WO2012077309A1 - 発光素子の駆動回路、それを用いた発光装置および電子機器 - Google Patents

発光素子の駆動回路、それを用いた発光装置および電子機器 Download PDF

Info

Publication number
WO2012077309A1
WO2012077309A1 PCT/JP2011/006739 JP2011006739W WO2012077309A1 WO 2012077309 A1 WO2012077309 A1 WO 2012077309A1 JP 2011006739 W JP2011006739 W JP 2011006739W WO 2012077309 A1 WO2012077309 A1 WO 2012077309A1
Authority
WO
WIPO (PCT)
Prior art keywords
duty ratio
dimming
voltage
control signal
light emitting
Prior art date
Application number
PCT/JP2011/006739
Other languages
English (en)
French (fr)
Inventor
義和 佐々木
俊亮 齊藤
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN2011800398390A priority Critical patent/CN103069925A/zh
Priority to US13/992,069 priority patent/US9232579B2/en
Publication of WO2012077309A1 publication Critical patent/WO2012077309A1/ja
Priority to US14/955,624 priority patent/US9674909B2/en
Priority to US15/583,306 priority patent/US10028348B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/327Burst dimming
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation

Definitions

  • the present invention relates to a driving technique for a light emitting element, and more particularly to a dimming technique thereof.
  • FIG. 1 is a circuit diagram illustrating a configuration example of a light-emitting device according to a comparative technique.
  • the light emitting device 1003 includes an LED string 6 and a switching power supply 1004.
  • the LED string 6 includes a plurality of LEDs connected in series.
  • the switching power supply 1004 boosts the input voltage Vin input to the input terminal P1, and supplies the drive voltage Vout to one end of the LED string 6 connected to the output terminal P2.
  • the switching power supply 1004 includes an output circuit 102 and a control IC 1100.
  • the output circuit 102 includes an inductor L1, a switching transistor M1, a rectifier diode D1, and an output capacitor C1.
  • the control IC 1100 adjusts the drive voltage Vout by controlling the on / off duty ratio of the switching transistor M1.
  • a PWM dimming switch (transistor) M2 and a detection resistor R1 for current detection are provided on the LED string 6 path.
  • the controller 1010 generates a burst dimming pulse G2 subjected to pulse width modulation (PWM) in which the duty ratio is adjusted according to the target luminance, based on the dimming control signal PWMDIM from the outside.
  • PWM pulse width modulation
  • the driver DR2 switches the PWM dimming switch M2 based on the burst dimming pulse G2.
  • the detection resistor R1 a voltage drop (detection voltage) V R1 which is proportional to the driving current I DRV flowing through the LED string 6 is generated.
  • the error amplifier EA1 amplifies an error between the detection voltage VR1 and the reference voltage VREF, and generates a feedback voltage VFB .
  • the controller 1010 generates a gate pulse signal G1 that is pulse-modulated based on the feedback voltage VFB .
  • the driver DR1 switches the switching transistor M1 based on the gate pulse signal G1.
  • the light emission time of the LED string 6 is controlled according to the duty ratio of turning on and off the PWM dimming switch M2, and the effective luminance is adjusted (PWM dimming or burst dimming).
  • the contrast ratio of the liquid crystal panel is expanded by dynamically controlling the brightness of the LED string 6. That is, the contrast ratio of the liquid crystal panel can be increased as the minimum luminance of the LED string 6 is as small as possible.
  • the present invention has been made in such a situation, and one of exemplary purposes of an aspect thereof is to provide a driving circuit capable of driving an LED string with as little luminance as possible.
  • One embodiment of the present invention relates to a drive circuit that supplies a drive voltage and a drive current to a light emitting element.
  • This drive circuit generates a detection resistor provided on the path of the light emitting element, a gate pulse signal whose duty ratio is adjusted so that the voltage drop of the detection resistor matches a predetermined reference voltage, and burst dimming Receiving a dimming control signal instructing the duty ratio of the controller, generating a burst dimming pulse corresponding thereto, a first driver for driving a switching power supply for generating a driving voltage based on the gate pulse signal, and burst dimming A second driver that switches between conduction and interruption of the drive current based on the pulse, and a duty ratio detection unit that controls the frequency of the gate pulse signal according to the duty ratio indicated by the dimming control signal.
  • Another embodiment of the present invention is also a drive circuit.
  • This drive circuit generates a current source provided on the path of the light emitting element, a gate pulse signal whose duty ratio is adjusted so that the voltage drop of the current source matches a predetermined reference voltage, and burst dimming Receiving a dimming control signal instructing the duty ratio of the controller, generating a burst dimming pulse corresponding thereto, a first driver for driving a switching power supply for generating a driving voltage based on the gate pulse signal, and burst dimming A second driver that switches between conduction and interruption of the drive current based on the pulse, and a duty ratio detection unit that controls the frequency of the gate pulse signal according to the duty ratio indicated by the dimming control signal.
  • the luminance of the light emitting element can be controlled according to the duty ratio even in a region where the duty ratio is small.
  • the duty ratio detection unit may increase the frequency of the gate pulse signal as the duty ratio indicated by the dimming control signal is smaller.
  • Still another embodiment of the present invention is a light emitting device.
  • This device includes a light-emitting element and the drive circuit according to any one of the above-described modes for driving the light-emitting element.
  • Still another aspect of the present invention is an electronic device.
  • This electronic device includes a liquid crystal panel and the above-described light emitting device provided as a backlight of the liquid crystal panel.
  • power consumption can be reduced without impairing the circuit protection function.
  • FIG. 2A is a diagram showing the relationship between the duty ratio of the burst dimming pulse and the drive current in the light emitting device of FIG. 1, and FIG. 2B is the burst dimming pulse in the light emitting device of FIG. It is a wave form diagram which shows a gate pulse signal. It is a circuit diagram which shows the structure of the light-emitting device which concerns on 1st Embodiment.
  • 4A is a circuit diagram illustrating a first configuration example of the duty ratio detection unit in FIG. 3, and FIG. 4B is a waveform diagram illustrating the operation of the duty ratio detection unit in FIG. 4A. It is.
  • FIG. 6A and 6B are waveform diagrams showing the operation of the light emitting device of FIG. 3, and FIG. 6C is a diagram showing the duty ratio and driving current of the burst dimming pulse in the light emitting device of FIG. It is a figure which shows a relationship. It is a circuit diagram which shows the structure of the drive circuit which concerns on 2nd Embodiment.
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected in addition to the case where the member A and the member B are physically directly connected. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • the present inventors examined a technique for reducing the minimum luminance in the light emitting device 1003 of FIG. There are two approaches to lowering the minimum brightness. The first is to reduce the drive current I DRV by current dimming, and the second is to reduce the duty ratio of burst dimming.
  • the drive current I DRV can be reduced by reducing the reference voltage V REF .
  • the input voltage range of the error amplifier EA1 receiving a reference voltage V REF and the detection voltage V R1 is because there is a lower limit, this approach has limitations.
  • FIG. 2A is a diagram showing the relationship between the duty ratio of the burst dimming pulse G2 and the drive current I DRV in the light emitting device 1003 of FIG.
  • the duty ratio of the burst dimming pulse G2 is larger than a certain lower limit value ⁇ (0.04%)
  • the drive current I DRV changes according to the duty ratio.
  • the duty ratio becomes smaller than the lower limit value ⁇ (0.04%)
  • the drive current I DRV rapidly decreases. That is, if the lower limit value ⁇ can be lowered, the minimum luminance can be further lowered by the second approach.
  • the present inventors examined the reason why the lower limit ⁇ exists and a method for reducing the lower limit ⁇ . It should be noted that the following examinations have been made independently by the present inventors and should not be regarded as a common recognition among those skilled in the art.
  • FIG. 2B is a waveform diagram showing the burst dimming pulse G2 and the gate pulse signal G1 in the light emitting device 1003 of FIG.
  • the ON period T ON of the burst dimming pulse G2 depends on the phase of the gate pulse signal G1.
  • the number of effective gate pulse signals G1 included in the signal changes.
  • the gate pulse signal G1 (1) having a certain phase includes two pulses in the ON period TON.
  • another gate pulse signal G1 (2) only one pulse is included, the energy stored in the inductor L1 decreases, and the output voltage Vout cannot be maintained at the target value. The present inventors considered that this phenomenon becomes a factor of the characteristic shown in FIG.
  • FIG. 3 is a circuit diagram showing a configuration of the light emitting device 3 according to the first embodiment.
  • the electronic device 2 is a battery-driven device such as a notebook PC, a digital camera, a digital video camera, a mobile phone terminal, or a PDA (Personal Digital Assistant), and includes a light emitting device 3 and an LCD (Liquid Crystal Display) panel 5.
  • the light emitting device 3 is provided as a backlight of the LCD panel 5.
  • the light emitting device 3 includes an LED string 6 that is a light emitting element and a drive circuit 4 thereof.
  • the LED string 6 includes a plurality of LEDs connected in series.
  • the drive circuit 4 includes a step-up DC / DC converter, boosts an input voltage (for example, battery voltage) Vin input to the input terminal P1, and outputs an output voltage (drive voltage) Vout from the output terminal P2.
  • One end (anode) of the LED string 6 is connected to the output terminal P2.
  • the drive circuit 4 includes a control IC 100 and an output circuit 102.
  • the output circuit 102 includes an inductor L1, a rectifier diode D1, a switching transistor M1, and an output capacitor C1. Since the topology of the output circuit 102 is general, description thereof is omitted.
  • the switching terminal P4 of the control IC 100 is connected to the gate of the switching transistor M1.
  • the control IC 100 adjusts the on / off duty ratio of the switching transistor M1 by feedback so that the output voltage Vout necessary for lighting the LED string 6 is obtained and the LED string 6 emits light with a target luminance.
  • the switching transistor M1 may be built in the control IC 100.
  • a PWM dimming switch M2 is provided between the cathode of the LED string 6 and the ground terminal.
  • the dimming control signal PWMDIM is input to the PWMDIM terminal.
  • the dimming control signal PWMDIM is a signal that specifies the duty ratio of burst dimming, and is a pulse signal that is itself pulse-width modulated.
