WO2012088928A1 - 多种无线电技术在终端共存时的时分复用通信方法和系统 - Google Patents

多种无线电技术在终端共存时的时分复用通信方法和系统 Download PDF

Info

Publication number
WO2012088928A1
WO2012088928A1 PCT/CN2011/079661 CN2011079661W WO2012088928A1 WO 2012088928 A1 WO2012088928 A1 WO 2012088928A1 CN 2011079661 W CN2011079661 W CN 2011079661W WO 2012088928 A1 WO2012088928 A1 WO 2012088928A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
lte
coexistence
terminal
data transmission
Prior art date
Application number
PCT/CN2011/079661
Other languages
English (en)
French (fr)
Inventor
施小娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012088928A1 publication Critical patent/WO2012088928A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to communication when a plurality of radio technologies coexist in a terminal, and particularly relates to a time division multiplexing communication method when a long term evolution (LTE, Long Term Evolution) technology and other radio technologies coexist in a same terminal (User Equipment, UE) system.
  • LTE Long Term Evolution
  • UE User Equipment
  • radio technology With the development of radio technology, more and more radio technologies are beginning to be widely used, especially in order to meet the multiple communication needs of end customers. In the same intelligent terminal, two or more different radio technologies will be used simultaneously. .
  • FIG. 1 is a schematic diagram of a terminal.
  • Three radio technologies are used in the terminal S100, which are an LTE module S101 using LTE technology, and a WLAN using wireless local area networks (WLAN) technology specified by the IEEE Std 802.11 specification.
  • Module SI 02 ie Wireless Local Area Network (WLAN STA); Bluetooth module S103 using Bluetooth (Bluetooth) radio technology specified by the IEEE Std 802.15 specification, these three modules may also be referred to as LTE sub-devices, WLAN sub-devices and Bluetooth sub-elements, respectively. device.
  • the three modules respectively perform wireless communication with the peer device corresponding to the respective radio technologies, wherein the LTE module S101 and the LTE base station (E-UTRAN NodeB, eNB, also referred to as the evolved base station) S104 perform wireless communication through the air interface; S102 wirelessly communicates with another WLAN STA device S105 over the air interface; the Bluetooth module S103 communicates wirelessly with another Bluetooth device S106 over the air interface.
  • LTE module S101 and the LTE base station E-UTRAN NodeB, eNB, also referred to as the evolved base station
  • the Bluetooth module S103 communicates wirelessly with another Bluetooth device S106 over the air interface.
  • the three modules are connected by an inter-radio interface between the radio technologies in the terminal.
  • the LTE module S 101 and the WLAN module S 102 are connected through the first interface L101, and the LTE module S101 is connected.
  • the Bluetooth modules S103 are connected through the second interface L102; the WLAN module S102 and the Bluetooth module S103 are connected through the third interface L103; or, the three modules are controlled by a common control module S107.
  • the spatial distance between modules of two or more radio technologies is very close, such as a few centimeters, that is, the spatial isolation between the antenna ports used by the two or more radio technologies. It cannot be designed to be large enough to cause an out of band emission, spurious emissions, and if the interval between frequencies used by various radio technologies within the same terminal is not large enough. For reasons such as receiver blocking, when one of the radio modules transmits, it will interfere with the reception of another radio module, and vice versa. Moreover, such interference cannot be eliminated by existing filters, which affects the communication quality of each radio module. The above interference is referred to as "in-device coexistence interference".
  • WLAN and Bluetooth use the "Industrial, Scientific, and Medical (ISM)" band (2.4 GHz to 2.5 GHz), where the WLAN uses 2.4 GHz in the ISM band.
  • ISM International Mobile Communications
  • Bluetooth uses the 2.4 GHz to 2.497 GHz band in the ISM band.
  • the ISM band is just adjacent to the LTE band 40 (Band40: 2.3 GHz to 2.4 GHz) and the band ⁇ uplink band (Band7 UP: 2.5 GHz to 2.57 GHz), as shown in Fig. 2.
  • the LTE module S101 uses the TDD (Time Division Duplex) mode and uses Band 40, and the interval between the operating frequency of the LTE module S101 and the operating frequency of the WLAN module S102 and the Bluetooth module S103 is small, the LTE module S101 and The WLAN module S102 and the Bluetooth module S103 will interfere with each other. If the LTE module S101 uses the FDD (Frequency Division Duplex) mode and uses Band7, as shown in FIG.
  • the uplink of the WLAN module S102/Bluetooth module S103 The transmission does not interfere with the downlink reception of the LTE module S101, but since the uplink frequency band of the LTE Band 7 is adjacent to the ISM frequency band, when the interval between the operating frequency of the LTE module S101 and the operating frequency of the WLAN module S102/the Bluetooth module S103 is small, the LTE module S101 The uplink transmission will interfere with the downlink reception of the WLAN module S102/Bluetooth module S103.
  • the existence of the "in-device coexistence interference” reduces the communication quality of the radio modules that interfere with each other.
  • the application shown in FIG. 3 is taken as an example.
  • the intelligent terminal S302 is configured with an LTE module and a WLAN module, wherein the LTE module passes the first air interface L301.
  • the WLAN module communicates with the WLAN AP (Access Point) through the second air interface L302.
  • the operating frequency of the LTE module is 2.390 GHz, and the WLAN module works on the WLAN channel (channel) 1 2.412 GHz. .
  • the LTE module performs downlink reception while the WLAN module is just right.
  • the downlink receiving of the LTE module is interfered by the WLAN module, and vice versa. That is, when the WLAN module receives the data of the WLAN AP, it will be interfered by the uplink LTE module, which ultimately affects the user's service experience.
  • the present invention is to provide a time division multiplexing communication method and system for multiple radio technologies in the coexistence of terminals to reduce or even eliminate coexistence interference in the device.
  • the present invention provides a time division multiplexing communication method in which a plurality of radio technologies coexist in a terminal, and is applied to a terminal supporting Long Term Evolution (LTE) and at least one other radio technology, the time division multiplexing communication method includes:
  • the terminal receives coexistence time allocation information of LTE and other radio technologies configured by the LTE base station for the terminal;
  • the data transmission and reception time of the radio technology is used for data transmission and reception of other radio technologies.
  • the coexistence time allocation information received by the terminal includes a set of coexistence time allocation parameters including a coexistence time allocation period, a coexistence time offset, and an LTE transmission time and a non-LTE transmission time constituting a coexistence time allocation period. At least one;
  • the coexistence time allocation information received by the terminal includes multiple sets of coexistence time allocation parameters and indication information for activating one of the coexistence time allocation parameters, and each set of coexistence time allocation parameters includes a coexistence time allocation period, a coexistence time offset, and a composition coexistence. At least one of an LTE transmission time and a non-LTE transmission time of a time allocation period;
  • the terminal determines the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to the coexistence time allocation information, including:
  • the terminal activates a set of coexistence time allocation parameters according to the indication information, and then determines the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to the set of coexistence time allocation parameters.
  • the time division multiplexing communication method further includes:
  • the terminal After activating a set of coexistence time allocation parameters of the plurality of sets of coexistence time allocation parameters, the terminal receives another set of coexistence time allocation parameters of the plurality of sets of coexistence time allocation parameters sent by the LTE base station.
  • the instruction deactivates a previously activated set of coexistence time allocation parameters, and then activates the another set of coexistence time allocation parameters, and determines the data transmission and reception time of the LTE and the other according to the another set of coexistence time allocation parameters Radio technology data transmission and reception time.
  • the data transmission and reception time of his radio technology includes:
  • the end time of the data transmission and reception time of LTE is taken as the length of data transmission and reception time of other radio technologies.
  • the time division multiplexing communication method further includes:
  • the LTE base station schedules LTE data transmission of the terminal according to a set of coexistence time allocation parameters according to the terminal determining the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies;
  • Scheduling the LTE data transmission of the terminal includes:
  • the LTE data transmission of the terminal is scheduled according to an LTE transmission time starting from the data that the terminal determines the LTE.
  • transceiving Preferably, according to any one or any combination of transceiving:
  • PDCCH Physical downlink control channel
  • SRS uplink feedback reference signal
  • CQI channel quality indication information
  • PMI precoding matrix indication information
  • RI rank indication information
  • the method further includes:
  • the terminal reports the time division multiplexing information of the LTE and other radio technologies to the LTE base station; after receiving the time division multiplexing information, the LTE base station determines a coexistence time allocation information of the terminal and associates the coexistence time
  • the distribution information informs the terminal.
  • the time division multiplexing information includes at least one of the following information:
  • the terminal needs to perform time division multiplexing transmission information; Information about the other radio technologies;
  • the time allocation information of the LTE and other radio technologies are time division multiplexed.
  • the present invention also provides a time division multiplexing communication system in which multiple radio technologies coexist in a terminal, and is applied to a terminal supporting Long Term Evolution (LTE) and at least one other radio technology, the time division multiplexing communication system including :
  • a receiving device in the terminal configured to: receive coexistence time allocation information of LTE and other radio technologies configured by the LTE base station for the terminal;
  • a determining device in the terminal configured to: determine, according to the coexistence time allocation information, a data transceiving time of the LTE and a data transceiving time of another radio technology;
  • the LTE module in the terminal is configured to: perform LTE data transmission and reception on the LTE data transmission and reception time;
  • the other radio modules in the terminal are configured to: perform data transmission and reception of other radio technologies at the data transmission and reception time of the other radio technologies.
  • the coexistence time allocation information received by the receiving device in the terminal includes a set of coexistence time allocation parameters including a coexistence time allocation period, a coexistence time offset, and an LTE transmission time and non-constitution of a coexistence time allocation period. At least one of the LTE transmission times; the determining means in the terminal is configured to determine the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to the coexistence time allocation information in the following manner: according to the received and received data time.
  • the coexistence time allocation information received by the receiving device in the terminal includes multiple sets of coexistence time allocation parameters and indication information for activating one of the coexistence time allocation parameters, and each set of coexistence time allocation parameters includes a coexistence time allocation period and a coexistence time offset.
