WO2012077576A1 - タッチパネル及びこのタッチパネルを備えた表示装置 - Google Patents

タッチパネル及びこのタッチパネルを備えた表示装置 Download PDF

Info

Publication number
WO2012077576A1
WO2012077576A1 PCT/JP2011/077843 JP2011077843W WO2012077576A1 WO 2012077576 A1 WO2012077576 A1 WO 2012077576A1 JP 2011077843 W JP2011077843 W JP 2011077843W WO 2012077576 A1 WO2012077576 A1 WO 2012077576A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch panel
groups
line
electrode group
Prior art date
Application number
PCT/JP2011/077843
Other languages
English (en)
French (fr)
Inventor
陽介 中川
前田 和宏
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/992,689 priority Critical patent/US20130265282A1/en
Publication of WO2012077576A1 publication Critical patent/WO2012077576A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer

Definitions

  • the present invention relates to a touch panel and a display device including the touch panel, and more particularly to a capacitive touch panel and a display device including the touch panel.
  • touch panel methods Various methods such as a capacitance method, a resistance film method, an ultrasonic method, an infrared method, and an electromagnetic induction method are known as touch panel methods.
  • touch panel methods Conventionally, many resistive film type touch panels have been used, but in recent years, capacitive type touch panels have attracted attention. This is because the capacitive touch panel can perform multipoint detection which is difficult with a resistive touch panel.
  • a cross-matrix touch panel is known as a conventional capacitive touch panel.
  • FIG. 16 shows the structure of such a touch panel.
  • drive lines D1 to D10 composed of 10 line electrodes and sense lines S1 to S14 composed of 14 line electrodes are formed on a predetermined substrate. Are provided so as to cross each other while being insulated from each other.
  • predetermined voltage signals P1 to P10 are sequentially applied to all drive lines D1 to D10 through terminals T15 to T24 during driving.
  • all the sense lines S1 to S14 are connected to the detection circuit via the terminals T1 to T14 and the terminals T25 to T38.
  • FIG. 17 is a cross-sectional view illustrating a configuration of a display device provided with each type of touch panel, and FIG. 17A illustrates an example of a configuration of the display device provided with an external type touch panel.
  • FIG. 17B is a cross-sectional view showing an example of the configuration of a display device provided with an in-cell type touch panel, and FIG. 17C shows an on-cell type touch panel. It is sectional drawing which shows an example of a structure of the displayed display apparatus.
  • the display panel 100a includes a TFT array substrate 102a and a color filter substrate 103a sandwiching a display element (not shown).
  • a front polarizing plate 104a is provided on the front side of the color filter substrate 103a, and a back polarizing plate 101a is provided on the back side of the TFT array substrate 102a.
  • the external touch panel 200a is provided on the front polarizing plate 104a, and a protective plate 300a is provided thereon.
  • the display panel 100b includes a TFT array substrate 102b and a color filter substrate 103b sandwiching a display element (not shown).
  • a front polarizing plate 104b is provided on the front side of the color filter substrate 103b, and a back polarizing plate 101b is provided on the back side of the TFT array substrate 102b.
  • the in-cell type touch panel 200b is provided between the TFT array substrate 102b and the color filter substrate 103b in the display panel 100b.
  • a protective plate 300b is provided on the front polarizing plate 104b.
  • the display panel 100c includes a TFT array substrate 102c and a color filter substrate 103c sandwiching a display element (not shown).
  • An on-cell type touch panel 200c is provided on the front side of the color filter substrate 103c, and a front polarizing plate 104c is provided thereon.
  • a protective plate 300c is provided on the front polarizing plate 104c.
  • a back polarizing plate 101c is provided on the back side of the TFT array substrate 102c.
  • a transparent electrode used for display is patterned on a TFT array substrate or a color filter substrate. Since the patterned transparent electrode is also used as a drive line and a sense line, it is possible to reduce the thickness.
  • FIG. 18 is a diagram showing an electrode pattern of the touch panel disclosed in Patent Document 1. In FIG.
  • the drive lines D1 to D6 and the sense lines S1 to S10 of the capacitive touch panel can be used together to function as a touch panel. Is realized.
  • the common electrodes are sense lines S1 to S10 made up of ten line electrodes. Also, drive lines D1 to D6 made of planar electrodes regularly arranged so as to be spaced apart are patterned so as to correspond to the sense lines.
  • a predetermined voltage signal is sequentially applied to the drive lines D1 to D6 corresponding to the sense lines S1 to S10.
  • FIG. 19 is a waveform diagram showing voltage signals Vout1 to Vout10 output by the detection circuits connected to the sense lines S1 to S10 and voltage signals P1 to P6 applied to the drive lines D1 to D6 in the touch panel shown in FIG. It is.
  • predetermined pulse (voltage) signals P1 to P6 are sequentially applied to the drive lines D1 to D6.
  • output signals Vout1 to Vout10 are output by a detection circuit (a circuit as shown in FIG. 3 described later) connected to the sense lines S1 to S10.
  • FIG. 20 is a diagram for explaining detection of a touched position on the touch panel shown in FIG.
  • the touched position is detected by detecting the change in capacitance by the detection circuit.
  • the operation modes of the liquid crystal molecules in the liquid crystal display device include, for example, a TN (Twisted Nematic) mode, a STN (Super Twisted Nematic) mode, a VA (Vertically Aligned Birefringing) mode, and an ECB (Electrically Controlled Birefringing mode).
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Aligned Birefringing
  • ECB Electrically Controlled Birefringing mode
  • the conventional technology as described above has a problem that the sensing time becomes long because a predetermined pulse is applied to all the drive lines D1 to Dm (m is an integer of 2 or more) in order. This problem becomes more prominent as the number of drive lines increases.
  • the in-cell type touch panel as in Patent Document 1 needs to perform sensing during a blanking period so as not to affect the display, so that it is difficult to secure a sufficient sensing time and the recognizability of the indicator Will fall.
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize a touch panel capable of detecting an indicator with high accuracy and high speed and a display device including the touch panel.
  • the touch panel of the present invention is (1) a first electrode group as a plurality of first electrodes, each conductive path extending along a first direction; (2) A second electrode group configured as a plurality of groups, wherein the conductive path includes at least one second electrode extending in the second direction, and the second electrode group provided in each group.
  • a touch panel that detects a position touched by an indicator
  • the conductive paths of the second electrodes belonging to the second electrode groups of different groups are electrically insulated from each other
  • the second electrode of the plurality of groups except for the first electrode group corresponding to the second electrode group of at least some of the plurality of groups.
  • Each of the first electrode groups corresponding to only one of the groups is line-sequentially driven at the same timing or the timing at which the driving periods overlap each other.
  • the second electrode group (for example, the sense line S) is divided into a plurality of groups such as the second electrode first group, the second electrode second group, and the second electrode third group.
  • the conductive paths of the second electrodes belonging to the second electrode first group, the second electrode second group, and the like extend along the second direction (for example, the X direction) within each group.
  • the conductive path of the second electrode is not continuous and is electrically insulated.
  • a part of the first electrode group corresponds to the second electrode group of each group. “Corresponding” means that the second electrode group and a part of the first electrode group have a relationship in which the position touched by the indicator is detected by detecting a change in capacitance. It is that.
  • the first electrode group includes a first electrode group that is shared (that is, overlaps) with the second electrode group of a plurality of groups. Except for the shared first electrode group, each of the first electrode groups corresponding to only one of the second electrode groups of the plurality of groups has a timing of line-sequentially driving the plurality of first electrodes. Are mutually the same or the drive periods overlap each other.
  • the driving time can be reduced and the sensing time can be reduced as compared with the case where the entire first electrode group is driven line-sequentially.
  • the number of charge transfers can be increased, and the difference in output voltage between touch and non-touch can be increased. Therefore, it is possible to accurately discriminate between touch and non-touch.
  • the touch panel of the present invention can reduce sensing time as described above, it is suitable not only for an external type and an on-cell type, but also for an in-cell type touch panel.
  • each conductive path is a first electrode group as a plurality of first electrodes extending along the first direction, and a second electrode group configured as a plurality of groups.
  • a second electrode group having at least one second electrode extending along the second direction in each group, at least one first electrode of the first electrode group, and a second electrode group of the second electrode group
  • the conductive paths of the second electrodes belonging to the second electrode group of a different group are electrically insulated from each other, and at least some of the plurality of second electrode groups of the plurality of groups.
  • Each of the first electrode groups corresponding to only one of the second electrode groups of the plurality of groups is identical to each other, except for the first electrode group corresponding to the second electrode group of the group.
  • Line-sequential driving is performed at timings or timings at which driving periods overlap each other.
  • the display device of the present invention includes the above touch panel.
  • FIG. 2 shows the electrode pattern of the touchscreen which concerns on Embodiment 1 of this invention. It is a wave form diagram for comparing the voltage signal applied to the drive line of the conventional touch panel and the touch panel which concerns on Embodiment 1 of this invention, (a) of FIG. 2 is applied to the drive line of the conventional touch panel. FIG. 2B shows the voltage signal applied to the drive line of the touch panel according to Embodiment 1 of the present invention. It is a circuit diagram which shows the structure of the detection circuit provided in the touchscreen which concerns on Embodiment 1 of this invention.
  • the integration circuit for the number N of charge transfers and when the operator's finger does not touch the touch panel (non-touch) and when the touch is made (touch)
  • DELTA difference
  • the integration circuit for the number N of charge transfers and when the operator's finger does not touch the touch panel (non-touch) and when the touch is made (touch)
  • DELTA difference
  • the electrode pattern of the touchscreen which concerns on Embodiment 2 of this invention.
  • FIG. 4 is a waveform diagram showing a voltage signal output from a detection circuit connected to a sense line of a touch panel and a voltage signal applied to a drive line in the liquid crystal display device according to Embodiment 1 of the present invention. It is sectional drawing which shows the structure of the liquid crystal display device which concerns on Example 2 of this invention. It is a figure which shows the structure of the conventional capacitive touch panel.
  • FIG. 1 It is sectional drawing which shows the structure of the display apparatus provided with each type touch panel, (a) shows an example of a structure of the display apparatus provided with the external type touch panel, (b) is in-cell. An example of a configuration of a display device provided with a touch panel of a type is shown, and (c) shows an example of a configuration of a display device provided with an on-cell type touch panel.
  • FIG. 1 It is a wave form diagram which shows the voltage signal output from the detection circuit connected to the sense line of the touch panel disclosed by patent document 1, and the voltage signal applied to a drive line.
  • 10 is a diagram for explaining detection of a touched position on a touch panel disclosed in Patent Document 1.
  • FIG. FIG. 4 is a diagram showing ON / OFF states of a switch SW1 and a switch SW2 in the detection circuit shown in FIG. It is a figure which shows the electrode pattern of the touchscreen which concerns on Embodiment 6 of this invention.
  • FIG. 1 is a diagram showing an electrode pattern of the touch panel according to the present embodiment.
  • drive lines D1 to D10 (first electrode group) composed of ten line-shaped electrodes (first electrode, conductive path) are arranged in the Y direction ( Are provided at equal intervals in parallel along the first direction.
  • Sense lines S1L to S14L (second electrode first group) composed of 14 line electrodes (second electrode, conductive path) perpendicular to the drive lines D1 to D5 are along the X direction (second direction). In parallel and at equal intervals.
  • the sense lines S1R to S14R (second electrode second group) composed of 14 line-shaped electrodes (second electrodes) so as to be orthogonal to the drive lines D6 to D10 are parallel to each other along the X direction and the like. It is provided at intervals.
  • the sense lines S1L to S14L and the corresponding sense lines S1R to S14R are provided symmetrically about the axis along the Y direction.
  • the sense line in the present embodiment is composed of two groups of sense lines S1L to S14L and sense lines S1R to S14R.
  • the drive lines D1 to D5 correspond to the sense lines S1L to S14L
  • the drive lines D6 to D10 correspond to the sense lines S1R to S14R.
  • the drive lines D1 to D5 corresponding to only the sense lines S1L to S14L and the drive lines D6 to D10 corresponding to only the sense lines S1R to S14R are line-sequentially driven at the same timing.
  • predetermined pulse (voltage) signals P1 to P5 are sequentially applied to the drive lines D1 to D5 via the terminals T15 to T19, and the drive lines D6 to D10 are applied at the same timing.
  • Predetermined pulse (voltage) signals P1 to P5 are applied in order via terminals T20 to T24.
  • the sense lines S1L to S14L are connected to a detection circuit to be described later via terminals T1 to T14, and the sense lines S1R to S14R are connected to a detection circuit to be described later via terminals T25 to T38.
  • FIG. 2 is a waveform diagram for comparing voltage signals applied to drive lines D1 to D10 of the conventional touch panel and the touch panel according to the present embodiment.
  • FIG. 2 (a) is shown in FIG.
  • FIG. 2B shows voltage signals applied to the drive lines D1 to D10 of the touch panel according to the present embodiment shown in FIG. Show.
  • predetermined voltage signals P1 to P10 are sequentially applied to all the drive lines D1 to D10 and driven.
  • sense lines S1 to S14 shown in FIG. 16 are divided into sense lines S1L to S14L and sense lines S1R to S14R, respectively, and therefore correspond to sense lines S1L to S14L.
  • the predetermined voltage signals P1 to P5 can be sequentially applied to the drive lines D1 to D5 and the drive lines D6 to D10 corresponding to the sense lines S1R to S14R at the same timing.
  • the “same timing” is applied to the first drive line D1 and the drive line D6 of the second electrode first group and the second electrode second group, respectively, simultaneously with the voltage signal P1 having the same drive period. Thereafter, voltage signals are applied simultaneously to the two drive lines in this order from the second drive line D2, D7 of each group to the final drive line D5, D10.
  • the number of times of driving the drive lines D1 to D10 can be reduced to half that is the reciprocal of the number of groups according to 2, and the time required for sensing can be reduced to half. It becomes possible.
  • the predetermined voltage signals P1 to P5 are sequentially applied to the drive lines D1 to D5 and the drive lines D6 to D10 at the same timing.
  • the present invention is not limited to this.
  • a predetermined voltage signal may be applied in order at a timing at which at least some of the driving periods overlap each other.
