WO2012083048A2 - Anti-viral compounds - Google Patents

Anti-viral compounds Download PDF

Info

Publication number
WO2012083048A2
WO2012083048A2 PCT/US2011/065215 US2011065215W WO2012083048A2 WO 2012083048 A2 WO2012083048 A2 WO 2012083048A2 US 2011065215 W US2011065215 W US 2011065215W WO 2012083048 A2 WO2012083048 A2 WO 2012083048A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
heterocycle
independently
occurrence
optionally substituted
Prior art date
Application number
PCT/US2011/065215
Other languages
French (fr)
Other versions
WO2012083048A3 (en
Inventor
Allan C. Krueger
Warren M. Kati
Clarence J. Maring
Rolf Wagner
Charles W. Hutchins
Original Assignee
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Laboratories filed Critical Abbott Laboratories
Priority to US14/368,084 priority Critical patent/US20150158909A1/en
Priority to EP11849188.5A priority patent/EP2651920A4/en
Publication of WO2012083048A2 publication Critical patent/WO2012083048A2/en
Publication of WO2012083048A3 publication Critical patent/WO2012083048A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • C07K5/06052Val-amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings

Definitions

  • the present invention relates to anti-HCV compounds, compositions comprising the same and methods of using the same to treat HCV infection.
  • HCV Hepatitis C virus
  • the enveloped HCV virion contains a positive stranded RNA genome which encodes a single large polyprotein of about 3000 amino acids.
  • the polyprotein comprises a core protein, envelope proteins El and E2, a membrane bound protein p7, and the non-structural proteins NS2, NS3,
  • HCV infection is associated with progressive liver pathology, including cirrhosis and hepatocellular carcinoma.
  • Chronic hepatitis C may be treated with peginterferon-alpha in combination with ribavirin.
  • Substantial limitations to efficacy and tolerability remain as many users suffer from side effects, and viral elimination from the body is often inadequate. Therefore, there is a need for new drugs to treat HCV infection.
  • the present invention relates to a compound of Formula (I) or pharmaceutically acceptable salts thereof:
  • a and A' are independently selected from the group consisting of a single bond, -(CR 2 ) compassion-C(0)- (CR 2 ) p -,-(CR 2 ) n -0-(CR 2 ) p -, -(CR 2 ) n -N(R N )-(CR 2 ) p -, -(CR 2 ) n -S(0) k -N(R N )-(CR 2 ) p -, -(CR 2 ) n -C(0)-N(R N )- (CR 2 ) p -,-(CR 2 ) favor-N(R N )-C(0)-N(R N )-(CR 2 ) p -, -(CR 2 ) n -C(0)-0-(CR 2 ) p -,
  • heteroaryl group selected from the group consisting of
  • X 1 is CH 2) NH, O or S,
  • Y 1 , Y 2 and Z 1 are each independently CH or N,
  • X 2 is NH, O or S
  • a and b are independently 0, 1, 2, or 3 with the proviso that a and b are not both 0, optionally includes 1 or 2 nitrogens as heteroatoms on the phenyl residue,
  • the carbons of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, -CN, -N0 2 , halogen, C r Ci 2 alkyl, Ci-C )2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino, the nitrogens, if present, of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, Q to C 12 alkyl, Ci to C )2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl,
  • a and b are independently 1, 2, or 3.
  • c and d are independently 1 or 2
  • n and p are independently 0, 1, 2 or 3
  • k 0, 1 , or 2
  • each R is independently selected from the group consisting of hydrogen, -OH, -CN, -N0 2 , halogen, Q to C 12 alkyl, Q to C 12 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino,
  • each R N is independently selected from the group consisting of hydrogen, -OH, Ci to C )2 alkyl, Ci to C n heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide, and
  • a or A' being the A-B-A' can be any of:
  • B is (a) Q or (b) Q— Q, wherein each Q is independently selected from the group consisting of a cycloalkyl group, cycloalkenyl group, heterocycle, aryl group or heteroaryl group, wherein B is substituted with -L-E or preferably -L 3 -D; preferably only one Q is a six member aromatic ring when B is Q— Q, and/or preferably if B is Q— Q, any Q is that is polycyclic is connected to the remainder of the molecule through only one cycle of the polycycle; wherein -L-E and -L 3 -D are defined below;
  • R C , R", R c and R F are each independently selected from the group consisting of: hydrogen, C ⁇ to C 8 alkyl, d to C 8 heteroalkyl, aralkyl and a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl, wherein,
  • each heteroatom if present, is independently N, O or S,
  • each of R C , R d , R E and R F may optionally be substituted by C C 8 alkyl, d to C 8 heteroalkyl, aralkyl, or a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl and wherein each heteroatom, if present, is independently N, O or S, R C and R d are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring, and R E and R F are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring;
  • Y and Y' are each independently carbon or nitrogen;
  • Z and Z' are independently selected from the group consisting of hydrogen, Ci to Cg alkyl, Q to Cg heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, 1-3 amino acids, -[U-(CR 4 2 ),-NR 5 - (CR 4 2 ) t ]u-U-(CR 4 2 ) T -NR 7 -(CR 4 2 ) L -R 8 , -U-(CR 4 2 ) T -R 8 and -[U-(CR 4 2 ) T - R 5 -(CR 4 2 )J U -U-(CR 4 2 ) T -O- (CR 4 2 ), -R 8 , wherein, U is selected from the group consisting of -C(O)-, -C(S)- and -S(0) 2 -, each R 4 , R 5 and R 7 is independently selected from the group consisting of hydrogen, Q to C 8 alkyl, Ci to C
  • R 8 is selected from the group consisting of hydrogen, Q to C 8 alkyl, Ci to C 8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, -C(0)-R 81 , -C(S)-R 81 , -C(0)-0-R 81 , -C(0)-N-R 81 , - S(0) 2 -R 81 and -S(0) 2 -N-R 81 2 , wherein each R 81 is independently chosen from the group consisting of hydrogen, Q to C 8 alkyl, C] to Cg heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl and aralkyl, optionally, R 7 and R 8 together form a 4-7 membered ring,
  • each t is independently 0, 1, 2, 3, or 4, and
  • u 0, 1, or 2;
  • E is (i) C 3 -Ci 4 carbocycle or 3- to 14-membered heterocycle, and is optionally substituted with one or more R A ; or (ii) E is -L S -R E ',
  • L is -L s -, -L s -0-Ls'-, -Ls-C(0)-L s '-, -L s -S(0) 2 -L s '- -L s -S(0)-L s '-, -Ls-OS(0) 2 -L s '-, -
  • L s and L s ' are each independently selected at each occurrence from bond; or C R C 6 alkylene, C 2 -
  • R A is independently selected at each occurrence from halogen, oxo, thioxo, hydroxy, mercapto, nitro, cyano, amino, carboxy, formyl, phosphonoxy, or phosphono; or -L S -R E ;
  • R B and R B are each independently selected at each occurrence from hydrogen; or d-C 6 alkyl, C 2 - C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C 3 -C 6 carbocycle or 3- to 6-membered heterocycle; or C 3 -C 6 carbocycle or 3- to 6-membered heterocycle; wherein each C 3 -C 6 carbocycle or 3- to 6-membered heterocycle in
  • R E is independently selected at each occurrence from -0-R s , -S-R s , -C(0)R s , -OC(0)R s , -
  • R L is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -0-R s , -S-R s , -C(0)R s , -OC(0)R s , -C(0)OR s> -N(R S R S '), -S(0)R S , - S0 2 R s , -C(0)N(R s R s ') or -N(R s )C(0)R s ' ; or C 3 -C 6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C 6 alkyl, C 2 -C 6 alkeny
  • R s , Rs' and R s " are each independently selected at each occurrence from hydrogen; Ci-C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in R s , R s ' or R s ' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C
  • L 3 is bond or -L s -K-L s '-, wherein K is selected from bond, -0-, -S-, -N(R B )-, -C(O)-, - S(0) 2 - -S(O)-, -OS(O)-, -OS(0) 2 - -S(0) 2 0-, -S(0)0-, -C(0)0-, -OC(O)-, -OC(0)0-, - C(0)N(R B )-, -N(R B )C(0)- -N(R B )C(0)0-, -OC(0)N(R B )-, -N(R B )S(0)-, -N(R B )S(0) 2 -, - S(0)N(R B )-, -S(0) 2 N(RB)- -C(0)N(R B )C(0)-, -N(R B )C(0)N(R B ')-, -N(R B
  • D is C 3 -Ci 2 carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more R A ; or D is C 3 -Ci 2 carbocycle or 3- to 12-membered heterocycle which is substituted with J and optionally substituted with one or more R A , where J is C 3 -C] 2 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more R A , or J is -SF 5 ; -or D is hydrogen or R A ;
  • R A is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, or -L S -RE, wherein two adjacent R A , taken together with the atoms to which they are attached and any atoms between the atoms to which they are attached, can optionally form carbocycle or heterocycle;
  • R B and R B ' are each independently selected at each occurrence from hydrogen; or Ci-C 6 alkyl, C 2 - C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in R B or R B ' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C r C 6 alkyl, C 2 -C 6
  • R E is independently selected at each occurrence from -0-R s , -S-R s , -C(0)R S , -OC(0)R s , -
  • R L is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -0-R s , -S-R s , -C(0)R S , -OC(0)R s , -C(0)OR s> -N(R S R S '), -S(0)R s , - S0 2 R s , -C(0)N(R s R s ') or -N(Rs)C(0)R s ' ; or C 3 -C 6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C 6 alkyl, C 2 -C 6 alkenyl
  • L s and L s ' are each independently selected at each occurrence from bond; or C r C 6 alkylene, C 2 - C 6 alkenylene or C 2 -C 6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more R L ; and
  • R s , R s ' and R s " are each independently selected at each occurrence from hydrogen; C C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, -0-C r C 6 alkyl, -0-Ci-C 6 alkylene-0-Ci-C 6 alkyl, or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in R s , Rs' or R s ' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy,
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising (a) one or more of any of the compounds of Formula (I) or any salts, solvates or prodrugs thereof; and (b) at least one pharmaceutically acceptable carrier or at least one pharmaceutically acceptable excipient.
  • suitable pharmaceutically acceptable carriers or excipients that can be used in said pharmaceutical compositions include, but are not limited to, sugars (e.g., lactose, glucose or sucrose), starches (e.g., corn starch or potato starch), cellulose or its derivatives (e.g., sodium carboxymethyl cellulose, ethyl cellulose or cellulose acetate), oils (e.g., peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, com oil or soybean oil), glycols (e.g., propylene glycol), buffering agents (e.g., magnesium hydroxide or aluminum hydroxide), agar, alginic acid, powdered tragacanth, malt, gelatin, talc, cocoa butter, pyrogen-free water, isotonic saline, Ringer's solution, ethanol, phosphate buffer solutions, lubricants, coloring agents, releasing agents, coating agents, sweetening, flavoring or perf
  • the pharmaceutical compositions of the present invention can also further contain one or more of the following: (a) one or more anti-HCV agents, such as an HCV polymerase inhibitor, HCV protease inhibitor, HCV helicase inhibitor, CD81 inhibitor, cyclophilin inhibitors, IRES inhibitors, or NS5A inhibitors; (b) one or more antiviral agents such as anti-HBV agents, anti-HIV agents, anti- hepatitis agents, anti-hepatitis D, anti-hepatitis E or anti-hepatitis G agents; (c) anti-bacterial agents; (d) anti-fungal agents; (e) immunomodulators, (f) anti-cancer or chemotherapeutic agents; (g) antiinflammatory agents; (h) antisense RNA; (i) antibodies; (j) agents for treating cirrhosis or inflammation of the liver; or (k) any combinations of (a)-HCV agents, such as an HCV polymerase inhibitor, HCV protease inhibitor, HCV helicase inhibitor
  • the present invention also relates to a method of treating HCV infection.
  • the method involves administering to a patient in need of treatment, a therapeutically effective amount of the above-described pharmaceutical composition of the present invention to treat the HCV infection in said patient.
  • the present invention relates to compounds having the structure of below Formula
  • a and A' are independently selected from the group consisting of a single bond, -(CR 2 ) n -C(0)- (CR 2 ) p -,-(CR 2 ) n -0-(CR 2 ) p -, -(CR 2 ) oblige-N(R N )-(CR 2 ) p -, -(CR 2 ) n -S(0) k -N(R N )-(CR 2 ) p -, -(CR 2 ) hinder-C(0)-N(R N )- (CR 2 ) p -,-(CR 2 ) n -N(R N )-C(0)-N(R N )-(CR 2 ) p -, -(CR 2 ) n -C(0)-0-(CR 2 ) p -,
  • heteroaryl group selected from the group consisting of
  • X 1 is CH 2 , NH, O or S, ⁇ ', Y 2 and ⁇ 1 are each independently CH or N,
  • X 2 is NH, O or S
  • the carbons of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, -CN, -N0 2 , halogen, C Ci 2 alkyl, C C 12 heteroalkyl, cycloalkyi, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino,
  • the nitrogens, if present, of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, Ci to C 12 alkyl, Q to C 12 heteroalkyl, cycloalkyi, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide,
  • a and b are independently 1, 2, or 3.
  • c and d are independently 1 or 2
  • n and p are independently 0, 1, 2 or 3
  • k 0, 1 , or 2
  • each R is independently selected from the group consisting of hydrogen, -OH, -CN, -N0 2 , halogen, Ci to C 12 alkyl, Ci to C ]2 heteroalkyl, cycloalkyi, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino,
  • each R N is independently selected from the group consisting of hydrogen, -OH, d to Cn alkyl, d to C i2 heteroalkyl, cycloalkyi, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide, and
  • the A-B-A' can be any of:
  • B is (a) Q or (b) Q— Q, wherein each Q is independently selected from the group consisting of a cycloalkyl group, cycloalkenyl group, heterocycle, aryl group or heteroaryl group, and wherein B is substituted with -L-E or -L 3 -D as defined hereinabove and below; preferably only one Q is a six member aromatic ring when B is Q— Q, and.or preferably if B is Q— Q, any Q is that is polycyclic is connected to the remainder of the molecule through only one cycle of the polycycle;
  • R c , R d , R e and R f are each independently selected from the group consisting of: hydrogen, Q to C 8 alkyl, Q to C s heteroalkyl, aralkyl and a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl, wherein,
  • each heteroatom if present, is independently N, O or S,
  • each of R c , R d , R e and R f may optionally be substituted by C r C 8 alkyl, Q to C 8 heteroalkyl, aralkyl, or a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl and wherein each heteroatom, if present, is independently N, O or S,
  • R c and R d are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring, and R e and R f are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring;
  • Y and Y' are each independently carbon or nitrogen;
  • Z and Z' are independently selected from the group consisting of hydrogen, Ci to C 8 alkyl, Q to Cs heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, 1-3 amino acids, -[U-(CR 4 2 ),-NR 5 - (CR 4 2 )J u -U-(CR 4 2 ) l -NR 7 -(CR 4 2 ) [ -R 8 , -U-(CR 4 2 ),-R 8 and -[U-(CR 4 2 ) t -NR 5 -(CR 4 2 ),] U -U-(CR 4 2 ) t -O- (CR 4 2 ), -R 8 , wherein, U is selected from the group consisting of -C(O)-, -C(S)- and -S(0) 2 -, each R 4 , R 5 and R 7 is independently selected from the group consisting of hydrogen, d to C 8 alkyl, Ci to
  • R s is selected from the group consisting of hydrogen, Q to C 8 alkyl, Ci to C 8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, -C(0)-R 81 , -C(S)-R 81 , -C(0)-0-R 81 , -C(0)-N-R 81 , - S(0) 2 -R 81 and -S(0) 2 -N-R 81 2 , wherein each R 81 is independently chosen from the group consisting of hydrogen, Ci to C 8 alkyl, Ci to C 8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl and aralkyl, optionally, R 7 and R 8 together form a 4-7 membered ring,
  • each t is independently 0, 1, 2, 3, or 4, and
  • u is 0, 1 , or 2.
  • at least one Q is substituted with -L- E or -L 3 -D as defined herein, and each Q is independently optionally substituted with one or more substituents each independently selected from the group consisting of -OH, -CN, -N0 2 , halogen, Q to C )2 alkyl, Q to C 12 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino, and if Q is not aromatic, it is optionally substituted with oxo.
  • At least one Q is substituted with -L-E or -L3-D as defined herein, and each Q is independently optionally substituted with -CN,— OCF 3 , - OCHF 2 ,— CF 3 or— F.
  • B is selected from the group consisting of
  • each phenyl residue optionally includes 1 or 2 nitrogens as heteroatoms
  • B is substituted with -L-E or -L 3 -D as defined herein, and.
  • each R a if present, -CN,— OCF 3 , - OCHF 2 ,— CF 3) or— F.
  • a and A' are independently selected from the group consisting of a single bond,— (CR 2 ) n — C(O)— (CR 2 ) P — ,— (CR 2 ) n — O— (CR 2 )— ,— (CR 2 ) n — N(R N )— (CR 2 ) P — ,— (CR 2 ) n — C(O)— N(R N )(CR 2 ) p — ,— (CR 2 ) remind— N(R N )— C(O)— N(R N )— (CR 2 ) p — and— (CR 2 ) n — N(R N )— C(O)— O— (CR 2 ) P — and a heteroaryl group selected from the group consisting of
  • a and A' are independently selected from the group consisting of a single bond
  • R c , R d , R c and R f are each independently selected from the group consisting of: hydrogen, Q to Cg alkyl and Ci to C 8 heteroalkyl, wherein, each hetero atom, if present, is independently N, O or S,
  • R c and R d are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle, and
  • R e and R f are optionally joined to form a 4- to 8-membered heterocycle which is
  • R c and R d or R e and R f are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle.
  • R e and R d are joined and form a heterocyclic fused ring system selected from the group consisting of:
  • R N is selected from the group consisting of hydrogen, -OH, Q to C 12 alkyl, Ci to C i2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide.
  • Re and Rf are joined and form a heterocyclic fused ring system selected from the group consisting of:
  • R N is selected from the group consisting of hydrogen, -OH, d to C u alkyl, Ci to C !2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide.
  • the present invention also contemplates the compounds of Formulae ⁇ , Ilia and Illb described in WO2001/065681 and pharmaceutically acceptable salts thereof, where the center phenyl ring is substituted with -L-E or -L 3 -D as defined herein.
  • the present invention contemplates compounds of Formulae IV, IVa and IVb described in WO2001/065681 and pharmaceutically acceptable
  • present invention contemplates compounds of Formulae V, Va and Vb described in
  • WO2001/065681 and pharmaceutically acceptable salts thereof, where s substituted with -L-E or -L 3 -D as defined herein. Additionally, the present invention contemplates compounds of Formula VI described in WO2001/065681 and pharmaceutically acceptable salts thereof,
  • E is (i) C3-C14 carbocycle or 3- to 14-membered heterocycle, and is optionally substituted with one or more R A ; or (ii) E is -L S -RE;
  • L is -L s -, -Ls-O-Ls'-, -L s -C(0)-L s '-, -L s -S(0) 2 -L s '-, -L s -S(0)-L s '- -L s -OS(0) 2 -L s '-, - Ls-S(0) 2 0-L s '-, -L s -OS(0)-L s '-, -L s -S(0)0-L s '-, -L s -C(0)0-L s '-, -L s -OC(0)-L s '- -Ls- OC(0)0-L s '-, -Ls-C(0)N(R B )-L s '-, -L S -N(R B )C(0)-L S '-, -L S -C(0)N(R b )0-L S
  • L s and L s ' are each independently selected at each occurrence from bond; or Ci-C 6 alkylene, C 2 - C 6 alkenylene or C 2 -C 6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more R L ;
  • R A is independently selected at each occurrence from halogen, oxo, thioxo, hydroxy, mercapto, nitro, cyano, amino, carboxy, formyl, phosphonoxy, or phosphono; or -Ls-R E ;
  • R B and R B are each independently selected at each occurrence from hydrogen; or C Cealkyl, C 2 - Cealkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C 3 -C 6 carbocycle or 3- to 6-membered heterocycle; or .
  • each C 3 -C 6 carbocycle or 3- to 6-membered heterocycle in R B or R B ' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-Qalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C r C 6 haloalkyl, C 2 -C 6 haloalkenyl or C 2 -C 6 haloalkynyl ;
  • R E is independently selected at each occurrence from -0-R s , -S-R s , -C(0)R s , -OC(0)R s , - C(0)ORs, -N(R s Rs'), -S(0)R Sl -S0 2 R s , -C(0)N(R s R s '), -N(R s )C(0)Rs'.
  • RL is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -O-Rs, -S-R s ° -C(0)R s , -OC(0)R s , -C(0)OR s , -N(R S R S '), -S(0)R s , - S0 2 R s , -C(0)N(R s R s ') or -N(R s )C(0)R s ' ; or C 3 -C 6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C 6 alkyl, C 2 -C 6 alken
  • R s , Rs' and R s " are each independently selected at each occurrence from hydrogen; Ci-C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in R s , R s ' or R s ' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C
  • L 3 is bond or -L s -K-L s '-, wherein K is selected from bond, -0-, -S-, -N(R B )-, -C(O)-, - S(0) 2 - -S(O)-, -OS(O)-, -OS(0) 2 - -S(0) 2 0-, -S(0)0-, -C(0)0-, -OC(O)-, -OC(0)0-, - C(0)N(RB)- -N(R B )C(0)-, -N(R B )C(0)0-, -OC(0)N(R B )-, -N(R B )S(0)-, -N(RB)S(0) 2 - - S(0)N(R B K -S(0) 2 N(R B )-, -C(0)N(RB)C(0)-, -N(R B )C(0)N(R B ' )- -N(R B )S0 2 N(
  • D is C 3 -Ci 2 carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more R A ; or D is C 3 -Ci 2 carbocycle or 3- to 12-membered heterocycle which is substituted with J and optionally substituted with one or more R A , where J is C3-C 12 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more R A , or J is -SF 5 ; or D is hydrogen or R A ;
  • R A is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, or -L S -R E , wherein two adjacent R A , taken together with the atoms to which they are attached and any atoms between the atoms to which they are attached, can optionally form carbocycle or heterocycle;
  • R B and R B ' are each independently selected at each occurrence from hydrogen; or Ci-C 6 alkyl, C 2 - C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in R B or R B ' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C 6 alkyl, C 2 -C 6 alken
  • R E is independently selected at each occurrence from -0-R s , -S-R s , -C(0)R s , -OC(0)R s , -
  • R L is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -0-R s , -S-R s , -C(0)R S) -OC(0)R s , -C(0)OR s , -N(RsRs').
  • R s , Rs' and R s " are each independently selected at each occurrence from hydrogen; C r C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, -O-C 1 -C6 alkyl, -0-Ci-C 6 alkylene-0-C r C 6 alkyl, or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in R s , Rs' or R s ' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy
  • -L-E comprises C 5 -C 6 carbocycle, 5- to 6-membered heterocycle, or 6- to 12- membered bicycle, each of which is optionally substituted with one or more R A as defined above.
  • the moiety comprises C r C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is optionally substituted with one or more R L as defined above.
  • the moiety comprises C 5 -C 6 carbocycle, 5- to 6-membered heterocycle, or 6- to 12-membered bicycles, each of which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, C r C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, wherein each of said C r C 6 alkyl, C 2 -C 5 alkenyl or C 2 -C 6 alkynyl can be further independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C 3 -C 6 carbocycle or 3- to 6- membered heterocycle
  • the moiety comprises C 5 -C 6 carbocycle, 5- to 6-membered heterocycle, or 6- to 12-membered bicycles, each of which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C r C 6 alkyl, C 2 -C 6 alkenyl, C 2 -Ce alkynyl, C r C6 haloalkyl, C 2 -C 6 haloalkenyl or C 2 -C 6 haloalkynyl.
  • substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C r C 6 alkyl, C 2 -C 6 alkenyl, C 2 -Ce
  • -L-E comprises phenyl optionally substituted with one or more substituents selected from is halogen, hydroxy, mercapto, amino, carboxy, C ⁇ -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, wherein each of said C r C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino or carboxy.
  • the moiety comprises Ci-C 6 alkyl, C 2 -C6 alkenyl or C 2 -C 6 alkynyl, each of which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano.
  • D in -L 3 -D preferably is selected from C 5 -C 6 carbocycle, 5- to 6- membered heterocycle, or 6- to 12-membered bicycles, and is optionally substituted with one or more R A .
  • D can also be preferably selected from C C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, and is optionally substituted with one or more substituents selected from R L . More preferably, D is C 5 -C 6 carbocycle (e.g., phenyl), 5- to 6-membered heterocycle (e.g., pyridinyl, pyrimidinyl, thiazolyl), or 6- to 12-membered bicycles (e.g., indanyl, 4,5,6,7-tetrahydrobenzo[d]thiazolyl, benzo[d]thiazolyl, indazolyl,
  • C 5 -C 6 carbocycle e.g., phenyl
  • 5- to 6-membered heterocycle e.g., pyridinyl, pyrimidinyl, thiazolyl
  • 6- to 12-membered bicycles e.g., indanyl, 4,5,
  • R M is halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, or -L S -RE.
  • D is phenyl, and is optionally substituted with one or more R A . More preferably, D is phenyl, and is substituted with one or more R M ,
  • R M is as defined above.
  • D is or , wherein R M is as defined above, and each R N is independently selected from R D and preferably is hydrogen.
  • R N can also preferably be halo such as F.
  • D is also preferably pyridinyl, pyrimidinyl, or thiazolyl, optionally substituted with one or more R A . More preferably D is pyridinyl, pyrimidinyl, or thiazolyl, and is substituted with one or more R M .
  • R M is as defined above, and each R N is independently selected from R D and preferably is hydrogen.
  • R N can also preferably be halo such as F.
  • D is also preferably indanyl, 4,5,6,7-tetrahydrobenzo[d]thiazolyl, benzo[d]thiazolyl, or indazolyl, and is optionally substituted with one or more R A . More preferably D is indanyl, 4,5,6,7-tetrahydrobenzo[d]thiazolyl, benzo[d]thiazolyl,
  • D is
  • R M is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano; or Ci-C 6 alkyl, C 2 -C 6 alkenyl or C 2 -Ce alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C 3 -C 6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C 3 -C 6 carbocycle or 3-
  • R M is halogen, hydroxy, mercapto, amino, carboxy; or C r C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino or carboxy.
  • R M is C r C 6 alkyl which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino or carboxy.
  • R M is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, or cyano; or R M is -L S -R E , wherein L s is a bond or C C 6 alkylene, and R E is - N(RsRs'), -O-Rs, -C(0)R S , -C(0)OR S) -C(0)N(R s R s '), -N(R s )C(0)R s ⁇ -N(R s )C(0)OR s ⁇ - N(R s )S0 2 Rs ⁇ -S0 2 R S , -SRs, or -P(0)(OR s ) 2 , wherein R s and R s ' can be, for example, each independently selected at each occurrence from (1) hydrogen or (2) Ci-C 6 alkyl optionally substituted at each occurrence with one
  • R M is CF 3 , -C(CF 3 ) 2 -OH, -C(CH 3 ) 2 -CN, -C(CH 3 ) 2 -CH 2 OH, or -C(CH 3 ) 2 -CH 2 NH 2 .
