WO2012089038A1 - V形面铜铝焊接加工工艺及电力电缆用焊接接头 - Google Patents

V形面铜铝焊接加工工艺及电力电缆用焊接接头 Download PDF

Info

Publication number
WO2012089038A1
WO2012089038A1 PCT/CN2011/084144 CN2011084144W WO2012089038A1 WO 2012089038 A1 WO2012089038 A1 WO 2012089038A1 CN 2011084144 W CN2011084144 W CN 2011084144W WO 2012089038 A1 WO2012089038 A1 WO 2012089038A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
aluminum
tube
welding
joint
Prior art date
Application number
PCT/CN2011/084144
Other languages
English (en)
French (fr)
Inventor
左铁军
赵越
王昕�
万延尧
杨训
孙德兴
王岩
Original Assignee
Zuo Tiejun
Zhao Yue
Wang Xin
Wan Yanyao
Yang Xun
Sun Dexing
Wang Yan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zuo Tiejun, Zhao Yue, Wang Xin, Wan Yanyao, Yang Xun, Sun Dexing, Wang Yan filed Critical Zuo Tiejun
Publication of WO2012089038A1 publication Critical patent/WO2012089038A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/20Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof

Definitions

  • the invention relates to a squeeze resistance welding process, in particular to a copper-aluminum metal welding process.
  • the invention also relates to a welded joint produced by the above method, in particular a copper-aluminum welded joint for a power cable.
  • aluminum conductors aluminum power cables and wires
  • copper conductors copper power cables and wires
  • Aluminum-based copper has become one of the effective means to save copper resources.
  • the promotion of aluminum conductors must first solve the copper-aluminum connection problem of power cables and power conductors.
  • the best solution is to use copper-aluminum joints processed by welding as intermediate transition sections. The copper and aluminum joints of the copper and aluminum joints are connected to the copper conductor and the aluminum conductor at both ends.
  • Copper and aluminum can be welded by friction welding method and flash resistance welding method, but both methods are connected with copper and aluminum end faces, and the contact faces cannot be completely fused.
  • the copper and aluminum often appear due to the limitation of the welding method.
  • the fusion is not good, resulting in "no transition", which causes the joint to heat up, and the electrical conductivity can not fully meet the requirements of use; the unfused part will form stress concentration, there is a hidden danger of cracking, or even fall off, causing electrical accidents or casualties and other disasters, aluminum
  • the conductor and the copper conductor cannot be reliably connected, which hinders the popularization and application of the aluminum cable.
  • the existing copper-aluminum tube resistance welding technology uses a copper tube inserted into an aluminum tube and then welded. Although a well-densified pipe joint structure can be obtained, the material characteristics of the copper-aluminum composite pipe member are wall thickness. Thin, power cables require thick-walled or even solid-core copper rods; the copper-side bevels for copper-aluminum joints used in power cables cannot be completely formed by precision roll forging; the surface oxide removal and thin-wall of thick-walled aluminum tubes The aluminum tubes are not the same, and they cannot be directly used for the welding of copper and aluminum joints for power cable conductors without modification.
  • the technical problem to be solved by the present invention is to provide a V-shaped surface extrusion resistance welding process suitable for thick-walled copper-aluminum welding.
  • Step 1 machining one end of the copper tube by machining to form a welding surface having a taper ⁇ , wherein the inner diameter of the copper tube located in the welding surface area is slightly contracted to form an inner contraction having a contraction angle ;
  • Step 2 Fix the aluminum tube and the copper tube on the left and right electrodes of the V-shaped surface extrusion resistance welding machine, the side electrode of the aluminum tube is a fixed electrode, and the side electrode of the copper tube is a movable electrode that can move along the axial direction of the joint, in the copper tube Bore Pre-filled block;
  • Step 3 Push the copper tube toward the aluminum tube and achieve close contact.
  • the left and right electrodes are energized to heat the copper-aluminum joint, and the copper tube slides along the joint axial direction to the inside of the aluminum tube.
  • Step 4 After advancing the copper pipe to the required depth of welding L, the power is cut off, the copper and aluminum pipe welds are solidified, and the propulsion is stopped;
