S104), the counter initial value is set to “1”. Setting is performed (step S105). Next, the signal modulation circuit 10 performs countdown (step S106). Then, the signal modulation circuit 10 determines whether or not the value of the counter is “0” (step S107).
  • the signal modulation circuit 10 determines that the value of the counter is “0” (Yes at Step S107)
  • the signal modulation circuit 10 executes difference calculation and integration calculation using the circuit indicated by the solid line in FIG. (Step S108). Thereafter, the signal modulation circuit 10 outputs a pulse according to the calculation result (step S109).
  • the signal modulation circuit 10 determines that the value of the counter is not “0” (No at Step S107), the signal modulation circuit 10 outputs a pulse according to the calculation result at the immediately preceding step (Step S110).
  • the signal modulation circuit 10 determines that the input value is not included in the range where the frequency of the PDM signal is “1 ⁇ 2” (No in step S104), the circuit indicated by the solid line in FIG. Is used to execute the difference calculation and the integration calculation (step S108). Further, when the signal modulation circuit 10 outputs a pulse (steps S109 and S110), it again determines whether or not the input value is held in the Din 22 (step S103). If the signal modulation circuit 10 determines that the input value is not held in Din 22 (No in step S103), the signal modulation circuit 10 ends the process.
  • the signal modulation circuit 10 includes the XOR 20 that determines whether or not the input value held in the Din 20 is included in the range of “256 to 767”.
  • the signal modulation circuit 10 operates the difference circuit 11 and the integration circuit 15 according to the synchronization signal, and sets the input value. Modulate to PDM signal.
  • the signal modulation circuit 10 operates the difference circuit 11 and the integration circuit 15 at a time interval longer than the synchronization signal. The input value is modulated into a PDM signal.
  • the signal modulation circuit 10 can suppress the frequency of the PDM signal to be output to a range in which the FET can appropriately operate while maintaining the response to the analog signal, and the power element circuit performs an appropriate operation. Increase the range of things you can do.
  • the integration circuit 15 quantizes the calculated integration value at the same time interval as the synchronization signal when the input value is included in the range of “1 to 255” and “767 to 1023”. Output to the circuit 23. Further, when the input value is included in the range of “256 to 767”, the integration circuit 15 outputs the calculated integration value to the quantizer 23 at a time interval longer than the synchronization signal. Therefore, the signal modulation circuit 10 can cause the power element circuit to supply appropriate power as a result of lowering the frequency of the PDM signal while maintaining the duty ratio of the PDM signal output to the quantization circuit 23.
  • the integration circuit 15 includes the first flip-flop 17 that operates at the same time interval as the synchronization signal and the second flip-flop 18 that operates at a time interval longer than the synchronization signal. Then, when the input value is included in the range of “1 to 255” and “767 to 1023”, the integration circuit 15 performs integration using the value held in the first flip-flop 17. Further, when the input value is included in the range of “256 to 767”, the integration circuit 15 performs integration using the value held in the second flip-flop 18. For this reason, the difference circuit 15 can calculate an appropriate integral value even when it operates at a time interval longer than the synchronization signal. As a result, the signal modulation circuit 10 can appropriately suppress the frequency of the output PDM signal without reducing the sampling frequency.
  • the difference circuit 11 includes a first differentiator 12 that operates at the same time interval as the synchronization signal and a second differencer 13 that operates at a time interval longer than the synchronization signal.
  • the difference circuit 11 inputs the difference value calculated by the first differentiator 12 to the integration circuit 15 when the input value falls within the range of “1 to 255” and “767 to 1023”. Further, the difference circuit 11 inputs the difference value calculated by the second differentiator 13 to the integration circuit 15 when the input value is included in the range of “256 to 767”. For this reason, the difference circuit 11 can calculate an appropriate difference value even when it operates at a time interval longer than the synchronization signal. As a result, the signal modulation circuit 10 can appropriately suppress the frequency of the output PDM signal without reducing the sampling frequency.
  • the signal modulation circuit 10 described above modulates an analog signal into a PDM signal with an input resolution of 10 bits and a sampling frequency of 100 MHz.
  • the embodiment is not limited to this.
  • the sampling frequency may be 1000 Hz.
  • the quantization circuit 23 described above transmits a feedback signal indicating “1024”.
  • the embodiment is not limited to this.
  • the quantization circuit transmits a feedback signal indicating “2 N ”.
  • the quantization circuit 23 described above transmits a pulse of the PDM signal when an integral value of “1024” or more is output.
  • the embodiment is not limited to this, and for example, “512” or more.
  • a pulse of the PDM signal may be transmitted.
  • the signal modulation circuit 10 described above inputs “1” as the initial value m to the counter 21.
  • the embodiment is not limited to this.
  • the signal modulation circuit 10 may input “3” as the initial value m.
  • the signal modulation circuit 10 cooperates with the counter 21 and the XOR circuit 20, determines the input value, and controls the maximum value of the PDM signal. Further, the determination circuit for determining the input value is not limited to the XOR circuit 20.
  • the range of the input value is included in the predetermined range, if the frequency of the PDM signal can be lowered, the range in which the power element circuit can be appropriately operated can be widened.

Abstract

A signal modulation circuit (10) comprises an XOR (20) which monitors an input value (22), which is continuously input, and determines whether or not the input value (22) is contained in a prescribed range. In addition, the signal modulation circuit (10) comprises an integration circuit (15) which, if it is determined by the XOR (20) that the input value (22) is contained in the prescribed range, integrates and outputs a differential signal at a time interval representing an extended prescribed time interval. Furthermore, the signal modulation circuit (10) comprises a quantization circuit (23) which quantizes and outputs the output of the integration circuit. Moreover, the signal modulation circuit (10) is provided with a differential circuit (11) which, if it is determined by the XOR (20) that the input value (22) is contained in the prescribed range, calculates a differential signal corresponding to the output of the quantization circuit (23) and the input value (22) and, after the time interval representing the extended prescribed time interval has elapsed, inputs the calculated differential signal to the integration circuit (15).

