WO2012087784A1 - Heterocyclic compounds and their uses - Google Patents

Heterocyclic compounds and their uses Download PDF

Info

Publication number
WO2012087784A1
WO2012087784A1 PCT/US2011/065354 US2011065354W WO2012087784A1 WO 2012087784 A1 WO2012087784 A1 WO 2012087784A1 US 2011065354 W US2011065354 W US 2011065354W WO 2012087784 A1 WO2012087784 A1 WO 2012087784A1
Authority
WO
WIPO (PCT)
Prior art keywords
alk
haloalk
halo
substituted
cyano
Prior art date
Application number
PCT/US2011/065354
Other languages
French (fr)
Inventor
Yi Chen
Timothy D. Cushing
Benjamin Fisher
Felix Gonzalez Lopez De Turiso
Xiaolin Hao
Youngsook Shin
Original Assignee
Amgen Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Inc. filed Critical Amgen Inc.
Priority to JP2013546246A priority Critical patent/JP2014501261A/en
Priority to MX2013007261A priority patent/MX2013007261A/en
Priority to EP11808471.4A priority patent/EP2655342A1/en
Priority to US13/994,332 priority patent/US20130267526A1/en
Priority to AU2011349669A priority patent/AU2011349669A1/en
Priority to CA2822590A priority patent/CA2822590A1/en
Publication of WO2012087784A1 publication Critical patent/WO2012087784A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/42Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems

Definitions

  • the present invention relates generally to phosphatidylinositol 3-kinase
  • PI3K enzymes, and more particularly to selective inhibitors of PI3K activity and to methods of using such materials.
  • PI 3-kinase The enzyme responsible for generating these phosphorylated signaling products, phosphatidylinositol 3-kinase (PI 3-kinase; PI3K), was originally identified as an activity associated with viral oncoproteins and growth factor receptor tyrosine kinases that phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at the 3'-hydroxyl of the inositol ring (Panayotou et al, Trends Cell Biol 2:358-60 (1992)).
  • PIP3 phosphatidylinositol-3,4,5-triphosphate
  • PI 3-kinase activation therefore, is involved in a wide range of cellular responses including cell growth, migration, differentiation, and apoptosis (Parker et al, Current Biology, 5:577-99 (1995); Yao et al, Science, 267:2003-05 (1995)).
  • PH pleckstrin-homology
  • FYVE-fmger domain-containing proteins are activated when binding to various phosphatidylinositol lipids (Sternmark et al, J Cell Sci, 112:4175-83 (1999); .Lemmon et al, Trends Cell Biol, 7:237-42 (1997)).
  • Two groups of PH-domain containing PI3K effectors have been studied in the context of immune cell signaling, members of the tyrosine kinase TEC family and the serine/threonine kinases of the AGC family.
  • Members of the Tec family containing PH domains with apparent selectivity for Ptdlns (3,4,5)P 3 include Tec, Btk, Itk and Etk.
  • AGC family members that are regulated by PI3K include the phosphoinositide- dependent kinase (PDK1), AKT (also termed PKB) and certain iso forms of protein kinase C (PKC) and S6 kinase.
  • PDK1 phosphoinositide- dependent kinase
  • AKT also termed PKB
  • PKC protein kinase C
  • S6 kinase S6 kinase
  • Activation of AKT depends on phosphorylation by PDK1, which also has a 3-phosphoinositide-selective PH domain to recruit it to the membrane where it interacts with AKT.
  • Other important PDK1 substrates are PKC and S6 kinase (Deane and Fruman, Annu.Rev.Immunol. 22 563-598 (2004)).
  • PKC protein kinase C
  • Class I PI3Ks can phosphorylate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate, and phosphatidyl- inositol-4,5-biphosphate (PIP2) to produce phosphatidylinositol-3-phosphate (PIP), phosphatidylinositol-3,4-biphosphate, and phosphatidylinositol-3,4,5- triphosphate, respectively.
  • Class II PI3Ks phosphorylate PI and phosphatidyl- inositol-4-phosphate
  • Class III PI3Ks can only phosphorylate PI.
  • PI 3 -kinase The initial purification and molecular cloning of PI 3 -kinase revealed that it was a heterodimer consisting of p85 and pi 10 subunits (Otsu et al, Cell, 65:91- 104 (1991); Hiles et al, Cell, 70:419-29 (1992)). Since then, four distinct Class I PI3Ks have been identified, designated PI3K ⁇ , ⁇ , ⁇ , and ⁇ , each consisting of a distinct 110 kDa catalytic subunit and a regulatory subunit.
  • bovine pi 10a Cloning of bovine pi 10a has been described. This protein was identified as related to the Saccharomyces cerevisiae protein: Vps34p, a protein involved in vacuolar protein processing. The recombinant pi 10a product was also shown to associate with p85a, to yield a PI3K activity in transfected COS-1 cells. See Hiles et al, Cell, 70, 419-29 (1992).
  • pi 10 ⁇ The cloning of a second human pi 10 isoform, designated pi 10 ⁇ , is described in Hu et al, Mol Cell Biol, 13:7677-88 (1993).
  • This isoform is said to associate with p85 in cells, and to be ubiquitously expressed, as pi 10 ⁇ m NA has been found in numerous human and mouse tissues as well as in human umbilical vein endothelial cells, Jurkat human leukemic T cells, 293 human embryonic kidney cells, mouse 3T3 fibroblasts, HeLa cells, and NBT2 rat bladder carcinoma cells. Such wide expression suggests that this isoform is broadly important in signaling pathways.
  • PI 105 has also been shown to be expressed at lower levels in breast cells, melanocytes and endothelial cells (Vogt et al. Virology, 344: 131-138 (2006) and has since been implicated in conferring selective migratory properties to breast cancer cells (Sawyer et al. Cancer Res. 63: 1667-1675 (2003)). Details concerning the PI 105 isoform also can be found in U.S. Pat. Nos. 5,858,753; 5,822,910; and 5,985,589. See also, Vanhaesebroeck et al, Proc Nat. Acad Sci USA, 94:4330-5 (1997), and international publication WO 97/46688.
  • the p85 subunit acts to localize PI
  • Five isoforms of p85 have been identified ( ⁇ 85 ⁇ , ⁇ 85 ⁇ , ⁇ 55 ⁇ , p55a and p50a) encoded by three genes.
  • Pik3rl gene encodes the p85 a, p55 a and p50a proteins (Deane and Fruman, Annu.Rev.Immunol. 22: 563-598 (2004)).
  • p85a is ubiquitously expressed while ⁇ 85 ⁇ , is primarily found in the brain and lymphoid tissues (Volinia et al, Oncogene, 7:789-93 (1992)).
  • Association of the p85 subunit to the PI 3-kinase pi 10a, ⁇ , or ⁇ catalytic subunits appears to be required for the catalytic activity and stability of these enzymes.
  • the binding of Ras proteins also upregulates PI 3-kinase activity.
  • pi 10 ⁇ binds a plOl regulatory subunit that also binds to the ⁇ subunits of heterotrimeric G proteins.
  • the p 101 regulatory subunit for PBKgamma was originally cloned in swine, and the human ortholog identified subsequently (Krugmann et al, J Biol Chem, 274: 17152-8 (1999)).
  • p84 or p87 PIKAP ⁇ 3 ⁇ adapter protein of 87 kDa
  • p87 PIKAP is homologous to plOl in areas that bind pi 10 ⁇ and ⁇ and also mediates activation of pi 10 ⁇ downstream of G-protein-coupled receptors.
  • pgyPiKAP s hjgUy expressed in the heart and may be crucial to ⁇ 3 ⁇ cardiac function.
  • PI3K polypeptide A constitutively active PI3K polypeptide is described in international publication WO 96/25488.
  • This publication discloses preparation of a chimeric fusion protein in which a 102-residue fragment of p85 known as the inter-SH2 (iSH2) region is fused through a linker region to the N-terminus of murine pi 10.
  • the p85 iSH2 domain apparently is able to activate PI3K activity in a manner comparable to intact p85 (Klippel et al, Mol Cell Biol, 14:2675-85 (1994)).
  • PI 3 -kinases can be defined by their amino acid identity or by their activity.
  • Additional members of this growing gene family include more distantly related lipid and protein kinases including Vps34 TORI, and TOR2 of Saccharo- myces cerevisiae (and their mammalian homologs such as FRAP and mTOR), the ataxia telangiectasia gene product (ATR) and the catalytic subunit of DNA- dependent protein kinase (DNA-PK). See generally, Hunter, Cell, 83: 1-4 (1995).
  • PI 3-kinase is also involved in a number of aspects of leukocyte activation.
  • a p85-associated PI 3-kinase activity has been shown to physically associate with the cytoplasmic domain of CD28, which is an important costimulatory molecule for the activation of T-cells in response to antigen (Pages et al., Nature, 369:327- 29 (1994); Rudd, Immunity, 4:527-34 (1996)).
  • Activation of T cells through CD28 lowers the threshold for activation by antigen and increases the magnitude and duration of the proliferative response.
  • interleukin-2 IL2
  • T cell growth factor an important T cell growth factor
  • PI 3-kinase inhibitors Two compounds, LY294002 and wortmannin, have been widely used as PI 3-kinase inhibitors. These compounds, however, are nonspecific PI3K inhibitors, as they do not distinguish among the four members of Class I PI 3-kinases. For example, the IC 50 values of wortmannin against each of the various Class I PI 3-kinases are in the range of 1-lOnM. Similarly, the IC 50 values for LY294002 against each of these PI 3-kinases is about ⁇ (Fruman et al., Ann Rev Biochem, 67:481-507
  • PI 10a and pi 10 ⁇ knockout mice have been generated and are both embryonic lethal and little information can be obtained from these mice regarding the expression and function of pi 10 alpha and beta (Bi et al. Mamm.Genome, 13: 169-172 (2002); Bi et al. J.Biol.Chem. 274: 10963-10968 (1999)).
  • pi 10a kinase dead knock in mice were generated with a single point mutation in the DFG motif of the ATP binding pocket (pi 10aD 933A ) that impairs kinase activity but preserves mutant pi 10a kinase expression.
  • the knockin approach preserves signaling complex stoichiometry, scaffold functions and mimics small molecule approaches more realistically than knock out mice.
  • p 110aD 933A homozygous mice are embryonic lethal.
  • heterozygous mice are viable and fertile but display severely blunted signaling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin- like growth factor- 1 and leptin action.
  • IFS insulin-receptor substrate
  • Defective responsiveness to these hormones leads to hyperinsulinaemia, glucose intolerance, hyperphagia, increase adiposity and reduced overall growth in heterozygotes
  • PI3K delta knock out and kinase-dead knock-in mice have been made and are viable with mild and like phenotypes.
  • the pi 105 D910A mutant knock in mice demonstrated an important role for delta in B cell development and function, with marginal zone B cells and CD5+ B l cells nearly undetectable, and B- and T cell antigen receptor signaling (Clayton et al.
  • Inhibitors to alpha are desirable because mutations in pi 10a have been identified in several solid tumors; for example, an amplification mutation of alpha is associated with 50% of ovarian, cervical, lung and breast cancer and an activation mutation has been described in more than 50% of bowel and 25% of breast cancers (Hennessy et al. Nature Reviews, 4: 988-1004 (2005)). Yamanouchi has developed a compound YM-024 that inhibits alpha and delta equipotently and is 8- and 28-fold selective over beta and gamma respectively (Ito et al. J.Pharm.Exp.Therapeut., 321 : 1-8 (2007)).
  • PI 10 ⁇ is involved in thrombus formation (Jackson et al. Nature Med. 11 : 507-514 (2005)) and small molecule inhibitors specific for this isoform are thought after for indication involving clotting disorders (TGX-221 : 0.007uM on beta; 14-fold selective over delta, and more than 500-fold selective over gamma and alpha) (Ito et al. J.Pharm.Exp.Therapeut., 321 : 1-8 (2007)).
  • IC87114 inhibits pi 105 in the high nanomolar range (triple digit) and has greater than 100-fold selectivity against pi 10a, is 52 fold selective against pi 10 ⁇ but lacks selectivity against pi 10 ⁇ (approx. 8-fold). It shows no activity against any protein kinases tested (Knight et al. Cell, 125: 733-747 (2006)).
  • delta-selective compounds or genetically manipulated mice pl l05 D910A . It was shown that in addition to playing a key role in B and T cell activation, delta is also partially involved in neutrophil migration and primed neutrophil respiratory burst and leads to a partial block of antigen-IgE mediated mast cell degranulation (Condliffe et al. Blood, 106: 1432-1440 (2005); Ali et al. Nature, 431 : 1007-1011
  • pi 105 is emerging as an important mediator of many key inflammatory responses that are also known to participate in aberrant
  • PI3K5 function in inflammatory and auto-immune settings. Furthermore, our understanding of PI3K5 requires further elaboration of the structural interactions of pi 105, both with its regulatory subunit and with other proteins in the cell. There also remains a need for more potent and selective or specific inhibitors of PI3K delta, in order to avoid potential toxicology associated with activity on isozymes pi 10 alpha (insulin signaling) and beta (platelet activation). In particular, selective or specific inhibitors of PI3K5 are desirable for exploring the role of this isozyme further and for development of superior pharmaceuticals to modulate the activity of the isozyme.
  • the present invention comprises a new class of compounds having the general formula
  • One aspect of the invention relates to compounds having the structure:
  • X 1 is C(R 10 ) or N;
  • Y is N(R 8 ), O or S;
  • n 0, 1, 2 or 3;
  • R 2 is selected from H, halo, Ci_ 6 alk, Ci_ 4 haloalk, cyano, nitro, OR a , NR a R a ,
  • R 3 is selected from H, halo, nitro, cyano, Ci_ 4 alk, OCi_ 4 alk, OCi_ 4 haloalk, NHCi_ 4 alk, N(Ci_ 4 alk)Ci_ 4 alk or Ci_ 4 haloalk;
  • R 4 is, independently, in each instance, halo, nitro, cyano, Ci_ 4 alk, OCi_ 4 alk, OCi_ 4 haloalk, NHCi_ 4 alk, N(Ci_ 4 alk)Ci_ 4 alk, Ci_ 4 haloalk or an unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, substituted by 0, 1, 2 or 3 substituents selected from halo, Ci_ 4 alk, Ci_ 3 haloalk, -OCi_ 4 alk, -NH 2 , -
  • R 5 is, independently, in each instance, H, halo, Ci_ 6 alk, Ci_ 4 haloalk, or Ci_ 6 alk substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OCi_ 4 alk, Ci_ 4 alk, Ci_ 3 haloalk, OCi_ 4 alk, NH 2 , NHCi_ 4 alk, N(Ci_ 4 alk)Ci_ 4 alk; or both R 5 groups together form a C 3 _ 6 spiroalk substituted by 0, 1 , 2 or 3 substituents selected from halo, cyano, OH, OCi_ 4 alk, Ci_ 4 alk, Ci_ 3 haloalk, OCi_ 4 alk, NH 2 , NHCi_ 4 alk, N(Ci_ 4 alk)Ci_ 4 alk;
  • R 6 is H, halo, NHR 9 or OH
  • Ci_ 6 alk is additionally substituted by 0 or 1 saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic rings containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 or 2 oxo or thioxo groups, wherein the
  • R 9 is H, Ci_ 6 alk or Ci_ 4 haloalk
  • R 10 is H, halo, Ci_ 3 alk, Ci_ 3 haloalk or cyano;
  • R 11 is independently in each instance selected from H, halo, Ci_ 6 alk,
  • R a is independently, at each instance, H or R b ;
  • R b is independently, at each instance, phenyl, benzyl or Ci_ 6 alk, the phenyl, benzyl and Ci_ 6 alk being substituted by 0, 1, 2 or 3 substituents selected from halo, Ci_ 4 alk, Ci_ 3 haloalk, -OCi_ 4 alk, -NH 2 , -NHCi_ 4 alk, -N(Ci_ 4 alk)Ci_ 4 alk.
  • the compound in another embodiment, in conjunction with the above and below embodiments, has the structure:
  • the compound in another embodiment, in conjunction with the above and below embodiments, has the structure:
  • the compound in another embodiment, in conjunction with the above and below embodiments, has the structure:
  • the compound in another embodiment, in conjunction with the above and below embodiments, has the structure:
  • X 1 is N.
  • Y is N(R 8 ).
  • R 1 is phenyl, pyridyl or pyrimidinyl, all of which are substituted by 1, 2 or 3 substituents independently selected from halo, Ci_ 6 alk, and Ci_ 4 haloalk.
  • R 1 is phenyl which is substituted by 1 , 2 or 3 substituents independently selected from halo, Ci_ 6 alk, and Ci_ 4 haloalk.
  • R 2 is H
  • R 3 is selected from H and halo.
  • R 5 is, independently, in each instance, H, halo, Ci_ 6 alk, and
  • Ci_ 4 haloalk Ci_ 4 haloalk
  • one R 5 is H and the other R 5 is Ci_ 6 alk.
  • one R 5 is H and the other R 5 is methyl.
  • one R 5 is H and the other R 5 is (R)-methyl. In another embodiment, in conjunction with the above and below embodiments, one R 5 is H and the other R 5 is (S)-methyl.
  • R 6 is NHR 9 .
  • R 7 is cyano
  • R 11 is independently in each instance selected from H, halo, Ci_ 6 alk, Ci_ 4 haloalk and cyano. In another embodiment, in conjunction with the above and below embodiments, R 11 is independently in each instance selected from H, halo and Ci_ 6 alk.
  • R 11 is a saturated, partially-saturated or unsaturated 5-, 6- or
  • R 11 is phenyl
  • Another aspect of the invention relates to a method of treating PI3K- mediated conditions or disorders.
  • the PI3K-mediated condition or disorder is selected from rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases.
  • the PI3K- mediated condition or disorder is selected from cardiovascular diseases, atherosclerosis, hypertension, deep venous thrombosis, stroke, myocardial infarction, unstable angina, thromboembolism, pulmonary embolism, thrombolytic diseases, acute arterial ischemia, peripheral thrombotic occlusions, and coronary artery disease.
  • the PI3K- mediated condition or disorder is selected from cancer, colon cancer,
  • glioblastoma endometrial carcinoma, hepatocellular cancer, lung cancer, melanoma, renal cell carcinoma, thyroid carcinoma, cell lymphoma,
  • the PI3K- mediated condition or disorder is selected from type II diabetes.
  • the PI3K- mediated condition or disorder is selected from respiratory diseases, bronchitis, asthma, and chronic obstructive pulmonary disease.
  • the subject is a human.
  • Another aspect of the invention relates to the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases or autoimmune diseases comprising the step of
  • Another aspect of the invention relates to the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases and autoimmune diseases, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, skin complaints with inflammatory components, chronic inflammatory conditions, autoimmune diseases, systemic lupus erythematosis (SLE), myestenia gravis, rheumatoid arthritis, acute disseminated encephalomyelitis, idiopathic
  • thrombocytopenic purpura thrombocytopenic purpura
  • multiples sclerosis multiples sclerosis
  • Sjoegren's syndrome and autoimmune hemolytic anemia
  • allergic conditions and hypersensitivity comprising the step of administering a compound according to any of the above or below embodiments.
  • Another aspect of the invention relates to the treatment of cancers that are mediated, dependent on or associated with pi 105 activity, comprising the step of administering a compound according to any of the above or below embodiments.
  • Another aspect of the invention relates to the treatment of cancers are selected from acute myeloid leukaemia, myelo-dysplastic syndrome, myeloproliferative diseases, chronic myeloid leukaemia, T-cell acute lymphoblastic leukaemia, B-cell acute lymphoblastic leukaemia, non-hodgkins lymphoma, B- cell lymphoma, solid tumors and breast cancer, comprising the step of
  • Another aspect of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound according to any of the above embodiments and a pharmaceutically-acceptable diluent or carrier.
  • Another aspect of the invention relates to the use of a compound according to any of the above embodiments as a medicament.
  • Another aspect of the invention relates to the use of a compound according to any of the above embodiments in the manufacture of a medicament for the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases.
  • the compounds of this invention may have in general several asymmetric centers and are typically depicted in the form of racemic mixtures. This invention is intended to encompass racemic mixtures, partially racemic mixtures and separate enantiomers and diasteromers.
  • Ci_ 6 alk means an alk group comprising a minimum of a and a maximum of ⁇ carbon atoms in a branched, cyclical or linear relationship or any combination of the three, wherein a and ⁇ represent integers.
  • the alk groups described in this section may also contain one or two double or triple bonds. Examples of Ci_ 6 alk include, but are not limited to the following:
  • Halo or "halogen” means a halogen atoms selected from F, CI, Br and I.
  • Cv-whaloalk means an alk group, as described above, wherein any number—at least one— of the hydrogen atoms attached to the alk chain are replaced by F, CI, Br or I.
  • Heterocycle means a ring comprising at least one carbon atom and at least one other atom selected from N, O and S. Examples of heterocycles that may be found in the claims include, but are not limited to, the following:
  • “Available nitrogen atoms” are those nitrogen atoms that are part of a heterocycle and are joined by two single bonds (e.g. piperidine), leaving an external bond available for substitution by, for example, H or CH 3 .
  • “Pharmaceutically-acceptable salt” means a salt prepared by conventional means, and are well known by those skilled in the art.
  • the “pharmacologically acceptable salts” include basic salts of inorganic and organic acids, including but not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid,
  • “Saturated, partially saturated or unsaturated” includes substituents saturated with hydrogens, substituents completely unsaturated with hydrogens and substituents partially saturated with hydrogens.
  • leaving group generally refers to groups readily displaceable by a nucleophile, such as an amine, a thiol or an alcohol nucleophile. Such leaving groups are well known in the art. Examples of such leaving groups include, but are not limited to, N-hydroxysuccinimide, N-hydroxybenzotriazole, halides, triflates, tosylates and the like. Preferred leaving groups are indicated herein where appropriate.
  • Protecting group generally refers to groups well known in the art which are used to prevent selected reactive groups, such as carboxy, amino, hydroxy, mercapto and the like, from undergoing undesired reactions, such as nucleophilic, electrophilic, oxidation, reduction and the like. Preferred protecting groups are indicated herein where appropriate. Examples of amino protecting groups include, but are not limited to, aralk, substituted aralk, cycloalkenylalk and substituted cycloalkenyl alk, allyl, substituted allyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, silyl and the like.
  • aralk examples include, but are not limited to, benzyl, ortho-methylbenzyl, trityl and benzhydryl, which can be optionally substituted with halogen, alk, alkoxy, hydroxy, nitro, acylamino, acyl and the like, and salts, such as phosphonium and ammonium salts.
  • aryl groups include phenyl, naphthyl, indanyl, anthracenyl, 9-(9-phenylfluorenyl), phenanthrenyl, durenyl and the like.
  • cycloalkenylalk or substituted cycloalkenylalk radicals preferably have 6-10 carbon atoms, include, but are not limited to, cyclohexenyl methyl and the like.
  • Suitable acyl, alkoxycarbonyl and aralkoxycarbonyl groups include
  • a mixture of protecting groups can be used to protect the same amino group, such as a primary amino group can be protected by both an aralk group and an
  • Amino protecting groups can also form a heterocyclic ring with the nitrogen to which they are attached, for example,
  • heterocyclic groups can further include adjoining aryl and cycloalk rings.
  • heterocyclic groups can be mono-, di- or tri-substituted, such as nitrophthalimidyl.
  • Amino groups may also be protected against undesired reactions, such as oxidation, through the formation of an addition salt, such as hydrochloride, toluenesulfonic acid, trifluoroacetic acid and the like.
  • an addition salt such as hydrochloride, toluenesulfonic acid, trifluoroacetic acid and the like.
  • amino protecting groups are also suitable for protecting carboxy, hydroxy and mercapto groups.
  • Alk groups are also suitable groups for protecting hydroxy and mercapto groups, such as tert-butyl.
  • Silyl protecting groups are silicon atoms optionally substituted by one or more alk, aryl and aralk groups. Suitable silyl protecting groups include, but are not limited to, trimethylsilyl, triethylsilyl, triisopropylsilyl, tert-butyldimethylsilyl, dimethylphenylsilyl, 1 ,2-bis(dimethylsilyl)benzene, 1 ,2-bis(dimethylsilyl)ethane and diphenylmethylsilyl.
  • Silylation of an amino groups provide mono- or di- silylamino groups. Silylation of aminoalcohol compounds can lead to a ⁇ , ⁇ , ⁇ - trisilyl derivative.
  • silyl function from a silyl ether function is readily accomplished by treatment with, for example, a metal hydroxide or ammonium fluoride reagent, either as a discrete reaction step or in situ during a reaction with the alcohol group.
  • Suitable silylating agents are, for example, trimethylsilyl chloride, tert-butyl-dimethylsilyl chloride, phenyldimethylsilyl chloride, diphenylmethyl silyl chloride or their combination products with imidazole or DMF.
  • Methods for silylation of amines and removal of silyl protecting groups are well known to those skilled in the art.
  • Methods of preparation of these amine derivatives from corresponding amino acids, amino acid amides or amino acid esters are also well known to those skilled in the art of organic chemistry including amino acid/amino acid ester or aminoalcohol chemistry.
  • Protecting groups are removed under conditions which will not affect the remaining portion of the molecule. These methods are well known in the art and include acid hydrolysis, hydrogenolysis and the like.
  • a preferred method involves removal of a protecting group, such as removal of a benzyloxycarbonyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof.
  • a t- butoxycarbonyl protecting group can be removed utilizing an inorganic or organic acid, such as HC1 or trifluoroacetic acid, in a suitable solvent system, such as dioxane or methylene chloride.
  • the resulting amino salt can readily be neutralized to yield the free amine.
  • Carboxy protecting group such as methyl, ethyl, benzyl, tert-butyl, 4-methoxyphenylmethyl and the like, can be removed under hydrolysis and hydrogenolysis conditions well known to those skilled in the art.
  • Prodrugs of the compounds of this invention are also contemplated by this invention.
  • a prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of this invention following administration of the prodrug to a patient.
  • the suitability and techniques involved in making and using prodrugs are well known by those skilled in the art.
  • For a general discussion of prodrugs involving esters see Svensson and Tunek Drug Metabolism Reviews 165 (1988) and Bundgaard Design of Prodrugs, Elsevier (1985).
  • Examples of a masked carboxylate anion include a variety of esters, such as alk (for example, methyl, ethyl), cycloalk (for example, cyclohexyl), aralk (for example, benzyl, p- methoxybenzyl), and alkcarbonyloxyalk (for example, pivaloyloxymethyl).
  • esters such as alk (for example, methyl, ethyl), cycloalk (for example, cyclohexyl), aralk (for example, benzyl, p- methoxybenzyl), and alkcarbonyloxyalk (for example, pivaloyloxymethyl).
  • Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
  • the present invention also includes isotopically-labelled compounds, which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
  • isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2 H, 3 H, 13 C, 14 C, 15 N, 16 0, 17 0, 31 P, 32 P, 35 S, 18 F, and 36 C1.
  • Tritiated, i.e., 3 H, and carbon-14, i.e., 14 C, isotopes are particularly preferred for their ease of preparation and detection. Further, substitution with heavier isotopes such as deuterium, i.e., 2 H, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances.
  • Isotopically labeled compounds of this invention can generally be prepared by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent.
  • HATU (2-(7- Aza- 1 H-benzotriazole- 1 -yl)- 1,1,3,3- tetramethyluronium hexafluorophosphate)
  • 6-Methyl-7-nitroquinoxaline (0.62 g, 3.28 mmol) and tin(ii) chloride dihydrate (3.70 g, 16.39 mmol) were combined in 100 mL of EtOAc to form a orange suspension which was heated to reflux. After 2 h the suspension was cooled to r.t. and diluted with sat. NaHC0 3 (gas evolution), the suspension was stirred for 10 min with a color change, orange to yellow. The suspension was partitioned and the aqueous layer was washed with EtOAc. The combined organics were washed with brine, dried over MgSC ⁇ and then concentrated under vacuum to provide 7-methylquinoxalin-6-amine as a yellow solid.
  • the residue obtained was purified on a 40 g CombiFlashTM column (dry loaded), eluting with a gradient of 50% hexane/EtOAc to 100% EtOAc then with 4% MeOH/0.2% NH 4 OH( ⁇ 28% in water)/DCM to 8% MeOH/0.4% NH 4 OH( ⁇ 28% in water)/DCM.
  • the fractions containing the product were combined and concentrated under vacuum to give a light brown solid.
  • the solids were repurified on a 12 g CombiFlashTM column (dry loaded), eluting with 5% MeOH/DCM.
  • 3-Ethyl-2-phenyl-l,8-naphthyridine (1.50 g, 6.40 mmol) was placed in a three- necked flask immersed in an ice bath and equipped with an efficient mechanical stirrer, a thermometer and a dropping funnel. Sulfuric acid (0.79 eq, 0.29 mL) was added with vigorous stirring. Then acetic acid (2.5 eq, 0.92 mL), acetic anhydride (1.5 eq, 0.90 mL) and finally Cr0 3 (1.3 eq, 0.85 g) were added in small portions, at a rate to maintain the temperature of the reaction mixture between 20- 30 °C. Stirring was continued for 24 h.
  • Isolate PBMCs from Leukopac or from human fresh blood Isolate human B cells by using Miltenyi protocol and B cell isolation kit II. -human B cells were Purified by using AutoMacs. column.
  • B cell proliferation medium DMEM + 5% FCS, 10 mM Hepes, 50 ⁇ 2-mercaptoethanol
  • 150 medium contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 2 ⁇ g/mL anti-Human IgM antibody (Jackson ImmunoReseach Lab.#109- 006-129), mixed with 50 B cell medium containing PI3K inhibitors and incubate 72 h at 37 °C incubator. After 72h, pulse labeling B cells with 0.5-1 uCi /well 3 H thymidine for overnight—18 h, and harvest cell using TOM harvester.
  • B cell proliferation medium DMEM + 5% FCS, 10 mM Hepes, 50 ⁇ 2-mercaptoethanol
  • 150 medium contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 2 ⁇ g/mL anti-Human IgM antibody (Jackson ImmunoReseach Lab.#
  • Isolate human PBMCs from Leukopac or from human fresh blood Isolate human B cells using Miltenyi protocol - B cell isolation kit. Human B cells were Purified by AutoMacs. column.
  • B cell proliferation medium DMEM + 5% FCS, 50 ⁇ 2-mercaptoethanol, lOmM Hepes.
  • the medium (150 contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 10 ng/mL IL-4 ( R&D system # 204-IL-025), mixed with 50 150 B cell medium containing compounds and incubate 72 h at 37 °C incubator. After 72 h, pulse labeling B cells with 0.5-1 uCi /well JH thymidine for overnight—18 h, and harvest cell using TOM harvester. Specific T antigen (Tetanus toxoid) induced human PBMC proliferation assays
  • Human PBMC are prepared from frozen stocks or they are purified from fresh human blood using a Ficoll gradient. Use 96 well round-bottom plate and plate 2xl0 5 PBMC/well with culture medium (RPMI1640 + 10% FCS, 50uM 2-
  • PI3K inhibitors was tested from 10 ⁇ to 0.001 ⁇ , in half log increments and in triplicate.
  • Tetanus toxoid ,T cell specific antigen University of Massachusetts Lab
  • Supernatants are collected after 6 days for IL2 ELISA assay , then cells are pulsed with 3 H-thymidine for ⁇ 18 h to measure proliferation.
  • AKTl (PKBa) is regulated by Class la PI3K activated by mitogenic factors (IGF- 1, PDGF, insulin, thrombin, NGF, etc.). In response to mitogenic stimuli, AKTl translocates from the cytosol to the plasma membrane
  • FKHRL1 Forkhead
  • FKHRL1 is a substrate for AKTl . It is cytoplasmic when phosphorylated by AKT (survival/growth). Inhibition of AKT (stasis/apoptosis) - forkhead translocation to the nucleus
  • FYVE domains bind to PI(3)P. the majority is generated by constitutive action of PBK Class III
  • AKT membrane ruffling assay (CHO-IR-AKTl-EGFP cells/GE Healthcare) Wash cells with assay buffer. Treat with compounds in assay buffer 1 h. Add 10 ng/mL insulin. Fix after 10 min at room temp and image
  • Forkhead translocation assay MDA MB468 Forkhead-DiversaGFP cells Treat cells with compound in growth medium 1 h. Fix and image.
  • Class IIIPI(3)P assay U20S EGFP-2XFYVE cells/GE Healthcare
  • AKT is cytoplasmic
  • PI(3)P depleted from endosomes Biomarker assay B-cell receptor stimulation of CD69 or B7.2 (CD86) expression
  • Treated blood 50 ⁇ , was transferred to a 96-well, deep well plate (Nunc) for antibody staining with 10 ⁇ ⁇ each of CD45-PerCP (BD Biosciences, #347464), CD 19-FITC (BD Biosciences, #340719), and CD69-PE (BD Biosciences, #341652).
  • the second 50 ⁇ _, of the treated blood was transferred to a second 96-well, deep well plate for antibody staining with 10 ⁇ , each of CD 19-FITC (BD Biosciences, #340719) and CD86-PeCy5 (BD
  • CD45/CD19 double positive cells for CD69 staining, or CD 19 positive cells for CD 86 staining.
  • Gamma Counterscreen Stimulation of human monocytes for phospho- AKT expression
  • a human monocyte cell line, THP-1 was maintained in RPMI + 10% FBS (Gibco).
  • cells were counted using trypan blue exclusion on a hemocytometer and suspended at a concentration of 1 x 10 6 cells per mL of media.
  • 100 ⁇ _, of cells plus media (1 x 10 5 cells) was then aliquoted per well of 4-96-well, deep well dishes (Nunc) to test eight different compounds.
  • Cells were rested overnight before treatment with various concentrations (from 10-0.0003 ⁇ ) of blocking compound.
  • the compound diluted in media (12 ⁇ ,) was added to the cells for 10 min at 37 °C.
  • Human MCP-1 (12 L, R&D Diagnostics, #279-MC) was diluted in media and added to each well at a final concentration of 50 ng/mL. Stimulation lasted for 2 min at rt. Pre-warmed FACS Phosf ow Lyse/Fix buffer (1 mL of 37 °C) (BD Biosciences, #558049) was added to each well. Plates were then incubated at 37 °C for an additional 10-15 min. Plates were spun at 1500 rpm for 10 min, supernatant was aspirated off, and 1 mL of ice cold 90% MEOH was added to each well with vigorous shaking. Plates were then incubated either overnight at -70 °C or on ice for 30 min before antibody staining.
  • Pre-warmed FACS Phosf ow Lyse/Fix buffer (1 mL of 37 °C) (BD Biosciences, #558049) was added to each well. Plates were then incubated at 37 °C for an additional 10-15 min
  • Gamma Counterscreen Stimulation of monocytes for phospho-AKT expression in mouse bone marrow
  • Mouse femurs were dissected from five female BALB/c mice (Charles River Labs.) and collected into RPMI + 10% FBS media (Gibco).
  • Mouse bone marrow was removed by cutting the ends of the femur and by flushing with 1 mL of media using a 25 gauge needle. Bone marrow was then dispersed in media using a 21 gauge needle. Media volume was increased to 20 mL and cells were counted using trypan blue exclusion on a hemocytometer. The cell suspension was then increased to 7.5 x 10 6 cells per 1 mL of media and 100 ⁇ ⁇ (7.5 x 10 5 cells) was aliquoted per well into 4-96-well, deep well dishes (Nunc) to test eight different compounds.
  • Cells were then washed IX in buffer and suspended in 100 ⁇ , of buffer for FACS analysis. Cells were run on an LSR II (Becton Dickinson) and gated on CDl lb/CD64 double positive cells to determine expression levels of pAKT in the monocyte population.
  • LSR II Becton Dickinson
  • mice Transgenic Line 3751 , female, 10-12 wks Amgen Inc, Thousand Oaks, CA
  • mice Transgenic Line 3751 , female, 10-12 wks Amgen Inc, Thousand Oaks, CA
  • mice Transgenic Line 3751 , female, 10-12 wks Amgen Inc, Thousand Oaks, CA
  • mice Transgenic Line 3751 , female, 10-12 wks Amgen Inc, Thousand Oaks, CA
  • i.v 0.2 mLs
  • anti-IgM FITC 50 ug/mouse
  • mice are sacrificed within a C0 2 chamber.
  • Blood is drawn via cardiac puncture (0.3 mL) (lcc 25 g Syringes, Sherwood, St. Louis, MO) and transferred into a 15 mL conical vial (Nalge/Nunc International,
  • BD Phosflow Lyse/Fix Buffer (BD Bioscience, San Jose, CA), inverted 3X's and placed in 37 °C water bath.
  • Half of the spleen is removed and transferred to an eppendorf tube containing 0.5 mL of PBS (Invitrogen Corp, Grand Island, NY).
  • the spleen is crushed using a tissue grinder (Pellet Pestle, Kimble/Kontes, Vineland, NJ) and immediately fixed with 6.0 mL of BD Phosflow Lyse/Fix buffer, inverted 3X's and placed in 37 °C water bath. Once tissues have been collected the mouse is cervically-dislocated and carcass to disposed.
  • the 15 mL conical vials are removed from the 37 °C water bath and placed on ice until tissues are further processed. Crushed spleens are filtered through a 70 ⁇ cell strainer (BD Bioscience, Bedford, MA) into another 15 mL conical vial and washed with 9 mL of PBS. Splenocytes and blood are spun @ 2,000 rpms for 10 min (cold) and buffer is aspirated. Cells are resuspended in 2.0 mL of cold (-20 °C) 90% methyl alcohol (Mallinckrodt Chemicals, Phillipsburg, NJ). MeOH is slowly added while conical vial is rapidly vortexed. Tissues are then stored at -20 °C until cells can be stained for FACS analysis.
  • mice were then immunized with either 50 ⁇ g of TNP-LPS (Biosearch Tech., #T-5065), 50 ⁇ g of TNP-Ficoll (Biosearch Tech., #F-1300), or 100 ⁇ g of TNP-KLH (Biosearch Tech., #T-5060) plus 1% alum (Brenntag, #3501) in PBS.
  • TNP-KLH plus alum solution was prepared by gently inverting the mixture 3-5 times every 10 min for 1 h before immunization. On day 5, post-last treatment, mice were C0 2 sacrificed and cardiac punctured. Blood was allowed to clot for 30 min and spun at 10,000 rpm in serum
  • TNP- BSA Biosearch Tech., #T-5050
  • TNP-BSA 10 ⁇ g/mL
  • KPL 10% BS A ELISA Block solution
  • Ig-HRP conjugated secondary antibodies (goat anti-mouse IgGl, Southern Biotech #1070-05, goat anti-mouse IgG2a, Southern Biotech #1080-05, goat anti-mouse IgM, Southern Biotech #1020-05, goat anti-mouse IgG3, Southern Biotech #1100-05) were diluted at 1 :5000 and incubated on the plates for 1 h.
  • TMB peroxidase solution (SureBlue Reserve TMB from KPL) was used to visualize the antibodies. Plates were washed and samples were allowed to develop in the TMB solution approximately 5-20 min depending on the Ig analyzed. The reaction was stopped with 2M sulfuric acid and plates were read at an OD of 450 nm.
  • the compounds of the present invention may be administered orally, parentally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
  • parenteral as used herein includes, subcutaneous, intravenous, intramuscular, intrasternal, infusion techniques or intraperitoneally.
  • Treatment of diseases and disorders herein is intended to also include the prophylactic administration of a compound of the invention, a pharmaceutical salt thereof, or a pharmaceutical composition of either to a subject (i.e., an animal, preferably a mammal, most preferably a human) believed to be in need of preventative treatment, such as, for example, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases and the like.
  • a subject i.e., an animal, preferably a mammal, most preferably a human
  • preventative treatment such as, for example, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases and the like.
  • the dosage regimen for treating ⁇ -mediated diseases, cancer, and/or hyperglycemia with the compounds of this invention and/or compositions of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. Dosage levels of the order from about 0.01 mg to 30 mg per kilogram of body weight per day, preferably from about 0.1 mg to 10 mg/kg, more preferably from about 0.25 mg to 1 mg/kg are useful for all methods of use disclosed herein.
  • the pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
  • the pharmaceutical composition may be in the form of, for example, a capsule, a tablet, a suspension, or liquid.
  • the pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of the active ingredient.
  • these may contain an amount of active ingredient from about 1 to 2000 mg, preferably from about 1 to 500 mg, more preferably from about 5 to 150 mg.
  • a suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
  • the active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water.
  • suitable carriers including saline, dextrose, or water.
  • the daily parenteral dosage regimen will be from about 0.1 to about 30 mg/kg of total body weight, preferably from about 0.1 to about 10 mg/kg, and more preferably from about 0.25 mg to 1 mg/kg.
  • Injectable preparations such as sterile injectable aq. or oleaginous suspensions, may be formulated according to the known are using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3- butanediol.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed, including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable topical dose of active ingredient of a compound of the invention is 0.1 mg to 150 mg administered one to four, preferably one or two times daily.
  • the active ingredient may comprise from 0.001% to 10% w/w, e.g., from 1% to 2% by weight of the formulation, although it may comprise as much as 10%> w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation.
  • Formulations suitable for topical administration include liquid or semi- liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
  • liquid or semi- liquid preparations suitable for penetration through the skin e.g., liniments, lotions, ointments, creams, or pastes
  • drops suitable for administration to the eye, ear, or nose e.g., liniments, lotions, ointments, creams, or pastes
  • the compounds of this invention are ordinarily combined with one or more adjuvants appropriate for the indicated route of administration.
  • the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, acacia, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration.
  • the compounds of this invention may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol, corn oil, peanut oil, cottonseed oil, sesame oil, tragacanth gum, and/or various buffers.
  • Other adjuvants and modes of administration are well known in the pharmaceutical art.
  • the carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art.
  • compositions may be made up in a solid form
  • compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
  • Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules.
  • the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch.
  • Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
  • additional substances e.g., lubricating agents such as magnesium stearate.
  • the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
  • Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.
  • optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, e.g., by formation of diastereoisomeric salts, by treatment with an optically active acid or base.
  • appropriate acids are tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric, and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these salts.
  • a different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers.
  • Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting compounds of the invention with an optically pure acid in an activated form or an optically pure isocyanate.
  • the synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the enantiomerically pure compound.
  • the optically active compounds of the invention can likewise be obtained by using active starting materials. These isomers may be in the form of a free acid, a free base, an ester or a salt.
  • the compounds of this invention may exist as isomers, that is compounds of the same molecular formula but in which the atoms, relative to one another, are arranged differently.
  • the alkylene substituents of the compounds of this invention are normally and preferably arranged and inserted into the molecules as indicated in the definitions for each of these groups, being read from left to right.
  • substituents are reversed in orientation relative to the other atoms in the molecule. That is, the substituent to be inserted may be the same as that noted above except that it is inserted into the molecule in the reverse orientation.
  • these isomeric forms of the compounds of this invention are to be construed as encompassed within the scope of the present invention.
  • the compounds of the present invention can be used in the form of salts derived from inorganic or organic acids.
  • the salts include, but are not limited to, the following: acetate, adipate, alginate, citrate, aspartate, benzoate,
  • benzenesulfonate bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methansulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 2-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, mesylate, and undecanoate.
  • the basic nitrogen- containing groups can be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates
  • long chain halides such as
  • organic acids such as oxalic acid, maleic acid, succinic acid and citric acid.
  • Other examples include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium or with organic bases.
  • esters of a carboxylic acid or hydroxyl containing group including a metabolically labile ester or a prodrug form of a compound of this invention.
  • a metabolically labile ester is one which may produce, for example, an increase in blood levels and prolong the efficacy of the corresponding non-esterified form of the compound.
  • a prodrug form is one which is not in an active form of the molecule as administered but which becomes therapeutically active after some in vivo activity or biotransformation, such as metabolism, for example, enzymatic or hydro lytic cleavage.
  • esters for example, methyl, ethyl
  • cycloalkyl for example, cyclohexyl
  • aralkyl for example, benzyl, p- methoxybenzyl
  • alkylcarbonyloxyalkyl for example, pivaloyloxymethyl
  • Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
  • Esters of a compound of this invention may include, for example, the methyl, ethyl, propyl, and butyl esters, as well as other suitable esters formed between an acidic moiety and a hydroxyl containing moiety.
  • Metabolically labile esters may include, for example, methoxymethyl, ethoxymethyl, iso-propoxymethyl, a-methoxyethyl, groups such as a-((Ci-C 4 )- alkyloxy)ethyl, for example, methoxyethyl, ethoxyethyl, propoxyethyl, iso- propoxyethyl, etc.; 2-oxo-l,3-dioxolen-4-ylmethyl groups, such as 5-methyl-2- oxo-l,3,dioxolen-4-ylmethyl, etc.; C 1 -C3 alkylthiomethyl groups, for example, methylthiomethyl, ethylthiomethyl, isopropylthiomethyl, etc.; acyloxymethyl groups, for example, pivaloyloxymethyl, a-acetoxymethyl, etc.; ethoxycarbonyl- 1 -methyl; or ⁇ -acyl
  • the compounds of the invention may exist as crystalline solids which can be crystallized from common solvents such as ethanol, N,N-dimethyl- formamide, water, or the like.
  • crystalline forms of the compounds of the invention may exist as polymorphs, solvates and/or hydrates of the parent compounds or their pharmaceutically acceptable salts. All of such forms likewise are to be construed as falling within the scope of the invention.
  • the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more compounds of the invention or other agents.
  • the therapeutic agents can be formulated as separate compositions that are given at the same time or different times, or the therapeutic agents can be given as a single composition.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Diabetes (AREA)
  • Dermatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pain & Pain Management (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pulmonology (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Substituted bicyclic heteroaryls and compositions containing them, for the treatment of general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, including but not restricted to autoimmune diseases such as systemic lupus erythematosis (SLE), myestenia gravis, rheumatoid arthritis, acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiples sclerosis, Sjoegren's syndrome and autoimmune hemolytic anemia, allergic conditions including all forms of hypersensitivity, The present invention also enables methods for treating cancers that are mediated, dependent on or associated with p110 activity, including but not restricted to leukemias, such as Acute Myeloid leukaemia (AML) Myelo-dysplastic syndrome (MDS) myelo-proliferative diseases (MPD) Chronic Myeloid Leukemia (CML) T-cell Acute Lymphoblastic leukaemia ( T-ALL) B-cell Acute Lymphoblastic leukaemia (B-ALL) Non Hodgkins Lymphoma (NHL) B-cell lymphoma and solid tumors, such as breast cancer.