  • the controller 10 generates a burst dimming pulse G2 based on the dimming control signal PWMDIM. Most simply, the burst dimming pulse G2 may be the dimming control signal PWMDIM.
  • the detection resistor R1 is provided on the path of the LED string 6, specifically, between the cathode of the LED string 6 and the ground terminal.
  • the oscillator 12 is a variable oscillator.
  • the controller 10 generates the gate pulse signal G1 using the periodic signal S1 generated by the oscillator 12. That is, the frequency of the gate pulse signal G1 depends on the oscillation frequency of the oscillator 12.
  • the periodic signal S ⁇ b> 1 may be a pulse signal, a sawtooth wave or a triangular wave, and the type thereof is appropriately designed according to the configuration of the controller 10.
  • Error amplifier EA1 amplifies the error voltage generated in the detection resistor R1 drop V R1 and the reference voltage V REF, and generates an error voltage V FB.
  • the controller 10 receives the error voltage VFB and the periodic signal S1 and generates a gate pulse signal G1 whose duty ratio is adjusted so that the voltage drop V R1 of the detection resistor R1 matches the control voltage V DIM .
  • the frequency of the gate pulse signal G1 depends on the frequency of the periodic signal S1.
  • the first driver DR1 drives the switching transistor M1 of the DC / DC converter based on the gate pulse signal G1.
  • the duty ratio detection unit 30 receives the dimming control signal PWMDIM and detects the duty ratio. Then, the oscillation frequency of the oscillator 12 is controlled according to the detected duty ratio. When the duty ratio is large, the oscillation frequency of the oscillator 12 is lowered, and when the duty ratio is small, the oscillation frequency of the oscillator 12 is increased.
  • the duty ratio detection unit 30 sets the frequency of the oscillator 12 to the first value f 1 when the detected duty ratio ⁇ is higher than a predetermined threshold value TH.
  • the duty ratio detection unit 30 sets the frequency of the oscillator 12 to a second value f 2 that is higher than the first value f 1 .
  • This threshold TH is desirably set to a value slightly higher than the lower limit value ⁇ shown in FIG.
  • FIG. 4A is a circuit diagram showing a first configuration example of the duty ratio detection unit 30 of FIG.
  • the duty ratio detection unit 30 includes a capacitor C2, a hysteresis comparator 32, a first current source 34, a second current source 36, and a switch 38.
  • the first current source 34 generates a first current I C1 and charges the capacitor C2.
  • the second current source 36 generates a second current I C2, to discharge the capacitor C2.
  • the switch 38 is a switch for cutting off and conducting the second current I C2 and is controlled to be turned on and off in accordance with the dimming control signal PWMDIM.
  • K K ⁇ I C1 (1) It expresses.
  • the hysteresis comparator 32 the voltages V 1 generated in the capacitor C2, with a predetermined threshold voltage V TH.
  • the threshold voltage V TH is determined according to the upper threshold TH.
  • the threshold voltage V TH of the hysteresis comparator 32 has a first value V TH1 when the output is at a low level, and a second value V TH2 lower than the first value V TH1 when the output is at a high level. Shall be taken.
  • V TH1 V DD ⁇ 2/3
  • V TH2 V DD ⁇ 1/ 3
  • the output OUT of the comparator 32 indicates a comparison result between the duty ratio ⁇ of the dimming control signal PWMDIM and a threshold value.
  • FIG. 4B is a waveform diagram showing the operation of the duty ratio detection unit 30 in FIG. While the dimming control signal PWMDIM is at a low level, the switch 38 is turned off and the capacitor C2 is charged with the first current Ic1. As a result, the voltage V 1 of the capacitor C2 is increased at a gradient (I C1 / C2).
  • Equation (6) into equation (5) yields equation (7).
  • N 5 / (1-20 ⁇ ⁇ ) (7)
  • N 200/19 It becomes.
  • I C1 / C2 2/15 ⁇ V DD / T PMAX
  • the current I C1 and the capacitance C2 may be determined so that This makes it possible to detect the duty ratio at all frequencies.
  • the frequency of the dimming control signal PWMDIM can be in the range of 100 Hz to 500 Hz
  • FIG. 5 is a circuit diagram showing a second configuration example of the duty ratio detection unit 30 of FIG.
  • the duty ratio detection unit 30b realizes processing equivalent to the duty ratio detection unit 30a in FIG. 4A by digital signal processing.
  • the duty ratio detection unit 30b includes a flip-flop 40, a counter 42, and a digital comparator 44.
  • the flip-flop 40 latches the dimming control signal PWMDIM at the positive edge timing of the clock signal CLK. Note that the flip-flop 40 may be omitted.
  • the counter 42 decreases the count value CNT by (K ⁇ 1) (count down) when the latched signal S2 is high level, and increases the count value CNT by 1 (count up) when the signal S2 is low level.
  • the counter 42 corresponds to the first current source 34, the second current source 36, and the capacitor C2 in FIG. 4A.
  • the countdown is the discharge of FIG. 4A, and the countdown is the charge of FIG. 4A.
  • the count value CNT corresponds to the voltage V 1 of the FIG. 4 (a).
  • the frequency of the clock signal CLK is set sufficiently higher than the frequency of the dimming control signal PWMDIM. When the frequency of the dimming control signal PWMDIM is 100 Hz to 500 Hz, the frequency of the clock signal CLK is set to about 100 kHz.
  • the digital comparator 44 corresponds to the hysteresis comparator 32 of FIG. Digital comparator 44, the count value CNT is greater than TH 1, and the output OUT is asserted (high level), the count value CNT is smaller than the TH 2, to the output OUT and negated (low level).
  • the output OUT of the digital comparator 44 indicates a comparison result between the duty ratio ⁇ of the dimming control signal PWMDIM and the threshold value TH.
  • the upper limit value MAX corresponds to V DD .
  • the duty ratio ⁇ of the dimming control signal PWMDIM can be compared with the threshold value TH similarly to the duty ratio detection unit 30a of FIG.
  • the time ratio of the drive current I DRV flowing through the LED string 6 is controlled by the dimming control signal PWMDIM, and the average value of the drive current I DRV , that is, the effective luminance of the LED string 6 is adjusted (burst adjustment). light).
  • FIGS. 6A and 6B are waveform diagrams showing the operation of the light emitting device 3 of FIG.
  • FIG. 6A shows a case where the duty ratio ⁇ specified by the dimming control signal PWMDIM is larger than a predetermined threshold value.
  • the frequency of the gate pulse signal G1 is a first value f 1.
  • the duty ratio of the dimming control signal PWMDIM is higher than the threshold value, the frequency of the gate pulse signal G1 becomes low, and the power consumption of the control IC 100 can be kept small.
  • FIG. 6B shows a case where the duty ratio ⁇ specified by the dimming control signal PWMDIM is smaller than a predetermined threshold value.
  • the frequency of the gate pulse signal G1 becomes the second value f 2.
  • T ON of the burst dimming pulse G2 will be the gate pulse signal G1 contains multiple, according to the duty ratio of the gate pulse signal is adjusted by feedback based on the detected voltage V R1 G1
  • the output voltage Vout can be stabilized to an appropriate value.
  • FIG. 6C is a diagram showing the relationship between the duty ratio of the burst dimming pulse G2 and the drive current I DRV_AVE in the light emitting device 3 of FIG.
  • the solid line (I) indicates the average drive current in FIG. 3, and the alternate long and short dash line (II) indicates the average drive current in FIG.
  • the light control signal PWMDIM can be changed according to the duty ratio specified. That is, the LED string 6 can be driven with a lower brightness than in the past.
  • FIG. 7 is a circuit diagram showing a configuration of the drive circuit 4a according to the second embodiment.
  • the drive circuit 4a is configured to be able to drive a plurality of LED strings 6_1 to 6_m, and includes a current driver 8 in addition to the control IC 100a and the output circuit 102.
  • the current driver 8 includes a current source CS provided for each LED string 6.
  • Each current source CS includes a transistor M3, a detection resistor R1, and an error amplifier EA2.
  • the transistor M3 and the detection resistor R1 are provided in series on the path of the corresponding LED string 6.
  • the error amplifier EA2 adjusts the voltage at the control terminal of the transistor M3 so that the voltage drop V R1 of the detection resistor R1 matches the control voltage V DIM .
  • the error amplifier EA1 generates a feedback voltage VFB corresponding to the sum of the voltage drops of the transistor M3 and the detection resistor R1, in other words, the error between the cathode potential of the LED string 6 and a predetermined reference voltage VREF .
  • the error amplifier EA1 is provided with a plurality of inverting input terminals, to which the cathode voltages of the plurality of LED strings 6 are input, respectively.
  • the error amplifier EA1 amplifies an error between the lowest voltage among the plurality of cathode voltages and the reference voltage VREF .
  • the controller 10 receives the feedback voltage V FB and generates a gate pulse signal G 1 whose duty ratio is adjusted so that the lowest cathode voltage matches the reference voltage V REF .
  • the operations of the oscillator 12 and the duty ratio detection unit 30 are the same as those of the drive circuit 4 in FIG.
  • the above is the configuration of the drive circuit 4a.
  • the drive circuit 4a can drive the LED string 6 with lower brightness than the conventional one, like the drive circuit 4 of FIG.
  • the frequency of the gate pulse signal G1 is switched between the discrete binary values f 1 and f 2 .
  • the present invention is not limited to this, and the frequency may be switched between three or more values, or continuously. It may be changed with various values.
  • the dimming control signal PWMDIM is a pulse signal
  • the present invention is not limited to this.
  • the voltage level of the dimming control signal PWMDIM may be an analog voltage that indicates the duty ratio of the burst dimming pulse G2.
  • the duty ratio detection unit 30 can be configured by an analog voltage comparator that compares the voltage level of the dimming control signal PWMDIM with the voltages V TH1 and V TH2 corresponding to the threshold values.
  • a non-insulated switching power supply using an inductor has been described.
  • the present invention can also be applied to an insulating switching power supply using a transformer.
  • an electronic device has been described as an application of the light emitting device 3, but the application is not particularly limited and can be used for lighting or the like.
  • the setting of the high level and low level logic signals is merely an example, and can be freely changed by appropriately inverting it with an inverter or the like.
  • SYMBOLS 2 ... Electronic device, 3 ... Light-emitting device, 4 ... Drive circuit, 5 ... LCD panel, 6 ... LED string, 8 ... Current driver, 10 ... Controller, 100 ... Control IC, 102 ... Output circuit, EA1 ... Error amplifier, DR1 DESCRIPTION OF SYMBOLS 1st driver, DR2 ... 2nd driver, R1 ... Detection resistance, M2 ... Switch for PWM dimming, 12 ... Oscillator, 30 ... Duty ratio detection part, C2 ... Capacitor, 32 ... Comparator, 34 ... 1st current source, 36 ... second current source, 38 ... switch, 40 ... flip-flop, 42 ...
  • the present invention can be used for driving a light emitting element.