  • R M is— Ls— RE where L s is a bond and R E is -N(R S R S ), -0-R s , - N(Rs)C(0)OR s ⁇ -N(R s )S0 2 Rs', -S0 2 Rs, or -SR S .
  • R E is -N(C,-C 6 alkyl) 2 (e.g., -NMe 2 ); -N(C,-C 6 alkylene-0-C,-C 6 alkyl) 2 (e.g. -N(CH 2 CH 2 OMe) 2 ); -N(C,-C 6 alkyl)(C,- C 6 alkylene-0-C,-C 6 alkyl) (e.g.
  • R M is -L S -R E where L s is Q-Q alkylene (e.g., -CH 2 -, -C(CH 3 ) 2 -, -C(CH 3 ) 2 -CH 2 -) and R E is _0-Rs, -C(0)OR s , -N(Rs)C(0)OR s ' , or -P(0)(OR s ) 2 .
  • L s is Q-Q alkylene (e.g., -CH 2 -, -C(CH 3 ) 2 -, -C(CH 3 ) 2 -CH 2 -) and R E is _0-Rs, -C(0)OR s , -N(Rs)C(0)OR s ' , or -P(0)(OR s ) 2 .
  • R M is -d-C 6 alkylene-0-R s (e.g., - C(CH 3 ) 2 -CH 2 -OMe); -C r C 6 alkylene-C(0)OR s (e.g., -C(CH 3 ) 2 -C(0)OMe); -C,-C 6 alkylene- N(Rs)C(0)OR s ' (e.g., -C(CH 3 ) 2 -CH 2 -NHC(0)OCH 3 ); or -C,-C 6 alkylene-P(0)(OR s ) 2 (e.g., -CH 2 - P(0)(OEt) 2 ).
  • R M is -d-C 6 alkylene-0-R s (e.g., - C(CH 3 ) 2 -CH 2 -OMe); -C r C 6 alkylene-C(0)OR s (e.g., -C(CH 3 ) 2 -C(0)OMe);
  • R M is C 3 -C 6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, riitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C C 6 haloalkyl, C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl, -C(0)OR s , or -N(R S R S ').
  • R M is cycloalkyl (e.g., cyclopropyl, 2,2-dichloro-l- methylcycloprop-l-yl, cyclohexyl), phenyl, heterocyclyl (e.g., morpholin-4-yl, 1,1-dioxidothiomorpholin- 4-yl, 4-methylpiperazin-l-yl, 4-methoxycarbonylpiperazin-l-yl, pyrrolidin-l-yl, piperidin-l-yl, 4- methylpiperidin-l-yl, 3,5-dimethylpiperidin-l-yl, 4,4-difluoropiperidin-l-yl, tetrahydropyran-4-yl, pyridinyl, pyridin-3-yl, 6-(dimethylamino)pyridin-3-yl).
  • cycloalkyl e.g., cyclopropyl, 2,2-dichloro-l-
  • R M is C r C 6 alkyl which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino or carboxy (e.g., tert-butyl, CF 3 ).
  • D is C 5 -C 6 carbocycle, 5- to 6-membered heterocycle or 6- to 12-membered bicycle and is substituted with J and optionally substituted with one or more R A
  • J is C 3 -C 6 carbocycle, 3- to 6-membered heterocycle or 6- to 12-membered bicycle and is optionally substituted with one or more R A .
  • J is substituted with a C 3 -C 6 carbocycle or 3- to 6-membered heterocycle, wherein said C 3 -C 6 carbocycle or 3- to 6-membered heterocycle is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C r C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C C 6 haloalkyl, C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl, C(0)OR s or -N(RsR s '), and J can also be optionally substituted with one or more R A .
  • substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy,
  • D is Cs-C 6 carbocycle or 5- to 6-membered heterocycle and is substituted with J and optionally substituted with one or more R A
  • J is C 3 -C 6 carbocycle or 3- to 6-membered heterocycle and is optionally substituted with one or more R A
  • J is at least substituted with a C 3 -C 6 carbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CpCe alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C C 6 haloalkyl, C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl, C(0)OR s or -N(R)
  • D is phenyl and is substituted with J and optionally substituted with one or more R A
  • J is C 3 -C 6 carbocycle, 3- to 6-membered heterocycle or 6- to 12-membered bicycle and is optionally substituted with one or more R A
  • J is at least substituted with a C 3 -Cecarbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, Ci-Cg haloalkyl, C 2 -C 6
  • D is wherein each R N is independently selected from R D and preferably is hydrogen or halogen, and J is C 3 -
  • D is , wherein each R N is independently selected from R D and preferably is hydrogen or halogen, and J is C 3 -C 6 carbocycle and 3- to 6-membered heterocycle and is substituted with a C 3 -C 6 carbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C,-C 6 haloalkyl, C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl, C(0) or -N(R S R S '),
  • J can also be optionally substituted with one or more R A .
  • D is , and J is C C 6 carbocycle or 3- to 6-membered heterocycle and is optionally substituted with one or more R A , and preferably J is at least substituted with a C 3 -C 6 carbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C r C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C r C 6 haloalkyl, C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl, C(0)OR s or -N(R s R s ')-
  • the present invention also features -L 3
  • D is C 3 -Ci 2 carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more R A ; or D is C 3 -C 12 carbocycle or 3- to 12-membered heterocycle which is substituted with J and optionally substituted with one or more R A , where J is C 3 -Ci 5 carbocycle or 3- to 15-membered heterocycle (e.g., a 3- to 6-membered monocycle, a 6- to 12-membered fused, bridged or spiro bicycle, a 10- to 15-memberd tricycle containing fused, bridged or spiro rings, or a 13- to 15-membered carbocycle or heterocycle) and is optionally substituted with one or more R A , or J is -SF 5 ; or D is hydrogen or R A ; R A and J are as defined herein;
  • R E is independently selected at each occurrence from -0-R s , -S-R s , -C(0)R S , -OC(0)R s , - C(0)ORs, -N(RsRs'), -S(0)R s , -S0 2 R s , -C(0)N(RsR s '), -N(R s )C(0)R s ', -N(R s )C(0)N(R s 'Rs"), - N(Rs)S0 2 R s ⁇ -S0 2 N(R s R s '), -N(R s )S0 2 N(R s 'R s "), -N(R s )S(0)N(R s 'Rs"), -OSiO ⁇ Rs, -OS(0) 2 -R s , -S(0) 2 OR s , -S(0)OR s , -OC(0)
  • D is a C 5 -C 6 carbocycle or 5- to 6-membered heterocycle (e.g., phenyl), and is substituted with J and optionally substituted with one or more R A .
  • J is C 3 -C 6 carbocycle, 3- to 6- membered heterocycle, 6- to 12-membered bicycle, 10- to 15-membered tricycle, or 13- to 15-membered carbocycle/heterocycle, and J is optionally substituted with one or more R A .
  • J is substituted with a C 3 -C 6 carbocycle, 3- to 6-membered heterocycle, 6- to 12-membered bicycle or 7- to 12-membered carbocycle/heterocycle, which is independently optionally substituted with one or more substituents selected from (1) halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C r C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, Ci-Cehaloalkyl, C 2 -C 6 haloalkenyl, C 2 - C 6 haloalkynyl, -C(0)OR s or -N(R S R S '), or (2) trimethylsilyl, -0-R s , -S-R s , -C(0)R s ; and J can also be optionally substituted with one
  • D is wherein J is as defined above, and each R N is independently selected from R D and preferably is hydrogen or halo such as F.
  • Li and L 2 are each independently bond or d-C 6 alkylene, and L 3 is bond, d-C 6 alkylene or -C(O)-, and Li, L 2 , and L 3 are each independently optionally substituted with one or more R L .
  • Li, L 2 , and L 3 are bond.
  • R A preferably is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano; or C r C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C 3 -C 6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C 6 alkyl, C
  • R A is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano; or C C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C 3 - C 6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CVC 6 alkyl, C 2 -C 6
  • R A is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano; or Ci-C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano.
  • L s , L s ' and L s preferably are each independently selected at each occurrence from bond; or C Csalkylene, C 2 -C 6 alkenylene or C 2 -C 6 alkynylene.
  • -L 3 -D are defined as:
  • L 3 is bond or Ci-C 6 alkylene
  • D is C 6 -Ci 0 carbocycle or 5- to 12-membered heterocycle, each of which is optionally R M is independently selected at each occurrence from:
  • G 2 wherein G 2 is a C3-Ci 2 carbocycle or 3- to 12-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more R G2 , and each R G2 is independently selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C Cehaloalkyl, C 2 - Qhaloalkenyl, QrQhaloalkynyl, -0-R s , -C(0)OR s , -C(0)R s , -N(R S R S '). or -L4-G3;
  • L 4 is a bond, C r C 6 alkylene, C 2 -C 6 alkenylene, C 2 -C 6 alkynylene, -0-, -S-, -N(R B )-, -C(O)-, - S(0) 2 -, -S(O)-, -C(0)0-, -OC(O)-, -OC(0)0-, -C(0)N(R B )-, -N(R B )C(0)-, -N(R B )C(0)0-, - OC(0)N(R B )-, -N(R B )S(0)-, -N(R B )S(0) 2 -, -S(0)N(R B )-, -S(0) 2 N(R B )-, -N(R B )C(0)N(R B ')-, - N(R B )S0 2 N(R B ')-, or -N(R B )S(0)N(
  • G 3 is a C 3 -Ci 2 carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more Rc 3 ;
  • Rc 3 is each independently, at each occurrence, halogen, -Ci-C 6 alkyl, -C(0)Ci-C 6 alkyl, -Ci-C 6 haloalkyl, -0-Ci-C 6 alkyl, C 3 -C 6 carbocycle, or 3- to 6-membered heterocycle.
  • C 2 -C 6 alkenyl or C 2 -C 6 alkynyl each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, -0-Ci-C 6 alkyl, -O-Ci-Cehaloalkyl, or 3- to 12- membered carbocycle or heterocycle; or 3- to 12-membered carbocycle or heterocycle; wherein each 3- to 12-membered carbocycle or heterocycle in R s , Rs' or R s " is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C 6 alkyl, C 2
  • D preferably is C 6 -C 10 carbocycle or 3- to 12-membered heterocycle optionally substituted by one or more R M -
  • D is C 6 -doaryl (e.g., phenyl, naphthyl, indanyl), or 5- to 10-membered heteroaryl (pyridinyl, thiazolyl, 4,5,6,7- tetrahydrobenzo[d]thiazolyl, benzo[d]thiazolyl, indazolyl, benzo[d][l ,3]dioxol-5-yl), and D is substituted with one or more R M -
  • D is preferably phenyl substituted by one or more R M , wherein each R M is independently halogen (e.g., fluoro, chloro, bromo); Cj-Cgalkyl (e.g., tert- butyl); d-
  • R s is an optionally substituted 3- to 12-membered carbocycle or heterocycle (e.g., cyclopentyl, cyclohexyl, phenyl, l,3-dioxan-5-yl); -N(R s )C(0)R s ' wherein R s and R s ' are each independently C Qalkyl (e.g., -N(t-Bu)C(0)Me); SF 5 ; -S0 2 R s wherein R s is C C 6 alkyl (e.g., -S0 2 Me); or C 3 - C ]2 carbocycle (e.g., cyclopropyl, cyclohexyl, phenyl).
  • C Qalkyl e.g., -N(t-Bu)C(0)Me
  • SF 5 e.g., -S0 2 R s wherein R s is C C 6 alkyl (e.g.,
  • D is preferably phenyl or pyridyl and is substituted by one or more R M where one R M is G 2 .
  • D is substituted by G 2
  • G 2 is 3- to 12-membered heterocycle (e.g., pyridinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazolyl) and is optionally substituted with one or more halogen (e.g., fluoro, chloro), hydroxy, oxo, cyano, C r C 6 alkyl (e.g., methyl), C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, d-C 6 haloalkyl (e.g., CF 3 ), C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl
  • D is phenyl or pyridyl and G 2 is, for example, a monocyclic 3-8 membered carbocycle or monocyclic 4-8 membered heterocycle substituted with L 4 -G 3 and optionally substituted with one or more Rc 2 wherein L 4 , G 3 and Rc 2 are as defined herein.
  • L 4 for example is a bond, a C,-C 6 alkylene (e.g., -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, etc.), -0-, or -S(0) 2 -.
  • G 3 is for example a C 3 -d 2 carbocycle optionally substituted with one or more Rc 3 .
  • R G2 and Rc 3 are each independently at each occurrence halogen, -C(0)C r C 6 alkyl, -d-Cealkyl, -C C 6 haloalkyl, -0-C r Cealkyl, or -0-Ci-C 6 haloalkyl.
  • G 2 is ⁇ .
  • * ⁇ 1 - is a monocyclic 4-8 membered nitrogen-containing heterocycle (e.g., azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl) attached to the parent molecular moiety through a nitrogen atom and substituted with one or two L 4 -G 3 d with one or more RG 2 -
  • L 4 is a bond G 2 is , where is optionally substituted with R G 2 and G 3 is optionally substituted with R G3 .
  • an be, for example, 3-phenylazetidin-l-yl, 3-phenylpyrrolidin-l-yl, 4-phenylpiperazin-l- yl, 4-phenylpiperidin-l -yl, 4-phenyl-3,6-dihydropyridin-l (2H)-yl, 4,4-diphenylpiperidin- l -yl, 4-acetyl-4- phenylpiperidin-l-yl, 4-(4-methoxyphenyl)piperidin-l-yl, 4-(4-fluorophenyl)piperidin-l-yl, or 3- phenylpiperidin-l-yl, and wherein D can be further optionally substituted with one or more R M (e.g., fluoro, chloro, methyl, methoxy).
  • R M e.g., fluoro, chloro, methyl, methoxy
  • L 4 is a C r C 6 alkylene, -0-, or -
  • S(0) 2 - and G 2 is ⁇ , where >- is as defined above and is optionally substituted with Rc 2 and
  • G 3 is as defined above and is optionally substituted with RG 3 .
  • RG 3 can be, for example, 4- tosylpiperazin-l -yl, 4-phenoxypiperidin-l-yl, 3-phenoxypyrrolidin- l-yl, 4-benzylpiperidin-l -yl, 4- phenethylpiperidin-l-yl, or 3-phenylpropyl)piperidin-l-yl.
  • D is phenyl or pyridyl
  • D is substituted by G 2 and G 2 is a spiro, bridged, or fused bicyclic carbocycle or heterocycle optionally substituted with L 4 -G 3 and one or more R G2 , wherein D is optionally substituted with one or more R M and /
  • R M , L 4 , G 3 , and R G 2 are as defined herein.
  • G 2 is ⁇ , wherein ' spiro, bridged, or fused bicyclic nitrogen-containing heterocycle (e.g., 3-azabicyclo[3.2.0]hept-3-yl, 2- azabicyclo[2.2.2]oct-2-yl, 6-azaspiro[2.5]oct-6-yl, octahydro-2H-isoindol-2-yl, 3-azaspiro[5.5]undec-3- yl, l ,3-dihydro-2H-isoindol-2-yl, l ,4-dioxa-8-azaspiro[4.5]dec-8-yl) attached to the parent molecular moiety through a nitrogen atom and optionally substituted with G 3 and one or more R G2 -
  • G 2 is 3- azabicyclo[3.2.0]hept-3-yl,
  • D is wherein R M is as defined above in connection with Formula I E , and D is optionally substituted by one or more additional R M .
  • D is can be fluoro, chloro, tert-butyl, -0-CH 2 CH 3 , -0-CF 3 , -0-CH 2 CHF 2 , -
  • R M selected from the group consisting of halogen (e.g., fluoro, chloro) and C r C 6 alkyl (e.g., methyl).
  • D is wherein R M is fluoro, chloro, tert-butyl, -0-CH 2 CH 3 , -0-CF 3 , -0-CH 2 CHF 2 , -0-CH 2 CH 2 OCH 3 , SF 5 , -S0 2 Me, or -N(t-Bu)C(0)Me and D is optionally substituted by one or more additional R M selected from the group consisting of halogen (e.g., fluoro, chloro) and C r C 6 alkyl (e.g., methyl).
  • R M is fluoro, chloro, tert-butyl, -0-CH 2 CH 3 , -0-CF 3 , -0-CH 2 CHF 2 , -0-CH 2 CH 2 OCH 3 , SF 5 , -S0 2 Me, or -N(t-Bu)C(0)Me and D is optionally substituted by one or more additional R M selected from the group consisting of halogen (e.g., flu
  • D is wherein R M is cyclopropyl, cyclohexyl, or phenyl and D is optionally substituted by one or more additional R M selected from the group consisting of halogen (e.g., fluoro, chloro) and Ci-C 6 alkyl (e. methyl).
  • R M is cyclopropyl, cyclohexyl, or phenyl and D is optionally substituted by one or more additional R M selected from the group consisting of halogen (e.g., fluoro, chloro) and Ci-C 6 alkyl (e. methyl).
  • D is wherein R M is -0-CH 2 -(3- ethyloxetan-3-yl), -0-CH 2 -(l ,3-dioxolan-4-yl), -O-cyclopentyl, -O-cyclohexyl, -O-phenyl, or -O-
  • R M selected from the group consisting of halogen (e.g., fluoro, chloro) and C r C 6 alkyl (e.g., methyl).
  • D is wherein G 2 is pyridinyl (e.g., pyridin-2-yl), piperidin-l -yl, 4,4-dimethylpiperidin-l-yl, 4,4-difluoropiperidin-l-yl, 2,6- dimethylpiperidin- 1 -yl, 4-(propan-2-yl)piperidin- 1 -yl, 4-fluoropiperidin- 1 -yl, 3,5-dimethylpiperidin-l -yl, 4-(trifluoromethyl)piperidin- 1 -yl, 4-methylpiperidin- 1 -yl, 4-tert-butylpiperidin- 1 -yl, 2-oxopiperidin- 1 -yl, 3,3-dimethylazetidin-l-yl, or oxazolyl (e.g., l ,3-oxazol-2-yl) and D is optionally substituted by pyridinyl (e.g
  • D is wherein Gi is N, C-H,
  • G 2 wherein is a monocyclic 4-8 membered nitrogen-containing heterocycle (e.g., azetidinyl, pyrrolidinyl, piperidinyl) attached to the parent molecular moiety through a nitrogen atom and substituted by L 4 -G 3 and optionally substituted with one or more Rc 2 ;
  • L 4 is a bond, C r C 6 alkylene, -0-, or -S(0) 2 -;
  • G3 is aryl (e.g., phenyl), cycloalkyl (e.g., cyclohexyl), or heterocycle (e.g., thienyl) wherein each G 3 is optionally substituted with one or more Rc 3 ;
  • Rc 2 and Rc 3 at each occurrence are each independently halogen, -C(0)C r C 6 alkyl, -Ci-C 6 alkyl, -C r C 6 haloalkyl, -0-C
  • D is , wherein G 3 is phenyl optionally substituted with one or two Rc 3 ; g is 0, 1, or 2; R M is each independently fluoro, chloro, methyl, methoxy,
  • D is erein G 3 is phenyl optionally substituted with one or two Rc 3 ; RMI is each independently hydrogen, fluoro, chloro, or methyl; and R G 2 is an optional substituent as described herein.
  • D is erein G 3 is phenyl optionally substituted with one or two Rc 3 ; RMI is each independently hydrogen, fluoro, chloro, or methyl; and R G 2 is an optional substituent as described herein.
  • D is
  • L 4 is C r C 6 alkylene, -0-, or -S(0) 2 -;
  • G 3 is phenyl optionally substituted with one or two Rc 3 ;
  • g is 0, 1 , or 2;
  • R M is each independently fluoro, chloro, methyl, methoxy, trifluoromethyl,
  • D is wherein Gi is N,
  • D is wherein g is 0, 1 , or 2; R M is each independently fluoro, chloro, methyl,
  • methyl and is as defined above (e.g., 3-azabicyclo[3.2.0]hept-3-yl, octahydro-2H-isoindol-2-yl, 2-azabicyclo[2.2.2]oct-2-yl, 6-azaspiro[2.5]oct-6-yl, 3-azaspiro[5.5]undec-3-yl, l ,3-dihydro-2H-isoindol- 2-yl, 1 ,4-dioxa-8-azaspiro[4.5]dec-8-yl).
  • D is wherein is a monocyclic 4-8 membered nitrogen-containing heterocycle (e.g., azetidinyl, pyrrolidinyl, piperidinyl) substituted with one or more RG2 > wherein Rc2 at each occurrence is each independently halogen, -C(0)C r C 6 alkyl, -C C 6 alkyl, -d-C 6 haloalkyl, -0-C,-C 6 alkyl, or -O-CpCehaloalkyl; and R M is each independently halogen, -C C 6 alkyl, -C r C 6 halo -0-C C 6 alkyl, or -O-Cj-Cehaloalkyl.
  • a monocyclic 4-8 membered nitrogen-containing heterocycle e.g., azetidinyl, pyrrolidinyl, piperidinyl
  • Rc2 at each occurrence is each independently halogen,
  • one group of compounds according to this embodiment is azetidinyl, pyrrolidinyl, or piperidinyl substituted with one or two R G2 , wherein RG2 at each occurrence is each independently methyl, ethyl, isopropyl, tert-butyl, fluoro, chloro, or trifluoromethyl; and R M is each independently fluoro,
  • is 4,4-dimethylpiperidin-l -yl, 4,4-difluoropiperidin-l-yl, 2,6-dimethylpiperidin-l-yl, 4-(propan-2-yl)piperidin-l-yl, 4-fluoropiperidin-l-yl, 3,5-dimethylpiperidin- 1-yl, 4-(trifluoromethyl)piperidin-l -yl, 4-methylpiperidin-l -yl, 4-tert-butylpiperidin- 1 -yl, 2- oxopiperidin-l -yl, or 3,3-dimethylazetidin-l-yl.
  • Non-limited examples of D in -L 3 -D include:
  • L 3 is preferably bond.
  • alkenyl as used in connection with the definition of -L-E or -L 3 -D means a straight or branched hydrocarbyl chain containing one or more double bonds. Each carbon-carbon double bond may have either cis or trans geometry within the alkenyl moiety, relative to groups substituted on the double bond carbons.
  • alkenyl groups include ethenyl (vinyl), 2-propenyl, 3-propenyl, 1,4-pentadienyl, 1,4-butadienyl, 1-butenyl, 2-butenyl, and 3-butenyl.
  • alkenylene as used in connection with the definition of -L-E or -L 3 -D refers to a divalent unsaturated hydrocarbyl chain which may be linear or branched and which has at least one carbon-carbon double bond.
  • alkyl as used in connection with the definition of -L-E or -L 3 -D means a straight or branched saturated hydrocarbyl chain.
  • Non-limiting examples of alkyl groups include methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, iso-amyl, and hexyl.
  • alkylene as used in connection with the definition of -L-E or -L 3 -D denotes a divalent saturated hydrocarbyl chain which may be linear or branched.
  • Representative examples of alkylene include, but are not limited to, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, and - CH 2 CH(CH 3 )CH 2 -. .
  • alkynyl as used in connection with the definition of -L-E or -L 3 -D means a straight or branched hydrocarbyl chain containing one or more triple bonds.
  • alkynyl include ethynyl, 1-propynyl, 2-propynyl, 3-propynyl, decynyl, 1-butynyl, 2-butynyl, and 3-butynyl.
  • alkynylene refers to a divalent unsaturated hydrocarbon group which may be linear or branched and which has at least one carbon-carbon triple bonds.
  • Representative alkynylene groups include, by way of example,— C ⁇ C— , -C ⁇ C-CH 2 - -C ⁇ C-CH 2 -CH 2 - -CH 2 -C ⁇ C-CH 2 - -C ⁇ C-CH(CH 3 )-, and
  • Carbocycle or “carbocyclic” or “carbocyclyl” as used in connection with the definition of -L-E or -L 3 -D refers to a saturated (e.g., “cycloalkyl”), partially saturated (e.g.,
  • cycloalkenyl or “cycloalkynyl” or completely unsaturated (e.g., "aryl”) ring system containing zero heteroatom ring atom.
  • Ring atoms or “ring members” are the atoms bound together to form the ring or rings.
  • a carbocyclyl may be, without limitation, a single ring, two fused rings, or bridged or spiro rings.
  • a substituted carbocyclyl may have either cis or trans geometry.
  • carbocyclyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentenyl, cyclopentadienyl, cyclohexadienyl, adamantyl, decahydro-naphthalenyl, octahydro-indenyl, cyclohexenyl, phenyl, naphthyl, indanyl, 1,2,3,4-tetrahydro-naphthyl, indenyl, isoindenyl, decalinyl, and norpinanyl.
  • a carbocycle group can be attached to the parent molecular moiety through any substitutable carbon ring atom.
  • Carbocyclylalkyl as used in connection with the definition of -L-E or -L 3 -D refers to a carbocyclyl group appended to the parent molecular moiety through an alkylene group.
  • C 3 -C 6 carbocyclylC r C 6 alkyl refers to a C 3 -C 6 carbocyclyl group appended to the parent molecular moiety through C r C 6 alkylene.
  • cycloalkenyl as used in connection with the definition of -L-E or -L 3 -D as used in connection with the definition of -L-E or -L 3 -D refers to a non-aromatic, partially unsaturated carbocyclyl moiety having zero heteroatom ring member.
  • Representative examples of cycloalkenyl groups include, but are not limited to, cyclobutenyl, cyclopentenyl, cyclohexenyl, and
  • cycloalkyl as used in connection with the definition of -L ⁇ E or -L 3 -D refers to a saturated carbocyclyl group containing zero heteroatom ring member.
  • Non-limiting examples of cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, decalinyl and norpinanyl.
  • halo as used in connection with the definition of -L-E or -L 3 -D indicates that the substituent to which the prefix is attached is substituted with one or more independently selected halogen radicals.
  • Ci-C 6 haloalkyl means a C r C 6 alkyl substituent wherein one or more hydrogen atoms are replaced with independently selected halogen radicals.
  • Non-limiting examples of C C 6 haloalkyl include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromefhyl, and 1 , 1 , 1- trifluoroethyl. It should be recognized that if a substituent is substituted by more than one halogen radical, those halogen radicals may be identical or different (unless otherwise stated).
  • heterocycle or “heterocyclo” or “heterocyclyl” as used in connection with the definition of -L-E or -L 3 -D refers to a saturated (e.g., “heterocycloalkyl"), partially unsaturated (e.g.,
  • heterocycloalkenyl or “heterocycloalkynyl” or completely unsaturated (e.g., “heteroaryl”) ring system where at least one of the ring atoms is a heteroatom (i.e., nitrogen, oxygen or sulfur), with the remaining ring atoms being independently selected from the group consisting of carbon, nitrogen, oxygen and sulfur.
  • a heterocycle may be, without limitation, a single ring, two fused rings, or bridged or spiro rings.
  • a heterocycle group can be linked to the parent molecular moiety via any substitutable carbon or nitrogen atom(s) in the group.
  • a heterocyclyl may be, without limitation, a monocycle which contains a single ring.
  • monocycles include furanyl, dihydrofuranyl, tetrahydrofuranyl, pyrrolyl, isopyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidipyl, isothiazolidinyl, thiodiazolyl, oxathiazolyl, oxadiazolyl
  • oxatriazolyl including 1 ,2,3,4-oxatriazolyl and 1 ,2,3,5- oxatriazolyl
  • dioxazolyl including 1 ,2,3-dioxazolyl, 1 ,2,4-dioxazolyl, 1 ,3,2-dioxazolyl, and 1 ,3,4- dioxazolyl
  • oxathiolanyl pyranyl (including 1 ,2-pyranyl and 1 ,4-pyranyl), dihydropyranyl, pyridinyl, piperidinyl, diazinyl (including pyridazinyl (also known as " 1
  • a heterocyclyl may also be, without limitation, a bicycle containing two fused rings, such as, for example, naphthyridinyl (including [1 ,8] naphthyridinyl, and [1 ,6] naphthyridinyl), thiazolpyrimidinyl, thienopyrimidinyl, pyrimidopyrimidinyl, pyridopyrimidinyl, pyrazolopyrimidinyl, indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, pyridopyridinyl (including pyrido[3,4-b]-pyridinyl, pyrido[3,2- b]-pyridinyl, and pyrido[4,3-b]-pyridinyl), pyridopyrimidine, and pteridinyl.
  • naphthyridinyl
  • fused-ring heterocycles include benzo-fused heterocyclyls, such as indolyl, isoindolyl, indoleninyl (also known as “pseudoindolyl”), isoindazolyl (also known as “benzpyrazolyl”), benzazinyl (including quinolinyl (also known as “1 -benzazinyl”) and isoquinolinyl (also known as “2-benzazinyl”)), benzimidazolyl, phthalazinyl, quinoxalinyl, benzodiazinyl (including cinnolinyl (also known as “1,2- benzodiazinyl”) and quinazolinyl (also known as “1 ,3-benzodiazinyl”)), benzopyranyl (including “chromenyl” and “isochromenyl”), benzothiopyranyl (also known as “thiochromenyl”), benzoxazoly
  • benzoxadiazolyl benzofuranyl (also known as “coumaronyl"), isobenzofuranyl, benzothienyl (also known as “benzothiophenyl”, “thionaphthenyl”, and “benzothiofuranyl"), isobenzothienyl (also known as “isobenzothiophenyl”, “isothionaphthenyl", and “isobenzothiofuranyl"), benzothiazolyl,
  • benzothiadiazolyl benzimidazolyl, benzotriazolyl
  • benzoxazinyl including 1,3,2-benzoxazinyl, 1,4,2- benzoxazinyl, 2,3,1-benzoxazinyl, and 3, 1 ,4-benzoxazinyl
  • benzisoxazinyl including 1 ,2-benzisoxazinyl and 1 ,4-benzisoxazinyl
  • tetrahydroisoquinolinyl tetrahydroisoquinolinyl
  • a heterocyclyl may comprise one or more sulfur atoms as ring members; and in some cases, the sulfur atom(s) is oxidized to SO or S0 2 .
  • the nitrogen heteroatom(s) in a heterocyclyl may or may not be quaternized, and may or may not be oxidized to N-oxide. In addition, the nitrogen heteroatom(s) may or may not be N-protected. '
  • C x -C y The number of carbon atoms in a hydrocarbyl moiety can be indicated by the prefix "C x -C y ,” where x is the minimum and y is the maximum number of carbon atoms in the moiety.
  • Ci-C 6 alkyl refers to an alkyl substituent containing from 1 to 6 carbon atoms.
  • C 3 -C 6 carbocycle means a carbocycle containing from 3 to 6 carbon ring atoms.
  • a prefix attached to a multiple-component substituent only applies to the first component that immediately follows the prefix.
  • the term "carbocyclylalkyl” contains two components: carbocyclyl and alkyl.
  • C 3 -C 6 carbocyclyl Cj-Ce alkyl refers to a C 3 -C 6 carbocyclyl appended to the parent molecular moiety through a Ci-C 6 alkyl group.
