WO2012091145A1 - Optical film manufacturing method, polarizing plate, and image display device. - Google Patents

Optical film manufacturing method, polarizing plate, and image display device. Download PDF

Info

Publication number
WO2012091145A1
WO2012091145A1 PCT/JP2011/080553 JP2011080553W WO2012091145A1 WO 2012091145 A1 WO2012091145 A1 WO 2012091145A1 JP 2011080553 W JP2011080553 W JP 2011080553W WO 2012091145 A1 WO2012091145 A1 WO 2012091145A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
coating layer
film
region
meth
Prior art date
Application number
PCT/JP2011/080553
Other languages
French (fr)
Japanese (ja)
Inventor
昌 神崎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201180062702.7A priority Critical patent/CN103269839B/en
Priority to KR1020137016778A priority patent/KR101875244B1/en
Publication of WO2012091145A1 publication Critical patent/WO2012091145A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0266Local curing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • B29C39/18Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising

Definitions

  • the present invention relates to a method for producing an optical film in which a coating liquid containing an active energy ray-curable resin is applied on a base film and cured.
  • the present invention also relates to a polarizing plate and an image display device using the optical film.
  • An optical film formed by coating a resin layer having a predetermined optical function on a base film is used in various image display devices such as a liquid crystal display device as an antiglare film, a light diffusion film, a hard coat film, etc. ing.
  • the resin layer provided in the optical film is formed by applying a coating liquid containing an active energy ray-curable resin onto a substrate film, and irradiating the obtained coating layer with an active energy ray to be cured. It is formed by.
  • a mold having a predetermined surface shape may be pressed against the coating layer surface and cured in this state.
  • an ultraviolet curable resin is applied to a base film, and an ultraviolet ray is applied in a state where the resin-coated surface is in close contact with an uneven roller (embossing roll) that rotates in synchronization with the base film.
  • an uneven roller embssing roll
  • Resin residue is a continuous defect in the optical film obtained in the continuous production of an optical film in which a resin layer is continuously formed on a long base film (resin adhesion to the optical film surface or the surface of the optical film). Such as defects in shape or optical properties). Also, removing and cleaning the resin residue every time it occurs will greatly reduce the production efficiency.
  • the present invention has been made in view of the above, and provides a method capable of preventing the occurrence of resin residue and continuously and efficiently producing an optical film without causing defects such as defects. is there.
  • the resin layer peeling causing the resin residue when the optical film is peeled from the mold is a region where the coating layer thickness increases rapidly, that is, the film in the coating layer. It has been found that it is concentrated in the leading region (front end region of the coating layer) and the trailing region (rear end region of the coating layer) in the transport direction. Furthermore, as a means for preventing the resin residue, it is extremely effective to harden a region where the resin layer is easily peeled in advance before the step of curing the coating layer while pressing the mold. I found. In particular, precuring the leading region of the coating layer is extremely advantageous in preventing continuous defects when an optical film is produced by continuously forming a resin layer on a long base film. is there. On the other hand, precuring the tail region of the coating layer in advance is extremely advantageous in preventing continuous defects in the production of the optical film of the next lot (using the next base film).
  • the present invention includes the following.
  • a coating process for forming a coating layer by coating a coating film containing an active energy ray-curable resin on a substrate film that is continuously conveyed, and a leading region of the coating layer In the first curing step of irradiating active energy rays from the coating layer side and the surface of the mold pressed against the surface of the coating layer, the active energy rays are irradiated from the substrate film side to the coating layer And a second curing step.
  • [3] is an active energy ray is ultraviolet
  • the irradiation amount of the active energy ray to the top region in the first curing step an accumulated amount of light at UVA ultraviolet is 70 mJ / cm 2 or more 400 mJ / cm 2 or less [ [1] or [2].
  • the active energy ray is changed to the tail adjacent region prior to the irradiation of the active energy ray to the tail region, and the accumulated light amount gradually increases from 0 at the start point of the tail adjacent region.
  • [7] is an active energy ray is ultraviolet ray irradiation amount of the active energy ray to the tail region, in at 400 mJ / cm 2 or less 70 mJ / cm 2 or more in accumulated light amount of UVA ultraviolet [5] or [6] The method described.
  • a polarizing plate provided.
  • An image display device comprising the polarizing plate according to [9] and an image display element, wherein the polarizing plate is disposed on the image display element such that the polarizing film is on the image display element side.
  • the method of the present invention it is possible to effectively prevent the occurrence of resin residue when the optical film is peeled from the mold.
  • This causes continuous defects (resin adhesion to the surface, defects in surface shape or optical characteristics, etc.) in the continuous production of optical films in which a resin layer is continuously formed on a long base film.
  • the optical film can be produced continuously and efficiently without any trouble. Moreover, since it is not necessary to remove and clean the resin residue, the production efficiency can be greatly improved.
  • the optical film obtained by the present invention can be suitably applied to image display devices such as polarizing plates and liquid crystal display devices.
  • the method for producing an optical film of the present invention includes the following steps: [1] A coating process in which a coating liquid containing an active energy ray-curable resin is coated on a continuously transported base film to form a coating layer; [2] A first curing step of irradiating active energy rays from the coating layer side to the head region of the coating layer, [3] A second curing step of irradiating the coating layer with active energy rays from the base film side to cure the coating layer in a state where the surface of the mold is pressed against the surface of the coating layer. including.
  • FIG. 1 is a diagram schematically showing a preferred example of the method for producing an optical film of the present invention and a production apparatus used therefor.
  • FIG. 2 is a cross-sectional view schematically showing the first curing step. The arrows in the figure indicate the film transport direction or roll rotation direction.
  • Coating step In this step, a coating layer containing an active energy ray-curable resin is coated on a continuously transported substrate film to form a coating layer.
  • the coating process continuously unwinds the base film 11 from an original fabric (a long base film wound product) attached to the film unwinding device 31, It can be performed by applying a coating solution onto the substrate film 11 using the coating device 32.
  • Application of the coating liquid onto the base film 11 can be performed, for example, by a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. .
  • the base film 11 only needs to be translucent, and for example, glass or plastic film can be used.
  • the plastic film only needs to have appropriate transparency and mechanical strength. Specific examples include cellulose acetate resins such as TAC (triacetylcellulose), acrylic resins, polycarbonate resins, polyester resins such as polyethylene terephthalate, and polyolefin resins such as polyethylene and polypropylene.
  • the thickness of the base film 11 is, for example, 10 to 500 ⁇ m, and is preferably 10 to 300 ⁇ m, more preferably 20 to 300 ⁇ m from the viewpoint of thinning the optical film.
  • Various surface treatments may be performed on the surface of the base film 11 (surface on the coating layer side) for the purpose of improving the coating property of the coating liquid or improving the adhesion with the coating layer.
  • the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment.
  • other layers such as a primer layer, may be formed on the base film 11, and a coating liquid may be applied on this other layer.
  • the surface of the base film (on the side opposite to the coating layer) is used in order to improve the adhesion between the base film and the polarizing film.
  • the surface is preferably hydrophilized by various surface treatments. You may perform this surface treatment after manufacture of an optical film.
  • the coating liquid contains an active energy ray-curable resin and usually further contains a photopolymerization initiator (radical polymerization initiator). If necessary, other components such as translucent fine particles, solvents such as organic solvents, leveling agents, dispersants, antistatic agents, antifouling agents, and surfactants may be contained.
  • the active energy ray-curable resin can be an ultraviolet curable resin, an electron beam curable resin, or the like, and for example, one containing a polyfunctional (meth) acrylate compound is preferably used. be able to.
  • the polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule.
  • Specific examples of the polyfunctional (meth) acrylate compound include, for example, ester compounds of polyhydric alcohol and (meth) acrylic acid, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, epoxy (meth) acrylate compounds, and the like. And a polyfunctional polymerizable compound containing two or more (meth) acryloyl groups.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, propanediol, butanediol, and pentanediol.
  • Hexanediol Hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2'-thiodiethanol, divalent alcohols such as 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol , Trihydric or higher alcohols such as diglycerol, dipentaerythritol and ditrimethylolpropane.
  • esterified products of polyhydric alcohol and (meth) acrylic acid include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl glycol.
  • Examples of the urethane (meth) acrylate compound include urethanization reaction products of an isocyanate having a plurality of isocyanate groups in one molecule and a (meth) acrylic acid derivative having a hydroxyl group.
  • Examples of organic isocyanates having a plurality of isocyanate groups in one molecule include two isocyanates in one molecule such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, and dicyclohexylmethane diisocyanate.
  • Organic isocyanate having a group organic isocyanate having three isocyanate groups in one molecule obtained by subjecting these organic isocyanates to isocyanurate modification, adduct modification, biuret modification, and the like.
  • the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- Examples thereof include hydroxy-3-phenoxypropyl (meth) acrylate and pentaerythritol triacrylate.
  • the polyester (meth) acrylate compound is a polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid.
  • the hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof.
  • the polyhydric alcohol include the same compounds as those described above.
  • bisphenol A etc. are mentioned as phenols other than a polyhydric alcohol.
  • the carboxylic acid include formic acid, acetic acid, butyl carboxylic acid, benzoic acid and the like.
  • the compounds having a plurality of carboxyl groups and / or their anhydrides include maleic acid, phthalic acid, fumaric acid, itaconic acid, adipic acid, terephthalic acid, maleic anhydride, phthalic anhydride, trimellitic acid, cyclohexanedicarboxylic anhydride Thing etc. are mentioned.
  • Ester compounds such as acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate; hexamethylene diisocyanate and 2-hydroxyethyl ( Addition product of (meth) acrylate; addition product of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate; attachment of tolylene diisocyanate and 2-hydroxyethyl (meth) acrylate Body; adduct adduct modified isophorone diisocyanate with 2-hydroxyethyl (meth) acrylate; and adducts of biuret of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate. Furthermore, each of these polyfunctional (meth) acrylate compounds can be used alone or in combination with one
  • the active energy ray curable resin may contain a monofunctional (meth) acrylate compound in addition to the polyfunctional (meth) acrylate compound.
  • the monofunctional (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and 2-hydroxyethyl (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, 2-eth
  • the active energy ray curable resin may contain a polymerizable oligomer.
  • the polymerizable oligomer is, for example, the polyfunctional (meth) acrylate compound, that is, an ester compound of a polyhydric alcohol and (meth) acrylic acid, a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, or an epoxy (meth). It can be an oligomer such as a dimer, trimer or the like such as an acrylate.
  • polymerizable oligomers include urethane (meth) acrylate oligomers obtained by reacting polyisocyanates having at least two isocyanate groups in the molecule with polyhydric alcohols having at least one (meth) acryloyloxy group.
  • polyisocyanate examples include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, a polymer of xylylene diisocyanate, and the like.
  • Hydroxyl group-containing (meth) acrylic acid ester obtained by esterification reaction of alcohol and (meth) acrylic acid and as polyhydric alcohol, for example, 1,3-butanediol, 1,4-butanediol, 1,6 -Hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol What is dipentaerythritol and the like.
  • 1,3-butanediol, 1,4-butanediol, 1,6 -Hexanediol diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol What is dipentaerythritol and the like.
  • this polyhydric alcohol having at least one (meth) acryloyloxy group a part of the alcoholic hydroxyl group of the polyhydric alcohol is esterified with (meth) acrylic acid, and the alcoholic hydroxyl group is present in the molecule. It remains.
  • a polyhydric alcohol having at least one (meth) acryloyloxy group is an organic compound having at least one (meth) acryloyloxy group.
  • Acrylate oligomers examples of the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described for the polyester (meth) acrylate of the polyfunctional (meth) acrylate compound.
  • the polyhydric alcohol having at least one (meth) acryloyloxy group include those described for the urethane (meth) acrylate oligomer.
  • examples of urethane (meth) acrylate oligomers are obtained by reacting isocyanates with hydroxyl groups of a hydroxyl group-containing polyester, a hydroxyl group-containing polyether or a hydroxyl group-containing (meth) acrylic acid ester.
  • the hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof.
  • polyhydric alcohol examples include the same as those described for the polyester (meth) acrylate compound of the polyfunctional (meth) acrylate compound.
  • the hydroxyl group-containing polyether preferably used is a hydroxyl group-containing polyether obtained by adding one or more alkylene oxides and / or ⁇ -caprolactone to a polyhydric alcohol.
  • the polyhydric alcohol may be the same as that which can be used for the hydroxyl group-containing polyester.
  • the hydroxyl group-containing (meth) acrylic acid ester examples include the same as those described for the polymerizable oligomeric urethane (meth) acrylate oligomer.
  • isocyanates compounds having one or more isocyanate groups in the molecule are preferable, and divalent isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
  • Each of these polymerizable oligomer compounds can be used alone or in combination with one or more other compounds.
  • Photopolymerization initiator examples include acetophenone photopolymerization initiators, benzoin photopolymerization initiators, benzophenone photopolymerization initiators, thioxanthone photopolymerization initiators, and triazine photopolymerization initiators.
  • An oxadiazole-based photopolymerization initiator is used.
  • photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 '-Biimidazole, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compound and the like can also be used.
  • the amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight, based on 100 parts by weight of the active energy ray-curable resin.
  • the translucent fine particles are not particularly limited.
  • inorganic fine particles made of calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, or the like can be used.
  • An organic polymer balloon or hollow beads can also be used.
  • These translucent fine particles may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the shape of the translucent fine particles may be any of a spherical shape, a flat shape, a plate shape, a needle shape, an indefinite shape, and the like.
  • the particle diameter and refractive index of the light-transmitting fine particles are not particularly limited, but when the optical film is a light diffusion film or an antiglare film, the particle diameter is 0 from the viewpoint of effectively developing internal haze. It is preferably in the range of 5 ⁇ m to 20 ⁇ m. For the same reason, the difference between the refractive index of the cured active energy ray-curable resin and the refractive index of the translucent fine particles is preferably in the range of 0.04 to 0.15.
  • the content of the light-transmitting fine particles is usually 3 to 60 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin.
  • the content of the translucent fine particles is less than 3 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin, the light diffusibility or the antiglare property may not be sufficiently provided. On the other hand, if it exceeds 60 parts by weight, the transparency of the optical film may be impaired, and the antiglare property and the light diffusibility become too high and the contrast tends to be lowered.
  • distribution of the translucent fine particles in a coating liquid is isotropic dispersion
  • the coating liquid can contain a solvent such as an organic solvent.
  • organic solvents include aliphatic hydrocarbons such as hexane, cyclohexane, and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, and cyclohexanol; methyl ethyl ketone and methyl isobutyl.
  • Ketones such as ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Ethers; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, etc.
  • Stealted glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol; 2- (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2- It can be selected from carbitols such as butoxyethoxy) ethanol in consideration of viscosity and the like.
  • These solvents may be used alone or as a mixture of several kinds as required. After coating, it is necessary to evaporate the organic solvent. Therefore, the boiling point is desirably in the range of 60 ° C to 160 ° C.
  • the saturated vapor pressure at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
  • the coating liquid contains a solvent
  • the drying temperature is appropriately selected depending on the solvent used and the type of substrate film. Generally, it is in the range of 20 ° C. to 120 ° C., but is not limited thereto. When there are a plurality of drying furnaces, the temperature may be changed for each drying furnace.
  • the head region (front end region) of the coating layer is irradiated with active energy rays from the coating layer side, and this head region is pressed against the mold surface.
  • This is a step of curing in advance prior to the second curing step of curing the coating layer.
  • the leading region of the coating layer is a portion where the thickness of the coating layer is remarkably increased, and is a portion where the resin peeling is concentrated.
  • the resin residue when an optical film is produced by continuously forming a resin layer on a long base film, if a resin residue occurs from the production start stage, the resin residue The entire optical film produced using the film is adversely affected.
  • the head region and the tail region described later can be identified by continuously measuring the film thickness.
  • a coating layer obtained by a general coating method unless the film thickness is intentionally changed, almost all of the region where the film thickness rapidly increases is from a part considerably smaller than 1 cm from the tip part, or from the rear end part. Since it is formed only in a portion considerably smaller than 1 cm, in practice, the above-described film thickness measurement or the like is not performed, and for example, 1 cm from the front end can be regarded as the head region and 1 cm from the rear end as the rear region.
  • the irradiation of the active energy ray to the coating layer head region is performed, for example, on the coating layer 12 that has passed through the coating device 32 (drying furnace 33 when drying). It can carry out by irradiating an active energy ray with respect to the base film 11 which has it using active energy ray irradiation apparatuses 10, such as an ultraviolet irradiation device installed in the coating layer 12 side. Specifically, the active energy ray irradiation device 10 is turned on (a state where the active energy rays are irradiated) before the head region A of the coating layer 12 passes immediately below the active energy ray irradiation device 10. After passing through the head region A, the active energy ray irradiating apparatus 10 is turned off (the active energy ray irradiation is stopped).
  • active energy ray irradiation apparatus 10 is turned on (a state where the active energy rays are irradiated) before the head region A of the coating layer 12 passes immediately below the active energy ray irradi
  • the active energy ray can be appropriately selected from ultraviolet rays, electron rays, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays and the like according to the type of the active energy ray curable resin contained in the coating liquid.
  • ultraviolet rays and electron beams are preferred, and ultraviolet rays are particularly preferred because they are easy to handle and provide high energy.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc, and a metal halide lamp are preferably used.
  • the electron beam 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100
  • An electron beam having an energy of ⁇ 300 keV can be mentioned.
  • Irradiation amount to the head area in the first curing step when the active energy ray is ultraviolet, an accumulated amount of light at UVA ultraviolet, is preferably 70 mJ / cm 2 or more 400 mJ / cm 2 or less, more preferably 100mJ / Cm 2 or more and 250 mJ / cm 2 or less. If the integrated light quantity is less than 70 mJ / cm 2 , the degree of cure of the leading region A is too low, and there is a possibility that resin peeling (and hence resin residue) may occur.
  • the curing reaction proceeds excessively, and as a result, the resin peels off at the boundary between the cured portion (leading region A) and the uncured portion due to a difference in film thickness or distortion of internal stress. May occur.
  • the active energy ray After the irradiation of the active energy ray to the head region A in the first curing step, in the head adjacent region in contact with the head region, the active energy ray continues to the head adjacent region, and the integrated light amount is determined from the irradiation amount to the head region. It is preferable to irradiate so that it may decrease gradually along the conveyance direction of a film to 0 at the end point. Thereby, since the degree of curing in the leading region A gradually decreases to an uncured state along the film conveyance direction, the film at the boundary between the cured portion (leading region A) and the uncured portion of the coating layer Resin peeling that may occur due to thickness difference or distortion of internal stress can be prevented.
  • the head adjacent region refers to a region adjacent to the head region and until the irradiation dose becomes zero by irradiating the active energy ray while gradually decreasing the irradiation amount to the head region.
  • the irradiation amount may start to decrease immediately from the start point of the head adjacent region that is in contact with the head region, and the irradiation amount to the head region may continue from the start point to the head region, and then start to decrease.
  • the start point of the head adjacent region is also specified by looking.
  • the reduction rate of the integrated light amount per second in UVA of ultraviolet rays is preferably 1500 mJ / cm 2 ⁇ sec or less, and 1000 mJ / cm 2. -More preferably, it is less than a second. If the reduction rate of the integrated light amount is too high, even if the integrated light amount is gradually decreased, the effect cannot be sufficiently obtained, and at the boundary between the cured portion (leading region A) and the uncured portion, Resin peeling may occur due to a difference in film thickness or distortion of internal stress.
  • the width of the head adjacent area can be appropriately determined by adjusting the irradiation amount to the head area and the decreasing rate of the integrated light amount, but is usually about 0.3 to 500 cm.
  • the first curing step it is preferable to irradiate an active energy ray to the tail region in addition to the leading region A of the coating layer to cure it. This is because the film thickness of the coating layer is also remarkably thick in the tail region, and the resin peeling is concentrated.
  • the resin residue on the mold can be effectively prevented.
  • preventing the resin residue caused by the tail region of the coating layer is extremely advantageous in preventing continuous defects in manufacturing the optical film of the next lot (using the next base film). is there.
  • the irradiation of the active energy ray to the tail region of the coating layer is specifically performed with reference to FIG. 2 when the tail region B of the coating layer 12 approaches or directly below the active energy ray irradiation device 10.
  • the active energy beam irradiation device 10 is turned on (a state where the active energy beam has been irradiated) immediately before passing through, and this state is maintained until the tail region B has passed.
  • the irradiation amount to the tail region when the active energy ray is ultraviolet, an accumulated amount of light at UVA ultraviolet, preferably be 70 mJ / cm 2 or more 400 mJ / cm 2 or less , more preferably 100 mJ / cm 2 or more 250 mJ / cm 2 or less.
  • the active energy ray Prior to irradiation of the active energy ray to the coating layer tail region B, for the same reason as in the case of the head region A, the active energy ray is placed in the tail adjacent region, and the integrated light quantity is from 0 at the start point of the tail adjacent region.
  • the tail adjacent region refers to a region that is adjacent to the tail region and is irradiated with the active energy ray so as to gradually increase from the above-described irradiation amount of 0 to reach the irradiation amount in the trailing region.
  • the irradiation dose may be increased so as to reach the irradiation dose to the tail region at the end point of the tail adjacent region in contact with the tail region, and the irradiation amount to the tail region is reached at an appropriate point before the end point.
  • the irradiation amount to the tail area may be continued until the end point.
  • the end point of the tail adjacent area is also specified by looking.
  • the increase rate of the integrated light amount per second in UVA of ultraviolet rays is 1500 mJ / cm 2 for the same reason as in the head region A.
  • -It is preferable that it is 2 seconds or less, and it is more preferable that it is 1000 mJ / cm 2 ⁇ second or less.
  • the rear adjacent region width can be appropriately determined by adjusting the irradiation amount in the rear region and the increasing rate of the integrated light quantity, but is usually about 0.3 to 500 cm.
  • the method of gradually changing (decreasing or increasing) the integrated light quantity is not particularly limited, and for example, a method of gradually changing the voltage applied to the active energy ray irradiation device 10; A method of using a comb filter having a plurality of tapered comb teeth whose width gradually decreases in the shutter opening / closing direction as the shutter. (As a result, when the shutter is closed / opened, the integrated light amount gradually decreases / increases depending on the opening area between the comb teeth.) As the shutter, a neutral density filter having a different attenuation rate is gradually reduced.
  • a method using an arrangement in which the rate changes (for example, an arrangement in which the light attenuation rate gradually increases from the end of the shutter) If the shutter is used, when the shutter is closed / opened, the integrated light quantity gradually decreases / increases depending on the light attenuation rate of the filter.); Or a combination of any two or more of the above Can do.
  • Second curing step This step irradiates the coating layer with active energy rays from the substrate film side in a state where the surface of the mold having a predetermined surface shape is pressed against the surface of the coating layer. It is a step of forming a cured resin layer on the base film by curing the coating layer. Thereby, the coating layer is cured, and the surface shape of the mold is transferred to the coating layer surface.
  • this step uses a pressure bonding device such as a nip roll 13 on the surface of the coating layer 12 of the laminate of the base film 11 and the coating layer 12 that has undergone the first curing step.
  • the roll-shaped mold 14 is pressed, and in this state, the active energy ray irradiation device 15 is used to irradiate the coating layer 12 with the active energy ray from the base film 11 side to cure the coating layer 12.
  • the use of a nip roll is effective in preventing air bubbles from being mixed between the coating layer and the mold.
  • One or a plurality of active energy ray irradiation apparatuses can be used.
  • the laminate After irradiation with active energy rays, the laminate is peeled from the mold 14 with the nip roll 16 on the exit side as a fulcrum.
  • the obtained optical film consisting of the base film and the cured resin layer is usually wound up by a film winding device 34. At this time, for the purpose of protecting the resin layer, it may be wound up while a protective film made of polyethylene terephthalate, polyethylene or the like is attached to the surface of the resin layer through a pressure-sensitive adhesive layer having removability.
  • the shape of the mold used is not limited to a roll shape.
  • additional active energy ray irradiation may be performed.
  • the substrate film on which the uncured coating layer is formed may be peeled from the mold and then cured by irradiation with active energy rays.
  • the integrated amount of light at UVA ultraviolet is preferably at 40 mJ / cm 2 or more 2000 mJ / cm 2 or less, more preferably at 70 mJ / cm 2 or more 1800 mJ / cm 2 or less.
  • the integrated light quantity is less than 40 mJ / cm 2 , the coating layer is insufficiently cured, the resulting resin layer has low hardness, or uncured resin adheres to the guide roll, etc. There is a tendency to become.
  • the integrated light quantity exceeds 2000 mJ / cm 2 , the base film may shrink due to heat radiated from the ultraviolet irradiation device, which may cause wrinkles.
  • the mold used in this step is for imparting a desired shape to the surface of the resin layer formed on the base film, and has a surface shape composed of a transfer structure of the desired shape.
  • the surface shape of the mold can be transferred onto the surface of the resin layer by curing the coating layer while pressing the surface shape against the surface of the coating layer.
  • the mold include a mold having a mirror surface (for example, a mirror roll) and a mold having an uneven surface (for example, an emboss roll).
  • the uneven pattern may be a regular pattern, a random pattern, or a pseudo random pattern in which one or more random patterns of a specific size are spread. Although it is good, it is preferably a random pattern or a pseudo-random pattern from the viewpoint of preventing the reflected image from becoming iridescent due to interference of reflected light caused by the surface shape.
  • the outer shape of the mold is not particularly limited, and may be a flat plate shape or a cylindrical or cylindrical roll. From the viewpoint of continuous productivity, a mirror surface roll, an emboss roll, etc. A columnar or cylindrical mold is preferred. In this case, a predetermined surface shape is formed on the side surface of the columnar or cylindrical mold.
  • the material of the base material of the mold is not particularly limited, and can be appropriately selected from metal, glass, carbon, resin, or a composite thereof, but metal is preferable from the viewpoint of workability.
  • Suitable metal materials include aluminum, iron, or an alloy mainly composed of aluminum or iron from the viewpoint of cost.
  • a method for obtaining a mold for example, a method of polishing a substrate, sandblasting, and then applying electroless nickel plating (JP2006-53371-A); after applying copper plating or nickel plating to the substrate, Polishing, sand blasting, and chromium plating (JP2007-188952-A); copper plating or nickel plating, polishing, sand blasting, etching process or copper plating process And then applying chromium plating (JP 2007-237541-A); applying copper plating or nickel plating to the surface of the substrate, polishing, applying a photosensitive resin film on the polished surface, The pattern is exposed on the photosensitive resin film, then developed, and etched using the developed photosensitive resin film as a mask.
  • the surface irregularity shape of the template comprising a random pattern or a pseudo-random pattern is, for example, an FM screen method, a DLDS (Dynamic Low-Discretion Sequence) method, a method using a microphase separation pattern of a block copolymer, or a bandpass filter method.
  • the random pattern generated by the above can be formed by exposing and developing on the photosensitive resin film, and performing an etching process using the developed photosensitive resin film as a mask.
  • the optical film of the present invention obtained as described above is suitably applied to an image display device such as a liquid crystal display device.
  • the resin layer on the base film is damaged due to various external forces.
  • Hard coat film which may contain translucent fine particles
  • a light diffusion layer for improving the viewing angle by diffusing light emitted from the liquid crystal cell
  • Viewing-side light diffusing film that contains translucent fine particles as a light diffusing agent
  • Antiglare layer containing translucent fine particles
  • a light diffusing layer (translucent fine particles as a light diffusing agent) for diffusing light incident on the liquid crystal cell and preventing moire caused by the backlight unit.
  • the Back-side light-diffusing film is a) (can be diffusion plate) is like.
  • the hard coat film, the viewing-side light diffusion film and the antiglare film are usually used by being bonded to a polarizing film as a viewing-side protective film for the viewing-side polarizing plate (that is, disposed on the surface of the image display device).
  • the back side light diffusion film is usually bonded to the polarizing film as a backlight side protective film of the backlight side polarizing plate.
  • the optical film of the present invention may further include an antireflection layer laminated on the resin layer (surface opposite to the base film).
  • the antireflection layer is provided to reduce the reflectance as much as possible, and reflection on the display screen can be prevented by forming the antireflection layer.
  • As the antireflection layer a low refractive index layer composed of a material lower than the refractive index of the resin layer; a high refractive index layer composed of a material higher than the refractive index of the resin layer, and the refractive index of the high refractive index layer
  • a laminated structure with a low refractive index layer composed of a lower material can be exemplified.
  • the antireflection layer may be laminated directly on the resin layer, or separately prepared by previously laminating the antireflection layer on the base film, and using a pressure sensitive adhesive or the like. You may paste on the layer.
  • the polarizing plate of this invention is equipped with a polarizing film and the optical film obtained by the above-mentioned manufacturing method laminated
  • a polarizing film has a function which takes out linearly polarized light from incident light, The kind is not specifically limited.
  • a suitable polarizing film there can be mentioned a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin.
  • polyvinyl alcohol-based resin examples include polyvinyl alcohol, which is a saponified product of vinyl acetate, partially formalized polyvinyl alcohol, and a saponified product of an ethylene / vinyl acetate copolymer.
  • dichroic dye iodine or a dichroic organic dye is used.
  • a polyene-oriented film of a polyvinyl alcohol dehydrated product or a polyvinyl chloride dehydrochlorinated product can also be a polarizing film. The thickness of the polarizing film is usually about 5 to 80 ⁇ m.
  • the polarizing plate of the present invention may be one in which the optical film according to the present invention is laminated on one side or both sides (usually one side) of the polarizing film, and a transparent protective layer is provided on one side of the polarizing film.
  • the optical film according to the present invention may be laminated on the other surface.
  • the optical film also has a function as a transparent protective layer (protective film) of the polarizing film.
  • the transparent protective layer can be formed on the polarizing film by a method of laminating a transparent resin film using an adhesive or the like, a method of applying a transparent resin-containing coating solution, or the like.
  • the optical film according to the present invention can be bonded to a polarizing film using an adhesive or the like.
  • the transparent resin film serving as the transparent protective layer is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, etc., and examples thereof include triacetyl cellulose, diacetyl cellulose, cellulose acetate propio Cellulose resins such as cellulose acetate such as nates; Polycarbonate resins; (Meth) acrylic resins such as polyacrylate and polymethyl methacrylate; Polyester resins such as polyethylene terephthalate and polyethylene naphthalate; Chains such as polyethylene and polypropylene Examples thereof include films made of polyolefin resin; cyclic polyolefin resin; styrene resin; polysulfone; polyether sulfone; polyvinyl chloride resin. These transparent resin films may be optically isotropic, or have optical anisotropy for the purpose of compensating the viewing angle when incorporated in an image display device. Also good.
  • the image display device of the present invention is a combination of the polarizing plate of the present invention and an image display element that displays various information on a screen.
  • the type of the image display device of the present invention is not particularly limited.
  • LCD liquid crystal display
  • CRT cathode ray tube
  • PDP plasma display
  • FED field emission display
  • SED conduction electron-emitting device display
  • OLED organic EL display
  • laser display and a projector television screen.
  • the polarizing plate when a liquid crystal panel is manufactured by arranging the polarizing plate of the present invention on a liquid crystal cell, the polarizing plate is placed on the liquid crystal cell so that the polarizing film is on the liquid crystal cell side (with the resin layer on the outside). Be placed.
  • the optical film may be disposed on the viewing side of the image display element, on the backlight side, or on both.
  • the optical film when the optical film is arranged on the viewing side, the optical film can function as a hard coat film, a light diffusion film, an antiglare film, an antireflection film, or the like.
  • the optical film when the optical film is disposed on the backlight side, the optical film can function as a light diffusion film (diffusion plate) that diffuses light incident on the liquid crystal cell and prevents moiré or the like.
  • UV curable resin 60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate)
  • Photopolymerization initiator “Lucillin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) 5 parts by weight
  • -Diluting solvent 100 parts by weight of ethyl acetate.
  • a coating layer is formed by applying the coating liquid on a triacetyl cellulose (TAC) film (base film) having a thickness of 80 ⁇ m with a gravure coater, and a laminate of the base film and the coating layer is formed. Obtained [Coating process]. After the obtained laminate is dried in a drying furnace, an accumulated light amount in UVA is a first predetermined amount using an ultraviolet irradiation device provided with a comb filter having a plurality of tapered comb teeth whose width gradually decreases in the opening and closing direction.
  • TAC triacetyl cellulose
  • the ultraviolet ray is irradiated from the coating layer side to the leading region of the coating layer so that the value (irradiation amount to the leading region) gradually decreases to 0, and the accumulated light amount in UVA is changed from 0 to a second predetermined value
  • the ultraviolet rays were irradiated from the coating layer side to the rear region of the coating layer so as to gradually increase the irradiation amount to the rear region) [first curing step].
  • the first and second predetermined values are set to 100 mJ / cm 2, and the decrease rate (irradiation to the head region) and increase rate (irradiation to the tail region) per second in UVA of ultraviolet rays. [In the following, the rate of decrease and the rate of increase are collectively referred to as the rate of change] were both 700 mJ / cm 2 ⁇ sec.
  • a chromium plating roll that had been polished so that the surface became a mirror surface was pressed and adhered to the coating layer surface of the laminate that had undergone the first curing step using a nip roll.
  • the coating layer was cured by irradiating with ultraviolet rays so that the maximum illuminance in UVA was 700 mW / cm 2 and the integrated light amount in UVA was 300 mJ / cm 2 from the substrate film side [second curing step]. .
  • cured material of an ultraviolet curable resin was 10 micrometers was obtained by peeling a laminated body from a chromium plating roll.
  • Example 2 to 5 An optical film was produced in the same manner as in Example 1, except that the first and second predetermined values and the rate of change of the integrated light quantity per second in UVA of ultraviolet rays were changed as shown in Table 1. In Example 4, no comb filter was used.
  • Example 3 The resin residue slightly generated in Example 3 and the resin residue in Comparative Example 1 were generated at the position 1) above. Further, the resin residue generated in Examples 4 and 5 was generated at the position 2).
  • the resin residue can be reduced by performing the first curing step in which the end region of the coating layer is cured in advance. Moreover, it turns out that the resin remainder can be prevented effectively by making the integrated light quantity and its change rate of the ultraviolet-ray in a 1st hardening process into the predetermined range.