Abstract

検出抵抗(R1)は、LEDストリング(6)の経路上に設けられる。コントローラ(10)は、検出抵抗(R1)の電圧降下(VR1)が所定の基準電圧(VREF)と一致するようにデューティ比が調節されるゲートパルス信号(G1)を生成する。またコントローラ(10)は、バースト調光のデューティ比を指示する調光制御信号(PWMDIM)を受け、それに応じたバースト調光パルス(G2)を生成する。第1ドライバ(DR1)は、ゲートパルス信号(G1)にもとづき、駆動電圧(VDRV)を生成する出力回路(102)を駆動する。第2ドライバ(DR2)は、バースト調光パルス(G2)にもとづき、駆動電流(IDRV)の導通、遮断を切りかえる。デューティ比検出部(30)は、調光制御信号(PWMDIM)が指示するデューティ比(α)に応じて、ゲートパルス信号(G1)の周波数を制御する。

Description

発光素子の駆動回路、それを用いた発光装置および電子機器
 本発明は、発光素子の駆動技術に関し、特にその調光技術に関する。
 近年、液晶パネルのバックライトや照明機器として、LED(発光ダイオード)をはじめとする発光素子を利用した発光装置が利用される。図1は、比較技術に係る発光装置の構成例を示す回路図である。発光装置1003は、LEDストリング6と、スイッチング電源1004と、を備える。
 LEDストリング6は、直列に接続された複数のLEDを含む。スイッチング電源1004は、入力端子P1に入力された入力電圧Vinを昇圧して、出力端子P2に接続されたLEDストリング6の一端に駆動電圧Voutを供給する。
 スイッチング電源1004は、出力回路102と、制御IC1100を備える。出力回路102は、インダクタL1、スイッチングトランジスタM1、整流ダイオードD1、出力キャパシタC1を含む。制御IC1100は、スイッチングトランジスタM1のオン、オフのデューティ比を制御することにより、駆動電圧Voutを調節する。
 LEDストリング6の経路上には、PWM調光用スイッチ(トランジスタ)M2および電流検出用の検出抵抗R1が設けられる。コントローラ1010は、外部からの調光制御信号PWMDIMにもとづき、目標輝度に応じてデューティ比が調節されるパルス幅変調(PWM)されたバースト調光パルスG2を生成する。ドライバDR2は、バースト調光パルスG2にもとづき、PWM調光用スイッチM2をスイッチングする。
 検出抵抗R1には、LEDストリング6に流れる駆動電流IDRVに比例した電圧降下(検出電圧)VR1が発生する。誤差増幅器EA1は、検出電圧VR1と、基準電圧VREFとの誤差を増幅し、フィードバック電圧VFBを生成する。コントローラ1010は、フィードバック電圧VFBにもとづいてパルス変調されるゲートパルス信号G1を生成する。ドライバDR1は、ゲートパルス信号G1にもとづいてスイッチングトランジスタM1をスイッチングする。
 以上の構成により、
 IDRV=VREF/R1
が成り立つように、フィードバックがかかり、基準電圧VREFに応じた輝度でLEDストリング6を発光させることができる(電流調光)。
 またPWM調光用スイッチM2のオン、オフのデューティ比に応じて、LEDストリング6の発光時間が制御され、実効的な輝度が調節される(PWM調光あるいはバースト調光)。
特開2009-261158号公報
 液晶パネルのコントラスト比は、LEDストリング6の輝度をダイナミックに制御することによって拡張される。つまり、LEDストリング6の最低輝度がなるべく小さいほど、液晶パネルのコントラスト比を大きくすることができる。
 本発明は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、なるべく小さな輝度でLEDストリングを駆動可能な駆動回路の提供にある。
 本発明のある態様は、発光素子に駆動電圧および駆動電流を供給する駆動回路に関する。この駆動回路は、発光素子の経路上に設けられた検出抵抗と、検出抵抗の電圧降下が所定の基準電圧と一致するようにデューティ比が調節されるゲートパルス信号を生成するとともに、バースト調光のデューティ比を指示する調光制御信号を受け、それに応じたバースト調光パルスを生成するコントローラと、ゲートパルス信号にもとづき、駆動電圧を生成するスイッチング電源を駆動する第1ドライバと、バースト調光パルスにもとづき、駆動電流の導通、遮断を切りかえる第2ドライバと、調光制御信号が指示するデューティ比に応じて、ゲートパルス信号の周波数を制御するデューティ比検出部と、を備える。
 本発明の別の態様もまた、駆動回路である。この駆動回路は、発光素子の経路上に設けられた電流源と、電流源の電圧降下が所定の基準電圧と一致するようにデューティ比が調節されるゲートパルス信号を生成するとともに、バースト調光のデューティ比を指示する調光制御信号を受け、それに応じたバースト調光パルスを生成するコントローラと、ゲートパルス信号にもとづき、駆動電圧を生成するスイッチング電源を駆動する第1ドライバと、バースト調光パルスにもとづき、駆動電流の導通、遮断を切りかえる第2ドライバと、調光制御信号が指示するデューティ比に応じて、ゲートパルス信号の周波数を制御するデューティ比検出部と、を備える。
 これらの態様によると、バースト調光のデューティ比に応じて、スイッチング電源のスイッチングトランジスタのスイッチング周波数を切りかえることにより、発光素子の輝度を、デューティ比が小さい領域においてもデューティ比に応じて制御できる。
 デューティ比検出部は、調光制御信号が指示するデューティ比が小さいほど、ゲートパルス信号の周波数と高くしてもよい。
 本発明のさらに別の態様は、発光装置である。この装置は、発光素子と、発光素子を駆動する上述のいずれかの態様の駆動回路と、を備える。
 本発明のさらに別の態様は、電子機器である。この電子機器は、液晶パネルと、液晶パネルのバックライトとして設けられた上述の発光装置と、を備える。
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明のある態様によれば、回路保護の機能を損なうことなく、消費電力を低減できる。
比較技術に係る発光装置の構成例を示す回路図である。 図2(a)は、図1の発光装置における、バースト調光パルスのデューティ比と、駆動電流の関係を示す図であり、図2(b)は、図1の発光装置におけるバースト調光パルスとゲートパルス信号を示す波形図である。 第1の実施の形態に係る発光装置の構成を示す回路図である。 図4(a)は、図3のデューティ比検出部の第1の構成例を示す回路図であり、図4(b)は、図4(a)のデューティ比検出部の動作を示す波形図である。 図3のデューティ比検出部の第2の構成例を示す回路図である。 図6(a)、(b)は、図3の発光装置の動作を示す波形図であり、図6(c)は、図3の発光装置における、バースト調光パルスのデューティ比と駆動電流の関係を示す図である。 第2の実施の形態に係る駆動回路の構成を示す回路図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 本発明者らは、図1の発光装置1003において最低輝度を下げる技術について検討した。最低輝度を下げるには、2つのアプローチがある。第1は、電流調光によって駆動電流IDRVを小さくすること、第2は、バースト調光のデューティ比を小さくすることである。
 第1のアプローチにおいて、基準電圧VREFを小さくすると駆動電流IDRVを小さくできる。しかしながら、基準電圧VREFと検出電圧VR1を受ける誤差増幅器EA1の入力電圧範囲には下限があるため、このアプローチには限界がある。
 そこで第2のアプローチについて検討する。図2(a)は、図1の発光装置1003における、バースト調光パルスG2のデューティ比と、駆動電流IDRVの関係を示す図である。バースト調光パルスG2のデューティ比が、ある下限値β(0.04%)より大きい範囲では、デューティ比に応じて駆動電流IDRVが変化する。ところが、デューティ比が下限値β(0.04%)より小さくなると、駆動電流IDRVが急激に低下する。つまり、下限値βを低下させることができれば、第2のアプローチによって最低輝度をさらに下げることができる。
 本発明者らは、下限値βが存在する理由および下限値βを小さくする方法について検討した。なお、以下の検討は、本発明者らが独自に行ったものであり、当業者の共通の認識であると考えてはならない。
 バースト調光を行う場合、PWM調光用スイッチM2がオフの期間は、フィードバックが遮断され、スイッチングトランジスタM1のスイッチングが停止する。PWM調光用スイッチM2がオンの期間TONには、検出電圧VR1にもとづくフィードバックが有効となり、スイッチングトランジスタM1のデューティ比が調節され、出力電圧Voutが安定化される。したがってバースト調光パルスG2のパルス幅(デューティ比)、つまりオン期間が小さくなると、フィードバックが有効な期間が短くなる。図2(b)は、図1の発光装置1003におけるバースト調光パルスG2とゲートパルス信号G1を示す波形図である。