Description

信号変調回路、信号変調装置および信号変調方法Signal modulation circuit, signal modulation apparatus, and signal modulation method
 本発明は、信号変調回路、信号変調装置および信号変調方法に関する。 The present invention relates to a signal modulation circuit, a signal modulation device, and a signal modulation method.
 従来、アナログ信号をデジタル信号に変調するΔΣデジタル変調器を利用する技術が知られている。このような技術の一例として、外部から入力されたアナログ信号に応じて、電力を供給するサーボドライバや電力増幅器の技術が知られている。 Conventionally, a technique using a ΔΣ digital modulator that modulates an analog signal into a digital signal is known. As an example of such a technique, a technique of a servo driver or a power amplifier that supplies power according to an analog signal input from the outside is known.
 このような技術に利用されるΔΣデジタル変調器は、外部から入力されたアナログ信号を所定の周波数でサンプリングし、サンプリングしたアナログ信号をPDM(Pulse Density Modulation)信号に変調する。そして、ΔΣデジタル変調器は、サーボモータ等に電力を供給する電力素子回路に対して、変調後のPDM信号を送信する。また、電力素子回路は、FET(Field Effect Transistor)を有し、ΔΣデジタル変調器から送信されたPDM信号に合わせてFETを動作させ、サーボモータ等に電力を供給する。 The ΔΣ digital modulator used in such a technique samples an analog signal input from the outside at a predetermined frequency, and modulates the sampled analog signal into a PDM (Pulse Density Modulation) signal. The ΔΣ digital modulator transmits the modulated PDM signal to a power element circuit that supplies power to a servo motor or the like. The power element circuit has an FET (Field Effect Transistor), operates the FET in accordance with the PDM signal transmitted from the ΔΣ digital modulator, and supplies power to the servo motor and the like.
 以下、図面を用いて、ΔΣデジタル変調器について具体的に説明する。まず、図15を用いて、ΔΣデジタル変調器が有する各回路について説明する。図15は、ΔΣデジタル変調器を説明するためのブロック図である。 Hereinafter, the ΔΣ digital modulator will be described in detail with reference to the drawings. First, each circuit of the ΔΣ digital modulator will be described with reference to FIG. FIG. 15 is a block diagram for explaining the ΔΣ digital modulator.
 図15に示す例では、ΔΣデジタル変調器は、入力されたアナログ信号の値をサンプリングし、サンプリングしたアナログ信号の値と後述する量子化回路からフィードバックされた値との差分値を算出する差分回路を有する。また、ΔΣデジタル変調器は、差分回路が算出した差分値と、自装置に保持された積分値との合計を算出し、算出した合計を新たな積分値として保持する積分回路を有する。また、ΔΣデジタル変調器は、積分回路によって算出された積分値が所定の閾値を超えた際に、PDM信号のパルスを出力する量子化回路を有する。 In the example shown in FIG. 15, the ΔΣ digital modulator samples the value of the input analog signal and calculates a difference value between the sampled analog signal value and a value fed back from a quantization circuit described later. Have In addition, the ΔΣ digital modulator has an integration circuit that calculates the sum of the difference value calculated by the difference circuit and the integration value held in its own device, and holds the calculated total as a new integration value. In addition, the ΔΣ digital modulator has a quantization circuit that outputs a pulse of the PDM signal when the integration value calculated by the integration circuit exceeds a predetermined threshold.
 次に、図16~19を用いて、ΔΣデジタル変調器がPDM信号を出力する処理について説明する。なお、図16は、ΔΣ変調器の動作の一例を説明するための図(1)である。また、図17は、ΔΣ変調器の動作の一例を説明するための図(2)である。また、図18は、ΔΣ変調器の動作の一例を説明するための図(3)である。以下の説明では、サンプリング周波数を100MHzとし、「1024」以上の値が積分回路から出力された場合には、量子化回路がパルスを出力するものとする。 Next, a process in which the ΔΣ digital modulator outputs a PDM signal will be described with reference to FIGS. FIG. 16 is a diagram (1) for explaining an example of the operation of the ΔΣ modulator. FIG. 17 is a diagram (2) for explaining an example of the operation of the ΔΣ modulator. FIG. 18 is a diagram (3) for explaining an example of the operation of the ΔΣ modulator. In the following description, when the sampling frequency is 100 MHz and a value of “1024” or more is output from the integrating circuit, the quantizing circuit outputs a pulse.
 例えば、図16に示す例では、アナログ信号の値として「256」が差分回路に入力される。このような場合には、積分回路は、0.4×10-7秒に一回の周期で、「1024」の値を出力する。このため、量子化回路は、PDM信号として、0.1×10-7秒の波長を有するパルスを0.4×10-7秒に一回の周期で出力する。 For example, in the example shown in FIG. 16, “256” is input to the difference circuit as the value of the analog signal. In such a case, the integration circuit outputs a value of “1024” at a cycle of 0.4 × 10 −7 seconds. For this reason, the quantization circuit outputs a pulse having a wavelength of 0.1 × 10 −7 seconds as a PDM signal at a cycle of 0.4 × 10 −7 seconds.
 また、図17に示す例では、アナログ信号の値として「512」が差分回路に入力される。このような場合には、積分回路は、0.2×10-7秒に一回の周期で、「1024」の値を出力する。このため、量子化回路は、PDM信号として、0.1×10-7秒の波長を有するパルスを0.2×10-7秒に一回の周期で出力する。 In the example illustrated in FIG. 17, “512” is input to the difference circuit as the value of the analog signal. In such a case, the integration circuit outputs a value of “1024” with a period of once every 0.2 × 10 −7 seconds. For this reason, the quantization circuit outputs a pulse having a wavelength of 0.1 × 10 −7 seconds as a PDM signal at a cycle of once every 0.2 × 10 −7 seconds.
 また、図18に示す例では、アナログ信号の値として「768」が差分回路に入力される。このような場合には、積分回路は、0.4×10-7秒間で、「1024」以上の値を三回出力する。このため、量子化回路は、PDM信号として、0.3×10-7秒の波長を有するパルスを0.4×10-7秒に一回の周期で出力する。 In the example shown in FIG. 18, “768” is input to the difference circuit as the value of the analog signal. In such a case, the integration circuit outputs a value of “1024” or more three times in 0.4 × 10 −7 seconds. For this reason, the quantization circuit outputs a pulse having a wavelength of 0.3 × 10 −7 seconds as a PDM signal with a period of once every 0.4 × 10 −7 seconds.
 次に、図19、20を用いて、ΔΣデジタル変調器が出力するPDM信号の周波数について説明する。なお、図19は、ΔΣデジタル変調器の出力の一例を説明するための図(1)である。また、図20は、ΔΣデジタル変調器の出力の一例を説明するための図(2)である。 Next, the frequency of the PDM signal output from the ΔΣ digital modulator will be described with reference to FIGS. FIG. 19 is a diagram (1) for explaining an example of the output of the ΔΣ digital modulator. FIG. 20 is a diagram (2) for explaining an example of the output of the ΔΣ digital modulator.
 例えば、図19に示す例では、ΔΣデジタル変調器は、サンプリング周波数を100kHz、入力分解能を10bitとし、図19中の点線で示す1kHzのアナログ信号をPDM信号に変換した場合には、図19中の実線で示すPDM信号を出力する。また、例えば、図9に示す例では、ΔΣデジタル変調器は、サンプリング周波数1000Hz、入力分解能を10bitとして、図9中の点線で示す10Hzのアナログ信号をPDM信号に変換した場合には、図9中の実線で示すPDM信号を出力する。 For example, in the example shown in FIG. 19, the ΔΣ digital modulator has a sampling frequency of 100 kHz, an input resolution of 10 bits, and converts a 1 kHz analog signal indicated by a dotted line in FIG. 19 into a PDM signal. The PDM signal indicated by the solid line is output. For example, in the example shown in FIG. 9, the ΔΣ digital modulator converts the 10 Hz analog signal shown by the dotted line in FIG. 9 into a PDM signal with a sampling frequency of 1000 Hz and an input resolution of 10 bits. A PDM signal indicated by a solid line is output.
 つまり、図19、20に示すように、ΔΣデジタル変調器は、入力されたアナログ信号の変化が大きい範囲では、高い周波数のPDM信号を出力し、入力されたアナログ信号の変化が小さい範囲では、低い周波数のPDM信号を出力する。 That is, as shown in FIGS. 19 and 20, the ΔΣ digital modulator outputs a high-frequency PDM signal in a range where the change in the input analog signal is large, and in a range where the change in the input analog signal is small. A low frequency PDM signal is output.
 ここで、ΔΣデジタル変調器に対して入力される信号の値をDin、入力分解能をN、サンプリング周波数をFsとすると、ΔΣデジタル変調器が出力するPDM信号の周波数Fcycは、以下の式(1)で表すことができる。 Here, when the value of the signal input to the ΔΣ digital modulator is Din, the input resolution is N, and the sampling frequency is Fs, the frequency Fcyc of the PDM signal output from the ΔΣ digital modulator is expressed by the following equation (1) ).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 このため、ΔΣデジタル変調器は、サンプリング周波数を100MHz、入力分解能を10bitとし、1~1023までの数値を変調した場合には、図21中Aに示すように、入力値が「512」の際に最も高い周波数のPDM信号を出力する。なお、図21は、入力値と出力周波数とを説明するための図である。 Therefore, the ΔΣ digital modulator, when the sampling frequency is 100 MHz, the input resolution is 10 bits, and the numerical value from 1 to 1023 is modulated, as shown in A in FIG. 21, when the input value is “512”. Output the highest frequency PDM signal. FIG. 21 is a diagram for explaining an input value and an output frequency.
 一方、電力素子回路は、電力のスイッチングを行うFETが時間特性を有するので、所定の周波数よりも高い周波数のPDM信号を受信した場合には、FETが適切に電力のスイッチングを行えなくなる。このため、アナログ信号をサンプリングする周波数を下げることで、ΔΣデジタル変調器が出力するPDM信号の周波数を下げる技術が知られている。 On the other hand, in the power element circuit, since the FET that performs power switching has time characteristics, when the PDM signal having a frequency higher than a predetermined frequency is received, the FET cannot appropriately perform power switching. For this reason, a technique is known in which the frequency of the PDM signal output from the ΔΣ digital modulator is lowered by lowering the frequency at which the analog signal is sampled.
 例えば、図22中のBに示す例では、電力素子回路のFETは、25MHzよりも高い周波数では適切に動作することができず、25MHzよりも高い周波数のPDM信号を受信しても、適切に電力のスイッチングを行う事ができない。このため、ΔΣデジタル変調器は、サンプリング周波数を二分の一にすることで、図22中のCに示すように、PDM信号の最大周波数を二分の一に下げ、電力素子回路を動作させる。なお、図22は、電力素子回路の動作可能領域を説明するための図である。 For example, in the example shown by B in FIG. 22, the FET of the power element circuit cannot properly operate at a frequency higher than 25 MHz, and even if a PDM signal having a frequency higher than 25 MHz is received, Power switching cannot be performed. For this reason, the ΔΣ digital modulator reduces the maximum frequency of the PDM signal to ½ and operates the power element circuit as shown by C in FIG. 22 by setting the sampling frequency to ½. FIG. 22 is a diagram for explaining an operable region of the power element circuit.
特開2007-068254号公報JP 2007-068254 A
 しかしながら、上述したΔΣデジタル変調器のサンプリング周波数を下げる技術では、入力されたアナログ信号の値にかかわらず、PDM信号のパルスを出力する周波数を下げてしまう。このため、ΔΣデジタル変調器は、電力素子回路が行う電力のスイッチングに最低周波数が設定されている場合には、電力素子回路が適切な動作を行う事ができる範囲が狭くなるという問題があった。 However, in the technique for reducing the sampling frequency of the above-described ΔΣ digital modulator, the frequency at which the pulse of the PDM signal is output is reduced regardless of the value of the input analog signal. For this reason, the ΔΣ digital modulator has a problem that the range in which the power element circuit can perform an appropriate operation is narrowed when the minimum frequency is set for power switching performed by the power element circuit. .
 例えば、サーボ系の制御を行う場合には、入力されたアナログ信号に対する応答性を保持するため、図23中のDに示すように、電力をスイッチングする最低周波数があらかじめ定められる。しかし、ΔΣデジタル変調器は、図23中の実線で示すように、サンプリング周波数を二分の一に下げた場合には、入力されたアナログ信号の値に係らず、PDM信号の周波数を二分の一に下げる。このため、ΔΣデジタル変調器は、最低周波数よりも低い周波数のPDM信号を出力する範囲を広くする結果、図23中のEに示すように、電力素子回路が適切な動作を行う事ができる範囲を狭めてしまう。なお、図23は、ΔΣデジタル変調器の問題を説明するための図である。 For example, when controlling the servo system, the minimum frequency for switching power is determined in advance as shown by D in FIG. 23 in order to maintain the responsiveness to the input analog signal. However, as shown by the solid line in FIG. 23, the ΔΣ digital modulator reduces the frequency of the PDM signal by half regardless of the value of the input analog signal when the sampling frequency is lowered by half. To lower. For this reason, the ΔΣ digital modulator widens the range in which the PDM signal having a frequency lower than the lowest frequency is output. As a result, as shown by E in FIG. 23, the power element circuit can perform an appropriate operation. Will narrow. FIG. 23 is a diagram for explaining the problem of the ΔΣ digital modulator.
 本願に開示の技術は、一側面では、電力素子回路が適切な動作を行う事ができる範囲を広くする。 In one aspect, the technology disclosed in the present application widens the range in which the power element circuit can perform an appropriate operation.
 本願に開示の技術は、一つの側面では、連続して入力される入力値に応じた差分信号を所定の時間間隔で積分して出力する積分回路を有する信号変調回路である。また、信号変調回路は、積分回路の出力を量子化した量子化信号を出力する量子化回路を有する。また、信号変調回路は、量子化回路によって量子化信号が出力された場合には、量子化信号が出力されてから所定の時間間隔が経過した後に、量子化信号と入力値とに応じた差分信号を算出し、算出した差分信号を積分回路に入力する差分回路を有する。また、信号変調回路は、入力値を監視し、入力値が所定の範囲内に含まれるか否かを判別する判別回路を有する。また、信号変調回路が有する積分回路は、判別回路によって入力値が所定の範囲内に含まれると判別された場合には、所定の時間間隔を延長した時間間隔が経過した後で差分信号を積分して出力する。また、信号変調回路が有する差分回路は、判別回路によって入力値が所定の範囲内に含まれると判別された場合には、量子化信号と入力値とに応じた差分信号を算出し、算出した差分信号を所定の時間間隔を延長した時間間隔が経過した後で、積分回路に入力する。 In one aspect, the technology disclosed in the present application is a signal modulation circuit including an integration circuit that integrates and outputs a differential signal corresponding to an input value that is continuously input at a predetermined time interval. The signal modulation circuit also includes a quantization circuit that outputs a quantized signal obtained by quantizing the output of the integration circuit. In addition, the signal modulation circuit, when the quantized signal is output by the quantizing circuit, after a predetermined time interval has passed since the quantized signal was output, the difference corresponding to the quantized signal and the input value It has a difference circuit that calculates a signal and inputs the calculated difference signal to the integration circuit. The signal modulation circuit also includes a determination circuit that monitors the input value and determines whether or not the input value falls within a predetermined range. In addition, the integration circuit included in the signal modulation circuit integrates the differential signal after a predetermined time interval elapses when the determination circuit determines that the input value falls within the predetermined range. And output. Further, the difference circuit included in the signal modulation circuit calculates the difference signal according to the quantized signal and the input value when the determination circuit determines that the input value is included in the predetermined range. The difference signal is input to the integration circuit after a time interval obtained by extending a predetermined time interval elapses.
 一側面では、電力素子回路が適切な動作を行う事ができる範囲を広くする。 ¡In one aspect, widen the range in which the power element circuit can operate properly.
図1は、実施例1に係る信号変調回路を説明するための図である。FIG. 1 is a diagram for explaining the signal modulation circuit according to the first embodiment. 図2は、出力するPDM信号の周波数が所定の周波数を超えない範囲を説明するための図である。FIG. 2 is a diagram for explaining a range in which the frequency of the output PDM signal does not exceed a predetermined frequency. 図3は、従来と同様の処理を実行する回路を説明するための図である。FIG. 3 is a diagram for explaining a circuit that executes the same processing as in the prior art. 図4は、出力するPDM信号の周波数を下げる範囲を説明するための図である。FIG. 4 is a diagram for explaining a range in which the frequency of the output PDM signal is lowered. 図5は、PDM信号の周波数を下げる処理を実行する回路を説明するための図である。FIG. 5 is a diagram for explaining a circuit that executes processing for reducing the frequency of the PDM signal. 図6は、従来のΔΣデジタル変調器が算出する積分値と実施例1に係る信号変調回路が算出する積分値とを比較するための図である。FIG. 6 is a diagram for comparing the integral value calculated by the conventional ΔΣ digital modulator with the integral value calculated by the signal modulation circuit according to the first embodiment. 図7は、従来のΔΣデジタル変調器が出力するPDM信号を説明するための図である。FIG. 7 is a diagram for explaining a PDM signal output from a conventional ΔΣ digital modulator. 図8は、実施例1に係る信号変調回路が出力するPDM信号を説明するための図である。FIG. 8 is a diagram for explaining the PDM signal output from the signal modulation circuit according to the first embodiment. 図9は、実施例1に係る信号変調回路が出力するPDM信号の周波数を示す図である。FIG. 9 is a diagram illustrating the frequency of the PDM signal output from the signal modulation circuit according to the first embodiment. 図10は、実施例1に係る信号変調回路が出力するPDM信号の周波数と従来のΔΣデジタル変調器が出力するPDM信号の周波数とを比較するための図である。FIG. 10 is a diagram for comparing the frequency of the PDM signal output from the signal modulation circuit according to the first embodiment and the frequency of the PDM signal output from the conventional ΔΣ digital modulator. 図11は、実施例1に係る信号変調回路が出力するPDM信号の積分値と従来のΔΣデジタル変調器が出力するPDM信号の積分値とを比較するための図である。FIG. 11 is a diagram for comparing the integrated value of the PDM signal output from the signal modulation circuit according to the first embodiment and the integrated value of the PDM signal output from the conventional ΔΣ digital modulator. 図12は、出力されるPDM信号の積分値を説明するための図である。FIG. 12 is a diagram for explaining an integral value of the output PDM signal. 図13は、実施例1に係る信号変調回路を有するΔΣデジタル変調回路を説明するための図である。FIG. 13 is a diagram for explaining the ΔΣ digital modulation circuit having the signal modulation circuit according to the first embodiment. 図14は、信号変調回路が実行する処理の流れを説明するためのフローチャートである。FIG. 14 is a flowchart for explaining the flow of processing executed by the signal modulation circuit. 図15は、ΔΣデジタル変調器を説明するためのブロック図である。FIG. 15 is a block diagram for explaining the ΔΣ digital modulator. 図16は、ΔΣ変調器の動作の一例を説明するための図(1)である。FIG. 16 is a diagram (1) for explaining an example of the operation of the ΔΣ modulator. 図17は、ΔΣ変調器の動作の一例を説明するための図(2)である。FIG. 17 is a diagram (2) for explaining an example of the operation of the ΔΣ modulator. 図18は、ΔΣ変調器の動作の一例を説明するための図(3)である。FIG. 18 is a diagram (3) for explaining an example of the operation of the ΔΣ modulator. 図19は、ΔΣデジタル変調器の出力の一例を説明するための図(1)である。FIG. 19 is a diagram (1) for explaining an example of the output of the ΔΣ digital modulator. 図20は、ΔΣデジタル変調器の出力の一例を説明するための図(2)である。FIG. 20 is a diagram (2) for explaining an example of the output of the ΔΣ digital modulator. 図21は、入力値と出力周波数とを説明するための図である。FIG. 21 is a diagram for explaining an input value and an output frequency. 図22は、電力素子回路の動作可能領域を説明するための図である。FIG. 22 is a diagram for explaining an operable region of the power element circuit. 図23は、ΔΣデジタル変調器の問題を説明するための図である。FIG. 23 is a diagram for explaining the problem of the ΔΣ digital modulator.
 以下に添付図面を参照して本願に係る信号変調回路、信号変調装置および信号変調方法について説明する。 Hereinafter, a signal modulation circuit, a signal modulation device, and a signal modulation method according to the present application will be described with reference to the accompanying drawings.
 以下の実施例1では実施例1に係る信号変調回路を説明する。 In the following first embodiment, a signal modulation circuit according to the first embodiment will be described.
 まず、図1を用いて、実施例1に係る信号変調回路を説明する。図1は、実施例1に係る信号変調回路を説明するための図である。図1に示す例では、信号変調回路10は、差分回路11、積分回路15、XOR(exclusive or/exclusive disjunction:排他的論理和)回路20、カウンタ21、量子化回路23、遅延回路24を有する。また、信号変調回路10は、アナログ信号をサンプリングすることで取得された入力値を保持するメモリであるDin22と接続される。 First, the signal modulation circuit according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram for explaining the signal modulation circuit according to the first embodiment. In the example illustrated in FIG. 1, the signal modulation circuit 10 includes a difference circuit 11, an integration circuit 15, an XOR (exclusive or / exclusive disjunction) circuit 20, a counter 21, a quantization circuit 23, and a delay circuit 24. . The signal modulation circuit 10 is connected to a Din 22 that is a memory that holds an input value obtained by sampling an analog signal.
 また、差分回路11は、第一差分器12、第二差分器13、スイッチ14を有する。また、積分回路15は、加算器16、第一フリップフロップ17、第二フリップフロップ18、スイッチ19を有する。 The difference circuit 11 includes a first differentiator 12, a second differencer 13, and a switch 14. The integration circuit 15 includes an adder 16, a first flip-flop 17, a second flip-flop 18, and a switch 19.
 なお、以下の説明では、信号変調回路10は、入力分解能を10bit、サンプリング周波数を100MHzとして、入力されたアナログ信号をPDM(Pulse Density Modulation)信号に変調するものとする。 In the following description, it is assumed that the signal modulation circuit 10 modulates an input analog signal into a PDM (Pulse Density Modulation) signal with an input resolution of 10 bits and a sampling frequency of 100 MHz.
 また、信号変調回路10が有する各部11~21は、サンプリング周波数と同一の周波数を有する同期信号Fsに合わせて動作するものとする。つまり、信号変調回路10が有する各部11~24が実行する処理のタイミングは、同期しているものとする。また、量子化回路23の後段に設置される電力素子回路のFET(Field Effect Transistor)は、25MHz以下の周波数で適切に動作することができるものとする。 In addition, each of the units 11 to 21 included in the signal modulation circuit 10 operates according to the synchronization signal Fs having the same frequency as the sampling frequency. That is, it is assumed that the timings of the processes executed by the units 11 to 24 included in the signal modulation circuit 10 are synchronized. Further, it is assumed that the FET (Field Effect Transistor) of the power element circuit installed at the subsequent stage of the quantization circuit 23 can appropriately operate at a frequency of 25 MHz or less.
 差分回路11は、量子化回路23によってPDM信号が出力された場合には、PDM信号が出力されてから同期信号一つ分の時間が経過した後に、PDM信号とDin22に保持された値とに応じた差分値を算出する。そして、差分回路11は、算出した差分値を積分回路15に入力する。また、差分回路11は、XOR20によってDin22に保持された値が所定の範囲内に含まれると判別された場合には、同期信号一つ分よりも長い時間間隔が経過した後で、算出した差分値を積分回路15に入力する。 When the quantization circuit 23 outputs the PDM signal, the difference circuit 11 converts the PDM signal and the value held in the Din 22 after a time corresponding to one synchronization signal has elapsed since the output of the PDM signal. The corresponding difference value is calculated. Then, the difference circuit 11 inputs the calculated difference value to the integration circuit 15. In addition, when the difference circuit 11 determines that the value held in the Din 22 by the XOR 20 is included in the predetermined range, the difference circuit 11 calculates the difference after a time interval longer than one synchronization signal has elapsed. The value is input to the integrating circuit 15.
 積分回路15は、差分回路11によって入力された差分値を同期信号一つ分の時間間隔で積分した積分値を算出し、算出した積分値を出力する。また、積分回路15は、XOR20によってDin22に保持された値が所定の範囲内に含まれると判別された場合には、同期信号一つ分よりも長い時間間隔で差分値を積分して出力する。 The integration circuit 15 calculates an integration value obtained by integrating the difference value input by the difference circuit 11 at a time interval corresponding to one synchronization signal, and outputs the calculated integration value. Further, when the integration circuit 15 determines that the value held in the Din 22 by the XOR 20 is included within a predetermined range, the integration circuit 15 integrates and outputs the difference value at a time interval longer than one synchronization signal. .
 XOR20は、Din22に保持された値を監視し、Din22に保持された値が所定の範囲内に含まれるか否かを判別する。カウンタ21は、同期信号よりも長い時間間隔でカウンタ信号を出力する。量子化回路23は、積分回路15の出力を量子化したPDM信号を出力する。遅延回路24は、量子化回路23から出力されたフィードバック信号を同期信号一つ分遅延させて差分回路11へ入力する。 The XOR 20 monitors the value held in the Din 22, and determines whether or not the value held in the Din 22 is included in a predetermined range. The counter 21 outputs a counter signal at a time interval longer than the synchronization signal. The quantization circuit 23 outputs a PDM signal obtained by quantizing the output of the integration circuit 15. The delay circuit 24 delays the feedback signal output from the quantization circuit 23 by one synchronization signal and inputs the delayed signal to the difference circuit 11.
 以下、信号変調回路10が有する差分回路11と積分回路15が有する各部について説明する。まず、差分回路11が有する各部について説明する。第一差分器12は、量子化回路23によってPDM信号が出力された場合には、PDM信号が出力されてから所定の時間間隔が経過した後に、PDM信号とDin22に保持された値とに応じた差分信号を算出する。そして、第一差分器12は、算出した差分信号を所定の時間間隔が経過した後で出力する。具体的には、第一差分器12は、Din22に保持された値から、後述する遅延回路24から取得されるフィードバック信号が示す値を減算した値を算出する。そして、第一差分器12は、算出した値をスイッチ14へ送信する。 Hereinafter, each unit of the difference circuit 11 and the integration circuit 15 included in the signal modulation circuit 10 will be described. First, each part of the difference circuit 11 will be described. When the PDM signal is output by the quantization circuit 23, the first differentiator 12 responds to the PDM signal and the value held in the Din 22 after a predetermined time interval has elapsed since the output of the PDM signal. The difference signal obtained is calculated. Then, the first differentiator 12 outputs the calculated difference signal after a predetermined time interval has elapsed. Specifically, the first differentiator 12 calculates a value obtained by subtracting a value indicated by a feedback signal acquired from the delay circuit 24 described later from the value held in the Din 22. Then, the first differentiator 12 transmits the calculated value to the switch 14.
 ここで、遅延回路24は、同期信号一つ分だけフィードバック信号を遅延させる。つまり、第一差分器12は、PDM信号が出力されてから同期信号一つ分の時間が経過した後に、PDM信号に応じたフィードバック信号とDin22に保持された値とに応じた差分信号を算出する。 Here, the delay circuit 24 delays the feedback signal by one synchronization signal. That is, the first differentiator 12 calculates the difference signal according to the feedback signal corresponding to the PDM signal and the value held in the Din 22 after the time corresponding to one synchronization signal has elapsed since the output of the PDM signal. To do.
 第二差分器13は、量子化回路23によってPDM信号が出力された場合には、PDM信号が出力されてから所定の時間間隔が経過した後に、PDM信号とDin22に保持された値とに応じた差分信号を算出する。そして、第二差分器13は、算出した差分信号を同期信号一つ分よりも長い時間間隔が経過した後で出力する。つまり、第二差分器13は、第一差分器12よりも遅い周波数で動作し、アナログ信号をサンプリングして取得された値であるDin22に保持された値と後述する遅延回路24から受信するフィードバック信号が示す値との差分を算出する。 When the PDM signal is output by the quantization circuit 23, the second differentiator 13 responds to the PDM signal and the value held in the Din 22 after a predetermined time interval has elapsed since the output of the PDM signal. The difference signal obtained is calculated. The second subtractor 13 outputs the calculated difference signal after a time interval longer than one synchronization signal has elapsed. That is, the second differentiator 13 operates at a frequency slower than that of the first differentiator 12, and a value held in Din 22 that is a value obtained by sampling an analog signal and feedback received from a delay circuit 24 described later. The difference from the value indicated by the signal is calculated.
 具体的には、第二差分器13は、後述するカウンタ21からカウンタ信号を受信しなかった場合には、Din22に保持された値から、後述する遅延回路20より取得されたフィードバック信号が示す値を減算した値を算出する。そして、第二差分器13は、算出した値をスイッチ14へ送信する。また、第二差分器13は、算出した値を自装置に保持する。また、第二差分器13は、後述するカウンタ21からカウンタ信号を受信した場合には、直前に算出し、保持した値をスイッチ14へ送信する。つまり、第二差分器13は、カウンタ21によって出力されたカウンタ信号を受信した場合には、次に出力された信号を受信した後で、算出した差分信号を出力する差分器である。 Specifically, when the second differentiator 13 does not receive the counter signal from the counter 21 described later, the value indicated by the feedback signal acquired from the delay circuit 20 described later from the value held in the Din 22. The value obtained by subtracting is calculated. Then, the second differentiator 13 transmits the calculated value to the switch 14. The second subtractor 13 holds the calculated value in its own device. Further, when the second subtractor 13 receives a counter signal from the counter 21 described later, the second subtractor 13 calculates the value immediately before and transmits the held value to the switch 14. That is, the second subtractor 13 is a subtractor that outputs the calculated difference signal after receiving the next output signal when the counter signal output by the counter 21 is received.
 例えば、第二差分器13は、カウンタ21が同期信号を2回受信した際にカウンタ信号を第二差分器13と第二フリップフロップ18へ送信する場合には、第一差分器12の半分の周波数で動作する差分器である。 For example, when the counter 21 receives the synchronization signal twice, when the counter 21 transmits the counter signal to the second difference 13 and the second flip-flop 18, the second difference 13 is half of the first difference 12. It is a differentiator that operates at a frequency.
 スイッチ14は、後述するXOR20によってDin22に保持された値が所定の範囲内に含まれないと判別された場合には、第一差分器12によって出力された差分信号を積分回路15の加算器16に入力する。また、スイッチ14は、XOR20によってDin22に保持された値がが所定の範囲内に含まれると判別された場合には、第二差分器13によって出力された差分信号を積分回路15の加算器16に入力する。 When the switch 14 determines that the value held in Din 22 by the XOR 20 described later is not included in the predetermined range, the switch 14 adds the difference signal output by the first differentiator 12 to the adder 16 of the integration circuit 15. To enter. Further, when the switch 14 determines that the value held in the Din 22 by the XOR 20 is included within a predetermined range, the switch 14 converts the difference signal output by the second differentiator 13 into the adder 16 of the integrating circuit 15. To enter.
 具体的には、スイッチ14は、第一差分器12によって算出された値と第二差分器13によって算出された値とを受信する。また、スイッチ14は、後述するXOR回路20から第一差分器12を選択する信号、または、第二差分器13を選択する信号を受信する。そして、スイッチ14は、XOR回路20から第一差分器12を選択する信号を受信した場合には、第一差分器12から受信した値を後述する積分回路15の加算器16へ送信する。また、スイッチ14は、XOR回路20から第二差分器13を選択する信号を受信した場合には、第二差分器13から受信した値を後述する積分回路15の加算器16へ送信する。 Specifically, the switch 14 receives the value calculated by the first subtractor 12 and the value calculated by the second subtractor 13. The switch 14 receives a signal for selecting the first subtractor 12 or a signal for selecting the second subtractor 13 from the XOR circuit 20 described later. When the switch 14 receives a signal for selecting the first subtractor 12 from the XOR circuit 20, the switch 14 transmits the value received from the first subtractor 12 to the adder 16 of the integration circuit 15 described later. Further, when the switch 14 receives a signal for selecting the second differentiator 13 from the XOR circuit 20, the switch 14 transmits the value received from the second differentiator 13 to the adder 16 of the integrating circuit 15 described later.
 つまり、差分回路11は、第一差分器12によって算出された値を出力する場合には、従来のΔΣデジタル変調器が有する差分回路と同じ周波数で動作する差分回路である。また、差分回路11は、第二差分器13によって算出された値を出力する場合には、従来のΔΣデジタル変調器が有する差分回路の二分の一の周波数で動作する差分回路である。 That is, the difference circuit 11 is a difference circuit that operates at the same frequency as the difference circuit included in the conventional ΔΣ digital modulator when outputting the value calculated by the first differencer 12. Further, the difference circuit 11 is a difference circuit that operates at a half frequency of the difference circuit included in the conventional ΔΣ digital modulator when the value calculated by the second difference unit 13 is output.
 次に、積分回路15が有する各部について説明する。加算器16は、スイッチ14から受信した値と後述するスイッチ19から受信した値とを加算した値を所定の時間間隔で算出する。そして、加算器16は、算出した値を第一フリップフロップ17、第二フリップフロップ18、量子化回路23へ送信する。つまり、加算器16は、差分回路11によって算出された差分の積分値を算出し、算出した積分値を第一フリップフロップ17、第二フリップフロップ18、量子化回路23へ送信する。 Next, each part of the integration circuit 15 will be described. The adder 16 calculates a value obtained by adding a value received from the switch 14 and a value received from the switch 19 described later at a predetermined time interval. Then, the adder 16 transmits the calculated value to the first flip-flop 17, the second flip-flop 18, and the quantization circuit 23. That is, the adder 16 calculates the integral value of the difference calculated by the difference circuit 11 and transmits the calculated integral value to the first flip-flop 17, the second flip-flop 18, and the quantization circuit 23.
 第一フリップフロップ17は、加算器16によって新たな積分値が算出された場合には、算出された積分値を一時的に保持し、所定の時間間隔が経過した後で、保持した積分信号を出力する。具体的には、第一フリップフロップ17は、同期信号を受信した場合には、加算器16によって算出された値を受信する。そして、第一フリップフロップ17は、再度同期信号を受信した場合には、受信した値をスイッチ19へ送信するとともに、加算器16によって新たに算出された値を取得する。つまり、第一フリップフロップ17は、加算器16によって算出された値を示す信号を受信し、受信された信号を同期信号一つ分だけ遅延させてから加算器16へフィードバックする遅延回路である。 When a new integration value is calculated by the adder 16, the first flip-flop 17 temporarily holds the calculated integration value, and after the predetermined time interval has elapsed, Output. Specifically, the first flip-flop 17 receives the value calculated by the adder 16 when receiving the synchronization signal. When receiving the synchronization signal again, the first flip-flop 17 transmits the received value to the switch 19 and acquires the value newly calculated by the adder 16. In other words, the first flip-flop 17 is a delay circuit that receives a signal indicating the value calculated by the adder 16, delays the received signal by one synchronization signal, and then feeds back the signal to the adder 16.