  • the “timing at which the driving periods overlap each other” will be described more specifically.
  • the voltage signals P1 and P6 are applied to the first drive line D1 and the drive line D6 so that a part of the driving period overlaps.
  • the voltage signal is applied to the two drive lines in this order from the second drive line D2, D7 to the last drive line D5, D10 in each group so that a part of the drive period overlaps. is there.
  • drive lines that are line-sequentially driven at the same timing or timings at which driving periods overlap each other is referred to as “drive lines at which driving periods overlap each other”.
  • D6 is “a drive line in which driving periods overlap each other”.
  • FIG. 3 is a circuit diagram showing a configuration of a detection circuit provided in the touch panel according to the present embodiment.
  • a drive line D composed of one line-shaped electrode and a sense line S composed of one line-shaped electrode are provided so as to cross each other while being electrically insulated from each other.
  • the sense line S is electrically connected to an integrating circuit including an amplifier AMP1 and an integrating capacitor CINT via a switch SW1, and is connected to a reference voltage VSS via a switch SW2.
  • a change in the capacitance of the capacitance CF is detected by fixing the input voltage Vin of the amplifier AMP1 to the reference voltage VSS and performing charge transfer between the capacitance CF and the integration capacitance CINT.
  • the switch SW1 and the switch SW2 are sequentially turned on only during the vertical blanking period, and charge transfer is performed between the capacitance CF and the integration capacitance CINT, and a change in the capacitance of the capacitance CF is detected.
  • FIG. 21 is a diagram showing ON / OFF states of the switch SW1 and the switch SW2.
  • the switch SW2 is turned on to fix the sense line S to a certain potential (the reference voltage VSS).
  • the switch SW2 is turned off and the switch SW1 is turned on to perform charge transfer between the electrostatic capacitance CF and the integration capacitance CINT.
  • the amplifier AMP1 outputs an output voltage Vout corresponding to the integrated value of the charge amount transferred to the integration capacitor CINT.
  • ⁇ Vd is the amplitude of the voltage signal applied to the drive line D
  • N is the number of charge transfers.
  • Vout1 of the integration circuit when the operator's finger is not touching the touch panel and the output voltage Vout2 of the integration circuit when the operator's finger is touching are respectively expressed by the following equations (3) and (4).
  • Cint is the capacity of the integration capacity CINT.
  • the difference ⁇ Vout between the output voltage of the integration circuit when the operator's finger is not touching the touch panel and when the finger is touched increases with the increase in the number N of charge transfers.
  • the touched position is calculated based on the output voltages Vout1 and Vout2 of the integration circuit. That is, the detection circuit specifies the combination of the drive line D and the sense line S in which the output voltage difference ⁇ Vout exceeds the threshold value, thereby obtaining the position touched by the finger.
  • FIG. 4 is a diagram illustrating the relationship between the number N of charge transfers and the difference ⁇ Vout between the output voltages of the integration circuit when the operator's finger is not touching the touch panel (non-touch) and when it is touched (touch). is there.
  • the difference ⁇ Vout between the output voltage Vout1 of the integration circuit when the operator's finger is not touching the touch panel and the output voltage Vout2 of the integration circuit when the operator's finger is touching is as follows. ,growing.
  • the time required for sensing can be reduced by half. Therefore, the number N of charge transfers can be increased, and the output voltage difference ⁇ Vout can be increased. Therefore, it is possible to accurately discriminate between touch and non-touch.
  • Embodiment 2 relating to the capacitive touch panel of the present invention will be described as follows with reference to FIGS.
  • FIG. 5 is a diagram showing an electrode pattern of the touch panel according to the present embodiment.
  • drive lines D1 to D10 composed of ten line-shaped electrodes (first electrodes) are parallel to each other along the Y direction and at equal intervals. Is provided.
  • sense lines S1L to S14L (second electrode first group) composed of 14 line-shaped electrodes (second electrodes)
  • odd-numbered sense lines S1L, S3L,..., S13L are orthogonal to drive lines D1 to D6. Thus, they are provided in parallel and at equal intervals along the X direction.
  • the even-numbered sense lines S2L, S4L,..., S14L are parallel to each other along the X direction so as to be orthogonal to the drive lines D1 to D4. And it is provided at equal intervals. That is, the length of the sense lines S1L to S14L changes.
  • sense lines S1R to S14R (second electrode second group) composed of 14 line-shaped electrodes (second electrodes)
  • odd-numbered sense lines S1R, S3R,..., S13R are drive lines D1 to D4. They are arranged in parallel and at equal intervals along the X direction so as to be orthogonal to each other.
  • the even-numbered sense lines S2R, S4R,..., S14R are parallel to each other along the X direction so as to be orthogonal to the drive lines D1 to D6. And it is provided at equal intervals. That is, the length of the sense lines S1R to S14R changes.
  • the lengths of the sense lines S1L to S14L and the sense lines S1R to S14R can be changed periodically as long as a plurality of first electrode groups driven line-sequentially at the same timing can be formed. However, it may be irregular or irregular.
  • the drive lines D1 to D4 correspond to only the sense lines S1L to S14L
  • the drive lines D7 to D10 correspond to only the sense lines S1R to S14R
  • Drive lines D5 and D6 correspond to both odd-numbered sense lines of sense lines S1L to S14L and even-numbered sense lines of sense lines S1R to S14R.
  • predetermined pulse (voltage) signals P1 to P6 are sequentially applied to the drive lines D1 to D6 via the terminals T15 to T20, and the drive lines D1 to D10 are connected to the drive lines D1 to D6.
  • Predetermined pulse (voltage) signals P1 to P4 are applied in order through terminals T21 to T24 at the same timing as D4.
  • the line sequential drive of the drive lines D5 and D6 shared by the two groups of the second electrode group is performed after the line sequential drive of the two groups of the second electrode group, that is, the pulse signal P1.
  • ⁇ P4 may be performed in order after the application of P4, or may be performed in sequence before the line sequential driving of the two groups of the second electrode group.
  • the sense lines S1L to S14L are connected to a detection circuit as shown in FIG. 3 via terminals T1 to T14, and the sense lines S1R to S14R are connected to a detection circuit as shown in FIG. 3 via terminals T25 to T38. Has been.
  • the touched position is detected by detecting the change in the capacitance with a detection circuit as shown in FIG.
  • conventional sense lines S1 to S14 shown in FIG. 16 are divided into sense lines S1L to S14L and sense lines S1R to S14R, and sense lines S1L to S14L and sense line S1R are divided.
  • the division points (division positions) in the X direction of S14R are divided so as to change for each column, in other words, according to the sense line.
  • FIG. 6 is a schematic diagram showing an enlarged electrode pattern of the touch panel according to the present embodiment.
  • the sense line S is divided so that the lengths of the sense line SL and the sense line SR change for each column. That is, the division point PO as the position in the X direction of the sense line SL and the sense line SR that are electrically isolated is not constant but varies for each sense line column.
  • FIG. 7 is a diagram showing a display state of a display device provided with such a touch panel, and FIG. 7A shows a display state of the display device when the division point of the sense line S is constant. FIG. 7B shows the display state of the display device when the dividing point of the sense line S is not constant as in this embodiment.
  • predetermined pulse (voltage) signals P1 to P6 are sequentially applied to the drive lines D1 to D6, and predetermined predetermined values are sequentially applied to the drive lines D7 to D10 at the same timing as the drive lines D1 to D4. Pulse (voltage) signals P1 to P4 are applied. As a result, the time required for sensing can be reduced as compared with the case where predetermined pulse (voltage) signals P1 to P10 are sequentially applied to the drive lines D1 to D10, respectively.
  • the charge transfer frequency N can be increased as in the first embodiment, and the output voltage difference ⁇ Vout can be increased. Therefore, it is possible to accurately discriminate between touch and non-touch.
  • FIG. 8 is a diagram showing an electrode pattern of the touch panel according to the present embodiment.
  • drive lines D1 to D10 including ten line electrodes (first electrodes) are parallel to each other along the Y direction. And at equal intervals.
  • Sense lines S1L to S14L (second electrode first group) composed of 14 line-shaped electrodes (second electrodes) are arranged in parallel and at equal intervals along the X direction so as to be orthogonal to the drive lines D1 to D5. Is provided. Further, the sense lines S1R to S14R (second electrode second group) composed of 14 line-shaped electrodes (second electrodes) are parallel to each other along the X direction so as to be orthogonal to the drive lines D6 to D10. It is provided at intervals.
  • the sense lines S1L to S14L and the corresponding sense lines S1R to S14R are provided so as to be shifted in the Y direction.
  • FIG. 9 which is an enlarged plan view showing a part of the vicinity of the dividing point of the sense lines S1L to S14L and the sense lines S1R to S14R
  • ends of the sense lines S1R to S14R on the X axis negative direction side are overlapped when viewed in the Y axis direction.
  • the drive lines D1 to D5 corresponding to only the sense lines S1L to S14L and the drive lines D6 to D10 corresponding to only the sense lines S1R to S14R are line-sequentially driven at the same timing.
  • predetermined pulse (voltage) signals P1 to P5 are sequentially applied to the drive lines D1 to D5 via the terminals T15 to T19, and terminals T20 to T24 are applied to the drive lines D6 to D10.
  • the predetermined pulse (voltage) signals P5 to P1 are sequentially applied via the.
  • the same number of the pulse signal P means that the application timing is the same.
  • the sense lines S1L to S14L are connected to a detection circuit as shown in FIG. 3 via terminals T1 to T14, and the sense lines S1R to S14R are connected to a detection circuit as shown in FIG. 3 via terminals T25 to T38. Has been.
  • the touched position is detected by detecting the change in the capacitance with a detection circuit as shown in FIG.
  • the conventional sense lines S1 to S14 shown in FIG. 16 are divided into sense lines S1L to S14L and sense lines S1R to S14R.
  • the sense lines S1L to S14R and the corresponding sense lines S1R to S14R are shifted up and down along the Y direction as shown in FIG. 9, and are the ends of the sense lines S1L to S14L on the X axis positive direction side.
  • the ends of the sense lines S1R to S14R on the X axis negative direction side overlap each other when viewed in the Y axis direction.
  • the dividing point PO of the sense line S is not constant vertically. Further, the width H of the overlapping portion of the upper and lower sense lines S is larger than the pixel pitch. Therefore, in the display device provided with the touch panel according to the present embodiment, the arrangement of the division points of the sense lines S is difficult to see on the display screen.
  • predetermined pulse (voltage) signals P1 to P5 are sequentially applied to the drive lines D1 to D5
  • predetermined pulse (voltage) signals P5 to P1 are sequentially applied to the drive lines D6 to D10.
  • the charge transfer frequency N can be increased as in the first embodiment, and the output voltage difference ⁇ Vout can be increased. Therefore, it is possible to accurately discriminate between touch and non-touch.
  • Embodiment 4 relating to the capacitive touch panel of the present invention will be described below with reference to FIG.
  • FIG. 10 is a diagram showing an electrode pattern of the touch panel according to the present embodiment.
  • drive lines D1 to D10, sense lines S1L to S14L, and sense lines S1R to S14R are patterned in the same manner as the touch panel shown in FIG. Therefore, the description is omitted.
  • predetermined pulse (voltage) signals P1 to P5 are sequentially applied to the drive lines D1 to D5 via the terminals T15 to T19, and the drive lines D6 to D10 are also configured as described above.
  • Predetermined pulse (voltage) signals P1 to P5 are applied in order through the same terminals T15 to T19.
  • a detection circuit as shown in FIG. 3 detects at least one of the change in capacitance between at least one of the drive lines D6 to D10 and at least one of the sense lines S1R to S14R.
  • the touched position is detected by detecting by.
  • drive line D1 and drive line D6 drive line D2 and drive line D7, drive line D3 and drive line D8, drive line D4 and drive line D9, drive line D5 and drive line D10.
  • the terminals are shared, the number of terminals can be reduced.
  • predetermined pulse (voltage) signals P1 to P5 are sequentially applied to the drive lines D1 to D5 and the drive lines D6 to D10 via the shared terminals T15 to T19.
  • the time required for sensing can be reduced as compared with the case where predetermined pulse (voltage) signals P1 to P10 are sequentially applied to all the drive lines D1 to D10.
  • the charge transfer frequency N can be increased as in the first embodiment, and the output voltage difference ⁇ Vout can be increased. Therefore, it is possible to accurately discriminate between touch and non-touch.
  • the configuration in which ten drive lines D1 to D10, fourteen sense lines SL1 to SL14, and sense lines SR1 to SR14 are provided is given as an example.
  • the present invention is not limited to this.
  • the number m of drive lines D1 to Dm (m is an integer of 2 or more) and the number n of sense lines S1 to Sn (n is an integer of 1 or more) are appropriately determined depending on the use of the touch panel and the size of the touch area. It is decided.
  • the length and width of the drive lines D1 to Dm, the distance between the drive lines, the length, width, and the distance between the sense lines of the sense lines S1 to Sn are determined depending on the use of the touch panel and the size of the touch area. It is determined as appropriate depending on the situation.
  • Embodiment 5 relating to the capacitive touch panel of the present invention will be described below with reference to FIG.
  • drive lines D1 to Dm including m (m is an integer of 2 or more) line electrodes and n (n is an integer of 1 or more) line electrodes
  • Sense lines S1L-SnL and sense lines S1R-SnR are crossed so as to be orthogonal to each other while being insulated from each other.
  • the drive lines D1 to Dm, the sense lines S1L to SnL, and the sense lines S1R to SnR are provided in an insulated state in the same layer.
  • FIG. 11 is a diagram showing an electrode pattern of the touch panel according to the present embodiment.
  • a drive line composed of a plurality of rhombic first planar electrodes (first electrodes) regularly arranged so as to be separated from each other along the Y direction.
  • Electrode group) D1 to D3 and a sense line (second electrode first group) composed of a plurality of rhombic second planar electrodes (second electrodes) regularly arranged so as to be separated from each other in the X direction ) S1L to S2L and sense lines (second electrode second group) S1R to S2R are provided.
  • the first planar electrodes arranged in the Y direction are electrically connected to each other via the lower wiring 60 (first wiring).
  • the second planar electrodes arranged along the X direction are electrically connected to each other via the upper wiring 61 (second wiring).
  • the sense line S1L and the sense line S1R, and the sense line S2L and the sense line S2R are separated and insulated.
  • An insulating film 62 is provided between the lower wiring 60 and the upper wiring 61, and the lower wiring 60 and the upper wiring 61 are insulated.
  • the sense lines S1 to S2 are divided into sense lines S1L and S1R and sense lines S2L and S2R, respectively. Therefore, it is possible to drive the drive line D1 corresponding to the sense lines S1L and S2L by applying the same drive signal to the drive line D3 corresponding to the sense lines S1R and S2R. Therefore, it is possible to reduce the number of times of driving the drive lines D1 to D3 and reduce the sensing time.
