WO2012083998A1 - Process for catalytic cracking of a lipid-containing feedstock derived from microalgae to produce hydrocarbons - Google Patents

Process for catalytic cracking of a lipid-containing feedstock derived from microalgae to produce hydrocarbons Download PDF

Info

Publication number
WO2012083998A1
WO2012083998A1 PCT/EP2010/070203 EP2010070203W WO2012083998A1 WO 2012083998 A1 WO2012083998 A1 WO 2012083998A1 EP 2010070203 W EP2010070203 W EP 2010070203W WO 2012083998 A1 WO2012083998 A1 WO 2012083998A1
Authority
WO
WIPO (PCT)
Prior art keywords
preferably
microalgae
lipid
wt
feedstock
Prior art date
Application number
PCT/EP2010/070203
Other languages
French (fr)
Inventor
Colin John Schaverien
Nicolaas Wilhelmus Joseph Waij
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Priority to PCT/EP2010/070203 priority Critical patent/WO2012083998A1/en
Publication of WO2012083998A1 publication Critical patent/WO2012083998A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing or organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing or organic materials, e.g. fatty oils, fatty acids
    • C10G3/62Catalyst regeneration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Bio-feedstock

Abstract

The present invention provides a process for catalytic cracking of a lipid-containing feedstock, the process comprising contacting the lipid-containing feedstock with at least one cracking catalyst at a temperature of at least 450°C, to obtain a product stream; and separating at least one hydrocarbon fraction from the product stream, wherein the lipid-containing feedstock comprises lipids derived from microalgae and further comprises a hydrocarbon feedstock.

Description

PROCESS FOR CATALYTIC CRACKING OF A LIPID-CONTAINING FEEDSTOCK DERIVED FROM MICROALGAE TO PRODUCE HYDROCARBONS

FIELD OF THE INVENTION

The present invention relates to a process for catalytic cracking of a lipid-containing feedstock.

BACKGROUND OF THE INVENTION

Various processes for catalytic cracking of heavy hydrocarbons are known in the art. In these processes, heavy hydrocarbons, such as heavy oils and vacuum residues, are brought in contact with a cracking catalyst and are converted into lighter products having lower boiling points. Exemplary descriptions of such processes have been provided for instance in US4917790 and in US6905591.

However, with the diminishing supply of crude oil, use of renewable energy sources is becoming increasingly important for the production of chemicals and fuels.

Plant and animal biomass, are being used to produce liquid and gaseous fuels through the catalytic cracking process. One of the advantages of using biomass is that the C02 balance is more favourable as compared with the conventional hydrocarbon feedstock.

US2009/0047721 describes a process for producing hydrocarbons for use in diesel and jet fuels by

subjecting lipids derived from algae to a catalytic cracking process. However, the products obtained through this cracking process predominantly include a mixture of

C2 to C5 olefins and need additional chemical treatment to produce usable fuel products.

EP1970425 describes a process for producing gaseous and liquid fuels by cracking lipids derived from high viscosity carbon-based energy carrier materials and WO-A- 2009/000838, describes a process for producing bio oils by cracking of lipids derived from aquatic biomass.

However, these references disclose using a cracking temperature of below 450°C, and only yield products in low yields and with limited selectivity.

Kitazato et al . describe in their article titled "Catalytic cracking of hydrocarbons from microalgae", International Chemical Engineering, Volume 31, no 3, July 1991, a process for the production of gasoline by catalytic cracking of hydrocarbons obtained from the microalgae Botryococcus braunii Berkeley (a green algae). For the catalytic cracking process a commercial FCC zeolite was used. Exemplified reaction conditions included temperatures in the range from 450 to 500°C. Also Kitazato et al . teach, however, that low

temperatures of cracking (below 450°C) are necessary to ensure a high yield of gasoline. In addition, the use of a catalyst comprising 100 wt% zeolite is too expensive for commercial operation.

EP2053115 relates to a method of processing biomass by catalytic cracking in a fluidized catalytic cracker to gasoline and diesel fuels. The biomass is said to be an oil or fat of plant or animal origin. Examples that are mentioned include palm oil, rapeseed oil, corn oil, soybean oil, and grapeseed oil and animal fats like lard.

In passing, EP2053115 mentions that the the biomass can be can be processed alone or in a mixture of such biomass with mineral oil. EP2053115 does not mention microalgae as a feedstock.