Abstract

Provided is an optical film manufacturing method which includes: a coating process wherein a coating layer (12) is formed by coating a coating liquid containing an active energy ray-curable resin on a substrate film (11) which is being continuously conveyed; a first curing process wherein active energy rays are irradiated, from the coating layer (12) side, on a fore-region (A) of the coating layer (12); and a second curing process wherein, with the surface of a mold pushed against the surface of the coating layer (12), active energy rays are irradiated on the coating layer (12), from the substrate film (11) side. In the first curing process, it is preferable to also irradiate active energy rays onto a rear region (B) of the coating layer (12). Thus, the present invention provides a method which enables the continual efficient manufacture of an optical film, whilst being able to prevent the generation of resin remains on the mold, and without generating flaws such as defects.

Description

光学フィルムの製造方法、偏光板および画像表示装置Optical film manufacturing method, polarizing plate, and image display device
 本発明は、基材フィルム上に活性エネルギー線硬化性樹脂を含有する塗工液を塗工し、これを硬化させる光学フィルムの製造方法に関する。また本発明は、当該光学フィルムを用いた偏光板および画像表示装置に関する。 The present invention relates to a method for producing an optical film in which a coating liquid containing an active energy ray-curable resin is applied on a base film and cured. The present invention also relates to a polarizing plate and an image display device using the optical film.
 基材フィルム上に所定の光学機能を有する樹脂層をコーティングにより形成した光学フィルムは、たとえば、防眩フィルム、光拡散フィルム、ハードコートフィルムなどとして、液晶表示装置などの各種画像表示装置に利用されている。 An optical film formed by coating a resin layer having a predetermined optical function on a base film is used in various image display devices such as a liquid crystal display device as an antiglare film, a light diffusion film, a hard coat film, etc. ing.
 一般に、光学フィルムが備える上記樹脂層は、活性エネルギー線硬化性樹脂を含有する塗工液を基材フィルム上に塗工し、得られた塗工層に活性エネルギー線を照射して硬化させることにより形成される。光学フィルムに要求される光学特性によっては、樹脂層表面に所望の形状を付与するために、所定の表面形状を有する鋳型を塗工層表面に押し当て、この状態で硬化させる場合もある。 In general, the resin layer provided in the optical film is formed by applying a coating liquid containing an active energy ray-curable resin onto a substrate film, and irradiating the obtained coating layer with an active energy ray to be cured. It is formed by. Depending on the optical properties required for the optical film, in order to give a desired shape to the resin layer surface, a mold having a predetermined surface shape may be pressed against the coating layer surface and cured in this state.
 たとえば、JP2007−76089−Aには、基材フィルムに紫外線硬化性樹脂を塗工し、樹脂塗工面を基材フィルムに同期して回転する凹凸型ローラ(エンボスロール)に密着させた状態で紫外線を照射して樹脂を硬化させ、ついで、硬化樹脂と基材フィルムとの積層体を凹凸型ローラから剥離する方法が開示されている。 For example, in JP2007-76089-A, an ultraviolet curable resin is applied to a base film, and an ultraviolet ray is applied in a state where the resin-coated surface is in close contact with an uneven roller (embossing roll) that rotates in synchronization with the base film. Has been disclosed to cure the resin, and then peel the laminate of the cured resin and the base film from the concavo-convex roller.
 JP2007−76089−Aに記載の方法のように、塗工層表面にエンボスロールのような鋳型を押し当てながら塗工層を硬化させることによって光学フィルムを製造する場合、得られた光学フィルムを鋳型から剥離する際、硬化した樹脂が鋳型表面に残存する「樹脂残り」が発生することがあった。樹脂残りは、長尺の基材フィルム上に連続的に樹脂層を形成する光学フィルムの連続生産において、得られる光学フィルムに連続的な欠陥(光学フィルム表面への樹脂付着や、光学フィルムの表面形状または光学特性の欠陥など)を生じさせるおそれがある。また、樹脂残りが発生するたびにこれを除去清掃することは、製造効率を大きく低下させる。 When an optical film is produced by curing a coating layer while pressing a mold such as an emboss roll on the surface of the coating layer as in the method described in JP2007-76089-A, the obtained optical film is used as a mold. When peeling from the mold, a “resin residue” may occur in which the cured resin remains on the mold surface. Resin residue is a continuous defect in the optical film obtained in the continuous production of an optical film in which a resin layer is continuously formed on a long base film (resin adhesion to the optical film surface or the surface of the optical film). Such as defects in shape or optical properties). Also, removing and cleaning the resin residue every time it occurs will greatly reduce the production efficiency.
 一方、樹脂残りを防止する方法として、塗工層を形成する塗工液に離型剤を添加したり、鋳型表面にあらかじめ離型剤を塗布したりすることが考えられるが、離型剤の添加により光学フィルムの機械的強度や光学特性が損なわれるおそれがある。 On the other hand, as a method for preventing the resin residue, it is conceivable to add a release agent to the coating solution for forming the coating layer or to apply a release agent to the mold surface in advance. Addition may impair the mechanical strength and optical properties of the optical film.
 本発明は上記に鑑みなされたものであり、樹脂残りの発生を防止することができ、もって欠陥等の不具合を生じさせることなく、光学フィルムを連続的に効率良く製造できる方法を提供することにある。 The present invention has been made in view of the above, and provides a method capable of preventing the occurrence of resin residue and continuously and efficiently producing an optical film without causing defects such as defects. is there.
 本発明者は、鋭意検討の結果、鋳型から光学フィルムを剥離する際の樹脂残りを生じさせる樹脂層の剥がれが、塗工層の膜厚が急激に大きくなる領域、すなわち、塗工層におけるフィルム搬送方向の先頭領域(塗工層の前方端部領域)および後尾領域(塗工層の後方端部領域)に集中していることを見出した。さらに、樹脂残りを防止するための手段として、鋳型を押し当てながら塗工層を硬化させる工程の前に、あらかじめ上記樹脂層の剥がれが生じやすい領域を硬化させておくことが極めて有効であることを見出した。特に塗工層の先頭領域をあらかじめ硬化させることは、長尺の基材フィルム上に連続的に樹脂層を形成して光学フィルムを製造する際において連続的な欠陥を防止するうえで極めて有利である。一方、塗工層の後尾領域をあらかじめ硬化させることは、次ロットの(次の基材フィルムを用いて)光学フィルムを製造する際において連続的な欠陥を防止するうえで極めて有利である。 As a result of diligent study, the present inventor has found that the resin layer peeling causing the resin residue when the optical film is peeled from the mold is a region where the coating layer thickness increases rapidly, that is, the film in the coating layer. It has been found that it is concentrated in the leading region (front end region of the coating layer) and the trailing region (rear end region of the coating layer) in the transport direction. Furthermore, as a means for preventing the resin residue, it is extremely effective to harden a region where the resin layer is easily peeled in advance before the step of curing the coating layer while pressing the mold. I found. In particular, precuring the leading region of the coating layer is extremely advantageous in preventing continuous defects when an optical film is produced by continuously forming a resin layer on a long base film. is there. On the other hand, precuring the tail region of the coating layer in advance is extremely advantageous in preventing continuous defects in the production of the optical film of the next lot (using the next base film).
 すなわち本発明は、下記のものを含む。
[1] 連続して搬送される基材フィルム上に、活性エネルギー線硬化性樹脂を含有する塗工液を塗工して、塗工層を形成する塗工工程と、塗工層の先頭領域に、塗工層側から活性エネルギー線を照射する第1硬化工程と、塗工層の表面に鋳型の表面を押し当てた状態で、塗工層に基材フィルム側から活性エネルギー線を照射する第2硬化工程と、を含む光学フィルムの製造方法。
That is, the present invention includes the following.
[1] A coating process for forming a coating layer by coating a coating film containing an active energy ray-curable resin on a substrate film that is continuously conveyed, and a leading region of the coating layer In the first curing step of irradiating active energy rays from the coating layer side and the surface of the mold pressed against the surface of the coating layer, the active energy rays are irradiated from the substrate film side to the coating layer And a second curing step.
[2] 活性エネルギー線を照射した先頭領域と接する先頭領域隣接領域において、引続き活性エネルギー線を、先頭隣接領域にその積算光量が先頭領域への照射量から次第に減少して先頭隣接領域の終点で0となるように照射する[1]に記載の方法。 [2] In the adjacent region of the head region that is in contact with the head region irradiated with the active energy ray, the active energy line is continuously reduced at the end of the head adjacent region. The method according to [1], wherein irradiation is performed so as to be zero.
[3] 活性エネルギー線が紫外線であり、上記第1硬化工程における先頭領域への活性エネルギー線の照射量は、紫外線のUVAにおける積算光量で、70mJ/cm以上400mJ/cm以下である[1]または[2]に記載の方法。 [3] is an active energy ray is ultraviolet, the irradiation amount of the active energy ray to the top region in the first curing step, an accumulated amount of light at UVA ultraviolet is 70 mJ / cm 2 or more 400 mJ / cm 2 or less [ [1] or [2].
[4] 活性エネルギー線が紫外線であり、紫外線のUVAにおける積算光量の減少率が、1500mJ/cm・秒以下である[2]または[3]に記載の方法。 [4] The method according to [2] or [3], wherein the active energy ray is ultraviolet light, and the reduction rate of the integrated light amount in UVA of ultraviolet light is 1500 mJ / cm 2 · sec or less.
[5] 後尾領域において、第2硬化工程に先立って塗工層側から後尾領域に活性エネルギー線を照射する[1]~[4]のいずれかに記載の方法。 [5] The method according to any one of [1] to [4], wherein, in the tail region, the active energy ray is irradiated from the coating layer side to the tail region prior to the second curing step.
[6] 後尾領域と接する後尾隣接領域において、後尾領域への活性エネルギー線照射に先立って活性エネルギー線を後尾隣接領域に、その積算光量が後尾隣接領域の開始点における0から次第に増加して後尾領域への照射量となるように照射する[5]に記載の方法。 [6] In the tail adjacent region that is in contact with the tail region, the active energy ray is changed to the tail adjacent region prior to the irradiation of the active energy ray to the tail region, and the accumulated light amount gradually increases from 0 at the start point of the tail adjacent region. The method according to [5], wherein the irradiation is performed so that the irradiation dose to the region is obtained.
[7] 活性エネルギー線が紫外線であり、後尾領域への活性エネルギー線の照射量は、紫外線のUVAにおける積算光量で70mJ/cm以上400mJ/cm以下である[5]または[6]に記載の方法。 [7] is an active energy ray is ultraviolet ray irradiation amount of the active energy ray to the tail region, in at 400 mJ / cm 2 or less 70 mJ / cm 2 or more in accumulated light amount of UVA ultraviolet [5] or [6] The method described.
[8] 活性エネルギー線が紫外線であり、紫外線のUVAにおける積算光量の増加率が1500mJ/cm・秒以下である[6]または[7]に記載の方法。 [8] The method according to [6] or [7], wherein the active energy ray is ultraviolet rays, and the rate of increase of the integrated light amount in UVA of ultraviolet rays is 1500 mJ / cm 2 · sec or less.
[9] 偏光フィルムと、基材フィルム側が該偏光フィルムに対向するように該偏光フィルム上に積層される[1]~[6]のいずれかに記載の方法により製造された光学フィルムと、を備える偏光板。 [9] A polarizing film and an optical film produced by the method according to any one of [1] to [6], which is laminated on the polarizing film so that the base film side faces the polarizing film. A polarizing plate provided.
[10] [9]に記載の偏光板と、画像表示素子とを備え、偏光板は、その偏光フィルムが画像表示素子側となるように画像表示素子上に配置される画像表示装置。 [10] An image display device comprising the polarizing plate according to [9] and an image display element, wherein the polarizing plate is disposed on the image display element such that the polarizing film is on the image display element side.
 本発明の方法によれば、鋳型から光学フィルムを剥離する際の樹脂残りの発生を有効に防止することができる。これにより、長尺の基材フィルム上に連続的に樹脂層を形成する光学フィルムの連続生産において、連続的な欠陥(表面への樹脂付着や、表面形状または光学特性の欠陥など)を生じさせることなく、光学フィルムを連続的に効率良く製造することができる。また、樹脂残りの除去清掃を要しないため、製造効率を大きく向上させることができる。本発明により得られる光学フィルムは、偏光板や、液晶表示装置等の画像表示装置に好適に適用することができる。 According to the method of the present invention, it is possible to effectively prevent the occurrence of resin residue when the optical film is peeled from the mold. This causes continuous defects (resin adhesion to the surface, defects in surface shape or optical characteristics, etc.) in the continuous production of optical films in which a resin layer is continuously formed on a long base film. The optical film can be produced continuously and efficiently without any trouble. Moreover, since it is not necessary to remove and clean the resin residue, the production efficiency can be greatly improved. The optical film obtained by the present invention can be suitably applied to image display devices such as polarizing plates and liquid crystal display devices.
本発明の光学フィルムの製造方法およびこれに用いられる製造装置の好ましい一例を模式的に示す図である。It is a figure which shows typically a preferable example of the manufacturing method of the optical film of this invention, and the manufacturing apparatus used for this. 第1硬化工程を模式的に示す断面図である。It is sectional drawing which shows a 1st hardening process typically.
 <光学フィルムの製造方法>
 本発明の光学フィルムの製造方法は、下記工程:
 〔1〕連続して搬送される基材フィルム上に、活性エネルギー線硬化性樹脂を含有する塗工液を塗工して、塗工層を形成する塗工工程、
 〔2〕塗工層の先頭領域に、塗工層側から活性エネルギー線を照射する第1硬化工程、
 〔3〕塗工層の表面に鋳型の表面を押し当てた状態で、前記塗工層に基材フィルム側から活性エネルギー線を照射し、塗工層を硬化させる第2硬化工程、
を含む。
<Method for producing optical film>
The method for producing an optical film of the present invention includes the following steps:
[1] A coating process in which a coating liquid containing an active energy ray-curable resin is coated on a continuously transported base film to form a coating layer;
[2] A first curing step of irradiating active energy rays from the coating layer side to the head region of the coating layer,
[3] A second curing step of irradiating the coating layer with active energy rays from the base film side to cure the coating layer in a state where the surface of the mold is pressed against the surface of the coating layer.
including.
 以下、図面を参照しながら、各工程について詳細に説明する。図1は、本発明の光学フィルムの製造方法およびこれに用いられる製造装置の好ましい一例を模式的に示す図である。また図2は、第1硬化工程を模式的に示す断面図である。図中の矢印は、フィルムの搬送方向またはロールの回転方向を示す。 Hereinafter, each process will be described in detail with reference to the drawings. FIG. 1 is a diagram schematically showing a preferred example of the method for producing an optical film of the present invention and a production apparatus used therefor. FIG. 2 is a cross-sectional view schematically showing the first curing step. The arrows in the figure indicate the film transport direction or roll rotation direction.
 〔1〕塗工工程
 本工程では、連続して搬送される基材フィルム上に、活性エネルギー線硬化性樹脂を含有する塗工液を塗工して、塗工層を形成する。塗工工程は、たとえば図1に示されるように、フィルム巻き出し装置31に取り付けられた原反(長尺の基材フィルムの巻回品)から、基材フィルム11を連続的に巻き出し、塗工装置32を用いて塗工液を基材フィルム11上に塗工することにより行なうことができる。
[1] Coating step In this step, a coating layer containing an active energy ray-curable resin is coated on a continuously transported substrate film to form a coating layer. For example, as shown in FIG. 1, the coating process continuously unwinds the base film 11 from an original fabric (a long base film wound product) attached to the film unwinding device 31, It can be performed by applying a coating solution onto the substrate film 11 using the coating device 32.
 塗工液の基材フィルム11上への塗工は、たとえば、グラビアコート法、マイクログラビアコート法、ロッドコート法、ナイフコート法、エアーナイフコート法、キスコート法、ダイコート法などによって行なうことができる。 Application of the coating liquid onto the base film 11 can be performed, for example, by a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. .
 (基材フィルム)
 基材フィルム11は透光性のものであればよく、たとえばガラスやプラスチックフィルムなどを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していればよい。具体的には、たとえば、TAC(トリアセチルセルロース)等のセルロースアセテート系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂などが挙げられる。基材フィルム11の厚みは、たとえば10~500μmであり、光学フィルムの薄膜化等の観点から、好ましくは10~300μmであり、より好ましくは20~300μmである。
(Base film)
The base film 11 only needs to be translucent, and for example, glass or plastic film can be used. The plastic film only needs to have appropriate transparency and mechanical strength. Specific examples include cellulose acetate resins such as TAC (triacetylcellulose), acrylic resins, polycarbonate resins, polyester resins such as polyethylene terephthalate, and polyolefin resins such as polyethylene and polypropylene. The thickness of the base film 11 is, for example, 10 to 500 μm, and is preferably 10 to 300 μm, more preferably 20 to 300 μm from the viewpoint of thinning the optical film.
