WO2012081367A1 - Image conversion device - Google Patents

Image conversion device Download PDF

Info

Publication number
WO2012081367A1
WO2012081367A1 PCT/JP2011/076998 JP2011076998W WO2012081367A1 WO 2012081367 A1 WO2012081367 A1 WO 2012081367A1 JP 2011076998 W JP2011076998 W JP 2011076998W WO 2012081367 A1 WO2012081367 A1 WO 2012081367A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
coordinate
reference coordinates
region
Prior art date
Application number
PCT/JP2011/076998
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 國米
秀貴 佐々木
田中 慎一
宏 酒井
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2012081367A1 publication Critical patent/WO2012081367A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4007Interpolation-based scaling, e.g. bilinear interpolation

Definitions

  • the present invention relates to an image conversion apparatus.
  • Patent Document 1 In an image conversion apparatus that converts an equidistant projection image photographed with a fisheye lens into a central projection image without distortion, an image conversion method as shown in Patent Document 1 is used.
  • image conversion apparatus disclosed in Patent Document 1 pixel values of pixels around a position on the equidistant projection image corresponding to the pixel of the central projection image are weighted according to the position and added. Thus, high-precision interpolation is performed, and the contour of the subject in the converted central projection image is smoothed.
  • each coordinate (output coordinate) of the central projection image, a plurality of coordinates of the equidistant projection image for obtaining the pixel value at this output coordinate, and each weight are stored in association with each other. There is a problem that the storage area becomes large because it is necessary.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an image conversion apparatus capable of performing high-precision interpolation with a small storage capacity in image conversion processing.
  • an image conversion apparatus is an image conversion apparatus that converts a first image into a second image, an image storage unit that stores the first image, and a second Information on the position of the first image for calculating the pixel value of the pixel of the second image for each pixel of the image of the first image, the reference coordinate indicating the pixel of the first image and the reference coordinate from the reference coordinate
  • a table storage unit that stores a coordinate conversion table composed of relative positions, a pixel value of a pixel indicated by the reference coordinates of the first image, and a pixel value of a pixel of the first image located in the vicinity of the reference coordinates
  • An image processing unit that performs image conversion from the first image to the second image by calculating the pixel value of the pixel of the second image by calculating with an arithmetic expression corresponding to the relative position. It is characterized by.
  • the relative position of the coordinate conversion table is obtained by dividing the first image into a plurality of regions including the pixel for each pixel of the first image, and further dividing the region into a plurality of sub-regions. It is preferable to indicate a sub-region in the region including the reference coordinates when divided into two.
  • the pixel of the first image located in the vicinity of the reference coordinates for calculating the pixel value of the second image by the image processing unit is a pixel adjacent to the pixel of the reference coordinates. Preferably there is.
  • the reference coordinates of the coordinate conversion table are stored as a difference from the adjacent reference coordinates in the coordinate conversion table.
  • the first image is an equidistant projection image and the second image is a center projection image.
  • the image conversion apparatus is an image conversion apparatus that converts a first image, which is an image of a predetermined projection method, into a projection method different from the first image and outputs it as a second image.
  • Information on a position in the first image corresponding to the pixel of the second image when the projection method is converted, and the reference coordinates indicating the pixel of the first image in the vicinity of the position and the position A table storage unit for storing a set of relative positions from the reference coordinates as a coordinate conversion table for the pixels of the second image, and for each pixel of the second image, the pixel of the second image of the coordinate conversion table
  • the pixel value of the pixel indicated by the reference coordinate of the first image and the pixel value of the pixel adjacent to the pixel of the reference coordinate are calculated using an arithmetic expression corresponding to the relative position.
  • Compute pixel of second image By calculating the pixel value, and having an image processing unit that performs image conversion from the first image to the second image.
  • the relative position of the coordinate conversion table is obtained by dividing the first image into a plurality of regions including the pixel for each pixel of the first image, and further dividing the region into a plurality of sub-regions. It is preferable to indicate a sub-region in the region including the reference coordinates when divided into two.
  • the pixel of the first image located in the vicinity of the reference coordinates for calculating the pixel value of the second image by the image processing unit is a pixel adjacent to the pixel of the reference coordinates. Preferably there is.
  • the reference coordinates of the coordinate conversion table are stored as a difference from the adjacent reference coordinates in the coordinate conversion table.
  • the first image is an equidistant projection image and the second image is a center projection image.
  • the capacity of the coordinate conversion table stored in the table storage unit is reduced, so that high-precision interpolation can be performed with a small storage capacity in the image conversion process. .
  • the image conversion apparatus 10 includes a fisheye lens, and includes an imaging optical system 1 that forms an image of a subject, an imaging element 2 that includes a CCD, a CMOS, and the like, and that detects an image formed by the imaging optical system 1; An image processing unit 3 that converts a first image detected by the image sensor 2 (hereinafter described as an “equal distance projection image”) into a second image (hereinafter described as a “center projection image”); An image storage unit 4 that temporarily stores the equidistant projection image detected by the image sensor 2 and captured by the image processing unit 3, and information (coordinate conversion) used when changing from the equidistant projection image to the central projection image A table storage unit 5 for storing (table).
  • the image processing unit 3 includes a CPU, and may be configured to execute the above-described image conversion by executing a program having the image conversion method according to the present embodiment, or may be configured as an ASIC or DSP,
  • the image conversion method according to this embodiment may be implemented as a logic circuit.
  • the image storage unit 4 is composed of a volatile memory such as SRAM, and the table storage unit 5 is composed of a nonvolatile memory such as flash memory. Further, the central projection image converted by the image processing unit 3 is passed to and used by a processing unit (not shown).
  • FIG. 2 shows one image, and it is assumed that the width is W pixels (pixels) and the vertical is H pixels (pixels).
  • data whose coordinates are represented by (x, y) are set as one-dimensional data and managed as (y ⁇ W + x) -th data.
  • Such a data structure is, for example, an image obtained by sequentially extracting values (pixel values) detected by each pixel of the image sensor 2 in the horizontal direction from the upper left to the lower right and arranging them one-dimensionally. It is.
  • This image has a pixel value (luminance value) at coordinates (x, y) as P (x, As y), this value is stored one-dimensionally in the order described above for the number of pixels of the image sensor 2.