  • Step 5 At the moment of power failure, the filling block of the copper pipe is pressed into the shrinkage of the copper pipe by pressure, and the weld zone is pressed, and the filler block is permanently fixed in the welding area to form a joint.
  • the welding principle of the present invention is as follows: The tapered surface of the copper tube is formed in line contact with the edge of the inner diameter of the aluminum tube, and the current density of the contact point between the copper tube and the aluminum tube after pressing and energizing is large, the temperature is high, aluminum The oxide will melt instantaneously. At this time, a ring-shaped molten pool is formed between the copper and aluminum tubes. During the welding process, the melting speed and melting amount of aluminum are much larger than the melting speed and melting amount of the copper tube surface, and are bound by the outer wall of the aluminum tube.
  • the molten pool expands along the taper surface of the copper tube, the copper tube continuously pushes horizontally into the aluminum tube, and the contact ring line pool gradually becomes a cone-shaped melting ring belt, which is completely isolated from the air.
  • the aluminum in the molten pool does not oxidize, the weld is subjected to the pressing force, and the copper-aluminum eutectic structure in the melting zone between the copper and aluminum is extruded outside the melting zone, and the translation distance of the copper pipe is reached within a prescribed time.
  • L is cooled, a copper-aluminum weld is formed after cooling off, and the weld forms a V-shaped weld with an angle ⁇ .
  • the invention defines the taper angle ⁇ of the welded surface, because the thick wall tube requires greater propulsive force when welding, so ⁇ needs to be smaller; and the thin wall tube selects ⁇ not to be too small, otherwise the V shape is to be welded.
  • the surface taper is too long to affect the welding.
  • the present invention limits the depth of advancement because: the depth of advancement needs to be exactly the same as entering the aluminum tube with the taper, otherwise there will be an appearance defect of the copper tube being uneven or the aluminum tube rising.
  • the above formula determines the optimum push depth.
  • the present invention welds aluminum and copper together by means of extrusion resistance welding without using any welding materials or welding aids.
  • the copper workpiece moves horizontally, and the neck end is pressed toward the inside of the aluminum workpiece.
  • the outer shape of the aluminum workpiece is controlled and does not expand and deform due to the force.
  • the filling block is pressed into the welded joint area by pressure, and the welded area is further squeezed, thereby reducing the occurrence of copper-aluminum eutectic structure.
  • the through holes of the welded pipe joint are separated by the filling block, thereby isolating the direct contact of the copper-aluminum cable, and is convenient for controlling the insertion depth of the copper-aluminum cable.
  • the V-shaped face weld constructed by the present invention significantly increases the fusion zone compared with the port butt weld.
  • the area of the copper-aluminum joint fusion zone produced by the invention is 1.5 to 2.5 times that of the butt joint, which is particularly advantageous for electrical conduction. Therefore, the special structure copper-aluminum joint processed by the invention is particularly suitable for the copper-aluminum transition application of the power cable.
  • the microstructure of the copper-aluminum weld joint of the joint constructed by the present invention is composed of columnar crystal and a thickness of 2 ⁇ ⁇ copper-aluminum eutectic (a-Al+CuA12) structure, and the essence of the present invention is to try to Reducing the number of eutectic structures, the goal is to form a single columnar crystal structure.
  • the columnar crystal constructed by the present invention is composed of four substances, that is, aluminum-based aluminum-copper solid solution and aluminum-based solid solution CuA12 near the aluminum tube side; copper is near the copper tube side Base copper-aluminum solid solution and newly formed material Cu9A14.
  • the above process can also be used for welding copper rods and aluminum pipe joints.
  • the first step is to form one end of the copper rod to form a welding surface having a taper ⁇ , and the welding surface end of the copper rod is drilled with a blind hole constituting a hollow structure;
  • the filling block is preset in the inner hole of the aluminum tube;