Description

HETEROCYCLIC COMPOUNDS AND THEIR USES
This application claims the benefit of U.S. Provisional Application No. 61/426,789, filed December 23, 2010, which is hereby incorporated by reference.
The present invention relates generally to phosphatidylinositol 3-kinase
(PI3K) enzymes, and more particularly to selective inhibitors of PI3K activity and to methods of using such materials.
BACKGROUND OF THE INVENTION
Cell signaling via 3 '-phosphorylated phosphoinositides has been implicated in a variety of cellular processes, e.g., malignant transformation, growth factor signaling, inflammation, and immunity (see Rameh et al., J. Biol Chem, 274:8347-8350 (1999) for a review). The enzyme responsible for generating these phosphorylated signaling products, phosphatidylinositol 3-kinase (PI 3-kinase; PI3K), was originally identified as an activity associated with viral oncoproteins and growth factor receptor tyrosine kinases that phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at the 3'-hydroxyl of the inositol ring (Panayotou et al, Trends Cell Biol 2:358-60 (1992)).
The levels of phosphatidylinositol-3,4,5-triphosphate (PIP3), the primary product of PI 3-kinase activation, increase upon treatment of cells with a variety of stimuli. This includes signaling through receptors for the majority of growth factors and many inflammatory stimuli, hormones, neurotransmitters and antigens, and thus the activation of PI3Ks represents one, if not the most prevalent, signal transduction events associated with mammalian cell surface receptor activation (Cantley, Science 296: 1655-1657 (2002); Vanhaesebroeck et al.
Annu.Rev.Biochem, 70: 535-602 (2001)). PI 3-kinase activation, therefore, is involved in a wide range of cellular responses including cell growth, migration, differentiation, and apoptosis (Parker et al, Current Biology, 5:577-99 (1995); Yao et al, Science, 267:2003-05 (1995)). Though the downstream targets of phosphorylated lipids generated following PI 3-kinase activation have not been fully characterized, it is known that pleckstrin-homology (PH) domain- and
FYVE-fmger domain-containing proteins are activated when binding to various phosphatidylinositol lipids (Sternmark et al, J Cell Sci, 112:4175-83 (1999); .Lemmon et al, Trends Cell Biol, 7:237-42 (1997)). Two groups of PH-domain containing PI3K effectors have been studied in the context of immune cell signaling, members of the tyrosine kinase TEC family and the serine/threonine kinases of the AGC family. Members of the Tec family containing PH domains with apparent selectivity for Ptdlns (3,4,5)P3 include Tec, Btk, Itk and Etk.
Binding of PH to PIP3 is critical for tyrsosine kinase activity of the Tec family members (Schaeffer and Schwartzberg, Curr.Opin.Immunol. 12: 282-288 (2000)) AGC family members that are regulated by PI3K include the phosphoinositide- dependent kinase (PDK1), AKT (also termed PKB) and certain iso forms of protein kinase C (PKC) and S6 kinase. There are three isoforms of AKT and activation of AKT is strongly associated with PI3K- dependent proliferation and survival signals. Activation of AKT depends on phosphorylation by PDK1, which also has a 3-phosphoinositide-selective PH domain to recruit it to the membrane where it interacts with AKT. Other important PDK1 substrates are PKC and S6 kinase (Deane and Fruman, Annu.Rev.Immunol. 22 563-598 (2004)). In vitro, some isoforms of protein kinase C (PKC) are directly activated by PIP3.
(Burgering et al, Nature, 376:599-602 (1995)).
Presently, the PI 3 -kinase enzyme family has been divided into three classes based on their substrate specificities. Class I PI3Ks can phosphorylate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate, and phosphatidyl- inositol-4,5-biphosphate (PIP2) to produce phosphatidylinositol-3-phosphate (PIP), phosphatidylinositol-3,4-biphosphate, and phosphatidylinositol-3,4,5- triphosphate, respectively. Class II PI3Ks phosphorylate PI and phosphatidyl- inositol-4-phosphate, whereas Class III PI3Ks can only phosphorylate PI.
The initial purification and molecular cloning of PI 3 -kinase revealed that it was a heterodimer consisting of p85 and pi 10 subunits (Otsu et al, Cell, 65:91- 104 (1991); Hiles et al, Cell, 70:419-29 (1992)). Since then, four distinct Class I PI3Ks have been identified, designated PI3K α, β, δ, and γ, each consisting of a distinct 110 kDa catalytic subunit and a regulatory subunit. More specifically, three of the catalytic subunits, i.e., pi 10a, pi 10β and pi 105, each interact with the same regulatory subunit, p85; whereas pi 10γ interacts with a distinct regulatory subunit, plOl . As described below, the patterns of expression of each of these PI3Ks in human cells and tissues are also distinct. Though a wealth of information has been accumulated in recent past on the cellular functions of PI 3-kinases in general, the roles played by the individual isoforms are not fully understood.
Cloning of bovine pi 10a has been described. This protein was identified as related to the Saccharomyces cerevisiae protein: Vps34p, a protein involved in vacuolar protein processing. The recombinant pi 10a product was also shown to associate with p85a, to yield a PI3K activity in transfected COS-1 cells. See Hiles et al, Cell, 70, 419-29 (1992).
The cloning of a second human pi 10 isoform, designated pi 10β, is described in Hu et al, Mol Cell Biol, 13:7677-88 (1993). This isoform is said to associate with p85 in cells, and to be ubiquitously expressed, as pi 10β m NA has been found in numerous human and mouse tissues as well as in human umbilical vein endothelial cells, Jurkat human leukemic T cells, 293 human embryonic kidney cells, mouse 3T3 fibroblasts, HeLa cells, and NBT2 rat bladder carcinoma cells. Such wide expression suggests that this isoform is broadly important in signaling pathways.
Identification of the pi 105 isoform of PI 3-kinase is described in Chantry et al, J Biol Chem, 272: 19236-41 (1997). It was observed that the human pi 10δ isoform is expressed in a tissue-restricted fashion. It is expressed at high levels in lymphocytes and lymphoid tissues and has been shown to play a key role in PI 3- kinase-mediated signaling in the immune system (Al-Alwan etl al. JI 178: 2328- 2335 (2007); Okkenhaug et al JI, 177: 5122-5128 (2006); Lee et al. PNAS, 103: 1289-1294 (2006)). PI 105 has also been shown to be expressed at lower levels in breast cells, melanocytes and endothelial cells (Vogt et al. Virology, 344: 131-138 (2006) and has since been implicated in conferring selective migratory properties to breast cancer cells (Sawyer et al. Cancer Res. 63: 1667-1675 (2003)). Details concerning the PI 105 isoform also can be found in U.S. Pat. Nos. 5,858,753; 5,822,910; and 5,985,589. See also, Vanhaesebroeck et al, Proc Nat. Acad Sci USA, 94:4330-5 (1997), and international publication WO 97/46688.
In each of the ΡΒΚα, β, and δ subtypes, the p85 subunit acts to localize PI
3-kinase to the plasma membrane by the interaction of its SH2 domain with phosphorylated tyrosine residues (present in an appropriate sequence context) in target proteins (Rameh et al, Cell, 83:821-30 (1995)). Five isoforms of p85 have been identified (ρ85α, ρ85β, ρ55γ, p55a and p50a) encoded by three genes.
Alternative transcripts of Pik3rl gene encode the p85 a, p55 a and p50a proteins (Deane and Fruman, Annu.Rev.Immunol. 22: 563-598 (2004)). p85a is ubiquitously expressed while ρ85β, is primarily found in the brain and lymphoid tissues (Volinia et al, Oncogene, 7:789-93 (1992)). Association of the p85 subunit to the PI 3-kinase pi 10a, β, or δ catalytic subunits appears to be required for the catalytic activity and stability of these enzymes. In addition, the binding of Ras proteins also upregulates PI 3-kinase activity.
The cloning of p 110γ revealed still further complexity within the PI3K family of enzymes (Stoyanov et al, Science, 269:690-93 (1995)). The pi 10γ isoform is closely related to pi 10a and pi 10β (45-48% identity in the catalytic domain), but as noted does not make use of p85 as a targeting subunit. Instead, pi 10γ binds a plOl regulatory subunit that also binds to the βγ subunits of heterotrimeric G proteins. The p 101 regulatory subunit for PBKgamma was originally cloned in swine, and the human ortholog identified subsequently (Krugmann et al, J Biol Chem, 274: 17152-8 (1999)). Interaction between the N- terminal region of plOl with the N-terminal region of pi 10γ is known to activate ΡΙ3Κγ through ϋβγ. Recently, a plOl-homologue has been identified, p84 or p87PIKAP (ΡΙ3Κγ adapter protein of 87 kDa) that binds ρΐ ΐθγ (Voigt et al. JBC, 281 : 9977-9986 (2006), Suire et al. Curr.Biol. 15: 566-570 (2005)). p87PIKAP is homologous to plOl in areas that bind pi 10γ and ϋβγ and also mediates activation of pi 10γ downstream of G-protein-coupled receptors. Unlike plOl, pgyPiKAP s hjgUy expressed in the heart and may be crucial to ΡΙ3Κγ cardiac function.
A constitutively active PI3K polypeptide is described in international publication WO 96/25488. This publication discloses preparation of a chimeric fusion protein in which a 102-residue fragment of p85 known as the inter-SH2 (iSH2) region is fused through a linker region to the N-terminus of murine pi 10. The p85 iSH2 domain apparently is able to activate PI3K activity in a manner comparable to intact p85 (Klippel et al, Mol Cell Biol, 14:2675-85 (1994)). Thus, PI 3 -kinases can be defined by their amino acid identity or by their activity. Additional members of this growing gene family include more distantly related lipid and protein kinases including Vps34 TORI, and TOR2 of Saccharo- myces cerevisiae (and their mammalian homologs such as FRAP and mTOR), the ataxia telangiectasia gene product (ATR) and the catalytic subunit of DNA- dependent protein kinase (DNA-PK). See generally, Hunter, Cell, 83: 1-4 (1995).
PI 3-kinase is also involved in a number of aspects of leukocyte activation. A p85-associated PI 3-kinase activity has been shown to physically associate with the cytoplasmic domain of CD28, which is an important costimulatory molecule for the activation of T-cells in response to antigen (Pages et al., Nature, 369:327- 29 (1994); Rudd, Immunity, 4:527-34 (1996)). Activation of T cells through CD28 lowers the threshold for activation by antigen and increases the magnitude and duration of the proliferative response. These effects are linked to increases in the transcription of a number of genes including interleukin-2 (IL2), an important T cell growth factor (Fraser et al, Science, 251 :313-16 (1991)). Mutation of CD28 such that it can no longer interact with PI 3-kinase leads to a failure to initiate IL2 production, suggesting a critical role for PI 3-kinase in T cell activation.
Specific inhibitors against individual members of a family of enzymes provide invaluable tools for deciphering functions of each enzyme. Two compounds, LY294002 and wortmannin, have been widely used as PI 3-kinase inhibitors. These compounds, however, are nonspecific PI3K inhibitors, as they do not distinguish among the four members of Class I PI 3-kinases. For example, the IC50 values of wortmannin against each of the various Class I PI 3-kinases are in the range of 1-lOnM. Similarly, the IC50 values for LY294002 against each of these PI 3-kinases is about ΙμΜ (Fruman et al., Ann Rev Biochem, 67:481-507
(1998)). Hence, the utility of these compounds in studying the roles of individual Class I PI 3-kinases is limited.
Based on studies using wortmannin, there is evidence that PI 3-kinase function also is required for some aspects of leukocyte signaling through G- protein coupled receptors (Thelen et al, Proc Natl Acad Sci USA, 91 :4960-64
(1994)). Moreover, it has been shown that wortmannin and LY294002 block neutrophil migration and superoxide release. However, inasmuch as these compounds do not distinguish among the various isoforms of PI3K, it remains unclear from these studies which particular PI3K isoform or isoforms are involved in these phenomena and what functions the different Class I PI3K enzymes perform in both normal and diseased tissues in general. The co-expression of several PI3K isoforms in most tissues has confounded efforts to segregate the activities of each enzyme until recently.
The separation of the activities of the various PI3K isozymes has been advanced recently with the development of genetically manipulated mice that allowed the study of isoform-specific knock-out and kinase dead knock-in mice and the development of more selective inhibitors for some of the different isoforms. PI 10a and pi 10β knockout mice have been generated and are both embryonic lethal and little information can be obtained from these mice regarding the expression and function of pi 10 alpha and beta (Bi et al. Mamm.Genome, 13: 169-172 (2002); Bi et al. J.Biol.Chem. 274: 10963-10968 (1999)). More recently, pi 10a kinase dead knock in mice were generated with a single point mutation in the DFG motif of the ATP binding pocket (pi 10aD933A) that impairs kinase activity but preserves mutant pi 10a kinase expression. In contrast to knock out mice, the knockin approach preserves signaling complex stoichiometry, scaffold functions and mimics small molecule approaches more realistically than knock out mice. Similar to the p 110a KO mice, p 110aD933A homozygous mice are embryonic lethal. However, heterozygous mice are viable and fertile but display severely blunted signaling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin- like growth factor- 1 and leptin action. Defective responsiveness to these hormones leads to hyperinsulinaemia, glucose intolerance, hyperphagia, increase adiposity and reduced overall growth in heterozygotes
(Foukas, et al. Nature, 441 : 366-370 (2006)). These studies revealed a defined, non-redundant role for pi 10a as an intermediate in IGF-1, insulin and leptin signaling that is not substituted for by other isoforms. We will have to await the description of the pi 10β kinase-dead knock in mice to further understand the function of this isoform (mice have been made but not yet published;
Vanhaesebroeck). Pl 10γ knock out and kinase-dead knock in mice have both been generated and overall show similar and mild phenotypes with primary defects in migration of cells of the innate immune system and a defect in thymic development of T cells (Li et al. Science, 287: 1046-1049 (2000), Sasaki et al. Science, 287: 1040-1046 (2000), Patrucco et al. Cell, 1 18: 375-387 (2004)).
Similar to pi 10γ, PI3K delta knock out and kinase-dead knock-in mice have been made and are viable with mild and like phenotypes. The pi 105D910A mutant knock in mice demonstrated an important role for delta in B cell development and function, with marginal zone B cells and CD5+ B l cells nearly undetectable, and B- and T cell antigen receptor signaling (Clayton et al.
J.Exp.Med. 196:753-763 (2002); Okkenhaug et al. Science, 297: 1031-1034 (2002)). The pi 105D910A mice have been studied extensively and have elucidated the diverse role that delta plays in the immune system. T cell dependent and T cell independent immune responses are severely attenuated in pi 105D910A and secretion of TH1 (INF-γ) and TH2 cytokine (IL-4, IL-5) are impaired (Okkenhaug et al. J.Immunol. 177: 5122-5128 (2006)). A human patient with a mutation in pi 105 has also recently been described. A taiwanese boy with a primary B cell immunodeficiency and a gamma-hypoglobulinemia of previously unknown aetiology presented with a single base-pair substitution, m.3256G to A in codon 1021 in exon 24 of pi 105. This mutation resulted in a mis-sense amino acid substitution (E to K) at codon 1021 , which is located in the highly conserved catalytic domain of pi 105 protein. The patient has no other identified mutations and his phenotype is consistent with pi 10δ deficiency in mice as far as studied. (Jou et al. Int.J.Immunogenet. 33 : 361-369 (2006)).
Isoform-selective small molecule compounds have been developed with varying success to all Class I PI3 kinase isoforms (Ito et al. J. Pharm. Exp.
Therapeut., 321 : 1-8 (2007)). Inhibitors to alpha are desirable because mutations in pi 10a have been identified in several solid tumors; for example, an amplification mutation of alpha is associated with 50% of ovarian, cervical, lung and breast cancer and an activation mutation has been described in more than 50% of bowel and 25% of breast cancers (Hennessy et al. Nature Reviews, 4: 988-1004 (2005)). Yamanouchi has developed a compound YM-024 that inhibits alpha and delta equipotently and is 8- and 28-fold selective over beta and gamma respectively (Ito et al. J.Pharm.Exp.Therapeut., 321 : 1-8 (2007)).
PI 10β is involved in thrombus formation (Jackson et al. Nature Med. 11 : 507-514 (2005)) and small molecule inhibitors specific for this isoform are thought after for indication involving clotting disorders (TGX-221 : 0.007uM on beta; 14-fold selective over delta, and more than 500-fold selective over gamma and alpha) (Ito et al. J.Pharm.Exp.Therapeut., 321 : 1-8 (2007)).
Selective compounds to pi 10γ are being developed by several groups as immunosuppressive agents for autoimmune disease (Rueckle et al. Nature Reviews, 5: 903-918 (2006)). Of note, AS 605240 has been shown to be efficacious in a mouse model of rheumatoid arthritis (Camps et al. Nature Medicine, 11 : 936-943 (2005)) and to delay onset of disease in a model of systemic lupus erythematosis (Barber et al. Nature Medicine, 11 : 933-935 (205)).
Delta-selective inhibitors have also been described recently. The most selective compounds include the quinazolinone purine inhibitors (PIK39 and IC87114). IC87114 inhibits pi 105 in the high nanomolar range (triple digit) and has greater than 100-fold selectivity against pi 10a, is 52 fold selective against pi 10β but lacks selectivity against pi 10γ (approx. 8-fold). It shows no activity against any protein kinases tested (Knight et al. Cell, 125: 733-747 (2006)). Using delta-selective compounds or genetically manipulated mice (pl l05D910A) it was shown that in addition to playing a key role in B and T cell activation, delta is also partially involved in neutrophil migration and primed neutrophil respiratory burst and leads to a partial block of antigen-IgE mediated mast cell degranulation (Condliffe et al. Blood, 106: 1432-1440 (2005); Ali et al. Nature, 431 : 1007-1011
(2002)). Hence pi 105 is emerging as an important mediator of many key inflammatory responses that are also known to participate in aberrant
inflammatory conditions, including but not limited to autoimmune disease and allergy. To support this notion, there is a growing body of pi 105 target validation data derived from studies using both genetic tools and pharmacologic agents.
Thus, using the delta-selective compound IC 87114 and the pi 105D910A mice, Ali et al. (Nature, 431 : 1007-1011 (2002)) have demonstrated that delta plays a critical role in a murine model of allergic disease. In the absence of functional delta, passive cutaneous anaphylaxis (PCA) is significantly reduced and can be attributed to a reduction in allergen-IgE induced mast cell activation and degranulation. In addition, inhibition of delta with IC 87114 has been shown to significantly ameliorate inflammation and disease in a murine model of asthma using ovalbumin-induced airway inflammation (Lee et al. FASEB, 20: 455-465 (2006). These data utilizing compound were corroborated in pi 105D910A mutant mice using the same model of allergic airway inflammation by a different group (Nashed et al. Eur.J.Immunol. 37:416-424 (2007)).
There exists a need for further characterization of PI3K5 function in inflammatory and auto-immune settings. Furthermore, our understanding of PI3K5 requires further elaboration of the structural interactions of pi 105, both with its regulatory subunit and with other proteins in the cell. There also remains a need for more potent and selective or specific inhibitors of PI3K delta, in order to avoid potential toxicology associated with activity on isozymes pi 10 alpha (insulin signaling) and beta (platelet activation). In particular, selective or specific inhibitors of PI3K5 are desirable for exploring the role of this isozyme further and for development of superior pharmaceuticals to modulate the activity of the isozyme.
Summary
The present invention comprises a new class of compounds having the general formula
Figure imgf000011_0001
or
Figure imgf000012_0001
which are useful to inhibit the biological activity of human ΡΒΚδ. Another aspect of the invention is to provide compounds that inhibit ΡΒΚδ selectively while having relatively low inhibitory potency against the other PI3K isoforms. Another aspect of the invention is to provide methods of characterizing the function of human ΡΒΚδ. Another aspect of the invention is to provide methods of selectively modulating human ΡΒΚδ activity, and thereby promoting medical treatment of diseases mediated by ΡΒΚδ dysfunction. Other aspects and advantages of the invention will be readily apparent to the artisan having ordinary skill in the art.
Detailed Description
One aspect of the invention relates to compounds having the structure:
Figure imgf000013_0001
Figure imgf000014_0001
or or any pharmaceutically-acceptable salt thereof, wherein:
X1 is C(R10) or N;
Y is N(R8), O or S;
n is 0, 1, 2 or 3;
R1 is a direct-bonded, Ci_4alk-linked, OCi_2alk- linked, Ci_2alkO-linked or O-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic or 8-, 9-, 10- or 11-membered bicyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S atom, substituted by 0, 1, 2 or 3 substituents independently selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa, wherein the available carbon atoms of the ring are additionally substituted by 0, 1 or 2 oxo or thioxo groups;
R2 is selected from H, halo, Ci_6alk, Ci_4haloalk, cyano, nitro, ORa, NRaRa,
-C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa,
-S(=0)2N(Ra)C(=0)NRaRa;
R3 is selected from H, halo, nitro, cyano, Ci_4alk, OCi_4alk, OCi_4haloalk, NHCi_4alk, N(Ci_4alk)Ci_4alk or Ci_4haloalk; R4 is, independently, in each instance, halo, nitro, cyano, Ci_4alk, OCi_4alk, OCi_4haloalk, NHCi_4alk, N(Ci_4alk)Ci_4alk, Ci_4haloalk or an unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, substituted by 0, 1, 2 or 3 substituents selected from halo, Ci_4alk, Ci_3haloalk, -OCi_4alk, -NH2, -NHCi_4alk,
Figure imgf000015_0001
R5 is, independently, in each instance, H, halo, Ci_6alk, Ci_4haloalk, or Ci_6alk substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OCi_4alk, Ci_4alk, Ci_3haloalk, OCi_4alk, NH2, NHCi_4alk, N(Ci_4alk)Ci_4alk; or both R5 groups together form a C3_6spiroalk substituted by 0, 1 , 2 or 3 substituents selected from halo, cyano, OH, OCi_4alk, Ci_4alk, Ci_3haloalk, OCi_4alk, NH2, NHCi_4alk, N(Ci_4alk)Ci_4alk;
R6 is H, halo, NHR9 or OH;
R7 is selected from H, halo, Ci_4haloalk, cyano, nitro, -C(=0)Ra,
-C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa,
-N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra,
-N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa, -NRaC2_6alkORa and Ci_6alk, wherein the Ci_6alk is substituted by 0, 1 2 or 3 substituents selected from halo, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa,
-OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra,
-N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa, and the Ci_6alk is additionally substituted by 0 or 1 saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic rings containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, Ci_4alk, OCi_4alk, OCi_4haloalk, NHCi_4alk, N(Ci_4alk)Ci_4alk and Ci_ 4haloalk; or R7 and R8 together form a -C=N- bridge wherein the carbon atom is substituted by H, halo, cyano, or a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 , 2, 3 or 4 substituents selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa; or R7 and R9 together form a -N=C- bridge wherein the carbon atom is substituted by H, halo, Ci_6alk, Ci_4haloalk, cyano, nitro, ORa, NRaRa, -C(=0)Ra, -C(=0)ORa,
-C(=0)NRaRa, -C (=NRa)NRaRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa;
Figure imgf000016_0001
R9 is H, Ci_6alk or Ci_4haloalk;
R10 is H, halo, Ci_3alk, Ci_3haloalk or cyano;
R11 is independently in each instance selected from H, halo, Ci_6alk,
Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Rb, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra,
-N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa; or R11 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 , 2, 3 or 4 substituents selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa,
-N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra,
-N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa;
Ra is independently, at each instance, H or Rb; and
Rb is independently, at each instance, phenyl, benzyl or Ci_6alk, the phenyl, benzyl and Ci_6alk being substituted by 0, 1, 2 or 3 substituents selected from halo, Ci_4alk, Ci_3haloalk, -OCi_4alk, -NH2, -NHCi_4alk, -N(Ci_4alk)Ci_4alk.
In another embodiment, in conjunction with the above and below embodiments, the compound has the structure:
Figure imgf000017_0001
In another embodiment, in conjunction with the above and below embodiments, the compound has the structure:
R6
(R4)n In another embodiment, in conjunction with the above and below embodiments, the compound has the structure:
Figure imgf000018_0001
In another embodiment, in conjunction with the above and below embodiments, the compound has the structure:
Figure imgf000018_0002
In another embodiment, in conjunction with the above and below embodiments, the compound has the structure:
Figure imgf000018_0003
In another embodiment, in conjunction with the above and below embodiments, X1 is N. In another embodiment, in conjunction with the above and below embodiments, Y is N(R8).