  • the leftmost-described component of the moiety is bound to the left element in the depicted structure, and the rightmost-described component of the moiety is bound to the right element in the depicted structure.
  • the chemical structure is -L-Ls-R E and L s is C C 6 alkylene
  • the chemical structure is -L-C R C 6 alkylene-R E .
  • a moiety in a depicted structure is a bond
  • the element left to the moiety is joined directly to the element right to the linking element via a covalent bond.
  • a chemical structure is depicted as -L-L S -R E and L S is selected as bond
  • the chemical structure will be -L-R E .
  • two or more adjacent moieties in a depicted structure are bonds, then the element left to these moieties is joined directly to the element right to these linking elements via a covalent bond.
  • the dash(s) indicates the portion of the moiety that has the free valence(s).
  • a moiety is described as being “optionally substituted", the moiety may be either substituted or unsubstituted. If a moiety is described as being optionally substituted with up to a particular number of non-hydrogen radicals, that moiety may be either unsubstituted, or substituted by up to that particular number of non-hydrogen radicals or by up to the maximum number of substitutable positions on the moiety, whichever is less. Thus, for example, if a moiety is described as a heterocycle optionally substituted with up to three non-hydrogen radicals, then any heterocycle with less than three substitutable positions will be optionally substituted by up to only as many non-hydrogen radicals as the heterocycle has substitutable positions.
  • tetrazolyl (which has only one substitutable position) will be optionally substituted with up to one non-hydrogen radical.
  • an amino nitrogen is described as being optionally substituted with up to two non-hydrogen radicals, then a primary amino nitrogen will be optionally substituted with up to two non-hydrogen radicals, whereas a secondary amino nitrogen will be optionally substituted with up to only one non-hydrogen radical.
  • the present invention features the below compounds.
  • R z can be, for example, -(CR 4 2 ),- R 7 -(CR 4 2 ) t -R 8 , -(CR 4 2 ),-R 8 or -(CR 4 2 ) r O-(CR 4 2 ), -R 8 ; and wherein W can be, for example, hydrogen, R A , or J, wherein J is C3-C )2 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more R A , or J is -SF 5 .
  • R z can be, for example, -(CR 4 2 ) t -NR 7 -(CR 4 2 ),-R 8 , -(CR 4 2 ) t -R 8 or -(CR 4 2 ) r O-(CR 4 2 ) t -R 8 ; and wherein W can be, for example, hydrogen, R A , or J, wherein J is C 3 -C 12 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more R A , or J is -SF 5 .
  • the compounds of the present invention can be used in the form of salts.
  • a salt of a compound may be advantageous due to one or more of the salt's physical properties, such as enhanced pharmaceutical stability under certain conditions or desired solubility in water or oil.
  • a salt of a compound may be useful for the isolation or purification of the compound.
  • salt preferably is pharmaceutically acceptable.
  • Pharmaceutically acceptable salts include, but are not limited to, acid addition salts, base addition salts, and alkali metal salts.
  • Pharmaceutically acceptable acid addition salts may be prepared from inorganic or organic acids.
  • suitable inorganic acids include, but are not limited to, hydrochloric, hydrobromic, hydroionic, nitric, carbonic, sulfuric, and phosphoric acid.
  • suitable organic acids include, but are not limited to, aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclyl, carboxylic, and sulfonic classes of organic acids.
  • suitable organic acids include acetate, trifluoroacetate, formate, propionate, succinate, glycolate, gluconate, digluconate, lactate, malate, tartaric acid, citrate, ascorbate, glucuronate, maleate, fumarate, pyruvate, aspartate, glutamate, benzoate, anthranilic acid, mesylate, stearate, salicylate, p-hydroxybenzoate, phenylacetate, mandelate, embonate (pamoate), methanesulfonate, ethanesulfonate, benzenesulfonate, pantothenate, toluenesulfonate, 2- hydroxyethanesulfonate, sufanilate, cyclohexylaminosulfonate, algenic acid, b-hydroxybutyric acid, galactarate, galacturonate, adipate, alginate, bisulfate, but
  • Pharmaceutically acceptable base addition salts include, but are not limited to, metallic salts and organic salts.
  • suitable metallic salts include alkali metal (group la) salts, alkaline earth metal (group Ila) salts, and other pharmaceutically acceptable metal salts.
  • Such salts may be made, without limitation, from aluminum, calcium, lithium, magnesium, potassium, sodium, or zinc.
  • suitable organic salts can be made from tertiary amines and quaternary amine, such as tromethamine, diethylamine, ⁇ , ⁇ '-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), and procaine.
  • Basic nitrogen- containing groups can be quaternized with agents such as alkyl halides (e.g., methyl, ethyl, propyl, butyl, decyl, lauryl, myristyl, and stearyl chlorides/bromides/iodides), dialkyl sulfates (e.g., dimethyl, diethyl, dibuytl, and diamyl sulfates), aralkyl halides (e.g., benzyl and phenethyl bromides), and others.
  • alkyl halides e.g., methyl, ethyl, propyl, butyl, decyl, lauryl, myristyl, and stearyl chlorides/bromides/iodides
  • dialkyl sulfates e.g., dimethyl, diethyl, dibuytl, and diamyl sulfates
  • the compounds or salts of the present invention may exist in the form of solvates, such as with water (i.e., hydrates), or with organic solvents (e.g., with methanol, ethanol or acetonitrile to form, respectively, methanolate, ethanolate or acetonitrilate).
  • solvates such as with water (i.e., hydrates), or with organic solvents (e.g., with methanol, ethanol or acetonitrile to form, respectively, methanolate, ethanolate or acetonitrilate).
  • the compounds or salts of the present invention may also be used in the form of prodrugs.
  • Some prodrugs are aliphatic or aromatic esters derived from acidic groups on the compounds of the invention. Others are aliphatic or aromatic esters of hydroxyl or amino groups on the compounds of the invention. Phosphate prodrugs of hydroxyl groups are preferred prodrugs.
  • the compounds of the invention may comprise asymmetrically substituted carbon atoms known as chiral centers. These compounds may exist, without limitation, as single stereoisomers (e.g., single enantiomers or single diastereomer), mixtures of stereoisomers (e.g. a mixture of enantiomers or diastereomers), or racemic mixtures. Compounds identified herein as single stereoisomers are meant to describe compounds that are present in a form that is substantially free from other stereoisomers (e.g., substantially free from other enantiomers or diastereomers).
  • substantially free it means that at least 80% of the compound in a composition is the described stereoisomer; preferably, at least 90% of the compound in a composition is the described stereoisomer; and more preferably, at least 95%, 96%, 97%, 98% or 99% of the compound in a composition is the described stereoisomer.
  • the stereochemistry of a chiral carbon is not specified in the chemical structure of a compound, the chemical structure is intended to encompass compounds containing either stereoisomer of the chiral center.
  • Individual stereoisomers of the compounds of this invention can be prepared using a variety of methods known in the art. These methods include, but are not limited to, stereospecific synthesis, chromatographic separation of diastereomers, chromatographic resolution of enantiomers, conversion of enantiomers in an enantiomeric mixture to diastereomers followed by chromatographically separation of the diastereomers and regeneration of the individual enantiomers, and enzymatic resolution.
  • Stereospecific synthesis typically involves the use of appropriate optically pure (enantiomerically pure) or substantial optically pure materials and synthetic reactions that do not cause racemization or inversion of stereochemistry at the chiral centers.
  • Mixtures of stereoisomers of compounds, including racemic mixtures, resulting from a synthetic reaction may be separated, for example, by chromatographic techniques as appreciated by those of ordinary skill in the art. Chromatographic resolution of enantiomers can be accomplished by using chiral chromatography resins, many of which are commercially available.
  • racemate is placed in solution and loaded onto the column containing a chiral stationary phase. Enantiomers can then be separated by HPLC.
  • Resolution of enantiomers can also be accomplished by converting enantiomers in a mixture to diastereomers by reaction with chiral auxiliaries.
  • the resulting diastereomers can be separated by column chromatography or crystallization/re-crystallization. This technique is useful when the compounds to be separated contain a carboxyl, amino or hydroxyl group that will form a salt or covalent bond with the chiral auxiliary.
  • suitable chiral auxiliaries include chirally pure amino acids, organic carboxylic acids or organosulfonic acids.
  • Enzymes such as esterases, phosphatases or lipases, can be useful for the resolution of derivatives of enantiomers in an enantiomeric mixture.
  • an ester derivative of a carboxyl group in the compounds to be separated can be treated with an enzyme which selectively hydrolyzes only one of the enantiomers in the mixture.
  • the resulting enantiomerically pure acid can then be separated from the unhydrolyzed ester.
  • salts of enantiomers in a mixture can be prepared using any suitable method known in the art, including treatment of the carboxylic acid with a suitable optically pure base such as alkaloids or phenethylamine, followed by precipitation or crystallization/re-crystallization of the enantiomerically pure salts.
  • a suitable optically pure base such as alkaloids or phenethylamine
  • Methods suitable for the resolution/separation of a mixture of stereoisomers, including racemic mixtures can be found in ENANTIOMERS, RACEMATES, AND RESOLUTIONS (Jacques et al, 1981, John Wiley and Sons, New York, NY).
  • a compound of this invention may possess one or more unsaturated carbon-carbon double bonds. All double bond isomers, such as the cis (Z) and trans (E) isomers, and mixtures thereof are intended to be encompassed within the scope of a recited compound unless otherwise specified. In addition, where a compound exists in various tautomeric forms, a recited compound is not limited to any one specific tautomer, but rather is intended to encompass all tautomeric forms.
  • Certain compounds of the invention may exist in different stable conformational forms which may be separable. Torsional asymmetry due to restricted rotations about an asymmetric single bond, for example because of steric hindrance or ring strain, may permit separation of different conformers.
  • the invention encompasses each conformational isomer of these compounds and mixtures thereof.
  • Certain compounds of the invention may also exist in zwitterionic form and the invention encompasses each zwitterionic form of these compounds and mixtures thereof.
  • the compounds of the present invention are generally described herein using standard nomenclature. For a recited compound having asymmetric center(s), it should be understood that all of the stereoisomers of the compound and mixtures thereof are encompassed in the present invention unless otherwise specified. Non-limiting examples of stereoisomers include enantiomers, diastereomers, and cis-transisomers. Where a recited compound exists in various tautomeric forms, the compound is intended to encompass all tautomeric forms. Certain compounds are described herein using general formulas that include variables (e.g., R A or R B ). Unless otherwise specified, each variable within such a formula is defined independently of any other variable, and any variable that occurs more than one time in a formula is defined independently at each occurrence. If moieties are described as being
  • each moiety is selected independently from the other. Each moiety therefore can be identical to or different from the other moiety or moieties.
  • pharmaceutically acceptable is used adjectivally to mean that the modified noun is appropriate for use as a pharmaceutical product or as a part of a pharmaceutical product.
  • terapéuticaally effective amount refers to the total amount of each active substance that is sufficient to show a meaningful patient benefit, e.g. a reduction in viral load.
  • prodrug refers to derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become, by solvolysis or under physiological conditions, the compounds of the invention which are pharmaceutically active in vivo.
  • a prodrug of a compound may be formed in a conventional manner by reaction of a functional group of the compound (such as an amino, hydroxy or carboxy group).
  • Prodrugs often offer advantages of solubility, tissue compatibility, or delayed release in mammals (see, Bungard, H., DESIGN OF PRODRUGS, pp. 7-9, 21-24, Elsevier, Amsterdam 1985).
  • Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable amine.
  • Examples of prodrugs include, but are not limited to, acetate, formate, benzoate or other acylated derivatives of alcohol or amine functional groups within the compounds of the invention.
  • solvate refers to the physical association of a compound of this invention with one or more solvent molecules, whether organic or inorganic. This physical association often includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate” encompasses both solution-phase and isolable solvates. Exemplary solvates include, but are not limited to, hydrates, ethanolates, and methanolates.
  • the present invention also features pharmaceutical compositions comprising the compounds of the invention.
  • a pharmaceutical composition of the present invention can comprise one or more compounds of the invention.
  • compositions comprising
  • pharmaceutically acceptable salts can be zwitterions or derived from pharmaceutically acceptable inorganic or organic acids or bases.
  • a pharmaceutically acceptable salt retains the biological effectiveness of the free acid or base of the compound without undue toxicity, irritation, or allergic response, has a reasonable benefit/risk ratio, is effective for the intended use, and is not biologically or otherwise undesirable.
  • the present invention further features pharmaceutical compositions (a) one or more compounds of the present invention (namely, one or more of compounds having Formula I or salts, solvates or prodrugs thereof; and (b) another therapeutic agent.
  • these other therapeutic agents can be selected from antiviral agents (e.g., anti-HIV agents, anti-HBV agents, or other anti-HCV agents such as HCV protease inhibitors, HCV polymerase inhibitors, HCV helicase inhibitors, IRES inhibitors or NS5A inhibitors), anti-bacterial agents, anti-fungal agents, immunomodulators, anticancer or chemotherapeutic agents, anti-inflammation agents, antisense RNA, siRNA, antibodies, or agents for treating cirrhosis or inflammation of the liver.
  • antiviral agents e.g., anti-HIV agents, anti-HBV agents, or other anti-HCV agents such as HCV protease inhibitors, HCV polymerase inhibitors, HCV helicase inhibitors, IRES inhibitors or NS5
  • these other therapeutic agents include, but are not limited to, ribavirin, a-interferon, ⁇ -interferon, pegylated interferon-a, pegylated interferon-lambda, ribavirin, viramidine, R-5158, nitazoxanide, amantadine, Debio-025, ⁇ - 81 1, R7128, R1626, R4048, T-l 106, PSI-7851, PF-00868554, ANA-598, IDX184, IDX 102, IDX375, GS-9190, VCH-759, VCH-916, MK-3281 , BCX-4678, MK-3281 , VBY708, ANA598, GL59728, GL60667, BMS-790052, BMS-791325, BMS-650032, GS-9132, ACH-1095, AP-H005, A-831 , A-689, AZD2836
  • a pharmaceutical composition of the present invention comprises (a) one or more compounds of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof; and (b) one or more other antiviral agents.
  • a pharmaceutical composition of the present invention comprises (a) one or more compounds of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof; and (b) and one or more other anti-HCV agents, such as an agent selected from HCV polymerase inhibitors (including nucleoside or non-nucleoside type of polymerase inhibitors), HCV protease inhibitors, HCV helicase inhibitors, CD81 inhibitors, cyclophilin inhibitors, IRES inhibitors, or NS5A inhibitors.
  • HCV polymerase inhibitors including nucleoside or non-nucleoside type of polymerase inhibitors
  • HCV protease inhibitors HCV helicase inhibitors
  • CD81 inhibitors cyclophilin inhibitors
  • IRES inhibitors or NS5A inhibitors.
  • a pharmaceutical composition of the present invention comprises (a) one or more compounds of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof; and (b) one or more other antiviral agents, such as anti-HBV, anti- HIV agents, or anti-hepatitis A, anti-hepatitis D, anti-hepatitis E or anti-hepatitis G agents.
  • anti-HBV agents include adefovir, lamivudine, and tenofovir.
  • Non-limiting examples of anti-HIV drugs include ritonavir, lopinavir, indinavir, nelfinavir, saquinavir, amprenavir, atazanavir, tipranavir, TMC-114, fosamprenavir, zidovudine, lamivudine, didanosine, stavudine, tenofovir, zalcitabine, abacavir, efavirenz, nevirapine, delavirdine, TMC-125, L-870812, S-1360, enfuvirtide, T- 1249, or other HTV protease, reverse transcriptase, integrase or fusion inhibitors. Any other desirable antiviral agents can also be included in a pharmaceutical composition of the present invention, as appreciated by those skilled in the art.
  • a pharmaceutical composition of the present invention typically includes a pharmaceutically acceptable carrier or excipient.
  • suitable pharmaceutically acceptable carriers/excipients include sugars (e.g., lactose, glucose or sucrose), starches (e.g., corn starch or potato starch), cellulose or its derivatives (e.g., sodium carboxymethyl cellulose, ethyl cellulose or cellulose acetate), oils (e.g., peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil or soybean oil), glycols (e.g., propylene glycol), buffering agents (e.g., magnesium hydroxide or aluminum hydroxide), agar, alginic acid, powdered tragacanth, malt, gelatin, talc, cocoa butter, pyrogen-free water, isotonic saline, Ringer's solution, ethanol, or phosphate buffer solutions.
  • Lubricants, coloring agents, releasing agents, coating agents, sweetening
  • compositions of the present invention can be formulated based on their routes of administration using methods well known in the art.
  • a sterile injectable preparation can be prepared as a sterile injectable aqueous or oleagenous suspension using suitable dispersing or wetting agents and suspending agents.
  • Suppositories for rectal administration can be prepared by mixing drugs with a suitable nonirritating excipient such as cocoa butter or polyethylene glycols which are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drugs.
  • Solid dosage forms for oral administration can be capsules, tablets, pills, powders or granules.
  • the active compounds can be admixed with at least one inert diluent such as sucrose lactose or starch.
  • Solid dosage forms may also comprise other substances in addition to inert diluents, such as lubricating agents.
  • the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
  • Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or elixirs containing inert diluents commonly used in the art.
  • Liquid dosage forms may also comprise wetting, emulsifying, suspending, sweetening, flavoring, or perfuming agents.
  • compositions of the present invention can also be administered in the form of liposomes, as described in U.S. Patent No. 6,703,403.
  • Formulation of drugs that are applicable to the present invention is generally discussed in, for example, Hoover, John E., REMINGTON'S PHARMACEUTICAL
  • Any compound described herein i.e, any compounds having a Formula ( ⁇ ) or a pharmaceutically acceptable salt thereof, can be used to prepared pharmaceutical compositions of the present invention.
  • the present invention further features methods of using the compounds of the present (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof to inhibit HCV replication.
  • the methods comprise contacting cells infected with HCV virus with an effective amount of a compound of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof thereby inhibiting the replication of HCV virus in the cells.
  • inhibiting means significantly reducing, or abolishing, the activity being inhibited (e.g., viral replication).
  • representative compounds of the present invention can reduce the replication of HCV virus (e.g., in an HCV replicon assay as described above) by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or more.
  • the compounds of the present invention may inhibit one or more HCV subtypes.
  • HCV subtypes that are amenable to the present invention include, but are not be limited to, HCV genotypes 1, 2, 3, 4, 5 and 6, including HCV genotypes la, lb, 2a, 2b, 2c or 3a.
  • a compound or compounds of the present invention (or salts, solvates or prodrugs thereof) are used to inhibit the replication of HCV genotype la.
  • a compound or compounds of the present invention are used to inhibit the replication of HCV genotype lb.
  • a compound or compounds of the present invention are used to inhibit the replication of both HCV genotypes la and lb.
  • the present invention also features methods of using the compounds of the present invention (or salts, solvates or prodrugs thereof) to treat HCV infection.
  • the methods typically comprise administering a therapeutic effective amount of a compound of the present invention (or a salt, solvate or prodrug thereof), or a pharmaceutical composition comprising the same, to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient.
  • treating refers to reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition, or one or more symptoms of such disorder or condition to which such term applies.
  • treatment refers to the act of treating.
  • the methods comprise administering a therapeutic effective amount of two or more compounds of the present invention (or salts; solvates or prodrugs thereof), or a pharmaceutical composition comprising the same, to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient.
  • a compound of the present invention (or a salt, solvate or prodrug thereof) can be administered as the sole active pharmaceutical agent, or in combination with another desired drug, such as other anti-HCV agents, anti-HIV agents, anti-HBV agents, anti-hepatitis A agents, anti-hepatitis D agents, anti-hepatitis E agents, anti-hepatitis G agents, or other antiviral drugs. Any compound described herein, or a pharmaceutically acceptable salt thereof, can be employed in the methods of the present invention.
  • a compound of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof can be administered to a patient in a single dose or divided doses.
  • a typical daily dosage can range, without limitation, from 0.1 to 200 mg/kg body weight, such as from 0.25 to 100 mg/kg body weight.
  • Single dose compositions can contain these amounts or submultiples thereof to make up the daily dose.
  • each dosage contains a sufficient amount of a compound of the present invention that is effective in reducing the HCV viral load in the blood or liver of the patient.
  • the amount of the active ingredient, or the active ingredients that are combined, to produce a single dosage form may vary depending upon the host treated and the particular mode of administration.
  • the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination, and the severity of the particular disease undergoing therapy.
  • the present invention further features methods of using the pharmaceutical compositions of the present invention to treat HCV infection.
  • the methods typically comprise administering a pharmaceutical composition of the present invention to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient. Any pharmaceutical composition described herein can be used in the methods of the present invention.
  • the present invention features use of the compounds or salts of the present invention for the manufacture of medicaments for the treatment of HCV infection. Any compound described herein, or a pharmaceutically acceptable salt thereof, can be used to make medicaments of the present invention.
  • the compounds of the present invention can also be isotopically substituted.
  • Preferred isotopic substitution include substitutions with stable or nonradioactive isotopes such as deuterium, 13 C, 15 N or l8 0.
  • Incorporation of a heavy atom, such as substitution of deuterium for hydrogen can give rise to an isotope effect that could alter the pharmacokinetics of the drug.
  • at least 10 mol % of hydrogen in a compound of the present invention is substituted with deuterium.
  • at least 25 mole % of hydrogen in a compound of the present invention is substituted with deuterium.
  • At least 50, 60, 70, 80 or 90 mole % of hydrogen in a compound of the present invention is substituted with deuterium.
  • the natural abundance of deuterium is about 0.015%.
  • Deuterium substitution or enrichment can be achieved, without limitation, by either exchanging protons with deuterium or by synthesizing the molecule with enriched or substituted starting materials. Other methods known in the art can also be used for isotopic substitutions.
  • the compounds of the present invention can also be isotopically substituted.
  • Preferred isotopic substitution include substitutions with stable or nonradioactive isotopes such as deuterium, l3 C, 15 N or ! 8 0.
  • Incorporation of a heavy atom, such as substitution of deuterium for hydrogen can give rise to an isotope effect that could alter the pharmacokinetics of the drug.
  • at least 10 mol % of hydrogen in a compound of the present invention is substituted with deuterium.
  • at least 25 mole % of hydrogen in a compound of the present invention is substituted with deuterium.
  • At least 50, 60, 70, 80 or 90 mole % of hydrogen in a compound of the present invention is substituted with deuterium.
  • the natural abundance of deuterium is about 0.015%.
  • Deuterium substitution or enrichment can be achieved, without limitation, by either exchanging protons with deuterium or by synthesizing the molecule with enriched or substituted starting materials. Other methods known in the art can also be used for isotopic substitutions.
  • the contents of all references including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated herein in their entireties by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to anti-HCV compounds, compositions comprising the same and methods of using the same to treat HCV infection.

Description

ANTI- VIRAL COMPOUNDS
FIELD
The present invention relates to anti-HCV compounds, compositions comprising the same and methods of using the same to treat HCV infection.
BACKGROUND
Hepatitis C virus ("HCV") is an RNA virus belonging to the Hepacivirus genus in the
Flaviviridae family. The enveloped HCV virion contains a positive stranded RNA genome which encodes a single large polyprotein of about 3000 amino acids. The polyprotein comprises a core protein, envelope proteins El and E2, a membrane bound protein p7, and the non-structural proteins NS2, NS3,
NS4A, NS4B, NS5A and NS5B.
HCV infection is associated with progressive liver pathology, including cirrhosis and hepatocellular carcinoma. Chronic hepatitis C may be treated with peginterferon-alpha in combination with ribavirin. Substantial limitations to efficacy and tolerability remain as many users suffer from side effects, and viral elimination from the body is often inadequate. Therefore, there is a need for new drugs to treat HCV infection.
SUMMARY
The present invention relates to a compound of Formula (I) or pharmaceutically acceptable salts thereof:
Figure imgf000002_0001
(I)
1
1 17445.1 A and A' are independently selected from the group consisting of a single bond, -(CR2)„-C(0)- (CR 2)p-,-(CR2)n-0-(CR2)p-, -(CR2)n-N(RN)-(CR2)p-, -(CR2)n-S(0)k-N(RN)-(CR2)p-, -(CR2)n-C(0)-N(RN)- (CR2)p-,-(CR2)„-N(RN)-C(0)-N(RN)-(CR2)p-, -(CR2) n -C(0)-0-(CR2)p-,
-(CR2)„-N(RN)-S(0)k-N(RN)-(CR2)p- and -(CR2)„-N(RN)-C(0)-0-(CR2)p-and a
Figure imgf000003_0001
heteroaryl group selected from the group consisting of
Figure imgf000003_0002
X1 is CH2) NH, O or S,
Y1, Y2 and Z1 are each independently CH or N,
X2 is NH, O or S,
V is -CH2-CH2-, -CH=CH-,-N=CH-, (CH2)a-N(RN)-(CH2)b- or
-(CH2)a-0-(CH2)b-, wherein a and b are independently 0, 1, 2, or 3 with the proviso that a and b are not both 0,
Figure imgf000003_0003
optionally includes 1 or 2 nitrogens as heteroatoms on the phenyl residue,
the carbons of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, -CN, -N02, halogen, CrCi2 alkyl, Ci-C)2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino, the nitrogens, if present, of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, Q to C12 alkyl, Ci to C)2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide,
a and b are independently 1, 2, or 3.
c and d are independently 1 or 2,
n and p are independently 0, 1, 2 or 3,
k is 0, 1 , or 2,
each R is independently selected from the group consisting of hydrogen, -OH, -CN, -N02, halogen, Q to C12 alkyl, Q to C12 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino,
each RN is independently selected from the group consisting of hydrogen, -OH, Ci to C)2 alkyl, Ci to Cn heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide, and
wherein for each A and A', B may be attached to either side of A and A' so that
in the example of A or A' being
Figure imgf000004_0001
the A-B-A' can be any of:
Figure imgf000004_0002
B is (a) Q or (b) Q— Q, wherein each Q is independently selected from the group consisting of a cycloalkyl group, cycloalkenyl group, heterocycle, aryl group or heteroaryl group, wherein B is substituted with -L-E or preferably -L3-D; preferably only one Q is a six member aromatic ring when B is Q— Q, and/or preferably if B is Q— Q, any Q is that is polycyclic is connected to the remainder of the molecule through only one cycle of the polycycle; wherein -L-E and -L3-D are defined below;
RC, R", Rc and RF are each independently selected from the group consisting of: hydrogen, C\ to C8 alkyl, d to C8 heteroalkyl, aralkyl and a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl, wherein,
each heteroatom, if present, is independently N, O or S,
each of RC, Rd, RE and RF may optionally be substituted by C C8 alkyl, d to C8 heteroalkyl, aralkyl, or a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl and wherein each heteroatom, if present, is independently N, O or S, RC and Rd are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring, and RE and RF are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring;
Y and Y' are each independently carbon or nitrogen; and
Z and Z' are independently selected from the group consisting of hydrogen, Ci to Cg alkyl, Q to Cg heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, 1-3 amino acids, -[U-(CR4 2),-NR5- (CR4 2)t]u-U-(CR4 2)T-NR7-(CR4 2)L-R8, -U-(CR4 2)T-R8 and -[U-(CR4 2)T - R5-(CR4 2)JU -U-(CR4 2)T -O- (CR4 2), -R8, wherein, U is selected from the group consisting of -C(O)-, -C(S)- and -S(0)2-, each R4, R5 and R7 is independently selected from the group consisting of hydrogen, Q to C8 alkyl, Ci to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl and aralkyl,
R8 is selected from the group consisting of hydrogen, Q to C8 alkyl, Ci to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, -C(0)-R81, -C(S)-R81, -C(0)-0-R81, -C(0)-N-R81, - S(0)2-R81 and -S(0)2-N-R81 2, wherein each R81 is independently chosen from the group consisting of hydrogen, Q to C8 alkyl, C] to Cg heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl and aralkyl, optionally, R7 and R8 together form a 4-7 membered ring,
each t is independently 0, 1, 2, 3, or 4, and
u is 0, 1, or 2;
-L-E is as follows:
E is (i) C3-Ci4 carbocycle or 3- to 14-membered heterocycle, and is optionally substituted with one or more RA; or (ii) E is -LS-RE',
L is -Ls-, -Ls-0-Ls'-, -Ls-C(0)-Ls'-, -Ls-S(0)2-Ls'- -Ls-S(0)-Ls'-, -Ls-OS(0)2-Ls'-, -
Ls-S(0)2O-Ls'-, -Ls-OS(0)-Ls'-, -Ls-S(0)0-Ls'-, -LS-C(0)0-Ls'-, -LS-OC(0)-Ls'-, -Ls-
OC(0)0-LS'-, -LS-C(0)N(RB)-Ls'-, -LS-N(RB)C(0)-LS'-, -LS-C(0)N(Rb)0-LS'-, -LS- N(RB)C(0)0-LS'-, -LS-OC(0)N(RB)-Ls'-, -LS-C(0)N(RB)N(RB )-LS'-, -LS-S-LS'-, -LS-C(S)-LS'-, -
LS-C(S)0-Ls'-, -LS-OC(S)-Ls'-, -LS-C(S)N(RB)-LS'-, -Ls-N(RB)-Ls'-, -LS-N(RB)C(S)-LS'-, -Ls-
N(RB)S(0)-Ls'-, -LS-N(RB)S(0)2-Ls'-, -LS-S(0)2N(RB)-Ls'-, -Ls-S(0)N(RB)-Ls'-, -Ls-
C(S)N(RB)0-Ls'-, -Ls-C(0)N(RB)C(0)-Ls'-, -LS-N(RB)C(0)N(RB')-Ls'- -Ls-N(RB)S02N(RB')-Ls'-
, -LS-N(RB)S(0)N(RB ,)-Ls'-, or -LS-C(S)N(RB)N(RB )-Ls'-;
Ls and Ls' are each independently selected at each occurrence from bond; or CRC6 alkylene, C2-
C6alkenylene or C2-C6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more RL;
RA is independently selected at each occurrence from halogen, oxo, thioxo, hydroxy, mercapto, nitro, cyano, amino, carboxy, formyl, phosphonoxy, or phosphono; or -LS-RE; RB and RB are each independently selected at each occurrence from hydrogen; or d-C6 alkyl, C2- C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C3-C6 carbocycle or 3- to 6-membered heterocycle; or C3-C6 carbocycle or 3- to 6-membered heterocycle; wherein each C3-C6 carbocycle or 3- to 6-membered heterocycle in RB or RB' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C6 alkyl, C2-C6 alkenyl, C2-Ce alkynyl, Ci-C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
RE is independently selected at each occurrence from -0-Rs, -S-Rs, -C(0)Rs, -OC(0)Rs, -
C(0)ORs> -N(RsRs'), -S(0)Rs, -S02Rs, -C(0)N(RsRs'), -N(Rs)C(0)Rs', -N(Rs)C(0)N(Rs'Rs"), - N(Rs)S02Rs\ -S02N(RsRs'), -N(Rs)S02N(Rs'Rs"), -N(Rs)S(0)N(Rs'Rs"), -OS(0)-RS) -OS(0)2-Rs, -S(0)2ORs, -S(0)ORs, -OC(0)ORs, -N(Rs)C(0)ORs', -OC(0)N(RsRs'), -N(Rs)S(0)-Rs', - S(0)N(RsRs') or -C(0)N(Rs)C(0)-Rs' ; or C,-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C6carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
RL is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -0-Rs, -S-Rs, -C(0)Rs, -OC(0)Rs, -C(0)ORs> -N(RSRS'), -S(0)RS, - S02Rs, -C(0)N(RsRs') or -N(Rs)C(0)Rs' ; or C3-C6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
Rs, Rs' and Rs" are each independently selected at each occurrence from hydrogen; Ci-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in Rs , Rs' or Rs' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
-L3-D is as follows:
L3 is bond or -Ls-K-Ls'-, wherein K is selected from bond, -0-, -S-, -N(RB)-, -C(O)-, - S(0)2- -S(O)-, -OS(O)-, -OS(0)2- -S(0)20-, -S(0)0-, -C(0)0-, -OC(O)-, -OC(0)0-, - C(0)N(RB)-, -N(RB)C(0)- -N(RB)C(0)0-, -OC(0)N(RB)-, -N(RB)S(0)-, -N(RB)S(0)2-, - S(0)N(RB)-, -S(0)2N(RB)- -C(0)N(RB)C(0)-, -N(RB)C(0)N(RB')-, -N(RB)S02N(RB')-, or -
Figure imgf000007_0001
D is C3-Ci2 carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more RA; or D is C3-Ci2 carbocycle or 3- to 12-membered heterocycle which is substituted with J and optionally substituted with one or more RA, where J is C3-C]2 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more RA, or J is -SF5; -or D is hydrogen or RA;
RA is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, or -LS-RE, wherein two adjacent RA, taken together with the atoms to which they are attached and any atoms between the atoms to which they are attached, can optionally form carbocycle or heterocycle;
RB and RB' are each independently selected at each occurrence from hydrogen; or Ci-C6alkyl, C2- C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in RB or RB' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6alkyl, C2-C6alkenyl, C2-C6alkynyl, CrC6haloalkyl, C2-C6haloalkenyl or C2-C6haloalkynyl;
RE is independently selected at each occurrence from -0-Rs, -S-Rs, -C(0)RS, -OC(0)Rs, -
C(0)ORs, -N(RsRs'), -S(0)Rs, -S02Rs, -C(0)N(RsRs'), -N(Rs)C(0)Rs', -N(Rs)C(0)N(Rs'Rs"), - N(Rs)S02Rs\ -S02N(RsRs'), -N(Rs)S02N(Rs'Rs"), -N(Rs)S(0)N(Rs'Rs"), -OS(0)-Rs, -OS(0)2-Rs, -S(0)2ORs, -S(0)ORs, -OC(0)ORs, -N(Rs)C(0)ORs\ -OC(0)N(RsRs'), -N(Rs)S(0)-Rs\ - S(0)N(RsRs'), -P(0)(ORs)2> or -C(0)N(Rs)C(0)-Rs' ; or CrC6alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CpCe alkyl, C2-Ce alkenyl, C2-C6 alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl, C2-C6haloalkynyl, C(0)ORs, or -N(RsRs');
RL is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -0-Rs, -S-Rs, -C(0)RS, -OC(0)Rs, -C(0)ORs> -N(RSRS'), -S(0)Rs, - S02Rs, -C(0)N(RsRs') or -N(Rs)C(0)Rs' ; or C3-C6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CpCe haloalkyl, C2-C6 haloalkenyl or C2-C6haloalkynyl; wherein two adjacent RL, taken together with the atoms to which they are attached and any atoms between the atoms to which they are attached, can optionally form carbocycle or heterocycle;
Ls and Ls' are each independently selected at each occurrence from bond; or CrC6alkylene, C2- C6alkenylene or C2-C6alkynylene, each of which is independently optionally substituted at each occurrence with one or more RL; and
Rs, Rs' and Rs" are each independently selected at each occurrence from hydrogen; C C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, -0-CrC6 alkyl, -0-Ci-C6 alkylene-0-Ci-C6 alkyl, or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in Rs , Rs' or Rs' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro; oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl or C2-C6haloalkynyl.
In another aspect, the present invention relates to a pharmaceutical composition comprising (a) one or more of any of the compounds of Formula (I) or any salts, solvates or prodrugs thereof; and (b) at least one pharmaceutically acceptable carrier or at least one pharmaceutically acceptable excipient.
Examples of suitable pharmaceutically acceptable carriers or excipients that can be used in said pharmaceutical compositions include, but are not limited to, sugars (e.g., lactose, glucose or sucrose), starches (e.g., corn starch or potato starch), cellulose or its derivatives (e.g., sodium carboxymethyl cellulose, ethyl cellulose or cellulose acetate), oils (e.g., peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, com oil or soybean oil), glycols (e.g., propylene glycol), buffering agents (e.g., magnesium hydroxide or aluminum hydroxide), agar, alginic acid, powdered tragacanth, malt, gelatin, talc, cocoa butter, pyrogen-free water, isotonic saline, Ringer's solution, ethanol, phosphate buffer solutions, lubricants, coloring agents, releasing agents, coating agents, sweetening, flavoring or perfuming agents, preservatives, or antioxidants. In addition to containing any one or more compounds of Formula (I) or any salts, solvates or prodrugs thereof, the pharmaceutical compositions of the present invention can also further contain one or more of the following: (a) one or more anti-HCV agents, such as an HCV polymerase inhibitor, HCV protease inhibitor, HCV helicase inhibitor, CD81 inhibitor, cyclophilin inhibitors, IRES inhibitors, or NS5A inhibitors; (b) one or more antiviral agents such as anti-HBV agents, anti-HIV agents, anti- hepatitis agents, anti-hepatitis D, anti-hepatitis E or anti-hepatitis G agents; (c) anti-bacterial agents; (d) anti-fungal agents; (e) immunomodulators, (f) anti-cancer or chemotherapeutic agents; (g) antiinflammatory agents; (h) antisense RNA; (i) antibodies; (j) agents for treating cirrhosis or inflammation of the liver; or (k) any combinations of (a)-(k).
The present invention also relates to a method of treating HCV infection. The method involves administering to a patient in need of treatment, a therapeutically effective amount of the above-described pharmaceutical composition of the present invention to treat the HCV infection in said patient.
Other features, objects, and advantages of the present invention are apparent in the detailed description that follows. It should be understood, however, that the detailed description, while indicating preferred embodiments of the invention, are given by way of illustration only, not limitation. Various changes and modifications within the scope of the invention will become apparent to those skilled in the art from the detailed description.
DETAILED DESCRIPTION
In an aspect, the present invention relates to compounds having the structure of below Formula
(I) or pharmaceutically acceptable salts thereof:
Figure imgf000010_0001
(I)
A and A' are independently selected from the group consisting of a single bond, -(CR2)n-C(0)- (CR 2)p-,-(CR2)n-0-(CR2)p-, -(CR2)„-N(RN)-(CR2)p-, -(CR2)n-S(0)k-N(RN)-(CR2)p-, -(CR2)„-C(0)-N(RN)- (CR2)p-,-(CR2)n-N(RN)-C(0)-N(RN)-(CR2)p-, -(CR2) n -C(0)-0-(CR2)p-,
-(CR2)„-N(RN)-S(0)k-N(RN)-(CR2)p- and -(CR2)n-N(RN)-C(0)-0-(CR2)p-and a
heteroaryl group selected from the group consisting of
Figure imgf000010_0002
Figure imgf000010_0003
X1 is CH2, NH, O or S, Υ', Y2 and Ζ1 are each independently CH or N,
X2 is NH, O or S,
V is -CH2-CH2-, -CH=CH-,-N=CH-, (CH2)a-N(RN)-(CH2)„- or
-(CH2)a-0-(CH2)b-, wherein a and b are independently 0, 1 , 2, or 3 with the proviso that a and b are not both 0,
Figure imgf000011_0001
optionally includes 1 or 2 nitrogens as heteroatoms on the phenyl residue,
the carbons of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, -CN, -N02, halogen, C Ci2 alkyl, C C12 heteroalkyl, cycloalkyi, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino,
the nitrogens, if present, of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, Ci to C12 alkyl, Q to C12 heteroalkyl, cycloalkyi, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide,
a and b are independently 1, 2, or 3.
c and d are independently 1 or 2,
n and p are independently 0, 1, 2 or 3,
k is 0, 1 , or 2,
each R is independently selected from the group consisting of hydrogen, -OH, -CN, -N02, halogen, Ci to C12 alkyl, Ci to C]2 heteroalkyl, cycloalkyi, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino,
each RN is independently selected from the group consisting of hydrogen, -OH, d to Cn alkyl, d to Ci2 heteroalkyl, cycloalkyi, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide, and
wherein for each A and A', B may be attached to either side of A and A' so that
in the example of A or A' being ·
Figure imgf000011_0002
the A-B-A' can be any of:
Figure imgf000012_0001
B is (a) Q or (b) Q— Q, wherein each Q is independently selected from the group consisting of a cycloalkyl group, cycloalkenyl group, heterocycle, aryl group or heteroaryl group, and wherein B is substituted with -L-E or -L3-D as defined hereinabove and below; preferably only one Q is a six member aromatic ring when B is Q— Q, and.or preferably if B is Q— Q, any Q is that is polycyclic is connected to the remainder of the molecule through only one cycle of the polycycle;
Rc, Rd, Re and Rf are each independently selected from the group consisting of: hydrogen, Q to C8 alkyl, Q to Cs heteroalkyl, aralkyl and a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl, wherein,
each heteroatom, if present, is independently N, O or S,
each of Rc, Rd, Re and Rf may optionally be substituted by CrC8 alkyl, Q to C8 heteroalkyl, aralkyl, or a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl and wherein each heteroatom, if present, is independently N, O or S,
Rc and Rd are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring, and Re and Rf are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring;
Y and Y' are each independently carbon or nitrogen; and
Z and Z' are independently selected from the group consisting of hydrogen, Ci to C8 alkyl, Q to Cs heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, 1-3 amino acids, -[U-(CR4 2),-NR5- (CR4 2)Ju-U-(CR4 2)l-NR7-(CR4 2)[-R8, -U-(CR4 2),-R8 and -[U-(CR4 2)t -NR5-(CR4 2),]U -U-(CR4 2)t -O- (CR4 2), -R8, wherein, U is selected from the group consisting of -C(O)-, -C(S)- and -S(0)2-, each R4, R5 and R7 is independently selected from the group consisting of hydrogen, d to C8 alkyl, Ci to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl and aralkyl,
Rs is selected from the group consisting of hydrogen, Q to C8 alkyl, Ci to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, -C(0)-R81, -C(S)-R81, -C(0)-0-R81, -C(0)-N-R81, - S(0)2-R81 and -S(0)2-N-R81 2, wherein each R81 is independently chosen from the group consisting of hydrogen, Ci to C8 alkyl, Ci to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl and aralkyl, optionally, R7 and R8 together form a 4-7 membered ring,
each t is independently 0, 1, 2, 3, or 4, and
u is 0, 1 , or 2. In a first embodiment of this aspect of the present invention, at least one Q is substituted with -L- E or -L3-D as defined herein, and each Q is independently optionally substituted with one or more substituents each independently selected from the group consisting of -OH, -CN, -N02, halogen, Q to C)2 alkyl, Q to C12 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino, and if Q is not aromatic, it is optionally substituted with oxo.
In a second embodiment of this aspect of the present invention, at least one Q is substituted with -L-E or -L3-D as defined herein, and each Q is independently optionally substituted with -CN,— OCF3, - OCHF2,— CF3 or— F.
In a third embodiment of this aspect of the present invention, B is selected from the group consisting of
Figure imgf000013_0001
Figure imgf000014_0001
and wherein
Figure imgf000014_0002
is a divalent aryl or heteroaryl group which may be polycyclic with varying connective patterns;
V is— CH2— ,— CH2-CH2— , -CH=CH— , -N=CH— , (CH2)a-N(RN)-(CH2)b— — (CH2)a-0-(CH2)b— , wherein a and b are independently 0, 1 , 2, or 3 with the proviso that a and b are not both 0; each r and s is independently 0, 1, 2, 3, or 4; each Ra is independently selected from the group consisting of -OH, -CN, -N02 halogen, Q to Ci2 alkyl, d to C)2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino; and each Rb is independently C Ci2 alkyl, hydroxyl, halogen, or oxo, and
B is substituted with -L-E or -L3-D as defined herein. In a fourth embodiment of this aspect of the present invention,
Figure imgf000015_0001
if present, is selected from the group consisting of
Figure imgf000015_0002
wherein * indicates attachment points to the remainder of the compound, and each phenyl residue optionally includes 1 or 2 nitrogens as heteroatoms, and B is substituted with -L-E or -L3-D as defined herein, and.
In a fifth embodiment of this aspect of the present invention,, each Ra, if present, -CN,— OCF3, - OCHF2,— CF3) or— F.
In a sixth embodiment of this aspect of the present invention, A and A' are independently selected from the group consisting of a single bond,— (CR2)n— C(O)— (CR2)P— ,— (CR2)n— O— (CR2)— ,— (CR2)n— N(RN)— (CR2)P— ,— (CR2)n— C(O)— N(RN)(CR2)p— ,— (CR2)„— N(RN)— C(O)— N(RN)— (CR2)p— and— (CR2)n— N(RN)— C(O)— O— (CR2)P— and a heteroaryl group selected from the group consisting of
Figure imgf000016_0001
In a seventh embodiment of this aspect of the present invention, A and A' are independently selected from the group consisting of a single bond,
Figure imgf000017_0001
Figure imgf000017_0002
In an eighth embodiment of this aspect of the present invention, Rc, Rd, Rc and Rf are each independently selected from the group consisting of: hydrogen, Q to Cg alkyl and Ci to C8 heteroalkyl, wherein, each hetero atom, if present, is independently N, O or S,
Rc and Rd are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle, and
Re and Rf are optionally joined to form a 4- to 8-membered heterocycle which is
optionally fused to another 3- to 6- membered heterocycle. In a ninth embodiment of this aspect of the present invention,, one or both of Rc and Rd or Re and Rf are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle.
In a tenth embodiment of this aspect of the present invention, Re and Rd are joined and form a heterocyclic fused ring system selected from the group consisting of:
Figure imgf000018_0001
wherein RN is selected from the group consisting of hydrogen, -OH, Q to C12 alkyl, Ci to Ci2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide.
In an eleventh embodiment of the first aspect, Re and Rf are joined and form a heterocyclic fused ring system selected from the group consisting of:
Figure imgf000018_0002
wherein RN is selected from the group consisting of hydrogen, -OH, d to Cu alkyl, Ci to C!2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide.
The present invention also contemplates the compounds of Formulae ΙΠ, Ilia and Illb described in WO2001/065681 and pharmaceutically acceptable salts thereof, where the center phenyl ring is substituted with -L-E or -L3-D as defined herein. In addition, the present invention contemplates compounds of Formulae IV, IVa and IVb described in WO2001/065681 and pharmaceutically acceptable
salts thereof, where is substituted with -L-E or -L3-D as defined herein.
Additionally, the present invention contemplates compounds of Formulae V, Va and Vb described in
WO2001/065681 and pharmaceutically acceptable salts thereof, where
Figure imgf000019_0001
s substituted with -L-E or -L3-D as defined herein. Additionally, the present invention contemplates compounds of Formula VI described in WO2001/065681 and pharmaceutically acceptable salts thereof,
Figure imgf000019_0002
where is substituted with -L-E or -L3-D as defined herein. Additionally, the present invention contemplates compounds of Formula VII described in WO2001/065681 and
Figure imgf000019_0003
pharmaceutically acceptable salts thereof, where . is substituted with -L-E or -
L3-D as defined herein. Additionally, the present invention contemplates compounds of Formulae VIII, DC and X described in WO2001/065681 and pharmaceutically acceptable salts thereof, where
Figure imgf000019_0004
is substituted with -L-E or -L3-D as defined herein. Additionally, the present invention contemplates compounds of Formula XI described in WO2001/065681 and pharmaceutically
Figure imgf000020_0001
acceptable salts thereof, where is substituted with -L-E or -L3-D as defined herein.
Additionally, the present invention contemplates compounds of Formula XII described in
WO2001/065681 and pharmaceutically acceptable salts thereof, where B is substituted with -L-E or -L3- D as defined herein. The present invention incorporates by reference the entire content of
WO2001/065681 , particularly each formula described therein.
With respect to -L-E as used herein,
E is (i) C3-C14 carbocycle or 3- to 14-membered heterocycle, and is optionally substituted with one or more RA; or (ii) E is -LS-RE;
L is -Ls-, -Ls-O-Ls'-, -Ls-C(0)-Ls'-, -Ls-S(0)2-Ls'-, -Ls-S(0)-Ls'- -Ls-OS(0)2-Ls'-, - Ls-S(0)20-Ls'-, -Ls-OS(0)-Ls'-, -Ls-S(0)0-Ls'-, -Ls-C(0)0-Ls'-, -Ls-OC(0)-Ls'- -Ls- OC(0)0-Ls'-, -Ls-C(0)N(RB)-Ls'-, -LS-N(RB)C(0)-LS'-, -LS-C(0)N(Rb)0-LS'-, -LS- N(RB)C(0)0-Ls'-, -LS-OC(0)N(RB)-LS'-, -LS-C(0)N(RB)N(RB ')-LS'-, -LS-S-LS'-, -LS-C(S)-LS'-, - Ls-C(S)0-Ls'-, -Ls-OC(S)-Ls'-, -Ls-C(S)N(RB)-Ls'-; -LS-N(RB)-LS'-, -LS-N(RB)C(S)-LS'-, -Ls- N(RB)S(0)-Ls'-, -LS-N(RB)S(0)2-LS'-, -LS-S(0)2N(RB)-LS'-, -LS-S(0)N(RB)-LS'-, -LS- C(S)N(RB)0-LS'-, -LS-C(0)N(RB)C(0)-LS'-, -LS-N(RB)C(0)N(RB')-LS'-, -L^N(RB)S02N(RB')-Ls'- , -LS-N(RB)S(0)N(RB')-LS ,-1 or -LS-C(S)N(RB)N(RB ')-LS'-;
Ls and Ls' are each independently selected at each occurrence from bond; or Ci-C6 alkylene, C2- C6 alkenylene or C2-C6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more RL;
RA is independently selected at each occurrence from halogen, oxo, thioxo, hydroxy, mercapto, nitro, cyano, amino, carboxy, formyl, phosphonoxy, or phosphono; or -Ls-RE;
RB and RB are each independently selected at each occurrence from hydrogen; or C Cealkyl, C2- Cealkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C3-C6 carbocycle or 3- to 6-membered heterocycle; or . C3-C6 carbocycle or 3- to 6-membered heterocycle; wherein each C3-C6 carbocycle or 3- to 6-membered heterocycle in RB or RB' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-Qalkyl, C2-C6alkenyl, C2-C6alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl ;
RE is independently selected at each occurrence from -0-Rs, -S-Rs, -C(0)Rs, -OC(0)Rs, - C(0)ORs, -N(RsRs'), -S(0)RSl -S02Rs, -C(0)N(RsRs'), -N(Rs)C(0)Rs'. -N(Rs)C(0)N(Rs ,Rs")1 - N(Rs)S02Rs\ -S02N(RsRs'), -N(Rs)S02N(Rs'Rs"), -N(Rs)S(0)N(Rs'Rs"), -OS(0)-Rs, -OS(0)2-Rs, -S(0)2ORs, -S(0)ORs, -OC(0)ORs, -N(Rs)C(0)ORs', -OC(0)N(RsRs'), -N(Rs)S(0)-Rs', - S(0)N(RsRs') or -C(0)N(Rs)C(0)-Rs' ; or C,-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-C6 haloalkyl, C2-C6 haloalkenyl or C2-C6haloalkynyl;
RL is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -O-Rs, -S-Rs ° -C(0)Rs, -OC(0)Rs, -C(0)ORs, -N(RSRS'), -S(0)Rs, - S02Rs, -C(0)N(RsRs') or -N(Rs)C(0)Rs' ; or C3-C6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
Rs, Rs' and Rs" are each independently selected at each occurrence from hydrogen; Ci-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in Rs , Rs' or Rs' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
L3 is bond or -Ls-K-Ls'-, wherein K is selected from bond, -0-, -S-, -N(RB)-, -C(O)-, - S(0)2- -S(O)-, -OS(O)-, -OS(0)2- -S(0)20-, -S(0)0-, -C(0)0-, -OC(O)-, -OC(0)0-, - C(0)N(RB)- -N(RB)C(0)-, -N(RB)C(0)0-, -OC(0)N(RB)-, -N(RB)S(0)-, -N(RB)S(0)2- - S(0)N(RBK -S(0)2N(RB)-, -C(0)N(RB)C(0)-, -N(RB)C(0)N(RB' )- -N(RB)S02N(RB')- or - N(RB)S(0)N(RB')-; preferably, L3 is bond, Ci-C6alkylene, C2-C6alkenylene or C2-C6alkynylene; more preferably, L3 is bond;
D is C3-Ci2 carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more RA; or D is C3-Ci2 carbocycle or 3- to 12-membered heterocycle which is substituted with J and optionally substituted with one or more RA, where J is C3-C12 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more RA, or J is -SF5; or D is hydrogen or RA;
RA is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, or -LS-RE, wherein two adjacent RA, taken together with the atoms to which they are attached and any atoms between the atoms to which they are attached, can optionally form carbocycle or heterocycle;
RB and RB' are each independently selected at each occurrence from hydrogen; or Ci-C6 alkyl, C2- C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in RB or RB' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C6alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
RE is independently selected at each occurrence from -0-Rs, -S-Rs, -C(0)Rs, -OC(0)Rs, -
C(0)ORs> -N(RsRs'), -S(0)Rs, -S02Rs, -C(0)N(RsRs'), -N(Rs)C(0)Rs', -N(Rs)C(0)N(Rs'Rs"), - N(Rs)S02Rs\ -S02N(RsRs'), -N(Rs)S02N(Rs'Rs"), -N(Rs)S(0)N(Rs'Rs"), -OS(0)-Rs, -OS(0)2-Rs, -S(0)2ORs, -S(0)ORs, -OC(0)ORs, -N(Rs)C(0)ORs\ -OC(0)N(RsRs'), -N(Rs)S(0)-Rs', - S(0)N(RsRs'), -P(0)(ORs)2, or -C(0)N(Rs)C(0)-Rs'; or C,-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C(0)ORs, or -N(RSRS');
RL is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -0-Rs, -S-Rs, -C(0)RS) -OC(0)Rs, -C(0)ORs, -N(RsRs'). -S(0)Rs> - S02Rs, -C(0)N(RsRs') or -N(Rs)C(0)Rs'; or C3-C6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-C6 haloalkyl, C2-C6 haloalkenyl or C2-C6haloalkynyl; wherein two adjacent RL, taken together with the atoms to which they are attached and any atoms between the atoms to which they are attached, can optionally form carbocycle or heterocycle; Ls and Ls' are each independently selected at each occurrence from bond; or Ci-C6alkylene, C2- C6alkenylene or C2-C6alkynylene, each of which is independently optionally substituted at each occurrence with one or more RL; and
Rs, Rs' and Rs" are each independently selected at each occurrence from hydrogen; CrC6alkyl, C2-C6alkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, -O-C1-C6 alkyl, -0-Ci-C6 alkylene-0-CrC6 alkyl, or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in Rs , Rs' or Rs' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl.
Preferably, -L-E comprises C5-C6 carbocycle, 5- to 6-membered heterocycle, or 6- to 12- membered bicycle, each of which is optionally substituted with one or more RA as defined above. Also preferably, the moiety comprises CrC6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is optionally substituted with one or more RL as defined above. More preferably, the moiety comprises C5-C6 carbocycle, 5- to 6-membered heterocycle, or 6- to 12-membered bicycles, each of which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, CrC6alkyl, C2-C6 alkenyl or C2-C6 alkynyl, wherein each of said CrC6 alkyl, C2-C5 alkenyl or C2-C6 alkynyl can be further independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C3-C6 carbocycle or 3- to 6- membered heterocycle. Highly preferably, the moiety comprises C5-C6 carbocycle, 5- to 6-membered heterocycle, or 6- to 12-membered bicycles, each of which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6 alkyl, C2-C6 alkenyl, C2-Ce alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl.
In one example, -L-E comprises phenyl optionally substituted with one or more substituents selected from is halogen, hydroxy, mercapto, amino, carboxy, C\-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, wherein each of said CrC6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino or carboxy. In another example, the moiety comprises Ci-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano. In the above Formula I, D in -L3-D preferably is selected from C5-C6 carbocycle, 5- to 6- membered heterocycle, or 6- to 12-membered bicycles, and is optionally substituted with one or more RA. D can also be preferably selected from C C6 alkyl, C2-C6 alkenyl or C2-C6alkynyl, and is optionally substituted with one or more substituents selected from RL. More preferably, D is C5-C6 carbocycle (e.g., phenyl), 5- to 6-membered heterocycle (e.g., pyridinyl, pyrimidinyl, thiazolyl), or 6- to 12-membered bicycles (e.g., indanyl, 4,5,6,7-tetrahydrobenzo[d]thiazolyl, benzo[d]thiazolyl, indazolyl,
benzo[d][l,3]dioxol-5-yl), and is substituted with one or more RM, where RM is halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, or -LS-RE. Also preferably, D is phenyl, and is optionally substituted with one or more RA. More preferably, D is phenyl, and is substituted with one or more RM,
wherein RM is as defined above. Highly preferably, D is or , wherein RM is as defined above, and each RN is independently selected from RD and preferably is hydrogen. One or more RN can also preferably be halo such as F.
D is also preferably pyridinyl, pyrimidinyl, or thiazolyl, optionally substituted with one or more RA. More preferably D is pyridinyl, pyrimidinyl, or thiazolyl, and is substituted with one or more RM.
Figure imgf000024_0002
, wherein RM is as defined above, and each RN is independently selected from RD and preferably is hydrogen. One or more RN can also preferably be halo such as F. D is also preferably indanyl, 4,5,6,7-tetrahydrobenzo[d]thiazolyl, benzo[d]thiazolyl, or indazolyl, and is optionally substituted with one or more RA. More preferably D is indanyl, 4,5,6,7-tetrahydrobenzo[d]thiazolyl, benzo[d]thiazolyl,
and is substituted with one or more RM. Highly preferably, D is
Figure imgf000024_0003
an(j js optionally substituted with one or more RM. Preferably, RM is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano; or Ci-C6 alkyl, C2-C6 alkenyl or C2-Ce alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CpCe alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl. More preferably, RM is halogen, hydroxy, mercapto, amino, carboxy; or CrC6alkyl, C2-C6alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino or carboxy. Highly preferably, RM is CrC6 alkyl which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino or carboxy.
Also preferably, RM is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, or cyano; or RM is -LS-RE, wherein Ls is a bond or C C6alkylene, and RE is - N(RsRs'), -O-Rs, -C(0)RS, -C(0)ORS) -C(0)N(RsRs'), -N(Rs)C(0)Rs\ -N(Rs)C(0)ORs\ - N(Rs)S02Rs\ -S02RS, -SRs, or -P(0)(ORs)2, wherein Rs and Rs' can be, for example, each independently selected at each occurrence from (1) hydrogen or (2) Ci-C6 alkyl optionally substituted at each occurrence with one or more halogen, hydroxy, -0-Ci-C6alkyl or 3- to 6-membered heterocycle; or RM is CrC6 alkyl, C2-C6 alkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or RM is C3-C6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6alkyl, C2-C6alkenyl, C2-C6alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, -C(0)ORs, or -N(RSRS')- More preferably, RM is halogen (e.g., fluoro, chloro, bromo, iodo), hydroxy, mercapto, amino, carboxy, or Q-Cealkyl (e.g., methyl, isopropyl, tert-butyl), C2-C6alkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, cyano, or carboxy. For example, RM is CF3, -C(CF3)2-OH, -C(CH3)2-CN, -C(CH3)2-CH2OH, or -C(CH3)2-CH2NH2. Also preferably RM is— Ls— RE where Ls is a bond and RE is -N(RSRS ), -0-Rs, - N(Rs)C(0)ORs\ -N(Rs)S02Rs', -S02Rs, or -SRS. For example where Ls is a bond, RE is -N(C,-C6 alkyl)2 (e.g., -NMe2); -N(C,-C6 alkylene-0-C,-C6 alkyl)2 (e.g. -N(CH2CH2OMe)2); -N(C,-C6 alkyl)(C,- C6 alkylene-0-C,-C6 alkyl) (e.g. -N(CH3)(CH2CH2OMe));-0-C,-C6alkyl (e.g., -O-Me, -O-Et, -O- isopropyl, -O-tert-butyl, -O-n-hexyl); -0-C C6 haloalky 1 (e.g., - OCF3, -OCH2CF3); -O-C,- C6alkylene-piperidine (e.g., -0-CH2CH2-l-piperidyl); -N(CrC6alkyl)C(0)OCi-C6 alkyl (e.g., - N(CH3)C(0)0-CH2CH(CH3)2), -N(CrC6 alkyl)S02C C6 alkyl (e.g., -N(CH3)S02CH3); -S02C,-C6alkyl (e.g., -S02Me); -S02CrC6 haloalkyl (e.g., -S02CF3); or -S-CrC6haloalkyl (e.g., SCF3). Also preferably RM is -LS-RE where Ls is Q-Q alkylene (e.g., -CH2-, -C(CH3)2-, -C(CH3)2-CH2-) and RE is _0-Rs, -C(0)ORs, -N(Rs)C(0)ORs' , or -P(0)(ORs)2. For example RM is -d-C6 alkylene-0-Rs (e.g., - C(CH3)2-CH2-OMe); -CrC6 alkylene-C(0)ORs (e.g., -C(CH3)2-C(0)OMe); -C,-C6 alkylene- N(Rs)C(0)ORs' (e.g., -C(CH3)2-CH2-NHC(0)OCH3); or -C,-C6 alkylene-P(0)(ORs)2 (e.g., -CH2- P(0)(OEt)2). Also more preferably RM is C3-C6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, riitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, -C(0)ORs, or -N(RSRS'). For example RM is cycloalkyl (e.g., cyclopropyl, 2,2-dichloro-l- methylcycloprop-l-yl, cyclohexyl), phenyl, heterocyclyl (e.g., morpholin-4-yl, 1,1-dioxidothiomorpholin- 4-yl, 4-methylpiperazin-l-yl, 4-methoxycarbonylpiperazin-l-yl, pyrrolidin-l-yl, piperidin-l-yl, 4- methylpiperidin-l-yl, 3,5-dimethylpiperidin-l-yl, 4,4-difluoropiperidin-l-yl, tetrahydropyran-4-yl, pyridinyl, pyridin-3-yl, 6-(dimethylamino)pyridin-3-yl). Highly preferably, RM is CrC6alkyl which is optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino or carboxy (e.g., tert-butyl, CF3).
More preferably, D is C5-C6 carbocycle, 5- to 6-membered heterocycle or 6- to 12-membered bicycle and is substituted with J and optionally substituted with one or more RA, wherein J is C3-C6 carbocycle, 3- to 6-membered heterocycle or 6- to 12-membered bicycle and is optionally substituted with one or more RA. Preferably, J is substituted with a C3-C6 carbocycle or 3- to 6-membered heterocycle, wherein said C3-C6carbocycle or 3- to 6-membered heterocycle is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C(0)ORs or -N(RsRs'), and J can also be optionally substituted with one or more RA. Also preferably, D is Cs-C6carbocycle or 5- to 6-membered heterocycle and is substituted with J and optionally substituted with one or more RA, and J is C3-C6 carbocycle or 3- to 6-membered heterocycle and is optionally substituted with one or more RA, and preferably, J is at least substituted with a C3-C6carbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CpCe alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C(0)ORs or -N(RsRs')- Also preferably, D is C5-C6 carbocycle or 5- to 6-membered heterocycle and is substituted with J and optionally substituted with one or more RA, and J is 6- to 12-membered bicycle (e.g., a 7- to 12-membered fused, bridged or sipro bicycle comprising a nitrogen ring atom through which J is covalently attached to D) and is optionally substituted with one or more RA. More preferably, D is phenyl and is substituted with J and optionally substituted with one or more RA, and J is C3-C6carbocycle, 3- to 6-membered heterocycle or 6- to 12-membered bicycle and is optionally substituted with one or more RA, and preferably J is at least substituted with a C3-Cecarbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-Cg haloalkyl, C2-C6
haloalkenyl, C2-C6haloalkynyl, C(0)ORs or -N(RSRS'). Highly preferably, D is
Figure imgf000027_0001
wherein each RN is independently selected from RD and preferably is hydrogen or halogen, and J is C3-
Qcarbocycle, 3- to 6-membered heterocycle or 6- to 12-membered bicycle and is optionally substituted with one or more RA, and preferably J is at least substituted with a C3-C6carbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl, C2-C6haloalkynyl,
C(0)ORs or -N(RsRs')- Also preferably, D is
Figure imgf000027_0002
, wherein each RN is independently selected from RD and preferably is hydrogen or halogen, and J is C3-C6carbocycle and 3- to 6-membered heterocycle and is substituted with a C3-C6carbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C,-C6 haloalkyl, C2-C6 haloalkenyl, C2-C6 haloalkynyl, C(0) or -N(RSRS'),
and J can also be optionally substituted with one or more RA. Also preferably, D is
Figure imgf000027_0003
, and J is C C6carbocycle or 3- to 6-membered heterocycle and is optionally substituted with one or more RA, and preferably J is at least substituted with a C3-C6carbocycle or 3- to 6-membered heterocycle which is independently optionally substituted with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl, C2-C6haloalkynyl, C(0)ORs or -N(RsRs')- The present invention also features -L3-D, wherein:
D is C3-Ci2carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more RA; or D is C3-C12carbocycle or 3- to 12-membered heterocycle which is substituted with J and optionally substituted with one or more RA, where J is C3-Ci5carbocycle or 3- to 15-membered heterocycle (e.g., a 3- to 6-membered monocycle, a 6- to 12-membered fused, bridged or spiro bicycle, a 10- to 15-memberd tricycle containing fused, bridged or spiro rings, or a 13- to 15-membered carbocycle or heterocycle) and is optionally substituted with one or more RA, or J is -SF5; or D is hydrogen or RA; RA and J are as defined herein;
RE is independently selected at each occurrence from -0-Rs, -S-Rs, -C(0)RS, -OC(0)Rs, - C(0)ORs, -N(RsRs'), -S(0)Rs, -S02Rs, -C(0)N(RsRs'), -N(Rs)C(0)Rs', -N(Rs)C(0)N(Rs'Rs"), - N(Rs)S02Rs\ -S02N(RsRs'), -N(Rs)S02N(Rs'Rs"), -N(Rs)S(0)N(Rs'Rs"), -OSiO^Rs, -OS(0)2-Rs, -S(0)2ORs, -S(0)ORs, -OC(0)ORs, -N(Rs)C(0)ORs', -OC(0)N(RsRs'), -N(Rs)S(0)-Rs', - S(0)N(RsRs'), -P(0)(ORs)2, =C(RSRS'), or -C(0)N(Rs)C(0)-Rs'; or C,-C6alkyl, C2-C6alkenyl or C2- C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C]2carbocycle or 3- to 12-membered heterocycle (e.g., 7- ot 12-membered carbocycle or heterocycle), each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, trimethylsilyl, Ci-C6alkyl, C2-C6alkenyl, C2- Qalkynyl, C,-C6haloalkyl, C2-C6haloalkenyl, C2-C6haloalkynyl, -0-Rs, -S-Rs, -C(0)Rs, -C(0)ORs, or -N(RsRs'). In one embodiment, D is a C5-C6 carbocycle or 5- to 6-membered heterocycle (e.g., phenyl), and is substituted with J and optionally substituted with one or more RA. J is C3-C6carbocycle, 3- to 6- membered heterocycle, 6- to 12-membered bicycle, 10- to 15-membered tricycle, or 13- to 15-membered carbocycle/heterocycle, and J is optionally substituted with one or more RA. Preferably, J is substituted with a C3-C6carbocycle, 3- to 6-membered heterocycle, 6- to 12-membered bicycle or 7- to 12-membered carbocycle/heterocycle, which is independently optionally substituted with one or more substituents selected from (1) halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6alkyl, C2-C6alkenyl, C2-C6alkynyl, Ci-Cehaloalkyl, C2-C6haloalkenyl, C2- C6haloalkynyl, -C(0)ORs or -N(RSRS'), or (2) trimethylsilyl, -0-Rs, -S-Rs, -C(0)Rs; and J can also be optionally substituted with one or more RA. Preferably, D is
Figure imgf000029_0001
wherein J is as defined above, and each RN is independently selected from RD and preferably is hydrogen or halo such as F. Li and L2 are each independently bond or d-C6alkylene, and L3 is bond, d-C6alkylene or -C(O)-, and Li, L2, and L3 are each independently optionally substituted with one or more RL. Preferably, Li, L2, and L3 are bond.
As used herein, RA preferably is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano; or CrC6alkyl, C2-C6alkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C6carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6alkyl, C2-C6alkenyl, C2-C6alkynyl, d-Cehaloalkyl, C2-C6haloalkenyl or C2-C6haloalkynyl; or -LA-0-Rs, -LA-S-RS, -LA- C(0)Rs, -LA-OC(0)RSl -LA-C(0)ORs, -LA-N(RSRS'), -LA-S(0)Rs, -LA-S02RS) -LA-C(0)N(RsRs'), - LA-N(Rs)C(0)Rs', -LA-N(Rs)C(0)N(Rs'Rs"), -LA-N(Rs)S02Rs', -LA-S02N(RsRs'), -LA-
N(Rs)S02N(Rs'Rs"), -LA-N(Rs)S(0)N(Rs'Rs"), -LA-OS(0)-Rs, -LA-OS(0)2-Rs, -LA-S(0)2ORs, - LA-S(0)ORs, -LA-OC(0)ORs, -LA-N(Rs)C(0)ORs\ -LA-OC(0)N(RsRs'), -LA-N(Rs)S(0)-Rs\— LA— S(0)N(RsRs') or -LA-C(0)N(Rs)C(0)-Rs\ wherein LA is bond, C C6alkylene, C2-C6alkenylene or C2- Cealkynylene.
More preferably, RA is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano; or C C6alkyl, C2-C6alkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3- C6carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CVC6alkyl, C2-C6alkenyl, C2- Qalkynyl, Q-Cehaloalkyl, C2-C6haloalkenyl or C2-C5haloalkynyl.
Highly preferably, RA is halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano; or Ci-C6alkyl, C2-C6alkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano. Ls, Ls' and Ls" preferably are each independently selected at each occurrence from bond; or C Csalkylene, C2-C6alkenylene or C2-C6alkynylene.
According to another aspect of the invention, -L3-D are defined as:
L3 is bond or Ci-C6 alkylene;
D is C6-Ci0carbocycle or 5- to 12-membered heterocycle, each of which is optionally RM is independently selected at each occurrence from:
halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, SF5, -N(RSRS'), -0-Rs, -OC(0)Rs, -OC(0)ORs, -OC(0)N(RsRs'), -C(0)Rs, -C(0)ORs, - CCO RsRs'), -N(Rs)C(0)Rs', -N(Rs)C(0)ORs', -N(Rs)S02Rs', -S(0)Rs, -S02Rs, -S(0)N(RsRs'), - SRs, -Si(Rs)3, or -P(0)(ORs)2;
CrC6alkyl, C2-C6alkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano,— N(RsRs')> -O-Rs, - OC(0)Rs, -OC(0)ORs, -OC(0)N(RsRs'), -C(0)Rs, -C(0)ORs, -C(0)N(RsRs'), -N(Rs)C(0)Rs', - N(Rs)C(0)ORs', -N(Rs)S02Rs', -S(0)Rs, -S02Rs, -S(0)N(RsRs'), -SRS, or -P(0)(ORs)2; or
G2, wherein G2 is a C3-Ci2carbocycle or 3- to 12-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more RG2, and each RG2 is independently selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6alkyl, C2-C6alkenyl, C2-C6alkynyl, C Cehaloalkyl, C2- Qhaloalkenyl, QrQhaloalkynyl, -0-Rs, -C(0)ORs, -C(0)Rs, -N(RSRS'). or -L4-G3;
L4 is a bond, CrC6alkylene, C2-C6alkenylene, C2-C6alkynylene, -0-, -S-, -N(RB)-, -C(O)-, - S(0)2-, -S(O)-, -C(0)0-, -OC(O)-, -OC(0)0-, -C(0)N(RB)-, -N(RB)C(0)-, -N(RB)C(0)0-, - OC(0)N(RB)-, -N(RB)S(0)-, -N(RB)S(0)2-, -S(0)N(RB)-, -S(0)2N(RB)-, -N(RB)C(0)N(RB')-, - N(RB)S02N(RB')-, or -N(RB)S(0)N(RB')-;
G3 is a C3-Ci2carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more Rc3; and
Rc3 is each independently, at each occurrence, halogen, -Ci-C6alkyl, -C(0)Ci-C6alkyl, -Ci-C6 haloalkyl, -0-Ci-C6alkyl,
Figure imgf000030_0001
C3-C6carbocycle, or 3- to 6-membered heterocycle.
substituted with one or more RM;
Rs, Rs' and Rs" are each independently selected at each occurrence from hydrogen; CrC6alkyl,
C2-C6alkenyl or C2-C6alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, -0-Ci-C6alkyl, -O-Ci-Cehaloalkyl, or 3- to 12- membered carbocycle or heterocycle; or 3- to 12-membered carbocycle or heterocycle; wherein each 3- to 12-membered carbocycle or heterocycle in Rs , Rs' or Rs" is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6alkyl, C2-C6alkenyl, C2-C6alkynyl, C C6haloalkyl, C2-C6haloalkenyl or C2-C6haloalkynyl.
As described hereinabove for this aspect of the invention, D preferably is C6-C10carbocycle or 3- to 12-membered heterocycle optionally substituted by one or more RM- Preferably, D is C6-doaryl (e.g., phenyl, naphthyl, indanyl), or 5- to 10-membered heteroaryl (pyridinyl, thiazolyl, 4,5,6,7- tetrahydrobenzo[d]thiazolyl, benzo[d]thiazolyl, indazolyl, benzo[d][l ,3]dioxol-5-yl), and D is substituted with one or more RM- For example, in certain embodiments D is preferably phenyl substituted by one or more RM, wherein each RM is independently halogen (e.g., fluoro, chloro, bromo); Cj-Cgalkyl (e.g., tert- butyl); d-d>alkyl substituted with one or more halogen (e.g., CF3); -0-Rs such as -0-CrC6alkyl (e.g., - 0-CH2CH3); or -0-CrC6alkyl substituted at each occurrence with one or more halogen (e.g., -0-CF3, - 0-CH2CHF2) or -0-C,-C6alkyl (e.g., -0-CH2CH2OCH3); -0-Rs (e.g., -0-CrC6alkyl, such as -O- CH2) substituted with 3- to 12-membered heterocycle (e.g., 3-ethyloxetan-3-yl, l,3-dioxolan-4-yl); -O-Rs. where Rs is an optionally substituted 3- to 12-membered carbocycle or heterocycle (e.g., cyclopentyl, cyclohexyl, phenyl, l,3-dioxan-5-yl); -N(Rs)C(0)Rs' wherein Rs and Rs' are each independently C Qalkyl (e.g., -N(t-Bu)C(0)Me); SF5; -S02Rs wherein Rs is C C6alkyl (e.g., -S02Me); or C3- C]2carbocycle (e.g., cyclopropyl, cyclohexyl, phenyl).
In certain embodiments of this aspect of the invention, D is preferably phenyl or pyridyl and is substituted by one or more RM where one RM is G2. In certain embodiments where D is phenyl or pyridyl, D is substituted by G2, G2 is 3- to 12-membered heterocycle (e.g., pyridinyl, piperidinyl, pyrrolidinyl, azetidinyl, oxazolyl) and is optionally substituted with one or more halogen (e.g., fluoro, chloro), hydroxy, oxo, cyano, CrC6alkyl (e.g., methyl), C2-C6alkenyl, C2-C6alkynyl, d-C6haloalkyl (e.g., CF3), C2-C6haloalkenyl, C2-C6haloalkynyl, -0-CrC6alkyl (e.g., -0-CH3), -C(0)ORs (e.g., -C(0)OCH3), - C(0)Rs (e.g., -C(0)CH3), or -N(RSRS'); and D is further optionally substituted by one or more RM where RM is halogen (e.g., fluoro, chloro), d-C6alkyl (e.g., methyl), CpCehaloalkyl (e.g., CF3), or -O-d- C6alkyl (e.g., -0-CH3). In certain other embodiments D is phenyl or pyridyl and G2 is, for example, a monocyclic 3-8 membered carbocycle or monocyclic 4-8 membered heterocycle substituted with L4-G3 and optionally substituted with one or more Rc2 wherein L4, G3 and Rc2 are as defined herein. L4, for example is a bond, a C,-C6 alkylene (e.g., -CH2-, -CH2CH2-, -CH2CH2CH2-, etc.), -0-, or -S(0)2-. G3 is for example a C3-d2carbocycle optionally substituted with one or more Rc3. RG2 and Rc3 are each independently at each occurrence halogen, -C(0)CrC6alkyl, -d-Cealkyl, -C C6haloalkyl, -0-Cr Cealkyl, or -0-Ci-C6haloalkyl. In certain embodiments G2 is ^ . wherein *^1- is a monocyclic 4-8 membered nitrogen-containing heterocycle (e.g., azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl) attached to the parent molecular moiety through a nitrogen atom and substituted with one or two L4-G3 d with one or more RG2- Thus, in certain embodiments where L4 is a bond G2 is
Figure imgf000032_0001
, where is optionally substituted with RG2 and G3 is optionally substituted with RG3.
Thus,
Figure imgf000032_0002
an be, for example, 3-phenylazetidin-l-yl, 3-phenylpyrrolidin-l-yl, 4-phenylpiperazin-l- yl, 4-phenylpiperidin-l -yl, 4-phenyl-3,6-dihydropyridin-l (2H)-yl, 4,4-diphenylpiperidin- l -yl, 4-acetyl-4- phenylpiperidin-l-yl, 4-(4-methoxyphenyl)piperidin-l-yl, 4-(4-fluorophenyl)piperidin-l-yl, or 3- phenylpiperidin-l-yl, and wherein D can be further optionally substituted with one or more RM (e.g., fluoro, chloro, methyl, methoxy).
In certain other embodiments of this aspect of the invention, L4 is a CrC6 alkylene, -0-, or -
Figure imgf000032_0003
S(0)2- and G2 is ^ , where >- is as defined above and is optionally substituted with Rc2 and
G3 is as defined above and is optionally substituted with RG3. Thus,
Figure imgf000032_0004
can be, for example, 4- tosylpiperazin-l -yl, 4-phenoxypiperidin-l-yl, 3-phenoxypyrrolidin- l-yl, 4-benzylpiperidin-l -yl, 4- phenethylpiperidin-l-yl, or 3-phenylpropyl)piperidin-l-yl.
In certain other embodiments of this aspect of the invention, D is phenyl or pyridyl, D is substituted by G2 and G2 is a spiro, bridged, or fused bicyclic carbocycle or heterocycle optionally substituted with L4-G3 and one or more RG2, wherein D is optionally substituted with one or more RM and /
RM, L4, G3, and RG2 are as defined herein. In certain embodiments G2 is ^ , wherein ' spiro, bridged, or fused bicyclic nitrogen-containing heterocycle (e.g., 3-azabicyclo[3.2.0]hept-3-yl, 2- azabicyclo[2.2.2]oct-2-yl, 6-azaspiro[2.5]oct-6-yl, octahydro-2H-isoindol-2-yl, 3-azaspiro[5.5]undec-3- yl, l ,3-dihydro-2H-isoindol-2-yl, l ,4-dioxa-8-azaspiro[4.5]dec-8-yl) attached to the parent molecular moiety through a nitrogen atom and optionally substituted with G3 and one or more RG2- Thus, G2 is 3- azabicyclo[3.2.0]hept-3-yl, 2-azabicyclo[2.2.2]oct-2-yl, 6-azaspiro[2.5]oct-6-yl, octahydro-2H-isoindol- 2-yl, 3-azaspiro[5.5]undec-3-yl, l,3-dihydro-2H-isoindol-2-yl, or l ,4-dioxa-8-azaspiro[4.5]dec-8-yl; L4 is a bond and D is optionally substituted with one or more RM (e.g., fluoro, chloro, methyl, methoxy).
In certain embodiments of this aspect of the invention, D is
Figure imgf000033_0001
wherein RM is as defined above in connection with Formula IE, and D is optionally substituted by one or more additional RM. For
instance, where D is
Figure imgf000033_0002
can be fluoro, chloro, tert-butyl, -0-CH2CH3, -0-CF3, -0-CH2CHF2, -
0-CH2CH2OCH3, -0-CH2-(3-ethyloxetan-3-yl), -0-CH2-( 1 ,3-dioxolan-4-yl), -O-cyclopentyl, -O- cyclohexyl, -O-phenyl, -0-(l ,3rdioxan-5-yl), cyclopropyl, cyclohexyl, phenyl, SF5, -S02Me, or -N(t- Bu)C(0)Me and D can be optionally substituted by one or more additional RM selected from the group consisting of halogen (e.g., fluoro, chloro) and CrC6alkyl (e.g., methyl).'
In certain embodiments of this aspect of the invention, D is
Figure imgf000033_0003
wherein RM is fluoro, chloro, tert-butyl, -0-CH2CH3, -0-CF3, -0-CH2CHF2, -0-CH2CH2OCH3, SF5, -S02Me, or -N(t-Bu)C(0)Me and D is optionally substituted by one or more additional RM selected from the group consisting of halogen (e.g., fluoro, chloro) and CrC6alkyl (e.g., methyl). In certain embodiments of this aspect of the invention, D is
Figure imgf000034_0001
wherein RM is cyclopropyl, cyclohexyl, or phenyl and D is optionally substituted by one or more additional RM selected from the group consisting of halogen (e.g., fluoro, chloro) and Ci-C6alkyl (e. methyl).
In certain embodiments of this aspect of the invention, D is
Figure imgf000034_0002
wherein RM is -0-CH2-(3- ethyloxetan-3-yl), -0-CH2-(l ,3-dioxolan-4-yl), -O-cyclopentyl, -O-cyclohexyl, -O-phenyl, or -O-
(l ,3-dioxan-5-yl) and D is optionally substituted by one or more additional RM selected from the group consisting of halogen (e.g., fluoro, chloro) and CrC6alkyl (e.g., methyl).
In certain embodiments of this aspect of the invention, D is
Figure imgf000034_0003
wherein G2 is pyridinyl (e.g., pyridin-2-yl), piperidin-l -yl, 4,4-dimethylpiperidin-l-yl, 4,4-difluoropiperidin-l-yl, 2,6- dimethylpiperidin- 1 -yl, 4-(propan-2-yl)piperidin- 1 -yl, 4-fluoropiperidin- 1 -yl, 3,5-dimethylpiperidin-l -yl, 4-(trifluoromethyl)piperidin- 1 -yl, 4-methylpiperidin- 1 -yl, 4-tert-butylpiperidin- 1 -yl, 2-oxopiperidin- 1 -yl, 3,3-dimethylazetidin-l-yl, or oxazolyl (e.g., l ,3-oxazol-2-yl) and D is optionally substituted by one or more additional RM selected from the group consisting of halogen (e.g., fluoro, chloro) and Ci-C6alkyl (e.g., methyl).
In another embodiment of this as ect of the invention, D is
Figure imgf000034_0004
wherein Gi is N, C-H,
or C-RM; G2
Figure imgf000034_0005
wherein is a monocyclic 4-8 membered nitrogen-containing heterocycle (e.g., azetidinyl, pyrrolidinyl, piperidinyl) attached to the parent molecular moiety through a nitrogen atom and substituted by L4-G3 and optionally substituted with one or more Rc2; L4 is a bond, CrC6 alkylene, -0-, or -S(0)2-; G3 is aryl (e.g., phenyl), cycloalkyl (e.g., cyclohexyl), or heterocycle (e.g., thienyl) wherein each G3 is optionally substituted with one or more Rc3; Rc2 and Rc3 at each occurrence are each independently halogen, -C(0)CrC6alkyl, -Ci-C6alkyl, -CrC6haloalkyl, -0-Ci-C6alkyl, or -O- Ci-Cehaloalkyl; g is 0, 1, 2, or 3; and RM is as defined above in connection with Formula IE. In one group
of compounds according to this embodiment, D is
Figure imgf000035_0001
, wherein G3 is phenyl optionally substituted with one or two Rc3; g is 0, 1, or 2; RM is each independently fluoro, chloro, methyl, methoxy,
trifluoromethyl, or trifluoromethoxy; are as defined above. In a further subgroup of
compounds of this embodiment, D is
Figure imgf000035_0002
erein G3 is phenyl optionally substituted with one or two Rc3; RMI is each independently hydrogen, fluoro, chloro, or methyl; and RG2 is an optional substituent as described herein. In another group of compounds according to this embodiment, D is
Figure imgf000035_0003
wherein L4 is CrC6 alkylene, -0-, or -S(0)2-; G3 is phenyl optionally substituted with one or two Rc3; g is 0, 1 , or 2; RM is each independently fluoro, chloro, methyl, methoxy, trifluoromethyl,
or trifluoromethoxy; and
Figure imgf000035_0004
and Rc3 are as defined above. In yet another embodiment of this aspect of the invention, D is
Figure imgf000036_0001
wherein Gi is N,
N N
C-H, or C-RM; G2 is ^ , wherein ^ is a spiro, bridged, or fused bicyclic nitrogen-containing heterocycle (e.g., 3-azabicyclo[3.2.0]hept-3-yl, 2-azabicyclo[2.2.2]oct-2-yl, 6-azaspiro[2.5]oct-6-yl, octahydro-2H-isoindol-2-yl, 3-azaspiro[5.5]undec-3-yl, 1 ,3-dihydro-2H-isoindol-2-yl, 1 ,4-dioxa-8- azaspiro[4.5]dec-8-yl) attached to the parent molecular moiety through a nitrogen atom and optionally substituted with L4-G3 and one or more RG2; L4 is a bond, CrC6 alkylene, -0-, or -S(0)2-; G3 is aryl (e.g., phenyl), cycloalkyl (e.g., cyclohexyl), or heterocycle (e.g., thienyl) wherein each G3 is optionally substituted with one or more Ro3; RG2 and RG3 at each occurrence are each independently halogen, - C(0)C C6alkyl, -C C6alkyl, -CrC6haloalkyl, -0-C,-C6alkyl, or -0-CrC6haloalkyl; g is 0, 1 , 2, or 3; and RM is as defin in connection with Formula IE. In one group of compounds according to this
embodiment, D is
Figure imgf000036_0002
wherein g is 0, 1 , or 2; RM is each independently fluoro, chloro, methyl,
is as defined above. In a further subgroup of
Figure imgf000036_0003
ependently hydrogen, fluoro, chloro, or
methyl, and
Figure imgf000036_0004
is as defined above (e.g., 3-azabicyclo[3.2.0]hept-3-yl, octahydro-2H-isoindol-2-yl, 2-azabicyclo[2.2.2]oct-2-yl, 6-azaspiro[2.5]oct-6-yl, 3-azaspiro[5.5]undec-3-yl, l ,3-dihydro-2H-isoindol- 2-yl, 1 ,4-dioxa-8-azaspiro[4.5]dec-8-yl). ill another embodiment of this aspect of the invention, D is
Figure imgf000037_0001
wherein
Figure imgf000037_0002
is a monocyclic 4-8 membered nitrogen-containing heterocycle (e.g., azetidinyl, pyrrolidinyl, piperidinyl) substituted with one or more RG2> wherein Rc2 at each occurrence is each independently halogen, -C(0)CrC6alkyl, -C C6alkyl, -d-C6haloalkyl, -0-C,-C6alkyl, or -O-CpCehaloalkyl; and RM is each independently halogen, -C C6alkyl, -CrC6halo -0-C C6alkyl, or -O-Cj-Cehaloalkyl. In
one group of compounds according to this embodiment,
Figure imgf000037_0003
is azetidinyl, pyrrolidinyl, or piperidinyl substituted with one or two RG2, wherein RG2 at each occurrence is each independently methyl, ethyl, isopropyl, tert-butyl, fluoro, chloro, or trifluoromethyl; and RM is each independently fluoro,
^ RG2
N
chloro, or methyl. For example ^ is 4,4-dimethylpiperidin-l -yl, 4,4-difluoropiperidin-l-yl, 2,6-dimethylpiperidin-l-yl, 4-(propan-2-yl)piperidin-l-yl, 4-fluoropiperidin-l-yl, 3,5-dimethylpiperidin- 1-yl, 4-(trifluoromethyl)piperidin-l -yl, 4-methylpiperidin-l -yl, 4-tert-butylpiperidin- 1 -yl, 2- oxopiperidin-l -yl, or 3,3-dimethylazetidin-l-yl.
Non-limited examples of D in -L3-D include:
Figure imgf000038_0001
37
Figure imgf000039_0001
Figure imgf000040_0001
wherein L3 is preferably bond.
The term "alkenyl" as used in connection with the definition of -L-E or -L3-D means a straight or branched hydrocarbyl chain containing one or more double bonds. Each carbon-carbon double bond may have either cis or trans geometry within the alkenyl moiety, relative to groups substituted on the double bond carbons. Non-limiting examples of alkenyl groups include ethenyl (vinyl), 2-propenyl, 3-propenyl, 1,4-pentadienyl, 1,4-butadienyl, 1-butenyl, 2-butenyl, and 3-butenyl.
The term "alkenylene" as used in connection with the definition of -L-E or -L3-D refers to a divalent unsaturated hydrocarbyl chain which may be linear or branched and which has at least one carbon-carbon double bond. Non-limiting examples of alkenylene groups include— C(H)=C(H)— , -C(H)=C(H)-CH2- -C(H)=C(H)-CH2-CH2- -CH2-C(H)=C(H)-CH2- -C(H)=C(H)-CH(CH3)-, and
Figure imgf000040_0002
The term "alkyl" as used in connection with the definition of -L-E or -L3-D means a straight or branched saturated hydrocarbyl chain. Non-limiting examples of alkyl groups include methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, iso-amyl, and hexyl.
The term "alkylene" as used in connection with the definition of -L-E or -L3-D denotes a divalent saturated hydrocarbyl chain which may be linear or branched. Representative examples of alkylene include, but are not limited to, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2CH2-, and - CH2CH(CH3)CH2-. .
The term "alkynyl" as used in connection with the definition of -L-E or -L3-D means a straight or branched hydrocarbyl chain containing one or more triple bonds. Non-limiting examples of alkynyl include ethynyl, 1-propynyl, 2-propynyl, 3-propynyl, decynyl, 1-butynyl, 2-butynyl, and 3-butynyl.
The term "alkynylene" as used in connection with the definition of -L-E or -L3-D refers to a divalent unsaturated hydrocarbon group which may be linear or branched and which has at least one carbon-carbon triple bonds. Representative alkynylene groups include, by way of example,— C≡C— , -C≡C-CH2- -C≡C-CH2-CH2- -CH2-C≡C-CH2- -C≡C-CH(CH3)-, and
-CH2-C≡C-CH(CH2CH3)-.
The term "carbocycle" or "carbocyclic" or "carbocyclyl" as used in connection with the definition of -L-E or -L3-D refers to a saturated (e.g., "cycloalkyl"), partially saturated (e.g.,
"cycloalkenyl" or "cycloalkynyl") or completely unsaturated (e.g., "aryl") ring system containing zero heteroatom ring atom. "Ring atoms" or "ring members" are the atoms bound together to form the ring or rings. A carbocyclyl may be, without limitation, a single ring, two fused rings, or bridged or spiro rings. A substituted carbocyclyl may have either cis or trans geometry. Representative examples of carbocyclyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentenyl, cyclopentadienyl, cyclohexadienyl, adamantyl, decahydro-naphthalenyl, octahydro-indenyl, cyclohexenyl, phenyl, naphthyl, indanyl, 1,2,3,4-tetrahydro-naphthyl, indenyl, isoindenyl, decalinyl, and norpinanyl. A carbocycle group can be attached to the parent molecular moiety through any substitutable carbon ring atom.
The term "carbocyclylalkyl" as used in connection with the definition of -L-E or -L3-D refers to a carbocyclyl group appended to the parent molecular moiety through an alkylene group. For instance, C3-C6carbocyclylCrC6alkyl refers to a C3-C6carbocyclyl group appended to the parent molecular moiety through CrC6alkylene.
The term "cycloalkenyl" as used in connection with the definition of -L-E or -L3-D as used in connection with the definition of -L-E or -L3-D refers to a non-aromatic, partially unsaturated carbocyclyl moiety having zero heteroatom ring member. Representative examples of cycloalkenyl groups include, but are not limited to, cyclobutenyl, cyclopentenyl, cyclohexenyl, and
octahydronaphthaleny 1.
The term "cycloalkyl" as used in connection with the definition of -L^E or -L3-D refers to a saturated carbocyclyl group containing zero heteroatom ring member. Non-limiting examples of cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, decalinyl and norpinanyl.
The prefix "halo" as used in connection with the definition of -L-E or -L3-D indicates that the substituent to which the prefix is attached is substituted with one or more independently selected halogen radicals. For example, "Ci-C6 haloalkyl" means a CrC6 alkyl substituent wherein one or more hydrogen atoms are replaced with independently selected halogen radicals. Non-limiting examples of C C6 haloalkyl include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromefhyl, and 1 , 1 , 1- trifluoroethyl. It should be recognized that if a substituent is substituted by more than one halogen radical, those halogen radicals may be identical or different (unless otherwise stated).
The term "heterocycle" or "heterocyclo" or "heterocyclyl" as used in connection with the definition of -L-E or -L3-D refers to a saturated (e.g., "heterocycloalkyl"), partially unsaturated (e.g.,
"heterocycloalkenyl" or "heterocycloalkynyl") or completely unsaturated (e.g., "heteroaryl") ring system where at least one of the ring atoms is a heteroatom (i.e., nitrogen, oxygen or sulfur), with the remaining ring atoms being independently selected from the group consisting of carbon, nitrogen, oxygen and sulfur. A heterocycle may be, without limitation, a single ring, two fused rings, or bridged or spiro rings. A heterocycle group can be linked to the parent molecular moiety via any substitutable carbon or nitrogen atom(s) in the group.
A heterocyclyl may be, without limitation, a monocycle which contains a single ring. Non- limiting examples of monocycles include furanyl, dihydrofuranyl, tetrahydrofuranyl, pyrrolyl, isopyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidipyl, isothiazolidinyl, thiodiazolyl, oxathiazolyl, oxadiazolyl
(including 1 ,2,3-oxadiazolyl, 1 ,2,4-oxadiazolyl (also known as "azoximyl"), 1 ,2,5-oxadiazolyl (also known as "furazanyl"), and 1 ,3,4-oxadiazolyl), oxatriazolyl (including 1 ,2,3,4-oxatriazolyl and 1 ,2,3,5- oxatriazolyl), dioxazolyl (including 1 ,2,3-dioxazolyl, 1 ,2,4-dioxazolyl, 1 ,3,2-dioxazolyl, and 1 ,3,4- dioxazolyl), oxathiolanyl, pyranyl (including 1 ,2-pyranyl and 1 ,4-pyranyl), dihydropyranyl, pyridinyl, piperidinyl, diazinyl (including pyridazinyl (also known as " 1 ,2-diazinyl"), pyrimidinyl (also known as "1 ,3-diazinyl"), and pyrazinyl (also known as "1 ,4-diazinyl")), piperazinyl, triazinyl (including s-triazinyl (also known as " 1 ,3,5-triazinyl"), as-triazinyl (also known 1 ,2,4-triazinyl), and v-triazinyl (also known as " 1 ,2,3-triazinyl), oxazinyl (including 1 ,2,3-oxazinyl, 1 ,3,2-oxazinyl, 1 ,3,6-oxazinyl (also known as "pentoxazolyl"), 1 ,2,6-oxazinyl, and 1 ,4-oxazinyl), isoxazinyl (including o-isoxazinyl and p-isoxazinyl), oxazolidinyl, isoxazolidinyl, oxathiazinyl (including 1 ,2,5-oxathiazinyl or 1 ,2,6-oxathiazinyl), oxadiazinyl (including 1 ,4,2-oxadiazinyl and 1,3,5,2-oxadiazinyl), morpholinyl, azepinyl, oxepinyl, thiepinyl, and diazepinyl.
A heterocyclyl may also be, without limitation, a bicycle containing two fused rings, such as, for example, naphthyridinyl (including [1 ,8] naphthyridinyl, and [1 ,6] naphthyridinyl), thiazolpyrimidinyl, thienopyrimidinyl, pyrimidopyrimidinyl, pyridopyrimidinyl, pyrazolopyrimidinyl, indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, pyridopyridinyl (including pyrido[3,4-b]-pyridinyl, pyrido[3,2- b]-pyridinyl, and pyrido[4,3-b]-pyridinyl), pyridopyrimidine, and pteridinyl. Other non-limiting examples of fused-ring heterocycles include benzo-fused heterocyclyls, such as indolyl, isoindolyl, indoleninyl (also known as "pseudoindolyl"), isoindazolyl (also known as "benzpyrazolyl"), benzazinyl (including quinolinyl (also known as "1 -benzazinyl") and isoquinolinyl (also known as "2-benzazinyl")), benzimidazolyl, phthalazinyl, quinoxalinyl, benzodiazinyl (including cinnolinyl (also known as "1,2- benzodiazinyl") and quinazolinyl (also known as "1 ,3-benzodiazinyl")), benzopyranyl (including "chromenyl" and "isochromenyl"), benzothiopyranyl (also known as "thiochromenyl"), benzoxazolyl, indoxazinyl (also known as "benzisoxazolyl"), anthranilyl, benzodioxolyl, benzodioxanyl,
benzoxadiazolyl, benzofuranyl (also known as "coumaronyl"), isobenzofuranyl, benzothienyl (also known as "benzothiophenyl", "thionaphthenyl", and "benzothiofuranyl"), isobenzothienyl (also known as "isobenzothiophenyl", "isothionaphthenyl", and "isobenzothiofuranyl"), benzothiazolyl,
benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl (including 1,3,2-benzoxazinyl, 1,4,2- benzoxazinyl, 2,3,1-benzoxazinyl, and 3, 1 ,4-benzoxazinyl), benzisoxazinyl (including 1 ,2-benzisoxazinyl and 1 ,4-benzisoxazinyl), and tetrahydroisoquinolinyl.
A heterocyclyl may comprise one or more sulfur atoms as ring members; and in some cases, the sulfur atom(s) is oxidized to SO or S02. The nitrogen heteroatom(s) in a heterocyclyl may or may not be quaternized, and may or may not be oxidized to N-oxide. In addition, the nitrogen heteroatom(s) may or may not be N-protected. '
The number of carbon atoms in a hydrocarbyl moiety can be indicated by the prefix "Cx-Cy," where x is the minimum and y is the maximum number of carbon atoms in the moiety. Thus, for example, "Ci-C6alkyl" refers to an alkyl substituent containing from 1 to 6 carbon atoms. Illustrating further, C3-C6carbocycle means a carbocycle containing from 3 to 6 carbon ring atoms. A prefix attached to a multiple-component substituent only applies to the first component that immediately follows the prefix. To illustrate, the term "carbocyclylalkyl" contains two components: carbocyclyl and alkyl. Thus, for example, C3-C6 carbocyclyl Cj-Ce alkyl refers to a C3-C6 carbocyclyl appended to the parent molecular moiety through a Ci-C6 alkyl group. Unless otherwise specified, when a moiety links two other elements in a depicted chemical structure, the leftmost-described component of the moiety is bound to the left element in the depicted structure, and the rightmost-described component of the moiety is bound to the right element in the depicted structure. To illustrate, if the chemical structure is -L-Ls-RE and Ls is C C6 alkylene, then the chemical structure is -L-CRC6 alkylene-RE.
If a moiety in a depicted structure is a bond, then the element left to the moiety is joined directly to the element right to the linking element via a covalent bond. For example, if a chemical structure is depicted as -L-LS-RE and LS is selected as bond, then the chemical structure will be -L-RE. If two or more adjacent moieties in a depicted structure are bonds, then the element left to these moieties is joined directly to the element right to these linking elements via a covalent bond.
When a chemical formula is used to describe a moiety, the dash(s) indicates the portion of the moiety that has the free valence(s).
If a moiety is described as being "optionally substituted", the moiety may be either substituted or unsubstituted. If a moiety is described as being optionally substituted with up to a particular number of non-hydrogen radicals, that moiety may be either unsubstituted, or substituted by up to that particular number of non-hydrogen radicals or by up to the maximum number of substitutable positions on the moiety, whichever is less. Thus, for example, if a moiety is described as a heterocycle optionally substituted with up to three non-hydrogen radicals, then any heterocycle with less than three substitutable positions will be optionally substituted by up to only as many non-hydrogen radicals as the heterocycle has substitutable positions. To illustrate, tetrazolyl (which has only one substitutable position) will be optionally substituted with up to one non-hydrogen radical. To illustrate further, if an amino nitrogen is described as being optionally substituted with up to two non-hydrogen radicals, then a primary amino nitrogen will be optionally substituted with up to two non-hydrogen radicals, whereas a secondary amino nitrogen will be optionally substituted with up to only one non-hydrogen radical.
Except for the definitions provided for -L-E or -L3-D provided previously herein, the remaining substitutents in the compound having above Formula (I) as well as other formulae described above are to be interpreted according to the meaning provided in WO 2010/065681, the contents of which are herein incorporated by reference.
Methods for making compounds of Formula (I) as well as other formulae described above are described in WO Publication WO2010065681 (the compound of the first aspect described on page 2) and US Application No. 12/959,941 filed on December 3, 2010, the contents of which are herein each incorporated by reference.
In one embodiment, the present invention features the below compounds.
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
v
Figure imgf000047_0002
wherein Rz can be, for example, -(CR4 2),- R7-(CR4 2)t-R8, -(CR4 2),-R8 or -(CR4 2)rO-(CR4 2), -R8; and wherein W can be, for example, hydrogen, RA, or J, wherein J is C3-C)2 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more RA, or J is -SF5.
Figure imgf000048_0001
Figure imgf000048_0002
wherein Rz can be, for example, -(CR4 2)t-NR7-(CR4 2),-R8, -(CR4 2)t-R8 or -(CR4 2)rO-(CR4 2)t -R8; and wherein W can be, for example, hydrogen, RA, or J, wherein J is C3-C12 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more RA, or J is -SF5.
The compounds of the present invention can be used in the form of salts. Depending on the particular compound, a salt of a compound may be advantageous due to one or more of the salt's physical properties, such as enhanced pharmaceutical stability under certain conditions or desired solubility in water or oil. In some instances, a salt of a compound may be useful for the isolation or purification of the compound.
Where a salt is intended to be administered to a patient, the salt preferably is pharmaceutically acceptable. Pharmaceutically acceptable salts include, but are not limited to, acid addition salts, base addition salts, and alkali metal salts.
Pharmaceutically acceptable acid addition salts may be prepared from inorganic or organic acids. Examples of suitable inorganic acids include, but are not limited to, hydrochloric, hydrobromic, hydroionic, nitric, carbonic, sulfuric, and phosphoric acid. Examples of suitable organic acids include, but are not limited to, aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclyl, carboxylic, and sulfonic classes of organic acids. Specific examples of suitable organic acids include acetate, trifluoroacetate, formate, propionate, succinate, glycolate, gluconate, digluconate, lactate, malate, tartaric acid, citrate, ascorbate, glucuronate, maleate, fumarate, pyruvate, aspartate, glutamate, benzoate, anthranilic acid, mesylate, stearate, salicylate, p-hydroxybenzoate, phenylacetate, mandelate, embonate (pamoate), methanesulfonate, ethanesulfonate, benzenesulfonate, pantothenate, toluenesulfonate, 2- hydroxyethanesulfonate, sufanilate, cyclohexylaminosulfonate, algenic acid, b-hydroxybutyric acid, galactarate, galacturonate, adipate, alginate, bisulfate, butyrate, camphorate, camphorsulfonate, cyclopentanepropionate, dodecylsulfate, glycoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, nicotinate, 2-naphthalesulfonate, oxalate, palmoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, thiocyanate, tosylate, and undecanoate.