 塗工液の塗工性の改良または塗工層との接着性の改良を目的として、基材フィルム11の表面(塗工層側表面)には、各種表面処理を施してもよい。表面処理としては、コロナ放電処理、グロー放電処理、酸表面処理、アルカリ表面処理、紫外線照射処理などが挙げられる。また、基材フィルム11上に、たとえばプライマー層等の他の層を形成し、この他の層の上に、塗工液を塗工するようにしてもよい。 Various surface treatments may be performed on the surface of the base film 11 (surface on the coating layer side) for the purpose of improving the coating property of the coating liquid or improving the adhesion with the coating layer. Examples of the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment. Moreover, other layers, such as a primer layer, may be formed on the base film 11, and a coating liquid may be applied on this other layer.
 また、光学フィルムを、後述する偏光フィルムに接着して使用する場合には、基材フィルムと偏光フィルムとの接着性を向上させるために、基材フィルムの表面(塗工層とは反対側の表面)を各種表面処理によって親水化しておくことが好ましい。この表面処理は、光学フィルムの製造後に行なってもよい。 When the optical film is used after being bonded to a polarizing film described later, the surface of the base film (on the side opposite to the coating layer) is used in order to improve the adhesion between the base film and the polarizing film. The surface) is preferably hydrophilized by various surface treatments. You may perform this surface treatment after manufacture of an optical film.
 (塗工液)
 塗工液は、活性エネルギー線硬化性樹脂を含有し、通常は、光重合開始剤(ラジカル重合開始剤)をさらに含む。必要に応じて、透光性微粒子、有機溶剤等の溶剤、レベリング剤、分散剤、帯電防止剤、防汚剤、界面活性剤等のその他の成分を含んでいてもよい。
(Coating fluid)
The coating liquid contains an active energy ray-curable resin and usually further contains a photopolymerization initiator (radical polymerization initiator). If necessary, other components such as translucent fine particles, solvents such as organic solvents, leveling agents, dispersants, antistatic agents, antifouling agents, and surfactants may be contained.
 (1)活性エネルギー線硬化性樹脂
 活性エネルギー線硬化性樹脂は、紫外線硬化性樹脂、電子線硬化性樹脂などであることができ、たとえば、多官能(メタ)アクリレート化合物を含有するものを好ましく用いることができる。多官能(メタ)アクリレート化合物とは、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する化合物である。多官能(メタ)アクリレート化合物の具体例としては、たとえば、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物、エポキシ(メタ)アクリレート化合物等の(メタ)アクリロイル基を2個以上含む多官能重合性化合物等が挙げられる。
(1) Active energy ray-curable resin The active energy ray-curable resin can be an ultraviolet curable resin, an electron beam curable resin, or the like, and for example, one containing a polyfunctional (meth) acrylate compound is preferably used. be able to. The polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule. Specific examples of the polyfunctional (meth) acrylate compound include, for example, ester compounds of polyhydric alcohol and (meth) acrylic acid, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, epoxy (meth) acrylate compounds, and the like. And a polyfunctional polymerizable compound containing two or more (meth) acryloyl groups.
 多価アルコールとしては、たとえば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、2,2’−チオジエタノール、1,4−シクロヘキサンジメタノールのような2価のアルコール;トリメチロールプロパン、グリセロール、ペンタエリスリトール、ジグリセロール、ジペンタエリスリトール、ジトリメチロールプロパンのような3価以上のアルコールが挙げられる。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, propanediol, butanediol, and pentanediol. , Hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2'-thiodiethanol, divalent alcohols such as 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol , Trihydric or higher alcohols such as diglycerol, dipentaerythritol and ditrimethylolpropane.
 多価アルコールと(メタ)アクリル酸とのエステル化物として、具体的には、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタグリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Specific examples of esterified products of polyhydric alcohol and (meth) acrylic acid include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl glycol. Di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylolmethanetetra ( (Meth) acrylate, pentaglycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, Pentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
 ウレタン(メタ)アクリレート化合物としては、1分子中に複数個のイソシアネート基を有するイソシアネートと、水酸基を有する(メタ)アクリル酸誘導体のウレタン化反応物を挙げることができる。1分子中に複数個のイソシアネート基を有する有機イソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、ジフェニルメタンジイソシアネート、キシレリンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等の1分子中に2個のイソシアネート基を有する有機イソシアネート、それら有機イソシアネートをイソシアヌレート変性、アダクト変性、ビウレット変性した1分子中に3個のイソシアネート基を有する有機イソシアネート等が挙げられる。水酸基を有する(メタ)アクリル酸誘導体としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、ペンタエリスリトールトリアクリレート等が挙げられる。 Examples of the urethane (meth) acrylate compound include urethanization reaction products of an isocyanate having a plurality of isocyanate groups in one molecule and a (meth) acrylic acid derivative having a hydroxyl group. Examples of organic isocyanates having a plurality of isocyanate groups in one molecule include two isocyanates in one molecule such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, and dicyclohexylmethane diisocyanate. Organic isocyanate having a group, organic isocyanate having three isocyanate groups in one molecule obtained by subjecting these organic isocyanates to isocyanurate modification, adduct modification, biuret modification, and the like. Examples of the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- Examples thereof include hydroxy-3-phenoxypropyl (meth) acrylate and pentaerythritol triacrylate.
 ポリエステル(メタ)アクリレート化合物として好ましいものは、水酸基含有ポリエステルと(メタ)アクリル酸とを反応させて得られるポリエステル(メタ)アクリレートである。好ましく用いられる水酸基含有ポリエステルは、多価アルコールとカルボン酸や複数のカルボキシル基を有する化合物および/またはその無水物のエステル化反応によって得られる水酸基含有ポリエステルである。多価アルコールとしては前述した化合物と同様のものが例示できる。また、多価アルコール以外にも、フェノール類としてビスフェノールA等が挙げられる。カルボン酸としては、ギ酸、酢酸、ブチルカルボン酸、安息香酸等が挙げられる。複数のカルボキシル基を有する化合物および/またはその無水物としては、マレイン酸、フタル酸、フマル酸、イタコン酸、アジピン酸、テレフタル酸、無水マレイン酸、無水フタル酸、トリメリット酸、シクロヘキサンジカルボン酸無水物等が挙げられる。 Preferred as the polyester (meth) acrylate compound is a polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid. The hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof. Examples of the polyhydric alcohol include the same compounds as those described above. Moreover, bisphenol A etc. are mentioned as phenols other than a polyhydric alcohol. Examples of the carboxylic acid include formic acid, acetic acid, butyl carboxylic acid, benzoic acid and the like. The compounds having a plurality of carboxyl groups and / or their anhydrides include maleic acid, phthalic acid, fumaric acid, itaconic acid, adipic acid, terephthalic acid, maleic anhydride, phthalic anhydride, trimellitic acid, cyclohexanedicarboxylic anhydride Thing etc. are mentioned.
 以上のような多官能(メタ)アクリレート化合物の中でも、硬化物の強度向上や入手の容易性の点から、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のエステル化合物;ヘキサメチレンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;トリレンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;アダクト変性イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;およびビウレット変性イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートとの付加体が好ましい。さらに、これらの多官能(メタ)アクリレート化合物のそれぞれは、単独で使用、または他の1種以上と併用することができる。 Among the polyfunctional (meth) acrylate compounds as described above, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meth) from the viewpoint of improving the strength of the cured product and availability. Ester compounds such as acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate; hexamethylene diisocyanate and 2-hydroxyethyl ( Addition product of (meth) acrylate; addition product of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate; attachment of tolylene diisocyanate and 2-hydroxyethyl (meth) acrylate Body; adduct adduct modified isophorone diisocyanate with 2-hydroxyethyl (meth) acrylate; and adducts of biuret of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate. Furthermore, each of these polyfunctional (meth) acrylate compounds can be used alone or in combination with one or more other compounds.
 活性エネルギー線硬化性樹脂は、上記の多官能(メタ)アクリレート化合物のほかに、単官能(メタ)アクリレート化合物を含有していてもよい。単官能(メタ)アクリレート化合物としては、たとえば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N−ビニルピロリドン、テトラヒドロフルフリール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アセチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシプロピルフタレート、ジメチルアミノエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート等の(メタ)アクリレート類を挙げることができる。これらの化合物のそれぞれは単独で使用、または他の1種類以上と併用することができる。 The active energy ray curable resin may contain a monofunctional (meth) acrylate compound in addition to the polyfunctional (meth) acrylate compound. Examples of the monofunctional (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and 2-hydroxyethyl (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, aceto (Meth) acrylate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxy (meth) acrylate, ethylene oxide modified phenoxy (meta ) Acrylate, propylene oxide (meth) acrylate, nonylphenol (meth) acrylate, ethylene oxide modified (meth) acrylate, propylene oxide modified nonylphenol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, 2- (meth) acryloyloxyethyl-2 -Hydroxypropyl phthalate, dimethylaminoethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, etc. Meth) acrylate can be given. Each of these compounds can be used alone or in combination with one or more other compounds.
 また、活性エネルギー線硬化性樹脂は重合性オリゴマーを含有していてもよい。重合性オリゴマーを含有させることにより、硬化物の硬度を調整することができる。重合性オリゴマーは、たとえば、前記多官能(メタ)アクリレート化合物、すなわち、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物またはエポキシ(メタ)アクリレート等の2量体、3量体などのようなオリゴマーであることができる。 Moreover, the active energy ray curable resin may contain a polymerizable oligomer. By including the polymerizable oligomer, the hardness of the cured product can be adjusted. The polymerizable oligomer is, for example, the polyfunctional (meth) acrylate compound, that is, an ester compound of a polyhydric alcohol and (meth) acrylic acid, a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, or an epoxy (meth). It can be an oligomer such as a dimer, trimer or the like such as an acrylate.
 その他の重合性オリゴマーとしては、分子中に少なくとも2個のイソシアネート基を有するポリイソシアネートと、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとの反応により得られるウレタン(メタ)アクリレートオリゴマーを挙げることができる。ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシレリンジイソシアネートの重合物等が挙げられ、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとしては、多価アルコールと(メタ)アクリル酸のエステル化反応によって得られる水酸基含有(メタ)アクリル酸エステルであって、多価アルコールとして、たとえば、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等であるものが挙げられる。この少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールは、多価アルコールのアルコール性水酸基の一部が(メタ)アクリル酸とエステル化反応しているとともに、アルコール性水酸基が分子中に残存するものである。 Other polymerizable oligomers include urethane (meth) acrylate oligomers obtained by reacting polyisocyanates having at least two isocyanate groups in the molecule with polyhydric alcohols having at least one (meth) acryloyloxy group. Can be mentioned. Examples of the polyisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, a polymer of xylylene diisocyanate, and the like. Hydroxyl group-containing (meth) acrylic acid ester obtained by esterification reaction of alcohol and (meth) acrylic acid, and as polyhydric alcohol, for example, 1,3-butanediol, 1,4-butanediol, 1,6 -Hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol What is dipentaerythritol and the like. In this polyhydric alcohol having at least one (meth) acryloyloxy group, a part of the alcoholic hydroxyl group of the polyhydric alcohol is esterified with (meth) acrylic acid, and the alcoholic hydroxyl group is present in the molecule. It remains.
 さらに、その他の重合性オリゴマーの例として、複数のカルボキシル基を有する化合物および/またはその無水物と、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとの反応により得られるポリエステル(メタ)アクリレートオリゴマーを挙げることができる。複数のカルボキシル基を有する化合物および/またはその無水物としては、前記多官能(メタ)アクリレート化合物のポリエステル(メタ)アクリレートで記載したものと同様のものが例示できる。また、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとしては、上記ウレタン(メタ)アクリレートオリゴマーで記載したものと同様のものが例示できる。 Furthermore, as another example of the polymerizable oligomer, a polyester (meta) obtained by reacting a compound having a plurality of carboxyl groups and / or an anhydride thereof with a polyhydric alcohol having at least one (meth) acryloyloxy group. ) Acrylate oligomers. Examples of the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described for the polyester (meth) acrylate of the polyfunctional (meth) acrylate compound. Examples of the polyhydric alcohol having at least one (meth) acryloyloxy group include those described for the urethane (meth) acrylate oligomer.
 以上のような重合性オリゴマーに加えて、さらにウレタン(メタ)アクリレートオリゴマーの例として、水酸基含有ポリエステル、水酸基含有ポリエーテルまたは水酸基含有(メタ)アクリル酸エステルの水酸基にイソシアネート類を反応させて得られる化合物が挙げられる。好ましく用いられる水酸基含有ポリエステルは、多価アルコールとカルボン酸や複数のカルボキシル基を有する化合物および/またはその無水物のエステル化反応によって得られる水酸基含有ポリエステルである。多価アルコールや、複数のカルボキシル基を有する化合物および/またはその無水物としては、それぞれ、多官能(メタ)アクリレート化合物のポリエステル(メタ)アクリレート化合物で記載したものと同様のものが例示できる。好ましく用いられる水酸基含有ポリエーテルは、多価アルコールに1種または2種以上のアルキレンオキサイドおよび/またはε−カプロラクトンを付加することによって得られる水酸基含有ポリエーテルである。多価アルコールは、前記水酸基含有ポリエステルに使用できるものと同じものであってよい。好ましく用いられる水酸基含有(メタ)アクリル酸エステルとしては、重合性オリゴマーのウレタン(メタ)アクリレートオリゴマーで記載したものと同様のものが例示できる。イソシアネート類としては、分子中に1個以上のイソシアネート基を持つ化合物が好ましく、トリレンジイソシアネートや、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどの2価のイソシアネート化合物が特に好ましい。 In addition to the polymerizable oligomers as described above, examples of urethane (meth) acrylate oligomers are obtained by reacting isocyanates with hydroxyl groups of a hydroxyl group-containing polyester, a hydroxyl group-containing polyether or a hydroxyl group-containing (meth) acrylic acid ester. Compounds. The hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof. Examples of the polyhydric alcohol, the compound having a plurality of carboxyl groups, and / or the anhydride thereof are the same as those described for the polyester (meth) acrylate compound of the polyfunctional (meth) acrylate compound. The hydroxyl group-containing polyether preferably used is a hydroxyl group-containing polyether obtained by adding one or more alkylene oxides and / or ε-caprolactone to a polyhydric alcohol. The polyhydric alcohol may be the same as that which can be used for the hydroxyl group-containing polyester. Examples of the hydroxyl group-containing (meth) acrylic acid ester preferably used include the same as those described for the polymerizable oligomeric urethane (meth) acrylate oligomer. As the isocyanates, compounds having one or more isocyanate groups in the molecule are preferable, and divalent isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
 これらの重合性オリゴマー化合物のそれぞれは単独で使用、または他の1種以上と併用することができる。 Each of these polymerizable oligomer compounds can be used alone or in combination with one or more other compounds.
 (2)光重合開始剤
 光重合開始剤としては、たとえば、アセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、トリアジン系光重合開始剤、オキサジアゾール系光重合開始剤などが用いられる。また、光重合開始剤として、たとえば、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,2’−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、10−ブチル−2−クロロアクリドン、2−エチルアントラキノン、ベンジル、9,10−フェナンスレンキノン、カンファーキノン、フェニルグリオキシル酸メチル、チタノセン化合物等も用いることができる。光重合開始剤の使用量は、通常、活性エネルギー線硬化性樹脂100重量部に対して0.5~20重量部であり、好ましくは1~5重量部である。
