WO2012089863A1 - Symmetrical flow temperature control apparatus for electronic devices with a cylindrical geometry - Google Patents

Symmetrical flow temperature control apparatus for electronic devices with a cylindrical geometry Download PDF

Info

Publication number
WO2012089863A1
WO2012089863A1 PCT/ES2011/000373 ES2011000373W WO2012089863A1 WO 2012089863 A1 WO2012089863 A1 WO 2012089863A1 ES 2011000373 W ES2011000373 W ES 2011000373W WO 2012089863 A1 WO2012089863 A1 WO 2012089863A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
temperature
thermal
heat exchanger
heat
Prior art date
Application number
PCT/ES2011/000373
Other languages
Spanish (es)
French (fr)
Inventor
Francisco Javier RÍOS GOMEZ
Jorge ROMERO SÁNCHEZ
Raquel FERNÁNDEZ RAMOS
José Franncisco MARTÍN CANALES
Francisco Javier MARTÍN MARTÍN
Original Assignee
Universidad De Málaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Málaga filed Critical Universidad De Málaga
Publication of WO2012089863A1 publication Critical patent/WO2012089863A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components

Definitions

  • the invention presented is framed in the field of mechanical and electronic industry for thermal control and regulation applications in electronic components and devices.
  • electronic devices have varied geometric shapes.
  • the integrated circuits have a parallelepiped shape and contain many active devices that produce heat, their distribution being dependent on their arrangement.
  • Discrete devices can have a cylindrical or rectangular shape at the crystalline level and are normally encapsulated in cylindrical shapes.
  • the discrete power devices contain gels or thermoconducting liquids that bathe the crystalline structure causing the heat transferred to be distributed homogeneously over the cylindrical capsule that contains them.
  • passive coolers based on heat exchange fins by air convection can have cylindrical geometry (hugging the equally cylindrical capsule), rectangular or circular with fins with a flat shape where it contacts the discrete or integrated circuit of similar form.
  • thermoregulatory devices for cooling high-power gas-based lasers in order to standardize their electrical and mechanical behavior.
  • One of the most common problems in electronic engineering is to find solutions to the problem of thermoregulation of electronic circuits and components that must maintain specific thermal conditions for their operation.
  • Semiconductor devices by their nature, are strongly dependent on temperature. When semiconductors are used in sensors and actuators, a thermal control strategy should be designed to ensure that they remain in the proper thermal operating ranges.
  • a thermal change involves not only a deviation from the electrical characteristics of the device, but also a phenomenon of aging and mechanical alteration.
  • a semiconductor device subjected to extreme temperatures undergoes alterations in carrier injection levels and its non-linear behavior induces to force the electric targets in inadequate thermal zones. If, in addition, the thermal changes are not isotropic in the semiconductor, irregular thermal gradients occur that cause the appearance of stresses and deformations in the crystalline structure altering the durability and functional characteristics.
  • an electronic device working at its point of operation tends to warm above room temperature generating a heat flow to the outside.
  • This thermal gradient reaches an equilibrium condition that keeps the device at a stable temperature that will be adequate or not. Any change in environmental conditions causes a change in the gradient tending towards a new equilibrium condition and at another temperature.
  • the semiconductor propagates heat by conduction to the substrate, terminals, capsule, heat exchanger medium (thermal radiator, if it exists) and by simple or forced convection, to the surrounding air.
  • a stable thermal gradient not necessarily uniform and a stable device temperature will also be achieved.
  • the purpose of a thermal regulator is to ensure that the temperature of the device or its thermal state is in the optimal position, maximizing its performance and durability without causing mechanical deformations.
  • thermoelectric phenomena allow us to go beyond the simple search for thermal exchange. These devices allow us to generate heat flows between two zones, hot and cold, by the application of an electric current.
  • a thermal regulating apparatus makes use of peltier cells in a geometric configuration that generates a controlled heat flow symmetrically along an axis.
  • a cylindrical device located on this axis undergoes a homogeneous heat exchange generating flow with axial symmetry.
  • the associated thermal gradient is uniform in all planes perpendicular to the axis of the cylinder.
  • This invention is specially designed for the heat treatment of electronic devices with cylindrical shape. That is, the semiconductor active elements must have a cylindrical shape such as optoelectronic devices such as VCSEL laser diodes or avalanche photodiodes.
  • a peltier cell is a thermoelectric device that functions as a small heat pump.
  • the peltier cell has two faces.
  • a direct current applied to a peltier cell causes a heat flow that cools one side and heats the other.
  • a heat flow is generated that decreases until a maximum temperature difference is reached. If heat is supplied to the cold face, it will absorb a maximum amount of heat when the temperature equality between the two faces is reached again.
  • a peltier cell is governed by the same fundamentals and principles of thermodynamics.
  • the hot face of a peltier cell normally uses an heat exchanger or heat sink that, by convection, exchanges heat with the surrounding air. To increase heat exchange, forced ventilation is usually used with fans that propel the air over the heatsink.
  • the temperature difference ⁇ between the cold face and the hot face of the peltier cell is an essential variable for determining the heat transferred. The greater this difference, the greater the heat can be extracted. When this difference is zero, heat is not transferred and the hot and cold face temperatures equalize. If a target temperature outside the range set by ⁇ is set in a regulation process, the regulation cannot be performed.
  • Regulation is an engineering field that studies the control of a process in a specific state.
  • a thermal regulator is a system that allows constant temperature to be maintained in a target element within known ranges.
  • the most stable regulated systems are those that are configured in closed loop.
  • the target output variable is compared with a reference value defining an error parameter as the difference between these two values. Depending on this error variable, the regulator changes the target output until the error is at a certain value.
  • the regulation strategies or algorithms are carried out by means of a microcontroller that is part of the closed control loop.
  • the microcontroller reads the input variables from temperature sensors and acts on the output variables (peltier cells and fans), after executing the regulation algorithm.
  • thermoregulator apparatus with symmetric thermal flux based on peltier cells for electronic devices with cylindrical geometry is presented.
  • the object of this invention is to keep the temperature of an electronic device with cylindrical geometry in a constant value throughout the space that surrounds it so that the absorption or transfer of heat in that space is carried out in a homogeneous way thus achieving the stability of its electrical characteristics, non-mechanical deformation and increased durability.
  • the apparatus consists of a metallic heat-conducting die that houses in its central axis the cylindrical capsule of the electronic device to be thermally controlled. Said die is in an adiabatic cavity connected to four peltier cells on four of its sides. The thermal exchange of the die is mainly done at through the faces of the four peltier cells that absorb or give heat to the die. The other side of each of the peltier cells is connected to a heat sink that exchanges heat with the surrounding air forced by fans.