It would be an advancement in the art if a process would be provided for catalytic cracking of biomass with improved efficacy. SUMMARY OF THE INVENTION

Accordingly, the present invention provides a process for catalytic cracking of a lipid-containing feedstock, the process comprising contacting the lipid- containing feedstock with at least one cracking catalyst at a temperature of at least 450 °C, to obtain a product stream; and separating at least one hydrocarbon fraction from the product stream, wherein the lipid-containing feedstock comprises lipids derived from microalgae and further comprises a hydrocarbon feedstock.

According to a further embodiment, the present invention provides a gasoline product prepared from a hydrocarbon fraction of the at least one hydrocarbon fraction .

According to another embodiment, the present

invention provides a gasoline composition comprising a gasoline product prepared from a hydrocarbon fraction of the at least one hydrocarbon fraction, less than 1000 ppmw sulphur, and one or more additives.

According to yet another embodiment, the present invention provides a liquefied gaseous fuel composition comprising a liquefied gaseous fuel product prepared from a hydrocarbon fraction of the at least one hydrocarbon fraction, less than 1000 ppmw sulphur, and one or more additives .

Surprisingly it was found that, when cofeeding lipids derived from microalgae and a hydrocarbon

feedstock, contrary to the teachings in the prior art, a higher cracking temperature gives a higher conversion and hence more valuable lighter products (that is, more products having a boiling point below 221 °C such as, for example, LPG and gasoline) . The process according to the invention is further advantageous because microalgae have high growth rates, utilise a large fraction of solar energy and can grow in conditions that are not favourable for terrestrial biomass. Additionally, microalgae consume C02 at a high rate, and may reduce the carbon footprint of the overall proces s .

The advantage of co-feeding the lipids derived from microalgae and the hydrocarbon feedstock is that the properties of the product stream can be adjusted. For example, it has been found that the process of the invention can be used to produce gasoline having improved RON octane numbers .

In addition, the co-fed hydrocarbon feedstock provides a readily available source of hydrogen to assist in eliminating oxygen present in the lipids derived from microalgae .

Further the polar nature of the lipids, when mixed with the hydrocarbon feedstock, may improve solubility of other, otherwise poorly miscible, components.

DETAILED DESCRIPTION OF THE INVENTION

It has now been found that cracking of a lipid- containing feedstock, that comprises lipids derived from microalgae and further comprises a hydrocarbon feedstock, over a cracking catalyst at a temperature of at least 450 °C results in a desirable product stream.

Microalgae as referred to in the present invention are a large and diverse group of usually autotrophic microorganisms that can be unicellular or multicellular. The microalgae preferably have a diameter smaller than 1 mm, more preferably a diameter smaller than 0.6 mm and still more preferably a diameter smaller than 0.4 mm. The diameter is measured at its largest point. Most preferably the microorganism comprises a diameter in the range from 0.5 to 200 micrometer, even more preferably in the range from 1 to 100 micrometer. The microalgae can be cultivated under difficult agro-climatic conditions, including cultivation in freshwater, saline water, moist earth, dry sand and other open-culture conditions known in the art. The microalgae can also be cultivated and genetically engineered in controlled closed-culture systems, for example, in closed bioreactors. Preferably, the microalgae used in the present invention are marine microalgae cultivated in fresh water, saline water or other moist conditions, more preferably marine microalgae cultivated in saline water . Yet more preferably, the marine microalgae are cultivated in open-culture

conditions, for example, in open ponds. These marine microalgae can include members from various divisions of algae, including diatoms, pyrrophyta, ochrophyta, chlorophyta, euglenophyta, dinoflagellata, chrysophyta, phaeophyta, rhodophyta and cyanobacteria . Preferably, the marine microalgae are members from the diatoms or ochrophyta division, more preferably from the raphid, araphid, and centric diatom family.