(2) Photopolymerization initiator Examples of the photopolymerization initiator include acetophenone photopolymerization initiators, benzoin photopolymerization initiators, benzophenone photopolymerization initiators, thioxanthone photopolymerization initiators, and triazine photopolymerization initiators. An oxadiazole-based photopolymerization initiator is used. Examples of the photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 '-Biimidazole, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compound and the like can also be used. The amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight, based on 100 parts by weight of the active energy ray-curable resin.
 (3)透光性微粒子
 透光性微粒子としては、特に限定されるものではなく、たとえば、アクリル系樹脂、メラミン樹脂、ポリエチレン、ポリスチレン、有機シリコーン樹脂、アクリル−スチレン共重合体等からなる有機微粒子や、炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラス等からなる無機微粒子などを使用することができる。また、有機重合体のバルーンや中空ビーズを使用することもできる。これらの透光性微粒子は、1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。透光性微粒子の形状は、球状、扁平状、板状、針状、不定形状等のいずれであってもよい。
(3) Translucent fine particles The translucent fine particles are not particularly limited. For example, organic fine particles made of acrylic resin, melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, and the like. Alternatively, inorganic fine particles made of calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, or the like can be used. An organic polymer balloon or hollow beads can also be used. These translucent fine particles may be used individually by 1 type, and 2 or more types may be mixed and used for them. The shape of the translucent fine particles may be any of a spherical shape, a flat shape, a plate shape, a needle shape, an indefinite shape, and the like.
 透光性微粒子の粒子径や屈折率は特に制限されるものではないが、光学フィルムが光拡散フィルムや防眩フィルムである場合は、効果的に内部ヘイズを発現させる点から、粒子径は0.5μm~20μmの範囲であることが好ましい。また、同様の理由から、硬化後の活性エネルギー線硬化性樹脂の屈折率と透光性微粒子の屈折率との差は0.04~0.15の範囲であることが好ましい。透光性微粒子の含有量は、活性エネルギー線硬化性樹脂100重量部に対して、通常3~60重量部であり、好ましくは5~50重量部である。透光性微粒子の含有量が、活性エネルギー線硬化性樹脂100重量部に対して3重量部未満の場合は、光拡散性または防眩性が充分に付与されないことがある。一方、60重量部を超えると、光学フィルムの透明性が損なわれる場合があり、また、防眩性や光拡散性が高くなりすぎて、コントラストが低下する傾向にある。 The particle diameter and refractive index of the light-transmitting fine particles are not particularly limited, but when the optical film is a light diffusion film or an antiglare film, the particle diameter is 0 from the viewpoint of effectively developing internal haze. It is preferably in the range of 5 μm to 20 μm. For the same reason, the difference between the refractive index of the cured active energy ray-curable resin and the refractive index of the translucent fine particles is preferably in the range of 0.04 to 0.15. The content of the light-transmitting fine particles is usually 3 to 60 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin. When the content of the translucent fine particles is less than 3 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin, the light diffusibility or the antiglare property may not be sufficiently provided. On the other hand, if it exceeds 60 parts by weight, the transparency of the optical film may be impaired, and the antiglare property and the light diffusibility become too high and the contrast tends to be lowered.
 なお、透光性微粒子を使用する場合、光学フィルムの光学特性および表面形状を均質なものとするために、塗工液中の透光性微粒子の分散は等方分散であることが好ましい。 In addition, when using translucent fine particles, in order to make the optical characteristic and surface shape of an optical film uniform, it is preferable that dispersion | distribution of the translucent fine particles in a coating liquid is isotropic dispersion | distribution.
 塗工液は有機溶剤等の溶剤を含むことができる。有機溶剤としては、ヘキサン、シクロヘキサン、オクタンなどの脂肪族炭化水素;トルエン、キシレンなどの芳香族炭化水素;エタノール、1−プロパノール、イソプロパノール、1−ブタノール、シクロヘキサノールなどのアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル化グリコールエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール等のセルソルブ類;2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール、2−(2−ブトキシエトキシ)エタノール等のカルビトール類などから、粘度等を考慮して選択して用いることができる。これらの溶剤は、単独で用いてもよいし、必要に応じて数種類を混合して用いてもよい。塗工後は、上記有機溶剤を蒸発させる必要がある。そのため、沸点は60℃~160℃の範囲であることが望ましい。また、20℃における飽和蒸気圧は0.1kPa~20kPaの範囲であることが好ましい。 The coating liquid can contain a solvent such as an organic solvent. Examples of organic solvents include aliphatic hydrocarbons such as hexane, cyclohexane, and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, and cyclohexanol; methyl ethyl ketone and methyl isobutyl. Ketones such as ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Ethers; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, etc. Stealted glycol ethers; Cellsolves such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol; 2- (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2- It can be selected from carbitols such as butoxyethoxy) ethanol in consideration of viscosity and the like. These solvents may be used alone or as a mixture of several kinds as required. After coating, it is necessary to evaporate the organic solvent. Therefore, the boiling point is desirably in the range of 60 ° C to 160 ° C. The saturated vapor pressure at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
 塗工液が溶剤を含む場合、上記塗工工程の後、第1硬化工程の前に、溶剤を蒸発させて乾燥を行なう乾燥工程を設けることが好ましい。乾燥は、たとえば図1に示される例のように、塗工層を備える基材フィルム11を、乾燥炉33内を通過させることによって行なうことができる。乾燥温度は、使用する溶剤や基材フィルムの種類により適宜選択される。一般に20℃~120℃の範囲であるが、これに限定されない。また、乾燥炉が複数ある場合は、乾燥炉毎に温度を変えてもよい。 When the coating liquid contains a solvent, it is preferable to provide a drying step of evaporating the solvent and drying after the coating step and before the first curing step. Drying can be performed by allowing the substrate film 11 provided with a coating layer to pass through the drying furnace 33, for example, as in the example shown in FIG. The drying temperature is appropriately selected depending on the solvent used and the type of substrate film. Generally, it is in the range of 20 ° C. to 120 ° C., but is not limited thereto. When there are a plurality of drying furnaces, the temperature may be changed for each drying furnace.
 〔2〕第1硬化工程
 本工程は、塗工層の先頭領域(前方端部領域)に、塗工層側から活性エネルギー線を照射して、この先頭領域を、鋳型表面を押し当てた状態で塗工層を硬化させる第2硬化工程に先立ってあらかじめ硬化させる工程である。塗工層の先頭領域は、塗工層の膜厚が顕著に厚くなっている部分であり、樹脂剥がれが集中する部分である。鋳型に押し当てる前に、この部分をあらかじめ硬化させておくことにより、鋳型への樹脂残りを効果的に防止することができる。とりわけ、塗工層先頭領域に起因する樹脂残りを防止することは、得られる光学フィルムに連続的な欠陥が生じることを防止するうえで極めて有利である。すなわち、長尺の基材フィルム上に連続的に樹脂層を形成して光学フィルムを製造する際において、製造開始段階から樹脂残りが生じてしまうと、この樹脂残りは、この長尺の基材フィルムを用いて製造される光学フィルム全体に悪影響を及ぼす。
 先頭領域及び後述する後尾領域は、その膜厚を連続的に計測することにより特定することはできる。一般的塗工方法により得られる塗工層の場合、意図的に膜厚を変化させない限り、膜厚が急激に大きくなる領域の殆ど全ては先端部分から1cmよりかなり小さい部分、あるいは後方端部分から1cmよりかなり小さい部分にのみ形成されるので、実務的には前記した膜厚計測等は行わず、例えば先端部から1cmを先頭領域、後方端部から1cmを後尾領域とみなすことができる。
[2] First curing step In this step, the head region (front end region) of the coating layer is irradiated with active energy rays from the coating layer side, and this head region is pressed against the mold surface. This is a step of curing in advance prior to the second curing step of curing the coating layer. The leading region of the coating layer is a portion where the thickness of the coating layer is remarkably increased, and is a portion where the resin peeling is concentrated. By pre-curing this part before pressing against the mold, the resin residue on the mold can be effectively prevented. In particular, preventing the resin residue due to the coating layer head region is extremely advantageous in preventing the occurrence of continuous defects in the obtained optical film. That is, when an optical film is produced by continuously forming a resin layer on a long base film, if a resin residue occurs from the production start stage, the resin residue The entire optical film produced using the film is adversely affected.
The head region and the tail region described later can be identified by continuously measuring the film thickness. In the case of a coating layer obtained by a general coating method, unless the film thickness is intentionally changed, almost all of the region where the film thickness rapidly increases is from a part considerably smaller than 1 cm from the tip part, or from the rear end part. Since it is formed only in a portion considerably smaller than 1 cm, in practice, the above-described film thickness measurement or the like is not performed, and for example, 1 cm from the front end can be regarded as the head region and 1 cm from the rear end as the rear region.
 塗工層先頭領域への活性エネルギー線の照射は、図1および図2を参照して、たとえば、塗工装置32(乾燥を行なう場合には、乾燥炉33)を通過した塗工層12を有する基材フィルム11に対して、塗工層12側に設置された紫外線照射装置等の活性エネルギー線照射装置10を用いて、活性エネルギー線を照射することにより行なうことができる。
具体的には、塗工層12の先頭領域Aが活性エネルギー線照射装置10の直下を通過する前に活性エネルギー線照射装置10をONの状態(活性エネルギー線が照射された状態)にしておき、先頭領域Aの通過後、活性エネルギー線照射装置10をOFFの状態(活性エネルギー線の照射を停止した状態)にする。
With reference to FIG. 1 and FIG. 2, the irradiation of the active energy ray to the coating layer head region is performed, for example, on the coating layer 12 that has passed through the coating device 32 (drying furnace 33 when drying). It can carry out by irradiating an active energy ray with respect to the base film 11 which has it using active energy ray irradiation apparatuses 10, such as an ultraviolet irradiation device installed in the coating layer 12 side.
Specifically, the active energy ray irradiation device 10 is turned on (a state where the active energy rays are irradiated) before the head region A of the coating layer 12 passes immediately below the active energy ray irradiation device 10. After passing through the head region A, the active energy ray irradiating apparatus 10 is turned off (the active energy ray irradiation is stopped).
 活性エネルギー線としては、塗工液に含まれる活性エネルギー線硬化性樹脂の種類に応じて紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができるが、これらの中で紫外線および電子線が好ましく、取り扱いが簡便で高エネルギーが得られることから紫外線が特に好ましい。 The active energy ray can be appropriately selected from ultraviolet rays, electron rays, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays and the like according to the type of the active energy ray curable resin contained in the coating liquid. Of these, ultraviolet rays and electron beams are preferred, and ultraviolet rays are particularly preferred because they are easy to handle and provide high energy.
 紫外線の光源としては、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザー、KrFエキシマレーザー、エキシマランプまたはシンクロトロン放射光等も用いることができる。これらの中でも、超高圧水銀灯、高圧水銀灯、低圧水銀灯、キセノンアーク、メタルハライドランプが好ましく用いられる。 As the ultraviolet light source, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc, and a metal halide lamp are preferably used.
 また、電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。 As the electron beam, 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 An electron beam having an energy of ~ 300 keV can be mentioned.
 上記第1硬化工程における先頭領域への照射量は、活性エネルギー線が紫外線である場合、紫外線のUVAにおける積算光量で、好ましくは70mJ/cm以上400mJ/cm以下であり、より好ましくは100mJ/cm以上250mJ/cm以下である。積算光量が70mJ/cm未満であると、先頭領域Aの硬化度が低すぎて樹脂剥がれ(したがって樹脂残り)が生じるおそれがある。また、400mJ/cmを超えると、硬化反応が過度に進行する結果、硬化部分(先頭領域A)と未硬化部分との境界において、膜厚差や内部応力の歪みに起因して樹脂剥がれが生じるおそれがある。 Irradiation amount to the head area in the first curing step, when the active energy ray is ultraviolet, an accumulated amount of light at UVA ultraviolet, is preferably 70 mJ / cm 2 or more 400 mJ / cm 2 or less, more preferably 100mJ / Cm 2 or more and 250 mJ / cm 2 or less. If the integrated light quantity is less than 70 mJ / cm 2 , the degree of cure of the leading region A is too low, and there is a possibility that resin peeling (and hence resin residue) may occur. Further, if it exceeds 400 mJ / cm 2 , the curing reaction proceeds excessively, and as a result, the resin peels off at the boundary between the cured portion (leading region A) and the uncured portion due to a difference in film thickness or distortion of internal stress. May occur.
 第1硬化工程における先頭領域Aへの活性エネルギー線の照射の後、先頭領域と接する先頭隣接領域において、引き続き活性エネルギー線を先頭隣接領域にその積算光量が先頭領域への照射量から先頭隣接領域の終点で0まで、フィルムの搬送方向に沿って、次第に減少するように照射することが好ましい。これにより、先頭領域Aにおける硬化の程度が、フィルムの搬送方向に沿って徐々に未硬化状態まで低下するため、塗工層の硬化部分(先頭領域A)と未硬化部分との境界における、膜厚差や内部応力の歪みにより生じ得る樹脂剥がれを防止することができる。ここで先頭隣接領域とは先頭領域に隣接し、前記した先頭領域への照射量から次第に減少させながら活性エネルギー線を照射して照射量が0となるまでの領域を言う。先頭領域と接する先頭隣接領域の開始点から直ちに照射量を減少させ始めてもよく、該開始点から適当な範囲は先頭領域への照射量を継続し、その後減少させ始めてもよい。前記したように、先頭領域の正確な範囲特定を行わず、見做しによって特定する場合には、先頭隣接領域の開始点も同様に見做しにより特定することとなる。 After the irradiation of the active energy ray to the head region A in the first curing step, in the head adjacent region in contact with the head region, the active energy ray continues to the head adjacent region, and the integrated light amount is determined from the irradiation amount to the head region. It is preferable to irradiate so that it may decrease gradually along the conveyance direction of a film to 0 at the end point. Thereby, since the degree of curing in the leading region A gradually decreases to an uncured state along the film conveyance direction, the film at the boundary between the cured portion (leading region A) and the uncured portion of the coating layer Resin peeling that may occur due to thickness difference or distortion of internal stress can be prevented. Here, the head adjacent region refers to a region adjacent to the head region and until the irradiation dose becomes zero by irradiating the active energy ray while gradually decreasing the irradiation amount to the head region. The irradiation amount may start to decrease immediately from the start point of the head adjacent region that is in contact with the head region, and the irradiation amount to the head region may continue from the start point to the head region, and then start to decrease. As described above, when the exact range of the head region is not specified and specified by looking, the start point of the head adjacent region is also specified by looking.
 積算光量を先頭領域への照射量から0まで徐々に減少させる場合、紫外線のUVAにおける1秒あたりの積算光量の減少率は、1500mJ/cm・秒以下であることが好ましく、1000mJ/cm・秒以下であることがより好ましい。積算光量の減少率があまり高いと、積算光量を徐々に減少させる場合であっても、その効果を十分に得ることができず、硬化部分(先頭領域A)と未硬化部分との境界において、膜厚差や内部応力の歪みに起因して樹脂剥がれが生じる場合がある。先頭隣接領域幅は、先頭領域への照射量と積算光量の減少率を調整して適宜決めることができるが、通常は0.3~500cm程度である。 When the integrated light amount is gradually decreased from the irradiation amount to the head region to 0, the reduction rate of the integrated light amount per second in UVA of ultraviolet rays is preferably 1500 mJ / cm 2 · sec or less, and 1000 mJ / cm 2. -More preferably, it is less than a second. If the reduction rate of the integrated light amount is too high, even if the integrated light amount is gradually decreased, the effect cannot be sufficiently obtained, and at the boundary between the cured portion (leading region A) and the uncured portion, Resin peeling may occur due to a difference in film thickness or distortion of internal stress. The width of the head adjacent area can be appropriately determined by adjusting the irradiation amount to the head area and the decreasing rate of the integrated light amount, but is usually about 0.3 to 500 cm.