 バースト調光パルスG2のパルス幅(オン期間TON)が、ゲートパルス信号G1の周期(スイッチング周期TSW)に近づくと、ゲートパルス信号G1の位相によって、バースト調光パルスG2のオン期間TONに含まれる有効なゲートパルス信号G1の数が変化する。ある位相のゲートパルス信号G1(1)は、オン期間TONに2個のパルスが含まれる。ところが別のゲートパルス信号G1(2)では、ひとつのパルスのみが含まれ、インダクタL1に蓄えられるエネルギーが減少し、出力電圧Voutを目標値に保つことができなくなる。本発明者らは、この現象が、図2(a)に示される特性の要因となると考えた。
(第1の実施の形態)
 図3は、第1の実施の形態に係る発光装置3の構成を示す回路図である。電子機器2は、ノートPC、デジタルカメラ、デジタルビデオカメラ、携帯電話端末、PDA(Personal Digital Assistant)などの電池駆動型の機器であり、発光装置3とLCD(Liquid Crystal Display)パネル5を備える。発光装置3はLCDパネル5のバックライトとして設けられる。
 発光装置3は、発光素子であるLEDストリング6と、その駆動回路4を備える。
 LEDストリング6は、直列に接続された複数のLEDを含む。駆動回路4は、昇圧型のDC/DCコンバータを含み、入力端子P1に入力された入力電圧(たとえば電池電圧)Vinを昇圧して、出力端子P2から出力電圧(駆動電圧)Voutを出力する。LEDストリング6の一端(アノード)は、出力端子P2に接続される。
 駆動回路4は、制御IC100および出力回路102を備える。出力回路102は、インダクタL1、整流ダイオードD1、スイッチングトランジスタM1、出力キャパシタC1を含む。出力回路102のトポロジーは一般的であるため、説明を省略する。
 制御IC100のスイッチング端子P4は、スイッチングトランジスタM1のゲートと接続される。制御IC100は、LEDストリング6の点灯に必要な出力電圧Voutが得られ、かつLEDストリング6が目標の輝度で発光するように、フィードバックによりスイッチングトランジスタM1のオン、オフのデューティ比を調節する。なおスイッチングトランジスタM1は制御IC100に内蔵されてもよい。
 LEDストリング6の経路上には、具体的にはLEDストリング6のカソードと接地端子の間には、PWM調光用スイッチM2が設けられる。PWM調光用スイッチM2のオン、オフ比率(デューティ比)を調節することにより、LEDストリング6の点灯期間と消灯期間の比率が調節され、LEDストリング6の実効的な輝度を調節することができる。これをバースト調光(PWM調光)という。PWMDIM端子には、調光制御信号PWMDIMが入力される。調光制御信号PWMDIMは、バースト調光のデューティ比を指定する信号であり、それ自体がパルス幅変調されたパルス信号である。コントローラ10は、調光制御信号PWMDIMにもとづき、バースト調光パルスG2を生成する。最も簡易には、バースト調光パルスG2は調光制御信号PWMDIMであってもよい。
 検出抵抗R1は、LEDストリング6の経路上、具体的にはLEDストリング6のカソードと接地端子の間に設けられる。
 オシレータ12は、可変オシレータである。コントローラ10は、オシレータ12が生成する周期信号S1を利用して、ゲートパルス信号G1を生成する。つまり、ゲートパルス信号G1の周波数は、オシレータ12の発振周波数に応じている。周期信号S1は、パルス信号であってもよいし、のこぎり波や三角波であってもよく、その種類はコントローラ10の構成によって適宜設計される。
 誤差増幅器EA1は、検出抵抗R1に生ずる電圧降下VR1と基準電圧VREFの誤差を増幅し、誤差電圧VFBを生成する。コントローラ10は誤差電圧VFBおよび周期信号S1を受け、検出抵抗R1の電圧降下VR1が制御電圧VDIMと一致するようにデューティ比が調節されるゲートパルス信号G1を生成する。ゲートパルス信号G1の周波数は、周期信号S1の周波数に応じている。第1ドライバDR1は、ゲートパルス信号G1にもとづきDC/DCコンバータのスイッチングトランジスタM1を駆動する。
 デューティ比検出部30は、調光制御信号PWMDIMを受け、そのデューティ比を検出する。そして、検出したデューティ比に応じてオシレータ12の発振周波数を制御する。デューティ比が大きいときには、オシレータ12の発振周波数を低くし、デューティ比が小さくなると、オシレータ12の発振周波数を高くする。
 たとえばデューティ比検出部30は、検出したデューティ比αが所定のしきい値THより高いとき、オシレータ12の周波数を第1の値fにする。デューティ比αが所定のしきい値THより低くなると、デューティ比検出部30はオシレータ12の周波数を、第1の値fより高い第2の値fにする。このしきい値THは、図2に示される下限値βより少し高い値に設定することが望ましい。
 以上が駆動回路4の構成である。続いてデューティ比検出部30の構成例を説明する。図4(a)は、図3のデューティ比検出部30の第1の構成例を示す回路図である。デューティ比検出部30は、キャパシタC2、ヒステリシスコンパレータ32、第1電流源34、第2電流源36、スイッチ38を備える。
 キャパシタC2の一端は接地される。第1電流源34は、第1電流IC1を生成し、キャパシタC2を充電する。第2電流源36は、第2電流IC2を生成し、キャパシタC2を放電する。スイッチ38は、第2電流IC2を遮断、導通するためのスイッチであり、調光制御信号PWMDIMに応じてオン、オフが制御される。第2電流IC2を、定数Kを用いて、
 IC2=K×IC1  …(1)
と表す。
 ヒステリシスコンパレータ32は、キャパシタC2に生ずる電圧Vを、所定のしきい値電圧VTHと比較する。しきい値電圧VTHは、上のしきい値THに応じて定められる。ヒステリシスコンパレータ32のしきい値電圧VTHは、その出力がローレベルのとき、第1の値VTH1、その出力がハイレベルのとき、第1の値VTH1より低い第2の値VTH2をとるものとする。一例として、
 VTH1=VDD×2/3
 VTH2=VDD×1/3
とする。コンパレータ32の出力OUTは、調光制御信号PWMDIMのデューティ比αと、しきい値との比較結果を示す。ヒステリシスコンパレータを用いることにより、調光制御信号PWMDIMのデューティ比αがしきい値TH付近をとるときに、ゲートパルス信号G1の周波数が振動するのを防止できる。
 図4(b)は、図4(a)のデューティ比検出部30の動作を示す波形図である。調光制御信号PWMDIMがローレベルの期間、スイッチ38はオフし、キャパシタC2は第1電流Ic1により充電される。その結果、キャパシタC2の電圧Vは、傾き(IC1/C2)で増加する。調光制御信号PWMDIMのデューティ比がα、周期がTであるとき、オフ期間TOFF、オン期間TONはそれぞれ、
 TOFF=T×(1-α)   …(2a)
 TON=T×α   …(2b)
となる。したがって、1回のオフ期間TOFFでのキャパシタC2の電圧Vの増加量は、
 ΔVUP=IC1/C2×T×(1-α)   …(3)
となる。
 調光制御信号PWMDIMがハイレベルの期間、スイッチ38はオンし、キャパシタC2は、第2電流Ic2と第1電流Ic1の差分電流(IC2-IC1)=(K-1)・IC1により放電される。その結果、キャパシタC2の電圧Vは、傾き(K-1)・IC1)/C2で減少する。したがって、1回のオン期間TONでのキャパシタC2の電圧Vの減少量は、
 ΔVDN=(K-1)・IC1/C2×T×α   …(4)
となる。
 式(3)、(4)から、1周期あたりの電圧Vの変動量は、
 ΔV=ΔVUP-ΔVDN=IC1×T/C2×(1-K・α)
となる。したがってK×α=1のときにΔV=0となり、電圧Vはあるレベルでバランスする。α<1/Kのとき、電圧Vは増大し、α>1/Kのとき電圧Vは低下する。つまりデューティ比検出部30が調光制御信号PWMDIMのデューティ比αと比較するしきい値THは、1/Kとなる。たとえばK=20とすると、デューティ比αが5%より高いか低いかが判定される。
 デューティ比αがしきい値TH=1/Kより高い状態が持続すると、電圧V=0を維持する。電圧V=0Vの状態から、デューティ比αがしきい値1/Kより低くなる際に、電圧Vが、0Vからしきい値電圧VTH1まで上昇するまでに必要なサイクル数Nは、式(5)で与えられる。
 N=VTH1/ΔV=VTH1/{IC1×T/C2×(1-K・α)}
  =2/3・VDD/{IC1×T/C2×(1-K・α)}  …(5)
 たとえばK=20、α=0のときに、N=5となるように、各パラメータを決定する。つまり、
 5=2/3×VDD/{IC1×T/C2}
 VDD/{IC1×T/C2}=15/2  …(6)
が成り立つ。式(6)を式(5)に代入すると、式(7)を得る。
 N=5/(1-20・α)  …(7)
 したがって、
 α=1%のとき、N=6.25
 α=2%のとき、N=8.33
 α=3%のとき、N=8.33
 α=4%のとき、N=12.5
 α=5%のとき、N=25
 デューティ比がαが大きくなると検出周期Nは増大するが、液晶パネルのディスプレイのコントラスト制御には十分な速度を実現できる。