Lipids as referred to in the present invention are a group of naturally occurring compounds that are usually hydrophobic in nature and contain long-chain aliphatic hydrocarbons and their derivatives such as fatty acids, alcohols, amines, amino alcohols and aldehydes. The lipid-containing feedstock as disclosed in the invention includes lipids derived from marine microalgae. These lipids include monoglycerides , diglycerides and

triglycerides, which are esters of glycerol and fatty acids, and phospholipids, which are esters of glycerol and phosphate group-substituted fatty acids . The fatty acid moiety in the lipids used in the invention ranges from 4 carbon atoms to 30 carbon atoms, and includes saturated fatty acids containing one, two or three double bonds . Preferably, the fatty acid moiety includes 8 carbon atoms to 26 carbon atoms, more

preferably the fatty acid moiety includes 10 carbon atoms to 25 carbon atoms, again more preferably the fatty acid moiety includes 12 carbon atoms to 23 carbon atoms, and yet more preferably 14 carbon atoms to 20 carbon atoms. The lipids may contain variable amounts of free fatty acids and/or esters, both of which may also be converted into hydrocarbons during the process of this invention. In one embodiment the lipids may be composed of natural glycerides only. Alternatively, the lipids may also include carotenoids, hydrocarbons, phosphatides, simple fatty acids and their esters, terpenes, sterols, fatty alcohols, tocopherols, polyisoprene, carbohydrates and proteins. It is to be understood that for the purpose of this invention, a mixture of lipids extracted from different microalgae sources can also be used in the lipid-containing feedstock.

The microalgae may be processed to extract lipids using processes known in the art. The said processes may include the steps of harvesting the microalgae,

dewatering the microalgae, disrupting the microalgae 's cell walls to liberate lipids, and then extracting the lipids using solvents, supercritical fluids or other extraction processes. In a preferred embodiment, the microalgae are cultivated, harvested, dried, milled and then lipids are extracted using a water immiscible solvent at 25 °C. Suitable solvents for the extraction are organic solvents such as aromatic or aliphatic hydrocarbons, higher alcohols, ethers and esters. Examples for such solvents are toluene, hexane, heptane, dimethyl ether, acetic acid ester and mixtures thereof. Other solvents include supercritical liquids, such as supercritical carbon dioxide.

The extracted lipids may conveniently be isolated by evaporating the solvent, or by other methods, such as membrane separation.

Preferably, the lipid-containing feedstock includes lipids in the range of 1 wt% to 50 wt%, more preferably in the range of 2 wt% to 40 wt%, more preferably in the range of 3 wt% to 30 wt%, and yet more preferably in the range of 5 wt% to 20 wt%, based on the total weight of lipid-containing feedstock.

The lipid-containing feedstock further comprises a hydrocarbon feedstock. That is, the lipids (also referred to as lipid feedstock) may be co-fed together with a hydrocarbon feedstock. The co-feeding may be attained by blending the two feedstock streams prior to entry into the cracking unit, or alternatively, by adding them at different stages.

The hydrocarbon feedstock preferably comprises hydrocarbons with a boiling point of at least 220°C, as measured by Gas Chromatograph Distillation (GCD)

according to ASTM D-6352-98. Preferably, the boiling points range from 220 °C to 650 °C, more preferably from

300 °C to 600 °C. Furthermore, the hydrocarbon feedstock preferably has an initial boiling point above 180 °C, as measured by Gas Chromatograph Distillation (GCD)

according to the methods described in ASTM D-6352-98.

In one embodiment the hydrocarbon feedstock includes hydrocarbons having a mineral origin. Preferably such hydrocarbon feedstock comprises a mineral oil or a derivative of a mineral oil. The hydrocarbon feedstock may be a conventional fluid catalytic cracking feedstock. Examples of the hydrocarbon feedstock include high boiling, non-residual oils such as straight run

(atmospheric) gas oils, vacuum gas oils, flashed

distillate, coker gas oils, or atmospheric residue ('long residue') and vacuum residue ('short residue') .

In another embodiment the hydrocarbon feedstock may include a paraffinic feedstock, for example, an

optionally hydroisomerised fraction of the synthesis product of a Fischer-Tropsch reaction, or the fraction boiling above the middle distillate boiling range of the effluent of fuel hydrocracker, also referred to as hydrowax. An advantage of using said paraffinic feedstock in admixture with the lipids is that the aromatic content of gasoline fraction, can be reduced by co-processing the paraffinic feedstock. It has been found that on cracking a paraffinic feedstock a gasoline having a very low aromatic content can be obtained.

Further, lipids derived from other biomass sources such as plant and vegetable oils may also be added to the lipid-containing feedstock as an additional cracking feedstock .