In another embodiment, in conjunction with the above and below embodiments, R1 is a direct-bonded saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic or 8-, 9-, 10- or 1 1-membered bicyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S atom, substituted by 0, 1 , 2 or 3 substituents independently selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C (=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa,
-OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa,
-N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra,
-N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa, wherein the available carbon atoms of the ring are additionally substituted by 0, 1 or 2 oxo or thioxo groups.
In another embodiment, in conjunction with the above and below embodiments, R1 is a direct-bonded unsaturated 6-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S atom, substituted by 0, 1 , 2 or 3 substituents independently selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C (=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa,
-OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa,
-N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra,
-N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa.
In another embodiment, in conjunction with the above and below embodiments, R1 is phenyl, pyridyl or pyrimidinyl, all of which are substituted by 0, 1 , 2 or 3 substituents independently selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa.
In another embodiment, in conjunction with the above and below embodiments, R1 is phenyl substituted by 0, 1, 2 or 3 substituents independently selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C (=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa,
-OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa,
-N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra,
-N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa.
In another embodiment, in conjunction with the above and below embodiments, R1 is phenyl, pyridyl or pyrimidinyl, all of which are substituted by 1, 2 or 3 substituents independently selected from halo, Ci_6alk, and Ci_4haloalk.
In another embodiment, in conjunction with the above and below embodiments, R1 is phenyl which is substituted by 1 , 2 or 3 substituents independently selected from halo, Ci_6alk, and Ci_4haloalk.
In another embodiment, in conjunction with the above and below embodiments, R2 is H.
In another embodiment, in conjunction with the above and below embodiments, R3 is selected from H and halo.
In another embodiment, in conjunction with the above and below embodiments, R5 is, independently, in each instance, H, halo, Ci_6alk, and
Ci_4haloalk.
In another embodiment, in conjunction with the above and below embodiments, one R5 is H and the other R5 is Ci_6alk.
In another embodiment, in conjunction with the above and below embodiments, one R5 is H and the other R5 is methyl.
In another embodiment, in conjunction with the above and below embodiments, one R5 is H and the other R5 is (R)-methyl. In another embodiment, in conjunction with the above and below embodiments, one R5 is H and the other R5 is (S)-methyl.
In another embodiment, in conjunction with the above and below embodiments, R6 is NHR9.
In another embodiment, in conjunction with the above and below embodiments, R7 is cyano.
In another embodiment, in conjunction with the above and below embodiments, R7 and R8 together form a -C=N- bridge wherein the carbon atom is substituted by H, halo, cyano, or a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 , 2, 3 or 4 substituents selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa,
-OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa.
In another embodiment, in conjunction with the above and below embodiments, R7 and R9 together form a -N=C- bridge wherein the carbon atom is substituted by H, halo, d_6alk, Ci_4haloalk, cyano, nitro, ORa, NRaRa, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -S(=0)Ra, -S(=0)2Ra,
-S(=0)2NRaRa.
In another embodiment, in conjunction with the above and below embodiments, R7 and R9 together form a -N=C- bridge wherein the carbon atom is substituted by H or halo.
In another embodiment, in conjunction with the above and below embodiments, R11 is independently in each instance selected from H, halo, Ci_6alk, Ci_4haloalk and cyano. In another embodiment, in conjunction with the above and below embodiments, R11 is independently in each instance selected from H, halo and Ci_ 6alk.
In another embodiment, in conjunction with the above and below embodiments, R11 is a saturated, partially-saturated or unsaturated 5-, 6- or
7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 , 2, 3 or 4 substituents selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa.
In another embodiment, in conjunction with the above and below embodiments, R11 is phenyl.
Another aspect of the invention relates to a method of treating PI3K- mediated conditions or disorders.
In certain embodiments, the PI3K-mediated condition or disorder is selected from rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases. In other embodiments, the PI3K- mediated condition or disorder is selected from cardiovascular diseases, atherosclerosis, hypertension, deep venous thrombosis, stroke, myocardial infarction, unstable angina, thromboembolism, pulmonary embolism, thrombolytic diseases, acute arterial ischemia, peripheral thrombotic occlusions, and coronary artery disease. In still other embodiments, the PI3K- mediated condition or disorder is selected from cancer, colon cancer,
glioblastoma, endometrial carcinoma, hepatocellular cancer, lung cancer, melanoma, renal cell carcinoma, thyroid carcinoma, cell lymphoma,
lymphoproliferative disorders, small cell lung cancer, squamous cell lung carcinoma, glioma, breast cancer, prostate cancer, ovarian cancer, cervical cancer, and leukemia. In yet another embodiment, the PI3K- mediated condition or disorder is selected from type II diabetes. In still other embodiments, the PI3K- mediated condition or disorder is selected from respiratory diseases, bronchitis, asthma, and chronic obstructive pulmonary disease. In certain embodiments, the subject is a human.
Another aspect of the invention relates to the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases or autoimmune diseases comprising the step of
administering a compound according to any of the above embodiments.
Another aspect of the invention relates to the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases and autoimmune diseases, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, skin complaints with inflammatory components, chronic inflammatory conditions, autoimmune diseases, systemic lupus erythematosis (SLE), myestenia gravis, rheumatoid arthritis, acute disseminated encephalomyelitis, idiopathic
thrombocytopenic purpura, multiples sclerosis, Sjoegren's syndrome and autoimmune hemolytic anemia, allergic conditions and hypersensitivity, comprising the step of administering a compound according to any of the above or below embodiments.
Another aspect of the invention relates to the treatment of cancers that are mediated, dependent on or associated with pi 105 activity, comprising the step of administering a compound according to any of the above or below embodiments.
Another aspect of the invention relates to the treatment of cancers are selected from acute myeloid leukaemia, myelo-dysplastic syndrome, myeloproliferative diseases, chronic myeloid leukaemia, T-cell acute lymphoblastic leukaemia, B-cell acute lymphoblastic leukaemia, non-hodgkins lymphoma, B- cell lymphoma, solid tumors and breast cancer, comprising the step of
administering a compound according to any of the above or below embodiments.
Another aspect of the invention relates to a pharmaceutical composition comprising a compound according to any of the above embodiments and a pharmaceutically-acceptable diluent or carrier. Another aspect of the invention relates to the use of a compound according to any of the above embodiments as a medicament.
Another aspect of the invention relates to the use of a compound according to any of the above embodiments in the manufacture of a medicament for the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases.
The compounds of this invention may have in general several asymmetric centers and are typically depicted in the form of racemic mixtures. This invention is intended to encompass racemic mixtures, partially racemic mixtures and separate enantiomers and diasteromers.
Unless otherwise specified, the following definitions apply to terms found in the specification and claims:
"Ca^alk" means an alk group comprising a minimum of a and a maximum of β carbon atoms in a branched, cyclical or linear relationship or any combination of the three, wherein a and β represent integers. The alk groups described in this section may also contain one or two double or triple bonds. Examples of Ci_6alk include, but are not limited to the following:
Figure imgf000024_0001
"Benzo group", alone or in combination, means the divalent radical C4H4=, one representation of which is -CH=CH-CH=CH-, that when vicinally attached to another ring forms a benzene-like ring—for example tetrahydronaphthylene, indole and the like.
The terms "oxo" and "thioxo" represent the groups =0 (as in carbonyl) and =S (as in thiocarbonyl), respectively.
"Halo" or "halogen" means a halogen atoms selected from F, CI, Br and I.
"Cv-whaloalk" means an alk group, as described above, wherein any number—at least one— of the hydrogen atoms attached to the alk chain are replaced by F, CI, Br or I. "Heterocycle" means a ring comprising at least one carbon atom and at least one other atom selected from N, O and S. Examples of heterocycles that may be found in the claims include, but are not limited to, the following:
Figure imgf000025_0001
"Available nitrogen atoms" are those nitrogen atoms that are part of a heterocycle and are joined by two single bonds (e.g. piperidine), leaving an external bond available for substitution by, for example, H or CH3.
"Pharmaceutically-acceptable salt" means a salt prepared by conventional means, and are well known by those skilled in the art. The "pharmacologically acceptable salts" include basic salts of inorganic and organic acids, including but not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid,
methanesulfonic acid, ethanesulfonic acid, malic acid, acetic acid, oxalic acid, tartaric acid, citric acid, lactic acid, fumaric acid, succinic acid, maleic acid, salicylic acid, benzoic acid, phenylacetic acid, mandelic acid and the like. When compounds of the invention include an acidic function such as a carboxy group, then suitable pharmaceutically acceptable cation pairs for the carboxy group are well known to those skilled in the art and include alkaline, alkaline earth, ammonium, quaternary ammonium cations and the like. For additional examples of "pharmacologically acceptable salts," see infra and Berge et al., J. Pharm. Sci. 66: 1 (1977).
"Saturated, partially saturated or unsaturated" includes substituents saturated with hydrogens, substituents completely unsaturated with hydrogens and substituents partially saturated with hydrogens.
"Leaving group" generally refers to groups readily displaceable by a nucleophile, such as an amine, a thiol or an alcohol nucleophile. Such leaving groups are well known in the art. Examples of such leaving groups include, but are not limited to, N-hydroxysuccinimide, N-hydroxybenzotriazole, halides, triflates, tosylates and the like. Preferred leaving groups are indicated herein where appropriate.
"Protecting group" generally refers to groups well known in the art which are used to prevent selected reactive groups, such as carboxy, amino, hydroxy, mercapto and the like, from undergoing undesired reactions, such as nucleophilic, electrophilic, oxidation, reduction and the like. Preferred protecting groups are indicated herein where appropriate. Examples of amino protecting groups include, but are not limited to, aralk, substituted aralk, cycloalkenylalk and substituted cycloalkenyl alk, allyl, substituted allyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, silyl and the like. Examples of aralk include, but are not limited to, benzyl, ortho-methylbenzyl, trityl and benzhydryl, which can be optionally substituted with halogen, alk, alkoxy, hydroxy, nitro, acylamino, acyl and the like, and salts, such as phosphonium and ammonium salts. Examples of aryl groups include phenyl, naphthyl, indanyl, anthracenyl, 9-(9-phenylfluorenyl), phenanthrenyl, durenyl and the like. Examples of cycloalkenylalk or substituted cycloalkenylalk radicals, preferably have 6-10 carbon atoms, include, but are not limited to, cyclohexenyl methyl and the like. Suitable acyl, alkoxycarbonyl and aralkoxycarbonyl groups include
benzyloxycarbonyl, t-butoxycarbonyl, iso-butoxycarbonyl, benzoyl, substituted benzoyl, butyryl, acetyl, trifluoroacetyl, trichloro acetyl, phthaloyl and the like. A mixture of protecting groups can be used to protect the same amino group, such as a primary amino group can be protected by both an aralk group and an
aralkoxycarbonyl group. Amino protecting groups can also form a heterocyclic ring with the nitrogen to which they are attached, for example,
1 ,2-bis(methylene)benzene, phthalimidyl, succinimidyl, maleimidyl and the like and where these heterocyclic groups can further include adjoining aryl and cycloalk rings. In addition, the heterocyclic groups can be mono-, di- or tri-substituted, such as nitrophthalimidyl. Amino groups may also be protected against undesired reactions, such as oxidation, through the formation of an addition salt, such as hydrochloride, toluenesulfonic acid, trifluoroacetic acid and the like. Many of the amino protecting groups are also suitable for protecting carboxy, hydroxy and mercapto groups. For example, aralk groups. Alk groups are also suitable groups for protecting hydroxy and mercapto groups, such as tert-butyl.
Silyl protecting groups are silicon atoms optionally substituted by one or more alk, aryl and aralk groups. Suitable silyl protecting groups include, but are not limited to, trimethylsilyl, triethylsilyl, triisopropylsilyl, tert-butyldimethylsilyl, dimethylphenylsilyl, 1 ,2-bis(dimethylsilyl)benzene, 1 ,2-bis(dimethylsilyl)ethane and diphenylmethylsilyl. Silylation of an amino groups provide mono- or di- silylamino groups. Silylation of aminoalcohol compounds can lead to a Ν,Ν,Ο- trisilyl derivative. Removal of the silyl function from a silyl ether function is readily accomplished by treatment with, for example, a metal hydroxide or ammonium fluoride reagent, either as a discrete reaction step or in situ during a reaction with the alcohol group. Suitable silylating agents are, for example, trimethylsilyl chloride, tert-butyl-dimethylsilyl chloride, phenyldimethylsilyl chloride, diphenylmethyl silyl chloride or their combination products with imidazole or DMF. Methods for silylation of amines and removal of silyl protecting groups are well known to those skilled in the art. Methods of preparation of these amine derivatives from corresponding amino acids, amino acid amides or amino acid esters are also well known to those skilled in the art of organic chemistry including amino acid/amino acid ester or aminoalcohol chemistry.
Protecting groups are removed under conditions which will not affect the remaining portion of the molecule. These methods are well known in the art and include acid hydrolysis, hydrogenolysis and the like. A preferred method involves removal of a protecting group, such as removal of a benzyloxycarbonyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof. A t- butoxycarbonyl protecting group can be removed utilizing an inorganic or organic acid, such as HC1 or trifluoroacetic acid, in a suitable solvent system, such as dioxane or methylene chloride. The resulting amino salt can readily be neutralized to yield the free amine. Carboxy protecting group, such as methyl, ethyl, benzyl, tert-butyl, 4-methoxyphenylmethyl and the like, can be removed under hydrolysis and hydrogenolysis conditions well known to those skilled in the art.
It should be noted that compounds of the invention may contain groups that may exist in tautomeric forms, such as cyclic and acyclic amidine and guanidine groups, heteroatom substituted heteroaryl groups (Y' = O, S, NR), and the like, which are illustrated in the following examples:
Figure imgf000028_0001
and though one form is named, described, displayed and/or claimed herein, all the tautomeric forms are intended to be inherently included in such name, description, display and/or claim.
Prodrugs of the compounds of this invention are also contemplated by this invention. A prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of this invention following administration of the prodrug to a patient. The suitability and techniques involved in making and using prodrugs are well known by those skilled in the art. For a general discussion of prodrugs involving esters see Svensson and Tunek Drug Metabolism Reviews 165 (1988) and Bundgaard Design of Prodrugs, Elsevier (1985). Examples of a masked carboxylate anion include a variety of esters, such as alk (for example, methyl, ethyl), cycloalk (for example, cyclohexyl), aralk (for example, benzyl, p- methoxybenzyl), and alkcarbonyloxyalk (for example, pivaloyloxymethyl).
Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
Hydroxy groups have been masked as esters and ethers. EP 039,051 (Sloan and Little, 4/11/81) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use.
The specification and claims contain listing of species using the language "selected from . . . and . . ." and "is . . . or . . ." (sometimes referred to as Markush groups). When this language is used in this application, unless otherwise stated it is meant to include the group as a whole, or any single members thereof, or any subgroups thereof. The use of this language is merely for shorthand purposes and is not meant in any way to limit the removal of individual elements or subgroups as needed.
The present invention also includes isotopically-labelled compounds, which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2H, 3H, 13C, 14C, 15N, 160, 170, 31P, 32P, 35S, 18F, and 36C1.
Compounds of the present invention that contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention. Certain isotopically-labeled compounds of the present invention, for example those into which radioactive isotopes such as 3H and 14C are
incorporated, are useful in drug and/or substrate tissue distribution assays.
Tritiated, i.e., 3H, and carbon-14, i.e., 14C, isotopes are particularly preferred for their ease of preparation and detection. Further, substitution with heavier isotopes such as deuterium, i.e., 2H, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances.
Isotopically labeled compounds of this invention can generally be prepared by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent.
Experimental
The following abbreviations are used:
aq. - aqueous
DCM - dichloromethane
DIEA N, N-diisopropyldiethylamine
DMF - N,N-dimethylformamide
Et20 - diethyl ether
EtOAc - ethyl acetate
EtOH - ethyl alcohol
h - hour(s)
HATU (2-(7- Aza- 1 H-benzotriazole- 1 -yl)- 1,1,3,3- tetramethyluronium hexafluorophosphate)
mm - minutes
MeOH - methyl alcohol
r.t. - room temperature
TFA trifluoroacetic acid
THF - tetrahydrofuran
General
Reagents and solvents used below can be obtained from commercial sources. 1H-NMR spectra were recorded on a Bruker™ 400 MHz and 500 MHz NMR spectrometer. Significant peaks are tabulated in the order: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad singlet), coupling constant(s) in hertz (Hz) and number of protons. Mass spectrometry results are reported as the ratio of mass over charge, followed by the relative abundance of each ion (in parentheses electrospray ionization (ESI) mass spectrometry analysis was conducted on a Agilent™ 1100 series LC/MSD electrospray mass spectrometer. All compounds could be analyzed in the positive ESI mode using acetonitrile: water with 0.1% formic acid as the delivery solvent. Reverse phase analytical HPLC was carried out using a Agilent™ 1200 series on Agilent Eclipse XDB-C18 5 μιη column (4.6 x 150 mm) as the stationary phase and eluting with acetonitrile: water with 0.1% TFA. Reverse phase semi-prep HPLC was carried out using a Agilent™ 1100 Series on a Phenomenex Gemini™ 10 μιη CI 8 column (250 x 21.20 mm) as the stationary phase and eluting with acetonitrile:- H20 with 0.1% TFA. Chiral compounds are purified using Isopropanol/ Hexane gradient, AD column. The assignment of chirality is based on the biochemical data.
Example 1:
Preparation of N-((2-(3-fluorophenyl)-l,6-naphthyridin-3-yl)methyl)-9H- purin-6-amine
2-(3-Fluorophenyl)-l,6-naphthyridine-3-carbonitrile
Figure imgf000032_0001
To a mixture of 3-(3'-fluorophenyl)-3-oxopropanenitrile (454 mg, 2.8 mol) and 4- aminopyridine-3-carboxaldehyde (340 mg, 2.8 mmol) in EtOAc (8.4 mL) was added piperidine (22 μί, 0.22 mmol) and the mixture was heated under reflux. The product was detected by LCMS at which time 15 mL of DCM was added to the cooled crude mixture. A white precipitate was filtered to remove a by- product and the filtrate was purified by silica gel column chromatography using EtOAc/hexane (0-50%) as eluent to give 2-(3-fluorophenyl)-l,6-naphthyridine-3- carbonitrile: LC-MS (ESI) m/z 250 [M+H]+.
(2-(3-Fluorophenyl)- 1 ,5-naphthyridin-3-yl)methanamine
Figure imgf000032_0002
To a solution of 2-(3 -fluorophenyl)- 1 ,6-naphthyridine-3-carbonitrile (120 mg,
0.48 mmol) in 1 mL of DCM at -78 °C, was added DIBAL-H (1M in DCM, 1.92 mL, 1.92 mmol) dropwise over 10 min. The reaction mixture was slowly warmed to r.t. After 2 h, IN HC1 and then potassium acetate was added. The mixture was extracted with EtOAc, and the combined organic layers were washed with saturated NaHC03, brine and concentrated to give the crude product. The product was purified by silica gel column chromatography using EtOAc/hexanes (0-50%) as eluent to give (2-(3 -fluorophenyl)- 1,5 -naphthyridin-3- yl)methanamine: LC-MS (ESI) m/z 254 [M+H]+.
N-((2-(3-Fluorophenyl)-l,6-naphthyridin-3-yl)methyl)-9H-purin-6-amine
Figure imgf000033_0001
A mixture of 6-chloropurine (15 mg, 0.095 mmol, 1.2 eq), l-(2-(3-fluorophenyl)- l,6-naphthyridin-3-yl)ethanamine (20 mg, 0.079 mmol), and DIEA (0.0313 mL, 0.180 mmol) in 1-butanol (3 mL) was stirred at 100 °C. overnight. The mixture was cooled to r.t., diluted with EtOAc (5 mL) and washed with water (3 mL x 1) brine (3 mL x 1), dried over Na2S04, filtered, and concentrated under reduced pressure. The residue was purified by reverse phase HPLC followed by silica gel column chromatography to give N-((2-(3-Fluorophenyl)-l,6-naphthyridin-3- yl)methyl)-9H-purin-6-amine: LC-MS (ESI) m/z 372 [M+H]+.
Example 2: Preparation of 4-amino-6-((7-(2-(methylsulfonyl)phenyl)- quinoxalin-6-yl)methylamino)pyrimidine-5-carbonitrile
6-Chloro-7-nitroquinoxaline
Figure imgf000033_0002
4-Chloro-5 -nitrobenzene- 1,2-diamine (5.6 g, 29.9 mmol) and oxalaldehyde 30% in H20 (5.48 mL, 47.8 mmol) were combined in 150 mL of EtOH. The suspension was heated to a gentle reflux. At 1 h the solution was cooled to r.t. and an orange precipitate was filtered off through filter paper. The solids were dried on the vacuum line overnight to provide 6-chloro-7-nitroquinoxaline as a brown solid. 1H NMR (500 MHz, DMSO-d6) δ ppm 9.07 - 9.22 (2 H, m), 8.89 (1 H, s), 8.56 (1 H, s). TLC (50%EtOAc/Hexane 6-chloro-7-nitroquinoxaline rf = 0.54). 6-Methyl-7-nitroquinoxaline
Figure imgf000034_0001
6- Chloro-7-nitroquinoxaline (1.03 g, 4.91 mmol), 2,4,6-trimethyl-l,3,5,2,4,6- trioxatriborinane (0.684 mL, 4.91 mmol), and potassium carbonate (2.038 g, 14.74 mmol) were combined in 15 mL of 10% Aq. 1,4-dioxane. The suspension was sparged with N2 for ~2 min before adding dichloro l,l'-bis(diphenylphos- phino)ferrocene palladium (ii) (0.401 g, 0.491 mmol. After heating the solution at reflux for 2 h it was cooled to r.t. and then diluted with EtOAc. The organics were washed with H20 followed by brine, then dried over MgSC^ before being concentrated under vacuum. The residue obtained was purified on a 40 g
CombiFlash™ column (dry loaded), eluting with a gradient of 10%EtOAc/hexane to 50%EtOAc/hexane. The fractions containing the product were combined and concentrated under vacuum to provide 6-methyl-7-nitroquinoxaline as a light brown solid. 1H NMR (500 MHz, DMSO-de) δ ppm 9.03 - 9.12 (2 H, m), 8.71 (1 H, s), 8.23 (1 H, s), 2.70 (3 H, s). TLC (50%EtOAc/hexane product's rf = 0.44)
7- Methylquinoxalin-6-amine
Figure imgf000034_0002
6-Methyl-7-nitroquinoxaline (0.62 g, 3.28 mmol) and tin(ii) chloride dihydrate (3.70 g, 16.39 mmol) were combined in 100 mL of EtOAc to form a orange suspension which was heated to reflux. After 2 h the suspension was cooled to r.t. and diluted with sat. NaHC03 (gas evolution), the suspension was stirred for 10 min with a color change, orange to yellow. The suspension was partitioned and the aqueous layer was washed with EtOAc. The combined organics were washed with brine, dried over MgSC^ and then concentrated under vacuum to provide 7-methylquinoxalin-6-amine as a yellow solid. 1H NMR (500 MHz, DMSO-de) δ ppm 8.56 (1 H, d, J=2.0 Hz), 8.43 (1 H, d, J=2.0 Hz), 7.64 (1 H, d, J=1.0 Hz), 7.01 (1 H, s), 5.85 (2 H, br. s.), 2.31 (3 H, d, J=1.0 Hz). TLC (DCM product's rf = 0.10)
6-I
Figure imgf000035_0001
7-Methylquinoxalin-6-amine (1.4 g, 8.79 mmol) was combined with 10 mL of H20 and to this was added hydrochloric acid (1.759 mL, 21.11 mmol). The suspension was then cooled in an ice bath before adding a solution of sodium nitrite (0.637 g, 9.23 mmol) in 5 mL of H20 dropwise over a period of 5 min. The solution was stirred at ~0 °C for 30 min, it was then transferred to an addition funnel and added to a vigorously stirring solution of potassium iodide (2.92 g, 17.59 mmol) in 40 mL of CHC13 and 10 mL of H20, dropwise over a period of 20 min. The suspension was stirred at r.t. for 24 h before it was diluted with sat. NaHC03 and DCM. The layers were partitioned and the organics were washed with Na2S203, dried over MgS04 and then concentrated to 1/lOth the volume under vacuum. Silica gel was added to the solution and it was concentrated under vacuum. The residue obtained was purified on an 80 g CombiFlash™ column (dry loaded), eluting with a gradient of 100% hexane to 40%
EtOAc/hexane. The fractions containing the pure product were combined and concentrated under vacuum to give 6-iodo-7-methylquinoxaline as a white solid, 1H NMR (500 MHz, DMSO-d6) δ ppm 8.94 (1 H, d, J=1.7 Hz), 8.88 (1 H, d, J=2.0 Hz), 8.62 (1 H, s), 8.05 (1 H, d, J=1.0 Hz), 2.61 (3 H, d, J=1.0 Hz);
LCMS-ESI (POS), M/Z, M+l : Found 271.0; TLC (20%EtOAc/Hexane product's rf = 0.30)
6-Methyl-7-(2-(methylsulfonyl)phenyl)quinoxaline
Figure imgf000035_0002
Potassium carbonate (0.768 g, 5.55 mmol), 6-iodo-7-methylquinoxaline (0.500 g, 1.851 mmol), and 2-(methylsulfonyl)phenylboronic acid (0.555 g, 2.78 mmol) were combined in 10ml of 1 ,4-dioxane and 3 mL of H20. The solution was sparged with N2 before adding Pd(PPh3)2Cl2DCM (0.146 g, 0.185 mmol). The solution was heated to 50 °C for 4 h. Some starting material remained as judged by LCMS. Additional 2-(methylsulfonyl)phenylboronic acid (0.250 g) and Pd(PPh3)2Cl2DCM(0.1 g) were added. The solution was heated over night at 50 °C. The next day the solution was cooled to r.t. then diluted with H20, and the product was extracted with DCM followed by 20% iPrOH/DCM. The organics were dried over MgS04 and then concentrated under vacuum to give a brown oil. The brown oil was purified on a 40 g CombiFlash™ column (dry loaded), eluting with a gradient of 50% hexane/EtOAc to EtOAc. The fractions containing the product were combined and concentrated under vacuum to give 6-methyl-7-(2- (methylsulfonyl)phenyl)quinoxaline as a pink solid, LCMS-ESI (POS), M/Z, M+l : Found 299.2
6-(Bromomethyl)-7-(2-(methylsulfonyl)phenyl)quinoxaline
Figure imgf000036_0001
6-Iodo-7-methylquinoxaline (0.352 g, 1.18 mmol), and 1,3 -dibromo-5, 5 -dimethyl- imidazolidine-2,4-dione (0.202 g, 0.708 mmol) were combined in carbon tetrachloride (10.8 mL, 112 mmol). To this was added benzoic peroxyanhydride (25%o H20) (0.029 g, 0.118 mmol) and the suspension was heated to reflux overnight. The next day the suspension was cooled to r.t. and the solvent was removed under vacuum. The residue obtained was purified on a 40 g
CombiFlash™ column (dry loaded), eluting with a gradient of 50%>
EtOAc/hexane to 100% EtOAc. The fractions containing the product were combined and concentrated under vacuum to give 6-(bromomethyl)-7-(2- (methylsulfonyl)phenyl)quinoxaline as a light brown foam. LCMS-ESI (POS), M/Z, M+l : Found 377.0. 6-(Azidomethyl)-7-(2-(methylsulfonyl)phenyl)quinoxaline
Figure imgf000037_0001
In 10 mL of anhdyrous DMF cooled in a ice bath under N2 was combined 6- (bromomethyl)-7-(2-(methylsulfonyl)phenyl)quinoxaline (0.366 g, 0.970 mmol) and sodium azide (0.069 g, 1.1 mmol). After 30 min the solution was diluted with H20 and a white precipitate crashed out of solution. The precipitate was filtered to give 75 mg of a yellowish solid. The filtrate was diluted with brine and extracted with DCM, followed by 10% iPrOH/DCM. The organics were dried over Na2S04 and then concentrated under vacuum to give a yellow film. The crude product was purified on a 40 g CombiFlash™ column (dry loaded), eluting with a gradient of 100% hexane to 100% EtOAc. The fractions containing the product were combined and concentrated under vacuum to give 6- (azidomethyl)-7-(2-(methylsulfonyl)phenyl)quinoxaline as a light brown solid. LCMS-ESI (POS), M/Z, M+l : Found 340.2.
(7-(2-(Methylsulfonyl)phenyl)quinoxalin-6-yl)methanamine
Figure imgf000037_0002
6-( Azidomethyl)-7-(2-(methylsulfonyl)phenyl)quinoxaline (0.248 g, 0.731 mmol) in 10 mL of THF was combined with triphenylphosphine (0.211 g, 0.804 mmol), and water (0.039 g, 2.192 mmol). The solution was then stirred at r.t. overnight. At this time 0.5 mL of H20 was added and the resulting solution was heated to 75 °C for 6 h. The solution was cooled to r.t. and then concentrated under vacuum. The residue obtained was dissolved in Et20 and H20. To this was added 1 mL of 2N HC1. The layers were partitioned and the aqueous was washed with Et20, and made basic with 4N NaOH (pH ~14). The product was then extracted with 5% iPrOH/DCM. The organics were dried over MgS04 followed by
concentration under vacuum to give (7-(2-(methylsulfonyl)phenyl)quinoxalin-6- yl)methanamine as a light brown foam. LCMS-ESI (POS), M/Z, M+l : Found 314.2
4-Amino-6-((7-(2-(methylsulfonyl)phenyl)quinoxalin-6- yl)methylamino)pyrimidine-5-carbonitrile
Figure imgf000038_0001
4-Amino-6-chloropyrimidine-5-carbonitrile (0.049 g, 0.32 mmol), N-ethyl-N- isopropylpropan-2-amine (0.147 mL, 0.862 mmol), and (7-(2-(methylsulfonyl)- phenyl)quinoxalin-6-yl)methanamine (0.090 g, 0.29 mmol) were combined in 1ml of n-butanol. The solution was then heated at 120 °C for 3.5 h before it was cooled to r.t. and then concentrated under vacuum. The residue obtained was purified on a 40 g CombiFlash™ column (dry loaded), eluting with a gradient of 50% hexane/EtOAc to 100% EtOAc then with 4% MeOH/0.2% NH4OH(~28% in water)/DCM to 8% MeOH/0.4% NH4OH(~28% in water)/DCM. The fractions containing the product were combined and concentrated under vacuum to give a light brown solid. The solids were repurified on a 12 g CombiFlash™ column (dry loaded), eluting with 5% MeOH/DCM. The fractions containing the product were combined and concentrated under vacuum to provide 4-amino-6-((7- (2-(methylsulfonyl)phenyl)quinoxalin-6-yl)methylamino)pyrimidine-5-carbo- nitrile as a off white solid. 1H NMR (400 MHz, DMSO-d6) δ ppm 8.96 - 8.97 (1 H, m), 8.94 - 8.96 (1 H, m), 8.15 (1 H, dd, J=7.9, 1.3 Hz), 8.00 (1 H, s), 7.95 (1 H, t, J=5.9 Hz), 7.92 (1 H, s), 7.88 (1 H, s), 7.81 - 7.86 (1 H, m), 7.76 (1 H, td, J=7.7, 1.4 Hz), 7.52 (1 H, dd, J=7.4, 1.2 Hz), 7.28 (2 H, br. s.), 4.29 - 4.53 (2 H, m), 2.99 (3 H, s); LCMS-ESI (POS), M/Z, M+l : Found 432.1
Example 3:
4-Amino-6-(((lS, lR)-l-(3-(2-pyridinyl)-l,8-naphthyridin-2-yl)ethyl)amino)- 5-pyrimidinecarbonitrile
tert-Butyl l-(3-(pyridin-2-yl)-l,8-naphthyridin-2-yl)ethylcarbamate
Figure imgf000039_0001
To a stirred solution of tert-butyl 3-oxo-4-(pyridin-2-yl)butan-2-ylcarbamate (0.600 g, 2.27 mmol) in EtOH (26.5 mL, 454 mmol) was added potassium hydroxide (0.382 g, 6.81 mmol) and 2-amino-3-formylpyridine (0.277 g, 2.27 mmol). The reaction was stirred at r.t. for 5 min and then it was heated at 90°C for 2 h. After this time the reaction was cooled to r.t., evaporated in vacuo and purified by column chromatography (hexanes:EtOAc, 1 :0 to 0: 1) to give tert-butyl 1 -(3-(pyridin-2-yl)- 1 ,8-naphthyridin-2-yl)ethylcarbamate.
-(3-(pyridin-2-yl)-l,8-naphthyridin-2-yl)ethanamine
Figure imgf000039_0002
To a stirred solution of tert-butyl l-(3-(pyridin-2-yl)-l,8-naphthyridin-2-yl)ethyl- carbamate (45 mg, 0.13 mmol) in DCM (1.5 mL) was added TFA (99 μΕ, 1.3 mmol). The reaction was stirred at r.t. for 4 h. At this time the reaction was partitioned between DCM (40 mL) and brine (10 mL). The separated organic layer was dried over MgS04, filtered and evaporated in vacuo to give l-(3- (pyridin-2-yl)-l,8-naphthyridin-2-yl)ethanamine. Mass Spectrum (ESI) m/e = 251.0 (M+l). 4- Amino-6-(((lS, lR)-l-(3-(2-pyridinyl)-l,8-naphthyridin-2-yl)ethyl)amino)-
5- pyrimidinecarbonitrile
Figure imgf000040_0001
To a stirred solution of l-(3-(pyridin-2-yl)-l,8-naphthyridin-2-yl)ethanamine (30 mg, 0.12 mmol), 4-amino-6-chloropyrimidine-5-carbonitrile (18.5 mg, 0.120 mmol) in n-butanol (1.5 mL) was added Hunig's base (41.7 μί, 0.240 mmol). The reaction was stirred at 120 °C for 4 h. After this time the reaction was cooled to r.t. and purified by reverse phase HPLC (gradient of acetonitrile: water, from 10% to 60%) to give a racemic mixture of 4-amino-6-(((lS,lR)-l-(3-(2- pyridinyl)- 1 ,8-naphthyridin-2-yl)ethyl)amino)-5-pyrimidinecarbonitrile. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 9.18 (1 H, dd, J=4.3, 2.0 Hz), 8.83 (1 H, ddd, J=4.9, 2.0, 1.0 Hz), 8.23 - 8.28 (2 H, m), 8.05 (1 H, s), 7.90 (1 H, td, J=7.7, 1.8 Hz), 7.66 (1 H, dt, J=7.8, 1.2 Hz), 7.55 (1 H, dd, J=8.1, 4.2 Hz), 7.42 (1 H, ddd, J=7.6, 4.9, 1.2 Hz), 7.15 - 7.26 (1 H, m), 6.06 (1 H, t, J=7.1 Hz), 5.25 - 5.39 (2 H, m), 1.56 (3 H, d, J=6.7 Hz). Mass Spectrum (ESI) m/e = 369.2 (M+l). Example 4:
4- Amino-6-(((lS, lR)-l-(3-(2-pyridinyl)-l,6-naphthyridin-2-yl)ethyl)amino)-
5- pyrimidinecarbonitrile
terf-Butyl l-(3-(pyridin-2-yl)-l,6-naphthyridin-2-yl)ethylcarbamate
Figure imgf000040_0002
To a stirred solution of tert-butyl 3-oxo-4-(pyridin-2-yl)butan-2-ylcarbamate (0.20 g, 0.76 mmol) and 4-aminonicotinaldehyde (0.092 g, 0.76 mmol) in EtOH (8.84 mL, 151 mmol) was added potassium hydroxide (0.127 g, 2.27 mmol). The reaction was heated at reflux for 2 h. After this time the reaction was evaporated in vacuo and purified by column chromatography (hexanes:EtOAc, 1 :0 to 0: 1) to give tert-butyl 1 -(3-(pyridin-2-yl)- 1 ,6-naphthyridin-2-yl)ethylcarbamate.
l-(3-(Pyridin-2-yl)-l,6-naphthyridin-2-yl)ethanamine
Figure imgf000041_0001
To a stirred solution of tert-butyl l-(3-(pyridin-2-yl)-l,6-naphthyridin-2-yl)ethyl- carbamate (30 mg, 0.086 mmol) in DCM (1.5 mL) was added TFA (66.0 μί, 0.856 mmol). The reaction was stirred at r.t. for 4 h. After this time the reaction was partitioned between DCM (40 mL) and brine (10 mL). The separated organic layer was dried over MgSC^, filtered and evaporated in vacuo to give 1- (3-(pyridin-2-yl)-l,6-naphthyridin-2-yl)ethanamine. Mass Spectrum (ESI) m/e = 251.0 (M+l).
4- Amino-6-(((lS, lR)-l-(3-(2-pyridinyl)-l,6-naphthyridin-2-yl)ethyl)amino)-
5- pyrimidinecarbonitrile
Figure imgf000041_0002
To a stirred solution of l-(3-(pyridin-2-yl)-l,6-naphthyridin-2-yl)ethanamine (15 mg, 0.060 mmol) in butanol (1.5 mL) was added 4-amino-6-chloropyrimidine-5- carbonitrile (9.26 mg, 0.060 mmol) and N-ethyl-N-isopropylpropan-2-amine (20.9 uL, 0.120 mmol). The reaction was heated at 120 °C for 2 h. After this time the reaction was cooled to r.t. The resulting precipitate was filtered and washed with hexanes to give racemic 4-amino-6-(((lS, lR)-l-(3-(2-pyridinyl)-l,6- naphthyridin-2-yl)ethyl)amino)-5-pyrimidinecarbonitrile. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 9.33 (1 H, s), 8.83 (2 H, d, J=5.9 Hz), 8.33 (1 H, s), 8.14 (1 H, s), 8.02 (1 H, d, J=5.9 Hz), 7.93 (1 H, td, J=7.7, 1.8 Hz), 7.64 (2 H, d, J=7.8 Hz), 7.44 (1 H, ddd, J=7.6, 4.9, 1.0 Hz), 6.15 (1H, m), 5.28 (2 H, bs), 1.38 - 1.43 (3 H, m). Mass Spectrum (ESI) m/e = 251.0. Mass Spectrum (ESI) m/e = 369.2 (M+l).
Example 5:
4-Amino-6-((2,4-diphenyl-l,8-naphthyridin-3-yl)methylamino)pyrimidine-5- carbonitrile
3-Methyl- 1 ,8-naphthyridine-2,4-diol
Figure imgf000042_0001
To a stirred solution of methyl 2-aminonicotinate (1.3 g, 8.5 mmol) and methyl propionate (20.1 mL, 214 mmol) in THF (20 mL) was added sodium fert-butoxide (2.05 g, 21.4 mmol) portion- wise over 1 min. The reaction was stirred at r.t. for 40 min and at 100 °C for 4 h. After this time the reaction was cooled to r.t. and evaporated in vacuo. The resulting solid was dissolved in water (20 mL) and neutralized to pH 7 with 1.0M aq HC1. The resulting solid was filtered and dried under vacuum overnight to give 3-methyl-l,8-naphthyridine-2,4-diol as a tan solid. Mass Spectrum (ESI) m/e = 177.2 (M + 1).
2,4-Dichloro-3-methyl-l,8-naphthyridine
Figure imgf000042_0002
A stirred suspension of 3-methyl-l,8-naphthyridine-2,4-diol (0.82 g, 4.6 mmol) in phosphorus oxychloride (4.34 mL, 46.5 mmol) was heated at 120 °C for 3 h. After this time the reaction was allowed to cool to r.t. and evaporated in vacuo. The resulting residue was carefully basified to pH > 10 with an aqueous solution of Na2C03. The resulting solid was filtered, washed with water and dried under vacuum to give 2,4-dichloro-3-methyl-l ,8-naphthyridine. 1H NMR (400 MHz, chloroform-;/) δ ppm 9.11 (1 H, dd, J=4.3, 2.0 Hz), 8.57 (1 H, dd, J=8.4, 2.0 Hz), 7.60 (1 H, dd, J=8.3, 4.2 Hz), 2.72 (3 H, s) 3-Methyl-2,4-diphenyl- 1 ,8-naphthyridine
Figure imgf000043_0001
To a stirred solution of 2, 4-dichloro-3-methyl-l,8-naphthyridine (250 mg, 1.17 mmol) in toluene:water (4 mL: 1.5 mL) was added Pd(PPh3)4 (136 mg, 0.120 mmol), phenylboronic acid (286 mg, 2.35 mmol) and Na2C03 (373 mg, 3.52 mmol) and the reaction was heated at reflux for 16 h. After this time the reaction was cooled to r.t. and partitioned between EtOAc (100 mL) and water (50 mL). The separated organic layer was dried over MgS04, filtered and evaporated in vacuo. Column chromatography (hexanes:EtOAc, 1 :0 to 1 : 1) gave 3-methyl- 2,4-diphenyl-l,8-naphthyridine. Mass Spectrum (ESI) m/e = 297.1 (M + 1).
3-(Bromomethyl)-2,4-diphenyl- 1 ,8-naphthyridine
Figure imgf000043_0002
To a stirred solution of 3-methyl-2,4-diphenyl-l,8-naphthyridine (250 mg, 0.84 mmol) in CC14 (8 mL) was added n-bromosuccinimide (165 mg, 0.930 mmol) and benzoyl peroxide (20.4 mg, 0.0840 mmol). The reaction was heated at reflux for 8 h. After this time the reaction was cooled to r.t. and partitioned between DCM (100 mL) and NaHC03 (50 mL, saturated aqueous solution). The separated organic layer was dried over MgS04, filtered and evaporated in vacuo to give 3- (bromomethyl)-2,4-diphenyl-l,8-naphthyridine. Mass Spectrum (ESI) m/e = 375.0 [M + 1 (79Br)] and 377.0 [M + 1 (81Br)]. -Diphenyl-1 ,8-naphthyridin-3-yl)methyl)isoindoline- 1 ,3-dione
Figure imgf000044_0001
To a stirred solution of 3-(bromomethyl)-2,4-diphenyl-l,8-naphthyridine (300 mg, 0.800 mmol) in DMF (5 mL) was added potassium phthalimide (148 mg, 0.800 mmol) and the reaction was stirred at r.t. for 1 h. After this time the reaction was partitioned between EtOAc (100 mL) and water (50 mL). The separated organic layer was washed with LiCl (30 mL, 1.0M aqueous solution) dried over MgS04, filtered and evaporated in vacuo. Column chromatography (hexanes:EtOAc, 1 :0 to 1 : 1) gave 2-((2,4-diphenyl-l,8-naphthyridin-3-yl)methyl)isoindoline-l,3-dione. Mass Spectrum (ESI) m/e = 442.0 (M + 1).
(2,4-Diphenyl- 1 ,8-naphthyridin-3-yl)methanamine
Figure imgf000044_0002
To a stirred solution of 2-((2,4-diphenyl-l,8-naphthyridin-3-yl)methyl)iso- indoline-l,3-dione (30 mg, 0.068 mmol) in EtOH (2.4 mL) was added hydrazine (21.3 μί, 0.680 mmol). The reaction was heated at 70 °C for 45 min. At this time the reaction was evaporated in vacuo and partitioned between EtOAc (50 mL) and water (20 mL). The separated organic layer was dried over MgS04, filtered and evaporated in vacuo to give (2,4-diphenyl-l,8-naphthyridin-3- yl)methanamine. Mass Spectrum (ESI) m/e = 312.2 (M + 1). 4-Amino-6-((2,4-diphenyl-l,8-naphthyridin-3-yl)methylamino)pyrimidine-5- carbonitrile
Figure imgf000045_0001
To a stirred solution of (2,4-diphenyl-l,8-naphthyridin-3-yl)methanamine (15 mg, 0.048 mmol) in butanol (1.5 mL) was added Hunig's base (12.6 μί, 0.0720 mmol) and 4-amino-6-chloropyrimidine-5-carbonitrile (8.19 mg, 0.0530 mmol). The reaction was heated at 110 °C for 2 h and at 50 °C overnight. After this time the reaction was cooled to r.t. and purified by reverse phase HPLC (gradient of acetonitrile: water, from 10% to 60%) to give 4-amino-6-((2,4-diphenyl-l,8- naphthyridin-3-yl)methylamino)pyrimidine-5-carbonitrile. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 9.13 (1 H, br. s.), 7.80 - 7.92 (2 H, m), 7.67 (2 H, d, J=5.9 Hz), 7.52 - 7.61 (3 H, m), 7.45 - 7.51 (3 H, m), 7.32 - 7.43 (3 H, m), 5.72 (2 H, br. s.), 5.15 (1 H, br. s.), 4.79 (2 H, d, J=5.3 Hz). Mass Spectrum (ESI) m/e = 430.0 (M + 1).
Example 6:
3-Ethyl-2-phenyl- 1 ,8-naphthyridine
Figure imgf000045_0002
A mixture of 2-aminonicotinaldehyde (3.00 g, 24.6 mmol) and butyrophenone (3.64 g, 1.00 eq) in EtOH (100 mL) was treated with KOH (200 mg, 0.140 eq) in EtOH (15 mL) dropwise. The resulted reaction mixture was heated at 90 °C overnight. The solvent was removed and the residue was treated with ethyl Et20 to give a white crystalline material as the titled compound. 1H-NMR (400 Hz,
CDCls) δ ppm 1.27 (3H, t, J=8.0 Hz), 2.94 (2H, q, J=8.0 Hz), 7.46-7.54 (4H, m), 7.66-7.69 (2H, m), 8.14 (1H, s), 8.27 (1H, d, J=8.0 Hz), 9.13 (1H, d, J=4.0 Hz). Mass Spectrum (ESI) m/e = 235 (M + 1).
l-(2-Phen -l,8-naphthyridin-3-yl)ethanone
Figure imgf000046_0001
3-Ethyl-2-phenyl-l,8-naphthyridine (1.50 g, 6.40 mmol) was placed in a three- necked flask immersed in an ice bath and equipped with an efficient mechanical stirrer, a thermometer and a dropping funnel. Sulfuric acid (0.79 eq, 0.29 mL) was added with vigorous stirring. Then acetic acid (2.5 eq, 0.92 mL), acetic anhydride (1.5 eq, 0.90 mL) and finally Cr03 (1.3 eq, 0.85 g) were added in small portions, at a rate to maintain the temperature of the reaction mixture between 20- 30 °C. Stirring was continued for 24 h. At this time 20 mL of water and Na2C03 solid were added slowly, and the product was extracted with EtOAc (3 x 20 mL). Combined organic layers were washed with water, brine and dried over MgS04. The solvent was removed and the residue was purified by column chromatography on silica gel (EtOAc/hexane, 1 :1 to 1/0) to give a white solid as 1 -(2 -phenyl- l,8-naphthyridin-3-yl)ethanone. Mass Spectrum (ESI) m/e = 249 (M + 1).
(S,E)-2-Methyl-N-(l-(2-phenyl-l,8-naphthyridin-3-yl)ethylidene)propane-2- sulflnamide
Figure imgf000046_0002
To a solution of l-(2-phenyl-l,8-naphthyridin-3-yl)ethanone (150 mg, 0.6 mmol) in THF (4 mL) under N2 was added tetraethoxytitanium (0.25 mL, 2.0 eq). Solid (s)-(-)-2-methylpropane-2-sulfinamide (73 mg, 1.0 eq) was then added and the reaction was heated under reflux overnight. After cooling to r.t., the reaction mixture was treated with NaHCC^ solution and diluted with EtOAc (20 mL).
The mixture was stirred for 10 min and filtered through Celite™. The organic layer was separated, washed with water, brine, dried and concentrated. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1 : 1 to 1/0) to give a white solid as (S,E)-2-methyl-N-(l-(2-phenyl-l,8-naphthyridin-3- yl)ethylidene)propane-2-sulfinamide. Mass Spectrum (ESI) m/e = 352 (M + 1). l-(2-Phenyl-l,8-naphthyridin-3-yl)ethanamine
Figure imgf000047_0001
To a solution of (S,E)-2-methyl-N-(l-(2-phenyl-l,8-naphthyridin-3-yl)ethylid- ene)-propane-2-sulfinamide (100 mg, 0.29 mmol) in THF (5 mL) was added
NaBH^ (32.3 mg, 3.00 eq) at 0 °C. After warming to r. , the reaction mixture was quenched with H20 and extracted with EtOAc (5 mLx2). The combined mixture was washed with H20, brine, dried, concentrated and purified by column chromoatography on silica gel (DCM/MeOH, 20/1) to give a pale yellow solid as (S)-2-methyl-N-(l -(2 -phenyl- 1 ,8-naphthyridin-3-yl)ethyl)propane-2-sulfinamide, which was dissolved in MeOH (2 mL) and treated with 4M HC1 in dioxane (2 mL) for 1 h. The reaction mixture was concentrated to give a yellow solid and used as such for the next step.
4-Amino-6-(l-(2-phenyl-l,8-naphthyridin-3-yl)ethylamino)pyrimidine-5- carbonitrile
Figure imgf000047_0002
A mixture of 1 -(2 -phenyl- l,8-naphthyridin-3-yl)ethanamine (50 mg, 0.20 mmol), 4-amino-6-chloropyrimidine-5-carbonitrile (31 mg, 1.0 eq) and Hunig's base (42 μί, 1.2 eq) in n-BuOH (2 mL) was stirred at 120 °C for 2h. After cooling to r. , the reaction mixture was purified by reverse phase HPLC (MeCN/H2O/0.1%TFA, 10-50%) to give a white powder as TFA salt. 1H-NMR (400 Hz, CD3OD) δ ppm 1.63 (3H, d, J=8.0 Hz), 5.81 (1H, q, J=8.0 Hz), 7.57-7.60 (3H, m), 7.77-7.79 (2H, m), 7.95-7.97 (1H, m), 8.02 (1H, s), 8.86 (1H, s), 8.91 (1H, d, J=8.0 Hz), 9.24 (1H, d, J=4.0 Hz). Mass Spectrum (ESI) m/e = 368 (M + 1).
Example 7:
(S)-tert-Butyl 3-oxo-4-phenylbutan-2-ylcarbamate
Figure imgf000048_0001
A solution of (S)-tert-butyl l-(methoxy(methyl)amino)-l-oxopropan-2-yl- carbamate (1.16 g, 5 mmol) in THF (10 mL) was cooled to -15 °C and slowly charged with isopropylmagnesium chloride (2.0M, 2.4 mL, 0.95 eq). After a clear solution was obtained, benzylmagnesium chloride (1.0M, 4.99 mL, 1.0 eq) was added dropwise with stirring at r.t. overnight. The reaction mixture was quenched with NH4C1 solution and extracted with EtOAc (10 mL x2). The combined organic layers were washed with H20, brine, dried over Na2S04, filtered and concentrated to give a white solid, (S)-tert-butyl 3-oxo-4-phenyl- butan-2-ylcarbamate. Mass Spectrum (ESI) m/e = 264 (M + 1).
(S)-tert-Butyl 3-oxo-4- ridin-2- l butan- - lcarbamate
Figure imgf000048_0002
tert-Butyl l-(methoxy(methyl)amino)-l-oxopropan-2-ylcarbamate (50.0 g, 215 mmol) in THF (450 mL) was cooled to -40 °C (dry ice/acetonitrile) and slowly charged with isopropylmagnesium chloride (2.0M, 102.2 mL, 0.95 eq). After a clear solution was obtained (became clear at -20 °C and milky again at -40 °C), bromo(pyridin-2-ylmethyl)magnesium solution (see below for preparation) was added drop wise using a cannula before warming to r.t. overnight. The reaction mixture was quenched with NH4C1 solution and extracted with EtOAc (500 mLx2). The combined organic layers were washed with H20, brine, dried over Na2SC and concentrated under high vacuum to give (S)-tert-butyl 3-oxo-4- (pyridin-2-yl)butan-2-ylcarbamate as a tan oil. Small scale reaction was purified by Combiflash™ (EtOAc/hexane, up to 1/3) to give a red oil. Mass Spectrum (ESI) m/e = 265 (M + 1).
Bromo(pyridin-2-ylmethyl)magnesium
To a solution of picoline (31.9 mL, 1.5 eq) in THF (300 mL) was added MeLi (202 mL, 1.6 M, 1.5 eq) dropwise at -40 °C under nitrogen. The reaction mixture was allowed to warm to -20 °C and stirred for 10 min. It was then cooled to -40 °C and magnesium bromide (59.4 g, 1.5 eq) was added in three portions. The reaction mixture was allowed to warm to r.t., stirred for 30 min. to provide bromo(pyridin-2-ylmethyl)magnesium.
2-(l-(tert-Butoxycarbonylamino)ethyl)-3-phenyl-l,8-naphthyridine-4- carboxylic acid
Figure imgf000049_0001
tert-Butyl 3-oxo-4-phenylbutan-2-ylcarbamate (533 mg, 1.0 eq), KOH (341 mg, 3.00 eq) and lH-pyrrolo[2,3-b]pyridine-2,3-dione (300 mg, 2.00 eq) in EtOH (2 mL) and water (2 mL) were heated at 85 °C overnight. After cooling to r.t., the reaction volumn was reduced to 2 mL and extracted with Et20 twice. The filtrate was acidified with cone HCl to pH 3-4 and the mixture was extracted with DCM (5 mLx3). The combined organic layers were washed with water, brine, dried and concentrated to give a yellow foam as 2-(l-(tert-butoxycarbonylamino)- ethyl)-3-phenyl-l,8-naphthyridine-4-carboxylic acid. Mass Spectrum (ESI) m/e = 394 (M + 1). tert-Butyl l-(4-(methylcarbamoyl)-3-phenyl-l,8-naphthyridin-2- yl)ethylcarbamate
Figure imgf000050_0001
To a solution of 2-(l-(tert-butoxycarbonylamino)ethyl)-3-phenyl-l,8-naphth- yridine-4-carboxylic acid (200 mg, 0.51 mmol) in DMF (2 mL) was added HATU (387 mg, 2.0 eq), methanamine (0.51 mL, 2.0 eq) and N-ethyl-N-isopropylpropan- 2-amine (0.18 mL, 2.0 eq). The resulting mixture was stirred at r.t. overnight. Solvent was partially removed and partitioned between EtOAc (5 mL) water (5 mL). The water layer was extracted with EtOAc (5 mLx2). The combined organics were washed with water (2 mL x2), 0.5 N NaOH (2mL x3), brine (5 mL) and dried over Na2S04. Removal of solvents under reduced pressure followed with Combiflash™ purification (DCM/MeOH, 20/1) gave a white solid as tert- butyl 1 -(4-(methylcarbamoyl)-3 -phenyl- 1 ,8-naphthyridin-2-yl)ethylcarbamate. Mass Spectrum (ESI) m/e = 407 (M + 1).
2-(l-(6-Amino-5-cyanopyrimidin-4-ylamino)ethyl)-N-methyl-3-phenyl-l,8- naphthyridine-4-carboxamide
Figure imgf000050_0002
To tert-butyl 1 -(4-(methylcarbamoyl)-3 -phenyl- 1 ,8-naphthyridin-2-yl)ethyl- carbamate (29 mg, 0.071 mmol) was added HC1 (1 mL, 4.00 mmol) in dioxane (4M) and the resulting homogenous mixture was stirred at r.t. for 1.5 h. The solvent was removed under reduced pressure and dried under high vacuum for 2 h. At this time the solid was dissolved in DMF (1 mL). 4-Amino-6-chloro- pyrimidine-5-carbonitrile (11 mg, 1.0 eq) and Hunig's base (0.05 mL, 4.0 eq) were added at 90 °C. After cooling to r. , the reaction mixture was subjected to reverse phase HPLC (MeCN/H2O/0.1%TFA, up to 50%) to give a white powder as TFA salt. 1H-NMR (500 Hz, CD3OD) δ ppm 1.56 (3H, d, J=5.0 Hz), 2.69 (3H, s), 5.66 (1H, q, J=5.0 Hz), 7.44-7.59 (5H, m), 7.81 (1H, dd, J=10.0, 5.0 Hz ), 8.07 (1H, s), 8.49 (1H, d, J=10.0 Hz), 9.16 (1H, d, J=5.0 Hz). Mass Spectrum (ESI) m/e = 425 (M + 1).
2-(l-(tert-Butoxycarbonylamino)ethyl)-3-(pyridin-2-yl)-l,8-naphthyridine-4- carboxylic acid
Figure imgf000051_0001
A mixture of (S)-tert-butyl 3-oxo-4-(pyridin-2-yl)butan-2-ylcarbamate (396 mg, 1.50 mmol), ethyl 2-oxo-2-(2-pivalamidopyridin-3-yl)acetate (prepared according to Zong, R.; et. al, J. Org. Chem. 2008, 73, 4334-4337) (417 mg, 1.0 eq) and KOH (337 mg, 4.0 eq) in EtOH (15 mL) was heated to 88 °C. After cooling to r.t., solvent was removed and water (5 mL) was added. The water layer was washed with DCM and acidified with cone HC1 to pH 3-4. The mixture was extracted with DCM (5 mLx3). The combined organic layers were washed with water, brine, dried and concentrated to give a yellow foam as 2-(l-(tert-butoxy- carbonylamino)ethyl)-3-(pyridin-2-yl)-l ,8-naphthyridine-4-carboxylic acid. Mass Spectrum (ESI) m/e = 395 (M + 1).
tert-Butyl l-(4-(methylcarbamoyl)-3-(pyridin-2-yl)-l,8-naphthyridin-2- yl)ethylcarbamate
Figure imgf000051_0002
To a solution of 2-(l-(tert-butoxycarbonylamino)ethyl)-3-(pyridin-2-yl)-l,8- naphthyridine-4-carboxylic acid (500 mg, 1.30 mmol) in DMF (5 mL) was added PyBop (990 mg, 1.50 eq), methanamine (1.3 mL, 2.0 eq) in THF (2.0 M) and N- ethyl-N-isopropylpropan-2-amine (0.45 mL, 2.0 eq). The resulting mixture was stirred at r.t. overnight. At this time the mixture was partitioned between water (10 mL) and EtOAc (15 mL). The water layer was extracted with EtOAc (5 mLx2). The combined organics were washed with water (10 mLx2), 0.5 N NaOH (5mLx2), water (5 mL x2), brine (5 mL) and dried over Na2S04. Removal of solvents followed by column chromatography on silica gel (DCM/MeOH, 20/1) gave a yellow solid, tert-butyl l-(4-(methylcarbamoyl)-3-(pyridin-2-yl)-l,8- naphthyridin-2-yl)ethylcarbamate. Mass Spectrum (ESI) m/e = 408 (M + 1). 2-(l-(6-Amino-5-cyanopyrimidin-4-ylamino)ethyl)-N-methyl-3-(pyridin-2-yl)- l,8-naphthyridine-4-carboxamide
Figure imgf000052_0001
To tert-butyl 1 -(4-(methylcarbamoyl)-3-(pyridin-2-yl)- 1 ,8-naphthyridin-2- yl)ethylcarbamate (440 mg, 1.1 mmol) was added 4N HC1 in 1, 4-dioxane (2 mL, 7.3 eq). The resulting mixture was stirred at r.t. for 30 min. The reaction mixture was diluted with Et20 (5 mL). The white solid was filtered and washed with Et20 and dried under vacuum. Mass Spectrum (ESI) m/e = 308 (M + 1). To a solution of the amine HC1 salt in DMF (3 mL) was added 4-amino-6- chloropyrimidine-5-carbonitrile (167 mg, 1.00 eq) and DIEA (0.75 mL, 4.0 eq). The resulting mixture was heated to 105 °C for 2 h. After cooling to r.t., EtOAc (10 mL) was added and the mixture was washed with water (3 x 3 mL), brine and dried over Na2S04. The solvent was removed and the residue was purified by reverse phase HPLC (MeCN/H2O/0.1%TFA, 10% to 50%) to give a white powder as TFA salt. 1H-NMR (400 Hz, CD3OD) δ ppm 1.59 (3H, d, J=8.0 Hz), 2.71 (3H, s), 5.66 (1H, m), 7.49-7.52 (1H, m), 7.68 (1H, d, J=8.0 Hz ), 7.76 (1H, dd, J=8.0, 4.0 Hz), 7.97 (1H, t, J=8.0 Hz), 8.43 (1H, d, J=8.0 Hz), 8.72 (1H, d, J=4.0 Hz), 9.16 (1H, d, J=4.0 Hz). Mass Spectrum (ESI) m/e = 426 (M + 1). Biological Assays
Recombinant expression of PI3Ks
Full length pi 10 subunits of PI3k α, β and δ, N-terminally labeled with polyHis tag, were coexpressed with p85 with Baculo virus expression vectors in sf9 insect cells. PI 10/p85 heterodimers were purified by sequential Ni-NTA, Q-HP,
Superdex-100 chromatography. Purified α, β and δ isozymes were stored at -20 °C in 20mM Tris, pH 8, 0.2M NaCl, 50% glycerol, 5mM DTT, 2mM Na cholate. Truncated ΡΒΚγ, residues 114-1102, N-terminally labeled with polyHis tag, was expessed with Baculo virus in Hi5 insect cells. The γ isozyme was purified by sequential Ni-NTA, Superdex-200, Q-HP chromatography. The γ isozyme was stored frozen at -80 °C in NaH2P04, pH 8, 0.2M NaCl, 1% ethylene glycol, 2mM β-mercaptoethanol.
Figure imgf000053_0001
In vitro enzyme assays.
Assays were performed in 25 with the above final concentrations of components in white polyproplyene plates (Costar 3355). Phospatidyl inositol phosphoacceptor, PtdIns(4,5)P2 P4508, was from Echelon Biosciences. The ATPase activity of the alpha and gamma isozymes was not greatly stimulated by PtdIns(4,5)P2 under these conditions and was therefore omitted from the assay of these isozymes. Test compounds were dissolved in dimethyl sulfoxide and diluted with three-fold serial dilutions. The compound in DMSO (1 μί) was added per test well, and the inhibition relative to reactions containing no compound, with and without enzyme was determined. After assay incubation at rt, the reaction was stopped and residual ATP determined by addition of an equal volume of a commercial ATP bioluminescence kit (Perkin Elmer EasyLite) according to the manufacturer's instructions, and detected using a AnalystGT luminometer.
Human B Cells Proliferation stimulate by anti-IgM
Isolate human B Cells:
Isolate PBMCs from Leukopac or from human fresh blood. Isolate human B cells by using Miltenyi protocol and B cell isolation kit II. -human B cells were Purified by using AutoMacs. column.
Activation of human B cells
Use 96 well Flat bottom plate, plate 50000/well purified B cells in B cell proliferation medium (DMEM + 5% FCS, 10 mM Hepes, 50 μΜ 2-mercaptoethanol); 150 medium contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 2 μg/mL anti-Human IgM antibody (Jackson ImmunoReseach Lab.#109- 006-129), mixed with 50
Figure imgf000054_0001
B cell medium containing PI3K inhibitors and incubate 72 h at 37 °C incubator. After 72h, pulse labeling B cells with 0.5-1 uCi /well 3H thymidine for overnight—18 h, and harvest cell using TOM harvester.
Human B Cells Proliferation stimulate by IL-4
Isolate human B Cells:
Isolate human PBMCs from Leukopac or from human fresh blood. Isolate human B cells using Miltenyi protocol - B cell isolation kit. Human B cells were Purified by AutoMacs. column.
Activation of human B cells
Use 96-well flat bottom plate, plate 50000/well purified B cells in B cell proliferation medium (DMEM + 5% FCS, 50 μΜ 2-mercaptoethanol, lOmM Hepes). The medium (150
Figure imgf000054_0002
contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 10 ng/mL IL-4 ( R&D system # 204-IL-025), mixed with 50 150 B cell medium containing compounds and incubate 72 h at 37 °C incubator. After 72 h, pulse labeling B cells with 0.5-1 uCi /well JH thymidine for overnight—18 h, and harvest cell using TOM harvester. Specific T antigen (Tetanus toxoid) induced human PBMC proliferation assays
Human PBMC are prepared from frozen stocks or they are purified from fresh human blood using a Ficoll gradient. Use 96 well round-bottom plate and plate 2xl05 PBMC/well with culture medium (RPMI1640 + 10% FCS, 50uM 2-
Mercaptoethanol,10 mM Hepes). For IC50 determinations, PI3K inhibitors was tested from 10 μΜ to 0.001 μΜ, in half log increments and in triplicate. Tetanus toxoid ,T cell specific antigen ( University of Massachusetts Lab) was added at 1 μg/mL and incubated 6 days at 37 °C incubator. Supernatants are collected after 6 days for IL2 ELISA assay , then cells are pulsed with 3H-thymidine for ~18 h to measure proliferation.
GFP assays for detecting inhibition of Class la and Class III PI3K
AKTl (PKBa) is regulated by Class la PI3K activated by mitogenic factors (IGF- 1, PDGF, insulin, thrombin, NGF, etc.). In response to mitogenic stimuli, AKTl translocates from the cytosol to the plasma membrane
Forkhead (FKHRL1) is a substrate for AKTl . It is cytoplasmic when phosphorylated by AKT (survival/growth). Inhibition of AKT (stasis/apoptosis) - forkhead translocation to the nucleus
FYVE domains bind to PI(3)P. the majority is generated by constitutive action of PBK Class III
AKT membrane ruffling assay (CHO-IR-AKTl-EGFP cells/GE Healthcare) Wash cells with assay buffer. Treat with compounds in assay buffer 1 h. Add 10 ng/mL insulin. Fix after 10 min at room temp and image
Forkhead translocation assay (MDA MB468 Forkhead-DiversaGFP cells) Treat cells with compound in growth medium 1 h. Fix and image.
Class IIIPI(3)P assay (U20S EGFP-2XFYVE cells/GE Healthcare)
Wash cells with assay buffer. Treat with compounds in assay buffer 1 h. Fix and image.
Control for all 3 assays is lOuM Wortmannin:
AKT is cytoplasmic
Forkhead is nuclear
PI(3)P depleted from endosomes Biomarker assay: B-cell receptor stimulation of CD69 or B7.2 (CD86) expression
Heparinized human whole blood was stimulated with 10 μ§/ι Ι. anti-IgD
(Southern Biotech, #9030-01). 90 μΙ_, of the stimulated blood was then aliquoted per well of a 96-well plate and treated with 10 μΐ^ of various concentrations of blocking compound (from 10-0.0003 μΜ) diluted in IMDM + 10% FBS (Gibco). Samples were incubated together for 4 h (for CD69 expression) to 6 h (for B7.2 expression) at 37 °C. Treated blood (50 μΐ,) was transferred to a 96-well, deep well plate (Nunc) for antibody staining with 10 μΐ^ each of CD45-PerCP (BD Biosciences, #347464), CD 19-FITC (BD Biosciences, #340719), and CD69-PE (BD Biosciences, #341652). The second 50 μΙ_, of the treated blood was transferred to a second 96-well, deep well plate for antibody staining with 10 μΐ, each of CD 19-FITC (BD Biosciences, #340719) and CD86-PeCy5 (BD
Biosciences, #555666). All stains were performed for 15-30 min in the dark at rt. The blood was then lysed and fixed using 450 μΙ_, of FACS lysing solution (BD Biosciences, #349202) for 15 min at rt. Samples were then washed 2X in PBS + 2% FBS before FACS analysis. Samples were gated on either
CD45/CD19 double positive cells for CD69 staining, or CD 19 positive cells for CD 86 staining.
Gamma Counterscreen: Stimulation of human monocytes for phospho- AKT expression
A human monocyte cell line, THP-1 , was maintained in RPMI + 10% FBS (Gibco). One day before stimulation, cells were counted using trypan blue exclusion on a hemocytometer and suspended at a concentration of 1 x 106 cells per mL of media. 100 μΙ_, of cells plus media (1 x 105 cells) was then aliquoted per well of 4-96-well, deep well dishes (Nunc) to test eight different compounds. Cells were rested overnight before treatment with various concentrations (from 10-0.0003μΜ) of blocking compound. The compound diluted in media (12 μΐ,) was added to the cells for 10 min at 37 °C. Human MCP-1 (12 L, R&D Diagnostics, #279-MC) was diluted in media and added to each well at a final concentration of 50 ng/mL. Stimulation lasted for 2 min at rt. Pre-warmed FACS Phosf ow Lyse/Fix buffer (1 mL of 37 °C) (BD Biosciences, #558049) was added to each well. Plates were then incubated at 37 °C for an additional 10-15 min. Plates were spun at 1500 rpm for 10 min, supernatant was aspirated off, and 1 mL of ice cold 90% MEOH was added to each well with vigorous shaking. Plates were then incubated either overnight at -70 °C or on ice for 30 min before antibody staining. Plates were spun and washed 2X in PBS + 2% FBS (Gibco). Wash was aspirated and cells were suspended in remaining buffer. Rabbit pAKT (50 μί, Cell Signaling, #4058L) at 1 : 100, was added to each sample for 1 h at rt with shaking. Cells were washed and spun at 1500 rpm for 10 min.
Supernatant was aspirated and cells were suspended in remaining buffer.
Secondary antibody, goat anti-rabbit Alexa 647 (50 μί, Invitrogen, #A21245) at 1 :500, was added for 30 min at rt with shaking. Cells were then washed IX in buffer and suspended in 150 μΐ, of buffer for FACS analysis. Cells need to be dispersed very well by pipetting before running on flow cytometer. Cells were run on an LSR II (Becton Dickinson) and gated on forward and side scatter to determine expression levels of pAKT in the monocyte population.
Gamma Counterscreen: Stimulation of monocytes for phospho-AKT expression in mouse bone marrow
Mouse femurs were dissected from five female BALB/c mice (Charles River Labs.) and collected into RPMI + 10% FBS media (Gibco). Mouse bone marrow was removed by cutting the ends of the femur and by flushing with 1 mL of media using a 25 gauge needle. Bone marrow was then dispersed in media using a 21 gauge needle. Media volume was increased to 20 mL and cells were counted using trypan blue exclusion on a hemocytometer. The cell suspension was then increased to 7.5 x 106 cells per 1 mL of media and 100 μΐ^ (7.5 x 105 cells) was aliquoted per well into 4-96-well, deep well dishes (Nunc) to test eight different compounds. Cells were rested at 37 °C for 2 h before treatment with various concentrations (from 10-0.0003 μΜ) of blocking compound. Compound diluted in media (12 μί) was added to bone marrow cells for 10 min at 37 °C. Mouse MCP-1 (12 μί, R&D Diagnostics, #479- JE) was diluted in media and added to each well at a final concentration of 50 ng/mL. Stimulation lasted for 2 min at rt. 1 mL of 37 °C pre -warmed FACS Phosflow Lyse/Fix buffer (BD Biosciences, #558049) was added to each well. Plates were then incubated at 37°C for an additional 10-15 min. Plates were spun at 1500 rpm for 10 min. Supernatant was aspirated off and 1 mL of ice cold 90% MEOH was added to each well with vigorous shaking. Plates were then incubated either overnight at -70 °C or on ice for 30 min before antibody staining. Plates were spun and washed 2X in PBS + 2% FBS (Gibco). Wash was aspirated and cells were suspended in remaining buffer. Fc block (2 μί, BD Pharmingen, #553140) was then added per well for 10 min at rt. After block, 50 of primary antibodies diluted in buffer; CDl Ib-Alexa488 (BD Biosciences, #557672) at 1 :50, CD64-PE (BD Biosciences, #558455) at 1 :50, and rabbit pAKT (Cell Signaling, #4058L) at 1 : 100, were added to each sample for 1 h at RT with shaking. Wash buffer was added to cells and spun at 1500 rpm for 10 min. Supernatant was aspirated and cells were suspended in remaining buffer. Secondary antibody; goat anti-rabbit Alexa 647 (50 μΐ., Invitrogen, #A21245) at 1 :500, was added for 30 min at rt with shaking. Cells were then washed IX in buffer and suspended in 100 μΐ, of buffer for FACS analysis. Cells were run on an LSR II (Becton Dickinson) and gated on CDl lb/CD64 double positive cells to determine expression levels of pAKT in the monocyte population.
pAKT in vivo Assay
Vehicle and compounds are administered p.o. (0.2 mL) by gavage (Oral Gavage Needles Popper & Sons, New Hyde Park, NY) to mice (Transgenic Line 3751 , female, 10-12 wks Amgen Inc, Thousand Oaks, CA) 15 min prior to the injection i.v (0.2 mLs) of anti-IgM FITC (50 ug/mouse) (Jackson Immuno Research, West Grove, PA). After 45 min the mice are sacrificed within a C02 chamber. Blood is drawn via cardiac puncture (0.3 mL) (lcc 25 g Syringes, Sherwood, St. Louis, MO) and transferred into a 15 mL conical vial (Nalge/Nunc International,
Denmark). Blood is immediately fixed with 6.0 mL of BD Phosflow Lyse/Fix Buffer (BD Bioscience, San Jose, CA), inverted 3X's and placed in 37 °C water bath. Half of the spleen is removed and transferred to an eppendorf tube containing 0.5 mL of PBS (Invitrogen Corp, Grand Island, NY). The spleen is crushed using a tissue grinder (Pellet Pestle, Kimble/Kontes, Vineland, NJ) and immediately fixed with 6.0 mL of BD Phosflow Lyse/Fix buffer, inverted 3X's and placed in 37 °C water bath. Once tissues have been collected the mouse is cervically-dislocated and carcass to disposed. After 15 min, the 15 mL conical vials are removed from the 37 °C water bath and placed on ice until tissues are further processed. Crushed spleens are filtered through a 70 μιη cell strainer (BD Bioscience, Bedford, MA) into another 15 mL conical vial and washed with 9 mL of PBS. Splenocytes and blood are spun @ 2,000 rpms for 10 min (cold) and buffer is aspirated. Cells are resuspended in 2.0 mL of cold (-20 °C) 90% methyl alcohol (Mallinckrodt Chemicals, Phillipsburg, NJ). MeOH is slowly added while conical vial is rapidly vortexed. Tissues are then stored at -20 °C until cells can be stained for FACS analysis.
Multi-dose TNP immunization
Blood was collected by retro-orbital eye bleeds from 7-8 week old BALB/c female mice (Charles River Labs.) at day 0 before immunization. Blood was allowed to clot for 30 min and spun at 10,000 rpm in serum microtainer tubes (Becton Dickinson) for 10 min. Sera were collected, aliquoted in Matrix tubes (Matrix Tech. Corp.) and stored at -70 °C until ELISA was performed. Mice were given compound orally before immunization and at subsequent time periods based on the life of the molecule. Mice were then immunized with either 50 μg of TNP-LPS (Biosearch Tech., #T-5065), 50 μg of TNP-Ficoll (Biosearch Tech., #F-1300), or 100 μg of TNP-KLH (Biosearch Tech., #T-5060) plus 1% alum (Brenntag, #3501) in PBS. TNP-KLH plus alum solution was prepared by gently inverting the mixture 3-5 times every 10 min for 1 h before immunization. On day 5, post-last treatment, mice were C02 sacrificed and cardiac punctured. Blood was allowed to clot for 30 min and spun at 10,000 rpm in serum
microtainer tubes for 10 min. Sera were collected, aliquoted in Matrix tubes, and stored at -70 °C until further analysis was performed. TNP-specific IgGl,
IgG2a, IgG3 and IgM levels in the sera were then measured via ELISA. TNP- BSA (Biosearch Tech., #T-5050) was used to capture the TNP-specific antibodies. TNP-BSA (10 μg/mL) was used to coat 384-well ELISA plates (Corning Costar) overnight. Plates were then washed and blocked for 1 h using 10% BS A ELISA Block solution (KPL). After blocking, ELISA plates were washed and sera samples/standards were serially diluted and allowed to bind to the plates for 1 h. Plates were washed and Ig-HRP conjugated secondary antibodies (goat anti-mouse IgGl, Southern Biotech #1070-05, goat anti-mouse IgG2a, Southern Biotech #1080-05, goat anti-mouse IgM, Southern Biotech #1020-05, goat anti-mouse IgG3, Southern Biotech #1100-05) were diluted at 1 :5000 and incubated on the plates for 1 h. TMB peroxidase solution (SureBlue Reserve TMB from KPL) was used to visualize the antibodies. Plates were washed and samples were allowed to develop in the TMB solution approximately 5-20 min depending on the Ig analyzed. The reaction was stopped with 2M sulfuric acid and plates were read at an OD of 450 nm.
For the treatment of ΡΒΚδ-mediated-diseases, such as rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases, the compounds of the present invention may be administered orally, parentally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. The term parenteral as used herein includes, subcutaneous, intravenous, intramuscular, intrasternal, infusion techniques or intraperitoneally.
Treatment of diseases and disorders herein is intended to also include the prophylactic administration of a compound of the invention, a pharmaceutical salt thereof, or a pharmaceutical composition of either to a subject (i.e., an animal, preferably a mammal, most preferably a human) believed to be in need of preventative treatment, such as, for example, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases and the like.
The dosage regimen for treating ΡΒΚδ-mediated diseases, cancer, and/or hyperglycemia with the compounds of this invention and/or compositions of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. Dosage levels of the order from about 0.01 mg to 30 mg per kilogram of body weight per day, preferably from about 0.1 mg to 10 mg/kg, more preferably from about 0.25 mg to 1 mg/kg are useful for all methods of use disclosed herein.
The pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
For oral administration, the pharmaceutical composition may be in the form of, for example, a capsule, a tablet, a suspension, or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of the active ingredient. For example, these may contain an amount of active ingredient from about 1 to 2000 mg, preferably from about 1 to 500 mg, more preferably from about 5 to 150 mg. A suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
The active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water. The daily parenteral dosage regimen will be from about 0.1 to about 30 mg/kg of total body weight, preferably from about 0.1 to about 10 mg/kg, and more preferably from about 0.25 mg to 1 mg/kg.
Injectable preparations, such as sterile injectable aq. or oleaginous suspensions, may be formulated according to the known are using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3- butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
A suitable topical dose of active ingredient of a compound of the invention is 0.1 mg to 150 mg administered one to four, preferably one or two times daily. For topical administration, the active ingredient may comprise from 0.001% to 10% w/w, e.g., from 1% to 2% by weight of the formulation, although it may comprise as much as 10%> w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation.
Formulations suitable for topical administration include liquid or semi- liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
For administration, the compounds of this invention are ordinarily combined with one or more adjuvants appropriate for the indicated route of administration. The compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, acacia, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration. Alternatively, the compounds of this invention may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol, corn oil, peanut oil, cottonseed oil, sesame oil, tragacanth gum, and/or various buffers. Other adjuvants and modes of administration are well known in the pharmaceutical art. The carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art.
The pharmaceutical compositions may be made up in a solid form
(including granules, powders or suppositories) or in a liquid form (e.g., solutions, suspensions, or emulsions). The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.
Compounds of the present invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or non-racemic mixtures thereof. The optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, e.g., by formation of diastereoisomeric salts, by treatment with an optically active acid or base. Examples of appropriate acids are tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric, and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these salts. A different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers. Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting compounds of the invention with an optically pure acid in an activated form or an optically pure isocyanate. The synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the enantiomerically pure compound. The optically active compounds of the invention can likewise be obtained by using active starting materials. These isomers may be in the form of a free acid, a free base, an ester or a salt. Likewise, the compounds of this invention may exist as isomers, that is compounds of the same molecular formula but in which the atoms, relative to one another, are arranged differently. In particular, the alkylene substituents of the compounds of this invention, are normally and preferably arranged and inserted into the molecules as indicated in the definitions for each of these groups, being read from left to right. However, in certain cases, one skilled in the art will appreciate that it is possible to prepare compounds of this invention in which these substituents are reversed in orientation relative to the other atoms in the molecule. That is, the substituent to be inserted may be the same as that noted above except that it is inserted into the molecule in the reverse orientation. One skilled in the art will appreciate that these isomeric forms of the compounds of this invention are to be construed as encompassed within the scope of the present invention.
The compounds of the present invention can be used in the form of salts derived from inorganic or organic acids. The salts include, but are not limited to, the following: acetate, adipate, alginate, citrate, aspartate, benzoate,
benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methansulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 2-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, mesylate, and undecanoate. Also, the basic nitrogen- containing groups can be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained.
Examples of acids that may be employed to from pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, sulfuric acid and phosphoric acid and such organic acids as oxalic acid, maleic acid, succinic acid and citric acid. Other examples include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium or with organic bases.
Also encompassed in the scope of the present invention are
pharmaceutically acceptable esters of a carboxylic acid or hydroxyl containing group, including a metabolically labile ester or a prodrug form of a compound of this invention. A metabolically labile ester is one which may produce, for example, an increase in blood levels and prolong the efficacy of the corresponding non-esterified form of the compound. A prodrug form is one which is not in an active form of the molecule as administered but which becomes therapeutically active after some in vivo activity or biotransformation, such as metabolism, for example, enzymatic or hydro lytic cleavage. For a general discussion of prodrugs involving esters see Svensson and Tunek Drug Metabolism Reviews 165 (1988) and Bundgaard Design of Prodrugs, Elsevier (1985). Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p- methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl). Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
Hydroxy groups have been masked as esters and ethers. EP 039,051 (Sloan and Little, 4/11/81) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use. Esters of a compound of this invention, may include, for example, the methyl, ethyl, propyl, and butyl esters, as well as other suitable esters formed between an acidic moiety and a hydroxyl containing moiety.
Metabolically labile esters, may include, for example, methoxymethyl, ethoxymethyl, iso-propoxymethyl, a-methoxyethyl, groups such as a-((Ci-C4)- alkyloxy)ethyl, for example, methoxyethyl, ethoxyethyl, propoxyethyl, iso- propoxyethyl, etc.; 2-oxo-l,3-dioxolen-4-ylmethyl groups, such as 5-methyl-2- oxo-l,3,dioxolen-4-ylmethyl, etc.; C1-C3 alkylthiomethyl groups, for example, methylthiomethyl, ethylthiomethyl, isopropylthiomethyl, etc.; acyloxymethyl groups, for example, pivaloyloxymethyl, a-acetoxymethyl, etc.; ethoxycarbonyl- 1 -methyl; or α-acyloxy-a-substituted methyl groups, for example a-acetoxyethyl.
Further, the compounds of the invention may exist as crystalline solids which can be crystallized from common solvents such as ethanol, N,N-dimethyl- formamide, water, or the like. Thus, crystalline forms of the compounds of the invention may exist as polymorphs, solvates and/or hydrates of the parent compounds or their pharmaceutically acceptable salts. All of such forms likewise are to be construed as falling within the scope of the invention.
While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more compounds of the invention or other agents. When administered as a combination, the therapeutic agents can be formulated as separate compositions that are given at the same time or different times, or the therapeutic agents can be given as a single composition.
The foregoing is merely illustrative of the invention and is not intended to limit the invention to the disclosed compounds. Variations and changes which are obvious to one skilled in the art are intended to be within the scope and nature of the invention which are defined in the appended claims.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims

We Claim:
1. A compound having the structure:
Figure imgf000067_0001
Figure imgf000068_0001
or any pharmaceutically-acceptable salt thereof, wherein:
X1 is C(R10) or N;
Y is N(R8), O or S;
n is 0, 1 , 2 or 3;
R1 is a direct-bonded, Ci_4alk-linked, OCi_2alk- linked, Ci_2alkO-linked or O-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic or 8-, 9-, 10- or 1 1-membered bicyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S atom, substituted by 0, 1 , 2 or 3 substituents independently selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa, wherein the available carbon atoms of the ring are additionally substituted by 0, 1 or 2 oxo or thioxo groups;
R2 is selected from H, halo, Ci_6alk, Ci_4haloalk, cyano, nitro, ORa, NRaRa, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa,
-S(=0)2N(Ra)C(=0)NRaRa;
R3 is selected from H, halo, nitro, cyano, Ci_4alk, OCi_4alk, OCi_4haloalk, NHCi_4alk, N(Ci_4alk)Ci_4alk or Ci_4haloalk;
R4 is, independently, in each instance, halo, nitro, cyano, Ci_4alk, OCi_4alk, OCi_4haloalk, NHCi_4alk, N(Ci_4alk)Ci_4alk, Ci_4haloalk or an unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, substituted by 0, 1, 2 or 3 substituents selected from halo, Ci_4alk, Ci_3haloalk, -OCi_4alk, -NH2, -NHCi_4alk,
Figure imgf000069_0001
R5 is, independently, in each instance, H, halo, Ci_6alk, Ci_4haloalk, or
Ci_6alk substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OCi_4alk, Ci_4alk, Ci_3haloalk, OCi_4alk, NH2, NHCi_4alk, N(Ci_4alk)Ci_4alk; or both R5 groups together form a C3_6spiroalk substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OCi_4alk, Ci_4alk, Ci_3haloalk, OCi_4alk, NH2, NHCi_4alk, N(Ci_4alk)Ci_4alk;
R6 is H, halo, NHR9 or OH;
R7 is selected from H, halo, Ci_4haloalk, cyano, nitro, -C(=0)Ra,
-C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa,
-S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa,
-N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra,
-N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa, -NRaC2_6alkORa and d_6alk, wherein the Ci_6alk is substituted by 0, 1 2 or 3 substituents selected from halo, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa,
-OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa,
-OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa, and the Ci_6alk is additionally substituted by 0 or 1 saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic rings containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, Ci_4alk, OCi_4alk, OCi_4haloalk, NHCi_4alk, N(Ci_4alk)Ci_4alk and Ci_4haloalk; or R7 and R8 together form a -C=N- bridge wherein the carbon atom is substituted by H, halo, cyano, or a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 , 2, 3 or 4 substituents selected from halo, Ci_6alk,
Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa; or R7 and R9 together form a -N=C- bridge wherein the carbon atom is substituted by H, halo, Ci_6alk, Ci_4haloalk, cyano, nitro, ORa, NRaRa, -C(=0)Ra, -C(=0)ORa,
-C(=0)NRaRa, -C (=NRa)NRaRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa;
Figure imgf000070_0001
R9 is H, Ci_6alk or Ci_4haloalk;
R10 is H, halo, Ci_3alk, Ci_3haloalk or cyano;
R11 is independently in each instance selected from H, halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra, -C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa,
-OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Rb, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra, -N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa, -NRaC2_6alkORa, -NRaC2_6alkS02Rb, -CH2C(=0)Ra, -CH2C(=0)ORa, -CH2C(=0)NRaRa, -CH2C (=NRa)NRaRa,
-CH2ORa, -CH2OC(=0)Ra, -CH2OC(=0)NRaRa, -CH2OC(=0)N(Ra)S(=0)2Ra, -CH2OC2_6alkNRaRa, -CH2OC2_6alkORa, -CH2SRa, -CH2S(=0)Ra, -CH2S(=0)2Rb, -CH2S(=0)2NRaRa, -CH2S(=0)2N(Ra)C(=0)Ra, -CH2S(=0)2N(Ra)C(=0)ORa, -CH2S(=0)2N(Ra)C(=0)NRaRa, -CH2NRaRa, -CH2N(Ra)C(=0)Ra,
-CH2N(Ra)C(=0)ORa, -CH2N(Ra)C(=0)NRaRa, -CH2N(Ra)C(=NRa)NRaRa, -CH2N(Ra)S(=0)2Ra, -CH2N(Ra)S(=0)2NRaRa, -CH2NRaC2_6alkNRaRa,
-CH2NRaC2_6alkORa, -CH2RC, -C(=0)Rc and -C(=0)N(Ra)Rc; or R11 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci_6alk, Ci_4haloalk, cyano, nitro, -C(=0)Ra,
-C(=0)ORa, -C(=0)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=0)Ra, -OC(=0)NRaRa, -OC(=0)N(Ra)S(=0)2Ra, -OC2_6alkNRaRa, -OC2_6alkORa, -SRa, -S(=0)Ra, -S(=0)2Ra, -S(=0)2NRaRa, -S(=0)2N(Ra)C(=0)Ra, -S(=0)2N(Ra)C(=0)ORa, -S(=0)2N(Ra)C(=0)NRaRa, -NRaRa, -N(Ra)C(=0)Ra, -N(Ra)C(=0)ORa,
-N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=0)2Ra,
-N(Ra)S(=0)2NRaRa, -NRaC2_6alkNRaRa and -NRaC2_6alkORa;
Ra is independently, at each instance, H or Rb;
Rb is independently, at each instance, phenyl, benzyl or Ci_6alk, the phenyl, benzyl and Ci_6alk being substituted by 0, 1, 2 or 3 substituents selected from halo, Ci_4alk, Ci_3haloalk, -OH, -OCi_4alk, -NH2, -NHCi_4alk, -N(Ci_4alk)Ci_
4alk; and
Rc is a saturated or partially-saturated 4-, 5- or 6-membered ring containing 1, 2 or 3 heteroatoms selected from N, O and S, the ring being substituted by 0, 1, 2 or 3 substituents selected from halo, Ci_4alk, Ci_3haloalk, -OCi_4alk, -NH2, -NHCi_4alk, -N(Ci_4alk)Ci_4alk.
2. A method of treating rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases and autoimmune diseases, inflammatory bowel disorders, inflammatory eye disorders,
inflammatory or unstable bladder disorders, skin complaints with inflammatory components, chronic inflammatory conditions, autoimmune diseases, systemic lupus erythematosis (SLE), myestenia gravis, rheumatoid arthritis, acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiples sclerosis, Sjoegren's syndrome and autoimmune hemolytic anemia, allergic conditions and hypersensitivity, comprising the step of administering a compound according to Claim 1.
3. A method of treating cancers, which are mediated, dependent on or associated with pi 105 activity, comprising the step of administering a compound according to Claim 1.
4. A pharmaceutical composition comprising a compound according to Claim 1 and a pharmaceutically-acceptable diluent or carrier.
PCT/US2011/065354 2010-12-23 2011-12-16 Heterocyclic compounds and their uses WO2012087784A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013546246A JP2014501261A (en) 2010-12-23 2011-12-16 Heterocyclic compounds and their use
MX2013007261A MX2013007261A (en) 2010-12-23 2011-12-16 Heterocyclic compounds and their uses.
EP11808471.4A EP2655342A1 (en) 2010-12-23 2011-12-16 Heterocyclic compounds and their uses
US13/994,332 US20130267526A1 (en) 2010-12-23 2011-12-16 Heterocyclic compounds and their uses
AU2011349669A AU2011349669A1 (en) 2010-12-23 2011-12-16 Heterocyclic compounds and their uses
CA2822590A CA2822590A1 (en) 2010-12-23 2011-12-16 Heterocyclic compounds and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201061426789P 2010-12-23 2010-12-23
US61/426,789 2010-12-23