 反対に、デューティ比αがしきい値1/Kより低い状態が持続すると、電圧Vは電源電圧VDDと等しくなる。この状態から、デューティ比αがしきい値1/Kより高くなる際に、電圧Vが、電源電圧VDDからしきい値電圧VTH2(=VDD/3)まで低下するまでのサイクル数Nは、式(8)で与えられる。
 N=(VDD-VTH2)/ΔV
  =2/3・VDD/{IC1×T/C2×(1-K・α)}  …(8)
 α=1のとき、式(8)に式(6)を代入すると、
 N=200/19
となる。
 調光制御信号PWMDIMの周波数が、可変であり、その周期の最大値をTPMAXとするとき、式(6)から、
 IC1/C2=2/15×VDD/TPMAX
となるように、電流IC1および容量C2を決めればよい。これにより、全周波数においてデューティ比の検出が可能となる。たとえば調光制御信号PWMDIMの周波数が100Hz~500Hzの範囲を取り得る場合、その周期の最大値はTPMAX=10msとなる。
 図5は、図3のデューティ比検出部30の第2の構成例を示す回路図である。このデューティ比検出部30bは、図4(a)のデューティ比検出部30aと等価的な処理を、デジタル信号処理で実現する。
 デューティ比検出部30bは、フリップフロップ40、カウンタ42、デジタルコンパレータ44を備える。フリップフロップ40は、調光制御信号PWMDIMを、クロック信号CLKのポジティブエッジのタイミングでラッチする。なおフリップフロップ40は省略してもよい。カウンタ42は、ラッチされた信号S2がハイレベルのとき、カウント値CNTを(K-1)減少させ(カウントダウン)、信号S2がローレベルのとき、カウント値CNTを1増加させる(カウントアップ)。
 カウンタ42は、図4(a)の第1電流源34、第2電流源36、キャパシタC2に相当し、カウントダウンは、図4(a)の放電に、カウントダウンは図4(a)の充電に、カウント値CNTは、図4(a)の電圧Vに相当する。クロック信号CLKの周波数は、調光制御信号PWMDIMの周波数よりも十分に高く設定され、調光制御信号PWMDIMの周波数が100Hz~500Hzであるとき、クロック信号CLKの周波数は100kHz程度に設定される。
 デジタルコンパレータ44は、図4(a)のヒステリシスコンパレータ32に相当する。デジタルコンパレータ44は、カウント値CNTがTHより大きくなると、その出力OUTをアサート(ハイレベル)とし、カウント値CNTがTHより小さくなると、その出力OUTをネゲート(ローレベル)とする。デジタルコンパレータ44の出力OUTは、調光制御信号PWMDIMのデューティ比αと、しきい値THとの比較結果を示す。
 たとえばデジタルコンパレータ44はカウント値CNTの上限がMAX=1500とすると、TH=2/3×MAX=1000、TH=1/3×MAX=500としてもよい。上限値MAXは、VDDに相当する。
 図5のデューティ比検出部30bによれば、図4(a)のデューティ比検出部30aと同様に、調光制御信号PWMDIMのデューティ比αを、しきい値THと比較することができる。
 以上が駆動回路4の構成である。続いてその動作を説明する。
 図3に戻る。発光装置3が正常に動作するとき、駆動電流IDRVは、
 IDRV=VREF/R1
に安定化される(電流調光)。
 そして、この駆動電流IDRVがLEDストリング6に流れる時間比率が、調光制御信号PWMDIMによって制御され、駆動電流IDRVの平均値、つまりLEDストリング6の実効的な輝度が調節される(バースト調光)。バースト調光パルスG2のデューティ比をαとするとき、駆動電流IDRVの平均値IDRV_AVEは、
 IDRV_AVE=VREF/R1×α
で与えられる。
 図6(a)、(b)は、図3の発光装置3の動作を示す波形図である。図6(a)は、調光制御信号PWMDIMが指定するデューティ比αが、所定のしきい値より大きい場合を示す。このとき、ゲートパルス信号G1の周波数は、第1の値fとなる。調光制御信号PWMDIMのデューティ比がしきい値より高いときには、ゲートパルス信号G1の周波数が低くなり、制御IC100の消費電力を小さく抑えられる。
 図6(b)は、調光制御信号PWMDIMが指定するデューティ比αが、所定のしきい値より小さい場合を示す。このとき、ゲートパルス信号G1の周波数は第2の値fとなる。これにより、バースト調光パルスG2の短いオン期間TONの中に、ゲートパルス信号G1が複数含まれることになり、検出電圧VR1にもとづくフィードバックにより調節されるゲートパルス信号G1のデューティ比に応じて、出力電圧Voutを適切な値に安定化できる。
 図6(c)は、図3の発光装置3における、バースト調光パルスG2のデューティ比と、駆動電流IDRV_AVEの関係を示す図である。実線(I)は図3の平均駆動電流を、一点鎖線(II)は図1の平均駆動電流を示す。このように、バースト調光パルスG2のデューティ比が小さい領域において、ゲートパルス信号G1の周波数を高めることにより、従来よりもデューティ比が小さい範囲(β’~β)において、平均駆動電流IDRV_AVEを、調光制御信号PWMDIMが指定するデューティ比に応じて変化させることができる。つまり、従来よりも小さな輝度でLEDストリング6を駆動できる。
(第2の実施の形態)
 図7は、第2の実施の形態に係る駆動回路4aの構成を示す回路図である。駆動回路4aは、複数のLEDストリング6_1~6_mを駆動可能に構成され、制御IC100a、出力回路102に加えて、電流ドライバ8を備える。
 電流ドライバ8は、LEDストリング6ごとに設けられた電流源CSを備える。各電流源CSは、トランジスタM3、検出抵抗R1、誤差増幅器EA2を含む。トランジスタM3および検出抵抗R1は、対応するLEDストリング6の経路上に直列に設けられる。誤差増幅器EA2は、検出抵抗R1の電圧降下VR1が制御電圧VDIMと一致するように、トランジスタM3の制御端子の電圧を調節する。各電流源CSによって、対応するLEDストリング6に流れる駆動電流IDRVが、IDRV=VDIM/R1に安定化される。
 誤差増幅器EA1は、トランジスタM3および検出抵抗R1の電圧降下の合計、言い換えれば、LEDストリング6のカソードの電位と、所定の基準電圧VREFとの誤差に応じたフィードバック電圧VFBを生成する。誤差増幅器EA1には、複数の反転入力端子が設けられ、それぞれには、複数のLEDストリング6のカソード電圧が入力される。誤差増幅器EA1は、複数のカソード電圧のうち、最も低い電圧と、基準電圧VREFの誤差を増幅する。コントローラ10はフィードバック電圧VFBを受け、最も低いカソード電圧が、基準電圧VREFと一致するようにデューティ比が調節されるゲートパルス信号G1を生成する。
 オシレータ12およびデューティ比検出部30の動作は、図3の駆動回路4と同様である。
 以上が駆動回路4aの構成である。この駆動回路4aは、図3の駆動回路4と同様に、従来よりも小さな輝度でLEDストリング6を駆動できる。
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセス、それらの組み合わせには、さまざまな変形例が存在しうる。以下、こうした変形例について説明する。
 実施の形態では、ゲートパルス信号G1の周波数を離散的な2値f、fで切りかえる場合を説明したが、本発明はそれに限定されず、3値以上で切りかえてもよいし、連続的な値で変化させてもよい。
 実施の形態では、調光制御信号PWMDIMがパルス信号である場合を説明したが、本発明はそれに限定されない。たとえば調光制御信号PWMDIMは、その電圧レベルが、バースト調光パルスG2のデューティ比を指示するアナログ電圧であってもよい。この場合、デューティ比検出部30は、調光制御信号PWMDIMの電圧レベルを、しきい値に相当する電圧VTH1、VTH2と比較するアナログの電圧コンパレータで構成できる。
 実施の形態ではインダクタを用いた非絶縁型のスイッチング電源を説明したが、本発明はトランスを用いた絶縁型のスイッチング電源にも適用可能である。
 実施の形態では、発光装置3のアプリケーションとして電子機器を説明したが、用途は特に限定されず、照明などにも利用できる。
 また、本実施の形態において、ハイレベル、ローレベルの論理信号の設定は一例であって、インバータなどによって適宜反転させることにより自由に変更することが可能である。
 実施の形態にもとづき、具体的な用語を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
2…電子機器、3…発光装置、4…駆動回路、5…LCDパネル、6…LEDストリング、8…電流ドライバ、10…コントローラ、100…制御IC、102…出力回路、EA1…誤差増幅器、DR1…第1ドライバ、DR2…第2ドライバ、R1…検出抵抗、M2…PWM調光用スイッチ、12…オシレータ、30…デューティ比検出部、C2…キャパシタ、32…コンパレータ、34…第1電流源、36…第2電流源、38…スイッチ、40…フリップフロップ、42…カウンタ、44…デジタルコンパレータ、L1…インダクタ、C1…出力キャパシタ、D1…整流ダイオード、M1…スイッチングトランジスタ、G1…ゲートパルス信号、G2…バースト調光パルス、S1…周期信号、PWMDIM…調光制御信号。
 本発明は、発光素子の駆動に利用できる。

Claims (9)

  1.  発光素子に駆動電圧および駆動電流を供給する駆動回路であって、
     前記発光素子の経路上に設けられた検出抵抗と、
     前記検出抵抗の電圧降下が所定の基準電圧と一致するようにデューティ比が調節されるゲートパルス信号を生成するとともに、バースト調光のデューティ比を指示する調光制御信号を受け、それに応じたバースト調光パルスを生成するコントローラと、
     前記ゲートパルス信号にもとづき、前記駆動電圧を生成するスイッチング電源を駆動する第1ドライバと、
     前記バースト調光パルスにもとづき、前記駆動電流の導通、遮断を切りかえる第2ドライバと、
     前記調光制御信号が指示するデューティ比に応じて、前記ゲートパルス信号の周波数を制御するデューティ比検出部と、
     を備えることを特徴とする駆動回路。
  2.  発光素子に駆動電圧および駆動電流を供給する駆動回路であって、
     前記発光素子の経路上に設けられた電流源と、
     前記電流源の電圧降下が所定の基準電圧と一致するようにデューティ比が調節されるゲートパルス信号を生成するとともに、バースト調光のデューティ比を指示する調光制御信号を受け、それに応じたバースト調光パルスを生成するコントローラと、
     前記ゲートパルス信号にもとづき、前記駆動電圧を生成するスイッチング電源を駆動する第1ドライバと、
     前記バースト調光パルスにもとづき、前記駆動電流の導通、遮断を切りかえる第2ドライバと、
     前記調光制御信号が指示するデューティ比に応じて、前記ゲートパルス信号の周波数を制御するデューティ比検出部と、
     を備えることを特徴とする駆動回路。
  3.  前記デューティ比検出部は、前記デューティ比が小さいほど、前記ゲートパルス信号の周波数と高くすることを特徴とする請求項1または2に記載の駆動回路。
  4.  前記調光制御信号は、その周波数およびデューティ比が、前記バースト調光の周波数およびデューティ比を指示するようにパルス変調されており、
     前記デューティ比検出部は、
     一端の電位が固定されたキャパシタと、
     前記キャパシタを充電する第1電流源と、
     前記調光制御信号に応じてオン、オフが切りかえ可能に構成され、オン状態において前記第1電流源のK倍(Kは1より大きい実数)の電流を生成し、前記キャパシタを放電する第2電流源と、
     前記キャパシタに生ずる電圧を、所定のしきい値電圧と比較するコンパレータと、
     を備えることを特徴とする請求項1から3のいずれかに記載の駆動回路。
  5.  前記コンパレータは、ヒステリシスコンパレータであることを特徴とする請求項4に記載の駆動回路。
  6.  前記調光制御信号は、その周波数およびデューティ比が、前記バースト調光の周波数およびデューティ比を指示するようにパルス変調されており、
     前記デューティ比検出部は、
     所定のクロック信号のエッジのタイミングごとに、前記調光制御信号がハイレベルのときに、そのカウント値を第1の方向に第1の値だけ変化させ、前記調光制御信号がローレベルのときに、前記カウント値を第2の方向に第2の値だけ変化させるカウンタと、
     前記カウント値を所定のしきい値と比較するデジタルコンパレータと、
     を備えることを特徴とする請求項1から3のいずれかに記載の駆動回路。
  7.  前記デジタルコンパレータは、ヒステリシスコンパレータであることを特徴とする請求項6に記載の駆動回路。
  8.  発光素子と、
     前記発光素子を駆動する請求項1から7のいずれかに記載の駆動回路と、
     を備えることを特徴とする発光装置。
  9.  液晶パネルと、
     前記液晶パネルのバックライトとして設けられた請求項8に記載の発光装置と、
     を備えることを特徴とする電子機器。
PCT/JP2011/006739 2010-12-08 2011-12-01 発光素子の駆動回路、それを用いた発光装置および電子機器 WO2012077309A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800398390A CN103069925A (zh) 2010-12-08 2011-12-01 发光元件的驱动电路、使用了它的发光装置及电子设备
US13/992,069 US9232579B2 (en) 2010-12-08 2011-12-01 Driving circuit for light-emitting element with burst dimming control
US14/955,624 US9674909B2 (en) 2010-12-08 2015-12-01 Driving circuit for light-emitting element with burst dimming control
US15/583,306 US10028348B2 (en) 2010-12-08 2017-05-01 Driving circuit for light-emitting element with burst dimming control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010273461A JP5616768B2 (ja) 2010-12-08 2010-12-08 発光素子の駆動回路、それを用いた発光装置および電子機器
JP2010-273461 2010-12-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/992,069 A-371-Of-International US9232579B2 (en) 2010-12-08 2011-12-01 Driving circuit for light-emitting element with burst dimming control
US14/955,624 Division US9674909B2 (en) 2010-12-08 2015-12-01 Driving circuit for light-emitting element with burst dimming control

Publications (1)

Publication Number Publication Date
WO2012077309A1 true WO2012077309A1 (ja) 2012-06-14

Family

ID=46206820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006739 WO2012077309A1 (ja) 2010-12-08 2011-12-01 発光素子の駆動回路、それを用いた発光装置および電子機器

Country Status (5)

Country Link
US (3) US9232579B2 (ja)
JP (1) JP5616768B2 (ja)
CN (1) CN103069925A (ja)
TW (1) TWI508626B (ja)
WO (1) WO2012077309A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104396343A (zh) * 2012-06-25 2015-03-04 欧司朗股份有限公司 照明模块的电流需求控制