  • the geometry that makes up the assembly allows to guarantee, as shown by simulation, that the heat flow generated in the die has a radial shape and with axisymmetric symmetry around the axis that contains the cylindrical capsule of the electronic device.
  • the air flow injected by the fans is driven by a microcontroller through a driver controlling their motors.
  • Peltier cells yield or absorb heat from the die by controlling the current flowing through them. Said control is carried out by a microcontroller and a driver with an electronic circuit that allows to exchange the direction of the current in the cells. Thus, the hot and cold faces of the cells can be exchanged by changing the direction of the current.
  • the die has a temperature sensor that measures its average temperature and whose value is read by the microcontroller.
  • the temperature of this sensor is equal, in the first approximation, to the temperature of the face of the peltier cell that is in contact with the die.
  • the heat exchanger has a temperature sensor that measures its average temperature and whose value is read by the microcontroller.
  • the temperature of this sensor is equal, in the first approximation, to the temperature of the face of the peltier cell that is in contact with the heatsink.
  • the maintenance of an objective temperature in the die is carried out by the closed loop assembly: temperature sensors, microcontroller, acting on the current and its direction in the peltier cells and acting on the volume of air injected into the heatsink by the fans.
  • thermoregulation algorithm on the die without subtracting generality, is as follows:
  • FIGS 1 A and 1 B show two views of the thermoregulator apparatus object of the present invention.
  • FIGS. 2A and 2B represent two views of the thermoregulator apparatus mounted on a laser transmitter.
  • Figure 3 represents a middle cross section of the thermoregulatory apparatus allowing to see the interior parts such as the die, the peltier cells and the heat exchanger.
  • Figure 4 shows an exploded view of the thermoregulatory apparatus with all its components.
  • Figures 5A and 5B show two types of dice for two types of standard capsules T05 and T046 associated in this embodiment with a VCSEL laser and an avalanche photodiode respectively.
  • Figures 6A and 6B show, for the dice of Figures 5A and 5B respectively, the simulation result of the corresponding thermal gradients showing their symmetrical character around the axis of the die.
  • Figure 7 shows the schematic diagram of the driver and the control unit of the direction of the current in the peltier cells.
  • FIG. 8 shows, finally, the functional block diagram that forms the control loop of the thermoregulator apparatus object of this invention.
  • thermoregulator apparatus with symmetric thermal flux based on peltier cells for electronic devices with cylindrical geometry is presented.
  • the symmetric flow thermoregulator apparatus shown in different views in Figures 1A and 1 B, is constituted by a front support 2 and a rear support 3 of low thermal conductivity polycarbonate containing an adiabatic cavity supported by a frame, four heatsinks thermal 5 and four fans 4.
  • thermoregulatory apparatus 1 thermally controls a laser diode that is focused through an optical system consisting of a focusing tube 7 and an aspherical lens 8, all the assembly mounted by means of fixing means 12 (in the preferred embodiment, inserts) to a transmitter 14, as shown in Figures 2A and 2B, with electronic circuits for accessing terminals 13 of peltier cells and temperature sensors 6.
  • FIGS 3 and 4 respectively represent a cross-section and an exploded view of the thermoregulatory apparatus in which all the components it possesses and their arrangement are shown.
  • the frame 15 made of aluminum separates two spaces, one exterior and one interior, the interior containing the metal die 18 made of brass, four peltier cells 16 and the thermal insulators comprising lateral insulators 17 between peltier cells, back cover 20, rear closure 21, anterior lid 22 and anterior closure 23, which form an adiabatic cavity on die 18 in which the thermal exchange is mainly carried out through the faces of the peltier cells 16.
  • the electronic device with cylindrical symmetry 19 On the axis of die 18 is the electronic device with cylindrical symmetry 19 (a laser diode in the presented embodiment), whose terminals they are accessible from the outside by the socket 9 being the laser beam transmitted from the opposite side through the focusing tube 7 and aspherical lens with support 8.
  • the outer space that delimits the frame 15 together with the aluminum heat sinks 5 constitutes the heat exchanger through forced air provided by the fans 4.
  • the fastening screws of the adiabatic cavity 26 are made of insulating plastic (nylon), while the rest 27, (28) and 29 (and 28) are made of steel.
  • the frame 15 is attached to the front 2 and rear 3 brackets with the screws 27 and washers 25.
  • the fans 4 are screwed to the front 2 and rear 3 brackets with the 28 screws.
  • the temperature sensors 11 and 6 stick together, respectively , to die 18 (whereby the temperature sensor 11 constitutes the temperature sensor of the die) and to the frame 15 (whereby the temperature sensor 6 constitutes the temperature sensor of the heat exchanger).
  • the peltier cells 16 are glued to the frame 15 on their inner faces (those of the frame).
  • the die 18 has a solidarity contact with the faces of the peltier cells 16 by thermal paste (the die contacts thermal paste and is not glued with thermal glue).
  • the die can be removed from the frame by removing the screws.
  • the frame 15 is glued with thermal glue with a face of the peltier cells 16.
  • the focusing tube 7 is glued to the die 18 with a thermal insulating glue in order to avoid thermal exchange with the optical system.
  • Figures 5A and 5B show two types of dice for two types of standard capsules T05 and T046 associated in this embodiment with a VCSEL laser and an avalanche photodiode respectively.
  • Figures 6A and 6B show, respectively, the thermal gradient in the die for capsule cavity T05 and the thermal gradient in the die for capsule cavity T046, the result of a simulation, showing its symmetrical character around the axis of the die. In fact, the thermal gradient generated by the cylindrical surface from a die with four of its contiguous faces at constant temperature has radial geometry.
  • Figure 7 shows the schematic of the driver or controller of the peltier cells 31 capable of controlling the direction of the electric current flowing through it.
  • the peltier cell 16 is connected by each of its ends to the output of two CMOS inverters built with MOSFET transistors (M1-M3, M2-M4) of power (> 10 A).
  • the bases of the bipolar transistors Q1 and Q2, also connected to microcontroller 30 through outputs A and B, complement the corresponding doors of their associated CMOS inverters. Since the inputs of CMOS inverters are complementary, when one of them is activated the other is deactivated and vice versa.
  • thermoregulator makes it possible to achieve the desired temperature target in shorter times than with conventional thermostat control methods, since thanks to this exchange, die heat is injected and extracted forcibly contributing to the increase in the natural speed of diffusion of heat in the material.
  • FIG 8 shows the diagram of functional blocks in closed loop for thermal control of the thermoregulator object of this invention.
  • the temperature sensors 1 1 die temperature sensor
  • 6 heatsink / rack temperature sensor
  • the microcontroller 30 can act by generating PWM type pulses in the peltier cell controller 31, with control of the direction of the current in the peltier cells, creating the average current that causes heat transfer from one side to the other. of this. Controller 31 closes a first loop of control.
  • a second loop is created in the operation of the microcontroller 30 on the fans 4, which act by exchanging forced air with the fins of the heat sink 5.
  • the maximum heat flux transferred is 28 watts.
  • the fans generate a maximum air flow of 0.63 m 3 / min.
  • the heat resistance of the heatsink is 7 ° C / W down to a minimum of approximately 2 ° C / W with maximum forced air flow.
  • Peltier cells are connected in series and act all at once. Similarly, the four fans 4 are activated all at once, that is, or all or none are activated.