Pharmaceutically acceptable base addition salts include, but are not limited to, metallic salts and organic salts. Non-limiting examples of suitable metallic salts include alkali metal (group la) salts, alkaline earth metal (group Ila) salts, and other pharmaceutically acceptable metal salts. Such salts may be made, without limitation, from aluminum, calcium, lithium, magnesium, potassium, sodium, or zinc. Non-limiting examples of suitable organic salts can be made from tertiary amines and quaternary amine, such as tromethamine, diethylamine, Ν,Ν'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), and procaine. Basic nitrogen- containing groups can be quaternized with agents such as alkyl halides (e.g., methyl, ethyl, propyl, butyl, decyl, lauryl, myristyl, and stearyl chlorides/bromides/iodides), dialkyl sulfates (e.g., dimethyl, diethyl, dibuytl, and diamyl sulfates), aralkyl halides (e.g., benzyl and phenethyl bromides), and others.
The compounds or salts of the present invention may exist in the form of solvates, such as with water (i.e., hydrates), or with organic solvents (e.g., with methanol, ethanol or acetonitrile to form, respectively, methanolate, ethanolate or acetonitrilate).
V
The compounds or salts of the present invention may also be used in the form of prodrugs. Some prodrugs are aliphatic or aromatic esters derived from acidic groups on the compounds of the invention. Others are aliphatic or aromatic esters of hydroxyl or amino groups on the compounds of the invention. Phosphate prodrugs of hydroxyl groups are preferred prodrugs.
The compounds of the invention may comprise asymmetrically substituted carbon atoms known as chiral centers. These compounds may exist, without limitation, as single stereoisomers (e.g., single enantiomers or single diastereomer), mixtures of stereoisomers (e.g. a mixture of enantiomers or diastereomers), or racemic mixtures. Compounds identified herein as single stereoisomers are meant to describe compounds that are present in a form that is substantially free from other stereoisomers (e.g., substantially free from other enantiomers or diastereomers). By "substantially free," it means that at least 80% of the compound in a composition is the described stereoisomer; preferably, at least 90% of the compound in a composition is the described stereoisomer; and more preferably, at least 95%, 96%, 97%, 98% or 99% of the compound in a composition is the described stereoisomer. Where the stereochemistry of a chiral carbon is not specified in the chemical structure of a compound, the chemical structure is intended to encompass compounds containing either stereoisomer of the chiral center.
Individual stereoisomers of the compounds of this invention can be prepared using a variety of methods known in the art. These methods include, but are not limited to, stereospecific synthesis, chromatographic separation of diastereomers, chromatographic resolution of enantiomers, conversion of enantiomers in an enantiomeric mixture to diastereomers followed by chromatographically separation of the diastereomers and regeneration of the individual enantiomers, and enzymatic resolution.
Stereospecific synthesis typically involves the use of appropriate optically pure (enantiomerically pure) or substantial optically pure materials and synthetic reactions that do not cause racemization or inversion of stereochemistry at the chiral centers. Mixtures of stereoisomers of compounds, including racemic mixtures, resulting from a synthetic reaction may be separated, for example, by chromatographic techniques as appreciated by those of ordinary skill in the art. Chromatographic resolution of enantiomers can be accomplished by using chiral chromatography resins, many of which are commercially available. In a non-limiting example, racemate is placed in solution and loaded onto the column containing a chiral stationary phase. Enantiomers can then be separated by HPLC.
Resolution of enantiomers can also be accomplished by converting enantiomers in a mixture to diastereomers by reaction with chiral auxiliaries. The resulting diastereomers can be separated by column chromatography or crystallization/re-crystallization. This technique is useful when the compounds to be separated contain a carboxyl, amino or hydroxyl group that will form a salt or covalent bond with the chiral auxiliary. Non-limiting examples of suitable chiral auxiliaries include chirally pure amino acids, organic carboxylic acids or organosulfonic acids. Once the diastereomers are separated by
chromatography, the individual enantiomers can be regenerated. Frequently, the chiral auxiliary can be recovered and used again.
Enzymes, such as esterases, phosphatases or lipases, can be useful for the resolution of derivatives of enantiomers in an enantiomeric mixture. For example, an ester derivative of a carboxyl group in the compounds to be separated can be treated with an enzyme which selectively hydrolyzes only one of the enantiomers in the mixture. The resulting enantiomerically pure acid can then be separated from the unhydrolyzed ester.
Alternatively, salts of enantiomers in a mixture can be prepared using any suitable method known in the art, including treatment of the carboxylic acid with a suitable optically pure base such as alkaloids or phenethylamine, followed by precipitation or crystallization/re-crystallization of the enantiomerically pure salts. Methods suitable for the resolution/separation of a mixture of stereoisomers, including racemic mixtures, can be found in ENANTIOMERS, RACEMATES, AND RESOLUTIONS (Jacques et al, 1981, John Wiley and Sons, New York, NY).
A compound of this invention may possess one or more unsaturated carbon-carbon double bonds. All double bond isomers, such as the cis (Z) and trans (E) isomers, and mixtures thereof are intended to be encompassed within the scope of a recited compound unless otherwise specified. In addition, where a compound exists in various tautomeric forms, a recited compound is not limited to any one specific tautomer, but rather is intended to encompass all tautomeric forms.
Certain compounds of the invention may exist in different stable conformational forms which may be separable. Torsional asymmetry due to restricted rotations about an asymmetric single bond, for example because of steric hindrance or ring strain, may permit separation of different conformers. The invention encompasses each conformational isomer of these compounds and mixtures thereof.
Certain compounds of the invention may also exist in zwitterionic form and the invention encompasses each zwitterionic form of these compounds and mixtures thereof.
The compounds of the present invention are generally described herein using standard nomenclature. For a recited compound having asymmetric center(s), it should be understood that all of the stereoisomers of the compound and mixtures thereof are encompassed in the present invention unless otherwise specified. Non-limiting examples of stereoisomers include enantiomers, diastereomers, and cis-transisomers. Where a recited compound exists in various tautomeric forms, the compound is intended to encompass all tautomeric forms. Certain compounds are described herein using general formulas that include variables (e.g., RA or RB). Unless otherwise specified, each variable within such a formula is defined independently of any other variable, and any variable that occurs more than one time in a formula is defined independently at each occurrence. If moieties are described as being
"independently" selected from a group, each moiety is selected independently from the other. Each moiety therefore can be identical to or different from the other moiety or moieties.
The term "pharmaceutically acceptable" is used adjectivally to mean that the modified noun is appropriate for use as a pharmaceutical product or as a part of a pharmaceutical product.
The term "therapeutically effective amount" refers to the total amount of each active substance that is sufficient to show a meaningful patient benefit, e.g. a reduction in viral load.
The term "prodrug" refers to derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become, by solvolysis or under physiological conditions, the compounds of the invention which are pharmaceutically active in vivo. A prodrug of a compound may be formed in a conventional manner by reaction of a functional group of the compound (such as an amino, hydroxy or carboxy group). Prodrugs often offer advantages of solubility, tissue compatibility, or delayed release in mammals (see, Bungard, H., DESIGN OF PRODRUGS, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable amine. Examples of prodrugs include, but are not limited to, acetate, formate, benzoate or other acylated derivatives of alcohol or amine functional groups within the compounds of the invention.
The term "solvate" refers to the physical association of a compound of this invention with one or more solvent molecules, whether organic or inorganic. This physical association often includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolable solvates. Exemplary solvates include, but are not limited to, hydrates, ethanolates, and methanolates.
The present invention also features pharmaceutical compositions comprising the compounds of the invention. A pharmaceutical composition of the present invention can comprise one or more compounds of the invention.
In addition, the present invention features pharmaceutical compositions comprising
pharmaceutically acceptable salts, solvates, or prodrugs of the compounds of the invention. Without limitation, pharmaceutically acceptable salts can be zwitterions or derived from pharmaceutically acceptable inorganic or organic acids or bases. Preferably, a pharmaceutically acceptable salt retains the biological effectiveness of the free acid or base of the compound without undue toxicity, irritation, or allergic response, has a reasonable benefit/risk ratio, is effective for the intended use, and is not biologically or otherwise undesirable.
The present invention further features pharmaceutical compositions (a) one or more compounds of the present invention (namely, one or more of compounds having Formula I or salts, solvates or prodrugs thereof; and (b) another therapeutic agent. By way of illustration not limitation, these other therapeutic agents can be selected from antiviral agents (e.g., anti-HIV agents, anti-HBV agents, or other anti-HCV agents such as HCV protease inhibitors, HCV polymerase inhibitors, HCV helicase inhibitors, IRES inhibitors or NS5A inhibitors), anti-bacterial agents, anti-fungal agents, immunomodulators, anticancer or chemotherapeutic agents, anti-inflammation agents, antisense RNA, siRNA, antibodies, or agents for treating cirrhosis or inflammation of the liver. Specific examples of these other therapeutic agents include, but are not limited to, ribavirin, a-interferon, β-interferon, pegylated interferon-a, pegylated interferon-lambda, ribavirin, viramidine, R-5158, nitazoxanide, amantadine, Debio-025, ΓΜ- 81 1, R7128, R1626, R4048, T-l 106, PSI-7851, PF-00868554, ANA-598, IDX184, IDX 102, IDX375, GS-9190, VCH-759, VCH-916, MK-3281 , BCX-4678, MK-3281 , VBY708, ANA598, GL59728, GL60667, BMS-790052, BMS-791325, BMS-650032, GS-9132, ACH-1095, AP-H005, A-831 , A-689, AZD2836, telaprevir, boceprevir, ITMN-191 , BI-201335, VBY-376, VX-500 (Vertex), PHX-B, ACH- 1625, IDX136, IDX316, VX-813 (Vertex), SCH 900518 (Schering-Plough), TMC-435 (Tibotec), ITMN- 191 (Intermune, Roche), MK-7009 (Merck), DDX-PI (Novartis), BI-201335 (Boehringer Ingelheim), R7128 (Roche), PSI-7851 (Pharmasset), MK-3281 (Merck), PF-868554 (Pfizer), IDX-184 (Novartis), IDX-375 (Pharmasset), BILB-1941 (Boehringer Ingelheim), GS-9190 (Gilead), BMS-790052 (BMS), ABT-450 (Abbott Enanta), ABT-072 (Abbott), ABT-333 (Abbott), Albuferon (Novartis), ritonavir, another cytochrome P450 monooxygenase inhibitor, or any combination thereof.
In one embodiment, a pharmaceutical composition of the present invention comprises (a) one or more compounds of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof; and (b) one or more other antiviral agents.
In another embodiment, a pharmaceutical composition of the present invention comprises (a) one or more compounds of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof; and (b) and one or more other anti-HCV agents, such as an agent selected from HCV polymerase inhibitors (including nucleoside or non-nucleoside type of polymerase inhibitors), HCV protease inhibitors, HCV helicase inhibitors, CD81 inhibitors, cyclophilin inhibitors, IRES inhibitors, or NS5A inhibitors.
In yet another embodiment, a pharmaceutical composition of the present invention comprises (a) one or more compounds of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof; and (b) one or more other antiviral agents, such as anti-HBV, anti- HIV agents, or anti-hepatitis A, anti-hepatitis D, anti-hepatitis E or anti-hepatitis G agents. Non-limiting examples of anti-HBV agents include adefovir, lamivudine, and tenofovir. Non-limiting examples of anti-HIV drugs include ritonavir, lopinavir, indinavir, nelfinavir, saquinavir, amprenavir, atazanavir, tipranavir, TMC-114, fosamprenavir, zidovudine, lamivudine, didanosine, stavudine, tenofovir, zalcitabine, abacavir, efavirenz, nevirapine, delavirdine, TMC-125, L-870812, S-1360, enfuvirtide, T- 1249, or other HTV protease, reverse transcriptase, integrase or fusion inhibitors. Any other desirable antiviral agents can also be included in a pharmaceutical composition of the present invention, as appreciated by those skilled in the art.
A pharmaceutical composition of the present invention typically includes a pharmaceutically acceptable carrier or excipient. Non-limiting examples of suitable pharmaceutically acceptable carriers/excipients include sugars (e.g., lactose, glucose or sucrose), starches (e.g., corn starch or potato starch), cellulose or its derivatives (e.g., sodium carboxymethyl cellulose, ethyl cellulose or cellulose acetate), oils (e.g., peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil or soybean oil), glycols (e.g., propylene glycol), buffering agents (e.g., magnesium hydroxide or aluminum hydroxide), agar, alginic acid, powdered tragacanth, malt, gelatin, talc, cocoa butter, pyrogen-free water, isotonic saline, Ringer's solution, ethanol, or phosphate buffer solutions. Lubricants, coloring agents, releasing agents, coating agents, sweetening, flavoring or perfuming agents, preservatives, or antioxidants can also be included in a pharmaceutical composition of the present invention.
The pharmaceutical compositions of the present invention can be formulated based on their routes of administration using methods well known in the art. For example, a sterile injectable preparation can be prepared as a sterile injectable aqueous or oleagenous suspension using suitable dispersing or wetting agents and suspending agents. Suppositories for rectal administration can be prepared by mixing drugs with a suitable nonirritating excipient such as cocoa butter or polyethylene glycols which are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drugs. Solid dosage forms for oral administration can be capsules, tablets, pills, powders or granules. In such solid dosage forms, the active compounds can be admixed with at least one inert diluent such as sucrose lactose or starch. Solid dosage forms may also comprise other substances in addition to inert diluents, such as lubricating agents. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or elixirs containing inert diluents commonly used in the art. Liquid dosage forms may also comprise wetting, emulsifying, suspending, sweetening, flavoring, or perfuming agents. The pharmaceutical compositions of the present invention can also be administered in the form of liposomes, as described in U.S. Patent No. 6,703,403. Formulation of drugs that are applicable to the present invention is generally discussed in, for example, Hoover, John E., REMINGTON'S PHARMACEUTICAL
SCIENCES (Mack Publishing Co., Easton, PA: 1975), and Lachman, L., eds., PHARMACEUTICAL DOSAGE FORMS (Marcel Decker, New York, N.Y., 1980).
Any compound described herein (i.e, any compounds having a Formula (Γ) or a pharmaceutically acceptable salt thereof, can be used to prepared pharmaceutical compositions of the present invention.
The present invention further features methods of using the compounds of the present (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof to inhibit HCV replication. The methods comprise contacting cells infected with HCV virus with an effective amount of a compound of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof thereby inhibiting the replication of HCV virus in the cells. As used herein, "inhibiting" means significantly reducing, or abolishing, the activity being inhibited (e.g., viral replication). In many cases, representative compounds of the present invention can reduce the replication of HCV virus (e.g., in an HCV replicon assay as described above) by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or more. The compounds of the present invention may inhibit one or more HCV subtypes. Examples of HCV subtypes that are amenable to the present invention include, but are not be limited to, HCV genotypes 1, 2, 3, 4, 5 and 6, including HCV genotypes la, lb, 2a, 2b, 2c or 3a. In one embodiment, a compound or compounds of the present invention (or salts, solvates or prodrugs thereof) are used to inhibit the replication of HCV genotype la. In another embodiment, a compound or compounds of the present invention (or salts, solvates or prodrugs thereof) are used to inhibit the replication of HCV genotype lb. In still another embodiment, a compound or compounds of the present invention (or salts, solvates or prodrugs thereof) are used to inhibit the replication of both HCV genotypes la and lb.
The present invention also features methods of using the compounds of the present invention (or salts, solvates or prodrugs thereof) to treat HCV infection. The methods typically comprise administering a therapeutic effective amount of a compound of the present invention (or a salt, solvate or prodrug thereof), or a pharmaceutical composition comprising the same, to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient. As used herein, the term "treating" refers to reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition, or one or more symptoms of such disorder or condition to which such term applies. The term "treatment" refers to the act of treating. In one embodiment, the methods comprise administering a therapeutic effective amount of two or more compounds of the present invention (or salts; solvates or prodrugs thereof), or a pharmaceutical composition comprising the same, to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient.
A compound of the present invention (or a salt, solvate or prodrug thereof) can be administered as the sole active pharmaceutical agent, or in combination with another desired drug, such as other anti-HCV agents, anti-HIV agents, anti-HBV agents, anti-hepatitis A agents, anti-hepatitis D agents, anti-hepatitis E agents, anti-hepatitis G agents, or other antiviral drugs. Any compound described herein, or a pharmaceutically acceptable salt thereof, can be employed in the methods of the present invention.
A compound of the present invention (namely, one or more of compounds having Formula (I) or salts, solvates or prodrugs thereof can be administered to a patient in a single dose or divided doses. A typical daily dosage can range, without limitation, from 0.1 to 200 mg/kg body weight, such as from 0.25 to 100 mg/kg body weight. Single dose compositions can contain these amounts or submultiples thereof to make up the daily dose. Preferably, each dosage contains a sufficient amount of a compound of the present invention that is effective in reducing the HCV viral load in the blood or liver of the patient. The amount of the active ingredient, or the active ingredients that are combined, to produce a single dosage form may vary depending upon the host treated and the particular mode of administration. It will be understood that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination, and the severity of the particular disease undergoing therapy.
The present invention further features methods of using the pharmaceutical compositions of the present invention to treat HCV infection. The methods typically comprise administering a pharmaceutical composition of the present invention to an HCV patient, thereby reducing the HCV viral level in the blood or liver of the patient. Any pharmaceutical composition described herein can be used in the methods of the present invention.
In addition, the present invention features use of the compounds or salts of the present invention for the manufacture of medicaments for the treatment of HCV infection. Any compound described herein, or a pharmaceutically acceptable salt thereof, can be used to make medicaments of the present invention.
The compounds of the present invention can also be isotopically substituted. Preferred isotopic substitution include substitutions with stable or nonradioactive isotopes such as deuterium, 13C, 15N or l80. Incorporation of a heavy atom, such as substitution of deuterium for hydrogen, can give rise to an isotope effect that could alter the pharmacokinetics of the drug. In one example, at least 10 mol % of hydrogen in a compound of the present invention is substituted with deuterium. In another example, at least 25 mole % of hydrogen in a compound of the present invention is substituted with deuterium. In a further example, at least 50, 60, 70, 80 or 90 mole % of hydrogen in a compound of the present invention is substituted with deuterium. The natural abundance of deuterium is about 0.015%. Deuterium substitution or enrichment can be achieved, without limitation, by either exchanging protons with deuterium or by synthesizing the molecule with enriched or substituted starting materials. Other methods known in the art can also be used for isotopic substitutions.
The compounds of the present invention can also be isotopically substituted. Preferred isotopic substitution include substitutions with stable or nonradioactive isotopes such as deuterium, l3C, 15N or !80. Incorporation of a heavy atom, such as substitution of deuterium for hydrogen, can give rise to an isotope effect that could alter the pharmacokinetics of the drug. In one example, at least 10 mol % of hydrogen in a compound of the present invention is substituted with deuterium. In another example, at least 25 mole % of hydrogen in a compound of the present invention is substituted with deuterium. In a further example, at least 50, 60, 70, 80 or 90 mole % of hydrogen in a compound of the present invention is substituted with deuterium. The natural abundance of deuterium is about 0.015%. Deuterium substitution or enrichment can be achieved, without limitation, by either exchanging protons with deuterium or by synthesizing the molecule with enriched or substituted starting materials. Other methods known in the art can also be used for isotopic substitutions. The contents of all references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated herein in their entireties by reference.
The foregoing description of the present invention provides illustration and description, but is not intended to be exhaustive or to limit the invention to the precise one disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. Thus, it is noted that the scope of the invention is defined by the claims and their equivalents.

Claims

WHAT IS CLAIMED IS:
1. A compound of Formula (I) or pharmaceutically acceptable salts thereof:
Figure imgf000058_0001
(D A and A' are independently selected from the group consisting of a single bond, -(CR2)n-C(0)-
(CR 2)p-,-(CR2)n-0-(CR2)p-, -(CR2)n-N(RN)-(CR2)p-, -(CR2)n-S(0)k-N(RN)-(CR2)p-, -(CR2)n-C(0)-N(RN)- (CR2)p-,-(CR2)n-N(RN)-C(0)-N(RN)-(CR2)p-> -(CR2)„ -C(0)-0-(CR2)p-,
-(CR2)n-N(RN)-S(0)k-N(RN)-(CR2)p- and -(CR2)n-N(RN)-C(0)-0-(CR2)p-and a
heteroaryl group selected from the group consisting of
Figure imgf000058_0002
Figure imgf000059_0001
X1 is CH2, NH, O or S,
Y1, Y2 and Z1 are each independently CH or N,
X2 is NH, O or S,
V is -CH2-CH2-, -CH=CH-,-N=CH-, (CH2)a-N(RN)-(CH2)b- or
-(CH2)a-0-(CH2)b-, wherein a and b are independently 0, 1 , 2, or 3 with the proviso that a and b are not both 0,
Figure imgf000059_0002
optionally includes 1 or 2 nitrogens as heteroatoms on the phenyl residue,
the carbons of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, -CN, -N02, halogen, Ci-C)2 alkyl, C Ci2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino,
the nitrogens, if present, of the heteroaryl group are each independently optionally substituted with a substituent selected from the group consisting of -OH, Ci to C!2 alkyl, Q to C12 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide,
a and b are independently 1 , 2, or 3.
c and d are independently 1 or 2,
n and p are independently 0, 1, 2 or 3,
k is 0, 1 , or 2, each R is independently selected from the group consisting of hydrogen, -OH, -CN, -N02, halogen, Q to C)2 alkyl, Q to Ci2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate, sulfonamide and amino,
each RN is independently selected from the group consisting of hydrogen, -OH, Q to Ci2 alkyl, Q to Ci2 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, alkoxy, alkoxycarbonyl, alkanoyl, carbamoyl, substituted sulfonyl, sulfonate and sulfonamide, and
wherein for each A and A', B may be attached to either side of A and A' so that
in the example of A or A' being :
Figure imgf000060_0001
the A-B-A' can be any of:
Figure imgf000060_0002
B is (a) Q or (b) Q— Q, wherein each Q is independently selected from the group consisting of a cycloalkyl group, cycloalkenyl group, heterocycle, aryl group or heteroaryl group, wherein B is substituted with -L-E or preferably -L3-D; preferably only one Q is a six member aromatic ring when B is Q— Q, and/or preferably if B is Q— Q, any Q is that is polycyclic is connected to the remainder of the molecule through only one cycle of the polycycle;
Rc, Rd, Rc and Rf are each independently selected from the group consisting of: hydrogen, Ci to C8 alkyl, Q to C8 heteroalkyl, aralkyl and a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl, wherein,
each heteroatom, if present, is independently N, O or S,
each of Rc, Rd, Re and Rf may optionally be substituted by CrC8 alkyl, Q to C8 heteroalkyl, aralkyl, or a 4- to 8- membered ring which may be cycloalkyl, heterocycle, heteroaryl or aryl and wherein each heteroatom, if present, is independently N, O or S,
Rc and Rd are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring, and Re and Rf are optionally joined to form a 4- to 8-membered heterocycle which is optionally fused to another 3- to 6- membered heterocycle or heteroaryl ring;
Y and Y' are each independently carbon or nitrogen; and
Z and Z' are independently selected from the group consisting of hydrogen, d to C8 alkyl, Q to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, 1-3 amino acids, -[U-(CR4 2)i-NR5- (CR4 2)t]u-U-(CR4 2),-NR7-(CR4 2)t-R8, -U-(CR4 2)t-R8 and -[U-(CR4 2)t -NR5-(CR4 2)JU -U-(CR4 2)( -O- (CR4 2)t -R8, wherein, U is selected from the group consisting of -C(O)-, -C(S)- and -S(0)2-, each R4, R5 and R7 is independently selected from the group consisting of hydrogen, d to C8 alkyl, Ci to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl and aralkyl,
R8 is selected from the group consisting of hydrogen, Ci to Cg alkyl, Ci to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl, aralkyl, -C(0)-R81, -C(S)-R8\ -C(0)-0-R81, -C(0)-N-R81, - S(0)2-R81 and -S(0)2-N-R81 2, wherein each R81 is independently chosen from the group consisting of hydrogen, d to C8 alkyl, Ci to C8 heteroalkyl, cycloalkyl, heterocycle, aryl, heteroaryl and aralkyl, optionally, R7 and R8 together form a 4-7 membered ring,
. each t is independently 0, 1, 2, 3, or 4, and
u is 0, 1 , or 2;
-L-E or -L3-D are as follows:
E is (i) C3-C14 carbocycle or 3- to 14-membered heterocycle, and is optionally substituted with one or more RA; or (ii) E is -LS-RE;
L is -Ls- -Ls-O-Ls'-, -Ls-C(0)-Ls'-, -Ls-S(0)2-Ls'- -Ls-S(0)-Ls'-, -Ls-OS(0)2-Ls'- - Ls-S(0)20-Ls'-, -Ls-OS(0)-Ls'- -Ls-S(0)0-Ls'- -Ls-C(0)0-Ls'-, -Ls-OC(0)-Ls'-, -Ls- OC(0)0-LS'-, -LS-C(0)N(RB)-LS'-, -LS-N(RB)C(0)-LS'-, -LS-C(0)N(RB)0-LS'-, -LS-
N(RB)C(0)0-LS'-, -LS-OC(0)N(RB)-LS'-, -LS-C(0)N(RB)N(RB ')-LS'-, -LS-S-LS'- -LS-C(S)-LS'-, - Ls-C(S)0-Ls'-, -Ls-OC(S)-Ls'-, -LS-C(S)N(RB)-LS'-, -LS-N(RB)-LS'-, -LS-N(RB)C(S)-LS'-, -Ls- N(RB)S(0)-Ls'-, -Ls-N(RB)S(0)2-Ls'- -Ls-S(0)2N(RB)-Ls'-, -Ls-S(0)N(RB)-Ls'-, -Ls- C(S)N(RB)0-LS'-, -LS-C(0)N(RB)C(0)-LS'-, -LS-N(RB)C(0)N(RB ,)-LS'-, -Ls-N(RB)S02N(RB')-Ls'- , -LS-N(RB)S(0)N(RB ,)-LS'-) or -LS-C(S)N(RB)N(RB ')-LS'-;
Ls and Ls' are each independently selected at each occurrence from bond; or Ci-C6 alkylene, C2- C6 alkenylene or C2-C6 alkynylene, each of which is independently optionally substituted at each occurrence with one or more RL;
RA is independently selected at each occurrence from halogen, oxo, thioxo, hydroxy, mercapto, nitro, cyano, amino, carboxy, formyl, phosphonoxy, or phosphono; or -LS-RE;
RB and RB are each independently selected at each occurrence from hydrogen; or CrC6 alkyl, C2- C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C3-C6 carbocycle or 3- to 6-membered heterocycle; or C3-C6 carbocycle or 3- to 6-membered heterocycle; wherein each C3-C6 carbocycle or 3- to 6-membered heterocycle in RB or RB' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl; RE is independently selected at each occurrence from -O-Rs, -S-Rs, -C(0)Rs, -OC(0)Rs, - C(0)ORs, -N(RsRs'), -S(0)RS) -S02Rs, -C(0)N(RsRs'), -N(Rs)C(0)Rs'. -N(Rs)C(0)N(Rs'Rs"), - N(Rs)S02Rs', -S02N(RsRs'), -N(Rs)S02N(Rs'Rs"), -N(Rs)S(0)N(Rs' Rs' ' ), -OS(0)-Rs, -OS(0)2-Rs, -S(0)2ORs, -S(0)ORs, -OC(0)ORs, -N(Rs)C(0)ORs', -OC(0)N(RsRs'), -N(Rs)S(0)-Rs', - S(0)N(RsRs') or -C(0)N(Rs)C(0)-Rs' ; or C,-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C6carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Q-Ce alkyl, C2-C6 alkenyl, C2-C6 alkynyl, d-C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
RL is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -0-Rs> -S-Rs, -C(0)Rs, -OC(0)Rs, -C(0)ORs, -N(RSRS'). -S(0)RS) - S02Rs, -C(0)N(RsRs') or -N(Rs)C(0)Rs'; or C3-C6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CrC6haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
Rs, Rs' and Rs" are each independently selected at each occurrence from hydrogen; C1-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in Rs , Rs' or Rs' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, C C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl;
L3 is bond or -Ls-K-Ls'-, wherein K is selected from bond, -0-, -S-, -N(RB)-, -C(O)-, - S(0)2- -S(O)-, -OS(O)-, -OS(0)2- -S(0)20-, -S(0)0-, -C(0)0-, -OC(O)-, -OC(0)0-, - C(0)N(RB)-, -N(RB)C(0)-, -N(RB)C(0)0-, -OC(0)N(RB)-, -N(RB)S(0)-, -N(RB)S(0)2- - S(0)N(RB)- -S(0)2N(RB)-, -C(0)N(RB)C(0)-, -N(RB)C(0)N(RB')- -N(RB)S02N(RB')-, or - N(RB)S(0)N(RB')-;
D is C3-C i2 carbocycle or 3- to 12-membered heterocycle, and is optionally substituted with one or more RA; or D is C3-Ci2 carbocycle or 3- to 12-membered heterocycle which is substituted with J and optionally substituted with one or more RA, where J is C3-Ci2 carbocycle or 3- to 12-membered heterocycle and is optionally substituted with one or more RA, or J is -SF5; or D is hydrogen or RA;
RA is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, or -LS-RE, wherein two adjacent RA, taken together with the atoms to which they are attached and any atoms between the atoms to which they are attached, can optionally form carbocycle or heterocycle;
RB and RB' are each independently selected at each occurrence from hydrogen; or CrC6alkyl, C2- Ce alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in RB or RB' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6alkyl, C2-C6alkenyl, C2-C6alkynyl, CrC6haloalkyl, Q-Cehaloalkenyl or C2-C6haloalkynyl;
RE is independently selected at each occurrence from -0-Rs, -S-Rs, -C(0)RS, -OC(0)Rs, -
C(0)ORs, -N(RsRs'), -S(0)Rs> -S02RS, -C(0)N(RsRs'), -N(Rs)C(0)Rs', -N(Rs)C(0)N(Rs'Rs"), - N(Rs)S02Rs\ -S02N(RsRs'), -N(Rs)S02N(Rs'Rs"), -N(Rs)S(0)N(Rs'Rs"), -OS(0)-RS) -OS(0)2-Rs, -S(0)2ORs, -S(0)ORs, -OC(0)ORs, -N(Rs)C(0)ORs', -OC(0)N(RsRs'), -N(Rs)S(0)-Rs', - S(0)N(RsRs'), -P(0)(ORs)2, or -C(0)N(Rs)C(0)-Rs'; or C C6alkyl, C2-C6 alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl or cyano; or C3-C6 carbocycle or 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6alkynyl, Ci-C6 haloalkyl, C2-C6haloalkenyl, C2-C6 haloalkynyl, C(0)ORs, or -N(RSRS'); .
RL is independently selected at each occurrence from halogen, nitro, oxo, phosphonoxy, phosphono, thioxo, cyano, -0-Rs, -S-RS) -C(0)Rs, -OC(0)Rs, -C(0)ORS) -N(RSRS'), -S(0)Rs, - S02Rs, -C(0)N(RsRs') or -N(Rs)C(0)Rs'; or C3-C6 carbocycle 3- to 6-membered heterocycle, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, CrC6alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C C6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl; wherein two adjacent RL, taken together with the atoms to which they are attached and any atoms between the atoms to which they are attached, can optionally form carbocycle or heterocycle; Ls and Ls' are each independently selected at each occurrence from bond; or Ci-C6alkylene, C2- C6alkenylene or C2-C6alkynylene, each of which is independently optionally substituted at each occurrence with one or more RL; and
Rs, Rs' and Rs" are each independently selected at each occurrence from hydrogen; CrC6alkyl, C2-C6alkenyl or C2-C6 alkynyl, each of which is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, -0-Ci-C6 alkyl, -0-Ci-C6 alkylene-0-Ci-C6 alkyl, or 3- to 6-membered carbocycle or heterocycle; or 3- to 6-membered carbocycle or heterocycle; wherein each 3- to 6-membered carbocycle or heterocycle in Rs , Rs' or Rs' is independently optionally substituted at each occurrence with one or more substituents selected from halogen, hydroxy, mercapto, amino, carboxy, nitro, oxo, phosphonoxy, phosphono, thioxo, formyl, cyano, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CrC6 haloalkyl, C2-C6 haloalkenyl or C2-C6 haloalkynyl.
PCT/US2011/065215 2010-12-15 2011-12-15 Anti-viral compounds WO2012083048A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/368,084 US20150158909A1 (en) 2010-12-15 2011-12-15 Anti-viral compounds
EP11849188.5A EP2651920A4 (en) 2010-12-15 2011-12-15 Anti-viral compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US42355410P 2010-12-15 2010-12-15
US61/423,554 2010-12-15
US201061425930P 2010-12-22 2010-12-22
US61/425,930 2010-12-22

Publications (2)

Publication Number Publication Date
WO2012083048A2 true WO2012083048A2 (en) 2012-06-21
WO2012083048A3 WO2012083048A3 (en) 2012-08-02

Family

ID=46245369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/065215 WO2012083048A2 (en) 2010-12-15 2011-12-15 Anti-viral compounds

Country Status (3)

Country Link
US (1) US20150158909A1 (en)
EP (1) EP2651920A4 (en)
WO (1) WO2012083048A2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2651923A1 (en) * 2010-12-15 2013-10-23 Abbvie Inc. Anti-viral compounds
EP2651927A1 (en) * 2010-12-15 2013-10-23 Abbvie Inc. Anti-viral compounds
EP2651925A2 (en) * 2010-12-15 2013-10-23 Abbvie Inc. Anti-viral compounds
US9303061B2 (en) 2011-07-09 2016-04-05 Sunshine Luke Pharma Co., Ltd. Spiro compounds as Hepatitis C virus inhibitors
US9309231B2 (en) 2012-08-03 2016-04-12 Sunshine Lake Pharma Co., Ltd. Bridged ring compounds as hepatitis C virus (HCV) inhibitors and pharmaceutical applications thereof
US9333204B2 (en) 2014-01-03 2016-05-10 Abbvie Inc. Solid antiviral dosage forms
US9416139B2 (en) 2012-11-29 2016-08-16 Sunshine Lake Pharma Co., Ltd. Spiro ring compound as hepatitis C virus (HCV) inhibitor and uses thereof
US9717712B2 (en) 2013-07-02 2017-08-01 Bristol-Myers Squibb Company Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis C virus
US9738629B2 (en) 2014-01-23 2017-08-22 Sunshine Lake Pharma Co., Ltd. Bridged ring compounds as Hepatitis C virus inhibitors, pharmaceutical compositions and uses thereof
US9770439B2 (en) 2013-07-02 2017-09-26 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9775831B2 (en) 2013-07-17 2017-10-03 Bristol-Myers Squibb Company Combinations comprising biphenyl derivatives for use in the treatment of HCV
US9802949B2 (en) 2012-11-29 2017-10-31 Sunshine Lake Pharma Co., Ltd. Fused ring compounds as hepatitis C virus inhibitors, pharmaceutical compositions and uses thereof
US10201541B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US10617675B2 (en) 2015-08-06 2020-04-14 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US10710986B2 (en) 2018-02-13 2020-07-14 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US10774071B2 (en) 2018-07-13 2020-09-15 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US10875848B2 (en) 2018-10-10 2020-12-29 Forma Therapeutics, Inc. Inhibiting fatty acid synthase (FASN)
US10899735B2 (en) 2018-04-19 2021-01-26 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US11236085B2 (en) 2018-10-24 2022-02-01 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US11247987B2 (en) 2017-10-06 2022-02-15 Forma Therapeutics, Inc. Inhibiting ubiquitin specific peptidase 30
US11535618B2 (en) 2018-10-05 2022-12-27 Forma Therapeutics, Inc. Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors
US11697666B2 (en) 2021-04-16 2023-07-11 Gilead Sciences, Inc. Methods of preparing carbanucleosides using amides
US11767337B2 (en) 2020-02-18 2023-09-26 Gilead Sciences, Inc. Antiviral compounds
US11851422B2 (en) 2021-07-09 2023-12-26 Aligos Therapeutics, Inc. Anti-viral compounds
US11952365B2 (en) 2020-06-10 2024-04-09 Aligos Therapeutics, Inc. Anti-viral compounds
US12030903B2 (en) 2021-02-17 2024-07-09 Gilead Sciences, Inc. Antiviral compounds

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552047B2 (en) 2011-02-07 2013-10-08 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9546160B2 (en) 2011-05-12 2017-01-17 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9326973B2 (en) 2012-01-13 2016-05-03 Bristol-Myers Squibb Company Hepatitis C virus inhibitors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329159B2 (en) * 2006-08-11 2012-12-11 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
KR20110098779A (en) * 2008-12-03 2011-09-01 프레시디오 파마슈티칼스, 인코포레이티드 Inhibitors of hcv ns5a
US8420686B2 (en) * 2009-02-17 2013-04-16 Enanta Pharmaceuticals, Inc. Linked diimidazole antivirals
WO2010096462A1 (en) * 2009-02-17 2010-08-26 Enanta Pharmaceuticals, Inc Linked diimidazole derivatives
CA2753313A1 (en) * 2009-02-23 2010-08-26 Presidio Pharmaceuticals, Inc. Inhibitors of hcv ns5a
WO2010111673A1 (en) * 2009-03-27 2010-09-30 Presidio Pharmaceuticals, Inc. Substituted bicyclic hcv inhibitors
CN109651342A (en) * 2009-03-27 2019-04-19 默沙东公司 The inhibitor of hepatitis c viral replication
DK2455376T3 (en) * 2009-06-11 2015-03-02 Abbvie Bahamas Ltd Heterocyclic compounds as inhibitors of hepatitis C virus (HCV)
US8354419B2 (en) * 2009-07-16 2013-01-15 Vertex Pharmaceuticals Incorporated Benzimidazole analogues for the treatment or prevention of flavivirus infections
EP2651923A4 (en) * 2010-12-15 2014-06-18 Abbvie Inc Anti-viral compounds
EP2651927A4 (en) * 2010-12-15 2014-06-04 Abbvie Inc Anti-viral compounds
WO2012083053A2 (en) * 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2651920A4 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2651927A1 (en) * 2010-12-15 2013-10-23 Abbvie Inc. Anti-viral compounds
EP2651925A2 (en) * 2010-12-15 2013-10-23 Abbvie Inc. Anti-viral compounds
EP2651927A4 (en) * 2010-12-15 2014-06-04 Abbvie Inc Anti-viral compounds
EP2651923A4 (en) * 2010-12-15 2014-06-18 Abbvie Inc Anti-viral compounds
EP2651925A4 (en) * 2010-12-15 2014-06-18 Abbvie Inc Anti-viral compounds
EP2651923A1 (en) * 2010-12-15 2013-10-23 Abbvie Inc. Anti-viral compounds
US10201584B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US10201541B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US9303061B2 (en) 2011-07-09 2016-04-05 Sunshine Luke Pharma Co., Ltd. Spiro compounds as Hepatitis C virus inhibitors
US9309231B2 (en) 2012-08-03 2016-04-12 Sunshine Lake Pharma Co., Ltd. Bridged ring compounds as hepatitis C virus (HCV) inhibitors and pharmaceutical applications thereof
US9416139B2 (en) 2012-11-29 2016-08-16 Sunshine Lake Pharma Co., Ltd. Spiro ring compound as hepatitis C virus (HCV) inhibitor and uses thereof
US9802949B2 (en) 2012-11-29 2017-10-31 Sunshine Lake Pharma Co., Ltd. Fused ring compounds as hepatitis C virus inhibitors, pharmaceutical compositions and uses thereof
US9717712B2 (en) 2013-07-02 2017-08-01 Bristol-Myers Squibb Company Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis C virus
US9770439B2 (en) 2013-07-02 2017-09-26 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US9775831B2 (en) 2013-07-17 2017-10-03 Bristol-Myers Squibb Company Combinations comprising biphenyl derivatives for use in the treatment of HCV
US10105365B2 (en) 2014-01-03 2018-10-23 Abbvie Inc. Solid antiviral dosage forms
US9333204B2 (en) 2014-01-03 2016-05-10 Abbvie Inc. Solid antiviral dosage forms
US9744170B2 (en) 2014-01-03 2017-08-29 Abbvie Inc. Solid antiviral dosage forms
US9738629B2 (en) 2014-01-23 2017-08-22 Sunshine Lake Pharma Co., Ltd. Bridged ring compounds as Hepatitis C virus inhibitors, pharmaceutical compositions and uses thereof
US10617675B2 (en) 2015-08-06 2020-04-14 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US11247987B2 (en) 2017-10-06 2022-02-15 Forma Therapeutics, Inc. Inhibiting ubiquitin specific peptidase 30
US11555029B2 (en) 2018-02-13 2023-01-17 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US10710986B2 (en) 2018-02-13 2020-07-14 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US10899735B2 (en) 2018-04-19 2021-01-26 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US10774071B2 (en) 2018-07-13 2020-09-15 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US11535618B2 (en) 2018-10-05 2022-12-27 Forma Therapeutics, Inc. Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors
US11814386B2 (en) 2018-10-05 2023-11-14 Forma Therapeutics, Inc. Fused pyrrolines which act as ubiquitin-specific protease 30 (USP30) inhibitors
US10875848B2 (en) 2018-10-10 2020-12-29 Forma Therapeutics, Inc. Inhibiting fatty acid synthase (FASN)
US11299484B2 (en) 2018-10-10 2022-04-12 Forma Therapeutics, Inc. Inhibiting fatty acid synthase (FASN)
US11236085B2 (en) 2018-10-24 2022-02-01 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US11767337B2 (en) 2020-02-18 2023-09-26 Gilead Sciences, Inc. Antiviral compounds
US11952365B2 (en) 2020-06-10 2024-04-09 Aligos Therapeutics, Inc. Anti-viral compounds
US12030903B2 (en) 2021-02-17 2024-07-09 Gilead Sciences, Inc. Antiviral compounds
US11697666B2 (en) 2021-04-16 2023-07-11 Gilead Sciences, Inc. Methods of preparing carbanucleosides using amides
US11851422B2 (en) 2021-07-09 2023-12-26 Aligos Therapeutics, Inc. Anti-viral compounds

Also Published As

Publication number Publication date
US20150158909A1 (en) 2015-06-11
WO2012083048A3 (en) 2012-08-02
EP2651920A4 (en) 2014-12-17
EP2651920A2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2012083048A2 (en) Anti-viral compounds
EP2651926A2 (en) Anti-viral compounds
EP2651927A1 (en) Anti-viral compounds
EP2651928A2 (en) Anti-viral compounds
WO2012083043A1 (en) Anti-viral compounds
US9394279B2 (en) Anti-viral compounds
WO2012083058A2 (en) Anti-viral compounds
JP5834085B2 (en) Antiviral compounds
US20120115918A1 (en) Anti-Viral Compounds
US20110092415A1 (en) Anti-Viral Compounds
WO2012083170A1 (en) Anti-viral compounds
WO2012162580A2 (en) Anti-viral compounds
EP2714035A2 (en) Anti-viral compounds
JP6586147B2 (en) Antiviral compounds
AU2016238925B2 (en) Anti-viral compounds
AU2014203655B2 (en) Anti-viral compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849188

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011849188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011849188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14368084

Country of ref document: US