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519680B2 (en) 2003-07-07 2013-08-27 Rohm Co., Ltd. Load driving device, and lighting apparatus and liquid crystal display device using the same
US10734896B2 (en) 2003-07-07 2020-08-04 Rohm Co., Ltd. Load driving device, and lighting apparatus and liquid crystal display device using the same
TWI477788B (zh) * 2012-04-10 2015-03-21 Realtek Semiconductor Corp 偵測發光二極體短路的方法及其裝置
JP6146984B2 (ja) * 2012-10-29 2017-06-14 ローム株式会社 発光装置の制御回路、それを用いた発光装置および電子機器、発光装置の制御方法
TWI478619B (zh) * 2012-11-01 2015-03-21 Univ Nat Yunlin Sci & Tech 單晶片發光二極體調光驅動方法與裝置
KR101532124B1 (ko) * 2012-11-20 2015-06-26 삼성전기주식회사 발광 다이오드 구동 장치
JP6189591B2 (ja) * 2012-11-20 2017-08-30 ローム株式会社 発光装置の制御回路、それを用いた発光装置および電子機器、発光装置の制御方法
CN103117046A (zh) 2013-03-11 2013-05-22 深圳市华星光电技术有限公司 液晶显示器、led背光源及其驱动方法
CN104062532B (zh) * 2013-03-18 2017-03-22 戴泺格集成电路(天津)有限公司 检测led串中led短路或led串之间匹配性的方法和系统
JP6152290B2 (ja) * 2013-04-16 2017-06-21 ローム株式会社 バックライト装置ならびにそれを用いたディスプレイ装置および電子機器
JP6358780B2 (ja) * 2013-05-17 2018-07-18 ローム株式会社 発光装置の制御回路、それを用いた発光装置および電子機器
CN103280190B (zh) * 2013-05-20 2015-11-25 深圳市华星光电技术有限公司 一种背光驱动电路、液晶显示装置和背光驱动方法
US9183788B2 (en) * 2013-05-20 2015-11-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Backlight driving circuit, LCD device, and method for driving the backlight driving circuit
CN103458572A (zh) * 2013-08-21 2013-12-18 青岛海信电器股份有限公司 发光二极管驱动方法、系统及显示装置
TWI498699B (zh) 2013-10-31 2015-09-01 Wistron Corp 訊號平衡系統、光源控制系統及其平衡訊號之方法
KR20160060232A (ko) * 2014-11-19 2016-05-30 삼성디스플레이 주식회사 백라이트 유닛
KR102218642B1 (ko) * 2014-11-27 2021-02-23 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 구동 방법
TWI560679B (en) * 2014-12-01 2016-12-01 Hon Hai Prec Ind Co Ltd Backlight driving module and display device using the same
CN104505034B (zh) * 2014-12-18 2017-04-19 深圳市华星光电技术有限公司 液晶显示装置、背光模块及其背光源驱动电路
KR102256631B1 (ko) 2014-12-22 2021-05-26 엘지이노텍 주식회사 발광 소자 구동 장치
TWI558262B (zh) * 2015-01-28 2016-11-11 友達光電股份有限公司 發光二極體驅動器
CN104640326B (zh) * 2015-02-25 2017-03-29 苏州智浦芯联电子科技股份有限公司 利用数字方法实现的高精度恒流led驱动电路
US9974130B2 (en) 2015-05-21 2018-05-15 Infineon Technologies Ag Driving several light sources
US9781800B2 (en) 2015-05-21 2017-10-03 Infineon Technologies Ag Driving several light sources
AT517324B1 (de) * 2015-06-01 2017-03-15 Zkw Group Gmbh Beleuchtungseinrichtung für Fahrzeuge
JP6553417B2 (ja) * 2015-06-08 2019-07-31 ローム株式会社 スイッチングコンバータおよびその制御回路、それを用いた照明装置、電子機器
JP6784967B2 (ja) * 2015-06-09 2020-11-18 天馬微電子有限公司 Ledバックライト駆動回路及びその駆動方法、並びに液晶表示装置
JP6594690B2 (ja) * 2015-07-22 2019-10-23 ローム株式会社 電流ドライバ、led駆動回路、照明装置、電子機器
KR20170073499A (ko) * 2015-12-18 2017-06-28 페어차일드코리아반도체 주식회사 기준 전압 생성기 및 이를 포함하는 led 장치
US10297191B2 (en) 2016-01-29 2019-05-21 Samsung Display Co., Ltd. Dynamic net power control for OLED and local dimming LCD displays
US20170227816A1 (en) * 2016-02-10 2017-08-10 Glo Ab Led backlight unit with separately and independently dimmable zones for a liquid crystal display
FR3048124B1 (fr) * 2016-02-18 2018-03-23 Sagem Defense Securite Circuit de detection d'impulsions lumineuses
TWI593223B (zh) * 2016-05-17 2017-07-21 力林科技股份有限公司 電源轉換裝置
JP6692071B2 (ja) * 2016-07-26 2020-05-13 パナソニックIpマネジメント株式会社 点灯装置、および照明器具
US10178729B2 (en) * 2016-08-22 2019-01-08 Semiconductor Components Industries, Llc Lighting circuit with internal reference thresholds for hybrid dimming
US9918367B1 (en) * 2016-11-18 2018-03-13 Infineon Technologies Ag Current source regulation
DE112018000616B4 (de) * 2017-01-31 2023-06-29 Rohm Co., Ltd. Led-treiberschaltung, led-treibervorrichtung und led-treibersystem
TWI596411B (zh) * 2017-02-22 2017-08-21 瑞軒科技股份有限公司 背光裝置及其控制方法
FR3082959A1 (fr) * 2018-06-26 2019-12-27 Stmicroelectronics (Rousset) Sas Commande cyclique de cellules d'un circuit integre
CN112673710B (zh) * 2018-09-11 2023-08-29 罗姆股份有限公司 Led驱动装置、照明装置及车载显示装置
TWI669985B (zh) * 2018-10-12 2019-08-21 力林科技股份有限公司 發光二極體驅動裝置以及發光二極體背光模組
KR102576149B1 (ko) * 2018-10-16 2023-09-08 삼성전자주식회사 디스플레이 장치 및 그 제어 방법
TWI692982B (zh) * 2018-11-02 2020-05-01 茂達電子股份有限公司 背光裝置及其調光控制方法
CN109168230B (zh) * 2018-11-16 2019-10-08 西安电子科技大学 采用电压脉冲的led驱动控制装置及方法
JP2020136079A (ja) 2019-02-20 2020-08-31 セイコーエプソン株式会社 発光制御装置、光源装置及び投写型映像表示装置