  • the coordinates on the equidistant projection image corresponding to each pixel of the central projection image are as follows. , It does not always coincide with the position of the pixel. For this reason, the pixel value (luminance value) at a specific position of the equidistant projection image needs to be obtained by interpolation using the arithmetic expression from the pixel values acquired at the surrounding pixels. This interpolation method will be described with reference to FIG.
  • each of nine pixels centered on a pixel at a coordinate (x, y) in the equidistant projection image is surrounded by a rectangular area Z.
  • each pixel is located at the center of the region Z, and each region Z is further divided into nine sub-regions Z1 to Z9.
  • the pixel value (luminance value) of each pixel is represented by P (x, y)
  • the interpolated pixel values (luminance values) Pz1 to Pz9 in the sub-regions Z1 to Z9 are expressed by the following equation (1). It is obtained by (9).
  • Pz1 (P (x-1, y-1) + P (x, y-1) + P (x-1, y) + P (x, y)) / 4 (1)
  • Pz2 (P (x, y-1) + P (x, y)) / 2 (2)
  • Pz3 (P (x, y-1) + P (x + 1, y-1) + P (x, y) + P (x + 1, y)) / 4
  • Pz4 (P (x-1, y) + P (x, y)) / 2 (4)
  • Pz5 P (x, y) (5)
  • Pz6 (P (x, y) + P (x + 1, y)) / 2 (6)
  • Pz7 (P (x-1, y) + P (x, y) + P (x-1, y + 1) + P (x, y + 1)) / 4 (7)
  • Pz8 (P (x, y) + P (x, y +
  • the reference coordinates (x, y) that are the coordinates of the pixel in the center of the region, and the subregions Z1 to Z9
  • the pixel value of the pixel on the reference coordinate of the equidistant projection image and the pixel value of the pixel in the vicinity of the reference coordinate (adjacent to the reference coordinate in this embodiment)
  • the pixel value (luminance value) of the output coordinates in the central projection image can be obtained by using the above-described arithmetic expressions (1) to (9).
  • FIG. 4 shows the data structure of the coordinate conversion table 50 stored in the table storage unit 5.
  • the coordinate conversion table 50 includes reference coordinates (coordinates of pixels of the original equidistant projection image) 51 for calculating the output coordinates for each output coordinate (coordinates of the central projected image after conversion). And a sub-region (identifier) 52 in the region Z including the reference coordinates is stored. Since the sizes of the equidistant projection image and the central projection image (the number of pixels in the horizontal direction ⁇ the number of pixels in the vertical direction) are known, the output coordinates are stored in the coordinate conversion table 50 as long as the storage order is determined. There is no need to keep it.
  • the image processing unit 3 reads one image (equal distance projection image) from the image sensor 2 and stores it in the image storage unit 4 (step S100).
  • the values of the reference coordinates 51 and the sub area 52 are read out from the coordinate conversion table 50 stored in the table storage unit 5 in the stored order (step S110). At this time, one record may be read out or a plurality of records may be read out collectively.
  • the pixel value of the output coordinate is obtained for each read reference coordinate and sub-region using the above-described arithmetic expressions (1) to (9) (step S120). Specifically, the pixel values of nine coordinates including the reference coordinates are read from the image storage unit 4 based on the reference coordinates, and further, the sub area is selected from the above-described arithmetic expressions (1) to (9). Is selected, and the pixel value of the sub-region is calculated based on the calculation formula. Note that an arithmetic expression may be determined from the sub-region, and a pixel value of a pixel necessary for the expression may be extracted from the image storage unit 4 and the calculation may be performed.
  • the calculated result is output from the image processing unit 3 to the outside as a pixel value at the output coordinates of the central projection image (step S130).
  • the conversion of one equidistant projection image extracted from the image sensor 2 into the central projection image is terminated. Note that, when images are continuously captured from the image sensor 2 and processed as moving images, it can be realized by repeatedly executing the above steps S100 to S140.
  • image conversion is performed by processing images output from the respective imaging elements 2 according to the above procedure. It is possible.
  • the records of the coordinate conversion table 50 are arranged in the order of the predetermined output coordinates, the reference coordinates and sub-regions are extracted in that order, and the pixel values of the output coordinates are calculated and output. Thus, a desired central projection image can be obtained.
  • the table stored in advance in the image conversion apparatus 10 is only the coordinate conversion table 50 stored in the table storage unit 5 as described above. Since the coordinate conversion table 50 stores only a set of reference coordinates and sub-region information for each output coordinate, it can have a very small data capacity. Therefore, an ASIC or DSP having a small storage capacity can be used for the image processing unit 3 (and the table storage unit 5) of the image conversion apparatus 10 according to the present embodiment.
  • the method of obtaining the interpolation value by dividing each pixel of the equidistant projection image acquired by the image sensor 2 into the rectangular region Z including the pixel as the center has been described.
  • the arrangement of the region Z is not limited to the above description.
  • the region A is determined so that each pixel is positioned at the vertex of a rectangle, and any coordinate (for example, the upper left coordinate) is used as a reference coordinate, and this region is divided into a plurality of sub-regions (
  • the above-described coordinate conversion table 50 can be configured with a set of reference coordinates and sub-regions even if divided into 4 ⁇ 4 16 sub-regions Z1 to Z16).
  • the pixel value (luminance value) in each sub-region is calculated from the pixel values of four pixels surrounding the region Z based on a predetermined arithmetic expression. Also, the arithmetic expression is determined according to the arrangement of the region Z, the number of sub-regions divided, and the size. Further, the shape of the sub-region may be changed for each region as shown in FIG. 3, or may be divided by the same size as shown in FIG.
  • the reference coordinate 51 of the coordinate conversion table 50 stores the value of the corresponding coordinate. However, if the difference from the coordinate of the previous record is stored, Since the data size is reduced, the capacity of the coordinate conversion table 50, that is, the storage capacity of the table storage unit 5 can be further reduced.
  • the coordinates of the first record can be a difference from the reference coordinates stored separately.
  • the record of the coordinate conversion table 50 (a set of the reference coordinate 51 and the sub-region 52) is uniquely determined corresponding to the output coordinate.
  • the output coordinate is, for example, from the upper left to the lower right of the image.
  • the coordinates of the pixels in the horizontal direction are arranged one-dimensionally in order. For this reason, the reference coordinates corresponding to the output coordinates also have coordinates that are not far apart from adjacent coordinates, and the difference value often does not increase.

Abstract

Provided is an image conversion device capable of highly accurate interpolation using an extremely small amount of memory for image conversion processing. The image conversion device converts a first image to a second image and comprises: an image memory unit for storing the first image; a table memory unit for storing a coordinate conversion table comprising reference coordinates, which constitute information regarding positions in the first image used for calculating pixel values for each pixel in the second image and which indicate pixels in the first image, and relative positions (sub-regions) which are produced from said reference coordinates; and an image processor for converting the first image into the second image by calculating the pixel values of the pixels indicated by the reference coordinates of the first image and the pixel values of the pixels in the first image located in the vicinity of the reference coordinates by means of arithmetic expressions corresponding to the relative positions, thereby calculating the pixel values of the pixels in the second image.