 第1硬化工程では、塗工層の先頭領域Aに加えて、後尾領域にも活性エネルギー線を照射し、これを硬化させることが好ましい。後尾領域も、塗工層の膜厚が顕著に厚くなっており、樹脂剥がれが集中する部分であるためである。後尾領域をあらかじめ硬化させておくことにより、鋳型への樹脂残りを効果的に防止することができる。とりわけ、塗工層後尾領域に起因する樹脂残りを防止することは、次ロットの(次の基材フィルムを用いて)光学フィルムを製造する際における連続的な欠陥を防止するうえで極めて有利である。 In the first curing step, it is preferable to irradiate an active energy ray to the tail region in addition to the leading region A of the coating layer to cure it. This is because the film thickness of the coating layer is also remarkably thick in the tail region, and the resin peeling is concentrated. By curing the tail region in advance, the resin residue on the mold can be effectively prevented. In particular, preventing the resin residue caused by the tail region of the coating layer is extremely advantageous in preventing continuous defects in manufacturing the optical film of the next lot (using the next base film). is there.
 塗工層後尾領域への活性エネルギー線の照射は、具体的には、図2を参照して、塗工層12の後尾領域Bが活性エネルギー線照射装置10の直下に近づいたとき、または直下を通過する直前に活性エネルギー線照射装置10をONの状態(活性エネルギー線が照射された状態)にし、後尾領域Bが通過し終えるまでこの状態を維持することにより行なう。 Specifically, the irradiation of the active energy ray to the tail region of the coating layer is specifically performed with reference to FIG. 2 when the tail region B of the coating layer 12 approaches or directly below the active energy ray irradiation device 10. The active energy beam irradiation device 10 is turned on (a state where the active energy beam has been irradiated) immediately before passing through, and this state is maintained until the tail region B has passed.
先頭領域Aの場合と同様の理由から、後尾領域への照射量は、活性エネルギー線が紫外線である場合、紫外線のUVAにおける積算光量で、好ましくは70mJ/cm以上400mJ/cm以下であり、より好ましくは100mJ/cm以上250mJ/cm以下である。
 塗工層後尾領域Bへの活性エネルギー線の照射に先立って、先頭領域Aの場合と同様の理由から、活性エネルギー線を後尾隣接領域に、その積算光量が後尾隣接領域の開始点における0から後尾領域での照射量となるまで、フィルムの搬送方向に沿って、次第に増加するように照射することが好ましい。ここで後尾隣接領域とは後尾領域に隣接し、前記した照射量0から次第に増加するように活性エネルギー線を照射して後尾領域での照射量となるまでの領域を言う。後尾領域と接する後尾隣接領域の終点で後尾領域への照射量に達するように照射量を増加させてもよく、該終点より手前の適当な点で後尾領域への照射量に達し、その点から終点まで後尾領域への照射量を継続してもよい。前記したように、後尾領域の正確な範囲特定を行わず、見做しによって特定する場合には、後尾隣接領域の終点も同様に見做しにより特定することとなる。
 また、積算光量を0から後尾領域での照射量まで徐々に増加させる場合、先頭領域Aの場合と同様の理由から、紫外線のUVAにおける1秒あたりの積算光量の増加率は、1500mJ/cm・秒以下であることが好ましく、1000mJ/cm・秒以下であることがより好ましい。後尾隣接領域幅は、後尾領域での照射量と積算光量の増加率を調整して適宜決めることができるが、通常は0.3~500cm程度である。
For the same reason as in the case of the first region A, the irradiation amount to the tail region, when the active energy ray is ultraviolet, an accumulated amount of light at UVA ultraviolet, preferably be 70 mJ / cm 2 or more 400 mJ / cm 2 or less , more preferably 100 mJ / cm 2 or more 250 mJ / cm 2 or less.
Prior to irradiation of the active energy ray to the coating layer tail region B, for the same reason as in the case of the head region A, the active energy ray is placed in the tail adjacent region, and the integrated light quantity is from 0 at the start point of the tail adjacent region. It is preferable to irradiate so that it may increase gradually along the conveyance direction of a film until it becomes the irradiation amount in a tail area | region. Here, the tail adjacent region refers to a region that is adjacent to the tail region and is irradiated with the active energy ray so as to gradually increase from the above-described irradiation amount of 0 to reach the irradiation amount in the trailing region. The irradiation dose may be increased so as to reach the irradiation dose to the tail region at the end point of the tail adjacent region in contact with the tail region, and the irradiation amount to the tail region is reached at an appropriate point before the end point. The irradiation amount to the tail area may be continued until the end point. As described above, when the tail area is not specified accurately and specified by looking, the end point of the tail adjacent area is also specified by looking.
When the integrated light amount is gradually increased from 0 to the irradiation amount in the tail region, the increase rate of the integrated light amount per second in UVA of ultraviolet rays is 1500 mJ / cm 2 for the same reason as in the head region A. -It is preferable that it is 2 seconds or less, and it is more preferable that it is 1000 mJ / cm 2 · second or less. The rear adjacent region width can be appropriately determined by adjusting the irradiation amount in the rear region and the increasing rate of the integrated light quantity, but is usually about 0.3 to 500 cm.
 積算光量を徐々に変化(減少または増加)させる方法は特に制限されず、たとえば、活性エネルギー線照射装置10に印加する電圧を徐々に変化させる方法;活性エネルギー線照射装置10を、開閉式のシャッターを設けた照射窓を有するランプボックスなどに収容し、そのシャッターの開閉速度を変化させる方法;前記シャッターとして、シャッター開閉方向に幅が次第に狭くなる先細の櫛歯を複数有する櫛形フィルタを使用する方法(これにより、シャッターを閉じる/開く際、櫛歯間の開口面積に応じて、徐々に積算光量が減少/増加する。);前記シャッターとして、減光率の異なる減光フィルタを徐々に減光率が変化するように配置したものを用いる方法(たとえば、シャッターの端部から徐々に減光率が大きくなるように配置したシャッターを用いると、シャッターを閉じる/開く際、フィルタの減光率に応じて、徐々に積算光量が減少/増加する。);または、上記のいずれか2以上を組み合わせた方法などを挙げることができる。 The method of gradually changing (decreasing or increasing) the integrated light quantity is not particularly limited, and for example, a method of gradually changing the voltage applied to the active energy ray irradiation device 10; A method of using a comb filter having a plurality of tapered comb teeth whose width gradually decreases in the shutter opening / closing direction as the shutter. (As a result, when the shutter is closed / opened, the integrated light amount gradually decreases / increases depending on the opening area between the comb teeth.) As the shutter, a neutral density filter having a different attenuation rate is gradually reduced. A method using an arrangement in which the rate changes (for example, an arrangement in which the light attenuation rate gradually increases from the end of the shutter) If the shutter is used, when the shutter is closed / opened, the integrated light quantity gradually decreases / increases depending on the light attenuation rate of the filter.); Or a combination of any two or more of the above Can do.
 〔3〕第2硬化工程
 本工程は、塗工層の表面に、所定の表面形状を有する鋳型の表面を押し当てた状態で、基材フィルム側から塗工層に活性エネルギー線を照射し、塗工層を硬化させることにより、基材フィルム上に硬化された樹脂層を形成する工程である。これにより、塗工層が硬化されるとともに、鋳型の表面形状が塗工層表面に転写される。
[3] Second curing step This step irradiates the coating layer with active energy rays from the substrate film side in a state where the surface of the mold having a predetermined surface shape is pressed against the surface of the coating layer. It is a step of forming a cured resin layer on the base film by curing the coating layer. Thereby, the coating layer is cured, and the surface shape of the mold is transferred to the coating layer surface.
 本工程は、たとえば図1に示されるように、第1硬化工程を経た基材フィルム11と塗工層12との積層体の塗工層12表面に、ニップロール13等の圧着装置を用いて、ロール形状の鋳型14を押し当て、この状態で活性エネルギー線照射装置15を用いて、基材フィルム11側から塗工層12に活性エネルギー線を照射して塗工層12を硬化させることができる。ニップロールの使用は、塗工層と鋳型との間への気泡の混入を防止するうえで有効である。活性エネルギー線照射装置は、1機もしくは複数機を使用することができる。 For example, as shown in FIG. 1, this step uses a pressure bonding device such as a nip roll 13 on the surface of the coating layer 12 of the laminate of the base film 11 and the coating layer 12 that has undergone the first curing step. The roll-shaped mold 14 is pressed, and in this state, the active energy ray irradiation device 15 is used to irradiate the coating layer 12 with the active energy ray from the base film 11 side to cure the coating layer 12. . The use of a nip roll is effective in preventing air bubbles from being mixed between the coating layer and the mold. One or a plurality of active energy ray irradiation apparatuses can be used.
 活性エネルギー線の照射後、積層体は、出口側のニップロール16を支点として鋳型14から剥離される。得られた基材フィルムと硬化した樹脂層からなる光学フィルムは、通常、フィルム巻き取り装置34によって巻き取られる。この際、樹脂層を保護する目的で、再剥離性を有した粘着剤層を介して、樹脂層表面にポリエチレンテレフタレートやポリエチレン等からなる保護フィルムを貼着しながら巻き取ってもよい。なお、用いる鋳型の形状はロール形状のものに限定されない。 After irradiation with active energy rays, the laminate is peeled from the mold 14 with the nip roll 16 on the exit side as a fulcrum. The obtained optical film consisting of the base film and the cured resin layer is usually wound up by a film winding device 34. At this time, for the purpose of protecting the resin layer, it may be wound up while a protective film made of polyethylene terephthalate, polyethylene or the like is attached to the surface of the resin layer through a pressure-sensitive adhesive layer having removability. The shape of the mold used is not limited to a roll shape.
 鋳型から剥離された後に、追加の活性エネルギー線照射を行なってもよい。また、鋳型に押し付けた状態で活性エネルギー線照射を行なう代わりに、未硬化の塗工層が形成された基材フィルムを鋳型から剥離した後に、活性エネルギー線を照射して硬化させてもよい。 After the mold has been peeled off, additional active energy ray irradiation may be performed. Moreover, instead of performing active energy ray irradiation in a state of being pressed against the mold, the substrate film on which the uncured coating layer is formed may be peeled from the mold and then cured by irradiation with active energy rays.
 本工程で用いる活性エネルギー線の種類および光源については第1硬化工程と同様である。活性エネルギー線が紫外線である場合、紫外線のUVAにおける積算光量は、好ましくは40mJ/cm以上2000mJ/cm以下であり、より好ましくは70mJ/cm以上1800mJ/cm以下である。積算光量が40mJ/cm未満である場合、塗工層の硬化が不十分となり、得られる樹脂層の硬度が低くなったり、未硬化の樹脂がガイドロール等に付着し、工程汚染の原因となったりする傾向がある。また、積算光量が2000mJ/cmを超える場合、紫外線照射装置から放射される熱により、基材フィルムが収縮して皺の原因になることがある。 About the kind and light source of the active energy ray used at this process, it is the same as that of a 1st hardening process. When the active energy ray is ultraviolet, the integrated amount of light at UVA ultraviolet is preferably at 40 mJ / cm 2 or more 2000 mJ / cm 2 or less, more preferably at 70 mJ / cm 2 or more 1800 mJ / cm 2 or less. When the integrated light quantity is less than 40 mJ / cm 2 , the coating layer is insufficiently cured, the resulting resin layer has low hardness, or uncured resin adheres to the guide roll, etc. There is a tendency to become. Moreover, when the integrated light quantity exceeds 2000 mJ / cm 2 , the base film may shrink due to heat radiated from the ultraviolet irradiation device, which may cause wrinkles.
 本工程で用いる鋳型は、基材フィルム上に形成される樹脂層表面に所望の形状を付与するためのものであり、当該所望の形状の転写構造からなる表面形状を有している。塗工層の表面に、該表面形状を塗工層表面に押し当てながら塗工層を硬化させることにより、鋳型の表面形状を樹脂層表面に転写できる。鋳型としては、鏡面からなる表面を有する鋳型(たとえば鏡面ロール)および凹凸表面を有する鋳型(たとえばエンボスロール)を挙げることができる。 The mold used in this step is for imparting a desired shape to the surface of the resin layer formed on the base film, and has a surface shape composed of a transfer structure of the desired shape. The surface shape of the mold can be transferred onto the surface of the resin layer by curing the coating layer while pressing the surface shape against the surface of the coating layer. Examples of the mold include a mold having a mirror surface (for example, a mirror roll) and a mold having an uneven surface (for example, an emboss roll).
 鋳型が凹凸表面を有する場合において、凹凸形状のパターンは、規則的なパターンであってもよいし、ランダムパターン、あるいは特定サイズの1種類以上のランダムパターンを敷き詰めた、擬似ランダムパターンであってもよいが、表面形状に起因する反射光の干渉により、反射像が虹色に色づくことを防止する点から、ランダムパターンまたは擬似ランダムパターンであることが好ましい。 In the case where the mold has an uneven surface, the uneven pattern may be a regular pattern, a random pattern, or a pseudo random pattern in which one or more random patterns of a specific size are spread. Although it is good, it is preferably a random pattern or a pseudo-random pattern from the viewpoint of preventing the reflected image from becoming iridescent due to interference of reflected light caused by the surface shape.
 鋳型の外形形状は特に制限されるものではなく、平板状であってもよいし、円柱状または円筒状のロールであってもよいが、連続生産性の点から、鏡面ロールやエンボスロール等の、円柱状または円筒状の鋳型であることが好ましい。この場合、円柱状または円筒状の鋳型の側面に所定の表面形状が形成される。 The outer shape of the mold is not particularly limited, and may be a flat plate shape or a cylindrical or cylindrical roll. From the viewpoint of continuous productivity, a mirror surface roll, an emboss roll, etc. A columnar or cylindrical mold is preferred. In this case, a predetermined surface shape is formed on the side surface of the columnar or cylindrical mold.
 鋳型の基材の材質は特に制限されるものではなく、金属、ガラス、カーボン、樹脂、あるいはそれらの複合体から適宜選択できるが、加工性等の点から金属が好ましい。好適に用いられる金属材料としては、コストの観点からアルミニウム、鉄、またはアルミニウムもしくは鉄を主体とする合金などが挙げられる。 The material of the base material of the mold is not particularly limited, and can be appropriately selected from metal, glass, carbon, resin, or a composite thereof, but metal is preferable from the viewpoint of workability. Suitable metal materials include aluminum, iron, or an alloy mainly composed of aluminum or iron from the viewpoint of cost.
 鋳型を得る方法としては、たとえば、基材を研磨し、サンドブラスト加工を施した後、無電解ニッケルめっきを施す方法(JP2006−53371−A);基材に銅めっきまたはニッケルめっきを施した後、研磨し、サンドブラスト加工を施した後、クロムめっきを施す方法(JP2007−187952−A);銅めっきまたはニッケルめっきを施した後、研磨し、サンドブラスト加工を施した後、エッチング工程または銅めっき工程を施し、ついでクロムめっきを施す方法(JP2007−237541−A);基材の表面に銅めっきまたはニッケルめっきを施した後、研磨し、研磨された面に感光性樹脂膜を塗布形成し、該感光性樹脂膜上にパターンを露光した後、現像し、現像された感光性樹脂膜をマスクとして用いてエッチング処理を行ない、感光性樹脂膜を剥離し、さらにエッチング処理を行ない、凹凸面を鈍らせた後、形成された凹凸面にクロムめっきを施す方法;および旋盤等の工作機械を用いて、切削工具により鋳型となる基材を切削する方法(WO2007/077892−A)等が挙げられる。 As a method for obtaining a mold, for example, a method of polishing a substrate, sandblasting, and then applying electroless nickel plating (JP2006-53371-A); after applying copper plating or nickel plating to the substrate, Polishing, sand blasting, and chromium plating (JP2007-188952-A); copper plating or nickel plating, polishing, sand blasting, etching process or copper plating process And then applying chromium plating (JP 2007-237541-A); applying copper plating or nickel plating to the surface of the substrate, polishing, applying a photosensitive resin film on the polished surface, The pattern is exposed on the photosensitive resin film, then developed, and etched using the developed photosensitive resin film as a mask. A method of performing treatment, peeling the photosensitive resin film, further etching, dulling the uneven surface, and then plating the formed uneven surface with chrome; and a cutting tool using a machine tool such as a lathe And a method of cutting a base material to be a mold (WO2007 / 077892-A) and the like.
 ランダムパターンまたは擬似ランダムパターンからなる鋳型の表面凹凸形状は、たとえば、FMスクリーン法、DLDS(Dynamic Low−Discrepancy Sequence)法、ブロック共重合体のミクロ相分離パターンを利用する方法またはバンドパスフィルター法等によって生成されたランダムパターンを感光性樹脂膜上に露光、現像し、現像された感光性樹脂膜をマスクとして用いてエッチング処理を行なうことにより形成することができる。 The surface irregularity shape of the template comprising a random pattern or a pseudo-random pattern is, for example, an FM screen method, a DLDS (Dynamic Low-Discretion Sequence) method, a method using a microphase separation pattern of a block copolymer, or a bandpass filter method. The random pattern generated by the above can be formed by exposing and developing on the photosensitive resin film, and performing an etching process using the developed photosensitive resin film as a mask.