Abstract

Symmetrical thermal flow temperature control apparatus for electronic devices with a cylindrical geometry, comprising: - a metal block (18) which accommodates the electronic device (19); - four Peltier cells (16) which exchange heat with the block (18); - a heat exchanger which exchanges heat with the Peltier cells (16), comprising a frame (15) in contact with the Peltier cells (16) and four heat sinks (5) attached to each outer side of the frame (15); - a temperature sensor (11) for the block; - a temperature sensor (6) for the heat exchanger; - a controller (31) for the Peltier cells for controlling the current which flows through the Peltier cells (16) and the direction of flow thereof; - data processing means (30), which apparatus receives the temperatures of the block (18) and of the heat exchanger and controls the current in the Peltier cells (16) and the direction of flow thereof in order to keep the temperature of the block (18) under control.

Description

Aparato termorregulador de flujo simétrico para dispositivos electrónicos con geometría cilindrica  Symmetric flow thermoregulator device for electronic devices with cylindrical geometry
Campo de la invención Field of the Invention
La invención presentada, se enmarca en el campo de la industria mecánica y electrónica para aplicaciones de control y regulación térmica en componentes y dispositivos electrónicos.  The invention presented is framed in the field of mechanical and electronic industry for thermal control and regulation applications in electronic components and devices.
Antecedentes de la invención Background of the invention
En términos generales, los dispositivos electrónicos poseen variadas formas geométricas. Los circuitos integrados tienen forma de paralelepípedo y contienen muchos dispositivos activos que producen calor siendo su distribución dependiente de la disposición de éstos. Los dispositivos discretos pueden tener forma cilindrica o rectangular a nivel cristalino y son normalmente encapsulados en formas cilindricas. Los dispositivos discretos de potencia contienen geles o líquidos termoconductores que bañan la estructura cristalina haciendo que el calor cedido se distribuya homogéneamente sobre la cápsula cilindrica que los contiene.  In general terms, electronic devices have varied geometric shapes. The integrated circuits have a parallelepiped shape and contain many active devices that produce heat, their distribution being dependent on their arrangement. Discrete devices can have a cylindrical or rectangular shape at the crystalline level and are normally encapsulated in cylindrical shapes. The discrete power devices contain gels or thermoconducting liquids that bathe the crystalline structure causing the heat transferred to be distributed homogeneously over the cylindrical capsule that contains them.
Por otro lado, los refrigeradores pasivos basados en aletas intercambiadoras de calor por convección con el aire pueden tener geometría cilindrica (abrazando a la capsula igualmente cilindrica), rectangular o circular con aletas con una forma plana en donde contacta con el circuito discreto o integrado de forma similar.  On the other hand, passive coolers based on heat exchange fins by air convection can have cylindrical geometry (hugging the equally cylindrical capsule), rectangular or circular with fins with a flat shape where it contacts the discrete or integrated circuit of similar form.
No existen bombas de calor de estado sólido que se adapten a una geometría (sus formas son rectangulares, circulares o anulares), obedeciendo siempre a la presentación de dos caras opuestas en el espacio para el foco frío y el foco caliente. Por ello, es necesario utilizar estos dispositivos conformando estructuras espaciales que permitan adaptar las características de los flujos generados.  There are no solid-state heat pumps that adapt to a geometry (their shapes are rectangular, circular or annular), always obeying the presentation of two opposite faces in the space for the cold focus and the hot focus. Therefore, it is necessary to use these devices forming spatial structures that allow adapting the characteristics of the generated flows.
La uniformización térmica espacial en geometrías radiales o axiales aplicadas a dispositivos con igual geometría permite minimizar en ellos las tensiones mecánicas que generan los gradientes térmicos, estabilizar sus características eléctricas y aumentar su durabilidad.  The spatial thermal standardization in radial or axial geometries applied to devices with the same geometry allows them to minimize the mechanical stresses generated by thermal gradients, stabilize their electrical characteristics and increase their durability.
W. Koechner, en su libro 'Solid State Láser Engineering' 2006 Springer, sugiere el uso de dispositivos termorreguladores con forma simétrica para la refrigeración de láseres de alta potencia basados en gas con el fin de uniformizar su comportamiento eléctrico y mecánico. Unos de los problemas más comunes en ingeniería electrónica es encontrar soluciones al problema de la termorregulación de circuitos y componentes electrónicos que deben mantener unas condiciones térmicas específicas para su funcionamiento. Los dispositivos semiconductores, por su naturaleza, son fuertemente dependientes de la temperatura. Cuando se utilizan semiconductores en sensores y actuadores, debe diseñarse una estrategia de control térmico para garantizar que éstos se mantengan en las franjas de funcionamiento térmico adecuado. W. Koechner, in his book 'Solid State Laser Engineering' 2006 Springer, suggests the use of symmetrical thermoregulatory devices for cooling high-power gas-based lasers in order to standardize their electrical and mechanical behavior. One of the most common problems in electronic engineering is to find solutions to the problem of thermoregulation of electronic circuits and components that must maintain specific thermal conditions for their operation. Semiconductor devices, by their nature, are strongly dependent on temperature. When semiconductors are used in sensors and actuators, a thermal control strategy should be designed to ensure that they remain in the proper thermal operating ranges.
Por otro lado, un cambio térmico conlleva, no solo una desviación de las características eléctricas del dispositivo, sino también un fenómeno de envejecimiento y de alteración mecánica. Un dispositivo semiconductor sometido a temperaturas extremas, sufre alteraciones en los niveles de inyección de portadores y su comportamiento no lineal induce a forzar los objetivos eléctricos en zonas térmicas inadecuadas. Si, además, los cambios térmicos no son isotrópicos en el semiconductor, se producen gradientes térmicos irregulares que provocan la aparición de tensiones y deformaciones en la estructura cristalina alterando igualmente la durabilidad y las características funcionales.  On the other hand, a thermal change involves not only a deviation from the electrical characteristics of the device, but also a phenomenon of aging and mechanical alteration. A semiconductor device subjected to extreme temperatures, undergoes alterations in carrier injection levels and its non-linear behavior induces to force the electric targets in inadequate thermal zones. If, in addition, the thermal changes are not isotropic in the semiconductor, irregular thermal gradients occur that cause the appearance of stresses and deformations in the crystalline structure altering the durability and functional characteristics.
En general, un dispositivo electrónico trabajando en su punto de operación tiende a calentarse por encima de la temperatura ambiente generando un flujo de calor hacia el exterior. Este gradiente térmico alcanza una condición de equilibrio que mantiene al dispositivo en una temperatura estable que será adecuada o no. Cualquier cambio de las condiciones ambientales provoca un cambio en el gradiente tendiéndose hacia una nueva condición de equilibrio y a otra temperatura. El semiconductor propaga el calor por conducción al sustrato, terminales, capsula, medio intercambiador térmico (radiador térmico, si existe) y por convección simple o forzada, al aire que lo circunda. Para una temperatura del aire dada, se alcanzará un gradiente térmico estable no necesariamente uniforme y una temperatura del dispositivo también estable. El objeto de un regulador térmico es conseguir que la temperatura del dispositivo o su estado térmico se encuentren en la posición óptima maximizando su rendimiento y durabilidad sin que se produzcan deformaciones mecánicas.  In general, an electronic device working at its point of operation tends to warm above room temperature generating a heat flow to the outside. This thermal gradient reaches an equilibrium condition that keeps the device at a stable temperature that will be adequate or not. Any change in environmental conditions causes a change in the gradient tending towards a new equilibrium condition and at another temperature. The semiconductor propagates heat by conduction to the substrate, terminals, capsule, heat exchanger medium (thermal radiator, if it exists) and by simple or forced convection, to the surrounding air. For a given air temperature, a stable thermal gradient not necessarily uniform and a stable device temperature will also be achieved. The purpose of a thermal regulator is to ensure that the temperature of the device or its thermal state is in the optimal position, maximizing its performance and durability without causing mechanical deformations.
El uso de dispositivos basados en fenómenos termoeléctricos, nos permite ir más allá que la simple búsqueda del intercambio térmico. Estos dispositivos nos permiten generar flujos de calor entre dos zonas, fría y caliente, por la aplicación de una corriente eléctrica.  The use of devices based on thermoelectric phenomena, allows us to go beyond the simple search for thermal exchange. These devices allow us to generate heat flows between two zones, hot and cold, by the application of an electric current.
En esta invención se presenta un aparato regulador térmico que hace uso de celdas peltier en una configuración geométrica que genera un flujo de calor controlado simétricamente a lo largo de un eje. Un dispositivo con forma cilindrica situado en este eje sufre un intercambio de calor homogéneo generándose flujo con simetría axial. Así el gradiente térmico asociado es uniforme en todos los planos perpendiculares al eje del cilindro. Esta invención está especialmente diseñada para el tratamiento térmico de dispositivos electrónicos con forma cilindrica. Es decir, los elementos activos del semiconductor deben tener forma cilindrica como por ejemplo en dispositivos optoelectrónicos tales como los diodos láser VCSEL ó fotodiodos de avalancha. In this invention a thermal regulating apparatus is presented that makes use of peltier cells in a geometric configuration that generates a controlled heat flow symmetrically along an axis. A cylindrical device located on this axis undergoes a homogeneous heat exchange generating flow with axial symmetry. Thus the associated thermal gradient is uniform in all planes perpendicular to the axis of the cylinder. This invention is specially designed for the heat treatment of electronic devices with cylindrical shape. That is, the semiconductor active elements must have a cylindrical shape such as optoelectronic devices such as VCSEL laser diodes or avalanche photodiodes.
Una celda peltier es un dispositivo termoeléctrico que funciona como una pequeña bomba de calor. La celda peltier tiene dos caras. Una corriente continua aplicada a una celda peltier origina un flujo de calor que enfría una de las caras y calienta la otra. Cuando una celda peltier se conecta a una fuente de tensión adecuada, se genera un flujo de calor que va disminuyendo hasta que se alcanza una diferencia de temperatura máxima. Si se aporta calor en la cara fría, éste absorberá una cantidad de calor que será máxima cuando de nuevo se alcance la igualdad de temperatura entre las dos caras. Al igual que los refrigeradores mecánicos, una celda peltier se rige según los mismos fundamentos y principios de la termodinámica. La cara caliente de una celda peltier usa normalmente un intercambiador o disipador térmico que, mediante convección, intercambia el calor con el aire circundante. Para incrementar el intercambio térmico, se suele utilizar ventilación forzada con ventiladores que impulsan el aire sobre el disipador térmico.  A peltier cell is a thermoelectric device that functions as a small heat pump. The peltier cell has two faces. A direct current applied to a peltier cell causes a heat flow that cools one side and heats the other. When a peltier cell is connected to a suitable voltage source, a heat flow is generated that decreases until a maximum temperature difference is reached. If heat is supplied to the cold face, it will absorb a maximum amount of heat when the temperature equality between the two faces is reached again. Like mechanical refrigerators, a peltier cell is governed by the same fundamentals and principles of thermodynamics. The hot face of a peltier cell normally uses an heat exchanger or heat sink that, by convection, exchanges heat with the surrounding air. To increase heat exchange, forced ventilation is usually used with fans that propel the air over the heatsink.
Analíticamente, si Tc es la temperatura de la cara fría y Th la temperatura de la cara caliente (temperatura expresada en °K), el flujo de calor absorbido o velocidad de transferencia de calor Qc por la cara fría en watios viene dado por: Analytically, if T c is the cold face temperature and T h the hot face temperature (temperature expressed in ° K), the heat flow absorbed or heat transfer rate Q c by the cold face in watts is given by:
QC = (S TC I) - ( ¿ /2 - K ) - Κ - ΔΤ (1) donde 5 es el coeficiente Seebeck evaluado en las caras caliente y fría, / la corriente eléctrica que circula por la celda (en amperios), R la resistencia térmica de la celda (en ohmios), K la conductancia térmica de la celda (en watios/°K), evaluada en las caras caliente y fría y ΔΓ = Th - Tc la diferencia de temperatura entre las dos caras. Por otro lado, el flujo calor cedido Qh por la cara caliente, en watios, viene dado por: Q C = (ST C I) - (¿/ 2 - K) - Κ - ΔΤ (1) where 5 is the Seebeck coefficient evaluated on the hot and cold faces, / the electric current flowing through the cell (in amps) , R the thermal resistance of the cell (in ohms), K the thermal conductance of the cell (in watts / ° K), evaluated on the hot and cold faces and ΔΓ = T h - T c the temperature difference between the two faces. On the other hand, the heat flux ceded Q h by the hot face, in watts, is given by:
Qh = Qe + Pc (2) siendo Pc la potencia consumida por la celda en watios. Qh = Qe + Pc (2) where P c is the power consumed by the cell in watts.
La diferencia de temperaturas ΔΓ entre la cara fría y la cara caliente de la celda peltier es una variable esencial para la determinación del calor transferido. Cuanto mayor sea esta diferencia mayor calor se podrá extraer. Cuando esta diferencia es cero, no se transfiere calor y las temperaturas de la cara fría y caliente se igualan. Si en un proceso de regulación se fija una temperatura objetivo fuera de la franja establecida por ΔΓ, no se podrá realizar la regulación. The temperature difference ΔΓ between the cold face and the hot face of the peltier cell is an essential variable for determining the heat transferred. The greater this difference, the greater the heat can be extracted. When this difference is zero, heat is not transferred and the hot and cold face temperatures equalize. If a target temperature outside the range set by ΔΓ is set in a regulation process, the regulation cannot be performed.
La regulación es un campo de la ingeniería que estudia el control de un proceso en un estado concreto. Un regulador térmico es un sistema que permite mantener la temperatura constante en un elemento objetivo dentro de unos márgenes conocidos. Los sistemas regulados más estables son los que se configuran en lazo cerrado. La variable de salida objetivo se compara con un valor de referencia definiéndose un parámetro de error como la diferencia entre estos dos valores. En función de ésta variable de error, el regulador cambia la salida objetivo hasta que el error se encuentre en un valor determinado. En esta invención, las estrategias o algoritmos de regulación se llevan a cabo mediante un microcontrolador que forma parte del lazo cerrado de control. El microcontrolador lee las variables de entrada a partir de sensores de temperatura y actúa sobre las de salida (celdas peltier y ventiladores), tras ejecutar el algoritmo de regulación.  Regulation is an engineering field that studies the control of a process in a specific state. A thermal regulator is a system that allows constant temperature to be maintained in a target element within known ranges. The most stable regulated systems are those that are configured in closed loop. The target output variable is compared with a reference value defining an error parameter as the difference between these two values. Depending on this error variable, the regulator changes the target output until the error is at a certain value. In this invention, the regulation strategies or algorithms are carried out by means of a microcontroller that is part of the closed control loop. The microcontroller reads the input variables from temperature sensors and acts on the output variables (peltier cells and fans), after executing the regulation algorithm.
Descripción de la invención Description of the invention
En esta invención se presenta un aparato termorregulador con flujo térmico simétrico basado en celdas peltier para dispositivos electrónicos con geometría cilindrica.  In this invention a thermoregulator apparatus with symmetric thermal flux based on peltier cells for electronic devices with cylindrical geometry is presented.
El objeto de esta invención es mantener en un valor constante la temperatura de un dispositivo electrónico con geometría cilindrica en todo el espacio que lo rodea de manera que la absorción o cesión de calor en ese espacio se realice de forma homogénea consiguiéndose así la estabilidad de sus características eléctricas, la no deformación mecánica y el aumento de su durabilidad.  The object of this invention is to keep the temperature of an electronic device with cylindrical geometry in a constant value throughout the space that surrounds it so that the absorption or transfer of heat in that space is carried out in a homogeneous way thus achieving the stability of its electrical characteristics, non-mechanical deformation and increased durability.
El aparato consta de un dado metálico conductor del calor que alberga en su eje central a la capsula cilindrica del dispositivo electrónico a controlar térmicamente. Dicho dado se encuentra en una cavidad adiabática conectado a cuatro celdas peltier en cuatro de sus lados. El intercambio térmico del dado se realiza fundamentalmente a través de las caras de las cuatro celdas peltier que absorben o ceden calor al dado. La otra cara de cada una de las celdas peltier está conectada a un disipador térmico que intercambia el calor con el aire circundante forzado por ventiladores. The apparatus consists of a metallic heat-conducting die that houses in its central axis the cylindrical capsule of the electronic device to be thermally controlled. Said die is in an adiabatic cavity connected to four peltier cells on four of its sides. The thermal exchange of the die is mainly done at through the faces of the four peltier cells that absorb or give heat to the die. The other side of each of the peltier cells is connected to a heat sink that exchanges heat with the surrounding air forced by fans.
La geometría que conforma el conjunto permite garantizar, tal como se muestra por simulación, que el flujo de calor generado en el dado posee forma radial y con simetría axisimétrica en torno al eje que contiene la capsula cilindrica del dispositivo electrónico.  The geometry that makes up the assembly allows to guarantee, as shown by simulation, that the heat flow generated in the die has a radial shape and with axisymmetric symmetry around the axis that contains the cylindrical capsule of the electronic device.
El flujo de aire que inyectan los ventiladores se acciona por un microcontrolador a través de un driver de control de sus motores.  The air flow injected by the fans is driven by a microcontroller through a driver controlling their motors.
Las celdas peltier ceden o absorben calor del dado mediante el control de la corriente que circula por ellas. Dicho control es llevado a cabo por un microcontrolador y un driver con un circuito electrónico que permite intercambiar el sentido de la corriente en las celdas. Así, las caras frías y calientes de las celdas pueden intercambiarse al cambiar el sentido de la corriente.  Peltier cells yield or absorb heat from the die by controlling the current flowing through them. Said control is carried out by a microcontroller and a driver with an electronic circuit that allows to exchange the direction of the current in the cells. Thus, the hot and cold faces of the cells can be exchanged by changing the direction of the current.
El dado posee un sensor de temperatura que mide su temperatura media y cuyo valor es leído por el microcontrolador. La temperatura de este sensor es igual, en primera aproximación, a la temperatura de la cara de la celda peltier que se encuentra en contacto con el dado.  The die has a temperature sensor that measures its average temperature and whose value is read by the microcontroller. The temperature of this sensor is equal, in the first approximation, to the temperature of the face of the peltier cell that is in contact with the die.
El intercambiador térmico posee un sensor de temperatura que mide su temperatura media y cuyo valor es leído por el microcontrolador. La temperatura de este sensor es igual, en primera aproximación, a la temperatura de la cara de la celda peltier que se encuentra en contacto con el disipador.  The heat exchanger has a temperature sensor that measures its average temperature and whose value is read by the microcontroller. The temperature of this sensor is equal, in the first approximation, to the temperature of the face of the peltier cell that is in contact with the heatsink.
El mantenimiento de una temperatura objetivo en el dado es llevado a cabo por el conjunto en lazo cerrado: sensores de temperatura, microcontrolador, actuación sobre la corriente y su sentido en las celdas peltier y actuación en el volumen de aire inyectado hacia el disipador térmico por los ventiladores.  The maintenance of an objective temperature in the die is carried out by the closed loop assembly: temperature sensors, microcontroller, acting on the current and its direction in the peltier cells and acting on the volume of air injected into the heatsink by the fans.
El algoritmo básico de termorregulación sobre el dado, sin restar generalidad, es el siguiente:  The basic thermoregulation algorithm on the die, without subtracting generality, is as follows:
1. Fijar la temperatura objetivo del dado.  1. Set the target temperature of the die.
2. Fijar el valor de la variable de error.  2. Set the value of the error variable.
3. Leer la temperatura del dado.  3. Read the temperature of the dice.
4. Leer la temperatura del disipador térmico.  4. Read the temperature of the heatsink.
5. Calcular la franja térmica de actuación de la celda peltier ΔΓ.  5. Calculate the thermal range of the peltier cell ΔΓ.
5.1. Si la temperatura objetivo está dentro de la franja térmica, continuar. 5.2. Si no es alcanzable la temperatura objetivo y no están activados los ventiladores, activar los ventiladores. Ir a 3. 5.1. If the target temperature is within the thermal range, continue. 5.2. If the target temperature is not attainable and the fans are not activated, activate the fans. Go to 3.
5.3. Si aun activados los ventiladores no se consigue la temperatura objetivo, cambiar la temperatura objetivo del dado a un valor que esté dentro de la franja de actuación salvo un límite inferior o superior en la franja (es una medida de seguridad para no alcanzar los límites máximos y mínimos de la franja garantizando las posibles dispersiones no lineales que puedan suceder). Ir a 3.  5.3. If the fans are not activated even if the target temperature is achieved, change the target temperature of the die to a value that is within the range of action except for a lower or upper limit in the range (it is a safety measure to not reach the maximum limits and minimums of the strip guaranteeing the possible non-linear dispersions that may occur). Go to 3.
5.4. Si la temperatura del dado supera los márgenes superiores e inferiores de un umbral de seguridad, desconectar el dispositivo a termorregular. Salir.  5.4. If the temperature of the die exceeds the upper and lower margins of a safety threshold, disconnect the device to be thermoregulated. Get out.
Comparar la temperatura del dado con la temperatura objetivo.  Compare the temperature of the die with the target temperature.
Actuar sobre las celdas peltier calentando o enfriando el dado hasta que la diferencia térmica alcance la variable de error.  Act on the peltier cells by heating or cooling the die until the thermal difference reaches the error variable.
Volver al paso 2.  Return to step 2.
Los periodos temporales de lectura y actuación deben verificar los criterios de estabilidad propios de la teoría de control conocida la constante de tiempo del sistema. Breve descripción de los dibujos Temporary periods of reading and acting must verify the stability criteria of the known control theory for the system time constant. Brief description of the drawings
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.  A series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention which is presented as a non-limiting example thereof is described very briefly below.
Las Figuras 1 A y 1 B muestran dos vistas del aparato termorregulador objeto de la presente invención.  Figures 1 A and 1 B show two views of the thermoregulator apparatus object of the present invention.
Las Figuras 2A y 2B representan dos vistas del aparato termorregulador montado sobre un transmisor láser.  Figures 2A and 2B represent two views of the thermoregulator apparatus mounted on a laser transmitter.
La Figura 3 representa una sección transversal media del aparato termorregulador permitiendo ver las partes interiores tales como el dado, las celdas peltier y el intercambiador de calor.  Figure 3 represents a middle cross section of the thermoregulatory apparatus allowing to see the interior parts such as the die, the peltier cells and the heat exchanger.
La Figura 4 muestra una vista explosionada del aparato termorregulador con todos sus componentes. Las Figuras 5A y 5B muestran dos tipos de dados para dos tipos de cápsulas estándar T05 y T046 asociadas en esta realización a un láser VCSEL y a un fotodiodo de avalancha respectivamente. Figure 4 shows an exploded view of the thermoregulatory apparatus with all its components. Figures 5A and 5B show two types of dice for two types of standard capsules T05 and T046 associated in this embodiment with a VCSEL laser and an avalanche photodiode respectively.
Las Figuras 6A y 6B muestran, para los dados de las Figuras 5A y 5B respectivamente, el resultado de la simulación del trazado de los correspondientes gradientes térmicos mostrándose su carácter simétrico en torno al eje del dado.  Figures 6A and 6B show, for the dice of Figures 5A and 5B respectively, the simulation result of the corresponding thermal gradients showing their symmetrical character around the axis of the die.
La Figura 7 muestra el diagrama esquemático del driver y la unidad de control del sentido de la corriente en las celdas peltier.  Figure 7 shows the schematic diagram of the driver and the control unit of the direction of the current in the peltier cells.
La Figura 8 muestra, finalmente, el diagrama de bloques funcionales que conforma el lazo de control del aparato termorregulador objeto de esta invención.  Figure 8 shows, finally, the functional block diagram that forms the control loop of the thermoregulator apparatus object of this invention.
Descripción detallada de la invención Detailed description of the invention
En esta invención se presenta un aparato termorregulador con flujo térmico simétrico basado en celdas peltier para dispositivos electrónicos con geometría cilindrica. El aparato termorregulador de flujo simétrico 1 , mostrado en diferentes vistas en las Figuras 1A y 1 B, está constituido por un soporte anterior 2 y otro posterior 3 de policarbonato de baja conductividad térmica que contienen a una cavidad adiabática soportada por un bastidor, cuatro disipadores térmicos 5 y cuatro ventiladores 4. En la realización presentada, el aparato termorregulador 1 y sin restar generalidad, controla térmicamente a un diodo láser que se focaliza a través de un sistema óptico constituido por un tubo de enfoque 7 y una lente asférica 8, todo el conjunto montado mediante medios de fijación 12 (en la realización preferente, encastres) a un transmisor 14, tal como muestran la Figuras 2A y 2B, con circuitos electrónicos para acceder a los terminales 13 de celdas peltier y de sensores de temperatura 6.  In this invention a thermoregulator apparatus with symmetric thermal flux based on peltier cells for electronic devices with cylindrical geometry is presented. The symmetric flow thermoregulator apparatus 1, shown in different views in Figures 1A and 1 B, is constituted by a front support 2 and a rear support 3 of low thermal conductivity polycarbonate containing an adiabatic cavity supported by a frame, four heatsinks thermal 5 and four fans 4. In the presented embodiment, the thermoregulatory apparatus 1 and without subtracting generality, thermally controls a laser diode that is focused through an optical system consisting of a focusing tube 7 and an aspherical lens 8, all the assembly mounted by means of fixing means 12 (in the preferred embodiment, inserts) to a transmitter 14, as shown in Figures 2A and 2B, with electronic circuits for accessing terminals 13 of peltier cells and temperature sensors 6.
Las Figuras 3 y 4 representan respectivamente, una sección transversal y una vista explosionada del aparato termorregulador en las que se muestran todos los componentes que posee y su disposición. El bastidor 15 realizado en aluminio separa dos espacios, uno exterior y uno interior, el interior conteniendo al dado metálico 18 realizado en latón, cuatro celdas peltier 16 y los aislantes térmicos que comprenden aislantes laterales 17 entre celdas peltier, tapa posterior 20, cierre posterior 21 , tapa anterior 22 y cierre anterior 23, que conforman una cavidad adiabática sobre el dado 18 en la que el intercambio térmico se realiza principalmente a través de las caras de las celdas peltier 16. En el eje del dado 18 se encuentra el dispositivo electrónico con simetría cilindrica 19 (un diodo láser en la realización presentada), cuyos terminales son accesibles desde el exterior por el zócalo 9 siendo el haz láser transmitido por el lado opuesto a través del tubo de enfoque 7 y lente asférica con soporte 8. El espacio exterior que delimita el bastidor 15 junto con los disipadores térmicos 5 de aluminio constituye el intercambiador térmico mediante el aire forzado proporcionado por los ventiladores 4. Los tornillos de sujeción de la cavidad adiabática 26 son de plástico aislante (nylon), mientras que el resto 27, (28) y 29 (y 28) son de acero. El bastidor 15 se adosa a los soportes anterior 2 y posterior 3 con los tornillos 27 y arandelas 25. Los ventiladores 4 se atornillan a los soportes anterior 2 y posterior 3 con los tornillos 28. Los sensores de temperatura 11 y 6 se pegan, respectivamente, al dado 18 (con lo que el sensor de temperatura 11 constituye el sensor de temperatura del dado) y al bastidor 15 (con lo que el sensor de temperatura 6 constituye el sensor de temperatura del intercambiador térmico). Para maximizar el contacto térmico se han utilizado pegamentos y pastas térmicas de alta conductividad. Así, las celdas peltier 16 van pegadas al bastidor 15 en sus caras interiores (las del bastidor). El dado 18 presenta un contacto solidario con las caras de las celdas peltier 16 mediante pasta térmica (el dado contacta con pasta térmica y no va pegado con pegamento térmico). El dado se puede extraer del bastidor quitando los tornillos. El bastidor 15 está pegado con pegamento térmico con una cara de las celdas peltier 16. El tubo de enfoque 7 va pegado al dado 18 con un pegamento aislante térmico con el fin de evitar el intercambio térmico con el sistema óptico. Figures 3 and 4 respectively represent a cross-section and an exploded view of the thermoregulatory apparatus in which all the components it possesses and their arrangement are shown. The frame 15 made of aluminum separates two spaces, one exterior and one interior, the interior containing the metal die 18 made of brass, four peltier cells 16 and the thermal insulators comprising lateral insulators 17 between peltier cells, back cover 20, rear closure 21, anterior lid 22 and anterior closure 23, which form an adiabatic cavity on die 18 in which the thermal exchange is mainly carried out through the faces of the peltier cells 16. On the axis of die 18 is the electronic device with cylindrical symmetry 19 (a laser diode in the presented embodiment), whose terminals they are accessible from the outside by the socket 9 being the laser beam transmitted from the opposite side through the focusing tube 7 and aspherical lens with support 8. The outer space that delimits the frame 15 together with the aluminum heat sinks 5 constitutes the heat exchanger through forced air provided by the fans 4. The fastening screws of the adiabatic cavity 26 are made of insulating plastic (nylon), while the rest 27, (28) and 29 (and 28) are made of steel. The frame 15 is attached to the front 2 and rear 3 brackets with the screws 27 and washers 25. The fans 4 are screwed to the front 2 and rear 3 brackets with the 28 screws. The temperature sensors 11 and 6 stick together, respectively , to die 18 (whereby the temperature sensor 11 constitutes the temperature sensor of the die) and to the frame 15 (whereby the temperature sensor 6 constitutes the temperature sensor of the heat exchanger). To maximize thermal contact, high conductivity glues and thermal pastes have been used. Thus, the peltier cells 16 are glued to the frame 15 on their inner faces (those of the frame). The die 18 has a solidarity contact with the faces of the peltier cells 16 by thermal paste (the die contacts thermal paste and is not glued with thermal glue). The die can be removed from the frame by removing the screws. The frame 15 is glued with thermal glue with a face of the peltier cells 16. The focusing tube 7 is glued to the die 18 with a thermal insulating glue in order to avoid thermal exchange with the optical system.
Las Figuras 5A y 5B muestran dos tipos de dados para dos tipos de cápsulas estándar T05 y T046 asociadas en esta realización a un láser VCSEL y a un fotodiodo de avalancha respectivamente. Las Figuras 6A y 6B muestran, respectivamente, el gradiente térmico en el dado para capsula cavidad T05 y el gradiente térmico en el dado para capsula cavidad T046, resultado de una simulación, mostrándose su carácter simétrico en torno al eje del dado. En efecto, el gradiente térmico generado por la superficie cilindrica proveniente de un dado con cuatro de sus caras contiguas a temperatura constante, posee geometría radial. Los efectos difusivos del calor dentro del dado considerándolo suficientemente grande (19mm de lado en la realización presentada), hacen posible que un gradiente térmico inicialmente perpendicular a las caras del dado, terminen conformando una distribución radial en un cilindro situado en su eje central.  Figures 5A and 5B show two types of dice for two types of standard capsules T05 and T046 associated in this embodiment with a VCSEL laser and an avalanche photodiode respectively. Figures 6A and 6B show, respectively, the thermal gradient in the die for capsule cavity T05 and the thermal gradient in the die for capsule cavity T046, the result of a simulation, showing its symmetrical character around the axis of the die. In fact, the thermal gradient generated by the cylindrical surface from a die with four of its contiguous faces at constant temperature has radial geometry. The diffusive effects of heat within the die, considering it large enough (19mm sideways in the presented embodiment), make it possible for a thermal gradient initially perpendicular to the faces of the die, to end up forming a radial distribution in a cylinder located on its central axis.
La Figura 7 muestra el esquemático del driver o controlador de las celdas peltier 31 con capacidad de control del sentido de la corriente eléctrica que circula por ella. La celda peltier 16, se conecta por cada uno de sus extremos a la salida de dos inversores CMOS construidos con transistores MOSFET (M1-M3, M2-M4) de potencia (>10 A). La corriente que circula por sus fuentes confluye en un nodo común al que se conecta el transistor NMOS de potencia M5 pudiendo ser controlada la celda peltier 16 en modo On-Off a través de la base del transistor bipolar Q3 conectada a medios de procesamiento de datos (preferentemente un microcontrolador 30) a través de una salida C, con lo que si la salida C=0 (0 lógico) la celda peltier 16 está en funcionamiento y si la salida C=1 (1 lógico) la celda peltier 16 está apagada. Las bases de los transistores bipolares Q1 y Q2, también conectadas al microcontrolador 30 a través de las salidas A y B, activan complementariamente las correspondientes puertas de sus inversores CMOS asociados. Dado que las entradas de los inversores CMOS son complementarias, cuando uno de ellos está activado el otro está desactivado y viceversa. Un análisis de corrientes de esta topología, considerando el transistor M5 en conducción, demuestra que cuando el par M1-M3 está activado (M2- M4 desactivado), los transistores M1 y M4 entran en conducción. Así la corriente circula de izquierda a derecha según el sentido M1->16->M4, lo cual ocurre si la salida A=0 (0 lógico) y la salida B=1 (1 lógico). Contrariamente, cuando el par M1-M3 está desactivado (M2-M4 activado), los transistores M2 y M3 entran en conducción generándose una corriente de derecha a izquierda según el sentido M2->16->M3, lo cual ocurre si la salida A=1 (1 lógico) y la salida B=0 (0 lógico). Por tanto, este circuito permite intercambiar el sentido de la corriente que circula por una celda peltier haciendo que sus caras fría y caliente intercambien su papel en función de este sentido. Esta habilidad del termorregulador presentado hace posible alcanzar el objetivo de temperatura deseada en tiempos más cortos que con los métodos de control de termostato convencional, ya que gracias a este intercambio, se inyecta y extrae calor del dado forzadamente contribuyendo al incremento de la velocidad natural de difusión del calor en el material. Figure 7 shows the schematic of the driver or controller of the peltier cells 31 capable of controlling the direction of the electric current flowing through it. The peltier cell 16, is connected by each of its ends to the output of two CMOS inverters built with MOSFET transistors (M1-M3, M2-M4) of power (> 10 A). The current flowing through its sources converges on a common node to which the NMOS transistor of power M5 is connected and the peltier cell 16 can be controlled in On-Off mode through the base of the bipolar transistor Q3 connected to data processing means (preferably a microcontroller 30) through an output C, whereby if the output C = 0 (logical 0) the peltier cell 16 is in operation and if the output C = 1 (logical 1) the peltier cell 16 is off . The bases of the bipolar transistors Q1 and Q2, also connected to microcontroller 30 through outputs A and B, complement the corresponding doors of their associated CMOS inverters. Since the inputs of CMOS inverters are complementary, when one of them is activated the other is deactivated and vice versa. An analysis of currents of this topology, considering the transistor M5 in conduction, demonstrates that when the pair M1-M3 is activated (M2-M4 deactivated), transistors M1 and M4 enter conduction. Thus the current flows from left to right according to the direction M1->16-> M4, which occurs if the output A = 0 (0 logical) and the output B = 1 (1 logical). On the contrary, when the M1-M3 pair is deactivated (M2-M4 activated), the transistors M2 and M3 enter conduction generating a current from right to left according to the direction M2->16-> M3, which occurs if the output A = 1 (1 logical) and the output B = 0 (0 logical). Therefore, this circuit allows the direction of the current flowing through a peltier cell to be exchanged, causing its hot and cold faces to exchange their role according to this direction. This ability of the presented thermoregulator makes it possible to achieve the desired temperature target in shorter times than with conventional thermostat control methods, since thanks to this exchange, die heat is injected and extracted forcibly contributing to the increase in the natural speed of diffusion of heat in the material.
La Figura 8 muestra el diagrama de bloques funcionales en lazo cerrado para el control térmico del termorregulador objeto de esta invención. Los sensores de temperatura 1 1 (sensor de temperatura del dado) y 6 (sensor de temperatura del disipador/bastidor) proporcionan al microcontrolador 30 las temperaturas de cada una de las caras de la celda peltier (interior y exterior, respectivamente) permitiendo calcular la variable ΔΓ = Th— Tc . Por otro lado, el microcontrolador 30 puede actuar generando pulsos tipo PWM en el controlador de las celdas peltier 31 , con control del sentido de la corriente en las celdas peltier, creando la corriente media que provoca el trasvase de calor de una cara a la otra de éstas. El controlador 31 cierra un primer lazo de control. Un segundo lazo se crea en la actuación del microcontrolador 30 sobre los ventiladores 4, que actúan intercambiando aire forzado con las aletas del disipador térmico 5. De acuerdo con las características del la celda utilizada en la realización presentada, la diferencia térmica máxima con transferencia de calor nulo es de ΔΓ = 66 °C. Igualmente, el flujo de calor máximo transferido, a diferencia de temperatura nula, es de 28 watios. Los ventiladores generan un flujo de aire máximo de 0.63 m3/min. La resistencia térmica del disipador térmico es de 7 °C/W bajando a un mínimo de 2°C/W aproximadamente con flujo máximo de aire forzado. Considerando el algoritmo antes descrito, las medidas experimentales muestran que en ambientes con diferencias térmicas no inferiores a 22 °C aproximadamente, puede encontrarse una temperatura del dado que se mantenga constante con independencia de los cambios térmicos que puedan producirse. Estos resultados son válidos para su aplicación en climas mediterráneos y centroeuropeos considerando que los cambios térmicos que se producen entre el día y la noche, por término medio, no superan los 20 °C. Figure 8 shows the diagram of functional blocks in closed loop for thermal control of the thermoregulator object of this invention. The temperature sensors 1 1 (die temperature sensor) and 6 (heatsink / rack temperature sensor) provide the microcontroller 30 with the temperatures of each of the faces of the peltier cell (interior and exterior, respectively) allowing to calculate the variable ΔΓ = T h - T c . On the other hand, the microcontroller 30 can act by generating PWM type pulses in the peltier cell controller 31, with control of the direction of the current in the peltier cells, creating the average current that causes heat transfer from one side to the other. of this. Controller 31 closes a first loop of control. A second loop is created in the operation of the microcontroller 30 on the fans 4, which act by exchanging forced air with the fins of the heat sink 5. According to the characteristics of the cell used in the presented embodiment, the maximum thermal difference with transfer of Null heat is ΔΓ = 66 ° C. Likewise, the maximum heat flux transferred, unlike zero temperature, is 28 watts. The fans generate a maximum air flow of 0.63 m 3 / min. The heat resistance of the heatsink is 7 ° C / W down to a minimum of approximately 2 ° C / W with maximum forced air flow. Considering the algorithm described above, the experimental measurements show that in environments with thermal differences not less than approximately 22 ° C, a die temperature can be found that remains constant regardless of the thermal changes that may occur. These results are valid for application in Mediterranean and Central European climates considering that the thermal changes that occur between day and night, on average, do not exceed 20 ° C.
Las celdas peltier se conectan en serie y actúan todas a la vez. De igual forma, los cuatro ventiladores 4 se activan todos a la vez, esto es, o se activan todos o ninguno.  Peltier cells are connected in series and act all at once. Similarly, the four fans 4 are activated all at once, that is, or all or none are activated.