Preferably, the total feed going into the catalytic cracking unit may comprise the hydrocarbon feedstock in the range of 50 wt% to 99wt%, preferably in the range from 60 wt% to 98wt%, more preferably 70 wt% to 98 wt%, more preferably 70 wt% to 97 wt%, most preferably in the range of 80 wt% to 95 wt% based on the total weight of lipid-containing feedstock, the remainder being the lipid feedstock.

The process of catalytic cracking of the lipid- containing feedstock according to the invention preferably comprises a catalytic cracking step, which may be followed with a regeneration step.

More preferably the catalytic cracking process includes a catalytic cracking step, in which the cracking reaction takes place in the presence of a catalyst; a regeneration step, in which the catalyst is regenerated, for example by burning off the coke deposited on the catalyst as a result of the reaction, to restore the catalytic

activity; and a recycle step, wherein the regenerated catalyst is recycled to the catalytic cracking step. The heat generated in the exothermic regeneration step is preferably employed to provide energy for the endothermic cracking step. Further, it is preferred to include a stripping step between the cracking and the regeneration steps to remove cracking products from the catalyst by stripping before regeneration.

The catalytic cracking step comprises contacting the lipid-containing feedstock with a cracking catalyst, preferably in the reaction zone of a fluidized catalytic cracking (FCC) apparatus. The reaction temperature preferably ranges from equal to or more than 450 °C to equal to or less than 650 °C, more preferably from equal to or more than 480 °C to equal to or less than 600 °C, and most preferably from equal to or more than 480 °C to equal to or less than 560 °C. The pressure in the reaction zone preferably ranges from equal to or more than 0.5 bar to equal to or less than 10 bar (0.05

MPa-1 MPa) , more preferably from equal to or more than 1.0 bar to equal to or less than 6 bar (0.15 MPa to 0.6 MPa) . The residence time of the cracking catalyst in the reaction zone preferably ranges from equal to or more than 0.1 seconds to equal to or less than 15 seconds, more preferably from equal to or more than 0.5 seconds to equal to or less than 10 seconds. The product stream obtained from the cracking step may be separated into one or more hydrocarbon fractions using, for example, a fractionator .

Preferably, a catalyst to lipid-containing feedstock mass ratio ranging from equal to or more than 3 to equal to or less than 8 is used. Preferably, the catalyst to feedstock mass ratio used is at least 3.5. The use of a higher catalyst to feedstock mass ratio results in an increase in conversion.

The process according to the invention further preferably comprises a catalyst regeneration step. A regeneration step preferably may comprise burning off the coke to restore the catalyst activity by combusting the cracking catalyst in the presence of an oxygen-containing gas in a regenerator. The regeneration temperature preferably ranges from equal to or more than 575 °C to equal to or less than 950 °C, more preferably from equal to or more than 600 °C to equal to or less than 850 °C. The pressure in the regenerator preferably ranges from equal to or more than 0.5 bar to equal to or less than 10 bar (0.05 Mpa to 1 MPa), more preferably from equal to or more than 1.0 bar to equal to or less than 6 bar (0.1 MPa to 0.6 MPa

Cracking catalysts suitable for use in the process according to the invention are well known in the art. Preferably, the cracking catalyst comprises a zeolitic component, and more preferably, an amorphous binder.

Examples of such binder materials include silica, alumina, titania, zirconia and magnesium oxide, or combinations of two or more of them.

The zeolite is preferably a large pore zeolite. The large pore zeolite includes a zeolite comprising a porous, crystalline aluminosilicate structure having a porous internal cell structure on which the major axis of the pores is in the range of 0.62 nanometer to

0.8 nanometer. The axes of zeolites are depicted in the 'Atlas of Zeolite Structure Types', of W.M. Meier,

D.H. Olson, and Ch . Baerlocher, Fourth Revised

Edition 1996, Elsevier, ISBN 0-444-10015-6. Examples of such large pore zeolites include FAU or faujasite, preferably synthetic faujasite, for example, zeolite Y or X, ultra-stable zeolite Y (USY), Rare Earth zeolite Y

(= REY) and Rare Earth USY (REUSY) . According to the present invention USY is preferably used as the large pore zeolite.