 以上のようにして得られる本発明の光学フィルムは、液晶表示装置などの画像表示装置に好適に適用されるものであり、たとえば、基材フィルム上の樹脂層が様々な外力に起因する傷付きを防止するためのハードコート層であるハードコートフィルム(透光性微粒子を含有する場合がある);樹脂層が液晶セルから出射する光を拡散させて視野角を改善するための光拡散層(光拡散剤としての透光性微粒子を含有する)である視認側光拡散フィルム;樹脂層が外光の映り込みやギラツキを防止するための表面凹凸を有する防眩層(透光性微粒子を含有する場合がある)である防眩フィルム;樹脂層が液晶セルに入射する光を拡散させ、バックライトユニットに起因するモアレ等を防止するための光拡散層(光拡散剤としての透光性微粒子を含有する)である背面側光拡散フィルム(拡散板)などであることができる。ハードコートフィルム、視認側光拡散フィルムおよび防眩フィルムは、通常、視認側偏光板の視認側保護フィルムとして偏光フィルムに貼合して用いられる(すなわち、画像表示装置の表面に配置される。)。背面側光拡散フィルムは、通常、バックライト側偏光板のバックライト側保護フィルムとして偏光フィルムに貼合される。 The optical film of the present invention obtained as described above is suitably applied to an image display device such as a liquid crystal display device. For example, the resin layer on the base film is damaged due to various external forces. Hard coat film (which may contain translucent fine particles); a light diffusion layer for improving the viewing angle by diffusing light emitted from the liquid crystal cell ( Viewing-side light diffusing film that contains translucent fine particles as a light diffusing agent; Antiglare layer (containing translucent fine particles) with resin surface unevenness to prevent reflection of external light and glare A light diffusing layer (translucent fine particles as a light diffusing agent) for diffusing light incident on the liquid crystal cell and preventing moire caused by the backlight unit. The Back-side light-diffusing film is a) (can be diffusion plate) is like. The hard coat film, the viewing-side light diffusion film and the antiglare film are usually used by being bonded to a polarizing film as a viewing-side protective film for the viewing-side polarizing plate (that is, disposed on the surface of the image display device). . The back side light diffusion film is usually bonded to the polarizing film as a backlight side protective film of the backlight side polarizing plate.
 本発明の光学フィルムは、樹脂層上(基材フィルムとは反対側の面)に積層された反射防止層をさらに備えていてもよい。反射防止層は、反射率を限りなく低くするために設けられるものであり、反射防止層の形成により、表示画面への映り込みを防止することができる。反射防止層としては、樹脂層の屈折率よりも低い材料から構成された低屈折率層;樹脂層の屈折率より高い材料から構成された高屈折率層と、この高屈折率層の屈折率より低い材料から構成された低屈折率層との積層構造などを挙げることができる。反射防止層の積層方法には特に制限はなく、樹脂層上に直接積層してもよいし、別途あらかじめ基材フィルム上に反射防止層を積層したものを用意し、粘着剤等を用いて樹脂層の上に貼合してもよい。 The optical film of the present invention may further include an antireflection layer laminated on the resin layer (surface opposite to the base film). The antireflection layer is provided to reduce the reflectance as much as possible, and reflection on the display screen can be prevented by forming the antireflection layer. As the antireflection layer, a low refractive index layer composed of a material lower than the refractive index of the resin layer; a high refractive index layer composed of a material higher than the refractive index of the resin layer, and the refractive index of the high refractive index layer A laminated structure with a low refractive index layer composed of a lower material can be exemplified. There is no particular limitation on the method of laminating the antireflection layer, and the antireflection layer may be laminated directly on the resin layer, or separately prepared by previously laminating the antireflection layer on the base film, and using a pressure sensitive adhesive or the like. You may paste on the layer.
 <偏光板>
 本発明の偏光板は、偏光フィルムと、基材フィルム側が該偏光フィルムに対向するように該偏光フィルム上に積層される前述の製造方法により得られる光学フィルムとを備えるものである。偏光フィルムは、入射光から直線偏光を取り出す機能を有するものであって、その種類は特に限定されない。好適な偏光フィルムの例として、ポリビニルアルコール系樹脂に二色性色素が吸着配向している偏光フィルムを挙げることができる。ポリビニルアルコール系樹脂としては、酢酸ビニルのケン化物であるポリビニルアルコールのほか、部分ホルマール化ポリビニルアルコール、エチレン/酢酸ビニル共重合体のケン化物などが挙げられる。二色性色素としては、ヨウ素または二色性の有機染料が用いられる。また、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物のポリエン配向フィルムも、偏光フィルムとなり得る。偏光フィルムの厚さは、通常5~80μm程度である。
<Polarizing plate>
The polarizing plate of this invention is equipped with a polarizing film and the optical film obtained by the above-mentioned manufacturing method laminated | stacked on this polarizing film so that a base film side may oppose this polarizing film. A polarizing film has a function which takes out linearly polarized light from incident light, The kind is not specifically limited. As an example of a suitable polarizing film, there can be mentioned a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin. Examples of the polyvinyl alcohol-based resin include polyvinyl alcohol, which is a saponified product of vinyl acetate, partially formalized polyvinyl alcohol, and a saponified product of an ethylene / vinyl acetate copolymer. As the dichroic dye, iodine or a dichroic organic dye is used. In addition, a polyene-oriented film of a polyvinyl alcohol dehydrated product or a polyvinyl chloride dehydrochlorinated product can also be a polarizing film. The thickness of the polarizing film is usually about 5 to 80 μm.
 本発明の偏光板は、上記偏光フィルムの片面または両面(通常は片面である)に本発明に係る光学フィルムを積層したものであってもよく、上記偏光フィルムの一方の面に透明保護層を積層し、他方の面に本発明に係る光学フィルムを積層したものであってもよい。
この際、光学フィルムは、偏光フィルムの透明保護層(保護フィルム)としての機能も有する。透明保護層は、透明樹脂フィルムを、接着剤等を用いて貼合する方法や透明樹脂含有塗工液を塗布する方法などによって偏光フィルム上に形成することができる。同様に、本発明に係る光学フィルムは、接着剤等を用いて偏光フィルムに貼合することができる。
The polarizing plate of the present invention may be one in which the optical film according to the present invention is laminated on one side or both sides (usually one side) of the polarizing film, and a transparent protective layer is provided on one side of the polarizing film. The optical film according to the present invention may be laminated on the other surface.
At this time, the optical film also has a function as a transparent protective layer (protective film) of the polarizing film. The transparent protective layer can be formed on the polarizing film by a method of laminating a transparent resin film using an adhesive or the like, a method of applying a transparent resin-containing coating solution, or the like. Similarly, the optical film according to the present invention can be bonded to a polarizing film using an adhesive or the like.
 透明保護層となる透明樹脂フィルムは、透明性や機械強度、熱安定性、水分遮蔽性などに優れることが好ましく、このようなものとしては、たとえば、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート等のセルロースアセテートなどのセルロース系樹脂;ポリカーボネート系樹脂;ポリアクリレート、ポリメチルメタクリレートなどの(メタ)アクリル系樹脂;ポリエチレンテレフタラート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリエチレン、ポリプロピレンなどの鎖状ポリオレフィン系樹脂;環状ポリオレフィン系樹脂;スチレン系樹脂;ポリサルフォン;ポリエーテルサルフォン;ポリ塩化ビニル系樹脂などからなるフィルムが例示される。これらの透明樹脂フィルムは、光学的に等方性のものであってもよいし、画像表示装置に組み込んだ際の視野角の補償を目的として、光学的に異方性を有するものであってもよい。 The transparent resin film serving as the transparent protective layer is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, etc., and examples thereof include triacetyl cellulose, diacetyl cellulose, cellulose acetate propio Cellulose resins such as cellulose acetate such as nates; Polycarbonate resins; (Meth) acrylic resins such as polyacrylate and polymethyl methacrylate; Polyester resins such as polyethylene terephthalate and polyethylene naphthalate; Chains such as polyethylene and polypropylene Examples thereof include films made of polyolefin resin; cyclic polyolefin resin; styrene resin; polysulfone; polyether sulfone; polyvinyl chloride resin. These transparent resin films may be optically isotropic, or have optical anisotropy for the purpose of compensating the viewing angle when incorporated in an image display device. Also good.
 <画像表示装置>
 本発明の画像表示装置は、上記本発明の偏光板と、種々の情報を画面に映し出す画像表示素子とを組み合わせたものである。本発明の画像表示装置の種類は特に限定されず、液晶パネルを使用した液晶ディスプレイ(LCD)のほか、ブラウン管(陰極線管:CRT)ディスプレイ、プラズマディスプレイ(PDP)、電解放出ディスプレイ(FED)、表面伝導型電子放出素子ディスプレイ(SED)、有機ELディスプレイ、レーザーディスプレイ、プロジェクタテレビのスクリーン等が挙げられる。
<Image display device>
The image display device of the present invention is a combination of the polarizing plate of the present invention and an image display element that displays various information on a screen. The type of the image display device of the present invention is not particularly limited. In addition to a liquid crystal display (LCD) using a liquid crystal panel, a cathode ray tube (CRT) display, a plasma display (PDP), a field emission display (FED), a surface Examples thereof include a conduction electron-emitting device display (SED), an organic EL display, a laser display, and a projector television screen.
 たとえば、本発明の偏光板を液晶セル上に配置して液晶パネルを製造する場合、偏光板は、その偏光フィルムが液晶セル側となるように(その樹脂層を外側にして)液晶セル上に配置される。他の画像表示装置についても同様である。光学フィルムは、画像表示素子の視認側に配してもよいし、バックライト側に配してもよいし、あるいはその両方に配してもよい。光学フィルムを視認側に配した場合、光学フィルムは、ハードコートフィルム、光拡散フィルム、防眩フィルムまたは反射防止フィルムなどとして機能し得る。一方、光学フィルムをバックライト側に配した場合、光学フィルムは、液晶セルに入射する光を拡散させ、モアレ等を防止する光拡散フィルム(拡散板)などとして機能し得る。 For example, when a liquid crystal panel is manufactured by arranging the polarizing plate of the present invention on a liquid crystal cell, the polarizing plate is placed on the liquid crystal cell so that the polarizing film is on the liquid crystal cell side (with the resin layer on the outside). Be placed. The same applies to other image display apparatuses. The optical film may be disposed on the viewing side of the image display element, on the backlight side, or on both. When the optical film is arranged on the viewing side, the optical film can function as a hard coat film, a light diffusion film, an antiglare film, an antireflection film, or the like. On the other hand, when the optical film is disposed on the backlight side, the optical film can function as a light diffusion film (diffusion plate) that diffuses light incident on the liquid crystal cell and prevents moiré or the like.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 <実施例1>
 以下の成分を混合して紫外線硬化性の塗工液を調製した。
・紫外線硬化性樹脂:ペンタエリスリトールトリアクリレート60重量部および多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物) 40重量部、
・光重合開始剤:「ルシリン TPO」(BASF社製、化学名:2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド) 5重量部、
・希釈溶剤:酢酸エチル 100重量部。
<Example 1>
The following components were mixed to prepare an ultraviolet curable coating solution.
UV curable resin: 60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate)
Photopolymerization initiator: “Lucillin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) 5 parts by weight,
-Diluting solvent: 100 parts by weight of ethyl acetate.
 上記塗工液を、厚さ80μmのトリアセチルセルロース(TAC)フィルム(基材フィルム)上にグラビアコーターで塗工して塗工層を形成し、基材フィルムと塗工層との積層体を得た〔塗工工程〕。得られた積層体を乾燥炉で乾燥させた後、開閉方向に幅が次第に狭くなる先細の櫛歯を複数有する櫛形フィルタを備えた紫外線照射装置を用いて、UVAにおける積算光量が第1の所定値(先頭領域への照射量)から0まで徐々に減少するように、塗工層の先頭領域に塗工層側から紫外線を照射するとともに、UVAにおける積算光量が0から第2の所定値(後尾領域への照射量)まで徐々に増加するように、塗工層の後尾領域に塗工層側から紫外線を照射した〔第1硬化工程〕。本実施例では、第1および第2の所定値を100mJ/cmとし、紫外線のUVAにおける1秒あたりの積算光量の減少率(先頭領域への照射)および増加率(後尾領域への照射)〔以下では減少率および増加率を総称して変化率という〕はともに700mJ/cm・秒とした。 A coating layer is formed by applying the coating liquid on a triacetyl cellulose (TAC) film (base film) having a thickness of 80 μm with a gravure coater, and a laminate of the base film and the coating layer is formed. Obtained [Coating process]. After the obtained laminate is dried in a drying furnace, an accumulated light amount in UVA is a first predetermined amount using an ultraviolet irradiation device provided with a comb filter having a plurality of tapered comb teeth whose width gradually decreases in the opening and closing direction. The ultraviolet ray is irradiated from the coating layer side to the leading region of the coating layer so that the value (irradiation amount to the leading region) gradually decreases to 0, and the accumulated light amount in UVA is changed from 0 to a second predetermined value ( The ultraviolet rays were irradiated from the coating layer side to the rear region of the coating layer so as to gradually increase the irradiation amount to the rear region) [first curing step]. In this embodiment, the first and second predetermined values are set to 100 mJ / cm 2, and the decrease rate (irradiation to the head region) and increase rate (irradiation to the tail region) per second in UVA of ultraviolet rays. [In the following, the rate of decrease and the rate of increase are collectively referred to as the rate of change] were both 700 mJ / cm 2 · sec.
 ついで、第1硬化工程を経た積層体の塗工層表面に、表面が鏡面になるように研磨処理したクロムめっきロールを、ニップロールを用いて押し当て密着させた。この状態で基材フィルム側より、UVAにおける最大照度が700mW/cm、UVAにおける積算光量が300mJ/cmとなるように紫外線を照射し、塗工層を硬化させた〔第2硬化工程〕。その後、クロムめっきロールから積層体を剥離することで、紫外線硬化性樹脂の硬化物からなる樹脂層の平均膜厚が10μmである光学フィルムを得た。 Next, a chromium plating roll that had been polished so that the surface became a mirror surface was pressed and adhered to the coating layer surface of the laminate that had undergone the first curing step using a nip roll. In this state, the coating layer was cured by irradiating with ultraviolet rays so that the maximum illuminance in UVA was 700 mW / cm 2 and the integrated light amount in UVA was 300 mJ / cm 2 from the substrate film side [second curing step]. . Then, the optical film whose average film thickness of the resin layer which consists of hardened | cured material of an ultraviolet curable resin was 10 micrometers was obtained by peeling a laminated body from a chromium plating roll.
 <実施例2~5>
 第1および第2の所定値、ならびに紫外線のUVAにおける1秒あたりの積算光量の変化率を表1に示されるように変更したこと以外は、実施例1と同様にして光学フィルムを作製した。なお、実施例4においては、櫛形フィルタを用いなかった。
<Examples 2 to 5>
An optical film was produced in the same manner as in Example 1, except that the first and second predetermined values and the rate of change of the integrated light quantity per second in UVA of ultraviolet rays were changed as shown in Table 1. In Example 4, no comb filter was used.
 <比較例1>
 第1硬化工程を実施しなかったこと以外は、実施例1と同様にして光学フィルムを作製した。
<Comparative Example 1>
An optical film was produced in the same manner as in Example 1 except that the first curing step was not performed.
 (樹脂残りの評価)
 各実施例、比較例を作製した後のクロムめっきロールの表面を観察し、1)塗工層端部(先頭端部および後尾端部)、ならびに、2)第1硬化工程における硬化部分(先頭領域および後尾領域)と未硬化部分との境界、に対応する位置の樹脂残りの有無を確認し、樹脂残りの程度を下記基準に従って評価した。
○:上記1)および2)の位置において、全幅方向にわたり樹脂残りが認められない。
△:上記1)または2)の位置において樹脂残りが認められるが、その範囲が全幅の1/3以下である。
×:上記1)または2)の位置において樹脂残りが認められ、その範囲が全幅の1/3を超える。
(Residual resin evaluation)
The surface of the chromium plating roll after producing each example and comparative example was observed, 1) the coating layer end (leading end and tail end), and 2) the cured portion (first) in the first curing step. Area and tail area) and the boundary between the uncured portion and the presence of resin residue at the position corresponding to the boundary, and the degree of resin residue was evaluated according to the following criteria.
○: Resin residue is not observed in the entire width direction at the positions 1) and 2).
Δ: Resin residue is observed at the position 1) or 2), but the range is 1/3 or less of the full width.
X: Resin residue is recognized at the position 1) or 2), and the range exceeds 1/3 of the entire width.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、実施例3でわずかに生じた樹脂残りおよび比較例1の樹脂残りは、上記1)の位置で発生したものである。また、実施例4および5で生じた樹脂残りは、上記2)の位置で発生したものである。 The resin residue slightly generated in Example 3 and the resin residue in Comparative Example 1 were generated at the position 1) above. Further, the resin residue generated in Examples 4 and 5 was generated at the position 2).
 表1に示されるとおり、塗工層の端部領域をあらかじめ硬化させる第1硬化工程を実施することにより、樹脂残りを低減できることがわかる。また、第1硬化工程における紫外線の積算光量およびその変化率を所定の範囲にすることで、樹脂残りを有効に防止できることがわかる。 As shown in Table 1, it can be seen that the resin residue can be reduced by performing the first curing step in which the end region of the coating layer is cured in advance. Moreover, it turns out that the resin remainder can be prevented effectively by making the integrated light quantity and its change rate of the ultraviolet-ray in a 1st hardening process into the predetermined range.
10,15 活性エネルギー線照射装置
11 基材フィルム
12 塗工層
13,16 ニップロール
14 鋳型
31 フィルム巻き出し装置
32 塗工装置
33 乾燥炉
34 フィルム巻き取り装置
DESCRIPTION OF SYMBOLS 10,15 Active energy ray irradiation apparatus 11 Base film 12 Coating layer 13, 16 Nip roll 14 Mold 31 Film unwinding apparatus 32 Coating apparatus 33 Drying furnace 34 Film winding apparatus

Claims (10)

  1.  連続して搬送される基材フィルム上に、活性エネルギー線硬化性樹脂を含有する塗工液を塗工して、塗工層を形成する塗工工程と、
     前記塗工層の先頭領域に、前記塗工層側から活性エネルギー線を照射する第1硬化工程と、
     前記塗工層の表面に鋳型の表面を押し当てた状態で、前記塗工層に前記基材フィルム側から活性エネルギー線を照射する第2硬化工程と、
    を含む光学フィルムの製造方法。
    A coating process that forms a coating layer by coating a coating liquid containing an active energy ray-curable resin on a substrate film that is continuously conveyed;
    A first curing step of irradiating an active energy ray from the coating layer side to the top region of the coating layer;
    A second curing step of irradiating the coating layer with active energy rays from the base film side in a state where the surface of the mold is pressed against the surface of the coating layer;
    The manufacturing method of the optical film containing this.
  2.  活性エネルギー線を照射した前記先頭領域と接する先頭隣接領域において、引続き活性エネルギー線を、先頭隣接領域にその積算光量が先頭領域への照射量から次第に減少して前記先頭隣接領域の終点で0となるように照射する請求の範囲1に記載の方法。 In the head adjacent region that is in contact with the head region that has been irradiated with the active energy ray, the active energy line continues to be reduced to zero at the end point of the head adjacent region. The method according to claim 1, wherein the irradiation is performed as follows.
  3.  前記活性エネルギー線が紫外線であり、
     前記第1硬化工程における前記先頭領域への活性エネルギー線の照射量は、前記紫外線のUVAにおける積算光量で70mJ/cm以上400mJ/cm以下である請求の範囲1または2に記載の方法。
    The active energy rays are ultraviolet rays;
    The irradiation amount of the active energy ray to the head area in the first curing step, the method according to the range 1 or 2 according to an accumulated amount of light at UVA of the ultraviolet 70 mJ / cm 2 or more 400 mJ / cm 2 or less.
  4.  前記活性エネルギー線が紫外線であり、
     前記紫外線のUVAにおける積算光量の減少率が1500mJ/cm・秒以下である請求の範囲2または3に記載の方法。
    The active energy rays are ultraviolet rays;
    The method according to claim 2 or 3, wherein a reduction rate of the integrated light quantity in UVA of the ultraviolet ray is 1500 mJ / cm 2 · sec or less.
  5.  後尾領域において、第2硬化工程に先立って前記塗工層側から後尾領域に活性エネルギー線を照射する請求の範囲1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein in the tail region, the active energy ray is irradiated from the coating layer side to the tail region prior to the second curing step.
  6.  前記後尾領域と接する後尾隣接領域において、前記後尾領域への活性エネルギー線照射に先立って活性エネルギー線を後尾隣接領域に、その積算光量が後尾隣接領域の開始点における0から次第に増加して後尾領域への照射量となるように照射する請求の範囲5に記載の方法。 In the tail adjacent region that is in contact with the tail region, the active energy ray is increased to the tail adjacent region prior to the irradiation of the active energy ray to the tail region, and the accumulated light amount gradually increases from 0 at the starting point of the tail adjacent region. The method of Claim 5 which irradiates so that it may become the irradiation amount to.
  7.  前記活性エネルギー線が紫外線であり、
     前記後尾領域への活性エネルギー線の照射量は、前記紫外線のUVAにおける積算光量で70mJ/cm以上400mJ/cm以下である請求の範囲5または6に記載の方法。
    The active energy rays are ultraviolet rays;
    The irradiation amount of the active energy ray to the tail region, the method according to 70 mJ / cm 2 or more 400 mJ / cm 2 range 5 or 6 according to or less is an accumulated amount of light at UVA of the ultraviolet.
  8.  前記活性エネルギー線が紫外線であり、
     前記紫外線のUVAにおける積算光量の増加率が1500mJ/cm・秒以下である請求の範囲6または7に記載の方法。
    The active energy rays are ultraviolet rays;
    The method according to claim 6 or 7, wherein an increase rate of the integrated light quantity in UVA of the ultraviolet ray is 1500 mJ / cm 2 · sec or less.
  9.  偏光フィルムと、
     前記基材フィルム側が前記偏光フィルムに対向するように、前記偏光フィルム上に積層される請求項1~6のいずれかに記載の方法により製造された光学フィルムと、
    を備える偏光板。
    A polarizing film;
    The optical film produced by the method according to any one of claims 1 to 6, which is laminated on the polarizing film so that the base film side faces the polarizing film;
    A polarizing plate comprising:
  10.  請求の範囲9に記載の偏光板と、画像表示素子とを備え、
     前記偏光板は、その偏光フィルムが前記画像表示素子側となるように前記画像表示素子上に配置される画像表示装置。
    The polarizing plate according to claim 9 and an image display element,
    The said polarizing plate is an image display apparatus arrange | positioned on the said image display element so that the polarizing film may become the said image display element side.
PCT/JP2011/080553 2010-12-27 2011-12-22 Optical film manufacturing method, polarizing plate, and image display device. WO2012091145A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180062702.7A CN103269839B (en) 2010-12-27 2011-12-22 The manufacture method of blooming, polarization plates and image display device
KR1020137016778A KR101875244B1 (en) 2010-12-27 2011-12-22 Optical film manufacturing method, polarizing plate, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-289944 2010-12-27
JP2010289944 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012091145A1 true WO2012091145A1 (en) 2012-07-05