Publications (1)

Publication Number Publication Date
WO2012087784A1 true WO2012087784A1 (en) 2012-06-28

Family

ID=45478527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/065354 WO2012087784A1 (en) 2010-12-23 2011-12-16 Heterocyclic compounds and their uses

Country Status (7)

Country Link
US (1) US20130267526A1 (en)
EP (1) EP2655342A1 (en)
JP (1) JP2014501261A (en)
AU (1) AU2011349669A1 (en)
CA (1) CA2822590A1 (en)
MX (1) MX2013007261A (en)
WO (1) WO2012087784A1 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014072937A1 (en) 2012-11-08 2014-05-15 Rhizen Pharmaceuticals Sa Pharmaceutical compositions containing a pde4 inhibitor and a pi3 delta or dual pi3 delta-gamma kinase inhibitor
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
US8940752B2 (en) 2009-06-29 2015-01-27 Incyte Corporation Pyrimidinones as PI3K inhibitors
US9018221B2 (en) 2012-12-21 2015-04-28 Gilead Calistoga, Llc Phosphatidylinositol 3-kinase inhibitors
US9029384B2 (en) 2012-12-21 2015-05-12 Gilead Calistoga, LLC. Phosphatidylinositol 3-kinase inhibitors
US9062055B2 (en) 2010-06-21 2015-06-23 Incyte Corporation Fused pyrrole derivatives as PI3K inhibitors
US9096600B2 (en) 2010-12-20 2015-08-04 Incyte Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9108984B2 (en) 2011-03-14 2015-08-18 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as PI3K inhibitors
US9126948B2 (en) 2011-03-25 2015-09-08 Incyte Holdings Corporation Pyrimidine-4,6-diamine derivatives as PI3K inhibitors
US9193721B2 (en) 2010-04-14 2015-11-24 Incyte Holdings Corporation Fused derivatives as PI3Kδ inhibitors
US9199982B2 (en) 2011-09-02 2015-12-01 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9221795B2 (en) 2013-06-14 2015-12-29 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9309251B2 (en) 2012-04-02 2016-04-12 Incyte Holdings Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9403847B2 (en) 2009-12-18 2016-08-02 Incyte Holdings Corporation Substituted heteroaryl fused derivatives as P13K inhibitors
WO2016156294A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Triazol derivatives as fungicides
WO2016156290A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazole derivatives
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9668481B2 (en) 2013-04-12 2017-06-06 Bayer Cropscience Aktiengesellschaft Triazole derivatives
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
WO2018050456A1 (en) 2016-09-13 2018-03-22 Bayer Cropscience Aktiengesellschaft Active compound combinations comprising a 5-substituted imidazole derivative
WO2018060074A1 (en) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazolylmethyl derivatives
WO2018060073A1 (en) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazole derivatives
WO2018060075A1 (en) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft 1 -[2-(1 -chlorocyclopropyl)-2-hydroxy-3-(3-phenyl-1,2-oxazol-5-yl)propyl]-1h-imidazole-5-carbonitrile derivatives and related compounds as fungicides for crop protection
US9944639B2 (en) 2014-07-04 2018-04-17 Lupin Limited Quinolizinone derivatives as PI3K inhibitors
CN108017641A (en) * 2016-11-02 2018-05-11 叶宝欢 Pyrazolopyrimidine compound is as PI3K inhibitor and its application
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US10214519B2 (en) 2016-09-23 2019-02-26 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10227350B2 (en) 2016-09-23 2019-03-12 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
WO2019092086A1 (en) 2017-11-13 2019-05-16 Bayer Aktiengesellschaft Tetrazolylpropyl derivatives and their use as fungicides
US10336759B2 (en) 2015-02-27 2019-07-02 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US10479770B2 (en) 2016-09-23 2019-11-19 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011329806A1 (en) * 2010-11-17 2013-05-30 Amgen Inc. Quinoline derivatives as PIK3 inhibitors
WO2013090725A1 (en) * 2011-12-15 2013-06-20 Philadelphia Health & Education Corporation NOVEL PI3K p110 INHIBITORS AND METHODS OF USE THEREOF
CA3198943A1 (en) 2020-11-18 2022-05-27 Daniel L. Flynn Gcn2 and perk kinase inhibitors and methods of use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039051A2 (en) 1980-04-24 1981-11-04 Merck & Co. Inc. Mannich-base hydroxamic acid prodrugs for the improved bioavailability of non-steroidal anti-inflammatory agents, a process for preparing and a pharmaceutical composition containing them
EP0041181A2 (en) 1980-05-29 1981-12-09 Herzog, Thomas, Prof. Dr. Curtain wall or building or decorative panel
WO1996025488A1 (en) 1995-02-17 1996-08-22 The Regents Of The University Of California A constitutively active phosphatidylinositol 3-kinase and uses thereof
WO1997046688A1 (en) 1996-06-01 1997-12-11 Ludwig Institute For Cancer Research Lipid kinase
US5822910A (en) 1997-10-02 1998-10-20 Shewmake; I. W. Fishing line tensioning device
US5858753A (en) 1996-11-25 1999-01-12 Icos Corporation Lipid kinase
WO2008118455A1 (en) * 2007-03-23 2008-10-02 Amgen Inc. δ3- SUBSTITUTED QUINOLINE OR QUINOXALINE DERIVATIVES AND THEIR USE AS PHOSPHATIDYLINOSITOL 3-KINASE ( PI3K) INHIBITORS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201111362A (en) * 2009-06-25 2011-04-01 Amgen Inc Heterocyclic compounds and their uses

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039051A2 (en) 1980-04-24 1981-11-04 Merck & Co. Inc. Mannich-base hydroxamic acid prodrugs for the improved bioavailability of non-steroidal anti-inflammatory agents, a process for preparing and a pharmaceutical composition containing them
EP0041181A2 (en) 1980-05-29 1981-12-09 Herzog, Thomas, Prof. Dr. Curtain wall or building or decorative panel
WO1996025488A1 (en) 1995-02-17 1996-08-22 The Regents Of The University Of California A constitutively active phosphatidylinositol 3-kinase and uses thereof
WO1997046688A1 (en) 1996-06-01 1997-12-11 Ludwig Institute For Cancer Research Lipid kinase
US5858753A (en) 1996-11-25 1999-01-12 Icos Corporation Lipid kinase
US5985589A (en) 1996-11-25 1999-11-16 Icos Corporation Lipid kinase
US5822910A (en) 1997-10-02 1998-10-20 Shewmake; I. W. Fishing line tensioning device
WO2008118455A1 (en) * 2007-03-23 2008-10-02 Amgen Inc. δ3- SUBSTITUTED QUINOLINE OR QUINOXALINE DERIVATIVES AND THEIR USE AS PHOSPHATIDYLINOSITOL 3-KINASE ( PI3K) INHIBITORS

Non-Patent Citations (63)

* Cited by examiner, † Cited by third party
Title
"Bundgaard Design of Prodrugs", 1985, ELSEVIER
AL-ALWAN, JI, vol. 178, 2007, pages 2328 - 2335
ALI ET AL., NATURE, vol. 431, 2002, pages 1007 - 1011
BARBCR, NATURE MEDICINE, vol. 11, pages 933 - 935
BERGE ET AL., J. PHARM. SCI., vol. 66, 1977, pages 1
BI ET AL., J.BIOL.CHEM., vol. 274, 1999, pages 10963 - 10968
BI ET AL., MAMM.GENOME, vol. 13, 2002, pages 169 - 172
BUNDGAARD: "Design of Prodrugs", 1985, ELSEVIER
BUNGAARD, J. MED. CHEM., 1989, pages 2503
BURGERING ET AL., NATURE, vol. 376, 1995, pages 599 - 602
CAMPS ET AL., NATURE, vol. 11, 2005, pages 936 - 943
CANTLEY, SCIENCE, vol. 296, 2002, pages 1655 - 1657
CHANTRY ET AL., J BIOL CHEM, vol. 272, 1997, pages 19236 - 41
CLAYTON ET AL., J.EXP.MED., vol. 196, 2002, pages 753 - 763
CONDLIFFE ET AL., BLOOD, vol. 106, 2005, pages 1432 - 1440
DEANE; FRUMAN, ANNU.REV.IMMUNOI., vol. 22, 2004, pages 563 - 598
DEANE; FRUMAN, ANNU.REV.IMMUNOL., vol. 22, 2004, pages 563 - 598
FOUKAS ET AL., NATURE, vol. 441, 2006, pages 366 - 370
FRASER ET AL., SCIENCE, vol. 251, 1991, pages 313 - 16
FRUMAN ET AL., ANN REV BIOCHEM, vol. 67, 1998, pages 481 - 507
HENNESSY ET AL., NATURE REVIEWS, vol. 4, 2005, pages 988 - 1004
HILES ET AL., CELL, vol. 70, 1992, pages 419 - 29
HU ET AL., MOL CELL BIOL, vol. 13, 1993, pages 7677 - 88
HUNTER, CELL, vol. 83, 1995, pages 1 - 4
ITO ET AL., J. PHARM. EXP. THERAPEUT., vol. 321, 2007, pages 1 - 8
ITO ET AL., J.PHARM.EXP.THERAPEUT., vol. 321, 2007, pages 1 - 8
JACKSON ET AL., NATURE MED., vol. 11, 2005, pages 507 - 514
JOU ET AL., INT.J.IMMUNOGENET., vol. 33, 2006, pages 361 - 369
KLIPPEL ET AL., MOL CELL BIOL, vol. 14, 1994, pages 2675 - 85
KNIGHT ET AL., CELL, vol. 125, 2006, pages 733 - 747
KRUGMANN ET AL., J BIOL CHEM, vol. 274, 1999, pages 17152 - 8
LEE ET AL., FASEB, vol. 20, 2006, pages 455 - 465
LEE ET AL., PNAS, vol. 103, 2006, pages 1289 - 1294
LEMMON ET AL., TRENDS CELL BIOL, vol. 7, 1997, pages 237 - 42
LI ET AL., SCIENCE, vol. 287, 2000, pages 1046 - 1049
NASHED ET AL., EUR.J.IMMUNOL., vol. 37, 2007, pages 416 - 424
OKKENHAUG ET AL., J.IMMUNOL., vol. 177, 2006, pages 5122 - 5128
OKKENHAUG ET AL., JI, vol. 177, 2006, pages 5122 - 5128
OKKENHAUG ET AL., SCIENCE, vol. 297, 2002, pages 1031 - 1034
OTSU ET AL., CELL, vol. 65, 1991, pages 91 - 104
PAGES ET AL., NATURE, vol. 369, 1994, pages 327 - 29
PANAYOTOU ET AL., TRENDS CELL BIOL, vol. 2, 1992, pages 358 - 60
PARKER ET AL., CURRENT BIOLOGY, vol. 5, 1995, pages 577 - 99
PATRUCCO ET AL., CELL, vol. 118, 2004, pages 375 - 387
RAMEH ET AL., CELL, vol. 83, 1995, pages 821 - 30
RAMEH ET AL., J. BIOL CHEM, vol. 274, 1999, pages 8347 - 8350
RUDD, IMMUNITY, vol. 4, 1996, pages 527 - 34
RUECKLE ET AL., NATURE REVIEWS, vol. 5, 2006, pages 903 - 918
SASAKI ET AL., SCIENCE, vol. 287, 2000, pages 1040 - 1046
SAWYCR, CANCER RCS., vol. 63, 2003, pages 1667 - 1675
SCHAEFFER; SCHWARTZBERG, CURR.OPIN.IMMUNOL., vol. 12, 2000, pages 282 - 288
STERNMARK ET AL., J CELL SCI, vol. 112, 1999, pages 4175 - 83
STOYANOV ET AL., SCIENCE, vol. 269, 1995, pages 690 - 93
SUIRE ET AL., CURR.BIOL., vol. 15, 2005, pages 566 - 570
SVENSSON; TUNEK, DRUG METABOLISM REVIEWS, 1988, pages 165
THELEN ET AL., PROC NATL ACAD SCI USA, vol. 91, 1994, pages 4960 - 64
VANHAESEBROECK ET AL., ANNU.REV.BIOCHEM, vol. 70, 2001, pages 535 - 602
VANHAESEBROECK ET AL., PROC NAT. ACAD SCI USA, vol. 94, 1997, pages 4330 - 5
VOGT ET AL., VIROLOGY, vol. 344, 2006, pages 131 - 138
VOIGT ET AL., JBC, vol. 281, 2006, pages 9977 - 9986
VOLINIA ET AL., ONCOGENE, vol. 7, 1992, pages 789 - 93
YAO ET AL., SCIENCE, vol. 267, 1995, pages 2003 - 05
ZONG, R., J. ORG. CHEM., vol. 73, 2008, pages 4334 - 4337

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9975907B2 (en) 2009-06-29 2018-05-22 Incyte Holdings Corporation Pyrimidinones as PI3K inhibitors
US9434746B2 (en) 2009-06-29 2016-09-06 Incyte Corporation Pyrimidinones as PI3K inhibitors
US8940752B2 (en) 2009-06-29 2015-01-27 Incyte Corporation Pyrimidinones as PI3K inhibitors
US10428087B2 (en) 2009-06-29 2019-10-01 Incyte Corporation Pyrimidinones as PI3K inhibitors
US11401280B2 (en) 2009-06-29 2022-08-02 Incyte Holdings Corporation Pyrimidinones as PI3K inhibitors
US10829502B2 (en) 2009-06-29 2020-11-10 Incyte Corporation Pyrimidinones as PI3K inhibitors
US9403847B2 (en) 2009-12-18 2016-08-02 Incyte Holdings Corporation Substituted heteroaryl fused derivatives as P13K inhibitors
US9193721B2 (en) 2010-04-14 2015-11-24 Incyte Holdings Corporation Fused derivatives as PI3Kδ inhibitors
US9062055B2 (en) 2010-06-21 2015-06-23 Incyte Corporation Fused pyrrole derivatives as PI3K inhibitors
US9815839B2 (en) 2010-12-20 2017-11-14 Incyte Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9096600B2 (en) 2010-12-20 2015-08-04 Incyte Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9527848B2 (en) 2010-12-20 2016-12-27 Incyte Holdings Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9108984B2 (en) 2011-03-14 2015-08-18 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as PI3K inhibitors
US9126948B2 (en) 2011-03-25 2015-09-08 Incyte Holdings Corporation Pyrimidine-4,6-diamine derivatives as PI3K inhibitors
US10646492B2 (en) 2011-09-02 2020-05-12 Incyte Corporation Heterocyclylamines as PI3K inhibitors
US10376513B2 (en) 2011-09-02 2019-08-13 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9707233B2 (en) 2011-09-02 2017-07-18 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US10092570B2 (en) 2011-09-02 2018-10-09 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US11819505B2 (en) 2011-09-02 2023-11-21 Incyte Corporation Heterocyclylamines as PI3K inhibitors
US11433071B2 (en) 2011-09-02 2022-09-06 Incyte Corporation Heterocyclylamines as PI3K inhibitors
US9199982B2 (en) 2011-09-02 2015-12-01 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9730939B2 (en) 2011-09-02 2017-08-15 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US10259818B2 (en) 2012-04-02 2019-04-16 Incyte Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US9944646B2 (en) 2012-04-02 2018-04-17 Incyte Holdings Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US9309251B2 (en) 2012-04-02 2016-04-12 Incyte Holdings Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
WO2014072937A1 (en) 2012-11-08 2014-05-15 Rhizen Pharmaceuticals Sa Pharmaceutical compositions containing a pde4 inhibitor and a pi3 delta or dual pi3 delta-gamma kinase inhibitor
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9018221B2 (en) 2012-12-21 2015-04-28 Gilead Calistoga, Llc Phosphatidylinositol 3-kinase inhibitors
US9266878B2 (en) 2012-12-21 2016-02-23 Gilead Calistoga Llc Phosphatidylinositol 3-kinase inhibitors
US9029384B2 (en) 2012-12-21 2015-05-12 Gilead Calistoga, LLC. Phosphatidylinositol 3-kinase inhibitors
US9550752B2 (en) 2013-04-12 2017-01-24 Bayer Cropscience Aktiengesellschaft Triazolinthione derivatives
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
US9822099B2 (en) 2013-04-12 2017-11-21 Bayer Cropscience Aktiengesellschaft Triazole derivatives
US9668481B2 (en) 2013-04-12 2017-06-06 Bayer Cropscience Aktiengesellschaft Triazole derivatives
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9221795B2 (en) 2013-06-14 2015-12-29 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US11130767B2 (en) 2014-06-11 2021-09-28 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US11999751B2 (en) 2014-06-11 2024-06-04 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US10479803B2 (en) 2014-06-11 2019-11-19 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US9944639B2 (en) 2014-07-04 2018-04-17 Lupin Limited Quinolizinone derivatives as PI3K inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11084822B2 (en) 2015-02-27 2021-08-10 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US10336759B2 (en) 2015-02-27 2019-07-02 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US12024522B2 (en) 2015-02-27 2024-07-02 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
WO2016156290A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazole derivatives
WO2016156294A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Triazol derivatives as fungicides
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US10125150B2 (en) 2015-05-11 2018-11-13 Incyte Corporation Crystalline forms of a PI3K inhibitor
WO2018050456A1 (en) 2016-09-13 2018-03-22 Bayer Cropscience Aktiengesellschaft Active compound combinations comprising a 5-substituted imidazole derivative
US10227350B2 (en) 2016-09-23 2019-03-12 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10214519B2 (en) 2016-09-23 2019-02-26 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10479770B2 (en) 2016-09-23 2019-11-19 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
WO2018060073A1 (en) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazole derivatives
WO2018060074A1 (en) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazolylmethyl derivatives
WO2018060075A1 (en) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft 1 -[2-(1 -chlorocyclopropyl)-2-hydroxy-3-(3-phenyl-1,2-oxazol-5-yl)propyl]-1h-imidazole-5-carbonitrile derivatives and related compounds as fungicides for crop protection
CN108017641A (en) * 2016-11-02 2018-05-11 叶宝欢 Pyrazolopyrimidine compound is as PI3K inhibitor and its application
EP3527572A4 (en) * 2016-11-02 2019-10-09 Shenzhen Bo Li Jian Medicine Co., Ltd. Pyrazolopyrimidine compound as pi3k inhibitor and use thereof
AU2017352704B2 (en) * 2016-11-02 2020-10-15 Shenzhen Bo Li Jian Medicine Co., LTD. Pyrazolopyrimidine compound as PI3K inhibitor and use thereof
US10702531B2 (en) 2016-11-02 2020-07-07 Shenzhen Bo Li Jian Medicine Co., LTD. Pyrazolopyrimidine compound as PI3K inhibitor and use thereof
KR102264189B1 (en) 2016-11-02 2021-06-10 선전 보 리 ?? 메디슨 컴퍼니 리미티드 Pyrazolopyrimidine compounds as PI3K inhibitors and uses thereof
KR20190066072A (en) * 2016-11-02 2019-06-12 선전 보 리 ? 메디슨 컴퍼니 리미티드 Pyrazolopyrimidine compounds which are PI3K inhibitors and their uses
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
WO2019092086A1 (en) 2017-11-13 2019-05-16 Bayer Aktiengesellschaft Tetrazolylpropyl derivatives and their use as fungicides
US12024517B2 (en) 2018-05-04 2024-07-02 Incyte Corporation Salts of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Also Published As

Publication number Publication date
US20130267526A1 (en) 2013-10-10
CA2822590A1 (en) 2012-06-28
AU2011349669A1 (en) 2013-07-11
MX2013007261A (en) 2013-11-04
JP2014501261A (en) 2014-01-20
EP2655342A1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US8754089B2 (en) Heterocyclic compounds and their uses
US7919498B2 (en) Substituted pyrazolo[3,4-d]pyrimidines as PI3K inhibitors
AU2010330875B2 (en) Heterocyclic compounds and their uses
AU2008231385B2 (en) Delta3- substituted quinoline or quinoxaline derivatives and their use as phosphatidylinositol 3-kinase ( PI3K) inhibitors
EP2655342A1 (en) Heterocyclic compounds and their uses
AU2011271460B2 (en) Heterocyclic compounds and their use as inhibitors of P13K activity
WO2012068343A1 (en) Quinoline derivatives as pik3 inhibitors
EP2588469A1 (en) Heterocyclic compounds and their use as inhibitors of pi3k activity
US20130079342A1 (en) Heterocyclic compounds and their uses
US8686137B2 (en) Heterocyclic compounds and their uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11808471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13994332

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2822590

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013546246

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/007261

Country of ref document: MX

Ref document number: 2011808471

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011349669

Country of ref document: AU

Date of ref document: 20111216

Kind code of ref document: A