 第二フリップフロップ18は、加算器16によって新たな積分値が算出された場合には、算出された積分値を一時的に保持し、所定の時間間隔が経過し、所定の時間間隔を延長した時間間隔が経過した後で、保持した積分値を出力する。具体的には、第二フリップフロップ18は、加算器16によって算出された値を取得する。そして、第二フリップフロップ18は、カウンタ21からカウンタ信号を受信しなかった場合には、加算器16から取得した値をスイッチ19へ送信するとともに、送信した値を保持する。 When a new integrated value is calculated by the adder 16, the second flip-flop 18 temporarily holds the calculated integrated value, a predetermined time interval has elapsed, and the predetermined time interval has been extended. After the time interval elapses, the held integral value is output. Specifically, the second flip-flop 18 acquires the value calculated by the adder 16. When the second flip-flop 18 does not receive the counter signal from the counter 21, the second flip-flop 18 transmits the value acquired from the adder 16 to the switch 19 and holds the transmitted value.
 また、第二フリップフロップ18は、カウンタ信号を受信した場合には、直前に保持した値をスイッチ19へ送信するとともに、加算器16によって新たに算出された値を取得する。つまり、第二フリップフロップ18は、カウンタ21からカウンタ信号を受信した場合には、保持した値を出力し、次に出力された信号を受信するまでの間、加算器16から取得した値を保持する保持回路である。 Further, when receiving the counter signal, the second flip-flop 18 transmits the value held immediately before to the switch 19 and obtains the value newly calculated by the adder 16. That is, when the second flip-flop 18 receives the counter signal from the counter 21, the second flip-flop 18 outputs the held value and holds the value acquired from the adder 16 until the next output signal is received. Holding circuit.
 スイッチ19は、XOR20によって入力値が所定の範囲内に含まれないと判別された場合には、第一フリップフロップ17が出力した積分値を加算器16に伝達する。また、スイッチ19は、XOR20によって入力値が所定の範囲内に含まれると判別された場合には、第二フリップフロップ18によって出力された積分値を加算器16に伝達する。具体的には、第一フリップフロップ17から送信された値を受信する。また、スイッチ19は、第二フリップフロップ18から送信された値を受信する。また、スイッチ19は、後述するXOR回路20から第一フリップフロップ17を選択する信号、又は、第二フリップフロップ18を選択する信号を受信する。 When the XOR 20 determines that the input value is not included in the predetermined range, the switch 19 transmits the integrated value output from the first flip-flop 17 to the adder 16. In addition, when the XOR 20 determines that the input value is included in the predetermined range, the switch 19 transmits the integrated value output by the second flip-flop 18 to the adder 16. Specifically, the value transmitted from the first flip-flop 17 is received. The switch 19 receives the value transmitted from the second flip-flop 18. The switch 19 receives a signal for selecting the first flip-flop 17 or a signal for selecting the second flip-flop 18 from the XOR circuit 20 described later.
 そして、スイッチ19は、XOR回路20から第一フリップフロップ17を選択する信号を受信した場合には、第一フリップフロップ17から受信した値を加算器16へ送信する。また、スイッチ19は、XOR回路20から第二フリップフロップ18を選択する信号を受信した場合には、第二フリップフロップ18から受信した値を加算器16へ送信する。 When the switch 19 receives a signal for selecting the first flip-flop 17 from the XOR circuit 20, the switch 19 transmits the value received from the first flip-flop 17 to the adder 16. When the switch 19 receives a signal for selecting the second flip-flop 18 from the XOR circuit 20, the switch 19 transmits the value received from the second flip-flop 18 to the adder 16.
 つまり、積分回路15は、第一フリップフロップ17を用いて積分値を算出した場合には、従来のΔΣデジタル変調器が有する積分回路と同様の周波数で動作する積分回路である。また、積分回路15は、第二フリップフロップ18を用いて積分値を算出した場合には、従来のΔΣデジタル変調器が有する積分回路の二分の一の周波数で動作する積分回路である。 That is, the integration circuit 15 is an integration circuit that operates at the same frequency as the integration circuit of the conventional ΔΣ digital modulator when the integration value is calculated using the first flip-flop 17. Further, the integration circuit 15 is an integration circuit that operates at a half frequency of the integration circuit included in the conventional ΔΣ digital modulator when the integration value is calculated using the second flip-flop 18.
 次に、信号変調回路10が有するXOR20、カウンタ21、量子化回路23、遅延回路24について詳しく説明する。XOR回路20は、Din22に保持された値を監視し、Din22に保持された値が所定の範囲内に含まれるか否かを判別する。具体的には、XOR20は、Din22に保持された値のうち、最上位の二つのビットを比較し、二つのビットが両方とも同じ値であるか否かを判別する。そして、XOR回路20は、最上位の二つのビットが両方とも同じ値であると判別した場合には、スイッチ14に対して、第一差分器12を選択する信号を送信する。また、XOR回路20は、最上位の二つのビットが両方とも同じ値であると判別した場合には、スイッチ19に対して、第一フリップフロップ17を選択する信号を送信する。 Next, the XOR 20, the counter 21, the quantization circuit 23, and the delay circuit 24 included in the signal modulation circuit 10 will be described in detail. The XOR circuit 20 monitors the value held in the Din 22 and determines whether or not the value held in the Din 22 is included in a predetermined range. Specifically, the XOR 20 compares the two most significant bits among the values held in the Din 22, and determines whether or not the two bits are the same value. If the XOR circuit 20 determines that the two most significant bits are both the same value, the XOR circuit 20 transmits a signal for selecting the first differentiator 12 to the switch 14. If the XOR circuit 20 determines that the two most significant bits have the same value, the XOR circuit 20 transmits a signal for selecting the first flip-flop 17 to the switch 19.
 また、XOR回路20は、最上位の二つのビットの値が異なると判別した場合には、スイッチ14に対して、第二差分器13を選択する信号を送信する。また、XOR回路20は、最上位の二つのビットの値が異なると判別した場合には、スイッチ19に対して、第二フリップフロップ18を選択する信号を送信する。 Further, when the XOR circuit 20 determines that the values of the two most significant bits are different, the XOR circuit 20 transmits a signal for selecting the second differentiator 13 to the switch 14. Further, when the XOR circuit 20 determines that the values of the two most significant bits are different, the XOR circuit 20 transmits a signal for selecting the second flip-flop 18 to the switch 19.
 ここで、Din22に保持された値のうち、最上位の二つのビットが同じ場合とは、アナログ信号を「10」bitでサンプリングした値が「1~255」又は「768~1023」の範囲内であることを示す。また、Din22に保持された値のうち、最上位の二つのビットが異なる場合とは、アナログ信号を「10」bitでサンプリングした値が「256~767」の範囲内であることを示す。 Here, among the values held in Din22, when the most significant two bits are the same, the value obtained by sampling the analog signal with “10” bits is within the range of “1 to 255” or “768 to 1023”. Indicates that The case where the most significant two bits of the values held in Din22 are different means that the value obtained by sampling the analog signal with “10” bits is within the range of “256 to 767”.
 つまり、信号変調回路10は、アナログ信号をサンプリングした値が「1~255」又は「768~1023」の範囲に含まれる場合には、第一差分器12と第一フリップフロップ17とを用いて、アナログ信号の変調を実行する。また、信号変調回路10は、アナログ信号をサンプリングした値が「256~767」の範囲に含まれる場合には、第二差分器13と第二フリップフロップ18とを用いて、アナログ信号の変調を実行する。 That is, the signal modulation circuit 10 uses the first differentiator 12 and the first flip-flop 17 when the value obtained by sampling the analog signal is included in the range of “1 to 255” or “768 to 1023”. Perform analog signal modulation. Further, the signal modulation circuit 10 modulates the analog signal using the second differentiator 13 and the second flip-flop 18 when the sampled value of the analog signal is included in the range of “256 to 767”. Execute.
 ここで、従来のΔΣデジタル変調回路は、入力分解能を10bit、サンプリング周波数を100MHzとした場合には、式(1)より、アナログ信号をサンプリングした値が「256~767」の範囲で、25MHz以上のPDM信号を送信する。 Here, when the input resolution is 10 bits and the sampling frequency is 100 MHz, the conventional ΔΣ digital modulation circuit has an analog signal sampled value in the range of “256 to 767” and is 25 MHz or more from Equation (1). The PDM signal is transmitted.
 一方、信号変調回路10は、アナログ信号をサンプリングした値が「256~767」の範囲に含まれる場合には、第一差分器12の半分の周波数で動作する第二差分器13を用いて、差分回路11を動作させる。また、信号変調回路10は、アナログ信号をサンプリングした値が「256~767」の範囲に含まれる場合には、第一フリップフロップ17の半分の周波数で動作する第二フリップフロップ18を用いて、積分回路15を動作させる。 On the other hand, when the value obtained by sampling the analog signal is included in the range of “256 to 767”, the signal modulation circuit 10 uses the second differentiator 13 that operates at half the frequency of the first differencer 12, The difference circuit 11 is operated. Further, when the value obtained by sampling the analog signal is included in the range of “256 to 767”, the signal modulation circuit 10 uses the second flip-flop 18 that operates at half the frequency of the first flip-flop 17. The integrating circuit 15 is operated.
 つまり、信号変調回路10は、アナログ信号をサンプリングした値が「256~767」の範囲に含まれる場合には、従来のΔΣデジタル変調器が出力するPDM信号の半分の周波数でPDM信号を出力する。また、信号変調回路10は、アナログ信号をサンプリングした値が「1~255」又は「768~1023」の範囲内である場合には、従来のΔΣデジタル変調器が出力するPDM信号と同じ周波数でPDM信号を出力する。 That is, when the value obtained by sampling the analog signal is included in the range of “256 to 767”, the signal modulation circuit 10 outputs the PDM signal at half the frequency of the PDM signal output by the conventional ΔΣ digital modulator. . Further, when the value obtained by sampling the analog signal is in the range of “1 to 255” or “768 to 1023”, the signal modulation circuit 10 has the same frequency as the PDM signal output from the conventional ΔΣ digital modulator. PDM signal is output.
 このため、信号変調回路10は、出力するPDM信号の周波数がFETを適切に動作させることができる周波数の範囲を超えてしまう場合には、PDM信号の周波数を二分の一に抑えて出力する。また、信号変調回路10は、出力するPDM信号の周波数がFETを適切に動作させることができる周波数の範囲に含まれる場合には、従来のΔΣデジタル変調器と同じ周波数でPDM信号を出力する。 For this reason, when the frequency of the PDM signal to be output exceeds the frequency range in which the FET can be appropriately operated, the signal modulation circuit 10 outputs the PDM signal while suppressing the frequency to one half. Further, the signal modulation circuit 10 outputs the PDM signal at the same frequency as the conventional ΔΣ digital modulator when the frequency of the PDM signal to be output is included in the frequency range in which the FET can be appropriately operated.
 この結果、信号変調回路10は、サーボ系の制御を行う場合にも、入力されたアナログ信号に対する応答性を保持し、かつ、出力するPDMの周波数をFETが適切に動作することができる周波数に収めることができる。このため、信号変調回路10は、電力素子回路が適切な動作を行う事ができる範囲を広くすることができる。 As a result, the signal modulation circuit 10 maintains the responsiveness to the input analog signal even when controlling the servo system, and sets the frequency of the output PDM to a frequency at which the FET can appropriately operate. Can fit. For this reason, the signal modulation circuit 10 can widen the range in which the power element circuit can perform an appropriate operation.
 カウンタ21は、第二差分器13と第二フリップフロップ18に対して、同期信号よりも長い時間間隔で信号を出力する。つまり、カウンタ21は、第二差分器13と第二フリップフロップ18に対して、サンプリング周波数よりも低い周波数でカウンタ信号を出力する。具体的には、カウンタ21は、利用者があらかじめ設定した任意の初期値「m」を取得する。また、カウンタ21は、カウンタ値を初期値「m」に設定し、同期信号Fsを受信するたびに、カウンタ値をカウントダウンする。 The counter 21 outputs a signal to the second differentiator 13 and the second flip-flop 18 at a time interval longer than the synchronization signal. That is, the counter 21 outputs a counter signal to the second differentiator 13 and the second flip-flop 18 at a frequency lower than the sampling frequency. Specifically, the counter 21 acquires an arbitrary initial value “m” preset by the user. Further, the counter 21 sets the counter value to the initial value “m”, and counts down the counter value every time the synchronization signal Fs is received.
 そして、カウンタ21は、カウンタ値が「0」になった場合には、第二差分器13と第二フリップフロップ18に対して、カウンタ信号を送信するとともに、カウンタ値をリセットする。 Then, when the counter value becomes “0”, the counter 21 transmits a counter signal to the second differentiator 13 and the second flip-flop 18 and resets the counter value.
 例えば、カウンタ21は、m=「1」とした場合には、同期信号Fsを2回受信するたびに、第二差分器13と第二フリップフロップ18に対して、カウンタ信号を送信する。つまり、第二差分器13と第二フリップフロップ18は、m=「1」とした場合には、第一差分器12と第一フリップフロップ17の半分の周波数で動作する。 For example, when m = “1”, the counter 21 transmits a counter signal to the second differentiator 13 and the second flip-flop 18 every time the synchronization signal Fs is received twice. That is, the second differentiator 13 and the second flip-flop 18 operate at half the frequency of the first differentiator 12 and the first flip-flop 17 when m = “1”.
 量子化回路23は、積分回路15によって算出された積分値が所定の値よりも大きい場合には、所定の長さのパルスをPDM信号として出力する。また、量子化回路23は、積分回路15によって算出された積分値が所定の値よりも大きい場合には、遅延回路24に対して、フィードバック信号を送信する。 The quantizing circuit 23 outputs a pulse having a predetermined length as a PDM signal when the integrated value calculated by the integrating circuit 15 is larger than a predetermined value. The quantization circuit 23 transmits a feedback signal to the delay circuit 24 when the integration value calculated by the integration circuit 15 is larger than a predetermined value.
 具体的には、量子化回路23は、積分回路15によって算出された積分値を取得する。そして、量子化回路23は、取得した積分値が「1024」以上である場合には、0.1×10-7秒の波長を有し、値「1」を示すパルスを出力する。また、量子化回路23は、取得した積分値が「1024」以上である場合には、「1024」を示すフィードバック信号を遅延回路24へ送信する。また、量子化回路23は、取得した積分値が「1024」未満である場合には、フィードバック信号を遅延回路24へ送信しない。 Specifically, the quantization circuit 23 acquires the integration value calculated by the integration circuit 15. When the acquired integral value is “1024” or more, the quantization circuit 23 outputs a pulse having a wavelength of 0.1 × 10 −7 seconds and indicating the value “1”. Further, when the acquired integral value is “1024” or more, the quantization circuit 23 transmits a feedback signal indicating “1024” to the delay circuit 24. Further, when the acquired integral value is less than “1024”, the quantization circuit 23 does not transmit a feedback signal to the delay circuit 24.
 遅延回路24は、量子化回路23からフィードバック信号を受信した場合には、受信したフィードバック信号を同期信号一つ分遅延させて差分回路11へ送信する遅延回路である。 The delay circuit 24 is a delay circuit that, when receiving a feedback signal from the quantization circuit 23, delays the received feedback signal by one synchronization signal and transmits it to the difference circuit 11.
[信号変調装置の処理]
 次に、図2~14を用いて、信号変調回路10が実行する処理の具体例を説明する。まず、図2、4を用いて、アナログ信号の値が「1~255」及び「768~1023」の範囲に含まれる場合に、信号変調回路10が実行する処理について説明する。なお、図2は、出力するPDM信号の周波数が所定の周波数を超えない範囲を説明するための図である。また、図3は、従来と同様の処理を実行する回路を説明するための図である。
[Processing of signal modulator]
Next, a specific example of processing executed by the signal modulation circuit 10 will be described with reference to FIGS. First, the processing executed by the signal modulation circuit 10 when the value of the analog signal is included in the range of “1 to 255” and “768 to 1023” will be described with reference to FIGS. FIG. 2 is a diagram for explaining a range in which the frequency of the PDM signal to be output does not exceed a predetermined frequency. FIG. 3 is a diagram for explaining a circuit that executes the same processing as in the prior art.
 図2に示すように、信号変調回路10は、入力されるアナログ信号の値が「1~255」及び「768~1023」に含まれる場合には、出力するPDM信号の周波数が25MHz以下であるので、従来のΔΣデジタル変調器と同様の処理を行う。 As shown in FIG. 2, in the signal modulation circuit 10, when the value of the input analog signal is included in “1 to 255” and “768 to 1023”, the frequency of the output PDM signal is 25 MHz or less. Therefore, the same processing as the conventional ΔΣ digital modulator is performed.
 つまり、信号変調回路10は、入力されるアナログ信号の値が「1~255」及び「768~1023」の範囲に含まれる場合には、図3中の実線で示すように、第一差分器12、スイッチ14を含む回路を用いて、入力されたアナログ信号の差分を算出する。また、信号変調回路10は、アナログ信号の値が「1~255」及び「768~1023」の範囲に含まれる場合には、図3中の実線で示すように、加算器16、第一フリップフロップ17、スイッチ19を含む回路を用いて、算出された差分の積分値を算出する。 That is, when the value of the input analog signal is included in the range of “1 to 255” and “768 to 1023”, the signal modulation circuit 10 includes the first subtractor as shown by the solid line in FIG. 12. The difference between the input analog signals is calculated using a circuit including the switch 14. Further, when the value of the analog signal is included in the range of “1 to 255” and “768 to 1023”, the signal modulation circuit 10 adds the adder 16 and the first flip-flop as indicated by the solid line in FIG. The integrated value of the calculated difference is calculated using a circuit including the switch 17 and the switch 19.
 そして、信号変調回路10は、算出された積分値に基づいて、量子化回路23からPDM信号としてのパルスを出力する。つまり、信号変調回路10は、従来のΔΣデジタル変調器が出力するPDM信号と同じ周波数のPDM信号を出力する。 Then, the signal modulation circuit 10 outputs a pulse as a PDM signal from the quantization circuit 23 based on the calculated integration value. That is, the signal modulation circuit 10 outputs a PDM signal having the same frequency as the PDM signal output from the conventional ΔΣ digital modulator.
 次に、図4、6を用いて、アナログ信号の値が「256~767」の範囲に含まれる場合に、信号変調回路10が実行する処理を説明する。なお、図4は、出力するPDM信号の周波数を下げる範囲を説明するための図である。また、図5は、PDM信号の周波数を下げる処理を実行する回路を説明するための図である。 Next, the processing executed by the signal modulation circuit 10 when the analog signal value is included in the range of “256 to 767” will be described with reference to FIGS. FIG. 4 is a diagram for explaining a range in which the frequency of the output PDM signal is lowered. FIG. 5 is a diagram for explaining a circuit that executes processing for reducing the frequency of the PDM signal.
 図4に示すように、信号変調回路10は、入力されるアナログ信号の値が「256~767」の範囲に含まれる際に、従来のΔΣデジタル変調器と等価な回路で処理を実行した場合には、出力するPDM信号の周波数が25MHzを超えてしまう。このため、信号変調回路10は、図3中の点線で示した回路と比較して、二分の一の周波数で動作する回路を用いて、アナログ信号をPDM信号に変調する。 As shown in FIG. 4, the signal modulation circuit 10 performs processing by a circuit equivalent to a conventional ΔΣ digital modulator when the value of the input analog signal is included in the range of “256 to 767”. In this case, the frequency of the output PDM signal exceeds 25 MHz. For this reason, the signal modulation circuit 10 modulates an analog signal into a PDM signal using a circuit that operates at a half frequency compared to the circuit indicated by the dotted line in FIG.
 具体的には、信号変調回路10は、入力されるアナログ信号の値が「256~767」の範囲に含まれる場合には、図5中の実線で示すように、第二差分器13、スイッチ14を含む回路を用いて、入力されたアナログ信号の差分を算出する。また、信号変調回路10は、入力されるアナログ信号の値が「256~767」の範囲に含まれる場合には、図5中の点線で示すように、加算器16、第二フリップフロップ18、スイッチ19を含む回路を用いて、算出された差分の積分値を算出する。 Specifically, when the value of the input analog signal is included in the range of “256 to 767”, the signal modulation circuit 10 includes the second differentiator 13 and the switch as indicated by the solid line in FIG. 14 is used to calculate the difference between the input analog signals. When the value of the input analog signal is included in the range of “256 to 767”, the signal modulation circuit 10 adds the adder 16, the second flip-flop 18, as shown by the dotted line in FIG. An integrated value of the calculated difference is calculated using a circuit including the switch 19.
 つまり、信号変調回路10は、図3中の実線で示すように、アナログ信号をPDM信号に変調し、変調後のPDM信号を出力する第一の変調回路を有する。また、信号変調回路10は、図5中の実線で示すように、第一の変調回路が出力するPDM信号よりも低い周波数のPDM信号に変調し、変調後のPDM信号を出力する第二の変調回路を有する。 That is, as shown by the solid line in FIG. 3, the signal modulation circuit 10 has a first modulation circuit that modulates an analog signal into a PDM signal and outputs the modulated PDM signal. Further, as shown by a solid line in FIG. 5, the signal modulation circuit 10 modulates a PDM signal having a frequency lower than that of the PDM signal output by the first modulation circuit, and outputs a modulated PDM signal. A modulation circuit is included.
 そして、信号変調回路10は、Din22に保持された値が「256~767」の範囲内であるか否かを判別する。その後、信号変調回路10は、Din22に保持された値が「256~767」の範囲内であると判別した場合には、第二の変調回路を用いて、アナログ信号をPDM信号に変調する。また、信号変調回路10は、Din22に保持された値が「256~767」の範囲外であると判別した場合には、第一の変調回路を用いて、アナログ信号をPDM信号に変調する。 Then, the signal modulation circuit 10 determines whether or not the value held in Din 22 is within the range of “256 to 767”. Thereafter, when the signal modulation circuit 10 determines that the value held in Din 22 is within the range of “256 to 767”, the signal modulation circuit 10 modulates the analog signal into the PDM signal using the second modulation circuit. If the signal modulation circuit 10 determines that the value held in Din 22 is outside the range of “256 to 767”, the signal modulation circuit 10 modulates the analog signal into a PDM signal using the first modulation circuit.
 次に、図6を用いて、入力されるアナログ信号の値が「256~767」の範囲に含まれる場合に、従来のΔΣデジタル変調器と信号変調回路10が算出する積分値について説明する。なお、図6は、従来のΔΣデジタル変調器が算出する積分値と実施例1に係る信号変調回路が算出する積分値とを比較するための図である。 Next, the integrated value calculated by the conventional ΔΣ digital modulator and the signal modulation circuit 10 when the value of the input analog signal is included in the range of “256 to 767” will be described using FIG. FIG. 6 is a diagram for comparing the integral value calculated by the conventional ΔΣ digital modulator with the integral value calculated by the signal modulation circuit according to the first embodiment.
 なお、図6に示す例では、入力値として「256」が従来のΔΣデジタル変調器と信号変調回路10に入力されたものとする。また、従来のΔΣデジタル変調器が有する量子化回路、および、信号変調回路10が有する量子化回路23は、「1024」以上の積分値が算出された場合には、PDM信号のパルスを出力するものとする。 In the example shown in FIG. 6, it is assumed that “256” is input to the conventional ΔΣ digital modulator and the signal modulation circuit 10 as an input value. Further, the quantization circuit included in the conventional ΔΣ digital modulator and the quantization circuit 23 included in the signal modulation circuit 10 output a pulse of the PDM signal when an integral value of “1024” or more is calculated. Shall.
 図6に示すように、従来のΔΣデジタル変調器が有する積分回路は、ΔΣデジタル変調気に入力値「256」が入力された場合には、0.1×10-7秒ごとに、積分値「256」、「512」、「768」、「1024」を繰り返し算出する。一方、第二差分器13と第二フリップフロップ18は、図6中のFに示すように、クロック信号が1の場合には、直前に出力した値と同じ値を出力する。 As shown in FIG. 6, the integration circuit of the conventional ΔΣ digital modulator has an integration value every 0.1 × 10 −7 seconds when the input value “256” is input to the ΔΣ digital modulation signal. “256”, “512”, “768”, and “1024” are repeatedly calculated. On the other hand, when the clock signal is 1, the second differentiator 13 and the second flip-flop 18 output the same value as the value output immediately before, as indicated by F in FIG.
 このため、信号変調回路10の積分回路15は、図6中のGに示すように、直前に出力した値と同じ「1024」を出力する。また、第二差分器13と第二フリップフロップ18は、図6中のHに示すように、クロック信号を受信しなかった場合には、新たな値を出力する。このため、信号変調回路10の積分回路15は、図6中のIに示すように、新たな積分値「256」を出力する。つまり、信号変調回路10の積分回路15は、0.2×10-7秒ごとに、積分値「256」、「512」、「768」、「1024」を繰り返し算出する。 Therefore, the integration circuit 15 of the signal modulation circuit 10 outputs “1024”, which is the same as the value output immediately before, as indicated by G in FIG. Further, as shown by H in FIG. 6, the second differentiator 13 and the second flip-flop 18 output a new value when the clock signal is not received. Therefore, the integration circuit 15 of the signal modulation circuit 10 outputs a new integration value “256” as indicated by I in FIG. That is, the integration circuit 15 of the signal modulation circuit 10 repeatedly calculates integration values “256”, “512”, “768”, and “1024” every 0.2 × 10 −7 seconds.
 次に、図7を用いて、従来のΔΣデジタル変調器が出力するPDM信号を説明する。なお、図7は、従来のΔΣデジタル変調器が出力するPDM信号を説明するための図である。図7に示すように、従来のΔΣデジタル変調器は、0.1×10-7秒ごとに、積分値「256」、「512」、「768」、「1024」を繰り返し算出する。このため、従来のΔΣデジタル変調器は、0.1×10-7秒の波長を有するパルスを0.4×10-7秒の周期で出力する。 Next, the PDM signal output from the conventional ΔΣ digital modulator will be described with reference to FIG. FIG. 7 is a diagram for explaining a PDM signal output from a conventional ΔΣ digital modulator. As shown in FIG. 7, the conventional ΔΣ digital modulator repeatedly calculates integral values “256”, “512”, “768”, and “1024” every 0.1 × 10 −7 seconds. Therefore, the conventional ΔΣ digital modulator outputs a pulse having a wavelength of 0.1 × 10 −7 seconds with a period of 0.4 × 10 −7 seconds.
 次に、図8を用いて、信号変調回路10が出力するPDM信号を説明する。なお、図8は、実施例1に係る信号変調回路が出力するPDM信号を説明するための図である。図8に示すように、信号変調回路10は、0.2×10-7秒ごとに、積分値「256」、「512」、「768」、「1024」を繰り返し算出する。このため、信号変調回路10は、0.2×10-7秒の波長を有するパルスを0.8×10-7秒の周期で出力する。 Next, the PDM signal output from the signal modulation circuit 10 will be described with reference to FIG. FIG. 8 is a diagram for explaining the PDM signal output from the signal modulation circuit according to the first embodiment. As shown in FIG. 8, the signal modulation circuit 10 repeatedly calculates integral values “256”, “512”, “768”, and “1024” every 0.2 × 10 −7 seconds. Therefore, the signal modulation circuit 10 outputs a pulse having a wavelength of 0.2 × 10 −7 seconds with a cycle of 0.8 × 10 −7 seconds.
 つまり、信号変調回路10は、従来のΔΣデジタル変調器が出力するPDM信号よりも低い周波数のPDM信号であって、従来のΔΣデジタル変調器が出力するPDM信号とデューティー比が同じPDM信号を出力する。この結果、図7中の斜線部分と図8中の斜線部分とに示すように、信号変調回路10が出力するPDM信号を積分した値は、従来のΔΣデジタル変調器が出力するPDM信号を積分した値と同じ値を保つことができる。この結果、信号変調回路10は、従来の二分の一の周波数でPDM信号を出力した場合にも、電力素子回路が供給する電力量を従来と同じ電力量に保つことができる。 That is, the signal modulation circuit 10 outputs a PDM signal having a frequency lower than that of the PDM signal output from the conventional ΔΣ digital modulator and having the same duty ratio as the PDM signal output from the conventional ΔΣ digital modulator. To do. As a result, as indicated by the hatched portion in FIG. 7 and the hatched portion in FIG. 8, the value obtained by integrating the PDM signal output from the signal modulation circuit 10 is integrated with the PDM signal output from the conventional ΔΣ digital modulator. The same value can be maintained. As a result, the signal modulation circuit 10 can keep the amount of power supplied by the power element circuit at the same amount as before even when the PDM signal is output at half the conventional frequency.
 ここで、図9は、実施例1に係る信号変調回路が出力するPDM信号の周波数を示す図である。図9中のJに示すように、信号変調回路10は、入力されるアナログ信号の値が「256~767」の範囲に含まれる場合には、出力するPDM信号の周波数を二分の一に抑える。このため、信号変調回路10は、PDM信号の周波数をFETが適切に動作する周波数以下に抑える結果、適切に電力素子回路を動作させることができる。 Here, FIG. 9 is a diagram illustrating the frequency of the PDM signal output from the signal modulation circuit according to the first embodiment. As indicated by J in FIG. 9, the signal modulation circuit 10 suppresses the frequency of the output PDM signal to ½ when the value of the input analog signal is included in the range of “256 to 767”. . For this reason, the signal modulation circuit 10 can appropriately operate the power element circuit as a result of suppressing the frequency of the PDM signal to be equal to or lower than the frequency at which the FET operates appropriately.
 また、信号変調回路10は、入力されるアナログ信号の値が「1~255」及び「768~1023」の範囲に含まれる場合には、従来のΔΣデジタル変調器と同じ周波数を有するPDM信号を出力する。つまり、信号変調回路10は、PDM信号の周波数を下げる必要がない範囲では、従来のΔΣデジタル変調器と同じ周波数を有するPDM信号を出力するので、入力されたアナログ信号に対する応答性を保持することができる。この結果、信号変調回路10は、図9中のKに示すように、PDM信号の周波数を適切な範囲内に収める範囲を広くすることができる。 Further, when the value of the input analog signal is included in the range of “1 to 255” and “768 to 1023”, the signal modulation circuit 10 outputs a PDM signal having the same frequency as that of the conventional ΔΣ digital modulator. Output. That is, since the signal modulation circuit 10 outputs a PDM signal having the same frequency as that of a conventional ΔΣ digital modulator within a range where it is not necessary to lower the frequency of the PDM signal, the signal modulation circuit 10 maintains responsiveness to the input analog signal. Can do. As a result, the signal modulation circuit 10 can widen the range in which the frequency of the PDM signal falls within an appropriate range, as indicated by K in FIG.
 また、図10は、実施例1に係る信号変調回路が出力するPDM信号の周波数と従来のΔΣデジタル変調器が出力するPDM信号の周波数とを比較するための図である。図10中の点線で示すように、従来のΔΣデジタル変調器は、サンプリング周波数を二分の一にした場合には、PDM信号の周波数を一律で二分の一に下げてしまうため、図10中のLで示すように、電力素子回路が適切な動作を行うことができる範囲を狭くする。 FIG. 10 is a diagram for comparing the frequency of the PDM signal output from the signal modulation circuit according to the first embodiment and the frequency of the PDM signal output from the conventional ΔΣ digital modulator. As shown by the dotted line in FIG. 10, the conventional ΔΣ digital modulator reduces the frequency of the PDM signal uniformly to one half when the sampling frequency is halved. As indicated by L, the range in which the power element circuit can perform an appropriate operation is narrowed.
 一方、図10中の実線で示すように、信号変調回路10は、アナログ信号の値が「256~767」の範囲に含まれる場合にのみ、PDM信号の周波数を二分の一に抑えることができる。この結果、信号変調回路10は、図10中のMに示すように、電力素子回路が適切な動作を行う事ができる範囲を広くすることができる。 On the other hand, as shown by the solid line in FIG. 10, the signal modulation circuit 10 can suppress the frequency of the PDM signal to half only when the value of the analog signal is included in the range of “256 to 767”. . As a result, the signal modulation circuit 10 can widen the range in which the power element circuit can perform an appropriate operation, as indicated by M in FIG.
 次に、図11を用いて、信号変調回路10が出力するPDM信号の積分値について詳しく説明する。なお、図11は、実施例1に係る信号変調回路が出力するPDM信号の積分値と従来のΔΣデジタル変調器が出力するPDM信号の積分値とを比較するための図である。 Next, the integrated value of the PDM signal output from the signal modulation circuit 10 will be described in detail with reference to FIG. FIG. 11 is a diagram for comparing the integrated value of the PDM signal output from the signal modulation circuit according to the first embodiment and the integrated value of the PDM signal output from the conventional ΔΣ digital modulator.
 図11に示すように、従来のΔΣデジタル変調器は、入力値が「256」である場合には、0.4×10-7秒の周期で0.1×10-7秒の波長を有するパルスを出力する。一方、信号変調回路10は、入力値が「256」である場合には、0.8×10-7秒の周期で0.2×10-7秒の波長を有するパルスを出力する。このため、入力値が変化する時間スケールが0.8×10-7秒よりも十分に大きい場合には、従来のΔΣデジタル変調器が出力するPDM信号のパルスを積分した値と信号変調回路10が出力するPDM信号のパルスを積分した値とは同じ値となる。 As shown in FIG. 11, the conventional ΔΣ digital modulator has a wavelength of 0.1 × 10 −7 seconds with a period of 0.4 × 10 −7 seconds when the input value is “256”. Output a pulse. On the other hand, when the input value is “256”, the signal modulation circuit 10 outputs a pulse having a wavelength of 0.2 × 10 −7 seconds with a period of 0.8 × 10 −7 seconds. Therefore, when the time scale at which the input value changes is sufficiently larger than 0.8 × 10 −7 seconds, the value obtained by integrating the pulse of the PDM signal output from the conventional ΔΣ digital modulator and the signal modulation circuit 10 Is the same value as the integrated value of the pulse of the PDM signal output from the.
 また、図11に示すように、従来のΔΣデジタル変調器は、入力値が「512」である場合には、0.2×10-7秒の周期で0.1×10-7秒の波長を有するパルスを出力する。一方、信号変調回路10は、入力値が「512」である場合には、0.4×10-7秒の周期で0.4×10-7秒の波長を有するパルスを出力する。このため、入力値が変化する時間スケールが0.2×10-7秒よりも十分に大きい場合には、従来のΔΣデジタル変調器が出力するPDM信号のパルスを積分した値と信号変調回路10が出力するPDM信号のパルスを積分した値とは同じ値となる。 As shown in FIG. 11, the conventional ΔΣ digital modulator has a wavelength of 0.1 × 10 −7 seconds with a period of 0.2 × 10 −7 seconds when the input value is “512”. Is output. On the other hand, when the input value is “512”, the signal modulation circuit 10 outputs a pulse having a wavelength of 0.4 × 10 −7 seconds with a period of 0.4 × 10 −7 seconds. For this reason, when the time scale at which the input value changes is sufficiently larger than 0.2 × 10 −7 seconds, the value obtained by integrating the pulse of the PDM signal output from the conventional ΔΣ digital modulator and the signal modulation circuit 10 Is the same value as the integrated value of the pulse of the PDM signal output from the.
 また、図11に示すように、従来のΔΣデジタル変調器は、入力値が「768」である場合には、0.4×10-7秒の周期で0.3×10-7秒の波長を有するパルスを出力する。一方、信号変調回路10は、入力値が「768」である場合には、0.8×10-7秒の周期で0.6×10-7秒の波長を有するパルスを出力する。このため、入力値が変化する時間スケールが0.8×10-7秒よりも十分に大きい場合には、従来のΔΣデジタル変調器が出力するPDM信号のパルスを積分した値と信号変調回路10が出力するPDM信号のパルスを積分した値とは同じ値となる。 Further, as shown in FIG. 11, when the input value is “768”, the conventional ΔΣ digital modulator has a wavelength of 0.3 × 10 −7 seconds with a period of 0.4 × 10 −7 seconds. Is output. On the other hand, when the input value is “768”, the signal modulation circuit 10 outputs a pulse having a wavelength of 0.6 × 10 −7 seconds with a period of 0.8 × 10 −7 seconds. Therefore, when the time scale at which the input value changes is sufficiently larger than 0.8 × 10 −7 seconds, the value obtained by integrating the pulse of the PDM signal output from the conventional ΔΣ digital modulator and the signal modulation circuit 10 Is the same value as the integrated value of the pulse of the PDM signal output from the.
 このように、信号変調回路10は、入力値の値にかかわらず、従来のΔΣデジタル変調器が出力するPDM信号のパルスと同じ積分値を有し、かつ、従来のΔΣデジタル変調器が出力するPDM信号よりも低い周波数のPDM信号を出力する。このため、信号変調回路10は、図12に示すように、入力されたアナログ信号の値にかかわらず、電力素子回路に適切な電力の供給を実行させることができる。なお、図12は、出力されるPDM信号の積分値を説明するための図である。 As described above, the signal modulation circuit 10 has the same integration value as the pulse of the PDM signal output from the conventional ΔΣ digital modulator regardless of the value of the input value, and the conventional ΔΣ digital modulator outputs it. A PDM signal having a frequency lower than that of the PDM signal is output. Therefore, as shown in FIG. 12, the signal modulation circuit 10 can cause the power element circuit to supply appropriate power regardless of the value of the input analog signal. FIG. 12 is a diagram for explaining an integrated value of the output PDM signal.
 次に、図13を用いて、信号変調回路10を有するΔΣデジタル変調回路について説明する。図13は、実施例1に係る信号変調回路を有するΔΣデジタル変調回路を説明するための図である。従来のΔΣデジタル変調回路は、差分回路と積分回路とを入力値によらず動作させていた。一方、図13中点線で示す範囲を実施例1に係る信号変調回路10に置き換えたΔΣデジタル変調回路は、入力値に応じて、デューティー比を保ったまま低い周波数のPDM信号を送信することができる。このようなΔΣデジタル変調回路は、後段の電力素子回路が適切に動作する範囲の周波数でPDM信号を送信するので、電力素子回路が適切な動作を行う事ができる範囲を広くする。 Next, a ΔΣ digital modulation circuit having the signal modulation circuit 10 will be described with reference to FIG. FIG. 13 is a diagram for explaining the ΔΣ digital modulation circuit having the signal modulation circuit according to the first embodiment. The conventional ΔΣ digital modulation circuit operates the difference circuit and the integration circuit regardless of the input value. On the other hand, the ΔΣ digital modulation circuit in which the range indicated by the dotted line in FIG. 13 is replaced with the signal modulation circuit 10 according to the first embodiment can transmit a low-frequency PDM signal while maintaining the duty ratio according to the input value. it can. Such a ΔΣ digital modulation circuit transmits a PDM signal at a frequency in a range in which the power element circuit in the subsequent stage appropriately operates, so that a range in which the power element circuit can perform an appropriate operation is widened.
[信号変調器の処理の流れ]
 次に、図14を用いて、信号変調回路10が実行する処理の流れを説明する。図14は、信号変調回路が実行する処理の流れを説明するためのフローチャートである。なお、図14に示す例では、信号変調回路10は、電源が入力されたことを契機として、処理を開始する。
[Processing flow of signal modulator]
Next, the flow of processing executed by the signal modulation circuit 10 will be described with reference to FIG. FIG. 14 is a flowchart for explaining the flow of processing executed by the signal modulation circuit. In the example illustrated in FIG. 14, the signal modulation circuit 10 starts processing when the power is input.
 まず、信号変調回路10は、出力するPDM信号の周波数の最大値であるFcyc_maxを「1/2」とするように利用者によって定められる(ステップS101)。次に、信号変調回路10は、出力するPDM信号の周波数を「1/2」とする範囲を識別する(ステップS102)。 First, the signal modulation circuit 10 is determined by the user so that Fcyc_max, which is the maximum value of the frequency of the PDM signal to be output, is set to “1/2” (step S101). Next, the signal modulation circuit 10 identifies a range in which the frequency of the output PDM signal is “½” (step S102).
 次に、信号変調回路10は、Din22に入力値が保持されているか否かを判別する(ステップS103)。そして、信号変調回路10は、Din22に入力値が保持されていると判別した場合には(ステップS103肯定)、PDM信号の周波数を「1/2」とする範囲に入力値が含まれているか否かを判別する(ステップS104)。 Next, the signal modulation circuit 10 determines whether or not the input value is held in the Din 22 (step S103). If the signal modulation circuit 10 determines that the input value is held in Din 22 (Yes in step S103), is the input value included in the range in which the frequency of the PDM signal is “1/2”? It is determined whether or not (step S104).
 次に、信号変調回路10は、PDM信号の周波数を「1/2」とする範囲に入力値が含まれていると判別した場合には(ステップS104肯定)、カウンタ初期値に「1」を設定する(ステップS105)。次に、信号変調回路10は、カウントダウンを実行する(ステップS106)。そして、信号変調回路10は、カウンタの値が「0」であるか否かを判別する(ステップS107)。 Next, when the signal modulation circuit 10 determines that the input value is included in the range where the frequency of the PDM signal is “½” (Yes in step S104), the counter initial value is set to “1”. Setting is performed (step S105). Next, the signal modulation circuit 10 performs countdown (step S106). Then, the signal modulation circuit 10 determines whether or not the value of the counter is “0” (step S107).
 また、信号変調回路10は、カウンタの値が「0」であると判別した場合には(ステップS107肯定)、図5中の実線で示した回路を用いて、差分演算と積分演算とを実行する(ステップS108)。その後、信号変調回路10は、演算結果に応じてパルスを出力する(ステップS109)。 Further, when the signal modulation circuit 10 determines that the value of the counter is “0” (Yes at Step S107), the signal modulation circuit 10 executes difference calculation and integration calculation using the circuit indicated by the solid line in FIG. (Step S108). Thereafter, the signal modulation circuit 10 outputs a pulse according to the calculation result (step S109).
 一方、信号変調回路10は、カウンタの値が「0」ではないと判別した場合には(ステップS107否定)、直前のステップでの演算結果に応じて、パルスを出力する(ステップS110)。 On the other hand, when the signal modulation circuit 10 determines that the value of the counter is not “0” (No at Step S107), the signal modulation circuit 10 outputs a pulse according to the calculation result at the immediately preceding step (Step S110).
 また、信号変調回路10は、PDM信号の周波数を「1/2」とする範囲に入力値が含まれていないと判別した場合には(ステップS104否定)、図3中の実線で示した回路を用いて、差分演算と積分演算とを実行する(ステップS108)。また、信号変調回路10は、パルスを出力した場合には(ステップS109、S110)、再度Din22に入力値が保持されているか否かを判別する(ステップS103)。そして、信号変調回路10は、Din22に入力値が保持されていないと判別した場合には(ステップS103否定)、処理を終了する。 When the signal modulation circuit 10 determines that the input value is not included in the range where the frequency of the PDM signal is “½” (No in step S104), the circuit indicated by the solid line in FIG. Is used to execute the difference calculation and the integration calculation (step S108). Further, when the signal modulation circuit 10 outputs a pulse (steps S109 and S110), it again determines whether or not the input value is held in the Din 22 (step S103). If the signal modulation circuit 10 determines that the input value is not held in Din 22 (No in step S103), the signal modulation circuit 10 ends the process.
[実施例1の効果]
 上述したように、実施例1に係る信号変調回路10は、Din20に保持された入力値が「256~767」の範囲内に含まれるか否かを判別するXOR20を有する。そして、信号変調回路10は、入力値が「1~255」及び「767~1023」の範囲内に含まれる場合には、同期信号に従って差分回路11と積分回路15とを動作させ、入力値をPDM信号に変調する。また、信号変調回路10は、Din20に保持された入力値が「256~767」の範囲内に含まれる場合には、同期信号よりも長い時間間隔で差分回路11と積分回路15とを動作させ、入力値をPDM信号に変調する。
[Effect of Example 1]
As described above, the signal modulation circuit 10 according to the first embodiment includes the XOR 20 that determines whether or not the input value held in the Din 20 is included in the range of “256 to 767”. When the input value is included in the range of “1 to 255” and “767 to 1023”, the signal modulation circuit 10 operates the difference circuit 11 and the integration circuit 15 according to the synchronization signal, and sets the input value. Modulate to PDM signal. Further, when the input value held in Din 20 is included in the range of “256 to 767”, the signal modulation circuit 10 operates the difference circuit 11 and the integration circuit 15 at a time interval longer than the synchronization signal. The input value is modulated into a PDM signal.
 このため、信号変調回路10は、アナログ信号に対する応答を保持したまま、出力するPDM信号の周波数をFETが適切に動作することができる範囲に抑えることができ、電力素子回路が適切な動作を行う事ができる範囲を広くする。 For this reason, the signal modulation circuit 10 can suppress the frequency of the PDM signal to be output to a range in which the FET can appropriately operate while maintaining the response to the analog signal, and the power element circuit performs an appropriate operation. Increase the range of things you can do.
 また、実施例1に係る積分回路15は、入力値が「1~255」及び「767~1023」の範囲内に含まれる場合には、算出した積分値を同期信号と同じ時間間隔で量子化回路23に出力する。また、積分回路15は、入力値が「256~767」の範囲内に含まれる場合には、算出した積分値を同期信号よりも長い時間間隔で量子化器23に出力する。このため、信号変調回路10は、量子化回路23に出力させるPDM信号のデューティー比を保持しつつ、PDM信号の周波数を下げる結果、電力素子回路に適切な電力の供給を実行させることができる。 Further, the integration circuit 15 according to the first embodiment quantizes the calculated integration value at the same time interval as the synchronization signal when the input value is included in the range of “1 to 255” and “767 to 1023”. Output to the circuit 23. Further, when the input value is included in the range of “256 to 767”, the integration circuit 15 outputs the calculated integration value to the quantizer 23 at a time interval longer than the synchronization signal. Therefore, the signal modulation circuit 10 can cause the power element circuit to supply appropriate power as a result of lowering the frequency of the PDM signal while maintaining the duty ratio of the PDM signal output to the quantization circuit 23.
 また、実施例1に係る積分回路15は、同期信号と同じ時間間隔で動作する第一フリップフロップ17と同期信号よりも長い時間間隔で動作する第二フリップフロップ18を有する。そして、積分回路15は、入力値が「1~255」及び「767~1023」の範囲内に含まれる場合には、第一フリップフロップ17に保持された値を用いて積分を実行する。また、積分回路15は、入力値が「256~767」の範囲内に含まれる場合には、第二フリップフロップ18に保持された値を用いて積分を実行する。このため、差分回路15は、同期信号よりも長い時間間隔で動作した場合にも、適切な積分値を算出することができる。結果として、信号変調回路10は、サンプリング周波数を下げることなく、出力するPDM信号の周波数を適切に抑えることができる。 Further, the integration circuit 15 according to the first embodiment includes the first flip-flop 17 that operates at the same time interval as the synchronization signal and the second flip-flop 18 that operates at a time interval longer than the synchronization signal. Then, when the input value is included in the range of “1 to 255” and “767 to 1023”, the integration circuit 15 performs integration using the value held in the first flip-flop 17. Further, when the input value is included in the range of “256 to 767”, the integration circuit 15 performs integration using the value held in the second flip-flop 18. For this reason, the difference circuit 15 can calculate an appropriate integral value even when it operates at a time interval longer than the synchronization signal. As a result, the signal modulation circuit 10 can appropriately suppress the frequency of the output PDM signal without reducing the sampling frequency.
 また、実施例1に係る差分回路11は、同期信号と同じ時間間隔で動作する第一差分器12と同期信号よりも長い時間間隔で動作する第二差分器13とを有する。そして、差分回路11は、入力値が「1~255」及び「767~1023」の範囲内に含まれる場合には、第一差分器12によって算出された差分値を積分回路15に入力する。また、差分回路11は、入力値が「256~767」の範囲内に含まれる場合には、第二差分器13によって算出された差分値を積分回路15に入力する。このため、差分回路11は、同期信号よりも長い時間間隔で動作した場合にも、適切な差分値を算出することができる。結果として、信号変調回路10は、サンプリング周波数を下げることなく、出力するPDM信号の周波数を適切に抑えることができる。 Further, the difference circuit 11 according to the first embodiment includes a first differentiator 12 that operates at the same time interval as the synchronization signal and a second differencer 13 that operates at a time interval longer than the synchronization signal. The difference circuit 11 inputs the difference value calculated by the first differentiator 12 to the integration circuit 15 when the input value falls within the range of “1 to 255” and “767 to 1023”. Further, the difference circuit 11 inputs the difference value calculated by the second differentiator 13 to the integration circuit 15 when the input value is included in the range of “256 to 767”. For this reason, the difference circuit 11 can calculate an appropriate difference value even when it operates at a time interval longer than the synchronization signal. As a result, the signal modulation circuit 10 can appropriately suppress the frequency of the output PDM signal without reducing the sampling frequency.
 また、実施例1に係る信号変調回路10は、カウンタ21を有し、カウンタ21が出力するクロック信号に合わせて第二差分器13と第二フリップフロップ18を動作させる。このため、信号変調回路10は、出力するPDM信号の周波数を任意の割合で低くすることができる。例えば、信号変調回路10は、カウンタ21に初期値「m=1」が設定された場合には、出力するPDM信号の周波数を「1/2」とし、カウンタ21に初期値「m=3」が設定された場合には、出力するPDM信号の周波数を「1/4」とすることができる。 In addition, the signal modulation circuit 10 according to the first embodiment includes a counter 21 and operates the second differentiator 13 and the second flip-flop 18 in accordance with a clock signal output from the counter 21. For this reason, the signal modulation circuit 10 can lower the frequency of the output PDM signal at an arbitrary ratio. For example, when the initial value “m = 1” is set in the counter 21, the signal modulation circuit 10 sets the frequency of the output PDM signal to “½” and sets the counter 21 to the initial value “m = 3”. Is set, the frequency of the PDM signal to be output can be set to “1/4”.
 これまで本発明の実施例について説明したが実施例は、上述した実施例以外にも様々な異なる形態にて実施されてよいものである。そこで、以下では実施例2として本発明に含まれる他の実施例を説明する。 Although the embodiments of the present invention have been described so far, the embodiments may be implemented in various different forms other than the embodiments described above. Therefore, another embodiment included in the present invention will be described below as a second embodiment.
(1)パラメータについて
 上述した信号変調回路10は、入力分解能を10bit、サンプリング周波数を100MHzとして、アナログ信号をPDM信号に変調した。しかし、実施例は、これに限定されるものではなく、例えば、サンプリング周波数を1000Hzとしてもよい。
(1) Parameters The signal modulation circuit 10 described above modulates an analog signal into a PDM signal with an input resolution of 10 bits and a sampling frequency of 100 MHz. However, the embodiment is not limited to this. For example, the sampling frequency may be 1000 Hz.
 また、上述した量子化回路23は、「1024」を示すフィードバック信号を送信した。しかし、実施例はこれに限定されるものではなく、例えば、入力分解能を「N」bitと設定する場合には、量子化回路は、「2」を示すフィードバック信号を送信する。 Further, the quantization circuit 23 described above transmits a feedback signal indicating “1024”. However, the embodiment is not limited to this. For example, when the input resolution is set to “N” bits, the quantization circuit transmits a feedback signal indicating “2 N ”.
 また、上述した量子化回路23は、「1024」以上の積分値が出力された際にPDM信号のパルスを送信したが、実施例はこれに限定されるものではなく、例えば、「512」以上の積分値が出力された場合にPDM信号のパルスを送信してもよい。 The quantization circuit 23 described above transmits a pulse of the PDM signal when an integral value of “1024” or more is output. However, the embodiment is not limited to this, and for example, “512” or more. When the integrated value of is output, a pulse of the PDM signal may be transmitted.
 また、上述した信号変調回路10は、カウンタ21に初期値mとして「1」を入力した。しかし、実施例は、これに限定されるものではない。例えば、信号変調回路10は、出力するPDM信号の最大値を「1/4」に抑える場合には、初期値mとして「3」を入力すればよい。 The signal modulation circuit 10 described above inputs “1” as the initial value m to the counter 21. However, the embodiment is not limited to this. For example, when the maximum value of the PDM signal to be output is suppressed to “1/4”, the signal modulation circuit 10 may input “3” as the initial value m.
 ここで、信号変調回路10は、カウンタ21とXOR回路20とを連携し、入力値を判別し、PDM信号の最大値を制御する。また、入力値を判別する判別回路はXOR回路20に限定されない。 Here, the signal modulation circuit 10 cooperates with the counter 21 and the XOR circuit 20, determines the input value, and controls the maximum value of the PDM signal. Further, the determination circuit for determining the input value is not limited to the XOR circuit 20.
(2)差分回路と積分回路の動作について
 上述した信号変調回路10では、第二差分器13と第二フリップフロップ18は、カウンタ信号が1の場合には、直前に出力した値と同じ値を出力していた。しかし、実施例は、これに限定されるものではない。
(2) Regarding the operation of the difference circuit and the integration circuit In the signal modulation circuit 10 described above, when the counter signal is 1, the second difference unit 13 and the second flip-flop 18 have the same value as the value output immediately before. It was output. However, the embodiment is not limited to this.
 上述したように、入力値の範囲が所定の範囲に含まれる場合に、PDM信号の周波数を低くすることができれば、電力素子回路を適切に動作させる範囲を広くすることができる。 As described above, when the range of the input value is included in the predetermined range, if the frequency of the PDM signal can be lowered, the range in which the power element circuit can be appropriately operated can be widened.
 10 信号変調回路
 11 差分回路
 12 第一差分器12
 13 第二差分器13
 14 スイッチ
 15 積分回路
 16 加算器16
 17 第一フリップフロップ
 18 第二フリップフロップ
 19 スイッチ
 20 XOR回路
 21 カウンタ
 22 Din
 23 量子化回路
 24 遅延回路
DESCRIPTION OF SYMBOLS 10 Signal modulation circuit 11 Difference circuit 12 1st difference device 12
13 Second subtractor 13
14 switch 15 integration circuit 16 adder 16
17 First flip-flop 18 Second flip-flop 19 Switch 20 XOR circuit 21 Counter 22 Din
23 Quantization circuit 24 Delay circuit

Claims (7)

  1.  連続して入力される入力値に応じた差分信号を所定の時間間隔で積分して出力する積分回路と、
     前記積分回路の出力を量子化した量子化信号を出力する量子化回路と、
     前記量子化回路によって量子化信号が出力された場合には、当該量子化信号が出力されてから前記所定の時間間隔が経過した後に、当該量子化信号と前記入力値とに応じた差分信号を算出し、当該算出した差分信号を前記積分回路に入力する差分回路と、
     前記入力値を監視し、該入力値が所定の範囲内に含まれるか否かを判別する判別回路と、
     を備え、
     前記積分回路は、前記判別回路によって入力値が所定の範囲内に含まれると判別された場合には、前記所定の時間間隔を延長した時間間隔が経過した後で差分信号を積分して出力し、
     前記差分回路は、前記判別回路によって入力値が所定の範囲内に含まれると判別された場合には、前記量子化信号が出力されてから前記所定の時間間隔が経過した後に、当該量子化信号と前記入力値とに応じた差分信号を算出し、当該算出した差分信号を前記所定の時間間隔を延長した時間間隔が経過した後で、前記積分回路に入力することを特徴とする信号変調回路。
    An integration circuit that integrates and outputs a differential signal corresponding to an input value that is continuously input at a predetermined time interval;
    A quantizing circuit that outputs a quantized signal obtained by quantizing the output of the integrating circuit;
    When a quantized signal is output by the quantizing circuit, after the predetermined time interval has elapsed since the quantized signal was output, a difference signal corresponding to the quantized signal and the input value is output. A difference circuit that calculates and inputs the calculated difference signal to the integration circuit;
    A determination circuit that monitors the input value and determines whether or not the input value is included in a predetermined range;
    With
    The integration circuit integrates and outputs the difference signal after a time interval obtained by extending the predetermined time interval elapses when the determination circuit determines that the input value falls within a predetermined range. ,
    When the difference circuit determines that the input value is included in a predetermined range by the determination circuit, the difference signal is output after the predetermined time interval has elapsed since the output of the quantized signal. And a difference signal corresponding to the input value, and the calculated difference signal is input to the integration circuit after a time interval obtained by extending the predetermined time interval has elapsed. .
  2.  前記積分回路は、前記判別回路によって入力値が所定の範囲内に含まれると判別された場合には、前記所定の時間間隔を延長した時間間隔で前記差分信号を積分するとともに、当該差分信号を積分した信号を当該延長した時間間隔が経過した後で出力し、前記判別回路によって入力値が所定の範囲内に含まれないと判別された場合には、前記所定の時間間隔で前記差分信号を積分するとともに、当該差分信号を積分した信号を当該時間間隔が経過した後で出力することを特徴とする請求項1に記載の信号変調回路。 When the determination circuit determines that the input value falls within a predetermined range, the integration circuit integrates the difference signal at a time interval obtained by extending the predetermined time interval, and The integrated signal is output after the extended time interval has elapsed, and if the determination circuit determines that the input value does not fall within a predetermined range, the difference signal is output at the predetermined time interval. 2. The signal modulation circuit according to claim 1, wherein the signal modulation circuit integrates and outputs a signal obtained by integrating the difference signal after the time interval elapses.
  3.  前記積分回路は、
     前記差分回路から入力された差分信号を用いて、前記所定の時間間隔で新たな積分信号を算出する加算回路と、
     前記加算回路によって新たな積分信号が算出された場合には、当該算出された積分信号を一時的に保持し、前記所定の時間間隔が経過した後で、該保持した積分信号を出力する第一保持回路と、
     前記加算回路によって新たな積分信号が算出された場合には、当該算出された積分信号を一時的に保持し、前記所定の時間間隔が経過した後で前記延長した時間間隔が経過するまでの間、該保持した積分信号を出力する第二保持回路と
     前記判別回路によって入力値が所定の範囲内に含まれないと判別された場合には、前記第一保持回路によって出力された積分信号を加算器に伝達し、前記判別回路によって入力値が所定の範囲内に含まれると判別された場合には、前記第二保持回路によって出力された積分信号を加算器に伝達する伝達回路と、
     を備え、
     前記加算回路は、
     前記伝達回路から取得した積分信号と前記差分信号とを加算することで、新たな積分信号を算出することを特徴とする請求項1に記載の信号変調回路。
    The integration circuit includes:
    An adder circuit that calculates a new integrated signal at the predetermined time interval using the difference signal input from the difference circuit;
    When a new integration signal is calculated by the adder circuit, the calculated integration signal is temporarily held, and the held integration signal is output after the predetermined time interval has elapsed. A holding circuit;
    When a new integration signal is calculated by the adder circuit, the calculated integration signal is temporarily held until the extended time interval elapses after the predetermined time interval elapses. A second holding circuit that outputs the held integration signal; and if the determination circuit determines that the input value is not within a predetermined range, adds the integration signal output by the first holding circuit. A transmission circuit that transmits the integrated signal output by the second holding circuit to the adder when the determination circuit determines that the input value is included in a predetermined range by the determination circuit;
    With
    The adder circuit
    The signal modulation circuit according to claim 1, wherein a new integration signal is calculated by adding the integration signal acquired from the transmission circuit and the difference signal.
  4.  前記差分回路は、
     前記量子化回路によって量子化信号が出力された場合には、当該量子化信号が出力されてから前記所定の時間間隔が経過した後に、当該量子化信号と前記入力値とに応じた差分信号を算出し、当該算出した差分信号を前記所定の時間間隔が経過した後で出力する第一差分回路と、
     前記量子化回路によって量子化信号が出力された場合には、前記量子化信号が出力されてから前記所定の時間間隔が経過した後に、当該量子化信号と前記入力値とに応じた差分信号を算出し、当該算出した差分信号を前記所定の時間間隔を延長した時間間隔が経過した後で出力する第二差分回路と、
     前記判別回路によって入力値が所定の範囲内に含まれないと判別された場合には、前記第一差分回路によって出力された差分信号を前記積分回路に入力し、前記判別回路によって入力値が所定の範囲内に含まれると判別された場合には、前記第二差分回路によって出力された差分信号を前記積分回路に入力する入力回路と、
     を有することを特徴とする請求項1または3に記載の信号変調回路。
    The difference circuit is
    When a quantized signal is output by the quantizing circuit, after the predetermined time interval has elapsed since the quantized signal was output, a difference signal corresponding to the quantized signal and the input value is output. A first difference circuit that calculates and outputs the calculated difference signal after the predetermined time interval has elapsed;
    When a quantized signal is output by the quantizing circuit, a difference signal corresponding to the quantized signal and the input value is obtained after the predetermined time interval has elapsed since the quantized signal was output. A second difference circuit that calculates and outputs the calculated difference signal after a time interval obtained by extending the predetermined time interval;
    When the determination circuit determines that the input value is not included in the predetermined range, the difference signal output by the first difference circuit is input to the integration circuit, and the input value is determined by the determination circuit. An input circuit that inputs the difference signal output from the second difference circuit to the integration circuit,
    The signal modulation circuit according to claim 1, further comprising:
  5.  前記信号変調回路は、
     前記第二保持回路と前記第二差分回路に対して、前記所定の時間間隔を延長した時間間隔で信号を出力する出力回路をさらに有し、
     前記第二保持回路は、前記出力回路によって出力された信号を受信した場合には、次に出力された信号を受信するまでの間、前記保持した積分信号を出力し、
     前記第二差分回路は、前記出力回路によって出力された信号を受信した場合には、次に出力された信号を受信するまでの間、前記算出した差分信号を出力することを特徴とする請求項4に記載の信号変調回路。
    The signal modulation circuit includes:
    For the second holding circuit and the second difference circuit, further comprising an output circuit for outputting a signal at a time interval obtained by extending the predetermined time interval,
    When the second holding circuit receives the signal output by the output circuit, the second holding circuit outputs the held integrated signal until the next output signal is received,
    The second difference circuit, when receiving the signal output by the output circuit, outputs the calculated difference signal until the next output signal is received. 5. The signal modulation circuit according to 4.
  6.  連続して入力される入力値に応じた差分信号を所定の時間間隔で積分して出力する積分部と、
     前記積分部の出力を量子化した量子化信号を出力する量子部と、
     前記量子部によって量子化信号が出力された場合には、当該量子化信号が出力されてから前記所定の時間間隔が経過した後に、当該量子化信号と前記入力値とに応じた差分信号を算出し、当該算出した差分信号を前記積分部に入力する差分部と、
     前記入力値を監視し、該入力値が所定の範囲内に含まれるか否かを判別する判別部と、
     を備え、
     前記積分部は、前記判別部によって入力値が所定の範囲内に含まれると判別された場合には、前記所定の時間間隔を延長した時間間隔で差分信号を積分して出力し、
     前記差分部は、前記判別部によって入力値が所定の範囲内に含まれると判別された場合には、前記量子化信号が出力されてから前記所定の時間間隔が経過した後に、当該量子化信号と前記入力値とに応じた差分信号を算出し、当該算出した差分信号を前記所定の時間間隔を延長した時間間隔が経過した後で、前記積分部に入力することを特徴とする信号変調装置。
    An integrator that integrates and outputs a differential signal according to an input value that is continuously input at a predetermined time interval;
    A quantum unit that outputs a quantized signal obtained by quantizing the output of the integrating unit;
    When a quantized signal is output by the quantum unit, a difference signal corresponding to the quantized signal and the input value is calculated after the predetermined time interval has elapsed since the quantized signal was output. A difference unit that inputs the calculated difference signal to the integration unit;
    A determination unit that monitors the input value and determines whether or not the input value is included in a predetermined range;
    With
    When the determination unit determines that the input value is included within a predetermined range, the integration unit integrates and outputs the difference signal at a time interval obtained by extending the predetermined time interval,
    The difference unit, when the determination unit determines that the input value is included in a predetermined range, the quantized signal after the predetermined time interval has passed since the quantization signal was output. And a difference signal corresponding to the input value, and the calculated difference signal is input to the integration unit after a time interval obtained by extending the predetermined time interval has elapsed. .
  7.  連続して入力される入力値をデジタル信号に変調する信号変調装置によって実行される方法であって、
     連続して入力される入力値に応じた差分信号を所定の時間間隔で積分して出力する積分ステップと、
     前記積分ステップの出力を量子化した量子化信号を出力する量子化ステップと、
     前記量子化ステップによって量子化信号が出力された場合には、当該量子化信号が出力されてから前記所定の時間間隔が経過した後に、当該量子化信号と前記入力値とに応じた差分信号を算出し、当該算出した差分信号を前記積分ステップに入力する差分ステップと、
     前記入力値を監視し、該入力値が所定の範囲内に含まれるか否かを判別する判別ステップと、
     を備え、
     前記積分ステップは、前記判別ステップによって入力値が所定の範囲内に含まれると判別された場合には、前記所定の時間間隔を延長した時間間隔が経過した後で、差分信号を積分して出力し、
     前記差分ステップは、前記判別ステップによって入力値が所定の範囲内に含まれると判別された場合には、前記量子化信号が出力されてから前記所定の時間間隔が経過した後に、当該量子化信号と前記入力値とに応じた差分信号を算出し、当該算出した差分信号を前記所定の時間間隔を延長した時間間隔が経過した後で、前記積分ステップに入力することを特徴とする信号変調方法。
    A method performed by a signal modulation apparatus for modulating a continuously input input value into a digital signal,
    An integration step of integrating and outputting a differential signal corresponding to an input value that is continuously input at a predetermined time interval;
    A quantization step for outputting a quantized signal obtained by quantizing the output of the integration step;
    When a quantized signal is output by the quantization step, a difference signal corresponding to the quantized signal and the input value is obtained after the predetermined time interval has elapsed since the quantized signal was output. A difference step of calculating and inputting the calculated difference signal to the integration step;
    A determination step of monitoring the input value and determining whether the input value falls within a predetermined range;
    With
    In the integration step, when it is determined by the determination step that the input value is included in a predetermined range, the differential signal is integrated and output after a time interval extending the predetermined time interval has elapsed. And
    In the difference step, when it is determined by the determination step that an input value is included in a predetermined range, the quantized signal is output after the predetermined time interval has elapsed since the quantized signal was output. And a difference signal corresponding to the input value, and the calculated difference signal is input to the integration step after a time interval obtained by extending the predetermined time interval has elapsed. .
PCT/JP2011/050129 2011-01-06 2011-01-06 Signal modulation circuit, signal modulation device and signal modulation method WO2012093485A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012551777A JP5505520B2 (en) 2011-01-06 2011-01-06 Signal modulation circuit, signal modulation apparatus, and signal modulation method
PCT/JP2011/050129 WO2012093485A1 (en) 2011-01-06 2011-01-06 Signal modulation circuit, signal modulation device and signal modulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050129 WO2012093485A1 (en) 2011-01-06 2011-01-06 Signal modulation circuit, signal modulation device and signal modulation method

Publications (1)

Publication Number Publication Date
WO2012093485A1 true WO2012093485A1 (en) 2012-07-12

Family

ID=46457350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050129 WO2012093485A1 (en) 2011-01-06 2011-01-06 Signal modulation circuit, signal modulation device and signal modulation method

Country Status (2)

Country Link
JP (1) JP5505520B2 (en)
WO (1) WO2012093485A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629856A (en) * 1992-07-08 1994-02-04 Hitachi Ltd Oversampling mode ad converter
JP2002300772A (en) * 2001-03-30 2002-10-11 Shindengen Electric Mfg Co Ltd Switching power supply
JP2005286846A (en) * 2004-03-30 2005-10-13 Sharp Corp Delta sigma modulation circuit and amplifier equipped with it
JP2006173819A (en) * 2004-12-14 2006-06-29 Sharp Corp Switching amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629856A (en) * 1992-07-08 1994-02-04 Hitachi Ltd Oversampling mode ad converter
JP2002300772A (en) * 2001-03-30 2002-10-11 Shindengen Electric Mfg Co Ltd Switching power supply
JP2005286846A (en) * 2004-03-30 2005-10-13 Sharp Corp Delta sigma modulation circuit and amplifier equipped with it
JP2006173819A (en) * 2004-12-14 2006-06-29 Sharp Corp Switching amplifier

Also Published As

Publication number Publication date
JP5505520B2 (en) 2014-05-28
JPWO2012093485A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
WO2008079188A3 (en) Apparatus and method for controlling the propagation delay of a circuit by controlling the voltage applied to the circuit
SG161223A1 (en) Method and apparatus for vector quantizing of a spectral envelope representation
JP2019531612A5 (en)
UA91853C2 (en) Method and device for vector quantization of spectral representation of envelope
WO2010027552A3 (en) System and method for time-to-voltage conversion with lock-out logic
US7071860B2 (en) System and method for noise cancellation in a signal processing circuit
WO2003049299A3 (en) Transmitter rf power control
TW200706711A (en) Control system and method for time variant system control object having idle time such as single crystal producing device by czochralski method
TW201519545A (en) Closed loop optical modulation amplitude control
TWI547842B (en) Touch control detection system, delta-sigma modulator and modulating method thereof
JP2003209762A (en) Automatic gain controller outputting control value varying nonlinearly, and method of outputting gain control signal thereof
WO2016202004A1 (en) Soft start control method and apparatus for voltage conversion circuit
JP5505520B2 (en) Signal modulation circuit, signal modulation apparatus, and signal modulation method
US20170126241A1 (en) Low power sigma-delta modulator architecture capable of correcting dynamic range automatically, method for implementing low power circuit thereof, and method for correcting and extending dynamic range of sigma-delta modulator automatically
WO2007050663A3 (en) Method, system and apparatus for reducing oscillator frequency spiking during oscillator frequency adjustment
JP4788353B2 (en) Multistage noise shaping quantizer
WO2014098217A1 (en) Motor drive voltage control device and method for controlling motor drive voltage
Wagner et al. STF engineering in CT sigma-delta modulators using www. sigma-delta. de
JP2004080076A (en) Apparatus and method for processing digital signal
US7868803B2 (en) Semiconductor device having ΔΣ modulator, and semiconductor system
KR20160027680A (en) A method and apparatus for determining packet transmission time using a power gain by packet transmission delay
RU2468406C1 (en) Adaptive system for controlling astatic object with delay
JP5104869B2 (en) Power supply device and electronic device
JP7006214B2 (en) Signal generator and signal generation method
JP2000224047A (en) Digital signal processing circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854546

Country of ref document: EP

Kind code of ref document: A1