  • the drive lines D1 to D3, the sense lines S1L to S2L, and the sense lines S1R to S2R can be provided in the same layer, so that a reduction in thickness can be realized. In addition, light transmittance is increased.
  • Embodiment 6 relating to the capacitive touch panel of the present invention will be described below with reference to FIG.
  • the sense lines S1 to Sn are divided into two groups of sense lines S1L to SnL and sense lines S1R to SnR.
  • the sense lines S1 to Sn are sense lines S1a to Sna (second electrode first group), S1b to Snb (second electrode second group), and S1c to Snc (second electrode second group). It is divided into three groups.
  • FIG. 22 is a diagram showing an electrode pattern of the touch panel according to the present embodiment.
  • sense lines S1 to S4a are formed of a plurality of planar electrodes S1a, S1b, S1c to S4a, S4b, and S4c regularly arranged so as to be separated from each other along the X direction.
  • S4 is provided.
  • the drive lines D1 to D6 are provided in parallel with the arrangement of the sense lines S1 to S4 in a state of being insulated from the sense lines so as to correspond to the sense lines.
  • the drive lines D1 and D2 in each row correspond to the sense lines S1a to S4a
  • the drive lines D3 and D4 in each row correspond to the sense lines S1b to S4b, respectively
  • the drive lines D5 and D6 in each row respectively correspond to the sense lines. This corresponds to S1c to S4c.
  • Drive lines D1 to D2 corresponding to only the sense lines S1a to S4a, drive lines D3 to D4 corresponding to only the sense lines S1b to S4b, and drive lines D5 to D6 corresponding to only the sense lines S1c to S4c are mutually connected.
  • Line-sequential driving is performed at the same timing or at timings at which driving periods overlap each other.
  • predetermined pulse (voltage) signals are sequentially applied to the drive lines D1 to D2, the drive lines D3 to D4, and the drive lines D5 to D6 via the terminals T1 to T2.
  • Sense lines S1 to S4 are connected to a detection circuit via terminals T3 to T14.
  • the sense lines S1 to S4 are divided into three groups of sense lines S1a to S1c, S2a to S2c, S3a to S3c, and S4a to S4c, respectively. Therefore, drive lines D1 to D2 corresponding to the sense lines S1a to S4a, drive lines D3 to D4 corresponding to the sense lines S1b to S4b, and drive lines D5 to D6 corresponding to the sense lines S1c to S4c are mutually connected. It becomes possible to drive line-sequentially at the same timing or at timings where the driving periods overlap each other.
  • the number of groupings is 3
  • the number of drive lines D1 to D6 can be reduced to 1/3, which is the reciprocal, and the time required for sensing is reduced to 1/3. It becomes possible to do.
  • the drive lines D1 to D6 and the sense lines S1a to S4a, S1b to S4b, and S1c to S4c can be provided in the same layer, so that a reduction in thickness can be realized. It becomes possible and the light transmittance becomes high.
  • the touch panel according to Embodiments 1 to 6 can be applied to any of an external type, an in-cell type, and an on-cell type touch panel.
  • sensing is possible only in the vertical blanking period in order to avoid the influence of noise from the display drive circuit, and the sensing time is limited, It is particularly effective.
  • the display panel 100a includes a TFT array substrate 102a and a color filter substrate 103a as display elements (as described for the liquid crystal display device on which the external type touch panel 200a is mounted. (Not shown).
  • a front polarizing plate 104a is provided on the front side of the color filter substrate 103a, and a back polarizing plate 101a is provided on the back side of the TFT array substrate 102a.
  • the external touch panel 200a is provided on the front polarizing plate 104a, and a protective plate 300a is provided thereon. That is, the drive lines D1 to D10 as the first electrode group, the sense lines S1R to S14R as the second electrode group, and the like are provided on the front polarizing plate 104a.
  • the electrode pattern is not limited to the above-described first to fifth embodiments.
  • Example 1 Hereinafter, Example 1 will be described with reference to FIGS.
  • an IPS mode liquid crystal display device will be described as an electronic device.
  • This liquid crystal display device is provided with an in-cell type touch panel.
  • the IPS mode is a mode in which liquid crystal molecules are rotated in a horizontal plane with respect to the glass substrate.
  • the liquid crystal molecules do not stand up obliquely. Therefore, there is a feature that a wide viewing angle can be obtained with little change in optical characteristics depending on the viewing angle.
  • FIG. 12 is a cross-sectional view showing the configuration of the liquid crystal display device according to this example.
  • the liquid crystal display device 50 is provided with a liquid crystal layer 30 between the TFT array substrate 10 and the color filter substrate 20.
  • a TFT (thin film transistor) 11 and a pixel electrode 13 are provided on the TFT array substrate 10 corresponding to each pixel, and the TFT 11 and the pixel electrode 13 are electrically connected through a contact hole. Yes.
  • the pixel electrode 13 is formed of a transparent conductor such as ITO (Indium-Tin®Oxide). Further, the pixel electrode 13 is formed in a comb shape so as to prevent display unevenness and to suppress a necessary voltage.
  • ITO Indium-Tin®Oxide
  • a common electrode 12 is provided between the TFT 11 and the pixel electrode 13.
  • the common electrode 12 is formed of a transparent conductor such as ITO (Indium-Tin Oxide).
  • ITO Indium-Tin Oxide
  • the liquid crystal layer 30 is driven by a voltage applied between the comb-like pixel electrode 13 formed on the TFT array substrate 10 and the common electrode 12.
  • the sense line S and the drive line D are also used. Thereby, the liquid crystal display device 50 having a touch function can be realized.
  • FIG. 13 is a diagram showing a common electrode pattern of the liquid crystal display device according to the present embodiment.
  • the sense line S is divided at the center, and is divided into sense lines S1L to S10L and sense lines S1R to S10R.
  • the drive lines D corresponding to different sense lines S can be driven simultaneously. Therefore, for example, the drive lines D1 to D3 corresponding to the sense line S1L and the drive lines D1 to D3 corresponding to the sense line S1R are sequentially driven by applying predetermined pulse (voltage) signals P1 to P3. it can.
  • FIG. 14 is a waveform diagram showing voltage signals output from the detection circuits connected to the sense lines S1L to S10L and the sense lines S1R to S10R, and voltage signals applied to the drive lines D1 to D3.
  • drive lines D1 to D3 corresponding to the sense lines S1L to S10L and drive lines D1 to D3 corresponding to the sense lines S1R to S10R are sequentially predetermined.
  • Pulse (voltage) signals P1 to P3 are applied, and the sense lines S1L to S10L and the sense lines S1R to S10R correspond to the charges accumulated in the integration capacitor CINT as the output Vout by the detection circuit as shown in FIG. Output voltage.
  • the sensing time can be reduced, the number N of charge transfers can be increased, and the output voltage difference ⁇ Vout can be increased. Therefore, it is possible to accurately discriminate between touch and non-touch.
  • Example 2 Hereinafter, Example 2 will be described with reference to FIG.
  • a VA mode liquid crystal display device will be described as an electronic device.
  • This liquid crystal display device is provided with an in-cell type touch panel.
  • FIG. 15 is a cross-sectional view showing the configuration of the liquid crystal display device according to this example.
  • a liquid crystal layer 30A is provided between the TFT array substrate 10A and the color filter substrate 20A.
  • a TFT (thin film transistor) 11A and a pixel electrode 13A are provided on the TFT array substrate 10A corresponding to each pixel, and the TFT 11A and the pixel electrode 13A are electrically connected via a contact hole. Yes.
  • the pixel electrode 13A is made of a transparent conductor such as ITO (Indium-Tin Oxide).
  • the counter electrode 12A is provided on the color filter substrate 20A.
  • the counter electrode 12A is formed of a transparent conductor such as ITO (Indium-Tin Oxide).
  • the liquid crystal layer 30A is driven by a voltage applied between the pixel electrode 13A formed on the TFT array substrate 10A and the counter electrode 12A formed on the color filter substrate 20A.
  • this counter electrode 12A By patterning this counter electrode 12A, it is also used as the sense line S and the drive line D. Thereby, the liquid crystal display device 50A having a touch function can be realized.
  • the counter electrode 12A is patterned in the same manner as the pattern of the common electrode 12 shown in FIG. Further, the common electrode (not shown) is patterned in the same manner as the counter electrode 12A and is electrically connected to the corresponding counter electrode 12A. This is because even when sensing is performed, the common electrode and the counter electrode 12A need to move in the same manner, and the pattern of the common electrode and the pattern of the counter electrode 12A need to be the same.
  • the drive lines D corresponding to different sense lines S can be driven at the same time, the number of times of driving the drive line D is reduced, and the sensing time can be reduced. Since the sensing time can be reduced, the number of charge transfers N can be increased, and the output voltage difference ⁇ Vout can be increased. Therefore, it is possible to accurately discriminate between touch and non-touch.
  • the VA mode liquid crystal display device has been described.
  • the same configuration can be applied to an ECB mode liquid crystal display device.
  • the “first electrode group that is line-sequentially driven at the same timing or the timing at which the driving periods overlap each other” is referred to as the “first electrode group at which the driving periods overlap each other”.
  • the divided positions as the positions in the second direction in which the conductive paths of the second electrodes are electrically insulated from each other coincide with each other.
  • it is.
  • the line-sequential driving can be performed at the same timing or at the timing when the driving periods overlap each other. For this reason, according to the number of the 1st electrode groups with which a drive period overlaps mutually, drive time can be reduced and sensing time can be reduced.
  • the number of charge transfers can be increased, and the difference in output voltage between touch and non-touch can be increased. Therefore, it is possible to accurately discriminate between touch and non-touch.
  • first electrode group and the second electrode group can be easily formed through simplified patterning.
  • the division position as the position in the second direction in which each conductive path of the second electrode is electrically insulated is changed.
  • it is.
  • the division position as the position in the second direction in which each conductive path of the second electrode is electrically insulated is changed, the arrangement of the division positions becomes difficult to see on the display screen. .
  • the division position may be changed periodically or irregularly.
  • each of the first electrode groups corresponding to only one of the second electrode groups of the plurality of groups is connected via the same terminal. It is preferable that line sequential driving is performed at the same timing.
  • the number of terminals can be reduced.
  • the first electrode group includes a plurality of line electrodes, Each of the plurality of groups of second electrode groups includes at least one line-shaped electrode, The line electrodes belonging to the second electrode group and the line electrodes belonging to the first electrode group are preferably provided so as to be orthogonal to each other while being insulated from each other.
  • the first electrode group and the second electrode group can be easily patterned.
  • the plurality of first electrodes are each composed of a plurality of first planar electrodes spaced apart from each other, In each of the first electrodes, the plurality of first planar electrodes are electrically connected to each other by a first wiring,
  • the at least one second electrode includes a plurality of second planar electrodes that are spaced apart from each other, In the second electrodes belonging to each of the plurality of groups of second electrode groups, it is preferable that the second planar electrodes are electrically connected to each other by a second wiring.
  • the first electrode group and the second electrode group can be patterned into the same layer, for example, by insulating the first wiring and the second wiring at the crossing positions. Therefore, it is possible to realize a reduction in thickness and increase the light transmittance.
  • a display device includes the touch panel.
  • the first electrode group and the second electrode group are made of transparent electrodes.
  • the display device having a touch function can be prevented from affecting the display.
  • a display device includes: An active matrix substrate and a counter substrate are sandwiched between liquid crystal layers, The liquid crystal layer is driven by the voltage applied to the common electrode and the pixel electrode formed on the active matrix substrate, It is preferable that the common electrode is also used as the first electrode group and the second electrode group by patterning the common electrode.
  • sensing is possible only in the vertical blanking period so that the display is not affected, and the sensing time is limited. According to the above configuration, since the sensing time can be reduced, the number of times of charge transfer can be increased in the touch panel that detects the touched position using the charge transfer method, and output of touch and non-touch The voltage difference can be increased. Therefore, touch and non-touch can be accurately determined with a display device provided with a touch panel.
  • the first electrode group and the second electrode group can be used together to achieve a reduction in thickness, and the light transmittance can be increased.
  • a display device includes: An active matrix substrate and a counter substrate are sandwiched between liquid crystal layers, The liquid crystal layer is driven by a voltage applied to the pixel electrode formed on the active matrix substrate and the counter electrode formed on the counter substrate, The counter electrode is preferably used as the first electrode group and the second electrode group by patterning the counter electrode.
  • sensing is possible only in the vertical blanking period so that the display is not affected, and the sensing time is limited. According to the above configuration, since the sensing time can be reduced, the number of times of charge transfer can be increased in the touch panel that detects the touched position using the charge transfer method, and output of touch and non-touch The voltage difference can be increased. Therefore, touch and non-touch can be accurately determined with a display device provided with a touch panel.
  • a display device includes: An active matrix substrate and a counter substrate are sandwiched between liquid crystal layers, It is preferable that the first electrode group and the second electrode group are formed on a surface of the counter substrate opposite to the surface facing the active matrix substrate.
  • the on-cell type touch panel formed by patterning the first electrode group and the second electrode group is provided on the surface of the counter substrate opposite to the surface facing the active matrix substrate.
  • a display device can be easily configured.
  • a display device includes: An active matrix substrate and a counter substrate are sandwiched between liquid crystal layers, A polarizing plate is formed on the surface of the counter substrate opposite to the surface facing the active matrix substrate, It is preferable that the first electrode group and the second electrode group are formed on the polarizing plate.
  • the present invention can be suitably used for a display device having a touch function.
  • 1A touch panel 1B touch panel 1C touch panel 1D touch panel 1E touch panel 1F touch panel 10 ⁇ 10A TFT array substrate (active matrix substrate) 11.11A TFT 12 Common electrode 12A Counter electrode 13, 13A Pixel electrode 20, 20A Color filter substrate (counter substrate) 30 / 30A Liquid crystal layer 50 / 50A Liquid crystal display device 60 Lower wiring (first wiring) 61 Upper wiring (second wiring) 62 Insulating film D Drive line (first electrode group) S sense line (second electrode group) S1L to S14L Sense line (second electrode first group) S1R to S14R sense lines (second electrode second group) T1 to T38 terminals PO Dividing point (dividing position) X direction (second direction) Y direction (first direction)