Description

画像変換装置Image converter
 本発明は、画像変換装置に関する。 The present invention relates to an image conversion apparatus.
 魚眼レンズで撮影された等距離射影画像を、歪みのない中心射影画像に変換する画像変換装置においては、特許文献1に示すような画像の変換方法が用いられている。この特許文献1に開示された画像変換装置では、中心射影画像の画素に対応する等距離射影画像上の位置の周囲にある画素の画素値を、その位置に応じて重み付けをして加算することにより、高精度な補間を行い、変換後の中心射影画像における被写体の輪郭を滑らかにするように構成されている。 In an image conversion apparatus that converts an equidistant projection image photographed with a fisheye lens into a central projection image without distortion, an image conversion method as shown in Patent Document 1 is used. In the image conversion apparatus disclosed in Patent Document 1, pixel values of pixels around a position on the equidistant projection image corresponding to the pixel of the central projection image are weighted according to the position and added. Thus, high-precision interpolation is performed, and the contour of the subject in the converted central projection image is smoothed.
特開2009-146099号公報JP 2009-146099 A
 しかしながら、従来の方法によると、中心射影画像の各々の座標(出力座標)と、この出力座標における画素値を求めるための等距離射影画像の複数の座標及びそれぞれの重みとを対応付けて記憶する必要があるため、記憶領域が大きくなってしまうという課題があった。 However, according to the conventional method, each coordinate (output coordinate) of the central projection image, a plurality of coordinates of the equidistant projection image for obtaining the pixel value at this output coordinate, and each weight are stored in association with each other. There is a problem that the storage area becomes large because it is necessary.
 本発明はこのような課題に鑑みてなされたものであり、画像変換処理において、少ない記憶容量で高精度な補間を行うことができる画像変換装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide an image conversion apparatus capable of performing high-precision interpolation with a small storage capacity in image conversion processing.
 前記課題を解決するために、本発明に係る画像変換装置は、第1の画像を第2の画像に変換する画像変換装置であって、第1の画像を記憶する画像記憶部と、第2の画像の画素毎に、当該第2の画像の画素の画素値を算出するための第1の画像の位置に関する情報であって、第1の画像の画素を示す参照座標及び当該参照座標からの相対位置からなる座標変換テーブルを記憶するテーブル記憶部と、第1の画像の参照座標に示される画素の画素値、及び、この参照座標の近傍に位置する第1の画像の画素の画素値を、相対位置に対応する演算式により演算して第2の画像の画素の画素値を算出することにより、第1の画像から第2の画像への画像変換を行う画像処理部と、を有することを特徴とする。 In order to solve the above problems, an image conversion apparatus according to the present invention is an image conversion apparatus that converts a first image into a second image, an image storage unit that stores the first image, and a second Information on the position of the first image for calculating the pixel value of the pixel of the second image for each pixel of the image of the first image, the reference coordinate indicating the pixel of the first image and the reference coordinate from the reference coordinate A table storage unit that stores a coordinate conversion table composed of relative positions, a pixel value of a pixel indicated by the reference coordinates of the first image, and a pixel value of a pixel of the first image located in the vicinity of the reference coordinates An image processing unit that performs image conversion from the first image to the second image by calculating the pixel value of the pixel of the second image by calculating with an arithmetic expression corresponding to the relative position. It is characterized by.
 このような画像変換装置において、座標変換テーブルの相対位置は、第1の画像を当該第1の画像の画素毎に当該画素を含む複数の領域に分割し、さらに、この領域を複数のサブ領域に分割したときの、参照座標を含む領域におけるサブ領域を示すものであることが好ましい。 In such an image conversion apparatus, the relative position of the coordinate conversion table is obtained by dividing the first image into a plurality of regions including the pixel for each pixel of the first image, and further dividing the region into a plurality of sub-regions. It is preferable to indicate a sub-region in the region including the reference coordinates when divided into two.
 また、このような画像変換装置において、画像処理部で第2の画像の画素値を算出するための参照座標の近傍に位置する第1の画像の画素は、参照座標の画素に隣接する画素であることが好ましい。 In such an image conversion apparatus, the pixel of the first image located in the vicinity of the reference coordinates for calculating the pixel value of the second image by the image processing unit is a pixel adjacent to the pixel of the reference coordinates. Preferably there is.
 また、このような画像変換装置において、座標変換テーブルの参照座標は、当該座標変換テーブルにおいて隣接する参照座標からの差分として記憶されていることが好ましい。 Further, in such an image conversion apparatus, it is preferable that the reference coordinates of the coordinate conversion table are stored as a difference from the adjacent reference coordinates in the coordinate conversion table.
 また、このような画像変換装置において、第1の画像は等距離射影画像であって、第2の画像は中心射影画像であることが好ましい。 In such an image conversion apparatus, it is preferable that the first image is an equidistant projection image and the second image is a center projection image.
 また、本発明に係る画像変換装置は、所定の射影方式の画像である第1の画像をこの第1の画像とは異なる射影方式に変換して第2の画像として出力する画像変換装置であって、射影方式を変換したときの第2の画像の画素に対応する第1の画像内の位置に関する情報であって、前記位置の近傍にある第1の画像の画素を示す参照座標及び前記位置の参照座標からの相対位置の組を、第2の画像の画素に対する座標変換テーブルとして記憶するテーブル記憶部と、第2の画像の画素毎に、座標変換テーブルの当該第2の画像の画素に対応する参照座標及び相対位置に基づいて、第1の画像の参照座標に示される画素の画素値及びこの参照座標の画素に隣接する画素の画素値を、相対位置に対応する演算式を用いて演算して第2の画像の画素の画素値を算出することにより、第1の画像から第2の画像への画像変換を行う画像処理部と、を有することを特徴とする。 The image conversion apparatus according to the present invention is an image conversion apparatus that converts a first image, which is an image of a predetermined projection method, into a projection method different from the first image and outputs it as a second image. Information on a position in the first image corresponding to the pixel of the second image when the projection method is converted, and the reference coordinates indicating the pixel of the first image in the vicinity of the position and the position A table storage unit for storing a set of relative positions from the reference coordinates as a coordinate conversion table for the pixels of the second image, and for each pixel of the second image, the pixel of the second image of the coordinate conversion table Based on the corresponding reference coordinate and relative position, the pixel value of the pixel indicated by the reference coordinate of the first image and the pixel value of the pixel adjacent to the pixel of the reference coordinate are calculated using an arithmetic expression corresponding to the relative position. Compute pixel of second image By calculating the pixel value, and having an image processing unit that performs image conversion from the first image to the second image.