  • the filling block preset in the inner hole of the aluminum tube is pressed into the blind hole of the copper rod by pressure, thereby applying the weld area Pressure.
  • some fine pits may be prefabricated on the copper pipe welding surface, and the weld metal will fill the fine pits during the welding process, wherein the weld bead structure plays a role of pinning and fixing.
  • a longitudinal tooth shape can be prefabricated on the surface of the copper, and these tooth shapes are pressed into the interior of the aluminum to increase the welding area.
  • Another technical problem to be solved by the present invention is to provide a copper-aluminum welded joint manufactured by the above method.
  • the above problem is solved in this way: A thick-walled copper-aluminum welded joint consisting of a copper tube, an aluminum tube, and a V-shaped welded surface, characterized in that there is a permanent filling block inside the copper end.
  • FIG. 1 Schematic diagram of the processing of the copper pipe end welding zone
  • FIG. 1 Schematic diagram of the start-up phase of copper tube and aluminum tube welding
  • FIG. 1 Schematic diagram of the V-shaped weld
  • FIG. 4 Schematic diagram of the termination phase of copper tube and aluminum tube welding
  • Figure 5 Schematic diagram of a long-filled copper-aluminum pipe joint
  • FIG. 6 Schematic diagram of the processing of the copper rod end welding zone
  • Figure 7 Schematic diagram of welded joints of copper rod aluminum tubes
  • Aluminum tube 2. Copper tube 3. Filling block F1. Aluminum electrode clamping force F2. Copper electrode clamping force F3. Copper tube main propulsion F4. Filling force F5. Filling force on the joint Aluminum tube outer diameter, d 2 . copper tube outer diameter, d 3 . aluminum tube inner diameter, L. copper tube advancing depth, ⁇ . copper tube to be welded surface angle and V-shaped surface weld angle.
  • Embodiment 1 The processing steps of the copper tube-aluminum tube joint: Step 1: The copper pipe is cut, firstly, the copper pipe is firstly processed by machining method, and then the welding surface of the end is processed to ⁇ by a precision roll forging method, and the inner diameter of the copper pipe is slightly contracted to form a corner, as shown in FIG. .
  • Step 2 Aluminum tube cutting.
  • Step 3 Place the aluminum tube 1 and the copper tube 2 on the left and right electrodes of the V-shaped surface extrusion resistance welding machine, fix the aluminum tube 1 on the electrode with a pressure F1, and fix the copper tube 2 on the electrode with a pressure F2.
  • the side electrode of the aluminum tube 1 is a fixed electrode
  • the side electrode of the copper tube 2 is a movable electrode that can move along the axial direction of the joint, and the filling block 3 is preset in the inner hole of the copper tube 2.
  • Step 4 As shown in Figure 2, start the main thrust F3, push the copper tube 2 to the aluminum tube 1 and achieve the close connection.
  • Step 5 Heat the copper and aluminum joints on the left and right electrodes, the copper-aluminum contact surface melts rapidly, and the copper tube along the joint The axial direction slides toward the inside of the aluminum tube. After the copper pipe has reached the depth of L, the power is cut off and the copper and aluminum pipe welds are solidified, as shown in Figure 3.
  • Step 6 As shown in Figure 4, the main thrust F3 stops. At the moment of power failure, the copper pipe filling block 3 is pressed into the contraction of the copper pipe by the pressure F4, and the weld zone is pressed F5, and the filling block 3 is permanently fixed in the welding zone.
  • the mandrel is pressed into the entire copper pipe and the welded joint area, as shown in Fig. 5, which will meet the cold forming requirements of the copper-aluminum crimp joint.
  • Copper rod-aluminum pipe joint processing steps copper tube-aluminum pipe joints are similar, the difference is as follows: One end of the copper pipe is machined into an angle to ⁇ , and a blind hole is drilled at the end, as shown in Fig. 6; The filling block 5 is then pressed into the blind hole of the copper rod from the side of the aluminum tube, as shown in FIG.
  • the weld is composed of a copper-aluminum solid solution and a new intermetallic compound. Most of the copper-aluminum eutectic structure is squeezed out of the weld, so that the weld of the copper-aluminum joint has no cracking hazard and can meet the relevant safety requirements.
  • the socket joint structure improves the electrical conductivity of the joint. Therefore, the present invention can be applied to a copper-aluminum pipe joint of a power cable having high safety requirements.

Description

V形面铜铝焊接加工工艺及电力电缆用焊接接头
技术领域
本发明涉及一种挤压电阻焊接工艺, 尤其是铜铝金属焊接工艺。
本发明还涉及一种用上述方法生产的焊接接头, 尤其是电力电缆用铜铝焊 接接头。
技术背景
在铜资源紧缺, 铝制电力电缆、 线 (以下简称铝导体)代替铜制电力电缆、 线 (以下简称铜导体) 的呼声越来越高。 铝代铜成为节约铜资源的有效手段之 一, 但推广铝导体首先要解决电力电缆、 电力导体的铜铝连接问题, 最好的方 案是用焊接方式加工的铜铝接头做中间过渡段, 用铜铝接头的铜铝两端连接铜 导体和铝导体。
用摩擦焊接方法、 闪光电阻焊接方法可以焊接铜和铝, 但这两种方法均釆 用铜铝端面连接, 接触面无法全部熔合, 实际使用中, 受焊接方法自身能力的 制约, 经常出现铜铝熔合不好, 造成 "不过渡",从而引起接头发热, 导电性能也 不能完全满足使用要求; 未熔合部分会形成应力集中, 存在开裂隐患, 甚至脱 落, 造成电器事故或人员伤亡等灾害事故, 铝导体与铜导体不能实现可靠连接, 阻碍了铝电缆的推广应用。
已有铜铝管电阻焊技术釆用铜管插入到铝管然后进行焊接的方式, 尽管可 以获得致密度好的管路接头结构, 但这种铜铝组合管路件的材料特征是壁厚较 薄, 电力电缆要求使用厚壁甚至实芯铜棒; 用于电力电缆的铜铝接头的铜端的 斜面不能完全釆用精密辊锻方式加工成型; 厚壁铝管的表面氧化物清除方式与 薄壁铝管不相同, 不加以改造创新不能直接用于电力电缆导体用铜铝接头的焊 接。
发明内容
本发明要解决的技术问题是提供一种适合厚壁铜铝焊接的 V形面挤压电阻 焊接工艺。
对于上述技术问题, 本发明是这样解决的:
步骤一: 用机加工方法对铜管一端加工, 形成具有锥度 β的焊接面, 此时铜 管位于焊接面区域的内径略为收缩形成具有收缩角 Υ的内收缩处;
所述锥度 Ρ依据铝管外径 、 铜管外径 d2、 铝管内径 d3按下述公式确定: β =Α - 0.15* + 3*d2 - 2.7*d3, 其中 A的取值范围为 14°至 16°。
步骤二: 将铝管和铜管固定在 V形面挤压电阻焊接机的左右电极上, 铝管 侧电极为固定电极, 铜管侧电极为可沿接头轴向移动的活动电极, 在铜管内孔 中预置填充块;
步骤三: 将铜管推向铝管并实现紧密接触, 对左右电极通电加热铜铝接头, 铜管沿接头轴向向铝管内部滑移。
步骤四: 推进铜管达到焊接所需深度 L后, 断电, 铜铝管焊缝凝固, 停止 推进;
所述推进深度 L依据铜管外径 d2、 铝管内径 d3、 V形待焊面锥度 β按下述 公式确定: L = ( d2 - d3 ) /2tg( P /2)。
步骤五: 在停电瞬间, 用压力将铜管内填充块压入铜管内收缩处, 对焊缝 区域施压, 填充块被永久固定在焊接区域, 形成接头。
本发明的焊接原理如下所述: 铜管经缩口处理的锥面与铝管内径的边缘形 成线接触, 加压、 通电后铜管与铝管的接触点的电流密度大, 温度高, 铝的氧 化物会瞬间熔化, 此时, 铜铝管之间形成环线状熔池, 焊接过程中, 铝的熔化 速度和熔化量远大于铜管表面的熔化速度和熔化量, 受到铝管外壁约束力的制 约, 熔池沿着铜管的锥面在滑移中扩大, 铜管不断向铝管中水平推进, 接触环 线熔池逐渐变成锥形熔化环带, 该环带熔池与空气完全隔绝, 熔池内的铝不会 发生氧化, 焊缝受到挤压作用力, 铜铝之间熔化带内的铜铝共晶组织被挤到熔 化区外,在规定的时间内,铜管的平移距离达到 L时, 断电冷却后形成铜铝焊缝, 该焊缝形成一个夹角为 β的 V形面焊缝。
本发明对焊接面的锥度 β角进行了限定, 原因在于: 厚壁管焊接时需要更 大的推进力, 所以 β需要小一点; 而薄壁管选择的 β不能过小, 否则 V形待焊面 锥度断过长影响焊接。
本发明对推进深度做了限定, 原因在于: 推进深度需要以锥部恰好进入铝 管最好,否则会出现铜管不平,或铝管涨起的外观缺陷。 上述公式确定了最佳的推 进深度。
本发明的有益效果是:
1、 本发明在不使用任何焊接材料、 焊接助剂的前提下, 釆用挤压电阻焊的 方式将铝和铜焊接在一起。
2、 焊接时, 铜质工件作水平移动, 缩口端向铝质工件内部挤压, 铝质工件 外部形状受控, 不因受力而发生膨胀变形。
3、 在切断左右电极间电源的瞬间, 用压力将填充块压入焊接接头区域, 焊 接区域会受到进一步的挤压, 从而减少铜铝共晶组织的产生。 焊接管接头的通 孔被填充块分隔开, 从而隔绝了铜铝电缆线的直接接触, 便于控制铜铝线缆的 插入深度。
4、 由本发明构筑的 V形面焊缝与端口对接焊缝相比明显增加了熔合区域的 面积, 本发明生产的铜铝接头熔合区域面积是对接接头的 1.5~2.5倍, 特别有利 于导电, 因此, 由本发明加工的这种特殊结构铜铝接头特别适合电力电缆的铜 铝过渡应用。
5、 在背散射扫描电镜下观察, 由本发明构筑的接头的铜铝焊缝微观组织由 柱状晶和厚度 2 μ ηι铜铝共晶( a -Al+CuA12 )组织构成, 本发明的本质是尽量 减少共晶组织数量, 目标是形成单一的柱状晶组织。
6、 在高分辨投射电镜下进一步观察, 由本发明构筑的柱状晶由四种物质构 成即靠近铝管侧以铝为基的铝铜固溶体和新生成的物质 CuA12; 靠近铜管侧的以 铜为基的铜铝固溶体和新生成的物质 Cu9A14。
上述工艺还可以用来焊接铜棒与铝管接头, 所述步骤一是加工铜棒的一端 形成具有锥度 β的焊接面, 铜棒的焊接面端钻有构成中空结构的盲孔; 所述步 骤二是将填充块预置在铝管的内孔中; 所述步骤五是将预置在铝管的内孔中的 填充块用压力压入铜棒的盲孔内, 从而对焊缝区域施压。
为增加铜铝接头拉伸性能, 也可以在铜管焊接表面预制一些细坑, 焊接过 程中焊缝金属会填满这些细坑, 其中的焊缝组织起到钉扎固定的作用。
为增加铜铝接头的熔合面积, 可以在铜的表面预制纵向齿形, 这些齿形会 压入铝材内部增加焊接面积。
本发明要解决的另一技术问题是提供一种用上述方法制造的铜铝焊接接 头。 上述问题是这样解决的: 一种厚壁铜铝焊接接头, 由铜管、 铝管、 V形焊接 面构成, 其特征在于在铜端内部有永久填充块。
附图说明
图 1 铜管管端焊接区加工示意图;
图 2 铜管与铝管焊接启动阶段示意图;
图 3 V形面焊缝示意图;
图 4 铜管与铝管焊接终止阶段示意图;
图 5 长填充块铜铝管接头示意图;
图 6 铜棒端焊接区加工示意图;
图 7 铜棒铝管焊接接头示意图;
其中 1.铝管 2.铜管 3.填充块 F1.铝电极夹持力 F2.铜电极夹持力 F3. 铜管主推进力 F4.填充物推入力 F5.填充物对接头的挤压力 铝管外径、 d2. 铜管外径、 d3.铝管内径、 L.铜管推进深度、 β .铜管待焊面角度暨 V形面焊缝 角度。
具体实施方式
具体实施例一: 铜管-铝管接头的加工工艺步骤: 步骤 1 : 铜管下料, 首先用机加工方法将铜管一端初步加工, 然后再用精密 辊锻方法将该端焊接面加工至 β , 铜管内径略为收缩形成 Υ角, 如图 1所示。
步骤二: 铝管下料。
步骤三: 将铝管 1和铜管 2放置在 V形面挤压电阻焊接机的左右电极上, 用压力 F1将电极上的铝管 1固定、 用压力 F2将电极上的铜管 2固定, 铝管 1 侧电极为固定电极, 铜管 2侧电极为可沿接头轴向移动的活动电极, 在铜管 2 内孔中预置填充块 3。
步骤四: 如图 2所示, 启动主推力 F3 , 将铜管 2推向铝管 1并实现紧密接 步骤五: 对左右电极通电加热铜铝接头, 铜铝接触面迅速熔化, 铜管沿接 头轴向向铝管内部滑移。 铜管推进深度达到 L后, 断电, 铜铝管焊缝凝固, 见 图 3。
步骤六: 如图 4所示, 主推力 F3停。 在停电瞬间, 用压力 F4将铜管内填 充块 3压入铜管内收缩处, 对焊缝区域施压 F5 , 填充块 3被永久固定在焊接区 域。
如将铜质填充块加长, 将该芯轴压入整个铜管及焊接接头区域, 如图 5 所 示, 则会满足铜铝压接接头冷作成型要求。
具体实施例二: 铜棒 -铝管接头的加工工艺步骤
铜棒-铝管接头的加工工艺步骤铜管-铝管接头相似, 区别如下: 用机加工方 法将铜管一端加工成角度至 β , 并在该端钻盲孔, 如图 6所示; 焊接后从铝管侧 将填充块 5压入铜棒盲孔中, 如图 7所示。
以 Φ 20ηιιη铜管构成铜铝管接头为例: 焊接电流: 28000~31000安培; 焊 接时间: 80~170ms;铜端推进压力 0.7~0.8吨, 阻尼后的压力 0.45~0.5吨; 铜、 铝件加持压力 0.7吨。
焊缝由铜铝固熔体和新的金属间化合物构成, 大部分铜铝共晶组织被 挤 在焊缝以外, 使得铜铝接头的焊缝无开裂隐患, 能满足相关安全要求, 釆用了 套接式接头结构, 提高了接头的导电性。 因此, 本发明可以用于对安全性要求 较高的电力电缆铜铝管接头。
本发明参照附图和实施例进行说明, 但保护范围不限于此, 在本发明技术 范围内具有普通技术人员可以经过简单的变换, 而获得本发明同样的技术效果, 同样在本发明的保护范围内。

Claims

权 利 要 求 书
1、 一种 V形面铜铝焊接加工工艺, 其特征在于:
步骤一: 用机加工方法对铜管一端加工, 形成具有锥度( β )的焊接面, 此 时铜管位于焊接面区域的内径略为收缩形成具有收缩角 ( γ ) 的内收缩处; 所述锥度 ( β )依据铝管外径 铜管外径 ( d2 )、 铝管内径 ( d3 )按下 述公式确定: β =Α - 0.15* + 3*d2 - 2.7*d3, 其中 A的取值范围为 14°至 16°。
步骤二: 将铝管和铜管固定在 V形面挤压电阻焊接机的左右电极上, 铝管 侧电极为固定电极, 铜管侧电极为可沿接头轴向移动的活动电极, 在铜管内孔 中预置填充块;
步骤三: 将铜管推向铝管并实现紧密接触, 对左右电极通电加热铜铝接头, 铜管沿接头轴向向铝管内部滑移。
步骤四: 推进铜管达到焊接所需深度(L )后, 断电, 铜铝管焊缝凝固, 停 止推进;
所述推进深度 L依据铜管外径 d2、 铝管内径 d3、 V形待焊面锥度 β按下述 公式确定: L = ( d2 - d3 ) /2tg( P /2)。
步骤五: 在停电瞬间, 用压力将铜管内填充块压入铜管内收缩处, 对焊缝 区域施压, 填充块被永久固定在焊接区域, 形成接头。
2、 如权利要求 1所述的一种 V形面铜铝焊接加工工艺, 其特征在于所述步 骤一是加工铜棒的一端形成具有锥度 β的焊接面, 铜棒的焊接面端钻有构成中 空结构的盲孔; 所述步骤二是将填充块预置在铝管的内孔中; 所述步骤五是将 预置在铝管的内孔中的填充块用压力压入铜棒的盲孔内, 从而对焊缝区域施压。
3、 如权利要求 1或 2所述的一种 V形面铜铝焊接加工工艺, 其特征在于步骤 一完成后, 在铜管待焊表面预制一些细坑, 然后进行步骤二。
4、 如权利要求 1或 2所述的一种 V形面铜铝焊接加工工艺, 其特征在于步骤 一完成后, 在铜管待焊表面预制纵向齿形, 然后进行步骤二。
5、 一种用权利要求 1所述方法制造的厚壁铜铝焊接接头, 由铜管、 铝管、 V形焊接面构成, 其特征在于在铜端内部有永久填充块。
6、 一种用权利要求 2所述方法制造的厚壁铜铝焊接接头, 由铜棒、 铝管、 V形 焊接面构成, 其特征在于在铜端内部有永久填充块。
1
PCT/CN2011/084144 2010-12-31 2011-12-16 V形面铜铝焊接加工工艺及电力电缆用焊接接头 WO2012089038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106170351 2010-12-31
CN2010106170351A CN102528255A (zh) 2010-12-31 2010-12-31 V形面铜铝焊接加工工艺及电力电缆用焊接接头

Publications (1)

Publication Number Publication Date
WO2012089038A1 true WO2012089038A1 (zh) 2012-07-05

Family

ID=46336962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084144 WO2012089038A1 (zh) 2010-12-31 2011-12-16 V形面铜铝焊接加工工艺及电力电缆用焊接接头

Country Status (2)

Country Link
CN (1) CN102528255A (zh)
WO (1) WO2012089038A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331511B (zh) * 2013-07-03 2014-07-02 林青云 电阻焊方法及其应用和所用的电极焊头
CN103846537B (zh) * 2014-03-26 2016-06-22 左铁军 异种金属管的焊接方法
CN114141401A (zh) * 2020-09-03 2022-03-04 上海上缆辐照技术开发有限公司 一种铜铝复合导体催化电缆的生产方法
US11444406B2 (en) 2020-09-14 2022-09-13 Steering Solutions Ip Holding Corporation Weldable poka-yoke connector

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1542742A1 (ru) * 1987-12-11 1990-02-15 Всесоюзный научно-исследовательский, проектно-конструкторский и технологический институт электросварочного оборудования Электродный узел машин контактной точечной сварки
US5549335A (en) * 1994-04-06 1996-08-27 Peerless Of America, Incorporated Solderless metallurgical joint
JPH09182979A (ja) * 1995-12-28 1997-07-15 Showa Alum Corp アルミニウム管と銅管との接合方法
JPH10305370A (ja) * 1997-05-12 1998-11-17 Marufuku Seisakusho:Kk 金属パイプの接合装置及びその接合方法
CN1959171A (zh) * 2006-09-20 2007-05-09 左铁军 无共晶组织的薄壁铜铝管焊接接头及其制备方法
CN1959172A (zh) * 2006-09-20 2007-05-09 左铁军 铜铝接头内径与铝管内径相同的铜铝接头及其制备方法
CN101077548A (zh) * 2006-05-25 2007-11-28 珠海格力电器股份有限公司 铜铝复合管道、加工设备及其加工方法
CN101176961A (zh) * 2007-11-19 2008-05-14 赵越 一种铜铝复合结构金属罐体的制作方法
CN101319742A (zh) * 2007-06-04 2008-12-10 左铁军 用于空调室内外机的接管及其制作方法
CN101319741A (zh) * 2007-06-04 2008-12-10 左铁军 插接式铜铝管焊接接头及其制备方法
CN101653860A (zh) * 2009-03-11 2010-02-24 江苏星星家电科技有限公司 一种利用不同金属材料的阻值导电发热的电阻焊接法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1008242B (zh) * 1988-04-14 1990-06-06 航天部第七○三研究所 电冰箱蒸发器用铜-铝管冷压焊工艺
CN201045428Y (zh) * 2007-06-04 2008-04-09 左铁军 插接式铜铝管焊接接头
CN101382215B (zh) * 2007-09-05 2010-10-27 左铁军 一种带硬质套管的铜铝连接管及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1542742A1 (ru) * 1987-12-11 1990-02-15 Всесоюзный научно-исследовательский, проектно-конструкторский и технологический институт электросварочного оборудования Электродный узел машин контактной точечной сварки
US5549335A (en) * 1994-04-06 1996-08-27 Peerless Of America, Incorporated Solderless metallurgical joint
JPH09182979A (ja) * 1995-12-28 1997-07-15 Showa Alum Corp アルミニウム管と銅管との接合方法
JPH10305370A (ja) * 1997-05-12 1998-11-17 Marufuku Seisakusho:Kk 金属パイプの接合装置及びその接合方法
CN101077548A (zh) * 2006-05-25 2007-11-28 珠海格力电器股份有限公司 铜铝复合管道、加工设备及其加工方法
CN1959171A (zh) * 2006-09-20 2007-05-09 左铁军 无共晶组织的薄壁铜铝管焊接接头及其制备方法
CN1959172A (zh) * 2006-09-20 2007-05-09 左铁军 铜铝接头内径与铝管内径相同的铜铝接头及其制备方法
CN101319742A (zh) * 2007-06-04 2008-12-10 左铁军 用于空调室内外机的接管及其制作方法
CN101319741A (zh) * 2007-06-04 2008-12-10 左铁军 插接式铜铝管焊接接头及其制备方法
CN101176961A (zh) * 2007-11-19 2008-05-14 赵越 一种铜铝复合结构金属罐体的制作方法
CN101653860A (zh) * 2009-03-11 2010-02-24 江苏星星家电科技有限公司 一种利用不同金属材料的阻值导电发热的电阻焊接法

Also Published As

Publication number Publication date
CN102528255A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2008034320A1 (fr) Joint fixe à structure non-eutectique de tuyau à fine paroi en cuivre-aluminium et son procédé de fabrication
WO2012089038A1 (zh) V形面铜铝焊接加工工艺及电力电缆用焊接接头
US4066861A (en) Method of welding a pipe to a pipe plate
CN104842058A (zh) 用于不同金属的电阻点焊的电极
CN105415695B (zh) 连续性纤维增强管对接方法
KR102328270B1 (ko) 알루미늄재의 저항 스폿 용접 이음, 및 알루미늄재의 저항 스폿 용접 방법
JP5220449B2 (ja) 金属部材の接合方法及びその装置
EP3261181B1 (en) Conductor transition joint device and method
WO2009030099A1 (fr) Connecteur de canalisation en cu-al résistant à la flexion, procédé de production et barre centrale spéciale
US6791052B1 (en) Method for resistance welding a tube to a member
JPH04313474A (ja) 電極リ―ド線集成体を形成する方法
WO2012144106A1 (ja) 導線溶接用チューブ及び接合導線の製造方法
US3857163A (en) Forming pressure-welded joints
US20080135529A1 (en) Method of resistance butt welding
CN108672868B (zh) 一种铝和铜异质金属材料的焊接方法
ES2908597T3 (es) Soldadura por puntos por resistencia mejorada utilizando aleaciones de aluminio revestido
CN104252991A (zh) 用于高压断路器的接触销,及其生产方式以及具有接触销的高压断路器
KR101925119B1 (ko) 구리 알루미늄 연결부재의 면-면 삼투용접 공정 및 제조방법
JP2004001054A (ja) 突合せ接合方法
CN103464907A (zh) 薄板热自压连接方法
US20170284570A1 (en) Joint unit, magnetic rotating arc joining method, and method of manufacturing joint unit
RU2716923C1 (ru) Способ контактной стыковой сварки давлением
US3987843A (en) Apparatus for making ingots by electroslag remelting
JPH04143085A (ja) アルミニウム材と銅材の熱間圧接法
SU1088901A1 (ru) Способ изготовлени биметаллических труб диффузионной сваркой

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853026

Country of ref document: EP

Kind code of ref document: A1