JP7189804B2 (ja) * 2019-02-26 2022-12-14 ローム株式会社 発光素子駆動装置、発光素子駆動システム及び発光システム
JP2020140797A (ja) * 2019-02-27 2020-09-03 セイコーエプソン株式会社 発光制御装置、光源装置及び投写型映像表示装置
JP2020140798A (ja) * 2019-02-27 2020-09-03 セイコーエプソン株式会社 発光制御装置、光源装置及び投写型映像表示装置
CN110536506B (zh) * 2019-07-26 2021-04-02 浙江大华技术股份有限公司 Led频闪爆闪电路
EP4085449A1 (en) 2021-03-23 2022-11-09 Google LLC Baseline and shaped pulse driving for micro-light emitting diode display
CN113438767A (zh) * 2021-07-01 2021-09-24 矽恩微电子(厦门)有限公司 一种用于矩阵led驱动器的降噪电路
CN114420055B (zh) * 2021-12-24 2023-03-24 北京奕斯伟计算技术股份有限公司 驱动电路及驱动方法、背光模组、显示装置
CN117374725B (zh) * 2023-12-05 2024-03-19 成都光创联科技有限公司 一种突发模式的激光器驱动控制电路和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077892A (ja) * 2006-09-19 2008-04-03 Alpine Electronics Inc Led駆動制御装置
JP2010027362A (ja) * 2008-07-18 2010-02-04 Asahi Kasei Toko Power Device Corp 発光制御回路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310908B2 (ja) * 2000-08-23 2009-08-12 ソニー株式会社 アシンメトリ検出回路及びその検出方法
TWI241591B (en) * 2002-08-09 2005-10-11 Hitachi Ltd Semiconductor device and memory card using the same
US7847783B2 (en) * 2005-10-11 2010-12-07 O2Micro International Limited Controller circuitry for light emitting diodes
TWM296567U (en) * 2006-02-10 2006-08-21 System General Corp LED drive circuit having temperature compensation
US20080180414A1 (en) * 2007-01-30 2008-07-31 Kai Ming Fung Method and apparatus for controlling light emitting diode
CN101389176B (zh) * 2007-09-14 2012-05-30 群康科技(深圳)有限公司 背光控制电路及其控制方法
JP2009261158A (ja) 2008-04-17 2009-11-05 Harison Toshiba Lighting Corp 電源装置
TWI398836B (zh) * 2008-04-23 2013-06-11 Innolux Corp 背光模組、液晶顯示裝置及光源驅動方法
US7965151B2 (en) * 2009-06-02 2011-06-21 Power Integrations, Inc. Pulse width modulator with two-way integrator
JP2011060385A (ja) * 2009-09-11 2011-03-24 Elpida Memory Inc 半導体装置及びその制御方法並びにデータ処理システム
JP5749465B2 (ja) * 2010-09-07 2015-07-15 ローム株式会社 発光素子の駆動回路、それを用いた発光装置および電子機器
JP5834236B2 (ja) * 2011-05-12 2015-12-16 パナソニックIpマネジメント株式会社 固体光源点灯装置およびそれを用いた照明器具
JP5900171B2 (ja) * 2012-06-07 2016-04-06 富士通株式会社 デューティ比補正回路、ダブルエッジ装置及びデューティ比補正方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077892A (ja) * 2006-09-19 2008-04-03 Alpine Electronics Inc Led駆動制御装置
JP2010027362A (ja) * 2008-07-18 2010-02-04 Asahi Kasei Toko Power Device Corp 発光制御回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104396343A (zh) * 2012-06-25 2015-03-04 欧司朗股份有限公司 照明模块的电流需求控制
US9591704B2 (en) 2012-06-25 2017-03-07 Osram Gmbh Current demand control of lighting modules

Also Published As

Publication number Publication date
US20170238385A1 (en) 2017-08-17
CN103069925A (zh) 2013-04-24
US20160088694A1 (en) 2016-03-24
US20130250215A1 (en) 2013-09-26
JP5616768B2 (ja) 2014-10-29
US9232579B2 (en) 2016-01-05
US9674909B2 (en) 2017-06-06
TWI508626B (zh) 2015-11-11
US10028348B2 (en) 2018-07-17
JP2012124003A (ja) 2012-06-28
TW201234924A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5616768B2 (ja) 発光素子の駆動回路、それを用いた発光装置および電子機器
JP5735825B2 (ja) 発光素子駆動用のスイッチング電源の制御回路およびそれらを用いた発光装置および電子機器
KR101775159B1 (ko) 스위칭 전원의 제어 회로, 제어 방법 및 그들을 이용한 발광 장치 및 전자 기기
WO2012127844A1 (ja) 発光素子駆動用のスイッチング電源の制御回路、およびそれらを用いた発光装置および電子機器
JP5523917B2 (ja) スイッチング電源の制御回路、制御方法およびそれらを用いた発光装置および電子機器
US8569965B2 (en) Driving circuit of light emitting element, light emitting device using the same, and electronic device
KR101875220B1 (ko) Led 구동회로
JP2011009701A (ja) 発光ダイオードの駆動回路およびそれを用いた発光装置およびディスプレイ装置、駆動回路の保護方法
JP2012059839A (ja) 発光素子の駆動回路、それを用いた発光装置および電子機器
JP6189591B2 (ja) 発光装置の制御回路、それを用いた発光装置および電子機器、発光装置の制御方法
JP5698580B2 (ja) 発光素子駆動用のスイッチング電源の制御回路、発光素子の駆動回路、およびそれらを用いた発光装置および電子機器
JP5735832B2 (ja) 発光素子駆動用のスイッチング電源の制御回路、発光装置および電子機器
JP5960982B2 (ja) 発光素子駆動用のスイッチング電源の制御回路、およびそれを用いた発光装置および電子機器
JP5698579B2 (ja) 発光素子駆動用のスイッチング電源の制御回路、およびそれらを用いた発光装置および電子機器
JP5660936B2 (ja) 発光素子駆動回路
JP5850612B2 (ja) 発光素子の駆動回路、ならびにそれらを用いた発光装置、電子機器
US9301351B2 (en) Driving circuit and driving method for light-emitting diode
JP5657366B2 (ja) 発光素子の駆動回路およびそれを用いた発光装置、電子機器
KR102051733B1 (ko) Led 구동회로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039839.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992069

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847032

Country of ref document: EP

Kind code of ref document: A1