 このような画像変換装置において、座標変換テーブルの相対位置は、第1の画像を当該第1の画像の画素毎に当該画素を含む複数の領域に分割し、さらに、この領域を複数のサブ領域に分割したときの、参照座標を含む領域におけるサブ領域を示すものであることが好ましい。 In such an image conversion apparatus, the relative position of the coordinate conversion table is obtained by dividing the first image into a plurality of regions including the pixel for each pixel of the first image, and further dividing the region into a plurality of sub-regions. It is preferable to indicate a sub-region in the region including the reference coordinates when divided into two.
 また、このような画像変換装置において、画像処理部で第2の画像の画素値を算出するための参照座標の近傍に位置する第1の画像の画素は、参照座標の画素に隣接する画素であることが好ましい。 In such an image conversion apparatus, the pixel of the first image located in the vicinity of the reference coordinates for calculating the pixel value of the second image by the image processing unit is a pixel adjacent to the pixel of the reference coordinates. Preferably there is.
 また、このような画像変換装置において、座標変換テーブルの参照座標は、当該座標変換テーブルにおいて隣接する参照座標からの差分として記憶されていることが好ましい。 Further, in such an image conversion apparatus, it is preferable that the reference coordinates of the coordinate conversion table are stored as a difference from the adjacent reference coordinates in the coordinate conversion table.
 また、このような画像変換装置において、第1の画像は等距離射影画像であって、第2の画像は中心射影画像であることが好ましい。 In such an image conversion apparatus, it is preferable that the first image is an equidistant projection image and the second image is a center projection image.
 本発明に係る画像変換装置を以上のように構成すると、テーブル記憶部に記憶される座標変換テーブルの容量が小さくなるため、画像変換処理において、少ない記憶容量で高精度な補間を行うことができる。 When the image conversion apparatus according to the present invention is configured as described above, the capacity of the coordinate conversion table stored in the table storage unit is reduced, so that high-precision interpolation can be performed with a small storage capacity in the image conversion process. .
画像変換装置の構成を示すブロック図である。It is a block diagram which shows the structure of an image converter. 画像における画素値の管理方法を説明するための説明図である。It is explanatory drawing for demonstrating the management method of the pixel value in an image. 画素値を補間して求めるための領域及びサブ領域を説明するための説明図である。It is explanatory drawing for demonstrating the area | region and sub area | region for calculating | requiring by interpolating a pixel value. 座標変換テーブルのデータ構造を示す説明図である。It is explanatory drawing which shows the data structure of a coordinate conversion table. 本実施形態に係る画像変換方法を説明するためのフローチャートである。It is a flowchart for demonstrating the image conversion method which concerns on this embodiment. 領域及びサブ領域の定義についての他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment about the definition of an area | region and a sub area | region.
 以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて、本実施形態に係る画像変換装置の構成について説明する。この画像変換装置10は、魚眼レンズを含み、被写体の像を結像する撮像光学系1と、CCDやCMOS等で構成され、撮像光学系1により結像された像を検出する撮像素子2と、撮像素子2で検出された第1の画像(以下、「等距離射影画像」として説明する)を第2の画像(以下、「中心射影画像」として説明する)に変換する画像処理部3と、撮像素子2で検出され、画像処理部3により取り込まれた等距離射影画像を一次的に記憶する画像記憶部4と、等距離射影画像から中心射影画像に変化するときに用いられる情報(座標変換テーブル)を記憶するテーブル記憶部5と、から構成される。なお、画像処理部3は、CPUを有し、本実施形態に係る画像変換方法を有するプログラムを実行して、上記画像変換を行うように構成しても良いし、ASICやDSPとして構成し、本実施形態に係る画像変換方法を論理回路として実装しても良い。また、画像記憶部4は、SRAM等の揮発性メモリで構成され、テーブル記憶部5は、フラッシュメモリ等の不揮発性メモリで構成される。さらに、画像処理部3で変換された中心射影画像は、図示しない処理部に渡され利用される。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the image conversion apparatus according to the present embodiment will be described with reference to FIG. The image conversion apparatus 10 includes a fisheye lens, and includes an imaging optical system 1 that forms an image of a subject, an imaging element 2 that includes a CCD, a CMOS, and the like, and that detects an image formed by the imaging optical system 1; An image processing unit 3 that converts a first image detected by the image sensor 2 (hereinafter described as an “equal distance projection image”) into a second image (hereinafter described as a “center projection image”); An image storage unit 4 that temporarily stores the equidistant projection image detected by the image sensor 2 and captured by the image processing unit 3, and information (coordinate conversion) used when changing from the equidistant projection image to the central projection image A table storage unit 5 for storing (table). The image processing unit 3 includes a CPU, and may be configured to execute the above-described image conversion by executing a program having the image conversion method according to the present embodiment, or may be configured as an ASIC or DSP, The image conversion method according to this embodiment may be implemented as a logic circuit. The image storage unit 4 is composed of a volatile memory such as SRAM, and the table storage unit 5 is composed of a nonvolatile memory such as flash memory. Further, the central projection image converted by the image processing unit 3 is passed to and used by a processing unit (not shown).
 ここで、等距離射影画像及び中心射影画像を処理する際のデータ構造について図2を用いて説明する。この図2は、1枚の画像を示し、その幅がWピクセル(画素)、縦がHピクセル(画素)で構成されているとする。本実施形態に係る画像変換装置10では、図2に示すように座標が(x,y)で示されるデータを1次元データとし、(y×W+x)番目のデータとして管理している。このようなデータ構造は、例えば、画像を、左上から右下に向かって、撮像素子2の各画素で検出される値(画素値)を、水平方向に順に取り出して一次元的に並べたものである。図1に示す画像記憶部4には、撮像素子2から取得された等距離射影画像が記憶されるが、この画像は、座標(x,y)における画素値(輝度値)をP(x,y)として、この値が撮像素子2の画素数分、上述の順序で一次元的に並んで記憶される。 Here, the data structure when processing the equidistant projection image and the central projection image will be described with reference to FIG. FIG. 2 shows one image, and it is assumed that the width is W pixels (pixels) and the vertical is H pixels (pixels). In the image conversion apparatus 10 according to the present embodiment, as shown in FIG. 2, data whose coordinates are represented by (x, y) are set as one-dimensional data and managed as (y × W + x) -th data. Such a data structure is, for example, an image obtained by sequentially extracting values (pixel values) detected by each pixel of the image sensor 2 in the horizontal direction from the upper left to the lower right and arranging them one-dimensionally. It is. The image storage unit 4 shown in FIG. 1 stores an equidistant projection image acquired from the image sensor 2. This image has a pixel value (luminance value) at coordinates (x, y) as P (x, As y), this value is stored one-dimensionally in the order described above for the number of pixels of the image sensor 2.