  • LTE that constitute the coexistence time allocation period At least one of transmission time and non-LTE transmission time;
  • the determining means in the terminal is configured to determine the data transceiving time of the LTE and the data transceiving time of other radio technologies according to the coexistence time allocation information in the following manner: activating a set of coexistence time allocation parameters according to the indication information, Then, the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies are determined according to the group coexistence time allocation parameter.
  • the receiving device in the terminal is further configured to: after the determining device in the terminal activates a set of coexistence time allocation parameters of the plurality of sets of coexistence time allocation parameters, as received by the activation sent by the LTE base station Notifying another set of coexistence time allocation parameters of the coexistence time allocation parameter, and notifying the determining device in the terminal;
  • the determining means in the terminal is further configured to: after receiving the notification, deactivate a previously activated set of coexistence time allocation parameters, and then activate the another set of coexistence time allocation parameters according to the other data transmission and reception time.
  • the determining means in the terminal is configured to determine the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to a set of coexistence time allocation parameters in the following manner:
  • the end time of the data transmission and reception time of LTE is taken as the length of data transmission and reception time of other radio technologies.
  • the system further comprises:
  • the scheduling device in the LTE base station is configured to: schedule LTE data of the terminal according to a set of coexistence time allocation parameters according to the determining, by the terminal, the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies Transmission
  • the scheduling apparatus is configured to schedule LTE data transmission of the terminal in the following manner: determining LTE data according to the terminal according to a coexistence time allocation period and a coexistence time offset The beginning of I ⁇ j ⁇ Liu Wan Wan ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , , , , , , , ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the LTE device in the terminal is configured to use one or more of the following data transmission and reception modes to monitor the physical downlink control channel (PDCCH) only during the data transmission and reception time of the LTE;
  • PDCCH physical downlink control channel
  • SRS uplink feedback reference signal
  • CQI channel quality indication information
  • PMI precoding matrix indication information
  • RI rank indication information
  • the system further comprises:
  • a reporting device in the terminal configured to: report time division multiplexing information of the LTE and other radio technologies to the LTE base station;
  • the determining device in the LTE base station is configured to: after receiving the time division multiplexing information, determine a coexistence time allocation information of the terminal and notify the terminal of the coexistence time allocation information.
  • the time division multiplexing information reported by the reporting device in the terminal to the LTE base station includes at least one of the following information:
  • the terminal needs to perform time division multiplexing transmission information
  • the time allocation information of the LTE and other radio technologies are time division multiplexed.
  • the time division multiplexing communication method and system of the above multiple radio technologies in the coexistence of terminals can be confirmed Time-division multiplex communication when LTE and other radio technologies coexist, to reduce or even eliminate coexistence interference in the device, and at the same time, can meet the communication quality requirements of LTE and other radio technologies.
  • Figure 1 is a schematic diagram of a terminal using three radio technologies simultaneously
  • Figure 2 is a schematic diagram showing the distribution of the ISM band and the LTE band
  • FIG. 3 is a schematic diagram of communication between LTE and WLAN coexisting in a terminal
  • FIG. 4 is a flowchart of a method for implementing time division multiplexing communication when LTE coexists with other radio technologies according to the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of a coexistence time allocation according to a first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a time-varying service throughput according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for implementing time division multiplexing communication when LTE coexists with other radio technologies according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a plurality of sets of coexistence time allocation parameters configured by a base station according to a second embodiment of the present invention
  • FIG. 9 is a flowchart of a method for canceling time division multiplexing communication according to an embodiment of the present invention.
  • the LTE and at least one other radio technology coexist in the terminal, and there is a problem of mutual interference between the radio modules.
  • the present invention proposes a time division multiplexing communication method.
  • the time division multiplexing communication method proposed in this embodiment includes:
  • Step 1 The terminal receives the coexistence time allocation information of the LTE and other radio technologies configured by the LTE base station for the terminal;
  • the coexistence time allocation information received by the terminal may include a set of coexistence time allocation parameters.
  • the coexistence time allocation information received by the terminal includes multiple sets of coexistence time allocation parameters and indication information for activating one of the coexistence time allocation parameters.
  • a set of coexistence time allocation parameters may include at least one of a coexistence time allocation period, a coexistence time offset, and an LTE transmission time and a non-LTE transmission time constituting a coexistence time allocation period.
  • the coexistence time allocation information of the LTE and other radio technologies configured for the terminal is also the coexistence time allocation information of the LTE module and other radio modules.
  • Step 2 The terminal determines the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to the coexistence time allocation information;
  • the terminal determines the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to the received coexistence time allocation parameter.
  • the coexistence time allocation information includes a plurality of sets of coexistence time allocation parameters and indication information for activating one of the coexistence time allocation parameters.
  • the terminal activates a set of coexistence time allocation parameters according to the indication information, and then determines the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to the group coexistence time allocation parameter.
  • the terminal determines the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to a set of coexistence time allocation parameters, including:
  • the end time of the data transmission and reception time of LTE is taken as the length of data transmission and reception time of other radio technologies.
  • the LTE base station may schedule the LTE data transmission of the terminal according to a set of coexistence time allocation parameters according to the terminal determining the data transmission and reception time of the LTE and the data transmission and reception time of the other radio technologies, and specifically: according to the coexistence time allocation period and the coexistence time Offset, according to the terminal to determine LTE data transmission and reception
  • the start time of the time determines the start time of the LTE transmission time
  • the LTE data transmission of the terminal is scheduled during the LTE transmission time starting from the start time.
  • Step 3 The terminal performs data transmission and reception of LTE in the data transmission and reception time of the LTE, and performs data transmission and reception of other radio technologies in the data transmission and reception time of other radio technologies.
  • the LTE module performs data transmission and reception of LTE in the data transmission and reception time of LTE, and other radio modules perform data transmission and reception of other radio technologies in the data transmission and reception time of other radio technologies.
  • the terminal performs LTE data transmission and reception at the data transmission and reception time of LTE, and can use some or all of the following data transmission methods:
  • PDCCH Physical downlink control channel
  • the LTE data is transmitted and received according to the scheduling of the base station only during the data transmission and reception time of the LTE; the scheduling request of the LTE is sent only during the data transmission and reception time of the LTE;
  • SRS uplink feedback reference signal
  • CQI channel quality indication information
  • PMI precoding matrix indication information
  • RI rank indication information
  • the LTE measurement is performed only during the data transmission and reception time of LTE.
  • the terminal activates a set of coexistence time allocation parameters in the plurality of sets of coexistence time allocation parameters
  • the terminal receives the activation of the multiple sets of coexistence time allocation parameters sent by the LTE base station, another group
  • the instruction of the coexistence time allocation parameter deactivates the previously activated set of coexistence time allocation parameters, then activates the other set of coexistence time allocation parameters, and determines the data transmission and reception time of the LTE according to the another set of coexistence time allocation parameters. Data transmission and reception time of the other radio technologies.
  • the terminal may further include:
  • the terminal reports time division multiplexing information of LTE and other radio technologies to the LTE base station;
  • the time division multiplexing information includes at least one of the following information:
  • the terminal needs to perform time division multiplexing transmission information
  • Time allocation information for time division multiplexing of LTE and other radio technologies is provided.
  • the time division multiplexing communication system of the multiple radio technologies of this embodiment in the case where the terminals coexist is found in the corresponding content of the invention.
  • the determining device in the terminal may serve as a part of the LTE module, and notify the other radio modules of the data transmission and reception time (including the start time and the duration) of the other radio technologies determined by the interface between the LTE module and other radio modules, or As part of the control module, the data transmission and reception time of other radio technologies can be obtained from the LTE module and notified to other radio modules.
  • radio technologies are WLANs, but are not limited thereto, and may be other forms of radio technologies such as Bluetooth.
  • the method for time division multiplexing communication proposed in this embodiment is as shown in FIG. 4, and includes:
  • the terminal (UE) reports time division multiplexing information of LTE and WLAN to an LTE base station (also referred to as a base station in the text);
  • the above time division multiplexing information may be:
  • the UE may further determine time allocation information of the LTE and the WLAN according to the service characteristics. For example, the UE determines, according to the service characteristics, that the time allocation information of the LTE and the WLAN is:
  • the LTE transmission time length information and the time allocation period information of the LTE and the WLAN for example, the time allocation repetition period is 60 ms, and the LTE transmission time length is 30 ms, and the UE notifies the LTE transmission time length information and the LTE and WLAN time allocation period information to Base station