Abstract

 センスライン(S1L~S14L)に対応するドライブライン(D1~D5)には、端子(T15~T19)を介して順番に所定のパルス信号(P1~P5)が印加され、センスライン(S1R~S14R)に対応するドライブライン(D6~D10)には、ドライブライン(D1~D5)を順に駆動するタイミングと同一のタイミングで、端子(T20~T24)を介して順番に所定のパルス信号(P1~P5)が印加される。

Description

タッチパネル及びこのタッチパネルを備えた表示装置
 本発明は、タッチパネル及びこのタッチパネルを備えた表示装置に関するものであり、特に静電容量方式のタッチパネル及びこのタッチパネルを備えた表示装置に関するものである。
 近年のPDA、携帯電話、あるいはノート型PCなどのモバイル機器では、指やペンなどで画面に触れることにより操作可能なタッチパネル付きの表示装置の搭載が主流となりつつある。
 タッチパネルの方式として、静電容量方式、抵抗膜方式、超音波方式、赤外線方式、電磁誘導方式などの各種の方式が知られている。従来は抵抗膜方式のタッチパネルが多く用いられていたが、近年、静電容量方式のタッチパネルが注目されている。これは、静電容量方式のタッチパネルが、抵抗膜方式のタッチパネルでは困難な多点検知を行えるためである。
 従来の静電容量方式のタッチパネルとしてクロスマトリクス構造のタッチパネルが知られている。図16にこのようなタッチパネルの構造を示す。
 図16に示すように、静電容量方式のタッチパネルにおいて、所定の基体上に、10本のライン状電極からなるドライブラインD1~D10と、14本のライン状電極からなるセンスラインS1~S14とが、互いに絶縁された状態で互いに交差して設けられている。
 このような従来のタッチパネルにおいては、図16に示すように、駆動時に、端子T15~T24を介して、全てのドライブラインD1~D10に順番に、所定の電圧信号P1~P10が印加される。
 また、端子T1~T14および端子T25~T38を介して、全てのセンスラインS1~S14は検出回路に接続されている。
 操作者の指がタッチパネルの表面をタッチしたとき、ドライブラインD1~D10のうちの一部のドライブラインと、センスラインS1~S14のうちの一部のセンスラインとの間の静電容量の変化を検出回路が検出する。これにより、タッチされた位置が検出される。
 現状では、このようなタッチパネルは、外付けタイプ、インセルタイプ、オンセルタイプに分けられている。以下、図17に基づいて、各タイプの表示装置の構成を説明する。
 図17は、各タイプのタッチパネルが設けられている表示装置の構成を示す断面図であり、図17の(a)は、外付けタイプのタッチパネルが設けられている表示装置の構成の一例を示す断面図であり、図17の(b)は、インセルタイプのタッチパネルが設けられている表示装置の構成の一例を示す断面図であり、図17の(c)は、オンセルタイプのタッチパネルが設けられている表示装置の構成の一例を示す断面図である。
 図17の(a)に示すように、表示パネル100aは、TFTアレイ基板102aとカラーフィルタ基板103aとが表示素子(図示せず)を挟んで構成されている。カラーフィルタ基板103aの表側には表偏光板104aが、TFTアレイ基板102aの裏側には裏偏光板101aがそれぞれ設けられている。外付けタイプのタッチパネル200aは、表偏光板104a上に設けられ、その上に、保護板300aが設けられている。
 図17の(b)に示すように、表示パネル100bは、TFTアレイ基板102bとカラーフィルタ基板103bとが表示素子(図示せず)を挟んで構成されている。カラーフィルタ基板103bの表側には表偏光板104bが、TFTアレイ基板102bの裏側には裏偏光板101bがそれぞれ設けられている。インセルタイプのタッチパネル200bは、表示パネル100bにおいて、TFTアレイ基板102bとカラーフィルタ基板103bとの間に設けられている。表偏光板104b上には、保護板300bが設けられている。
 図17の(c)に示すように、表示パネル100cは、TFTアレイ基板102cとカラーフィルタ基板103cとが表示素子(図示せず)を挟んで構成されている。カラーフィルタ基板103cの表側にはオンセルタイプのタッチパネル200cが設けられ、その上に表偏光板104cが設けられている。表偏光板104c上には、保護板300cが設けられている。TFTアレイ基板102cの裏側には裏偏光板101cが設けられている。
 図17の(b)に示すようなインセルタイプのタッチパネルが設けられた表示装置では、TFTアレイ基板或いはカラーフィルタ基板に設けられ、表示に利用される透明電極をパターニングする。このパターニングした透明電極をドライブラインおよびセンスラインとして兼用するため、薄型化を実現することができる。
 特許文献1において、インセルタイプの静電容量方式のタッチパネルが開示されている。図18は、特許文献1において開示されたタッチパネルの電極パターンを示す図である。
 特許文献1の表示装置において、図18に示すように、コモン電極(共通電極)をパターニングすることで、静電容量タッチパネルのドライブラインD1~D6とセンスラインS1~S10として兼用し、タッチパネルの機能を実現している。
 図18に示すように、コモン電極は、10本のライン状電極からなるセンスラインS1~S10である。また、離間するように規則的に並べられた面状電極からなるドライブラインD1~D6が、各センスラインに対応するようにパターニングされている。
 駆動時には、各センスラインS1~S10に対応するドライブラインD1~D6に順番に所定の電圧信号を印加する。
 図19は、図18に示すタッチパネルにおいて、センスラインS1~S10に接続された検出回路により出力される電圧信号Vout1~Vout10、ドライブラインD1~D6に印加される電圧信号P1~P6を示す波形図である。
 図19に示すように、駆動時には、ドライブラインD1~D6に順番に所定のパルス(電圧)信号P1~P6を印加する。
 これに対し、センスラインS1~S10に接続された検出回路(後述する図3に示すような回路)により出力信号Vout1~Vout10が出力される。
 図20は、図18に示すタッチパネルにおいて、タッチされた位置の検出を説明するための図である。
 図20に示すように、操作者の指がパネル表面をタッチしたとき、ドライブラインD1~D6のうちの一つのドライブラインとセンスラインS1~S10のうちの一つのセンスラインとの間の静電容量の変化を検出回路により検出することにより、タッチされた位置が検出される。
 液晶表示装置における液晶分子の動作モードは、例えば、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード、VA(Vertically Aligned)モード、ECB(Electrically Controlled Birefringence)モードおよびIPS(In-Plane Switching)モードなど、複数の動作モードが知られている。
米国特開2010/0001973号公報(2010年1月7日公開) 特開2009-230276号公報(2009年10月8日公開)
 しかしながら、上述のような従来技術は、全てのドライブラインD1~Dm(mは2以上の整数)に順番に所定のパルスを印加して駆動するため、センシング時間が長くなってしまう問題が生じる。この問題は、ドライブライン数が多くなるほど顕著になる。
 特に、特許文献1のようなインセルタイプのタッチパネルでは、表示に影響を与えないように帰線期間にセンシングを行なう必要があるため、充分なセンシング時間の確保が困難であり、指示物の認識性が低下してしまう。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、高精度でかつ高速で指示物を検出することができるタッチパネルおよびタッチパネルを備えた表示装置を実現することにある。
 上記の課題を解決するために、本発明のタッチパネルは、
(1)それぞれの導電経路が、第1方向に沿って延びる複数の第1電極としての第1電極群と、
(2)複数のグループとして構成された第2電極群であって、導電経路が、第2方向に沿って延びる少なくとも1つの第2電極を、それぞれのグループに備えた第2電極群とを備え、
(3)上記第1電極群の少なくとも1つの第1電極と、上記第2電極群の少なくとも1つのグループに属する少なくとも1つの第2電極との間の静電容量の変化を検出することにより、指示物によってタッチされた位置を検出するタッチパネルであって、
(4)上記複数のグループの第2電極群のうち、異なるグループの第2電極群に属する第2電極の導電経路同士は、互いに電気的に絶縁され、
(5)上記複数のグループの第2電極群のうち、少なくとも一部の複数のグループの第2電極群に重複して対応する上記第1電極群を除いて、上記複数のグループの第2電極群の1つずつのみに対応するそれぞれの上記第1電極群は、互いに同一のタイミング、または駆動期間が互いに重複するタイミングで、線順次駆動されることを特徴とする。
 上記構成によれば、第2電極群(例えば、センスラインS)は第2電極第1群および第2電極第2群、第2電極第3群などという複数のグループに分割されている。第2電極第1群および第2電極第2群などに属する各第2電極の導電経路は、それぞれの群内において、第2方向(例えば、X方向)に沿って延びている。しかし、異なるグループの第2電極群間では、第2電極の導電経路は、連続していず、電気的に絶縁されている。
 各グループの第2電極群には、上記第1電極群(例えばドライブラインD)の一部ずつが対応している。「対応している」とは、静電容量の変化が検出されることにより、指示物によってタッチされた位置が検出される関係を、第2電極群と第1電極群の一部とが持っているということである。
 上記第1電極群には、複数のグループの第2電極群に共用された(すなわち、重複して対応する)第1電極群が含まれている場合がある。この共用された第1電極群を除いて、複数のグループの第2電極群の1つずつのみに対応するそれぞれの上記第1電極群は、それぞれの複数の第1電極を線順次駆動するタイミングを、互いに同一、または駆動期間が互いに重複するようにしている。
 これにより、第1電極群の全体を線順次駆動する時と比較して、駆動時間を低減することができ、センシング時間を低減することができる。
 よって、電荷転送方式を利用してタッチされた位置を検出するタッチパネルにおいて、電荷転送回数を増加することができ、タッチと非タッチとの出力電圧の差を大きくすることができる。したがって、精確にタッチと非タッチとを判別することができる。
 それゆえ、高精度でかつ高速で指示物を検出することができるタッチパネルを実現することができる。
 また、インセルタイプのタッチパネルが設けられた表示装置では、表示に影響を与えないように垂直帰線期間でのみセンシングが可能であり、センシング時間が制限されている。本発明のタッチパネルは、上記のように、センシング時間を低減することができるため、外付けタイプおよびオンセルタイプのみならず、インセルタイプのタッチパネルにも好適である。
 本発明のタッチパネルは、それぞれの導電経路が、第1方向に沿って延びる複数の第1電極としての第1電極群と、複数のグループとして構成された第2電極群であって、導電経路が、第2方向に沿って延びる少なくとも1つの第2電極を、それぞれのグループに備えた第2電極群とを備え、上記第1電極群の少なくとも1つの第1電極と、上記第2電極群の少なくとも1つのグループに属する少なくとも1つの第2電極との間の静電容量の変化を検出することにより、指示物によってタッチされた位置を検出するタッチパネルであって、上記複数のグループの第2電極群のうち、異なるグループの第2電極群に属する第2電極の導電経路同士は、互いに電気的に絶縁され、上記複数のグループの第2電極群のうち、少なくとも一部の複数のグループの第2電極群に重複して対応する上記第1電極群を除いて、上記複数のグループの第2電極群の1つずつのみに対応するそれぞれの上記第1電極群は、互いに同一のタイミング、または駆動期間が互いに重複するタイミングで、線順次駆動されることを特徴とする。
 本発明の表示装置は、上記タッチパネルを備えることを特徴とする。
 それゆえ、高精度でかつ高速で指示物を検出することができるタッチパネルおよびタッチパネルを備えた表示装置を実現することができる。
本発明の実施の形態1に係るタッチパネルの電極パターンを示す図である。 従来のタッチパネルと本発明の実施の形態1に係るタッチパネルのドライブラインに印加される電圧信号を比較するための波形図であり、図2の(a)は、従来のタッチパネルのドライブラインに印加される電圧信号を示し、図2の(b)は、本発明の実施の形態1に係るタッチパネルのドライブラインに印加される電圧信号を示している。 本発明の実施の形態1に係るタッチパネルに設けられた検出回路の構成を示す回路図である。 本発明の実施の形態1に係るタッチパネルに設けられた検出回路において、電荷転送回数Nと、操作者の指がタッチパネルをタッチしていない時(非タッチ)とタッチした時(タッチ)の積分回路の出力電圧の差△Voutとの関係を示す図である。 本発明の実施の形態2に係るタッチパネルの電極パターンを示す図である。 本発明の実施の形態2に係るタッチパネルの電極パターンを拡大して示す概略図である。 タッチパネルが設けられた表示装置の表示状態を示す図であり、(a)は、センスラインの分割ポイントが一定である時の表示装置の表示状態を示し、(b)は、本発明の実施の形態2のようにセンスラインの分割ポイントが一定でない時の表示装置の表示状態を示している。 本発明の実施の形態3に係るタッチパネルの電極パターンを示す図である。 本発明の実施の形態3に係るタッチパネルの電極パターンを拡大して示す概略図である。 本発明の実施の形態4に係るタッチパネルの電極パターンを示す図である。 本発明の実施の形態5に係るタッチパネルの電極パターンを示す図である。 本発明の実施例1に係る液晶表示装置の構成を示す断面図である。 本発明の実施例1に係る液晶表示装置において、タッチパネルの電極パターンを示す図である。 本発明の実施例1に係る液晶表示装置において、タッチパネルのセンスラインに接続された検出回路が出力する電圧信号とドライブラインに印加される電圧信号を示す波形図である。 本発明の実施例2に係る液晶表示装置の構成を示す断面図である。 従来の静電容量方式のタッチパネルの構造を示す図である。 各タイプのタッチパネルが設けられている表示装置の構成を示す断面図であり、(a)は、外付けタイプのタッチパネルが設けられている表示装置の構成の一例を示し、(b)は、インセルタイプのタッチパネルが設けられている表示装置の構成の一例を示し、(c)は、オンセルタイプのタッチパネルが設けられている表示装置の構成の一例を示している。 特許文献1に開示されたタッチパネルの電極パターンを示す図である。 特許文献1に開示されたタッチパネルのセンスラインに接続された検出回路から出力される電圧信号とドライブラインに印加される電圧信号を示す波形図である。 特許文献1に開示されたタッチパネルにおいて、タッチされた位置の検出を説明するための図である。 図3に示す検出回路において、スイッチSW1とスイッチSW2のON/OFF状態を示す図である。 本発明の実施の形態6に係るタッチパネルの電極パターンを示す図である。
 以下、本発明の実施の形態について、詳細に説明する。なお、以下で説明する各実施の形態に記載されている構成部品の配置数、寸法、材質、形状、相対配置関係などは、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