Claims

REIVINDICACIONES
1. - Aparato termorregulador de flujo térmico simétrico para dispositivos electrónicos con geometría cilindrica, caracterizado por que comprende: 1. - Symmetric thermal flux thermoregulator apparatus for electronic devices with cylindrical geometry, characterized in that it comprises:
- un dado metálico (18) encargado de albergar en su eje central al dispositivo electrónico (19) de geometría cilindrica a regular térmicamente;  - a metallic die (18) in charge of housing in its central axis the electronic device (19) of cylindrical geometry to be thermally regulated;
- cuatro celdas peltier (16), cada una con una primera cara en contacto con cada lado externo del dado metálico (18), encargadas de intercambiar calor con el dado (18);  - four peltier cells (16), each with a first face in contact with each external side of the metal die (18), responsible for exchanging heat with the die (18);
- un intercambiador térmico encargado de intercambiar calor con las celdas peltier (16), que comprende cuatro disipadores térmicos (5), cada uno en contacto térmico con la segunda cara de cada celda peltier (16);  - a heat exchanger responsible for exchanging heat with the peltier cells (16), comprising four heat sinks (5), each in thermal contact with the second face of each peltier cell (16);
- medios de medición de la temperatura del dado (11);  - means for measuring the temperature of the die (11);
- medios de medición de la temperatura del intercambiador térmico (6);  - temperature measuring means of the heat exchanger (6);
- un controlador de las celdas peltier (31), que permite el control de la corriente que circula por las celdas peltier (16) y de su sentido de circulación;  - a peltier cell controller (31), which allows the control of the current flowing through the peltier cells (16) and its direction of circulation;
- medios de procesamiento de datos (30), encargados de recibir las temperaturas del dado (18) y del intercambiador térmico y controlar a través del controlador de las celdas peltier (31) la corriente de las celdas peltier (16) y su sentido de circulación para mantener la temperatura del dado (18) regulada.  - data processing means (30), responsible for receiving the temperatures of the die (18) and the heat exchanger and controlling through the peltier cell controller (31) the current of the peltier cells (16) and their sense of circulation to maintain the temperature of the die (18) regulated.
2. - Aparato termorregulador según la reivindicación 1 , donde el intercambiador térmico comprende un bastidor (15), estando las cuatro celdas peltier (16) adheridas cada una por la segunda cara a cada lado interno del bastidor (15) y los cuatro disipadores térmicos (5) adheridos cada uno a cada lado externo del bastidor (15). 2. - Thermoregulatory apparatus according to claim 1, wherein the heat exchanger comprises a frame (15), the four peltier cells (16) each being attached by the second face to each internal side of the frame (15) and the four heat sinks (5) adhered each to each outer side of the frame (15).
3. - Aparato termorregulador según la reivindicación 2, donde los medios de medición de la temperatura del intercambiador térmico comprende un sensor de temperatura (6) adherido al bastidor (15). 3. - Thermoregulator apparatus according to claim 2, wherein the temperature measuring means of the heat exchanger comprises a temperature sensor (6) adhered to the frame (15).
4. - Aparato termorregulador según cualquiera de las reivindicaciones anteriores, donde los medios de medición de la temperatura del dado comprende un sensor de temperatura (11) adherido al dado (18). 4. - Thermoregulatory apparatus according to any of the preceding claims, wherein the means for measuring the temperature of the die comprises a temperature sensor (11) adhered to the die (18).
5. - Aparato termorregulador según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente cuatro ventiladores (4), cada uno enfrentado a cada disipador (5), estando los medios de procesamiento de datos (30) encargado del control de dichos ventiladores (4). 5. - Thermoregulatory apparatus according to any of the preceding claims, further comprising four fans (4), each facing each heatsink (5), the data processing means (30) being in charge of controlling said fans (4) .
6. - Aparato termorregulador según la reivindicación 5, donde los medios de procesamiento de datos (30) están configurados para efectuar la termorregulación del dado (18) en lazo cerrado, para lo cual dichos medios de procesamiento de datos (30) están configurados para: 6. - Thermoregulator apparatus according to claim 5, wherein the data processing means (30) are configured to effect the thermoregulation of the die (18) in closed loop, for which said data processing means (30) are configured to :
a- fijar la temperatura objetivo del dado (18);  set the target temperature of the die (18);
b- fijar el valor de la variable de error;  b- set the value of the error variable;
c- obtener la temperatura del dado (18);  c- obtain the temperature of the die (18);
d- obtener la temperatura del intercambiador térmico;  d- obtain the temperature of the heat exchanger;
e- calcular la franja térmica de actuación de las celdas peltier (16);  e- calculate the thermal strip of action of the peltier cells (16);
* si no es alcanzable la temperatura objetivo del dado y no están activados los ventiladores (4), activarlos y volver a medir la temperatura del dado (18) y del intercambiador para calcular de nuevo la franja térmica de actuación ΔΤ;  * If the target temperature of the die is not attainable and the fans (4) are not activated, activate them and re-measure the temperature of the die (18) and the exchanger to calculate again the thermal operating range ΔΤ;
* si están activados los ventiladores (4) y no se consigue la temperatura objetivo, cambiar la temperatura objetivo del dado y volver a medir la temperatura del dado (18) y del intercambiador para calcular de nuevo la franja térmica de actuación ΔΤ; * If the fans (4) are activated and the target temperature is not achieved, change the target temperature of the die and re-measure the temperature of the die (18) and the heat exchanger to calculate the operating thermal range ΔΤ again;
f- si la temperatura objetivo del dado (18) está dentro de la franja térmica de actuación, comparar la temperatura del dado (18) con la temperatura objetivo; g- actuar sobre las celdas peltier (16), calentando o enfriando el dado (18) según corresponda hasta que la diferencia térmica entre la temperatura objetivo del dado (18) y la temperatura medida del dado (18) alcance el valor de la variable de error previamente fijado;  f- if the target temperature of the die (18) is within the thermal range of action, compare the temperature of the die (18) with the target temperature; g- act on the peltier cells (16), heating or cooling the die (18) as appropriate until the thermal difference between the target temperature of the die (18) and the measured temperature of the die (18) reaches the value of the variable previously set error;
h- volver a fijar el valor de la variable de error y repetir el proceso.  h- set the value of the error variable again and repeat the process.
7. - Aparato termorregulador según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente una pluralidad de aislantes térmicos (17,20,21 ,22,23) que conforman una cavidad adiabática sobre el dado metálico (18). 7. - Thermoregulatory apparatus according to any of the preceding claims, further comprising a plurality of thermal insulators (17,20,21, 22,23) that form an adiabatic cavity on the metal die (18).
8. - Aparato termorregulador según cualquiera de las reivindicaciones anteriores, que comprende un soporte anterior (2) y un soporte posterior (3) de baja conductividad térmica, que soporta en su interior el dado metálico (18) y el intercambiador térmico. 8. - Thermoregulatory apparatus according to any of the preceding claims, comprising an anterior support (2) and a posterior support (3) of low thermal conductivity, which supports inside the metal die (18) and the heat exchanger.
9. - Aparato termorregulador según la reivindicación 8, donde el dispositivo electrónico (19) con geometría cilindrica es un diodo láser (19) de un transmisor láser (14), comprendiendo el aparato termorregulador: 9. - Thermoregulator apparatus according to claim 8, wherein the electronic device (19) with cylindrical geometry is a laser diode (19) of a laser transmitter (14), the thermoregulator apparatus comprising:
- un tubo de enfoque (7) y una lente esférica (8) montados en el soporte anterior (2) para focalizar el haz del diodo láser (19), y  - a focusing tube (7) and a spherical lens (8) mounted on the front support (2) to focus the laser diode beam (19), and
- medios de fijación (12) en el soporte posterior (3) para la fijación del transmisor láser (14).  - fixing means (12) on the rear support (3) for fixing the laser transmitter (14).
10. - Aparato termorregulador según la reivindicación 8, donde el dispositivo electrónico con geometría cilindrica es un fotodiodo de avalancha de un receptor láser, comprendiendo el aparato termorregulador: 10. - Thermoregulator apparatus according to claim 8, wherein the electronic device with cylindrical geometry is an avalanche photodiode of a laser receiver, the thermoregulator apparatus comprising:
- un tubo de enfoque (7) y una lente esférica (8) montados en el soporte anterior (2) para focalizar el haz recibido por el fotodiodo de avalancha, y  - a focusing tube (7) and a spherical lens (8) mounted on the anterior support (2) to focus the beam received by the avalanche photodiode, and
- medios de fijación (12) en el soporte posterior (3) para la fijación del receptor láser.  - fixing means (12) on the back support (3) for fixing the laser receiver.
PCT/ES2011/000373 2010-12-27 2011-12-23 Symmetrical flow temperature control apparatus for electronic devices with a cylindrical geometry WO2012089863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201001621A ES2362232B2 (en) 2010-12-27 2010-12-27 SYMMETRIC FLOW THERMOREGULATOR DEVICE FOR ELECTRONIC DEVICES WITH CYLINDRICAL GEOMETRY.
ESP201001621 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012089863A1 true WO2012089863A1 (en) 2012-07-05

Family

ID=44146568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000373 WO2012089863A1 (en) 2010-12-27 2011-12-23 Symmetrical flow temperature control apparatus for electronic devices with a cylindrical geometry

Country Status (2)

Country Link
ES (1) ES2362232B2 (en)
WO (1) WO2012089863A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453979A (en) * 1977-10-07 1979-04-27 Canon Inc Temperature control unit of semiconductor laser element
DE2844805A1 (en) * 1978-10-11 1980-04-24 Lange Gmbh Dr Bruno Thermostat for cells in photometer - has Peltier element under cell changer and two temp. sensors controlling its operation
US4571728A (en) * 1982-04-09 1986-02-18 Olympus Optical Co., Ltd. Temperature control device for a semiconductor laser
US4689659A (en) * 1985-02-18 1987-08-25 Fuji Photo Film Co., Ltd. Temperature controller for semiconductor device
US4727554A (en) * 1985-02-18 1988-02-23 Fuji Photo Film Co., Ltd. Temperature controller for semiconductor devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453979A (en) * 1977-10-07 1979-04-27 Canon Inc Temperature control unit of semiconductor laser element
DE2844805A1 (en) * 1978-10-11 1980-04-24 Lange Gmbh Dr Bruno Thermostat for cells in photometer - has Peltier element under cell changer and two temp. sensors controlling its operation
US4571728A (en) * 1982-04-09 1986-02-18 Olympus Optical Co., Ltd. Temperature control device for a semiconductor laser
US4689659A (en) * 1985-02-18 1987-08-25 Fuji Photo Film Co., Ltd. Temperature controller for semiconductor device
US4727554A (en) * 1985-02-18 1988-02-23 Fuji Photo Film Co., Ltd. Temperature controller for semiconductor devices

Also Published As

Publication number Publication date
ES2362232A1 (en) 2011-06-30
ES2362232B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5608922B2 (en) Temperature control of electronic components
KR101622777B1 (en) Cooler and warmer massage pack using thermoelectric element
US20100307168A1 (en) Thermo-electric cooler
WO2017015126A1 (en) Thermoelectric device cooling system
Gupta et al. On-chip Peltier cooling using current pulse
Faraji et al. Experimental study of a thermoelectrically-driven liquid chiller in terms of COP and cooling down period
WO2012089863A1 (en) Symmetrical flow temperature control apparatus for electronic devices with a cylindrical geometry
KR20070041686A (en) Temperature tuning the wavelength of a semiconductor laser using a variable thermal impedance
KR102138221B1 (en) Air cooling heat dissipation system for laser
JP2010175835A (en) Camera apparatus
CN208180264U (en) Semiconductor temperature control biological 3D printing nozzle
Nandini Peltier based cabinet cooling system using heat pipe and liquid based heat sink
KR101681924B1 (en) Micro-climate control device applied closed garment
CN211786813U (en) Temperature control system of laser and laser
JP6108583B1 (en) Aquarium fish tank and breeding water temperature control method using multiple Peltier elements
Sonwani et al. Thermoelectric refrigerator using Peltier module
Lavanya et al. Cooling and heating of refrigerator jacket by using peltier effect
Manohar et al. Comparison of the experimental performance of a thermoelectric refrigerator with a vapour compression refrigerator
KR200330558Y1 (en) Low electric power Cooling and Heating System
ES2882795T3 (en) Temperature regulating medical device
KR102581191B1 (en) LED double-sided floodlight for ships
JP3129409U (en) Energy efficient electronic refrigerator
WO2017061436A1 (en) Laser light source device
Rasheed Controlling the wavelength of a high power diode laser using thermoelectric cooler
KR101577024B1 (en) Device and method for controlling water temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853620

Country of ref document: EP

Kind code of ref document: A1