 ところで、等距離射影画像から中心射影画像に変換する際に、中心射影画像を、上記画素(ピクセル)単位で表すと、この中心射影画像の各々の画素に対応する等距離射影画像上の座標は、その画素の位置に一致するとは限らない。そのため、等距離射影画像の特定の位置における画素値(輝度値)は、その周辺の画素で取得された画素値から演算式を用いて補間して求める必要がある。この補間方法について、図3を用いて説明する。 By the way, when converting from an equidistant projection image to a central projection image, if the central projection image is expressed in units of pixels, the coordinates on the equidistant projection image corresponding to each pixel of the central projection image are as follows. , It does not always coincide with the position of the pixel. For this reason, the pixel value (luminance value) at a specific position of the equidistant projection image needs to be obtained by interpolation using the arithmetic expression from the pixel values acquired at the surrounding pixels. This interpolation method will be described with reference to FIG.
 図3において、等距離射影画像のある座標(x,y)の画素を中心とした9つの画素の各々は、矩形の領域Zで囲まれている。ここで、各画素は領域Zの中心に位置し、また、各領域Zは、さらに、9つのサブ領域Z1~Z9に分割されている。今、各画素の画素値(輝度値)をP(x,y)で表すと、各サブ領域Z1~Z9における補間された画素値(輝度値)Pz1~Pz9は、次の演算式(1)~(9)により求められる。 In FIG. 3, each of nine pixels centered on a pixel at a coordinate (x, y) in the equidistant projection image is surrounded by a rectangular area Z. Here, each pixel is located at the center of the region Z, and each region Z is further divided into nine sub-regions Z1 to Z9. Now, when the pixel value (luminance value) of each pixel is represented by P (x, y), the interpolated pixel values (luminance values) Pz1 to Pz9 in the sub-regions Z1 to Z9 are expressed by the following equation (1). It is obtained by (9).
Pz1=(P(x-1,y-1)+P(x,y-1)+P(x-1,y)+P(x,y))/4   (1)
Pz2=(P(x,y-1)+P(x,y))/2             (2)
Pz3=(P(x,y-1)+P(x+1,y-1)+P(x,y)+P(x+1,y))/4   (3)
Pz4=(P(x-1,y)+P(x,y))/2             (4)
Pz5=P(x,y)                    (5)
Pz6=(P(x,y)+P(x+1,y))/2             (6)
Pz7=(P(x-1,y)+P(x,y)+P(x-1,y+1)+P(x,y+1))/4   (7)
Pz8=(P(x,y)+P(x,y+1))/2             (8)
Pz9=(P(x,y)+P(x+1,y)+P(x,y+1)+P(x+1,y+1))/4   (9)
Pz1 = (P (x-1, y-1) + P (x, y-1) + P (x-1, y) + P (x, y)) / 4 (1)
Pz2 = (P (x, y-1) + P (x, y)) / 2 (2)
Pz3 = (P (x, y-1) + P (x + 1, y-1) + P (x, y) + P (x + 1, y)) / 4 (3)
Pz4 = (P (x-1, y) + P (x, y)) / 2 (4)
Pz5 = P (x, y) (5)
Pz6 = (P (x, y) + P (x + 1, y)) / 2 (6)
Pz7 = (P (x-1, y) + P (x, y) + P (x-1, y + 1) + P (x, y + 1)) / 4 (7)
Pz8 = (P (x, y) + P (x, y + 1)) / 2 (8)
Pz9 = (P (x, y) + P (x + 1, y) + P (x, y + 1) + P (x + 1, y + 1)) / 4 (9)
 以上より、ある領域Z内の点を、サブ領域Z1~Z9のいずれに属するかにより特定すると、その領域の中心にある画素の座標である参照座標(x,y)、及び、サブ領域Z1~Z9のいずれに属するかの情報に基づいて、等距離射影画像の参照座標上の画素の画素値と、この参照座標の近傍にある(本実施形態では、参照座標に隣接する)画素の画素値とから、中心射影画像における出力座標の画素値(輝度値)を上記演算式(1)~(9)を用いることにより求めることができる。このように、画素値を求めようとする位置の近傍にある座標(参照座標)の画素値とその近傍にある(隣接する)画素の画素値とを用いて補間することより、例えば中心射影画像における被写体の輪郭等のエッジ部分をなめらかにすることができる。 As described above, when a point in a certain region Z is specified by belonging to any of the subregions Z1 to Z9, the reference coordinates (x, y) that are the coordinates of the pixel in the center of the region, and the subregions Z1 to Z9 Based on the information belonging to Z9, the pixel value of the pixel on the reference coordinate of the equidistant projection image and the pixel value of the pixel in the vicinity of the reference coordinate (adjacent to the reference coordinate in this embodiment) Thus, the pixel value (luminance value) of the output coordinates in the central projection image can be obtained by using the above-described arithmetic expressions (1) to (9). Thus, by interpolating using the pixel value of the coordinates (reference coordinates) in the vicinity of the position where the pixel value is to be obtained and the pixel values of the adjacent (adjacent) pixels, for example, a central projection image The edge portion such as the contour of the subject can be smoothed.
 図4は、テーブル記憶部5に記憶されている座標変換テーブル50のデータ構造を示している。このように、座標変換テーブル50は、出力座標(変換後の中心射影画像の座標)毎に、その出力座標を算出するための、参照座標(元になる等距離射影画像の画素の座標)51及びその参照座標を含む領域Zにおけるサブ領域(の識別子)52が記憶されている。なお、等距離射影画像及び中心射影画像のサイズ(横方向のピクセル数×縦方向のピクセル数)は既知であるため、その格納順序さえ決めておけば、座標変換テーブル50に出力座標を記憶させておく必要はない。 FIG. 4 shows the data structure of the coordinate conversion table 50 stored in the table storage unit 5. As described above, the coordinate conversion table 50 includes reference coordinates (coordinates of pixels of the original equidistant projection image) 51 for calculating the output coordinates for each output coordinate (coordinates of the central projected image after conversion). And a sub-region (identifier) 52 in the region Z including the reference coordinates is stored. Since the sizes of the equidistant projection image and the central projection image (the number of pixels in the horizontal direction × the number of pixels in the vertical direction) are known, the output coordinates are stored in the coordinate conversion table 50 as long as the storage order is determined. There is no need to keep it.
 図5を用いて、撮像素子2から等距離射影画像を読み出して、中心距離射影画像に変換して出力する本実施形態に係る画像変換方法であって、画像処理部3で実行される処理について説明する。まず、画像処理部3は、撮像素子2から一枚の画像(等距離射影画像)を読み出し、画像記憶部4に記憶する(ステップS100)。次に、テーブル記憶部5に記憶されている座標変換テーブル50から、参照座標51及びサブ領域52の値を、記憶されている順序で読み出す(ステップS110)。なお、このとき、1レコードずつ読み出しても良いし、複数レコードまとめて読み出しても良い。 5 is an image conversion method according to the present embodiment, in which an equidistant projection image is read from the image sensor 2, converted into a center distance projection image, and output. The processing executed by the image processing unit 3 explain. First, the image processing unit 3 reads one image (equal distance projection image) from the image sensor 2 and stores it in the image storage unit 4 (step S100). Next, the values of the reference coordinates 51 and the sub area 52 are read out from the coordinate conversion table 50 stored in the table storage unit 5 in the stored order (step S110). At this time, one record may be read out or a plurality of records may be read out collectively.
 そして、読み出した参照座標及びサブ領域毎に出力座標の画素値を、上述の演算式(1)~(9)を用いて求める(ステップS120)。具体的には、参照座標に基づいて画像記憶部4から、その参照座標を含む9個の座標の画素値を読み出し、さらに、上述の演算式(1)~(9)の中から、サブ領域に対応した演算式を選択し、その演算式に基づいて当該サブ領域の画素値を算出する。なお、サブ領域から演算式を決定し、その式に必要な画素の画素値を画像記憶部4から取り出して演算を行うように構成しても良い。演算された結果は、中心射影画像の出力座標における画素値として、この画像処理部3から外部に出力される(ステップS130)。上記演算結果の出力が終わると、全ての中心射影画像の画素の演算が終わったか否かを判断し(ステップS140)、まだ演算していない画素がある場合は、ステップS110に戻って上記処理を繰り返す。全ての画素について演算(変換)が終わっていると判断したときは、撮像素子2から取り出された一枚の等距離射影画像の中心射影画像への変換を終了する。なお、撮像素子2から連続して画像を撮りだして動画像として処理する場合は、上述のステップS100~S140を、繰り返し実行することにより実現可能である。また、2以上の撮像光学系1及び撮像素子2の組を用いて被写体を立体視する場合には、それぞれの撮像素子2から出力される画像を上記手順に従って処理することにより、画像変換を行うことが可能である。 Then, the pixel value of the output coordinate is obtained for each read reference coordinate and sub-region using the above-described arithmetic expressions (1) to (9) (step S120). Specifically, the pixel values of nine coordinates including the reference coordinates are read from the image storage unit 4 based on the reference coordinates, and further, the sub area is selected from the above-described arithmetic expressions (1) to (9). Is selected, and the pixel value of the sub-region is calculated based on the calculation formula. Note that an arithmetic expression may be determined from the sub-region, and a pixel value of a pixel necessary for the expression may be extracted from the image storage unit 4 and the calculation may be performed. The calculated result is output from the image processing unit 3 to the outside as a pixel value at the output coordinates of the central projection image (step S130). When the calculation results are output, it is determined whether or not the calculation of all the pixels of the central projection image has been completed (step S140). If there is a pixel that has not been calculated yet, the process returns to step S110 and the above processing is performed. repeat. When it is determined that the calculation (conversion) has been completed for all the pixels, the conversion of one equidistant projection image extracted from the image sensor 2 into the central projection image is terminated. Note that, when images are continuously captured from the image sensor 2 and processed as moving images, it can be realized by repeatedly executing the above steps S100 to S140. When a subject is stereoscopically viewed using a set of two or more imaging optical systems 1 and imaging elements 2, image conversion is performed by processing images output from the respective imaging elements 2 according to the above procedure. It is possible.
 上述のように、座標変換テーブル50のレコードは、予め決められた出力座標の順序で並べられているので、その順序で参照座標及びサブ領域を取り出して出力座標の画素値を算出して出力すれば、所望の中心射影画像を得ることができる。また、この画像変換装置10に予め記憶させておくテーブルは、上述のようにテーブル記憶部5に記憶されている座標変換テーブル50のみである。そして、この座標変換テーブル50は、各出力座標に対して、参照座標とサブ領域の情報の組だけを記憶しているため、非常に小さなデータ容量とすることができる。そのため、本実施形態に係る画像変換装置10の画像処理部3(及びテーブル記憶部5)に記憶容量が小さなASICやDSPを用いることもできる。 As described above, since the records of the coordinate conversion table 50 are arranged in the order of the predetermined output coordinates, the reference coordinates and sub-regions are extracted in that order, and the pixel values of the output coordinates are calculated and output. Thus, a desired central projection image can be obtained. Further, the table stored in advance in the image conversion apparatus 10 is only the coordinate conversion table 50 stored in the table storage unit 5 as described above. Since the coordinate conversion table 50 stores only a set of reference coordinates and sub-region information for each output coordinate, it can have a very small data capacity. Therefore, an ASIC or DSP having a small storage capacity can be used for the image processing unit 3 (and the table storage unit 5) of the image conversion apparatus 10 according to the present embodiment.
 なお、以上の説明では、撮像素子2で取得された等距離射影画像の各画素に対して、その画素を中心に含む矩形の領域Zに分割して補間値を求める方法について説明したが、この領域Zの配置は上記説明に限定されない。例えば、図6に示すように、矩形の頂点に各画素が位置するように領域Aを決定し、何れかの座標(例えば、左上の座標)を参照座標とし、この領域を複数のサブ領域(例えば、図6では、4×4の16のサブ領域Z1~Z16)に分割しても、参照座標とサブ領域の組で、上述の座標変換テーブル50を構成することができる。この図6に示す場合、各サブ領域における画素値(輝度値)は、領域Zを囲む4つの画素の画素値から所定の演算式に基づいて算出される。また、演算式は、領域Zの配置、サブ領域の分割数や大きさに応じて決定される。また、サブ領域の形状は、図3に示すように、領域毎にその大きさを変えても良いし、図6に示すように、同じ大きさで分割しても良い。 In the above description, the method of obtaining the interpolation value by dividing each pixel of the equidistant projection image acquired by the image sensor 2 into the rectangular region Z including the pixel as the center has been described. The arrangement of the region Z is not limited to the above description. For example, as shown in FIG. 6, the region A is determined so that each pixel is positioned at the vertex of a rectangle, and any coordinate (for example, the upper left coordinate) is used as a reference coordinate, and this region is divided into a plurality of sub-regions ( For example, in FIG. 6, the above-described coordinate conversion table 50 can be configured with a set of reference coordinates and sub-regions even if divided into 4 × 4 16 sub-regions Z1 to Z16). In the case shown in FIG. 6, the pixel value (luminance value) in each sub-region is calculated from the pixel values of four pixels surrounding the region Z based on a predetermined arithmetic expression. Also, the arithmetic expression is determined according to the arrangement of the region Z, the number of sub-regions divided, and the size. Further, the shape of the sub-region may be changed for each region as shown in FIG. 3, or may be divided by the same size as shown in FIG.
 また、上述の説明において、座標変換テーブル50の参照座標51には、対応する座標の値が記憶されているが、一つ前のレコードの座標との差分を記憶するように構成すると、座標のデータのサイズが小さくなるので、座標変換テーブル50の容量、すなわち、テーブル記憶部5の記憶容量を更に小さくすることができる。この場合、最初のレコードの座標は、別途記憶してある基準座標からの差分とすることができる。上述のように、この座標変換テーブル50のレコード(参照座標51とサブ領域52の組)は、出力座標に対応して一意に決まり、この出力座標は、例えば、画像の左上から右下に向かって水平方向の画素の座標が順に一次元状に並んでいる。そのため、この出力座標に対応する参照座標も、隣接する座標に対しては、距離が大きく離れていない座標が並ぶことになり、差分の値は大きくならない場合が多いためである。 In the above description, the reference coordinate 51 of the coordinate conversion table 50 stores the value of the corresponding coordinate. However, if the difference from the coordinate of the previous record is stored, Since the data size is reduced, the capacity of the coordinate conversion table 50, that is, the storage capacity of the table storage unit 5 can be further reduced. In this case, the coordinates of the first record can be a difference from the reference coordinates stored separately. As described above, the record of the coordinate conversion table 50 (a set of the reference coordinate 51 and the sub-region 52) is uniquely determined corresponding to the output coordinate. The output coordinate is, for example, from the upper left to the lower right of the image. Thus, the coordinates of the pixels in the horizontal direction are arranged one-dimensionally in order. For this reason, the reference coordinates corresponding to the output coordinates also have coordinates that are not far apart from adjacent coordinates, and the difference value often does not increase.
3 画像処理部  4 画像記憶部  5 テーブル記憶部
10 画像変換装置  50 座標変換テーブル
3 image processing unit 4 image storage unit 5 table storage unit 10 image conversion device 50 coordinate conversion table

Claims (10)

  1.  第1の画像を第2の画像に変換する画像変換装置であって、
     前記第1の画像を記憶する画像記憶部と、
     前記第2の画像の画素毎に、当該第2の画像の画素の画素値を算出するための前記第1の画像の位置に関する情報であって、前記第1の画像の画素を示す参照座標及び当該参照座標からの相対位置からなる座標変換テーブルを記憶するテーブル記憶部と、
     前記第1の画像の前記参照座標に示される画素の画素値、及び、前記参照座標の近傍に位置する前記第1の画像の画素の画素値を、前記相対位置に対応する演算式により演算して前記第2の画像の画素の画素値を算出することにより、前記第1の画像から前記第2の画像への画像変換を行う画像処理部と、を有することを特徴とする画像変換装置。
    An image conversion device for converting a first image into a second image,
    An image storage unit for storing the first image;
    For each pixel of the second image, information on the position of the first image for calculating the pixel value of the pixel of the second image, the reference coordinates indicating the pixel of the first image, and A table storage unit for storing a coordinate conversion table composed of relative positions from the reference coordinates;
    The pixel value of the pixel indicated by the reference coordinate of the first image and the pixel value of the pixel of the first image located in the vicinity of the reference coordinate are calculated by an arithmetic expression corresponding to the relative position. And an image processing unit that performs image conversion from the first image to the second image by calculating a pixel value of a pixel of the second image.
  2.  前記座標変換テーブルの前記相対位置は、前記第1の画像を当該第1の画像の画素毎に当該画素を含む複数の領域に分割し、さらに、前記領域を複数のサブ領域に分割したときの、前記参照座標を含む前記領域における前記サブ領域を示すものであることを特徴とする請求項1に記載の画像変換装置。 The relative position of the coordinate conversion table is determined by dividing the first image into a plurality of regions including the pixel for each pixel of the first image, and further dividing the region into a plurality of sub-regions. The image conversion apparatus according to claim 1, wherein the image conversion device indicates the sub-region in the region including the reference coordinates.
  3.  前記画像処理部で前記第2の画像の画素値を算出するための前記参照座標の近傍に位置する前記第1の画像の画素は、前記参照座標の画素に隣接する画素であることを特徴とする請求項1または2に記載の画像変換装置。 The pixel of the first image located in the vicinity of the reference coordinate for calculating the pixel value of the second image by the image processing unit is a pixel adjacent to the pixel of the reference coordinate. The image conversion apparatus according to claim 1 or 2.
  4.  前記座標変換テーブルの前記参照座標は、当該座標変換テーブルにおいて隣接する前記参照座標からの差分として記憶されていることを特徴とする請求項1~3のいずれか一項に記載の画像変換装置。 The image conversion apparatus according to any one of claims 1 to 3, wherein the reference coordinates of the coordinate conversion table are stored as a difference from the adjacent reference coordinates in the coordinate conversion table.
  5.  前記第1の画像は等距離射影画像であって、前記第2の画像は中心射影画像であることを特徴とする請求項1~4のいずれか一項に記載の画像変換装置。 5. The image conversion apparatus according to claim 1, wherein the first image is an equidistant projection image, and the second image is a center projection image.
  6.  所定の射影方式の画像である第1の画像を前記第1の画像とは異なる射影方式に変換して第2の画像として出力する画像変換装置であって、
     前記射影方式を変換したときの前記第2の画像の画素に対応する前記第1の画像内の位置に関する情報であって、前記位置の近傍にある前記第1の画像の画素を示す参照座標及び前記位置の前記参照座標からの相対位置の組を、前記第2の画像の画素に対する座標変換テーブルとして記憶するテーブル記憶部と、
     前記第2の画像の画素毎に、前記座標変換テーブルの当該第2の画像の画素に対応する前記参照座標及び前記相対位置に基づいて、前記第1の画像の前記参照座標に示される画素の画素値及び前記参照座標の画素に隣接する画素の画素値を、前記相対位置に対応する演算式を用いて演算して前記第2の画像の画素の画素値を算出することにより、前記第1の画像から前記第2の画像への画像変換を行う画像処理部と、を有することを特徴とする画像変換装置。
    An image conversion device that converts a first image that is an image of a predetermined projection method into a projection method different from the first image and outputs the second image as a second image,
    Information about a position in the first image corresponding to a pixel of the second image when the projection method is converted, and reference coordinates indicating a pixel of the first image in the vicinity of the position; A table storage unit that stores a set of relative positions of the positions from the reference coordinates as a coordinate conversion table for pixels of the second image;
    For each pixel of the second image, based on the reference coordinate and the relative position corresponding to the pixel of the second image in the coordinate conversion table, the pixel indicated by the reference coordinate of the first image By calculating a pixel value of a pixel of the second image by calculating a pixel value and a pixel value of a pixel adjacent to the pixel of the reference coordinate using an arithmetic expression corresponding to the relative position, the first image And an image processing unit that performs image conversion from the first image to the second image.
  7.  前記座標変換テーブルの前記相対位置は、前記第1の画像を当該第1の画像の画素毎に当該画素を含む複数の領域に分割し、さらに、前記領域を複数のサブ領域に分割したときの、前記参照座標を含む前記領域における前記サブ領域を示すものであることを特徴とする請求項6に記載の画像変換装置。 The relative position of the coordinate conversion table is determined by dividing the first image into a plurality of regions including the pixel for each pixel of the first image, and further dividing the region into a plurality of sub-regions. The image conversion apparatus according to claim 6, wherein the sub-region in the region including the reference coordinates is indicated.
  8.  前記画像処理部で前記第2の画像の画素値を算出するための前記参照座標の近傍に位置する前記第1の画像の画素は、前記参照座標の画素に隣接する画素であることを特徴とする請求項6または7に記載の画像変換装置。 The pixel of the first image located in the vicinity of the reference coordinate for calculating the pixel value of the second image by the image processing unit is a pixel adjacent to the pixel of the reference coordinate. The image conversion apparatus according to claim 6 or 7.
  9.  前記座標変換テーブルの前記参照座標は、当該座標変換テーブルにおいて隣接する前記参照座標からの差分として記憶されていることを特徴とする請求項6~8のいずれか一項に記載の画像変換装置。 9. The image conversion apparatus according to claim 6, wherein the reference coordinates of the coordinate conversion table are stored as a difference from the adjacent reference coordinates in the coordinate conversion table.
  10.  前記第1の画像は等距離射影画像であって、前記第2の画像は中心射影画像であることを特徴とする請求項6~9のいずれか一項に記載の画像変換装置。 10. The image conversion apparatus according to claim 6, wherein the first image is an equidistant projection image, and the second image is a center projection image.
PCT/JP2011/076998 2010-12-13 2011-11-24 Image conversion device WO2012081367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-276698 2010-12-13
JP2010276698A JP2012128476A (en) 2010-12-13 2010-12-13 Image conversion device

Publications (1)

Publication Number Publication Date
WO2012081367A1 true WO2012081367A1 (en) 2012-06-21

Family

ID=46244480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076998 WO2012081367A1 (en) 2010-12-13 2011-11-24 Image conversion device

Country Status (2)

Country Link
JP (1) JP2012128476A (en)
WO (1) WO2012081367A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079708A (en) * 2005-09-12 2007-03-29 Konica Minolta Holdings Inc Image processor and processing method
WO2007108081A1 (en) * 2006-03-20 2007-09-27 Fujitsu Limited Photography instrument, photography method and program, table making device and method of photography instrument, video processor and processing method
JP2007251914A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Image signal processing apparatus, and virtual reality creating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079708A (en) * 2005-09-12 2007-03-29 Konica Minolta Holdings Inc Image processor and processing method
JP2007251914A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Image signal processing apparatus, and virtual reality creating system
WO2007108081A1 (en) * 2006-03-20 2007-09-27 Fujitsu Limited Photography instrument, photography method and program, table making device and method of photography instrument, video processor and processing method

Also Published As

Publication number Publication date
JP2012128476A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
KR101921672B1 (en) Image processing method and device
US9532018B2 (en) Projection system, device and method for the output of calibration projection scenes
JP4657367B2 (en) Image processing apparatus, imaging apparatus, and image distortion correction method
JP2020511022A (en) Dual-core focusing image sensor, focusing control method thereof, and electronic device
JP5535053B2 (en) Image processing apparatus and image processing method
JP5141245B2 (en) Image processing apparatus, correction information generation method, and imaging apparatus
JP6027777B2 (en) Pixel information management device and imaging device using the same
JP5984493B2 (en) Image processing apparatus, image processing method, imaging apparatus, and program
US20170330311A1 (en) Image processing device and method, image capturing device, program, and record medium
JP2006270918A (en) Image correction method, photographing apparatus, image correction apparatus, program and recording medium
JP4866147B2 (en) Image shift detection method and apparatus, and image input apparatus
JP6557499B2 (en) FOCUS DETECTION DEVICE, ITS CONTROL METHOD, IMAGING DEVICE, PROGRAM, AND STORAGE MEDIUM
JP2007079708A (en) Image processor and processing method
US10122939B2 (en) Image processing device for processing image data and map data with regard to depth distribution of a subject, image processing system, imaging apparatus, image processing method, and recording medium
JP5446285B2 (en) Image processing apparatus and image processing method
JP6153318B2 (en) Image processing apparatus, image processing method, image processing program, and storage medium
KR100733505B1 (en) Resolution converting method
WO2012081367A1 (en) Image conversion device
JP6604783B2 (en) Image processing apparatus, imaging apparatus, and image processing program
US20170034423A1 (en) Image capturing apparatus
JP2019121972A (en) Image processing method, image processing apparatus, imaging apparatus, image processing program, and storage medium
JP6468751B2 (en) Image processing apparatus, image processing method, and program
JP2018159590A (en) Parallax computation device
US10200674B2 (en) Image processing apparatus, image capturing apparatus, and recording medium
JP6566765B2 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848348

Country of ref document: EP

Kind code of ref document: A1