The cracking catalyst can also comprise a medium pore zeolite. The medium pore zeolite that can be used according to the present invention is a zeolite

comprising a porous, crystalline aluminosilicate

structure having a porous internal cell structure on which the major axis of the pores is in the range of 0.45 nanometer to 0.62 nanometer. Examples of such medium pore zeolites are of the MFI structural type, for example, ZSM-5; the MTW type, for example, ZSM-12; the TON structural type, for example, theta one; and the FER structural type, for example, ferrierite. According to the present invention, ZSM-5 is preferably used as the medium pore zeolite.

According to another embodiment, a blend of large pore and medium pore zeolites may be used. The ratio of the large pore zeolite to the medium pore size zeolite in the cracking catalyst is preferably in the range of 99:1 to 70:30, more preferably in the range of 98:2 to 85:15.

The total amount of the large pore size zeolite and/or medium pore zeolite that is present in the cracking catalyst is preferably in the range of 5 wt% to 40 wt%, more preferably in the range of 10 wt% to 30 wt%, and even more preferably in the range of 10 wt% to 25 wt% relative to the total mass of the cracking catalyst, the remainder being amorphous binder .

According to the invention, the reaction zone is usually an elongated tube-like reactor, preferably a vertical reactor in which the lipid-containing feedstock and the cracking catalyst flow in an upward direction. The lipid-containing feedstock and the cracking catalyst may also flow in a downward direction. Combinations of downward and upward flow are also within the scope of the present invention. The lipid-containing feedstock and the cracking catalyst may be contacted in counterflow or crossflow configurations.

According to an embodiment of the invention, the C02 produced in the cracking step and the catalyst

regeneration step may be reused for cultivation and propagation of the microalgae being used in the process. This process integration preferably mitigates the emissions from the overall process and facilitates cultivation of microalgae.

The product stream can comprise products that may include gaseous hydrocarbons with four or less carbon atoms, gasoline, diesel, cycle oils and other

hydrocarbons .

The product stream, comprising cracked hydrocarbons, obtained from the FCC apparatus is preferably sent to a fractionation zone, where it is separated into one or more hydrocarbon fractions. Preferably, these hydrocarbon fractions include dry gas, propylene, Liquefied Petroleum Gas (LPG), gasoline, light cycle oils and coke. According to an embodiment, the product stream composition includes a gasoline fraction ranging from 30 wt% to 60 wt%, preferably from 40 wt% to 50 wt%, based on the total product stream composition, as measured by Gas

Chromatograph Distillation (GCD) according to the methods described in ASTM D-2887. Further, the total product stream composition includes a LPG fraction ranging from 5 wt% to 20 wt%, preferably from 10 wt% to 15 wt% of the total product stream composition (ASTM D-2887) .

These hydrocarbon fractions may undergo further processing before they are provided for commercial use.

Examples of the said processing may include

desulphurisation, cracking of heavier fractions and addition of additives.

The commercial products obtained from these

hydrocarbon fractions are also within the scope of the invention. For example, the gasoline fraction may be desulphurised to reduce the sulphur content to less than 1000 ppmw, preferably to less than 500 ppmw, more preferably to less than 200 ppmw to prepare a gasoline product. One or more additives may be added to the desulphurised gasoline product to prepare a gasoline composition for commercial use. The additives may include performance enhancers such as anti-oxidants, corrosion inhibitors, ashless detergents, dehazers, dyes, lubricity improvers, synthetic or mineral oil carrier fluids.

Examples of such suitable additives may also be

identified in US-5855629, which is incorporated herein by reference. For the purpose of the invention, it should be understood that the one or more additives can be added separately to the gasoline product or can be blended with one or more diluents, forming an additive concentrate, and together added to the gasoline product . The gasoline composition according to the invention preferably comprises a major amount (more than 50 wt%) of the gasoline product and a minor amount of the one or more additives described above, preferably ranging from 0.005 wt% to 10 wt%, more preferably from 0.01 wt% to 5wt%, and most preferably from 0.02 wt% to 1 wt%, based on the gasoline composition.

It may be understood that processing of the

aforementioned hydrocarbon fractions is well known in the art and is in no way limiting to the scope of the invention. While some of the methods have been described herein, several other processes may be used to convert the hydrocarbon fractions into commercially usable products. These processes may include isomerisation, cracking into more valuable lighter products, blending with other fuels for commercial use, and other similar uses that have been disclosed in the art.

The invention is further illustrated by the

following experiments .

Experiment 1

A batch of marine microalgae of species Chlorella was partially dried and milled. Lipids were then

extracted from the marine microalgae using toluene as a solvent in a solvent extraction process. The extracted lipids were analysed online using gas chromatography (GC) and inductively coupled plasma mass spectrometry (ICP-MS) and were found to have the following distribution: Table 1: Extracted lipids from Chlorella microalgae

Figure imgf000016_0001

A blend of 20 wt% of these extracted lipids and 80 wt% of a mineral oil derived vacuum gas oil was mixed. The Blend had the following metal content (see table 2 in mg/kg as determined by inductively coupled plasma atomic emission spectrometry (ICP-AES).

Table 2: metal content in a blend of 20 wt% of extracted lipids with 80 wt% a mineral oil derived vacuum gas oil (in mg/kg)

Figure imgf000016_0002

Experiment 2

The lipids obtained from experiment 1 were blended with mineral Vacuum Gas Oil (VGO) to form a first batch of the lipid-containing feedstock comprising 20%

extracted lipids from microalgae and 80% VGO (by weight) The first batch was subjected to catalytic cracking in a small-scale fluidised catalytic cracking reactor. A commercial equilibrium catalyst comprising ultra stable zeolite Y (USY) in an amorphous alumina matrix was used as the cracking catalyst. The reaction temperature was kept at 500 °C, and the pressure was maintained at 1.1 bar (0.11 MPa) . For the feedstock containing 20wt% extracted lipids from microalgae and 80wt% VGO a catalyst to oil ratio of about 8 was used. The product stream obtained was separated in a small-scale fractionator and analysed online using gas chromatography (GC) and inductively coupled plasma mass spectrometry (ICP-MS). The results of the experiment with regard to product distribution at 67 wt % conversion are provided in Table 3.

Table 3: Product distribution

Figure imgf000017_0001

Dry gas includes ethylene, ethane, methane, hydrogen and hydrogensulfide ; and LPG includes propane, butane and some propylene and butylenes. Gasoline is defined as the fraction starting with C5 isomers, and boiling up to 221 °C (EP); Light Cycle Oil (LCO) as the fraction boiling from 221-370 °C (IBP-EP); Heavy Cycle Oil (HCO) as the fraction boiling from 370-425 °C (IBP-EP); and Slurry Oil as the fraction boiling above > 425 °C, determined according to ASTM 2887, using the total boiling point method.

Experiment 3

To establish the efficacy of the cracking process of the invention, the product stream was compared with the products obtained from the cracking of other

conventionally used feedstock. VGO was used as the second batch and a blend of 20% rapeseed oil and 80% VGO was used as the third batch. The experiments were conducted in the same fluidised catalytic cracking reactor and under the same conditions as were used in experiment 2, except that a different catalyst to oil ratio may be used to achieve the constant conversion rate of 67wt%. A comparison of the product stream obtained from

experiments 2 and 3 is provided in Table 4.

Table 4:

Figure imgf000019_0001

The product yield of each batch of cracking

feedstock was calculated at 67 wt% conversion of the cracking feedstock. It is evident from the results above that the product stream obtained from the first batch of cracking feedstock comprising lipids derived from marine microalgae is substantially similar to the product stream obtained from the two conventional cracking feedstock. This is highly surprising in view of the high content in heteroatoms such as phosphorus and metals. Moreover, the amount of light cycle oil obtained was above that generated from rapeseed oil.

The additional coke formed in the process according to the invention can be advantageous when co-processing a further paraffinic feedstock such as for example an optionally hydroisomerised fraction of the synthesis product of a Fisher-Tropsch reaction.