 〔実施の形態1〕
 以下、図1~図4に基づいて、本発明の実施の形態1について説明する。
 まず、図1、図2に基づいて、本実施の形態に係る静電容量方式のタッチパネルについて説明する。
 (タッチパネルの電極構成)
 図1は、本実施の形態に係るタッチパネルの電極パターンを示す図である。
 図1に示すように、本実施の形態に係るタッチパネル1Aには、10本のライン状電極(第1電極、導電経路)からなるドライブラインD1~D10(第1電極群)が互いにY方向(第1方向)に沿って平行に、かつ等間隔に設けられている。
 ドライブラインD1~D5と直交するように14本のライン状電極(第2電極、導電経路)からなるセンスラインS1L~S14L(第2電極第1群)が互いにX方向(第2方向)に沿って平行に、かつ等間隔に設けられている。一方、ドライブラインD6~D10と直交するように14本のライン状電極(第2電極)からなるセンスラインS1R~S14R(第2電極第2群)が互いにX方向に沿って平行に、かつ等間隔に設けられている。
 なお、各センスラインS1L~S14Lと、対応するセンスラインS1R~S14Rとは、Y方向に沿う軸を中心として左右対称に設けられている。すなわち、本実施の形態におけるセンスラインは、2つのグループのセンスラインS1L~S14LとセンスラインS1R~S14Rとにより構成されている。
 ドライブラインD1~D5は、センスラインS1L~S14Lに対応し、ドライブラインD6~D10は、センスラインS1R~S14Rに対応する。
 センスラインS1L~S14Lのみに対応するドライブラインD1~D5と、センスラインS1R~S14Rのみに対応するドライブラインD6~D10とは、互いに同一のタイミングで線順次駆動される。本実施の形態においては、ドライブラインD1~D5には、端子T15~T19を介して順番に所定のパルス(電圧)信号P1~P5が印加され、ドライブラインD6~D10には、同一のタイミングで端子T20~T24を介して順番に所定のパルス(電圧)信号P1~P5が印加される。
 センスラインS1L~S14Lは、端子T1~T14を介して後述する検出回路に接続され、センスラインS1R~S14Rは、端子T25~T38を介して後述する検出回路に接続されている。
 操作者の指(指示物)がタッチパネル1Aをタッチしたとき、ドライブラインD1~D5のうちの少なくとも一つのドライブラインとセンスラインS1L~S14Lのうちの少なくとも一つのセンスラインとの間の静電容量の変化と、ドライブラインD6~D10のうちの少なくとも一つのドライブラインとセンスラインS1R~S14Rのうちの少なくとも一つのセンスラインとの間の静電容量の変化との少なくとも一方を検出回路により検出することによりタッチされた位置が検出される。
 (線順次駆動)
 図2は、従来のタッチパネルと本実施の形態に係るタッチパネルのドライブラインD1~D10に印加される電圧信号とを比較するための波形図であり、図2の(a)は、図16に示す従来のタッチパネルのドライブラインD1~D10に印加される電圧信号を示し、図2の(b)は、図1に示す本実施の形態に係るタッチパネルのドライブラインD1~D10に印加される電圧信号を示している。
 図2に示すように、従来のタッチパネルにおいては、全てのドライブラインD1~D10に順番に所定の電圧信号P1~P10が印加され駆動される。
 一方、本実施の形態に係るタッチパネルにおいては、図16に示すセンスラインS1~S14が、それぞれセンスラインS1L~S14LとセンスラインS1R~S14Rとに分割されているため、センスラインS1L~S14Lに対応するドライブラインD1~D5と、センスラインS1R~S14Rに対応するドライブラインD6~D10とに、同一のタイミングで、順番に所定の電圧信号P1~P5をそれぞれ印加することが可能となる。
 「同一のタイミング」をより具体的に説明すると、第2電極第1群および第2電極第2群それぞれの最初のドライブラインD1およびドライブラインD6に、同時に、駆動期間の等しい電圧信号P1を印加し、以降、各群の2番目のドライブラインD2,D7から最終のドライブラインD5,D10までこの順に、2つずつのドライブラインに、同時に電圧信号を印加するということである。
 よって、ドライブラインD1~D10の駆動回数を、群分けの数が2であることに応じて、その逆数である半分に減少することが可能となり、センシングに必要な時間を半分に削減することが可能となる。
 本実施の形態においては、ドライブラインD1~D5と、ドライブラインD6~D10とに、同一のタイミングで、順番に所定の電圧信号P1~P5を印加しているが、これに限定されることなく、少なくとも一部の駆動期間が互いに重複するタイミングで順番に所定の電圧信号を印加すればよい。
 「駆動期間が互いに重複するタイミング」をより具体的に説明すると、最初のドライブラインD1およびドライブラインD6に、駆動期間の一部が重複するように、それぞれ電圧信号P1,P6を印加し、以降、各群の2番目のドライブラインD2,D7から最終のドライブラインD5,D10までこの順に、2つずつのドライブラインに、駆動期間の一部が重複するように電圧信号を印加するということである。
 このようにすれば、センシングに必要な時間を削減することが可能となる。
 なお、「互いに同一のタイミング、または駆動期間が互いに重複するタイミングで線順次駆動されるドライブライン」のことを、「駆動期間が互いに重なるドライブライン」と呼ぶことにすると、例えば、ドライブラインD1とD6とは、「駆動期間が互いに重なるドライブライン」である。
 (検出回路の構成)
 以下、図3に基づいて、操作者がタッチした位置を検出するための検出回路について説明する。図3は、本実施の形態に係るタッチパネルに設けられた検出回路の構成を示す回路図である。
 図3に示すように、1本のライン状電極からなるドライブラインDと1本のライン状電極からなるセンスラインSとが互いに電気的に絶縁された状態で互いに交差して設けられている。
 ドライブラインDとセンスラインSとに電圧信号が印加された状態で、操作者の指でこのドライブラインDとセンスラインSとが交差している領域の近傍をタッチすると、ドライブラインDとセンスラインSとの間の静電容量CFの大きさ(容量)は変化する。この容量の変化を検出することによりタッチ/非タッチを判別する。
 具体的には、センスラインSは、スイッチSW1を介して、アンプAMP1と積分容量CINTからなる積分回路に電気的に接続されているとともに、スイッチSW2を介して基準電圧VSSに接続されている。アンプAMP1の入力電圧Vinを基準電圧VSSに固定し、静電容量CFと積分容量CINTとの間で電荷転送を行なうことにより静電容量CFの容量の変化を検出する。
 例えば、インセルタイプのタッチパネルが設けられた表示装置では、垂直帰線期間のみにセンシングが可能である。そのため、垂直帰線期間のみにスイッチSW1とスイッチSW2を順次にONして、静電容量CFと積分容量CINTとの間の電荷転送を行ない、静電容量CFの容量の変化を検出する。
 図21は、スイッチSW1とスイッチSW2のON/OFF状態を示す図である。図21に示すように、まず、スイッチSW2をONして、センスラインSをある電位(上記基準電圧VSS)に固定する。それから、スイッチSW2をOFFし、スイッチSW1をONして、静電容量CFと積分容量CINTとの間の電荷転送を行なう。このように、スイッチSW1とスイッチSW2のON/OFFを繰り返すことで、積分容量CINTに電荷を転送する。これにより、アンプAMP1は、積分容量CINTに転送された電荷量の積分値に応じた出力電圧Voutを出力する。
 (タッチ/非タッチの検出動作)
 操作者の指がタッチパネルをタッチしていない時の静電容量CFの容量をCf1、タッチした時の静電容量CFの容量をCf2とすると、操作者の指がタッチパネルをタッチしていない時に積分容量CINTに蓄えられた電荷Q1と、タッチした時に積分容量CINTに蓄えられた電荷Q2は、それぞれ次式(1)(2)
  Q1=Cf1×△Vd×N…(1)
  Q2=Cf2×△Vd×N…(2)
で示される。
 ここで、△Vdは、ドライブラインDに印加される電圧信号の振幅であり、Nは、電荷転送回数である。
 よって、操作者の指がタッチパネルをタッチしていない時の積分回路の出力電圧Vout1と、タッチした時の積分回路の出力電圧Vout2は、それぞれ次式(3)(4)
  Vout1=Q1/Cint=Cf1×△Vd×N/Cint…(3)
  Vout2=Q2/Cint=Cf2×△Vd×N/Cint…(4)
に導かれる。
 ここで、Cintは、積分容量CINTの容量である。
 操作者の指がタッチパネルをタッチしていない時の静電容量CFの容量Cf1と、タッチした時の静電容量CFの容量Cf2の差を△Cfとすると、操作者の指がタッチパネルをタッチしていない時の積分容量CINTに蓄えられた電荷Q1と、タッチした時の積分容量CINTに蓄えられた電荷Q2の差△Qは、次式(5)
  △Q=△Cf×△Vd×N…(5)
で示される。
 よって、操作者の指がタッチパネルをタッチしていない時の積分回路の出力電圧Vout1と、タッチした時の積分回路の出力電圧Vout2の差△Voutは、次式(6)
 △Vout=△Q/Cint=(△C×△Vd×N)/Cint…(6)
に導かれる。
 上式(6)で示すように、操作者の指がタッチパネルをタッチしていない時と、タッチした時の積分回路の出力電圧の差△Voutは、電荷転送回数Nの増加により増加する。
 積分回路の出力電圧Vout1およびVout2に基づいて、タッチした位置が計算される。すなわち、出力電圧の差△Voutが閾値を上回ったドライブラインDとセンスラインSとの組み合わせを、上記検出回路が特定することによって、指のタッチした位置を求める。
 図3に示す電荷転送方式により、センスラインSの寄生容量Cparaの影響を無くすことができる。
 図4は、電荷転送回数Nと、操作者の指がタッチパネルをタッチしていない時(非タッチ)とタッチした時(タッチ)の積分回路の出力電圧の差△Voutとの関係を示す図である。
 図4に示すように、操作者の指がタッチパネルをタッチしていない時の積分回路の出力電圧Vout1とタッチした時の積分回路の出力電圧Vout2の差△Voutは、電荷転送回数Nが大きくなると、大きくなる。
 よって、電荷転送回数Nを増加することにより、精確にタッチと非タッチとを判別することができる。
 例えば、従来の構成のインセルタイプのタッチパネルが設けられた表示装置では、垂直帰線期間のみにセンシングが可能であるため、電荷転送回数Nが制限され、十分な出力電圧の差△Voutを得ることができない結果、高精度でタッチと非タッチとを判別することができなかった。
 しかし、本実施の形態に係るタッチパネルの構成を用いると、センシングに必要な時間を半分に減少することができる。よって、電荷転送回数Nを増加することができ、出力電圧の差△Voutを大きくすることができる。したがって、精確にタッチと非タッチとを判別することができる。
 〔実施の形態2〕
 本発明の静電容量方式タッチパネルに関する実施の形態2について図5~図7に基づいて説明すれば以下のとおりである。
 なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (タッチパネルの電極構成)
 図5は、本実施の形態に係るタッチパネルの電極パターンを示す図である。
 図5に示すように、このタッチパネル1Bには、10本のライン状電極(第1電極)からなるドライブラインD1~D10(第1電極群)が互いにY方向に沿って平行に、かつ等間隔に設けられている。
 14本のライン状電極(第2電極)からなるセンスラインS1L~S14L(第2電極第1群)の中で、奇数番のセンスラインS1L,S3L…,S13LがドライブラインD1~D6と直交するように、互いにX方向に沿って平行にかつ等間隔に設けられている。また、14本のライン状電極からなるセンスラインS1L~S14Lの中で、偶数番のセンスラインS2L,S4L…,S14LがドライブラインD1~D4と直交するように、互いにX方向に沿って平行にかつ等間隔に設けられている。即ち、センスラインS1L~S14Lの長さは、変化する。
 一方、14本のライン状電極(第2電極)からなるセンスラインS1R~S14R(第2電極第2群)の中で、奇数番のセンスラインS1R,S3R…,S13RがドライブラインD1~D4と直交するように、互いにX方向に沿って平行にかつ等間隔に設けられている。また、14本のライン状電極からなるセンスラインS1R~S14Rの中で、偶数番のセンスラインS2R,S4R…,S14RがドライブラインD1~D6と直交するように、互いにX方向に沿って平行にかつ等間隔に設けられている。即ち、センスラインS1R~S14Rの長さは、変化する。
 なお、センスラインS1L~S14LおよびセンスラインS1R~S14Rの長さの変化の仕方は、同一のタイミングで線順次駆動される複数の第1電極群を構成することができる範囲であれば、周期的でもよいし、不規則的でもよい。
 ドライブラインD1~D4は、センスラインS1L~S14Lのみに対応し、ドライブラインD7~D10は、センスラインS1R~S14Rのみに対応している。また、ドライブラインD5,D6は、センスラインS1L~S14Lのうちの奇数番号のセンスラインおよびセンスラインS1R~S14Rのうちの偶数番号のセンスライン双方に対応する。
 センスラインS1L~S14LおよびセンスラインS1R~S14R双方の一部ずつに対応するドライブラインD5,D6を除いて、センスラインS1L~S14Lのみに対応するドライブラインD1~D4と、センスラインS1R~S14Rのみに対応するドライブラインD7~D10とは、互いに同一のタイミングで線順次駆動される。本実施の形態においては、ドライブラインD1~D6には、端子T15~T20を介して順番に所定のパルス(電圧)信号P1~P6が印加され、ドライブラインD7~D10には、ドライブラインD1~D4と同じタイミングで端子T21~T24を介して順番に所定のパルス(電圧)信号P1~P4が印加される。
 第2電極群の二つのグループに共用されているドライブラインD5,D6の線順次駆動は、図5に示すように、第2電極群の二つのグループの線順次駆動の後、つまりパルス信号P1~P4の印加の後で順番に行われてもよく、第2電極群の二つのグループの線順次駆動の前で順番に行われてもよい。
 センスラインS1L~S14Lは、端子T1~T14を介して図3に示すような検出回路に接続され、センスラインS1R~S14Rは、端子T25~T38を介して図3に示すような検出回路に接続されている。
 操作者の指がタッチパネル1Bをタッチしたとき、ドライブラインD1~D10のうちの少なくとも一つのドライブラインとセンスラインS1R~S14RおよびセンスラインS1L~S14Lのうちの少なくとも一つのセンスラインとの間の静電容量の変化を、図3に示すような検出回路により検出することによりタッチされた位置が検出される。
 本実施の形態に係るタッチパネル1Bにおいては、従来の図16に示すセンスラインS1~S14が、センスラインS1L~S14LとセンスラインS1R~S14Rとに分割され、かつセンスラインS1L~S14LおよびセンスラインS1R~S14RのX方向における分割ポイント(分割位置)が列ごとに、言い換えるとセンスラインに応じて、変化するように分割されている。
 図6は、本実施の形態に係るタッチパネルの電極パターンを拡大して示す概略図である。
 図6に示すように、本実施の形態に係るタッチパネルおいては、センスラインSは、センスラインSLおよびセンスラインSRの長さが列ごとに変化するように分割されている。すなわち、電気的に絶縁されたセンスラインSLおよびセンスラインSRのX方向における位置としての分割ポイントPOが一定ではなく、センスライン列ごとに変化する。