  • the UE determines the time allocation information of the LTE and the WLAN according to the service characteristics:
  • the UE queries the following table 1 information according to the service characteristics and the protocol, and determines that the time allocation information of the LTE and the WLAN is the time information corresponding to the index 1 in the table 1, and the UE notifies the base station of the index 1.
  • the terminal reports the time allocation information through the LTE module, and the LTE module can report the status of the WLAN and the required time division multiplexing information from the interface between different modules as shown in FIG. 1 or from the control module, and report the LTE service that resides.
  • the LTE base station After receiving the time division multiplexing information, the LTE base station determines, to determine, the coexistence time allocation information of the LTE and other radio technologies configured by the UE, includes a set of coexistence time allocation parameters, and sends the coexistence time allocation information to the UE. ;
  • the decision of the coexistence time allocation information may be determined in the following manner:
  • the base station determines the coexistence time allocation of LTE and other radio technologies according to an operator policy (or a base station policy).
  • the operator policy may be a service transmitted by the LTE module. Quality of Service (QoS); LTE system performance; agreements between LTE operators and operators to which other radio modules belong.
  • QoS Quality of Service
  • LTE system performance agreements between LTE operators and operators to which other radio modules belong.
  • the LTE base station refers to the time division multiplexing information, and determines the LTE according to the carrier policy and/or the protocol specification. Coexistence time allocation with other radio technologies;
  • the LTE base station refers to the time allocation information, and further determines the coexistence time allocation between the LTE and other radio technologies according to the operator policy.
  • the LTE base station also schedules the LTE data transmission of the UE according to the coexistence time allocation information.
  • the UE determines the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to the coexistence time allocation information configured by the base station, performs data transmission and reception of the LTE in the data transmission and reception time of the LTE, and performs other radio transmission in the data transmission and reception time of other radio technologies.
  • Technical data transmission and reception is the data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies according to the coexistence time allocation information configured by the base station, performs data transmission and reception of the LTE in the data transmission and reception time of the LTE, and performs other radio transmission in the data transmission and reception time of other radio technologies.
  • FIG. 5 is a schematic diagram of coexistence time allocation according to the embodiment.
  • the LTE transmission time and the non-LTE transmission time constitute a coexistence time allocation period.
  • a set of coexistence time allocation parameters configured by the base station for the UE in S402 may include a coexistence time allocation period Tp, a coexistence time offset Toffset, and an LTE transmission time T_LTE, where T— LTE can also be replaced by non-LTE transmission time T-non-LTE.
  • the UE determines the time of T_LTE according to formula (1).
  • Tp T_LTE+ T—non—LTE formula (1)
  • step S403 when the UE determines the data transmission and reception time (also referred to as LTE transmission time) of the LTE according to the coexistence time allocation information of the UE, the UE may determine the start time of the LTE data transmission and reception time according to formula (2).
  • the data transmission and reception time of LTE maintains the T-LTE duration.
  • the SFN System Frame Number
  • the subframe number is the subframe number of the LTE
  • the modulo represents the modulo operation.
  • the LTE data transmission and reception time ends until the next LTE may be referred to as a non-LTE transmission time.
  • the UE coordinates data transmission and reception of the LTE module and other radio modules according to the determined data transmission and reception time of the LTE and the data transmission and reception time of other radio technologies, that is, data transmission and reception of LTE in the data transmission and reception time of the LTE, and data transmission and reception time of other radio technologies. Perform data transmission and reception of other radio modules. This coordination can be redundant by the control module shown in Figure 1.
  • the base station schedules the LTE data transmission of the UE only during the LTE transmission time. Specifically, the base station may schedule the LTE data transmission of the terminal according to the coexistence time allocation period and the coexistence time offset according to the start time and the LTE transmission time starting from the start time.
  • the LTE data transmission and reception is performed during the data transmission and reception time of the LTE, and specifically includes:
  • CQI precoding matrix index information
  • Precoding Matrix Index
  • rank indicator information Rank Indicator, RI
  • SRS uplink feedback reference signal
  • Measurements are only taken during LTE transmission time, and measurement is stopped during non-LTE transmission time.
  • the above data transmission and reception behavior is specifically completed by the LTE module.
  • FIG. 4 is a time division multiplexing communication method under bursty and aperiodic conditions without considering traffic transmission Flowchart, and the actual service transmission is bursty and aperiodic.
  • the throughput of a certain service is the average throughput of the graph for most of the time, and in the time of T601 T602, There will be a burst throughput.
  • FIG. 7 is a flowchart of a time division multiplexing communication method between the LTE module and other radio modules according to the embodiment, and the specific process is:
  • the UE reports time division multiplexing information of LTE and other radio technologies to the LTE base station, and is the same as S401;
  • the LTE base station After receiving the time division multiplexing information, the LTE base station determines, to determine, the coexistence time allocation information configured by the UE, where the group includes a plurality of sets of coexistence time allocation parameters, and the LTE base station activates one set of coexistence time allocation parameters, and sets multiple groups. Coexistence time allocation parameters and indication information for activating one of the coexistence time allocation parameters are sent to the UE;
  • the base station can configure multiple sets of coexistence time allocation parameters for the UE. For example, as shown in Figure 8, the base station configures two coexistence time allocation modes for the UE, namely:
  • the first coexistence time allocation mode, the corresponding coexistence time allocation parameter is the first group coexistence time allocation parameter (Tpl , Toffsetl , T LTEl / T non LTEl );
  • the second coexistence time allocation mode, the corresponding coexistence time allocation parameter is the second group coexistence time sub-history parameter (Tp2, Toffset2, T LTE2 / T_non_LTE2).
  • the base station may carry indication information for activating one of the coexistence time allocation parameters.
  • the indication information may be explicit indication information dedicated to indicating which coexistence time allocation parameter is activated. It can also be a protocol agreement. By default, a certain group (such as the first group) of the configuration is coexisting with the time allocation parameter. In this case, the implicit indication information is used, that is, the serial number of the coexistence time allocation parameter is also used as the indication information.
  • the base station schedules the LTE module within the LTE transmission time determined according to the activated set of coexistence time allocation parameters, as in the first embodiment.
  • the UE receives and saves multiple sets of coexistence time allocation parameters configured by the base station, activates a set of coexistence time allocation parameters according to the indication information, and determines data transmission and reception time of LTE and data transmission and reception time of other radio technologies according to the group coexistence time allocation parameter.
  • the base station activates another set of coexistence time allocation parameters when the current coexistence time allocation mode needs to be changed according to the service time-varying characteristic, and sends an instruction to activate the another group of coexistence time allocation parameters to the UE;
  • the base station wants to change from the first coexistence time allocation mode to the second coexistence time allocation mode, and the base station informs the UE to activate the second group coexistence time allocation parameter.
  • the base station can simultaneously activate the first group of coexistence time allocation parameters, or, according to the protocol, after the base station activates the second group of coexistence time allocation parameters, the first group of coexistence time allocation information is automatically deactivated.
  • the base station After activating the second set of coexistence time allocation parameters, the base station schedules the LTE data transmission of the UE according to the LTE transmission time determined according to the second set of coexistence time allocation parameters.
  • S705 The UE deactivates a previously activated set of coexistence time allocation parameters according to an instruction of the base station, and then activates another set of coexistence time allocation parameters, and determines, according to the another set of coexistence time allocation information, data transmission and reception time of the LTE and other radio technologies. And send the corresponding data.
  • the base station and the UE can flexibly change the data transmission and reception time of the LTE and other radio technologies according to the service characteristics, thereby ensuring high quality of the LTE module and other radio modules. Communication quality.
  • the in-device coexistence interference is bursty and non-continuous, such as a UE configured with an LTE module and a Bluetooth module
  • the coexistence interference will no longer exist. Therefore, when the UE determines that the coexistence interference does not exist, the LTE module does not need to perform time division multiplexing transmission with other radio modules.
  • the process of canceling the time division multiplexing communication may be applied to the foregoing embodiments. Proceed as follows:
  • the UE notifies the LTE base station to coexist interference cancellation.
  • the UE can learn whether the WLAN is closed by using the interface between different modules or the control module S107 as shown in FIG. 1. For example, if the UE determines that the WLAN module is off, the LTE module notifies the eNB to cancel the time division multiplexing transmission. S902, the base station feedback cancels (or releases) the determination message of the coexistence time allocation;
  • the UE After receiving the acknowledgement message fed back by the base station, the UE stops the time division multiplexing transmission of the LTE and other radio technologies, and implements communication between each module and the base station according to the prior art.
  • the UE can delete the previously configured coexistence time allocation configuration.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may use software functions.
  • the form of the module is implemented. The invention is not limited to any specific form of combination of hardware and software.
  • the above embodiments can ensure time division multiplexing communication when LTE coexists with other radio technologies, reduce or even eliminate coexistence interference in the device, and at the same time, can balance the communication quality requirements of LTE and other radio technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多种无线电技术在终端共存时的时分复用通信方法,应用于支持LTE和至少一种其他无线电技术的终端,所述终端接收LTE基站为所述终端配置的LTE和其他无线电技术的共存时间分配信息;所述终端根据所述共存时间分配信息确定LTE的数据收发时间和其他无线电技术的数据收发时间;所述终端在所述LTE的数据收发时间进行LTE的数据收发,在所述其他无线电技术的数据收发时间进行其他无线电技术的数据收发。本发明可以降低甚至消除设备内共存干扰。

Description

多种无线电技术在终端共存时的时分复用通信方法和系统
技术领域
本发明涉及多种无线电技术在终端共存时的通信, 尤其涉及一种长期演 ( LTE , Long Term Evolution )技术和其他无线电技术共存于同一终端 ( User Equipment, UE ) 时的时分复用通信方法和系统。
背景技术
随着无线电技术的发展, 越来越多的无线电技术开始被广泛应用, 尤其 为了满足终端客户的多种通信需求, 在同一个智能终端内, 将同时使用两种 或两种以上不同的无线电技术。
如图 1是一种终端的示意图, 终端 S100中使用了三种无线电技术, 分别 是使用 LTE技术的 LTE模块 S101 ;使用 IEEE Std 802.11 规范规定的无线局 域网 ( WLAN, wireless local area networks )技术的 WLAN模块 SI 02 , 即无 线局域网站点 (WLAN STA ) ; 使用 IEEE Std 802.15 规范规定的蓝牙 ( Bluetooth )无线电技术的蓝牙模块 S103 , 这三个模块也可以分别称为 LTE 子设备、 WLAN子设备和蓝牙子设备。 三个模块分别和各自无线电技术所对 应的对端设备进行无线通信, 其中 LTE模块 S101与 LTE基站(E-UTRAN NodeB, eNB,也称为演进型基站) S104通过空中接口进行无线通信; WLAN 模块 S102与另一个 WLAN STA设备 S105通过空中接口进行无线通信; 蓝 牙模块 S103与另一个蓝牙设备 S106通过空中接口进行无线通信。
图 1中,三个模块之间通过终端内部的无线电技术之间的接口(inter-radio interface )相连, 比如 LTE模块 S 101与 WLAN模块 S 102之间通过第一接口 L101相连, LTE模块 S101与蓝牙模块 S103之间通过第二接口 L102相连; WLAN模块 S102与蓝牙模块 S103之间通过第三接口 L103相连; 或者, 三 个模块受控于一个公共的控制模块 S107。
同一个终端内配置多种不同的无线电技术时, 鉴于终端体积太小, 势必 两种以上无线电技术的模块(也称为无线电模块)之间的空间距离相隔很近, 比如几个厘米, 也即该两种或两种以上无线电技术所使用的天线端口之间的 空间隔离度无法设计的足够大, 从而导致当同一个终端内的各种无线电技术 所使用的频率之间的间隔如果不够大时, 由于带外泄露 (Out of band emission ) 、 杂散发射 ( Spurious emissions )和接收机阻塞 ( Blocking )等原 因, 当其中一个无线电模块进行发射时, 将干扰另一个无线电模块的接收, 反之亦然。 而且这种干扰无法通过现有滤波器消除, 会影响各无线电模块的 通信质量。 文中将上述干扰称之为 "设备内共存干扰" 。
以图 1所示的终端 S100为例, WLAN和 Bluetooth使用 "工业、 科学及 医疗( Industrial Scientific and Medical, 简称 ISM ) "频带( 2.4GHz~2.5GHz ) , 其中 WLAN使用 ISM频带中的 2.4GHz~2.4835GHz频段, Bluetooth使用 ISM 频带中的 2.4GHz~2.497GHz频段。 ISM频带正好与 LTE的频带 40 ( Band40: 2.3GHz~2.4GHz )和频带 Ί的上行频带( Band7 UP: 2.5GHz~2.57GHz )相邻, 如图 2所示。 因此如果 LTE模块 S101使用 TDD ( Time Division Duplex, 时 分双工)模式且使用 Band40, 并且 LTE模块 S101的工作频率与 WLAN模块 S102、蓝牙模块 S103的工作频率之间的间隔较小时, LTE模块 S101与 WLAN 模块 S102、 蓝牙模块 S103之间将相互干扰。 如果 LTE模块 S101 使用 FDD ( Frequency Division Duplex, 频分双工)模式且使用 Band7 , 如图 2所示, 由于 LTE Band7的下行频带与 ISM频带相隔很远, 因此 WLAN模块 S102/ 蓝牙模块 S103的上行发射不干扰 LTE模块 S101的下行接收,但是由于 LTE Band7的上行频带与 ISM频带毗邻, 当 LTE模块 S101的工作频率与 WLAN 模块 S102/蓝牙模块 S103的工作频率之间的间隔较小时, LTE模块 S101的上 行发射将干扰 WLAN模块 S102/蓝牙模块 S103的下行就收。
"设备内共存干扰" 的存在会降低互相干扰的无线电模块双方的通信质 量,以图 3所示的应用为例,智能终端 S302配置有 LTE模块和 WLAN模块, 其中 LTE模块通过第一空中接口 L301与 LTE基站 S301通信, WLAN模块 通过第二空中接口 L302与 WLAN AP ( Access Point, 接入点)通信, LTE模 块的工作频点为 2.390GHz, WLAN模块工作在 WLAN channel (信道) 1 2.412GHz上。 当同一时刻, LTE模块进行下行接收而同时 WLAN模块正好 向 WLAN AP发送数据时, LTE模块的下行接收被 WLAN模块干扰, 反之亦 然,即, WLAN模块接收 WLAN AP的数据时,会被同时进行上行发送的 LTE 模块干扰, 最终影响用户的业务体验。
以上分析可见, 多种不同的无线电技术共存于设备内时, 设备内共存干 扰将降低该多种不同的无线电技术的通信质量, 影响用户的通信体验。 而随 着移动用户需求的不断提升, 在同一终端内配置多种不同的无线电技术的市 场需求和应用前景越来越大, 因此必须寻求有效措施降低甚至避免设备内共 存干扰, 确保移动用户良好的业务体验。
发明内容
本发明要提供一种多种无线电技术在终端共存时的时分复用通信方法和 系统, 以降低甚至消除设备内共存干扰。
为了解决上述问题, 本发明提供了一种多种无线电技术在终端共存时的 时分复用通信方法,应用于支持长期演进 (LTE)和至少一种其他无线电技术的 终端, 该时分复用通信方法包括:
所述终端接收 LTE基站为所述终端配置的 LTE和其他无线电技术的共存 时间分配信息;
所述终端根据所述共存时间分配信息确定 LTE的数据收发时间和其他无 线电技术的数据收发时间; 以及
无线电技术的数据收发时间进行其他无线电技术的数据收发。
较佳地,
所述终端接收的共存时间分配信息包括一组共存时间分配参数, 该组共 存时间分配参数包括共存时间分配周期、 共存时间偏移, 及构成共存时间分 配周期的 LTE传输时间和非 LTE传输时间中的至少一个;
所述终端根据所述共存时间分配信息确定 LTE的数据收发时间和其他无 线电技术的数据收发时间, 包括: 间和其他无线电技术的数据收发时间。
较佳地,
所述终端接收的共存时间分配信息包括多组共存时间分配参数和激活其 中一组共存时间分配参数的指示信息, 每一组共存时间分配参数包括共存时 间分配周期、 共存时间偏移, 及构成共存时间分配周期的 LTE传输时间和非 LTE传输时间中的至少一个;
所述终端根据所述共存时间分配信息确定 LTE的数据收发时间和其他无 线电技术的数据收发时间, 包括:
所述终端根据所述指示信息激活一组共存时间分配参数, 然后根据该组 共存时间分配参数确定所述 LTE的数据收发时间和其他无线电技术的数据收 发时间。
较佳地,
所述时分复用通信方法还包括:
所述终端在激活所述多组共存时间分配参数中的一组共存时间分配参数 后, 如接收到所述 LTE基站发送的激活所述多组共存时间分配参数中另一组 共存时间分配参数的指令, 则将之前激活的一组共存时间分配参数去激活, 然后激活该另一组共存时间分配参数, 才艮据该另一组共存时间分配参数确定 所述 LTE的数据收发时间和所述其他无线电技术的数据收发时间。
较佳地, 他无线电技术的数据收发时间包括:
根据共存时间分配周期和共存时间偏移确定 LTE的数据收发时间的开始 时刻, 将 LTE传输时间的时长作为 LTE的数据收发时间的时长;
将 LTE的数据收发时间的结束时刻作为其他无线电技术的数据收发时间 的时长。
较佳地, 所述时分复用通信方法还包括:
所述 LTE基站根据所述终端确定所述 LTE的数据收发时间和其他无线电 技术的数据收发时间时所依据的一组共存时间分配参数调度所述终端的 LTE 数据传输;
调度所述终端的 LTE数据传输包括:
根据共存时间分配周期和共存时间偏移, 按与所述终端确定 LTE的数据 刻开始的 LTE传输时间内调度所述终端的 LTE数据传输。
较佳地, 据收发的任意一个或任意组合:
仅在所述 LTE的数据收发时间内监听物理下行控制信道 (PDCCH);
仅在所述 LTE的数据收发时间内根据基站的调度收发 LTE的数据;
仅在所述 LTE 的数据收发时间内发送上行回馈参考信号 (SRS)、 信道质 量指示信息 (CQI)、 预编码矩阵指示信息 (PMI)和秩指示信息 (RI);
较佳地,
所述终端接收 LTE基站为所述终端配置的 LTE和其他无线电技术的共存 时间分配信息之前, 上述方法还包括:
所述终端向 LTE基站报告所述 LTE和其他无线电技术的时分复用信息; 所述 LTE基站接收到所述时分复用信息后, 决策确定所述终端的共存时 间分配信息并将所述共存时间分配信息通知所述终端。
较佳地,
所述时分复用信息包括以下信息中的至少一种:
所述终端需要进行时分复用传输的信息; 所述其他无线电技术的信息;
所述其他无线电技术的业务信息;
所述 LTE与其他无线电技术时分复用的时间分配信息。
相应地, 本发明还提供了一种多种无线电技术在终端共存时的时分复用 通信系统, 应用于支持长期演进 (LTE)和至少一种其他无线电技术的终端, 该 时分复用通信系统包括:
所述终端中的接收装置 ,其设置为:接收 LTE基站为所述终端配置的 LTE 和其他无线电技术的共存时间分配信息;
所述终端中的确定装置,其设置为:根据所述共存时间分配信息确定 LTE 的数据收发时间和其他无线电技术的数据收发时间;
所述终端中的 LTE模块, 其设置为: 在所述 LTE的数据收发时间进行 LTE的数据收发; 以及
所述终端中的其他无线电模块, 其设置为: 在所述其他无线电技术的数 据收发时间进行其他无线电技术的数据收发。
较佳地,
所述终端中的接收装置接收的共存时间分配信息包括一组共存时间分配 参数, 该组共存时间分配参数包括共存时间分配周期、 共存时间偏移, 及构 成共存时间分配周期的 LTE传输时间和非 LTE传输时间中的至少一个; 所述终端中的确定装置是设置为以如下方式才艮据所述共存时间分配信息 确定 LTE的数据收发时间和其他无线电技术的数据收发时间: 根据接收的该 收发时间。
较佳地,
所述终端中的接收装置接收的共存时间分配信息包括多组共存时间分配 参数和激活其中一组共存时间分配参数的指示信息, 每一组共存时间分配参 数包括共存时间分配周期、 共存时间偏移, 及构成共存时间分配周期的 LTE 传输时间和非 LTE传输时间中的至少一个;
所述终端中的确定装置是设置为以如下方式才艮据所述共存时间分配信息 确定 LTE的数据收发时间和其他无线电技术的数据收发时间: 根据所述指示 信息激活一组共存时间分配参数, 然后才艮据该组共存时间分配参数确定所述 LTE的数据收发时间和其他无线电技术的数据收发时间。
较佳地,
所述终端中的接收装置还设置为: 在所述终端中的确定装置激活所述多 组共存时间分配参数中的一组共存时间分配参数后, 如接收到所述 LTE基站 发送的激活所述多组共存时间分配参数中另一组共存时间分配参数的指令, 则通知所述终端中的确定装置;
所述终端中的确定装置还设置为: 收到所述通知后, 将之前激活的一组 共存时间分配参数去激活, 然后激活该另一组共存时间分配参数, 根据该另 的数据收发时间。
较佳地,
所述终端中的确定装置是设置为以如下方式才艮据一组共存时间分配参数 确定所述 LTE的数据收发时间和其他无线电技术的数据收发时间:
根据共存时间分配周期和共存时间偏移确定 LTE的数据收发时间的开始 时刻, 将 LTE传输时间的时长作为 LTE的数据收发时间的时长;
将 LTE的数据收发时间的结束时刻作为其他无线电技术的数据收发时间 的时长。
较佳地, 所述系统还包括:
所述 LTE基站中的调度装置, 其设置为: 根据所述终端确定所述 LTE的 数据收发时间和其他无线电技术的数据收发时间时所依据的一组共存时间分 配参数调度所述终端的 LTE数据传输;
所述调度装置是设置为以如下方式调度所述终端的 LTE数据传输: 根据共存时间分配周期和共存时间偏移, 按与所述终端确定 LTE的数据 I曰 j的开始^劉 目 的万式确疋 LTE 亏 ^ I曰 J , 在该开始时 刻开始的 LTE传输时间内调度所述终端的 LTE数据传输。
较佳地,
所述终端中的 LTE装置是设置为釆用以下数据收发方式中的一种或多种 仅在所述 LTE的数据收发时间内监听物理下行控制信道 (PDCCH);
仅在所述 LTE的数据收发时间内根据基站的调度收发 LTE的数据;
仅在所述 LTE 的数据收发时间内发送上行回馈参考信号 (SRS)、 信道质 量指示信息 (CQI)、 预编码矩阵指示信息 (PMI)和秩指示信息 (RI);
仅在所述 LTE的数据收发 ί
较佳地, 所述系统还包括:
所述终端中的报告装置, 其设置为: 向所述 LTE基站报告所述 LTE和其 他无线电技术的时分复用信息; 以及
所述 LTE基站中的决策装置,其设置为:在接收到所述时分复用信息后, 决策确定所述终端的共存时间分配信息并将所述共存时间分配信息通知所述 终端。
较佳地,
所述终端中的报告装置向所述 LTE基站报告的时分复用信息包括以下信 息中的至少一种:
所述终端需要进行时分复用传输的信息;
所述其他无线电技术的信息;
所述其他无线电技术的业务信息;
所述 LTE与其他无线电技术时分复用的时间分配信息。
上述多种无线电技术在终端共存时的时分复用通信方法和系统, 可以确 保 LTE与其他无线电技术共存时的时分复用通信, 降低甚至消除设备内共存 干扰, 同时, 可以兼顾 LTE和其他无线电技术各自的通信质量要求。
附图概述
图 1为一种同时使用三种无线电技术的终端的示意图;
图 2为 ISM频带与 LTE频带的分布示意图;
图 3为 LTE与 WLAN共存于终端的通信示意图;
图 4为本发明第一实施例 LTE与其他无线电技术共存时, 实现时分复用 通信的方法的流程图;
图 5为本发明第一实施例一种共存时间分配的示意图;
图 6为本发明实施例的一种业务吞吐量时变的示意图;
图 7为本发明第二实施例 LTE与其他无线电技术共存时, 实现时分复用 通信的方法的流程图;
图 8为本发明第二实施例基站配置多组共存时间分配参数的示意图; 图 9为本发明实施例取消时分复用通信的方法的流程图。
本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。
针对 LTE和至少一种其他无线电技术共存于终端内, 各无线电模块之间 存在相互干扰的问题, 本发明提出一种时分复用通信方法。
第一实施例
为解决设备内共存干扰, 保证共存于终端内的 LTE模块和其他无线电模 块的通信质量, 本实施例提出的时分复用通信方法包括:
步骤一,终端接收 LTE基站为本终端配置的 LTE和其他无线电技术的共 存时间分配信息; 终端接收的共存时间分配信息可以包括一组共存时间分配参数。 或者, 终端接收的共存时间分配信息包括多组共存时间分配参数和激活其中一组共 存时间分配参数的指示信息。
无论是上述哪一种情况, 一组共存时间分配参数均可以包括共存时间分 配周期、 共存时间偏移, 及构成共存时间分配周期的 LTE传输时间和非 LTE 传输时间中的至少一个。
为终端配置的 LTE和其他无线电技术的共存时间分配信息也即为 LTE模 块与其他无线电模块的共存时间分配信息。
步骤二, 终端根据共存时间分配信息确定 LTE的数据收发时间和其他无 线电技术的数据收发时间;
如果共存时间分配信息包括一组共存时间分配参数, 终端根据接收的该 组共存时间分配参数确定 LTE的数据收发时间和其他无线电技术的数据收发 时间。
如果共存时间分配信息包括多组共存时间分配参数和激活其中一组共存 时间分配参数的指示信息。 终端根据指示信息激活一组共存时间分配参数, 然后根据该组共存时间分配参数确定 LTE的数据收发时间和其他无线电技术 的数据收发时间。
无论上述哪一种情况下, 终端根据一组共存时间分配参数确定 LTE的数 据收发时间和其他无线电技术的数据收发时间, 具体包括:
根据共存时间分配周期和共存时间偏移确定 LTE的数据收发时间的开始 时刻, 将 LTE传输时间的时长作为 LTE的数据收发时间的时长;
将 LTE的数据收发时间的结束时刻作为其他无线电技术的数据收发时间 的时长。
相应地, LTE基站可以根据终端确定 LTE的数据收发时间和其他无线电 技术的数据收发时间时所依据的一组共存时间分配参数调度终端的 LTE数据 传输, 具体包括: 根据共存时间分配周期和共存时间偏移, 按与终端确定 LTE的数据收发 时间的开始时刻相同的方式确定 LTE传输时间的开始时刻 , 在该开始时刻开 始的 LTE传输时间内调度终端的 LTE数据传输。
步骤三, 终端在 LTE的数据收发时间进行 LTE的数据收发,在其他无线 电技术的数据收发时间进行其他无线电技术的数据收发。
本步骤也即为: LTE模块在 LTE的数据收发时间进行 LTE的数据收发, 其他无线电模块在其他无线电技术的数据收发时间进行其他无线电技术的数 据收发。
终端在 LTE的数据收发时间进行 LTE的数据收发,可以釆用以下数据收 发方式的部分或全部:
仅在 LTE的数据收发时间内监听物理下行控制信道 (PDCCH);
仅在 LTE的数据收发时间内根据基站的调度收发 LTE的数据; 仅在 LTE的数据收发时间内发送 LTE的调度请求;
仅在 LTE 的数据收发时间内发送上行回馈参考信号 (SRS)、 信道质量指 示信息 (CQI)、 预编码矩阵指示信息 (PMI)和秩指示信息 (RI);
仅在 LTE的数据收发时间内进行 LTE的测量。
在时分复用过程中, 终端在激活所述多组共存时间分配参数中的一组共 存时间分配参数后, 如接收到所述 LTE基站发送的激活所述多组共存时间分 配参数中另一组共存时间分配参数的指令, 则将之前激活的一组共存时间分 配参数去激活, 然后激活该另一组共存时间分配参数, 根据该另一组共存时 间分配参数确定所述 LTE的数据收发时间和所述其他无线电技术的数据收发 时间。
此外,终端接收 LTE基站为终端配置的 LTE和其他无线电技术的共存时 间分配信息之前, 还可以包括:
终端向 LTE基站报告 LTE和其他无线电技术的时分复用信息;
LTE基站接收到时分复用信息后, 决策确定终端的共存时间分配信息并 将共存时间分配信息通知终端。 其中的时分复用信息包括以下信息中的至少一种:
终端需要进行时分复用传输的信息;
其他无线电技术的信息;
其他无线电技术的业务信息;
LTE与其他无线电技术时分复用的时间分配信息。
本实施例的多种无线电技术在终端共存时的时分复用通信系统见发明容 的相应内容。其中,终端中的确定装置可以作为 LTE模块的一部分,通过 LTE 模块与其他无线电模块的接口将确定的其他无线电技术的数据收发时间 (包 括开始时刻和持续时长)通知到其他无线电模块, 或者, 也可以作为控制模 块的一部分, 从 LTE模块获取其他无线电技术的数据收发时间并通知到其他 无线电模块。
第二实施例
实施例中, 其他无线电技术以 WLAN为例, 但不局限于此, 也可以是蓝 牙等其他形式的无线电技术。
为解决设备内共存干扰, 保证共存于终端内的 LTE模块和 WLAN模块 的通信质量, 本实施例提出的时分复用通信的方法如图 4所示, 包括:
S401、 终端 (UE)向 LTE基站(文中也简称为基站 )报告 LTE和 WLAN 的时分复用信息;
上述时分复用信息可以是:
仅仅通知基站该 UE需要进行时分复用传输的信息; 或者
可以是 UE设备内共存的其他无线电技术的信息和 /或其他无线电技术的 业务信息, 比如 WLAN技术, 可以进一步通知当前 WLAN的应用为 VoIP ( Voice over Internet Protocol, 网络电话)语音应用; 或者
还可以是 LTE与 WLAN的时间分配信息。 UE可以根据业务特性, 进一 步还可以根据协议规定, 确定所述 LTE与 WLAN的时间分配信息。 比如, UE根据业务特性, 确定所述 LTE与 WLAN的时间分配信息为:
LTE传输时间长度信息及 LTE与 WLAN的时间分配周期信息 , 比如时 间分配重复周期为 60ms, LTE传输时间长度为 30ms, UE将所述 LTE传输 时间长度信息及 LTE与 WLAN的时间分配周期信息通知给基站;
又如 UE根据业务特性, 确定 LTE与 WLAN的时间分配信息为:
LTE与 WLAN的时间分配周期信息和在该时间分配周期信息内 LTE传 输时间与非 LTE传输时间的比例信息 , UE将所述 LTE与 WLAN的时间分配 周期信息和该比例信息通知给基站;
又如 UE根据业务特性和协议规定的以下表 1信息查询, 确定所述 LTE 与 WLAN的时间分配信息为所述表 1中索引 1所对应的时间信息, UE将所 述索引 1通知给基站。
表 1
Figure imgf000015_0001
终端是通过 LTE模块报告上述时间分配信息, LTE模块可以从如图 1所 示的不同模块之间的接口或者从控制模块获知 WLAN 的状态和需要的时分 复用信息, 上报所驻留的 LTE服务小区所属的 LTE基站。
S402、 LTE基站收到所述时分复用信息后, 决策确定为 UE配置的 LTE 和其他无线电技术的共存时间分配信息, 包括一组共存时间分配参数, 并将 该共存时间分配信息发送给该 UE;
根据 S401 UE向 LTE基站报告的时分复用信息,共存时间分配信息的决 策确定可以釆用以下方式:
若所述时分复用信息为 UE通知 LTE基站该 UE需要进行时分复用传输 的信息, 则基站根据运营商策略(或称基站策略)确定 LTE与其他无线电技 术的共存时间分配。 其中, 运营商策略如可以是 LTE模块所传输业务的服务 质量要求(Quality of Service , QoS ); LTE系统性能; LTE运营商与其他无 线电模块所属的运营商达成的协议等等。
若所述时分复用信息为 UE内共存的其他无线电技术的信息和 /或其他无 线电技术的业务信息, 则 LTE基站参考所述时分复用信息, 结合运营商策略 和 /或协议规定, 确定 LTE与其他无线电技术的共存时间分配;
若所述时分复用信息为 LTE模块与其他无线电模块的时间分配信息, 则 LTE基站参考所述时间分配信息, 进一步还可以根据运营商策略, 最终决定 LTE与其他无线电技术的共存时间分配。
相应地, LTE基站也根据该共存时间分配信息调度 UE的 LTE数据传输。
S403、 UE根据基站配置的共存时间分配信息, 确定 LTE的数据收发时 间和其他无线电技术的数据收发时间,在 LTE的数据收发时间进行 LTE的数 据收发,在其他无线电技术的数据收发时间进行其他无线电技术的数据收发。
图 5所示为本实施例的共存时间分配示意图, LTE传输时间和非 LTE传 输时间构成一个共存时间分配周期。 以图 5所示的共存时间分配为例, 基站 在 S402 中为 UE配置的一组共存时间分配参数可以包括共存时间分配周期 Tp、 共存时间偏移 Toffset和 LTE传输时间 T— LTE , 其中 T— LTE也可以替换 为非 LTE传输时间 T— non— LTE。
若基站通知 UE的共存时间分配参数为 Tp, Toffset和 T— non— LTE, 则 UE根据公式( 1 )确定 T_LTE的时间。
Tp=T_LTE+ T— non— LTE 公式 ( 1 )
在步骤 S403中, UE根据基站配置给该 UE的共存时间分配信息确定 LTE 的数据收发时间 (也可以称为 LTE传输时间 ) 时, 可以按照公式(2 )确定 LTE的数据收发时间的开始时刻, LTE的数据收发时间维持 T— LTE时长。
[(SFN * 10) + subframe number] modulo (Tp) = (Toffset) modulo (Tp) 公 式 (2)
其中 , SFN ( System Frame Number )为 LTE的系统中贞号, subframe number 为 LTE的子帧号, modulo表示取模运算。 UE确定了 LTE数据收发时间后, LTE的数据收发时间结束到下一次 LTE 可以称为非 LTE传输时间) 。 UE根据确定的 LTE的数据收发时间和其他无 线电技术的数据收发时间, 协调 LTE模块和其他无线电模块的数据收发, 即 在 LTE的数据收发时间进行 LTE的数据收发,在其他无线电技术的数据收发 时间进行其他无线电模块的数据收发。 该协调可以由图 1 中所示的控制模块 来冗成。
配置了共存时间分配参数后, 基站仅在 LTE传输时间内调度 UE的 LTE 数据传输。 具体地, 基站可以根据共存时间分配周期和共存时间偏移, 按与 始时刻, 在该开始时刻开始的 LTE传输时间内调度终端的 LTE数据传输。
在 LTE的数据收发时间进行 LTE的数据收发, 具体包括:
1 )仅在 LTE传输时间内监听物理下行控制信道(Physical Downlink Control Channel, PDCCH ) , 在非 LTE传输时间内停止监听 PDCCH;
2 )仅在 LTE传输时间内根据基站的调度收发数据, 在非 LTE传输时间 内停止收发数据;
3 )仅在 LTE传输时间内发送调度请求( Scheduling Request ) , 在非 LTE 传输时间内停止发送调度请求;
4 ) 仅在 LTE 传输时间内发送信道质量指示信息 (Channel Quality
Indicator, CQI ) , 预编码矩阵指示信息 ( Precoding Matrix Index , ΡΜΙ ) , 秩指示信息 ( Rank Indicator , RI ) ,和上行回馈参考信号 ( Sounding Reference Symbols, SRS )等上行信息,在非 LTE传输时间内停止发送 CQI/PMI/RI/SRS。
6 )仅在 LTE传输时间内测量, 在非 LTE传输时间内停止测量。
以上数据收发的行为由 LTE模块具体完成。
第三实施例
图 4是不考虑业务传输的突发性和非周期性条件下的时分复用通信方法 流程图, 而实际业务传输具有突发性和非周期性, 如图 6所示的时间段内, 大部分时间某业务的吞吐量都为图示的平均吞吐量, 而在 T601 T602 时间 内, 则会有一个突发吞吐量。 鉴于图 6所示业务的突发特性, 图 7所示为本 实施例又一种 LTE模块与其他无线电模块之间的时分复用通信方法的流程 图, 具体流程为:
5701、 UE向 LTE基站报告 LTE和其他无线电技术的时分复用信息, 同 S401 ;
5702、 LTE基站收到所述时分复用信息后, 决策确定为 UE配置的共存 时间分配信息, 其中包括多组共存时间分配参数, LTE基站激活其中的一组 共存时间分配参数, 并将多组共存时间分配参数及激活其中一组共存时间分 配参数的指示信息发送给 UE;
与 S402所不同的是, 考虑业务的突发性, 基站可以为 UE配置多组共存 时间分配参数。 比如, 如图 8所示, 基站为 UE配置了两种共存时间分配方 式, 分别为:
第一种共存时间分配方式, 对应的共存时间分配参数为第一组共存时间 分配参数(Tpl , Toffsetl , T LTEl/ T non LTEl ) ;
第二种共存时间分配方式, 对应的共存时间分配参数为第二组共存时间 分西己参数(Tp2, Toffset2, T LTE2/ T_non_LTE2 ) 。
基站将配置的两组共存时间分配参数通知 UE时, 可以携带激活其中一 种共存时间分配参数的指示信息。 该指示信息可以是专门用于指示激活哪一 种共存时间分配参数的显式的指示信息。 也可以是协议约定, 默认激活配置 的某一组(如第一组)共存时间分配参数, 此时釆用的是隐式的指示信息, 即共存时间分配参数的序号同时作为该指示信息。
基站在根据激活的一组共存时间分配参数确定的 LTE传输时间内调度 LTE模块, 同第一实施例。
5703、 UE接收并保存基站配置的多组共存时间分配参数,根据指示信息 激活一组共存时间分配参数, 根据该组共存时间分配参数确定 LTE的数据收 发时间和其他无线电技术的数据收发时间, 在 LTE的数据收发时间进行 LTE 的数据收发, 在其他无线电技术的数据收发时间进行其他无线电技术的数据 收发, 具体同 S403。
5704、 基站根据业务时变特性, 需要改变当前的共存时间分配方式时, 激活另一组共存时间分配参数, 并向 UE发送激活该另一组共存时间分配参 数的指令;
比如, 基站希望从第一种共存时间分配方式改变为第二种共存时间分配 方式, 基站通知 UE激活第二组共存时间分配参数。 优选的, 基站可以同时 去激活第一组共存时间分配参数, 或者, 根据协议约定, 基站激活第二组共 存时间分配参数后, 第一组共存时间分配信息自动去激活。
激活第二组共存时间分配参数后, 基站在根据第二组共存时间分配参数 确定的 LTE传输时间内调度 UE的 LTE数据传输。
5705、 UE根据基站的指令去激活之前激活的一组共存时间分配参数, 然 后激活另一组共存时间分配参数, 才艮据该另一组共存时间分配信息确定 LTE 和其他无线电技术数据收发时间, 并进行相应的数据收发。
根据图 7所示的 LTE与其他无线电技术之间的时分复用通信方法, 基站 和 UE可以灵活地根据业务特性改变 LTE和其他无线电技术的数据收发时间, 从而保证 LTE模块和其他无线电模块优质的通信质量。
由于设备内共存干扰具有突发性和非连续性, 比如一个配置有 LTE模块 和 Bluetooth模块的 UE, 只有当 Bluetooth模块打开时, LTE模块与 Bluetooth 模块之间才会存在干扰,而一旦 Bluetooth模块关闭,共存干扰也将不复存在。 因此, 当 UE判断共存干扰不存在时, LTE模块就不需要再与其他无线电模 块之间进行时分复用传输, 如图 9为取消时分复用通信的流程, 可以应用于 上述各个实施例, 具体步骤如下:
S901、 UE通知 LTE基站共存干扰消除;
UE可以通过如图 1所示的不同模块之间的接口或者控制模块 S107获知 WLAN是否关闭,比如 UE判断 WLAN模块关闭,则通过 LTE模块通知 eNB 取消时分复用传输。 5902、 基站反馈取消 (或称释放)共存时间分配的确定消息;
5903、 UE接收到基站反馈的确认消息后, 停止 LTE与其他无线电技术 的时分复用传输 , 按现有技术实现各模块与基站的通信。
UE可以删除此前配置的共存时间分配配置。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现, 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并非用于限定本发明的保护范 围。 根据本发明的发明内容, 还可有其他多种实施例, 在不背离本发明精神 改变和变形, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
上述实施方式可以确保 LTE与其他无线电技术共存时的时分复用通信, 降低甚至消除设备内共存干扰, 同时, 可以兼顾 LTE和其他无线电技术各自 的通信质量要求。

Claims

权 利 要 求 书
1、 一种多种无线电技术在终端共存时的时分复用通信方法,应用于支持 长期演进 (LTE)和至少一种其他无线电技术的终端, 该时分复用通信方法包 括:
所述终端接收 LTE基站为所述终端配置的 LTE和其他无线电技术的共存 时间分配信息;
所述终端根据所述共存时间分配信息确定 LTE的数据收发时间和其他无 线电技术的数据收发时间; 以及 无线电技术的数据收发时间进行其他无线电技术的数据收发。
2、 根据权利要求 1所述的时分复用通信方法, 其中:
所述终端接收的共存时间分配信息包括一组共存时间分配参数, 该组共 存时间分配参数包括共存时间分配周期、 共存时间偏移, 及构成共存时间分 配周期的 LTE传输时间和非 LTE传输时间中的至少一个;
所述终端根据所述共存时间分配信息确定 LTE的数据收发时间和其他无 线电技术的数据收发时间, 包括: 间和其他无线电技术的数据收发时间。
3、 根据权利要求 1所述的时分复用通信方法, 其中:
所述终端接收的共存时间分配信息包括多组共存时间分配参数和激活其 中一组共存时间分配参数的指示信息, 每一组共存时间分配参数包括共存时 间分配周期、 共存时间偏移, 及构成共存时间分配周期的 LTE传输时间和非 LTE传输时间中的至少一个;
所述终端根据所述共存时间分配信息确定 LTE的数据收发时间和其他无 线电技术的数据收发时间, 包括:
所述终端根据所述指示信息激活一组共存时间分配参数, 然后根据该组 间和其他无线电技术的数据收 发时间
4、 根据权利要求 3所述的时分复用通信方法, 其还包括:
所述终端在激活所述多组共存时间分配参数中的一组共存时间分配参数 后, 如接收到所述 LTE基站发送的激活所述多组共存时间分配参数中另一组 共存时间分配参数的指令, 则将之前激活的一组共存时间分配参数去激活, 然后激活该另一组共存时间分配参数, 才艮据该另一组共存时间分配参数确定 所述 LTE的数据收发时间和所述其他无线电技术的数据收发时间。
5、 根据权利要求 2或 3或 4所述的时分复用通信方法, 其中: 他无线电技术的数据收发时间, 包括:
根据共存时间分配周期和共存时间偏移确定 LTE的数据收发时间的开始 时刻, 将 LTE传输时间的时长作为 LTE的数据收发时间的时长;
将 LTE的数据收发时间的结束时刻作为其他无线电技术的数据收发时间 的时长。
6、 根据权利要求 5所述的时分复用通信方法, 其还包括:
所述 LTE基站根据所述终端确定所述 LTE的数据收发时间和其他无线电 技术的数据收发时间时所依据的一组共存时间分配参数调度所述终端的 LTE 数据传输;
所述调度所述终端的 LTE数据传输包括:
根据共存时间分配周期和共存时间偏移, 按与所述终端确定 LTE的数据 刻开始的 LTE传输时间内调度所述终端的 LTE数据传输。
7、 根据权利要求 1所述的时分复用通信方法, 其中: 据收发的任意一个或任意组合:
仅在所述 LTE的数据收发时间内监听物理下行控制信道 (PDCCH);
仅在所述 LTE的数据收发时间内根据基站的调度收发 LTE的数据;
仅在所述 LTE 的数据收发时间内发送上行回馈参考信号 (SRS)、 信道质 量指示信息 (CQI)、 预编码矩阵指示信息 (PMI)和秩指示信息 (RI);
8、 根据权利要求 1或 6所述的时分复用通信方法, 其中:
所述终端接收 LTE基站为所述终端配置的 LTE和其他无线电技术的共存 时间分配信息之前, 所述方法还包括:
所述终端向 LTE基站报告所述 LTE和其他无线电技术的时分复用信息; 所述 LTE基站接收到所述时分复用信息后, 决策确定所述终端的共存时 间分配信息并将所述共存时间分配信息通知所述终端。
9、 根据权利要求 8所述的时分复用通信方法, 其中, 所述时分复用信息 包括以下信息中的至少一种:
所述终端需要进行时分复用传输的信息;
所述其他无线电技术的信息;
所述其他无线电技术的业务信息;
所述 LTE与其他无线电技术时分复用的时间分配信息。
10、 一种多种无线电技术在终端共存时的时分复用通信系统, 应用于支 持长期演进 (LTE)和至少一种其他无线电技术的终端,该时分复用通信系统包 括:
所述终端中的接收装置 ,其设置为:接收 LTE基站为所述终端配置的 LTE 和其他无线电技术的共存时间分配信息;
所述终端中的确定装置,其设置为:根据所述共存时间分配信息确定 LTE 的数据收发时间和其他无线电技术的数据收发时间; 所述终端中的 LTE模块, 其设置为: 在所述 LTE的数据收发时间进行 LTE的数据收发; 以及
所述终端中的其他无线电模块, 其设置为: 在所述其他无线电技术的数 据收发时间进行其他无线电技术的数据收发。
11、 根据权利要求 10所述的时分复用通信系统, 其中:
所述终端中的接收装置接收的共存时间分配信息包括一组共存时间分配 参数, 该组共存时间分配参数包括共存时间分配周期、 共存时间偏移, 及构 成共存时间分配周期的 LTE传输时间和非 LTE传输时间中的至少一个; 所述终端中的确定装置是设置为以如下方式才艮据所述共存时间分配信息 确定 LTE的数据收发时间和其他无线电技术的数据收发时间: 根据接收的该 收发时间。
12、 根据权利要求 10所述的时分复用通信系统, 其中:
所述终端中的接收装置接收的共存时间分配信息包括多组共存时间分配 参数和激活其中一组共存时间分配参数的指示信息, 每一组共存时间分配参 数包括共存时间分配周期、 共存时间偏移, 及构成共存时间分配周期的 LTE 传输时间和非 LTE传输时间中的至少一个;
所述终端中的确定装置是设置为以如下方式才艮据所述共存时间分配信息 确定 LTE的数据收发时间和其他无线电技术的数据收发时间: 根据所述指示 信息激活一组共存时间分配参数, 然后才艮据该组共存时间分配参数确定所述 LTE的数据收发时间和其他无线电技术的数据收发时间。
13、 根据权利要求 12所述的时分复用通信系统, 其中:
所述终端中的接收装置还设置为: 在所述终端中的确定装置激活所述多 组共存时间分配参数中的一组共存时间分配参数后, 如接收到所述 LTE基站 发送的激活所述多组共存时间分配参数中另一组共存时间分配参数的指令, 则通知所述终端中的确定装置;
所述终端中的确定装置还设置为: 收到所述通知后, 将之前激活的一组 共存时间分配参数去激活, 然后激活该另一组共存时间分配参数, 根据该另 的数据收发时间。
14、 根据权利要求 11或 12或 13所述的时分复用通信系统, 其中: 所述终端中的确定装置是设置为以如下方式才艮据一组共存时间分配参数 确定所述 LTE的数据收发时间和其他无线电技术的数据收发时间:
根据共存时间分配周期和共存时间偏移确定 LTE的数据收发时间的开始 时刻, 将 LTE传输时间的时长作为 LTE的数据收发时间的时长;
将 LTE的数据收发时间的结束时刻作为其他无线电技术的数据收发时间 的时长。
15、 根据权利要求 14所述的时分复用通信系统, 其还包括:
所述 LTE基站中的调度装置, 其设置为: 根据所述终端确定所述 LTE的 数据收发时间和其他无线电技术的数据收发时间时所依据的一组共存时间分 配参数调度所述终端的 LTE数据传输;
所述调度装置是设置为以如下方式调度所述终端的 LTE数据传输: 根据共存时间分配周期和共存时间偏移, 按与所述终端确定 LTE的数据 刻开始的 LTE传输时间内调度所述终端的 LTE数据传输。
16、 根据权利要求 10所述的时分复用通信系统, 其中:
所述终端中的 LTE装置是设置为釆用以下数据收发方式中的一种或多种 仅在所述 LTE的数据收发时间内监听物理下行控制信道 (PDCCH); 仅在所述 LTE的数据收发时间内根据基站的调度收发 LTE的数据;
仅在所述 LTE 的数据收发时间内发送上行回馈参考信号 (SRS)、 信道质 量指示信息 (CQI)、 预编码矩阵指示信息 (PMI)和秩指示信息 (RI);
17、 根据权利要求 10或 15所述的时分复用通信系统, 其还包括: 所述终端中的报告装置, 其设置为: 向所述 LTE基站报告所述 LTE和其 他无线电技术的时分复用信息; 以及
所述 LTE基站中的决策装置,其设置为:在接收到所述时分复用信息后, 决策确定所述终端的共存时间分配信息并将所述共存时间分配信息通知所述 终端。
18、 根据权利要求 17所述的时分复用通信系统, 其中, 所述终端中的报 告装置向所述 LTE基站报告的时分复用信息包括以下信息中的至少一种: 所述终端需要进行时分复用传输的信息;
所述其他无线电技术的信息;
所述其他无线电技术的业务信息;
所述 LTE与其他无线电技术时分复用的时间分配信息。
PCT/CN2011/079661 2010-12-27 2011-09-15 多种无线电技术在终端共存时的时分复用通信方法和系统 WO2012088928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106083419A CN102546074A (zh) 2010-12-27 2010-12-27 多种无线电技术在终端共存时的时分复用通信方法和系统
CN201010608341.9 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012088928A1 true WO2012088928A1 (zh) 2012-07-05

Family

ID=46352112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079661 WO2012088928A1 (zh) 2010-12-27 2011-09-15 多种无线电技术在终端共存时的时分复用通信方法和系统

Country Status (2)

Country Link
CN (1) CN102546074A (zh)
WO (1) WO2012088928A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021008613A1 (zh) * 2019-07-18 2021-01-21 维沃移动通信有限公司 信息处理方法、终端及网络侧设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126552A1 (en) * 2012-11-02 2014-05-08 Qualcomm Incorporated Autonomous denial configurations for multi-radio coexistence
WO2014094238A1 (zh) * 2012-12-18 2014-06-26 华为技术有限公司 设备内多无线技术共存idc干扰处理方法及设备
CN103929214B (zh) * 2013-01-16 2016-02-24 普天信息技术研究院有限公司 一种数据传输方法
WO2014161170A1 (en) * 2013-04-03 2014-10-09 Broadcom Corporation Method and apparatus for time switched uplink in a dual connectivity environment
FR3009663A1 (fr) * 2013-08-12 2015-02-13 Orange Procede de signalisation destine a etre mis en oeuvre par un reseau de telecommunication cellulaire, station de base et terminal correspondant
US10420105B2 (en) 2016-02-05 2019-09-17 Hfi Innovation Inc. Method for receiving downlink channel signal and user equipment
JP6806926B2 (ja) * 2017-07-07 2021-01-06 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. 干渉協調方法及び装置、基地局、ユーザーデバイス
KR102292723B1 (ko) * 2017-07-19 2021-08-24 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보 전송 방법 및 장치
KR102449433B1 (ko) * 2017-07-19 2022-09-30 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보 전송을 위한 방법 및 장치
CN109995457A (zh) * 2017-12-29 2019-07-09 维沃移动通信有限公司 一种干扰处理方法、用户终端和网络侧设备
WO2019183848A1 (zh) 2018-03-28 2019-10-03 Oppo广东移动通信有限公司 监听pdcch的方法、终端设备和网络设备
CN110621034B (zh) * 2018-06-19 2021-06-29 维沃移动通信有限公司 一种传输控制方法、装置及系统
CN111526586B (zh) * 2019-02-01 2024-04-12 华为技术有限公司 一种通信的方法和装置
CN111818640B (zh) * 2019-07-04 2023-08-01 维沃移动通信有限公司 一种上行发送处理方法、信息配置方法和相关设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158869A (zh) * 2011-03-07 2011-08-17 电信科学技术研究院 一种设备内共存干扰协调的处理方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697896B2 (en) * 2005-03-16 2010-04-13 Sony Computer Entertainment Inc. Communication apparatus preventing communication interference
US7778226B2 (en) * 2006-03-30 2010-08-17 Intel Corporation Device, system and method of coordination among multiple transceivers
US7899396B2 (en) * 2006-06-02 2011-03-01 Qulacomm Incorporated Efficient operation for co-located WLAN and Bluetooth
CN102548004A (zh) * 2010-12-17 2012-07-04 中兴通讯股份有限公司 采用不同无线电技术的终端的通信方法、终端及基站

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158869A (zh) * 2011-03-07 2011-08-17 电信科学技术研究院 一种设备内共存干扰协调的处理方法和设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "The general principles of the TDM solution", 3GPP TSG RAN WG2#72, R2-106389, 19 November 2010 (2010-11-19), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_72/Docs/R2-106389.zip> [retrieved on 20111209] *
HUAWEI: "General consideration on TDM", 3GPP TSG-RAN WG2 MEETING #72, R2-106398, 15 November 2010 (2010-11-15), JACKSONVILLE, US, pages 1 - 3, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tstsg_ran/WG2_RL2/TSGR2_72/Docs/R2-106398.zip> [retrieved on 20111209] *
INTEL CORPORATION (UK) LTD.: "TDM Solutions for In-Device Coexistence", 3GPP TSG-RAN WG2 #71BIS, R2-105666, 11 October 2010 (2010-10-11), XI'AN, CHINA, pages 1 - 4, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgran/WG2_RL2/TSGR2_7lbis/Docs/R2-105666.zip> [retrieved on 20111209] *
MEDIATEK: "Analysis in Potential TDM Coexistence Solutions", 3GPP TSG-RAN WG2 MEETING #71BIS, R2-105449, 11 October 2010 (2010-10-11), XI'AN, CHINA, pages 1 - 8, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_71bis/Docs/R2-105449.zip> [retrieved on 20111209] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021008613A1 (zh) * 2019-07-18 2021-01-21 维沃移动通信有限公司 信息处理方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN102546074A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2012088928A1 (zh) 多种无线电技术在终端共存时的时分复用通信方法和系统
JP7248661B2 (ja) 通信方法、通信装置、およびデバイス
US10986530B2 (en) Buffer state report transmission method and device therefor
JP6637541B2 (ja) 無線通信システムにおいて、制御要素送信のためにリソースを要求するための方法及び装置
CN109041245B (zh) 无线通信系统中多个调度请求配置的方法和设备
JP7098715B2 (ja) 無線通信システムにおいてlbt手順に基づいて所定の上りリンクリソースを処理する方法及びそのための装置
TWI608748B (zh) 在d2d通信系統中執行緩衝區狀態報告的方法及其裝置
CN111264080B (zh) 在无线通信系统中触发发送载波选择的方法和设备
Hu et al. Interference avoidance for in-device coexistence in 3GPP LTE-advanced: Challenges and solutions
EP2491742B1 (en) Power headroom reporting method and device for wireless communication system
US11102673B2 (en) Method and apparatus for distinguishing transmission feedback mode in sidelink buffer status report in a wireless communication system
US11848779B2 (en) Method for duplicately receiving control message, and device therefor
EP2931001B1 (en) Method and apparatus for reporting buffer status for device to device communication in a wireless communication system
WO2012094935A1 (zh) 一种终端内多种无线技术共存的通信方法和系统
WO2022032008A1 (en) Nr relays methods for supporting latency reduction for sl relays
US20180279162A1 (en) Method for transmitting a buffer status report in a d2d communication system and device therefor
KR20150053956A (ko) 무선 통신 구성을 위한 방법 및 장치
JPWO2016047513A1 (ja) 基地局及びユーザ端末
CN109076591A (zh) 发送上行链路数据的方法和用户设备
CN107580763A (zh) 用于在与免授权频谱中操作的至少一个scell进行的载波聚合中执行逻辑信道优先化的方法及其装置
US20240072935A1 (en) Method for duplicately receiving control message, and device therefor
WO2012083734A1 (zh) 多种无线电技术在终端共存时的时分复用通信方法和系统
WO2023036933A1 (en) Technique for handling and preventing sidelink failures
WO2012130029A1 (zh) 干扰避免方法、系统及移动设备
KR102003146B1 (ko) 2차 셀들과의 시간 다중화 통신

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853480

Country of ref document: EP

Kind code of ref document: A1