Claims

C L A I M S
1. A process for catalytic cracking of a lipid- containing feedstock, the process comprising contacting the lipid-containing feedstock with at least one cracking catalyst at a temperature of at least 450 °C, to obtain a product stream; and separating at least one hydrocarbon fraction from the product stream, wherein the lipid- containing feedstock comprises lipids derived from microalgae and further comprises a hydrocarbon feedstock.
2. The process according to claim 1, wherein the temperature ranges from equal to or more than 450 °C to equal to or less than 650 °C, preferably from equal to or more than 480 °C to equal to or less than 560 °C.
3. The process according to claim 1, wherein the microalgae is marine microalgae, preferably diatomic microalgae .
4. The process according to claim 1, wherein the lipid- containing feedstock comprises from 2 wt% to 30 wt% lipids, preferably from 5 wt% to 20 wt% lipids.
5. The process according to claim 1, wherein the hydrocarbon feedstock comprises a vacuum gas oil, atmospheric residue or vacuum residue.
6. The process according to claim 1, wherein the hydrocarbon feedstock comprises hydrocarbons with an initial boiling point of at least 220 °C as measured according to ASTM D-2887.
7. The process according to claim 1, wherein the hydrocarbon feedstock has an initial boiling point of at least 180 °C as measured according to ASTM D-2887.
8. The process according to claim 1, wherein the cracking catalyst comprises a zeolite.
9. A gasoline product prepared from a hydrocarbon fraction of the at least one hydrocarbon fraction of any of claims 1-8.
10. A gasoline composition comprising a gasoline product prepared from a hydrocarbon fraction of the at least one hydrocarbon fraction of any of claims 1-8, less than 1000 ppmw sulphur, and one or more additives.
PCT/EP2010/070203 2010-12-20 2010-12-20 Process for catalytic cracking of a lipid-containing feedstock derived from microalgae to produce hydrocarbons WO2012083998A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/070203 WO2012083998A1 (en) 2010-12-20 2010-12-20 Process for catalytic cracking of a lipid-containing feedstock derived from microalgae to produce hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/070203 WO2012083998A1 (en) 2010-12-20 2010-12-20 Process for catalytic cracking of a lipid-containing feedstock derived from microalgae to produce hydrocarbons

Publications (1)

Publication Number Publication Date
WO2012083998A1 true WO2012083998A1 (en) 2012-06-28

Family

ID=43480708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/070203 WO2012083998A1 (en) 2010-12-20 2010-12-20 Process for catalytic cracking of a lipid-containing feedstock derived from microalgae to produce hydrocarbons

Country Status (1)

Country Link
WO (1) WO2012083998A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013096066A1 (en) * 2011-12-23 2013-06-27 Exxonmobil Research And Engineering Company Process for increased production of fcc gasoline

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917790A (en) 1989-04-10 1990-04-17 Mobil Oil Corporation Heavy oil catalytic cracking process and apparatus
US5855629A (en) 1996-04-26 1999-01-05 Shell Oil Company Alkoxy acetic acid derivatives
US6905591B2 (en) 2002-01-10 2005-06-14 Stone & Webster Process Technology, Inc. Deep catalytic cracking process
EP1892280A1 (en) * 2006-08-16 2008-02-27 BIOeCON International Holding N.V. Fluid catalytic cracking of oxygenated compounds
CN101200647A (en) * 2007-11-28 2008-06-18 厦门大学 Method for preparing fuel oil gas by using dunaliella powder
EP1970425A1 (en) 2007-02-20 2008-09-17 BIOeCON International Holding N.V. Improved process for converting carbon-based energy carrier material
GB2447684A (en) * 2007-03-21 2008-09-24 Statoil Asa Biogasoline from marine oils
WO2009000838A2 (en) 2007-06-25 2008-12-31 Kior, Inc. Liquid fuel from aquatic biomass
US20090026112A1 (en) * 2006-02-09 2009-01-29 Jan Lodewijk Maria Dierickx Fluid catalytic cracking process
US20090047721A1 (en) 2007-06-01 2009-02-19 Solazyme, Inc. Renewable Diesel and Jet Fuel from Microbial Sources
EP2053115A1 (en) 2006-08-18 2009-04-29 Nippon Oil Corporation Method of treating biomass, fuel for fuel cell, gasoline, diesel fuel, liquefied petroleum gas, and synthetic resin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917790A (en) 1989-04-10 1990-04-17 Mobil Oil Corporation Heavy oil catalytic cracking process and apparatus
US5855629A (en) 1996-04-26 1999-01-05 Shell Oil Company Alkoxy acetic acid derivatives
US6905591B2 (en) 2002-01-10 2005-06-14 Stone & Webster Process Technology, Inc. Deep catalytic cracking process
US20090026112A1 (en) * 2006-02-09 2009-01-29 Jan Lodewijk Maria Dierickx Fluid catalytic cracking process
EP1892280A1 (en) * 2006-08-16 2008-02-27 BIOeCON International Holding N.V. Fluid catalytic cracking of oxygenated compounds
EP2053115A1 (en) 2006-08-18 2009-04-29 Nippon Oil Corporation Method of treating biomass, fuel for fuel cell, gasoline, diesel fuel, liquefied petroleum gas, and synthetic resin
EP1970425A1 (en) 2007-02-20 2008-09-17 BIOeCON International Holding N.V. Improved process for converting carbon-based energy carrier material
GB2447684A (en) * 2007-03-21 2008-09-24 Statoil Asa Biogasoline from marine oils
US20090047721A1 (en) 2007-06-01 2009-02-19 Solazyme, Inc. Renewable Diesel and Jet Fuel from Microbial Sources
WO2009000838A2 (en) 2007-06-25 2008-12-31 Kior, Inc. Liquid fuel from aquatic biomass
CN101200647A (en) * 2007-11-28 2008-06-18 厦门大学 Method for preparing fuel oil gas by using dunaliella powder