 図7は、このようなタッチパネルが設けられた表示装置の表示状態を示す図であり、図7の(a)は、センスラインSの分割ポイントが一定である時の表示装置の表示状態を示し、図7の(b)は、本実施の形態のようにセンスラインSの分割ポイントが一定でない時の表示装置の表示状態を示している。
 センスラインSの分割ポイントが一定である時は、図7の(a)に示すように、表示画面において、センスラインSの分割ポイントの配列が線状の模様となって見えやすい。
 一方、本実施の形態のように、センスラインSの分割ポイントが一定でない時は、図7の(b)に示すように、表示画面において、センスラインSの分割ポイントの配列が見えにくくなる。
 本実施の形態においては、ドライブラインD1~D6に、順番に所定のパルス(電圧)信号P1~P6を印加し、ドライブラインD7~D10に、ドライブラインD1~D4と同じタイミングで順番に所定のパルス(電圧)信号P1~P4を印加する。これにより、ドライブラインD1~D10それぞれに、順番に所定のパルス(電圧)信号P1~P10を印加する時と比較して、センシングに必要な時間を削減することができる。
 よって、上記実施の形態1のように電荷転送回数Nを増加することができ、出力電圧の差△Voutを大きくすることができる。したがって、精確にタッチと非タッチを判別することができる。
 〔実施の形態3〕
 本発明の静電容量方式タッチパネルに関する実施の形態3について図8~図9に基づいて説明すれば以下のとおりである。
 なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (タッチパネルの電極構成)
 図8は、本実施の形態に係るタッチパネルの電極パターンを示す図である。
 図8に示すように、本実施の形態に係るタッチパネル1Cには、10本のライン状電極(第1電極)からなるドライブラインD1~D10(第1電極群)が互いにY方向に沿って平行に、かつ等間隔に設けられている。
 ドライブラインD1~D5と直交するように、14本のライン状電極(第2電極)からなるセンスラインS1L~S14L(第2電極第1群)が互いにX方向に沿って平行にかつ等間隔に設けられている。また、ドライブラインD6~D10と直交するように、14本のライン状電極(第2電極)からなるセンスラインS1R~S14R(第2電極第2群)が互いにX方向に沿って平行にかつ等間隔に設けられている。
 なお、各センスラインS1L~S14Lと対応するセンスラインS1R~S14Rとは、Y方向に沿ってずらして設けられている。但し、センスラインS1L~S14LおよびセンスラインS1R~S14Rの分割ポイント付近の一部を拡大して示す平面図である図9に示すように、センスラインS1L~S14LのX軸正方向側の端部と、センスラインS1R~S14RのX軸負方向側の端部とは、Y軸方向に見て、重なりを持っている。
 センスラインS1L~S14Lのみに対応するドライブラインD1~D5と、センスラインS1R~S14Rのみに対応するドライブラインD6~D10とは、互いに同一のタイミングで線順次駆動される。
 本実施の形態においては、ドライブラインD1~D5には、端子T15~T19を介して順番に所定のパルス(電圧)信号P1~P5が印加され、ドライブラインD6~D10には、端子T20~T24を介して順番に所定のパルス(電圧)信号P5~P1が印加される。なお、パルス信号Pの同じ番号は、印加のタイミングが同一であることを意味している。
 センスラインS1L~S14Lは、端子T1~T14を介して図3に示すような検出回路に接続され、センスラインS1R~S14Rは、端子T25~T38を介して図3に示すような検出回路に接続されている。
 操作者の指がタッチパネル1Cをタッチしたとき、ドライブラインD1~D10のうちの少なくとも一つのドライブラインとセンスラインS1R~S14RおよびセンスラインS1L~S14Lのうちの少なくとも一つのセンスラインとの間の静電容量の変化を、図3に示すような検出回路により検出することにより、タッチされた位置が検出される。
 本実施の形態に係るタッチパネル1Cにおいては、従来の図16に示すセンスラインS1~S14が、センスラインS1L~S14LとセンスラインS1R~S14Rとに分割されている。かつ各センスラインS1L~S14Lと対応するセンスラインS1R~S14Rとは、図9に示すように、Y方向に沿って上下にずらして設けられ、センスラインS1L~S14LのX軸正方向側の端部と、センスラインS1R~S14RのX軸負方向側の端部とは、Y軸方向に見て、重なりを持っている。
 そのため、センスラインSの分割ポイントPOが上下で一定でない。また、上下センスラインSの重なった部分の幅Hは、画素ピッチより大きい。そのため、本実施の形態に係るタッチパネルが設けられた表示装置において、表示画面上でセンスラインSの分割ポイントの配列が見えにくくなる。
 本実施の形態においては、ドライブラインD1~D5に、順番に所定のパルス(電圧)信号P1~P5を印加し、ドライブラインD6~D10に、順番に所定のパルス(電圧)信号P5~P1を印加することにより、ドライブラインD1~D10それぞれに、順番に所定のパルス(電圧)信号P1~P10を印加する時と比較して、センシングに必要な時間を半分に削減することができる。
 よって、上記実施の形態1のように電荷転送回数Nを増加することができ、出力電圧の差△Voutを大きくすることができる。したがって、精確にタッチと非タッチを判別することができる。
 〔実施の形態4〕
 本発明の静電容量方式タッチパネルに関する実施の形態4について図10に基づいて説明すれば以下のとおりである。
 なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 (タッチパネルの電極構成)
 図10は、本実施の形態に係るタッチパネルの電極パターンを示す図である。
 図10に示すように、本実施の形態に係るタッチパネル1Dにおいて、ドライブラインD1~D10と、センスラインS1L~S14LおよびセンスラインS1R~S14Rとは、図1に示すタッチパネルと同じようにパターニングされているため、説明を省略する。
 但し、図10に示すように、駆動時には、ドライブラインD1~D5に端子T15~T19を介して順番に所定のパルス(電圧)信号P1~P5が印加され、ドライブラインD6~D10にも上記と同じ端子T15~T19を介して順番に所定のパルス(電圧)信号P1~P5が印加される。
 操作者の指がタッチパネル1Dをタッチしたとき、ドライブラインD1~D5のうちの少なくとも一つのドライブラインとセンスラインS1L~S14Lのうちの少なくとも一つのセンスラインとの間の静電容量の変化と、ドライブラインD6~D10のうちの少なくとも一つのドライブラインとセンスラインS1R~S14Rのうちの少なくとも一つのセンスラインとの間の静電容量の変化との少なくとも一方を、図3に示すような検出回路により検出することによりタッチされた位置が検出される。
 本実施の形態に係るタッチパネル1Dにおいては、ドライブラインD1とドライブラインD6、ドライブラインD2とドライブラインD7、ドライブラインD3とドライブラインD8、ドライブラインD4とドライブラインD9、ドライブラインD5とドライブラインD10が、それぞれ端子を共有しているので、端子数を削減することができる。
 また、本実施の形態に係るタッチパネル1Dにおいては、ドライブラインD1~D5とドライブラインD6~D10それぞれに、共有の端子T15~T19を介して順番に所定のパルス(電圧)信号P1~P5を印加することにより、全てのドライブラインD1~D10それぞれに、順番に所定のパルス(電圧)信号P1~P10を印加する時と比較して、センシングに必要な時間を削減することができる。
 よって、上記実施の形態1のように電荷転送回数Nを増加することができ、出力電圧の差△Voutを大きくすることができる。したがって、精確にタッチと非タッチを判別することができる。
 上記実施の形態1~4においては、10本のドライブラインD1~D10と、14本のセンスラインSL1~SL14およびセンスラインSR1~SR14が設けられた構成を例として挙げたが、これに限定されることなく、ドライブラインD1~Dmの本数m(mは2以上の整数)、センスラインS1~Snの本数n(nは1以上の整数)はタッチパネルの用途やタッチ領域の大きさなどにより適宜決められる。また、ドライブラインD1~Dmの、長さ、幅、ドライブライン同士の間隔などや、センスラインS1~Snの長さ、幅、センスライン同士の間隔などは、このタッチパネルの用途やタッチ領域の大きさなどにより適宜決められる。
 〔実施の形態5〕
 本発明の静電容量方式タッチパネルに関する実施の形態5について図11に基づいて説明すれば以下のとおりである。
 上記実施の形態1~4に係るタッチパネルにおいては、m本(mは2以上の整数)のライン状電極からなるドライブラインD1~Dmと、n本(nは1以上の整数)のライン状電極からなるセンスラインS1L~SnLおよびセンスラインS1R~SnRとが、異なる層に互いに絶縁された状態で直交するように交差して設けられている。
 本実施の形態に係るタッチパネルにおいては、ドライブラインD1~Dmと、センスラインS1L~SnLおよびセンスラインS1R~SnRとは、同じ層に絶縁された状態で設けられている。
 (タッチパネルの電極構成)
 以下、図11に基づいて、本実施の形態に係るタッチパネルについて説明する。図11は、本実施の形態に係るタッチパネルの電極パターンを示す図である。
 図11に示すように、タッチパネル1Eには、Y方向に沿って互いに離間するように規則的に並べられた複数の菱形をなす第1面状電極(第1電極)からなるドライブライン(第1電極群)D1~D3と、X方向に沿って互いに離間するように規則的に並べられた複数の菱形をなす第2面状電極(第2電極)からなるセンスライン(第2電極第1群)S1L~S2Lおよびセンスライン(第2電極第2群)S1R~S2Rとが設けられている。
 各ドライブラインD1~D3において、Y方向に沿って並べられた第1面状電極は、下部配線60(第1配線)を介して互いに電気的に接続されている。なお、各センスラインS1L~S2LおよびセンスラインS1R~S2Rにおいて、X方向に沿って並べられた第2面状電極は、上部配線61(第2配線)を介して互いに電気的に接続されている。但し、センスラインS1LとセンスラインS1R、センスラインS2LとセンスラインS2Rは、それぞれ離間され絶縁されている。下部配線60と上部配線61との間に絶縁膜62が設けられ、下部配線60と上部配線61とは絶縁されている。
 本実施の形態に係るタッチパネル1Eにおいて、センスラインS1~S2は、それぞれセンスラインS1L・S1RとセンスラインS2L・S2Rとに分割されている。このため、センスラインS1L・S2Lに対応するドライブラインD1と、センスラインS1R・S2Rに対応するドライブラインD3とに、同じ駆動信号を印加して駆動することが可能となる。そのため、ドライブラインD1~D3の駆動回数を減少し、センシング時間を削減することが可能となる。
 また、本実施の形態に係るタッチパネル1Eにおいて、ドライブラインD1~D3とセンスラインS1L~S2LおよびセンスラインS1R~S2Rとは、同じ層に設けることができるため、薄型化を実現することが可能となり、かつ光透過性が高くなる。
 〔実施の形態6〕
 本発明の静電容量方式タッチパネルに関する実施の形態6について図22に基づいて説明すれば以下のとおりである。
 上記実施の形態1~5に係るタッチパネルにおいて、センスラインS1~SnがセンスラインS1L~SnLおよびセンスラインS1R~SnRの二つのグループに分割されている。
 本実施の形態に係るタッチパネルにおいては、センスラインS1~SnがセンスラインS1a~Sna(第2電極第1群)、S1b~Snb(第2電極第2群)、S1c~Snc(第2電極第3群)の三つのグループに分割されている。
 (タッチパネルの電極構成)
 以下、図22に基づいて、本実施の形態に係るタッチパネルについて説明する。図22は、本実施の形態に係るタッチパネルの電極パターンを示す図である。
 図22に示すように、タッチパネル1Fには、X方向に沿って互いに離間するように規則的に並べられた複数の面状電極S1a・S1b・S1c~S4a・S4b・S4cからなるセンスラインS1~S4が設けられている。なお、各センスラインに対応するようにドライブラインD1~D6がセンスラインと絶縁された状態で、センスラインS1~S4の並びと平行に設けられている。
 各行のドライブラインD1・D2は、それぞれセンスラインS1a~S4aに対応し、各行のドライブラインD3・D4は、それぞれセンスラインS1b~S4bに対応し、各行のドライブラインD5・D6は、それぞれセンスラインS1c~S4cに対応する。
 センスラインS1a~S4aのみに対応するドライブラインD1~D2と、センスラインS1b~S4bのみに対応するドライブラインD3~D4と、センスラインS1c~S4cのみに対応するドライブラインD5~D6とは、互いに同一のタイミング、または駆動期間が互いに重複するタイミングで線順次駆動される。
 本実施の形態においては、ドライブラインD1~D2、ドライブラインD3~D4、ドライブラインD5~D6には、端子T1~T2を介して順番に所定のパルス(電圧)信号が印加される。
 センスラインS1~S4は、端子T3~T14を介して検出回路に接続されている。
 本実施の形態に係るタッチパネル1Fにおいて、センスラインS1~S4は、それぞれセンスラインS1a~S1c、S2a~S2c、S3a~S3c、S4a~S4cの三つのグループに分割されている。このため、センスラインS1a~S4aに対応するドライブラインD1~D2と、センスラインS1b~S4bに対応するドライブラインD3~D4と、センスラインS1c~S4cに対応するドライブラインD5~D6とを、互いに同一のタイミング、または駆動期間が互いに重複するタイミングで線順次に駆動することが可能となる。
 そのため、群分けの数が3であることに応じて、ドライブラインD1~D6の駆動回数をその逆数である1/3に減少することが可能となり、センシングに必要な時間を1/3に削減することが可能となる。
 また、本実施の形態に係るタッチパネル1Fにおいて、ドライブラインD1~D6とセンスラインS1a~S4a、S1b~S4b、S1c~S4cとは、同じ層に設けることができるため、薄型化を実現することが可能となり、かつ光透過性が高くなる。
 上記実施の形態1~6に係るタッチパネルは、外付けタイプ、インセルタイプ、オンセルタイプのタッチパネル何れにも適用することが可能である。
 なお、例えば、インセルタイプのタッチパネルが設けられた表示装置では、表示用駆動回路からのノイズの影響を避けるために垂直帰線期間でのみセンシングが可能であり、センシング時間が制限されているため、特に有効である。
 また、図17の(a)を参照して、外付けタイプのタッチパネル200aを搭載した液晶表示装置について説明したように、表示パネル100aは、TFTアレイ基板102aとカラーフィルタ基板103aとが表示素子(図示せず)を挟んで構成されている。カラーフィルタ基板103aの表側には表偏光板104aが、TFTアレイ基板102aの裏側には裏偏光板101aがそれぞれ設けられている。外付けタイプのタッチパネル200aは、表偏光板104a上に設けられ、その上に、保護板300aが設けられている。すなわち、上記第1電極群としてのドライブラインD1~D10、および上記第2電極群としてのセンスラインS1R~S14R等は、表偏光板104a上に設けられている。