Family

ID=46383231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080553 WO2012091145A1 (en) 2010-12-27 2011-12-22 Optical film manufacturing method, polarizing plate, and image display device.

Country Status (5)

Country Link
JP (1) JP5912517B2 (en)
KR (1) KR101875244B1 (en)
CN (1) CN103269839B (en)
TW (1) TWI526711B (en)
WO (1) WO2012091145A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388570B2 (en) 2015-09-29 2018-09-12 富士フイルム株式会社 Laminated film and method for producing the same, polarizing plate, liquid crystal panel, and liquid crystal display device
CN111962335A (en) * 2020-09-21 2020-11-20 浙江道明新材料有限公司 Grid release paper and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282013A (en) * 2007-05-08 2008-11-20 Samsung Electronics Co Ltd Optical sheet, method of manufacturing the same and display apparatus having the same
JP2009251379A (en) * 2008-04-08 2009-10-29 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display apparatus
JP2009262513A (en) * 2008-04-30 2009-11-12 Konica Minolta Opto Inc Process of manufacturing optical film, optical film and mold
WO2010071055A1 (en) * 2008-12-17 2010-06-24 シャープ株式会社 Roller-type imprint device, and method for manufacturing imprint sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647883A (en) * 1992-07-29 1994-02-22 Toppan Printing Co Ltd Production of embossed sheet by irradiation with ionizing radiation
JP3654483B2 (en) 1997-10-09 2005-06-02 富士写真フイルム株式会社 Manufacturing method of liquid crystal display device
US6862141B2 (en) 2002-05-20 2005-03-01 General Electric Company Optical substrate and method of making
WO2004103683A1 (en) 2003-05-23 2004-12-02 Dai Nippon Printing Co., Ltd. Method for producing optical sheet and optical sheet
WO2009051188A1 (en) * 2007-10-19 2009-04-23 Dai Nippon Printing Co., Ltd. Optical film, polarizing plate and image display device
CN101836136B (en) * 2007-10-23 2013-02-13 住友化学株式会社 Anti-glare film, anti-glare polarizing plate, and image display device
JP4964985B2 (en) * 2008-03-24 2012-07-04 シャープ株式会社 Method for producing nanoimprint film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282013A (en) * 2007-05-08 2008-11-20 Samsung Electronics Co Ltd Optical sheet, method of manufacturing the same and display apparatus having the same
JP2009251379A (en) * 2008-04-08 2009-10-29 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display apparatus
JP2009262513A (en) * 2008-04-30 2009-11-12 Konica Minolta Opto Inc Process of manufacturing optical film, optical film and mold
WO2010071055A1 (en) * 2008-12-17 2010-06-24 シャープ株式会社 Roller-type imprint device, and method for manufacturing imprint sheet

Also Published As

Publication number Publication date
TW201239388A (en) 2012-10-01
KR20130133222A (en) 2013-12-06
CN103269839B (en) 2015-09-23
JP2012150460A (en) 2012-08-09
CN103269839A (en) 2013-08-28
TWI526711B (en) 2016-03-21
KR101875244B1 (en) 2018-07-05
JP5912517B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5889067B2 (en) Manufacturing method of optical film
JP5995412B2 (en) Optical film manufacturing method, polarizing plate, and image display device manufacturing method
JP5539830B2 (en) Method for producing hard coat film
KR20160015160A (en) Anti-glare film
KR20160015162A (en) Anti-glare film
KR20160015161A (en) Anti-glare film
WO2015050274A1 (en) Anti-glare film
TWI513995B (en) A hard coat film, a polarizing film, and an image display device
JP5912517B2 (en) Manufacturing method of optical film, manufacturing method of polarizing plate, and manufacturing method of image display device
JP2012226038A (en) Optical film manufacturing method, polarizer, and image display device
KR20160015163A (en) Anti-glare film
WO2015050275A1 (en) Anti-glare film
JP2011125821A (en) Method for manufacturing hard coat film, polarizing plate, and image display device
JP6125749B2 (en) Optical film, polarizing plate and image display device
WO2012057358A1 (en) Optical film, method for manufacturing same, polarization plate, and image display device
KR20120122919A (en) Process for producing optical film, polarizing plate and image display device
JP2013174638A (en) Production method of optical film, polarizing plate and image display device
JP5987268B2 (en) Hard coat film, polarizing plate and image display device
WO2015080282A1 (en) Antiglare film
JP2014132291A (en) Method for producing optical film, polarizing plate, and image display device
JP2013186455A (en) Manufacturing method for hard coat film
WO2015050273A1 (en) Anti-glare film
JP2016216618A (en) Resin composition, protective film, and polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137016778

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852456

Country of ref document: EP

Kind code of ref document: A1