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Catalytic cracking of hydrocarbons from microalgae", INTERNATIONAL CHEMICAL ENGINEERING, vol. 31, no. 3, July 1991 (1991-07-01)
CHEN Y ET AL: "Fuel gasoline preparing method, involves performing catalytic cracking reaction with nitrogen as fluidizing gas in fluidizing bed reactor after equably mixing algae powder with solid acid catalyst to obtain fuel gasoline", WPI/THOMSON,, vol. 2008, no. 51, 18 June 2008 (2008-06-18), XP002507338 *
KITAZATO H ET AL: "Catalytic cracking of hydrocarbons from microalgae", INTERNATIONAL CHEMICAL ENGINEERING, NEW YORK, NY, US, vol. 31, 1 July 1991 (1991-07-01), pages 523 - 529, XP008118619, ISSN: 0020-6318 *
MILNE THOMAS A ET AL: "Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites", PROCEEDINGS INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE,, vol. 4, 31 July 1988 (1988-07-31), pages 363 - 368, XP009109383, ISSN: 0146-955X *
W.M. MEIER; D.H. OLSON; CH. BAERLOCHER: "Atlas of Zeolite Structure Types", 1996, ELSEVIER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013096066A1 (en) * 2011-12-23 2013-06-27 Exxonmobil Research And Engineering Company Process for increased production of fcc gasoline

Similar Documents

Publication Publication Date Title
Eboibi et al. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp.
Maity Opportunities, recent trends and challenges of integrated biorefinery: Part II
US8975461B2 (en) Renewable jet fuel blendstock from isobutanol
US9732282B2 (en) Methods of refining natural oil feedstocks
Zhang et al. Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction
Biller et al. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content
Zhao et al. Catalytic deoxygenation of microalgae oil to green hydrocarbons
Jin et al. Co-liquefaction of micro-and macroalgae in subcritical water
Pütün et al. Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate
KR101557304B1 (en) Process for producing branched hydrocarbons
Smith et al. Catalytic upgrading of tri-glycerides and fatty acids to transport biofuels
RU2393201C2 (en) Method of obtaining saturated hydrocarbon component
Brown et al. Hydrothermal liquefaction and gasification of Nannochloropsis sp.
EP1741767B1 (en) Process for the manufacture of diesel range hydrocarbons
EP1795576B1 (en) Process for the manufacture of hydrocarbons
RU2628521C2 (en) Systems and methods for renewable fuel
ES2745989T3 (en) Microbial lipid extraction and separation methods
US8841494B2 (en) Thermal decomposition process of triglyceride containing mixtures, co-processed with low molecular weight olefins to produce a renewable fuel composition
US8476479B2 (en) Method of treating biomass, fuel for fuel cell, gasoline, diesel fuel, liquefied petroleum gas, and synthetic resin
EP1844125B1 (en) Method for the production of synthetic fuels from oxygenates
CA2729651C (en) Process for the manufacture of hydrocarbons of biological origin
Zhao et al. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel
US20100170144A1 (en) Hydroprocessing Microalgal Oils
EP1396531B2 (en) Process for producing a hydrocarbon component of biological origin
JP2010503703A (en) A strong and efficient method for the conversion of cellular lipids into biofuels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10790454

Country of ref document: EP

Kind code of ref document: A1