 ここで、本発明に係るタッチパネルにおいて、電極パターンは上述の実施の形態1~5に限定されない。
 以下、図12~図15に基づいて、具体的な実施例を挙げてタッチパネルの電極パターンについてさらに詳細に説明する。説明の便宜上、実施形態において説明した部材と同じ機能を有する部材については、各実施例においても同じ符号を付記する。
 〔実施例1〕
 以下、図12~図13に基づいて、実施例1について説明する。本実施例においては、電子機器としてIPSモードの液晶表示装置について説明する。なお、この液晶表示装置には、インセルタイプのタッチパネルが設けられている。
 ここで、IPSモードとは、他の動作モードと異なり液晶分子をガラス基板に対して水平面内で回転させるモードである。IPSモードの場合、液晶分子は斜めに立ち上がることがない。そのため、視野角による光学特性の変化が少なく、広視野角が得られるという特徴がある。
 (液晶表示装置の構成)
 図12は、本実施例に係る液晶表示装置の構成を示す断面図である。
 図12に示すように、液晶表示装置50には、TFTアレイ基板10とカラーフィルタ基板20との間に、液晶層30が設けられている。なお、TFTアレイ基板10上には、各画素に対応してTFT(薄膜トランジスタ)11と、画素電極13とが設けられ、このTFT11と画素電極13とはコンタクトホールを介して電気的に接続されている。
 画素電極13は、例えばITO(Indium-Tin Oxide)等の透明導電体により形成されている。また、表示ムラができないようにするため、および必要な電圧を低く抑えるために、画素電極13は櫛歯状に形成されている。
 また、TFT11と画素電極13との間には、コモン電極12が設けられている。このコモン電極12は、例えばITO(Indium-Tin Oxide)等の透明導電体により形成されている。TFTアレイ基板10に形成された櫛歯状の画素電極13とコモン電極12間に印加した電圧で液晶層30を駆動する。
 なお、コモン電極12をパターニングすることにより、センスラインSおよびドライブラインDとして兼用する。これにより、タッチ機能を有する液晶表示装置50を実現することが可能になる。
 (タッチパネルの電極構成)
 図13は、本実施の形態に係る液晶表示装置の、コモン電極のパターンを示す図である。
 図13に示すように、センスラインSは中央で分割され、センスラインS1L~S10LとセンスラインS1R~S10Rとに分けられている。異なるセンスラインSに対応するドライブラインDであれば、同時に駆動することが可能である。したがって、例えば、センスラインS1Lに対応するドライブラインD1~D3と、センスラインS1Rに対応するドライブラインD1~D3とに順番に所定のパルス(電圧)信号P1~P3を印加して駆動することができる。
 (線順次駆動)
 図14は、センスラインS1L~S10LおよびセンスラインS1R~S10Rに接続された検出回路から出力する電圧信号、ドライブラインD1~D3に印加する電圧信号を示す波形図である。
 図14に示すように、液晶表示装置50において、駆動時には、センスラインS1L~S10Lに対応するドライブラインD1~D3と、センスラインS1R~S10Rに対応するドライブラインD1~D3とに順番に所定のパルス(電圧)信号P1~P3を印加し、センスラインS1L~S10LとセンスラインS1R~S10Rからは、図3に示すような検出回路により出力Voutとして、積分容量CINTに蓄積された電荷に対応する電圧を出力する。
 これにより、ドライブラインD1~D6に順番に所定のパルス(電圧)信号P1~P6を印加して駆動する図18に示す従来の技術と比較して、ドライブラインDの駆動回数が減少し、センシング時間の削減が可能となる。
 操作者の指が液晶表示装置50をタッチしたとき、ドライブラインD1~D3のうちの少なくとも一つのドライブラインとセンスラインS1L~S10Lのうちの少なくとも一つのセンスラインとの間の静電容量の変化と、ドライブラインD4~D6のうちの少なくとも一つのドライブラインとセンスラインS1R~S10Rのうちの少なくとも一つのセンスラインとの間の静電容量の変化との少なくとも一方を、図3に示すような検出回路により検出することによりタッチされた位置が検出される。
 なお、センシング時間の削減が可能となるため、電荷転送回数Nを増加することができ、出力電圧の差△Voutを大きくすることができる。したがって、精確にタッチと非タッチを判別することができる。
 〔実施例2〕
 以下、図15に基づいて、実施例2について説明する。本実施例においては、電子機器としてVAモードの液晶表示装置について説明する。なお、この液晶表示装置には、インセルタイプのタッチパネルが設けられている。
 (液晶表示装置の構成)
 図15は、本実施例に係る液晶表示装置の構成を示す断面図である。
 図15に示すように、液晶表示装置50Aには、TFTアレイ基板10Aとカラーフィルタ基板20Aとの間に、液晶層30Aが設けられている。なお、TFTアレイ基板10A上には、各画素に対応してTFT(薄膜トランジスタ)11Aと、画素電極13Aとが設けられ、このTFT11Aと画素電極13Aとはコンタクトホールを介して電気的に接続されている。画素電極13Aは、例えばITO(Indium-Tin Oxide)等の透明導電体により形成されている。一方、カラーフィルタ基板20Aには、対向電極12Aが設けられている。この対向電極12Aは、例えばITO(Indium-Tin Oxide)等の透明導電体により形成されている。
 TFTアレイ基板10Aに形成された画素電極13Aとカラーフィルタ基板20Aに形成された対向電極12A間に印加した電圧で液晶層30Aを駆動する。
 この対向電極12Aをパターニングすることにより、センスラインSおよびドライブラインDとして兼用する。これにより、タッチ機能を有する液晶表示装置50Aを実現することが可能になる。
 対向電極12Aは、図13に示すコモン電極12のパターンと同じようにパターニングする。また、コモン電極(図示せず)も対向電極12Aと同じようにパターニングし、対応する対向電極12Aと電気的に接続させる。これは、センシングを行う時も、コモン電極と対向電極12Aは同じ動きをする必要があり、コモン電極のパターンと対向電極12Aのパターンを同じにする必要があるためである。
 異なるセンスラインSに対応するドライブラインDであれば、同時に駆動することが可能であるため、ドライブラインDの駆動回数が減少し、センシング時間の削減が可能となる。なお、センシング時間の削減が可能となるため、電荷転送回数Nを増加することができ、出力電圧の差△Voutを大きくすることができる。したがって、精確にタッチと非タッチを判別することができる。
 本実施例においては、VAモードの液晶表示装置について説明したが、ECBモードの液晶表示装置でも同じ構成を適用することができる。
 なお、以降の説明では、「互いに同一のタイミング、または駆動期間が互いに重複するタイミングで線順次駆動される第1電極群」のことを、「駆動期間が互いに重なる第1電極群」と呼ぶ。
 上記の課題を解決するために、本発明の実施形態に係るタッチパネルでは、上記第2電極の各導電経路が、電気的に絶縁された上記第2方向における位置としての分割位置は、一致していることが好ましい。
 上記構成によれば、複数のグループの第2電極群に重複して対応する第1電極群は存在せず、複数のグループの第2電極群の1つずつのみに対応する第1電極群を、互いに同一のタイミング、または駆動期間が互いに重複するタイミングで線順次駆動することができる。このため、駆動期間が互いに重なる第1電極群の数に応じて、駆動時間を低減することができ、センシング時間を低減することができる。
 よって、電荷転送方式を利用してタッチされた位置を検出するタッチパネルにおいて、電荷転送回数を増加することができ、タッチと非タッチとの出力電圧の差を大きくすることができる。したがって、精確にタッチと非タッチとを判別することができる。
 また、第1電極群と、第2電極群とを、簡素化されたパターニングを介して、容易に形成することができる。
 上記の課題を解決するために、本発明の実施形態に係るタッチパネルでは、上記第2電極の各導電経路が、電気的に絶縁された上記第2方向における位置としての分割位置は、変化していることが好ましい。
 上記構成によれば、第2電極の各導電経路が、電気的に絶縁された第2方向における位置としての分割位置は、変化しているため、表示画面において、分割位置の配列が見えにくくなる。なお、駆動期間が互いに重なる複数の第1電極群を構成することができる範囲であれば、分割位置の変化の仕方は、周期的でもよいし、不規則的でもよい。
 上記の課題を解決するために、本発明の実施形態に係るタッチパネルでは、上記複数のグループの第2電極群の1つずつのみに対応するそれぞれの上記第1電極群は、同じ端子を介して同一のタイミングで、線順次駆動されることが好ましい。
 上記構成によれば、上記複数のグループの第2電極群の1つずつのみに対応するそれぞれの第1電極群は、同じ端子を介して同時に駆動されるため、端子数を削減することができる。
 上記の課題を解決するために、本発明の実施形態に係るタッチパネルでは、
 上記第1電極群は、複数のライン状電極からなり、
 上記複数のグループの第2電極群は、それぞれ少なくとも1つのライン状電極からなり、
 上記第2電極群に属するライン状電極と、上記第1電極群に属するライン状電極とは、互いに絶縁された状態で直交するように設けられていることが好ましい。
 上記構成によれば、第1電極群と第2電極群とは、容易にパターニングすることができる。
 上記の課題を解決するために、本発明の実施形態に係るタッチパネルでは、
 上記複数の第1電極は、それぞれ互いに離間した複数の第1面状電極からなり、
 各上記第1電極において、上記複数の第1面状電極が、第1配線により互いに電気的に接続され、
 上記少なくとも1つの第2電極は、それぞれ互いに離間した複数の第2面状電極からなり、
 上記複数のグループの第2電極群のそれぞれに属する第2電極において、上記第2面状電極が、第2配線により互いに電気的に接続されていることが好ましい。
 上記構成によれば、第1電極群と第2電極群とは、例えば、上記第1配線と上記第2配線とを、互いの交差位置で絶縁することにより同じ層にパターニングすることができるため、薄型化を実現することが可能となり、かつ光透過性が高くなる。
 上記の課題を解決するために、本発明に係る表示装置は、上記タッチパネルを備えたことを特徴とする。
 上記構成によれば、高精度でかつ高速で指示物を検出することができるタッチパネルを備えた表示装置を実現することができる。
 上記の課題を解決するために、本発明の実施形態に係る表示装置では、上記第1電極群と、上記第2電極群とは、透明電極からなっていることが好ましい。
 上記構成によれば、タッチ機能を有する表示装置において、表示に影響を与えないようにすることができる。
 上記の課題を解決するために、本発明の実施形態に係る表示装置は、
 アクティブマトリクス基板と対向基板とが液晶層を挟んで構成され、
 上記アクティブマトリクス基板に形成されたコモン電極と画素電極とに印加された電圧により液晶層が駆動され、
 上記コモン電極をパターニングすることにより上記第1電極群および上記第2電極群として兼用していることが好ましい。
 インセルタイプのタッチパネルが設けられた表示装置では、表示に影響を与えないように垂直帰線期間でのみセンシングが可能であり、センシング時間が制限されている。上記構成によれば、センシング時間を低減することができるため、電荷転送方式を利用してタッチされた位置を検出するタッチパネルにおいて、電荷転送回数を増加することができ、タッチと非タッチとの出力電圧の差を大きくすることができる。したがって、タッチパネルが設けられた表示装置で、精確にタッチと非タッチを判別することができる。
 また、コモン電極をパターニングすることにより上記第1電極群と上記第2電極群として兼用して、薄型化を実現することが可能となり、かつ光透過性が高くなる。
 上記の課題を解決するために、本発明の実施形態に係る表示装置は、
 アクティブマトリクス基板と対向基板とが液晶層を挟んで構成され、
 上記アクティブマトリクス基板に形成された画素電極と上記対向基板に形成された対向電極に印加された電圧により液晶層が駆動され、
 上記対向電極をパターニングすることにより上記第1電極群および上記第2電極群として兼用していることが好ましい。
 インセルタイプのタッチパネルが設けられた表示装置では、表示に影響を与えないように垂直帰線期間でのみセンシングが可能であり、センシング時間が制限されている。上記構成によれば、センシング時間を低減することができるため、電荷転送方式を利用してタッチされた位置を検出するタッチパネルにおいて、電荷転送回数を増加することができ、タッチと非タッチとの出力電圧の差を大きくすることができる。したがって、タッチパネルが設けられた表示装置で、精確にタッチと非タッチを判別することができる。
 また、対向電極をパターニングすることにより上記第1電極群と上記第2電極群として兼用して、薄型化を実現することが可能となり、かつ光透過性が高くなる。
 上記の課題を解決するために、本発明の実施形態に係る表示装置は、
 アクティブマトリクス基板と対向基板とが液晶層を挟んで構成され、
 上記対向基板の上記アクティブマトリクス基板に対向する面の反対側の面に、上記第1電極群および上記第2電極群が形成されていることが好ましい。
 上記構成によれば、対向基板のアクティブマトリクス基板に対向する面の反対側の面に、上記第1電極群と上記第2電極群とをパターニングして形成したオンセルタイプのタッチパネルが設けられた表示装置を容易に構成することができる。
 上記の課題を解決するために、本発明の実施形態に係る表示装置は、
 アクティブマトリクス基板と対向基板とが液晶層を挟んで構成され、
 上記対向基板の上記アクティブマトリクス基板に対向する面の反対側の面に、偏光板が形成され、
 上記偏光板上に、上記第1電極群および上記第2電極群が形成されていることが好ましい。
 上記構成によれば、偏光板に上記第1電極群と上記第2電極群とをパターニングして形成した外付けタイプのタッチパネルが設けられた表示装置を容易に構成することができる。
 本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、タッチ機能を有する表示装置に好適に利用することができる。
 1A       タッチパネル
 1B       タッチパネル
 1C       タッチパネル
 1D       タッチパネル
 1E       タッチパネル
 1F       タッチパネル
 10・10A   TFTアレイ基板(アクティブマトリクス基板)
 11・11A   TFT
 12       コモン電極
 12A      対向電極
 13・13A   画素電極
 20・20A   カラーフィルタ基板(対向基板)
 30・30A   液晶層
 50・50A   液晶表示装置
 60       下部配線(第1配線)
 61       上部配線(第2配線)
 62       絶縁膜
 D        ドライブライン(第1電極群)
 S        センスライン(第2電極群)
 S1L~S14L センスライン(第2電極第1群)
 S1R~S14R センスライン(第2電極第2群)
 T1~T38   端子
 PO       分割ポイント(分割位置)
 X        方向(第2方向)
 Y        方向(第1方向)

Claims (12)

  1.  それぞれの導電経路が、第1方向に沿って延びる複数の第1電極としての第1電極群と、
     複数のグループとして構成された第2電極群であって、導電経路が、第2方向に沿って延びる少なくとも1つの第2電極を、それぞれのグループに備えた第2電極群とを備え、
     上記第1電極群の少なくとも1つの第1電極と、上記第2電極群の少なくとも1つのグループに属する少なくとも1つの第2電極との間の静電容量の変化を検出することにより、指示物によってタッチされた位置を検出するタッチパネルであって、
     上記複数のグループの第2電極群のうち、異なるグループの第2電極群に属する第2電極の導電経路同士は、互いに電気的に絶縁され、
     上記複数のグループの第2電極群のうち、少なくとも一部の複数のグループの第2電極群に重複して対応する上記第1電極群を除いて、上記複数のグループの第2電極群の1つずつのみに対応するそれぞれの上記第1電極群は、互いに同一のタイミング、または駆動期間が互いに重複するタイミングで、線順次駆動されることを特徴とするタッチパネル。
  2.  上記第2電極の各導電経路が、電気的に絶縁された上記第2方向における位置としての分割位置は、一致していることを特徴とする請求項1に記載のタッチパネル。
  3.  上記第2電極の各導電経路が、電気的に絶縁された上記第2方向における位置としての分割位置は、変化していることを特徴とする請求項1に記載のタッチパネル。
  4.  上記複数のグループの第2電極群の1つずつのみに対応するそれぞれの上記第1電極群は、同じ端子を介して同一のタイミングで、線順次駆動されることを特徴とする請求項1~3の何れか1項に記載のタッチパネル。
  5.  上記第1電極群は、複数のライン状電極からなり、
     上記複数のグループの第2電極群は、それぞれ少なくとも1つのライン状電極からなり、
     上記第2電極群に属するライン状電極と、上記第1電極群に属するライン状電極とは、互いに絶縁された状態で直交するように設けられていることを特徴とする請求項1~4の何れか1項に記載のタッチパネル。
  6.  上記複数の第1電極は、それぞれ互いに離間した複数の第1面状電極からなり、
     各上記第1電極において、上記複数の第1面状電極が、第1配線により互いに電気的に接続され、
     上記少なくとも1つの第2電極は、それぞれ互いに離間した複数の第2面状電極からなり、
     上記複数のグループの第2電極群のそれぞれに属する第2電極において、上記第2面状電極が、第2配線により互いに電気的に接続されていることを特徴とする請求項1~4の何れか1項に記載のタッチパネル。
  7.  請求項1~6の何れか1項に記載のタッチパネルを備えたことを特徴とする表示装置。
  8.  上記第1電極群と、上記第2電極群とは、透明電極からなっていることを特徴とする請求項7に記載の表示装置。
  9.  アクティブマトリクス基板と対向基板とが液晶層を挟んで構成され、
     上記アクティブマトリクス基板に形成されたコモン電極と画素電極とに印加された電圧により液晶層が駆動され、
     上記コモン電極をパターニングすることにより上記第1電極群および上記第2電極群として兼用していることを特徴とする請求項7又は8に記載の表示装置。
  10.  アクティブマトリクス基板と対向基板とが液晶層を挟んで構成され、
     上記アクティブマトリクス基板に形成された画素電極と上記対向基板に形成された対向電極に印加された電圧により液晶層が駆動され、
     上記対向電極をパターニングすることにより上記第1電極群および上記第2電極群として兼用していることを特徴とする請求項7又は8に記載の表示装置。
  11.  アクティブマトリクス基板と対向基板とが液晶層を挟んで構成され、
     上記対向基板の上記アクティブマトリクス基板に対向する面の反対側の面に、上記第1電極群および上記第2電極群が形成されていることを特徴とする請求項7又は8に記載の表示装置。
  12.  アクティブマトリクス基板と対向基板とが液晶層を挟んで構成され、
     上記対向基板の上記アクティブマトリクス基板に対向する面の反対側の面に、偏光板が形成され、
     上記偏光板上に、上記第1電極群および上記第2電極群が形成されていることを特徴とする請求項7又は8に記載の表示装置。
PCT/JP2011/077843 2010-12-08 2011-12-01 タッチパネル及びこのタッチパネルを備えた表示装置 WO2012077576A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/992,689 US20130265282A1 (en) 2010-12-08 2011-12-01 Touch panel and display device with touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010273975 2010-12-08
JP2010-273975 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077576A1 true WO2012077576A1 (ja) 2012-06-14

Family

ID=46207066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077843 WO2012077576A1 (ja) 2010-12-08 2011-12-01 タッチパネル及びこのタッチパネルを備えた表示装置

Country Status (2)

Country Link
US (1) US20130265282A1 (ja)
WO (1) WO2012077576A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326990A1 (en) * 2011-06-21 2012-12-27 Wurzel Joshua G Flexible circuit routing
JP2013246834A (ja) * 2012-05-25 2013-12-09 Crucialtec Co Ltd グループ識別を利用した接触感知装置
EP2720122A2 (en) * 2012-10-15 2014-04-16 Samsung Display Co., Ltd. Touch sensing system
JP2014067076A (ja) * 2012-09-24 2014-04-17 Kyocera Corp 入力装置、表示装置、および電子機器
JP2014174851A (ja) * 2013-03-11 2014-09-22 Japan Display Inc タッチセンサ装置、表示装置、及び電子機器
CN104461120A (zh) * 2013-09-17 2015-03-25 乐金显示有限公司 集成有触摸屏的显示装置及其驱动方法
JP2015125776A (ja) * 2013-12-26 2015-07-06 エルジー ディスプレイ カンパニー リミテッド タッチセンサ一体型表示装置
EP2750002A3 (en) * 2012-12-27 2016-04-27 LG Display Co., Ltd. Touch sensor integrated type display device
CN104461120B (zh) * 2013-09-17 2018-02-09 乐金显示有限公司 集成有触摸屏的显示装置及其驱动方法
US10082921B2 (en) 2016-02-16 2018-09-25 Japan Display Inc. Display apparatus
US11314368B2 (en) * 2012-09-14 2022-04-26 Samsung Display Co., Ltd. Display device and method of driving the same in two modes

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102023436B1 (ko) * 2013-01-30 2019-09-20 엘지디스플레이 주식회사 터치 전극을 포함하는 디스플레이 장치
CN103226412A (zh) * 2013-04-10 2013-07-31 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
JP2015043200A (ja) 2013-07-22 2015-03-05 株式会社ジャパンディスプレイ タッチ検出装置、タッチ検出機能付き表示装置及び電子機器
US10394392B2 (en) * 2015-01-14 2019-08-27 Atmel Corporation Object detection and scan
US10558314B2 (en) 2015-10-06 2020-02-11 American Panel Corporation Redundant resistive touch panel
US10656767B2 (en) 2015-10-06 2020-05-19 American Panel Corporation Redundant projected capacitive touch panel
KR102558004B1 (ko) * 2016-05-17 2023-07-20 삼성전자주식회사 지문 인식 겸용 터치 스크린 장치 및 그 구동 방법, 상기 터치 스크린 장치를 포함하는 전자 기기
CN106293207B (zh) * 2016-07-29 2019-10-18 厦门天马微电子有限公司 一种触控显示面板及其驱动方法、触控显示装置
JP6309055B2 (ja) * 2016-09-02 2018-04-11 Nissha株式会社 抵抗膜式タッチパネルからのデータ取得方法、及び抵抗膜式タッチパネル装置
US10895939B2 (en) * 2018-06-29 2021-01-19 Atmel Corporation Segmented capacitive sensor, and related systems, methods and devices
CN208722173U (zh) * 2018-08-21 2019-04-09 广州视源电子科技股份有限公司 电容屏的驱动系统、触摸屏和智能交互设备
EP3674861B1 (en) * 2018-12-28 2022-05-04 LG Display Co., Ltd. Touch display device, touch panel, touch sensing circuit, and touch sensing method
US11301080B2 (en) 2019-09-27 2022-04-12 Atmel Corporation Techniques for routing signals using inactive sensor regions of touch sensors and related systems and devices
US11656710B2 (en) * 2021-10-18 2023-05-23 Lg Display Co., Ltd. Touch display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06250786A (ja) * 1993-02-23 1994-09-09 Matsushita Electric Ind Co Ltd マトリックス型表示パネル及びそれを用いた座標入力装置
JP2010186469A (ja) * 2009-02-11 2010-08-26 Elan Microelectronics Corp 静電容量式タッチセンサーのタッチ回路及びスキャン方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606346A (en) * 1992-12-22 1997-02-25 Matsushita Electric Industrial Co., Ltd. Coordinate input device
TW200805128A (en) * 2006-05-05 2008-01-16 Harald Philipp Touch screen element
US8619054B2 (en) * 2006-05-31 2013-12-31 Atmel Corporation Two dimensional position sensor
TW201008118A (en) * 2008-04-10 2010-02-16 Atmel Corp Capacitive touch screen with noise suppression
US8552315B2 (en) * 2009-09-03 2013-10-08 Atmel Corporation Two-dimensional position sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06250786A (ja) * 1993-02-23 1994-09-09 Matsushita Electric Ind Co Ltd マトリックス型表示パネル及びそれを用いた座標入力装置
JP2010186469A (ja) * 2009-02-11 2010-08-26 Elan Microelectronics Corp 静電容量式タッチセンサーのタッチ回路及びスキャン方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326990A1 (en) * 2011-06-21 2012-12-27 Wurzel Joshua G Flexible circuit routing
US8711570B2 (en) * 2011-06-21 2014-04-29 Apple Inc. Flexible circuit routing
JP2013246834A (ja) * 2012-05-25 2013-12-09 Crucialtec Co Ltd グループ識別を利用した接触感知装置
US11775124B2 (en) 2012-09-14 2023-10-03 Samsung Display Co., Ltd. Display device and method of driving the same in two modes
US11314368B2 (en) * 2012-09-14 2022-04-26 Samsung Display Co., Ltd. Display device and method of driving the same in two modes
JP2014067076A (ja) * 2012-09-24 2014-04-17 Kyocera Corp 入力装置、表示装置、および電子機器
EP2720122A2 (en) * 2012-10-15 2014-04-16 Samsung Display Co., Ltd. Touch sensing system
JP2014081908A (ja) * 2012-10-15 2014-05-08 Samsung Display Co Ltd タッチ感知システム
EP2750002A3 (en) * 2012-12-27 2016-04-27 LG Display Co., Ltd. Touch sensor integrated type display device
US9513749B2 (en) 2013-03-11 2016-12-06 Japan Display Inc. Touch-sensor device, display device, and electronic device
US10185434B2 (en) 2013-03-11 2019-01-22 Japan Display Inc. Display device
JP2014174851A (ja) * 2013-03-11 2014-09-22 Japan Display Inc タッチセンサ装置、表示装置、及び電子機器
KR20150032409A (ko) * 2013-09-17 2015-03-26 엘지디스플레이 주식회사 터치 스크린 일체형 디스플레이 장치와 이의 구동 방법
CN104461120B (zh) * 2013-09-17 2018-02-09 乐金显示有限公司 集成有触摸屏的显示装置及其驱动方法
US9904420B2 (en) 2013-09-17 2018-02-27 Lg Display Co., Ltd. Display device integrated with touch screen having physically divided plurality of touch elrctrodes and driving method thereof
KR102092569B1 (ko) 2013-09-17 2020-03-25 엘지디스플레이 주식회사 터치 스크린 일체형 디스플레이 장치와 이의 구동 방법
CN104461120A (zh) * 2013-09-17 2015-03-25 乐金显示有限公司 集成有触摸屏的显示装置及其驱动方法
JP2015125776A (ja) * 2013-12-26 2015-07-06 エルジー ディスプレイ カンパニー リミテッド タッチセンサ一体型表示装置
US10101832B2 (en) 2013-12-26 2018-10-16 Lg Display Co., Ltd. Touch sensor integrated type display device
US10082921B2 (en) 2016-02-16 2018-09-25 Japan Display Inc. Display apparatus

Also Published As

Publication number Publication date
US20130265282A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
WO2012077576A1 (ja) タッチパネル及びこのタッチパネルを備えた表示装置
US11520423B2 (en) Force sensing within display stack
US20220113840A1 (en) Touch sensor integrated display device
US10712878B2 (en) Touch sensor integrated type display device
US10474287B2 (en) Double-sided touch-sensitive panel with shield and drive combined layer
EP2762955B1 (en) Touch liquid crystal display device
EP2985681B1 (en) Touch sensor integrated type display device
EP2728450B1 (en) Capacitive in-cell touch screen, driving method for the same, and display apparatus
US8194047B2 (en) Multi-channel touch panel
US9495935B2 (en) Capacitive in-cell touch screen panel having a common electrode layer provided with sensing and driving electrodes
US8723830B2 (en) Touch pad electrode design
US8994673B2 (en) Display device with integrated touch screen having electrical connections provided in inactive regions of display panel
US9075488B2 (en) Virtual geometries for integrated display and sensing devices
US20160253030A1 (en) Display device with touch sensor
US10579176B2 (en) Self-capacitive touch panel structure, in-cell touch panel, and liquid crystal display
TWI591526B (zh) 觸控感測器整合式顯示裝置
US10296152B2 (en) Touch display panel
EP2804043A1 (en) Array substrate, touch liquid crystal display panel and manufacturing method thereof
KR20160094257A (ko) 터치 디스플레이 장치
US8217871B2 (en) Touch-controlled liquid crystal display and touch panel thereof
KR20160077760A (ko) 디스플레이 패널, 터치입력장치, 디스플레이 패널로부터 터치위치와 터치압력을 검출하는 검출장치, 및 검출방법
KR20160096057A (ko) 디스플레이 패널, 터치입력장치, 디스플레이 패널로부터 터치위치와 터치압력을 검출하는 검출장치, 및 검출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992689

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP