WO2012071381A1 - Antibodies to notum pectinacetylesterase - Google Patents

Antibodies to notum pectinacetylesterase Download PDF

Info

Publication number
WO2012071381A1
WO2012071381A1 PCT/US2011/061785 US2011061785W WO2012071381A1 WO 2012071381 A1 WO2012071381 A1 WO 2012071381A1 US 2011061785 W US2011061785 W US 2011061785W WO 2012071381 A1 WO2012071381 A1 WO 2012071381A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
acid sequence
antibody
variable region
Prior art date
Application number
PCT/US2011/061785
Other languages
French (fr)
Inventor
Robert Joseph Brommage, Jr.
Xiao Feng
Seokjoo Hong
Gregory Landes
Jeff Liu
David George Potter
David Reed Powell
Original Assignee
Lexicon Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013541012A priority Critical patent/JP6033229B2/en
Priority to DK11843652.6T priority patent/DK2643019T3/en
Priority to CA2817415A priority patent/CA2817415C/en
Priority to KR1020187016214A priority patent/KR20180069083A/en
Priority to NZ609501A priority patent/NZ609501A/en
Priority to EP11843652.6A priority patent/EP2643019B1/en
Priority to KR1020137013390A priority patent/KR20140026334A/en
Priority to ES11843652T priority patent/ES2718849T3/en
Priority to AU2011332007A priority patent/AU2011332007C1/en
Priority to SG2013031083A priority patent/SG189982A1/en
Application filed by Lexicon Pharmaceuticals, Inc. filed Critical Lexicon Pharmaceuticals, Inc.
Priority to CN201180056452.6A priority patent/CN103298490B/en
Priority to PL11843652T priority patent/PL2643019T3/en
Priority to BR112013012858-5A priority patent/BR112013012858B1/en
Priority to US13/885,815 priority patent/US20130302346A1/en
Priority to MX2013005906A priority patent/MX357166B/en
Priority to RU2013123793/10A priority patent/RU2013123793A/en
Publication of WO2012071381A1 publication Critical patent/WO2012071381A1/en
Priority to IL225876A priority patent/IL225876A0/en
Priority to ZA2013/02983A priority patent/ZA201302983B/en
Priority to US14/952,264 priority patent/US20160152731A1/en
Priority to US16/277,466 priority patent/US11059907B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • This invention relates to antibody inhibitors of Notum Pectinacetylesterase, compositions comprising them, and methods of their use.
  • Bone health depends on the coordinated activities of bone forming osteoblasts and bone resorbing osteoclasts. "Bone turnover reflects a balance between these anabolic and catabolic cellular functions and ensures that the mature skeleton can repair itself when damaged and sustain its endocrine function by release of minerals such as calcium and phosphorous into the circulation.” Allen, J.G. et al., J. Med. Chem., 53 (June 10, 2010), pp. 4332 - 4353, 4332. Many disease states alter this balance, resulting in increased or decreased bone mass or changes in bone quality. Gradual loss of bone mineral density is known as osteopenia; severe loss of bone is known as osteoporosis. Id.
  • the current standard of care for the treatment and prevention of osteoporosis utilizes the bisphosphonate class of oral, small molecule antiresportives. Id. at 4333. Zoledronic acid, raloxifene, calcium, and vitamin D supplements are also typically used in the osteoporosis treatment. Id. While antiresorptive agents can help prevent bone loss, anabolic agents "are capable of increasing bone mass to a greater degree ... and also have the capacity to improve bone quality and increase bone strength." Guo, H., et al., J. Med. Chem., 53 (February 25, 2010), pp. 1819 - 1829, 1819. In the United States, human PTH is the only FDA-approved anabolic agent.
  • WNT pathway Another of these pathways is the WNT pathway, which is implicated in a variety of developmental and regenerative processes. Allen at 4340.
  • the pathway is complex, however, and much about it and about how its components affect bone remains unclear. For example, it has been suggested that LRP-5, mutations of which are associated with increased bone mass in humans, and ⁇ -catenin, through which canonical WNT signaling occurs, "may not be linked directly via WNT signaling to the control of bone mass.” Id.
  • a monoclonal antibody that binds human notum binds human notum
  • the antibody binds to a NOTUM selected from mouse NOTUM, guinea pig NOTUM, cynomolgus monkey NOTUM, and rhesus monkey NOTUM.
  • the antibody has at least one activity selected from reducing NOTUM activity in a trisodium 8- octanoyloxypyrene-l,3,6-trisulfonate (OPTS) assay in vitro, and reducing NOTUM activity in a Wnt signaling assay in vitro.
  • OPTS trisodium 8- octanoyloxypyrene-l,3,6-trisulfonate
  • the antibody has at least one activity selected from increasing serum PINP levels in vivo, increasing bone mineral density in vivo, increasing midshaft femur cortical thickness in vivo, increasing midshaft femur bone area in vivo, increasing midshaft humerus cortical thickness in vivo, increasing endocortical bone formation in vivo, increasing the proportion of cortical bone volume in the LV5 vertebral body in vivo, and increasing the proportion of femoral neck bone volume to femoral neck total volume in vivo.
  • an antibody that binds NOTUM binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with K D of less than 50 nM, less than 20 nM, or less than 10 nM.
  • the antibody has at least one binding characteristic selected from: a) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 83 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 84; b) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 85 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 86; c) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 94; d) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid
  • the antibody is selected from a mouse antibody, a chimeric antibody, a humanized antibody, and a human antibody.
  • an antibody that binds NOTUM comprises a heavy chain and a light chain, wherein the heavy chain comprises at least one CDR selected from: a) a CDR1 comprising an amino acid sequence selected from SEQ ID NOs: 9, 17, 25, 33, 41, 49, and 90; b) a CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 10, 18, 26, 34, 42, and 50; and c) a CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 11, 19, 27, 35, 43, 51, and 91.
  • the heavy chain comprises a set comprising a CDR1, a CDR2, and a CDR3, wherein the set is selected from: a) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11; b) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 91; c) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19; d) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence
  • an antibody that binds NOTUM comprises a heavy chain and a light chain, wherein the light chain comprises at least one CDR selected from: a) a CDRl comprising an amino acid sequence selected from SEQ ID NOs: 12, 20, 28, 36, 44, 52, and 92; b) a CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 13, 21, 29, 37, 45, 53, 61, and 93; and c) a CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 14, 22, 30, 38, 46, 54, and 62.
  • the light chain comprises at least one CDR selected from: a) a CDRl comprising an amino acid sequence selected from SEQ ID NOs: 12, 20, 28, 36, 44, 52, and 92; b) a CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 13, 21, 29, 37, 45, 53, 61, and 93; and c) a CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 14, 22,
  • the light chain comprises a set comprising a CDRl, a CDR2, and a CDR3, wherein the set is selected from: a) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14; b) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22; c) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22; d) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 92, a
  • an antibody that binds NOTUM comprises a heavy chain variable region and a light chain variable region, wherein: a) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14; or b) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 91, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 92, a CDR
  • an antibody that binds NOTUM comprises a heavy chain variable region and a light chain variable region, wherein a) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 7 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 8; or b) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 15 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 16; or c) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 71 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 73; or d) the heavy chain comprises the amino acid sequence of SEQ ID NO: 72 and the light chain comprises the amino acid sequence of SEQ ID NO: 74; or e) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 23 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 24; or f) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 75 and the
  • a nucleic acid molecule comprises a polynucleotide sequence that encodes a heavy chain or a light chain of an antibody that binds NOTUM and neutralizes at least one activity of NOTUM.
  • the nucleic acid molecule comprises a first polynucleotide sequence that encodes the heavy chain, and a second polynucleotide sequence that encodes the light chain.
  • the nucleic acid molecule is a vector.
  • a host cell comprising a nucleic acid molecule that comprises a polynucleotide sequence that encodes a heavy chain or a light chain of an antibody that binds NOTUM and neutralizes at least one activity of NOTUM is provided.
  • a host cell comprising a nucleic acid molecule that comprises a first polynucleotide sequence that encodes a heavy chain, and a second polynucleotide sequence that encodes a light chain, is provided.
  • a host cell comprises a first nucleic acid molecule comprising a polynucleotide sequence that encodes a heavy chain, and a second nucleic acid molecule comprising a polynucleotide sequence that encodes a light chain.
  • a method of producing an antibody that binds to NOTUM and neutralizes at least one activity of NOTUM comprising incubating a host cell under conditions sufficient to express the antibody.
  • a pharmaceutical composition comprising an antibody that binds NOTUM and neutralizes at least one activity of NOTUM is provided.
  • a method of stimulating endocortical bone formation in a patient, comprising administering an effective amount of the pharmaceutical composition is provided.
  • a method of treating, managing, or preventing a disease or disorder characterized by bone loss in a patient, comprising administering an effective amount of the pharmaceutica l composition is provided.
  • the disease or disorder is osteoporosis.
  • a single unit dosage form comprising the pharmaceutical composition is provided.
  • Figure 1 provides a graphical representation of differences between the cortical thicknesses of various bone sites in NOTUM homozygous knockout mice (“HOM”) and those in the wildtype littermates (“WT").
  • Figure 2 provides a graphical representation of an increase in cortical bone thicknesses observed in both NOTUIVI homozygous and heterozygous (“HET”) knockout mice as compared to their wildtype littermates.
  • Figure 3 provides a graphical representation of results obtained from femur breaking strength and spine compression tests performed on the bones of male NOTUM homozygous and heterozygous knockout mice and their wildtype littermates.
  • Figure 4 provides a graphical representation of results obtained from femur breaking strength and spine compression tests performed on the bones of female NOTUIVI homozygous and heterozygous knockout mice and their wildtype littermates
  • Figure 5 provides a graphical representation of certain human/mouse chimeric proteins, and indicates a region that appears to be involved in binding of NOTUM neutralizing antibodies in Bin 1, as described in Example 6.7.
  • Figure 6 provides a graphical representation of midshaft femur cortical thickness measurements obtained in mice after eight weeks of administering MAb 2.1029 or MAb 2.78, as described in Example 6.9.1.
  • Figure 7 provides a graphical representation of midshaft femur cortical thickness measurements obtained in mice after four weeks of administering various dosages of MAb 2.1029, as described in Example 6.9.2.
  • Figure 8 provides a graphical representation of midshaft femur cortical thickness measurements obtained in mice after four weeks of administering various dosages of MAb 2.78b, described in Example 6.9.3.
  • Figure 8A shows 3 mg/kg, 10 mg/kg, and 30 mg/kg dosages of MAb 2.78b.
  • Figure 8B shows 0.3 mg/kg, 1 mg/kg, and 3 mg/kg dosages of MAb 2.78b.
  • Figure 9 provides a graphical representation of midshaft femur cortical thickness measurements (A) and serum PINP levels (B) obtained in mice after 4 weeks of administering MAb 2.78b, with and without pretreatment with zoledronate, as described in Example 6.9.4.
  • Figure 10 provides a graphical representation of midshaft femur cortical thickness measurements obtained in mice after 4 weeks of administering MAb 2.78a, as described in Example 6.9.5.
  • Figure 11 provides a graphical representation of midshaft femur cortical thickness measurements (A) and midshaft humerus cortical thickness measurements (B) obtained in mice after 12 weeks of administering MAb 2.78a, as described in Example 6.9.6.
  • Figure 12 provides a graphical representation of midshaft femur cortical thickness measurements (A), midshaft humerus cortical thickness measurements (B), and ninth rib cortical thickness (C) obtained in mice after 24 weeks of administering MAb 2.78a, as described in Example 6.9.6.
  • Figure 13 provides a graphical representation of midshaft femur cortical thickness (A) and midshaft femur mineralized bone area (B) in sham surgery and ovariectomized mice administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.3.
  • Figure 14 provides a graphical representation of the proportion in the LV5 vertebral body of bone volume to total volume (A), the proportion in the LV5 vertebral body of cortical bone volume to total volume (B), and the proportion in the LV5 vertebral body of trabecular bone volume to total volume (C) in sham surgery and ovariectomized mice administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.3.
  • Figure 15 provides a graphical representation of the proportion of femoral neck bone volume to total volume in sham surgery and ovariectomized mice administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.3.
  • Figure 16 provides a graphical representation of the percentage of the endocortical surface of the midshaft femur cross-sections that were labeled with calcein, alizarin, and tetracycline in sham surgery and ovariectomized mice administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.4.
  • Figure 17 provides a graphical representation of the mineral apositional rate (A) and the volume-referent bone formation rate (B) in sham surgery and ovariectomized mice
  • This invention is based, in part, on the discovery that inhibition of NOTUM can affect endocortical bone formation.
  • Particular aspects of the invention are based on studies of mice lacking a functional NOTUM gene ("knockout mice"), on the development of antibodies that inhibit NOTU M, and on the discovery that such antibodies can be used to stimulate cortical bone formation in mice and rats.
  • antibody refers to an intact antibody or a fragment of an antibody that com petes with the intact antibody for antigen bind ing.
  • Antibody fragments include, but are not limited to, Fab, Fab', F(ab') 2 , Fv, scFv, Fd, diabodies, and other antibody fragments that retain at least a portion of the variable region of an intact antibody. See, e.g., Hudson et al. (2003) Nat. Med. 9:129-134.
  • antibody fragments are produced by enzymatic or chemical cleavage of intact antibodies.
  • antibody fragments are produced by recombinant DNA techniques.
  • antigen-binding site refers to a portion of an antibody capable of specifically binding an antigen.
  • an antigen-binding site is provided by one or more antibody variable regions.
  • binding affinity refers to a qualitative or quantitative determination of the strength with which an antibody binds to an antigen.
  • the binding affinity is the dissociation constant (K D ) of the antibody for the antigen.
  • the binding affinity of an antibody for an antigen is determined qualitatively, such as relative to the binding affinity of a different antibody for an a ntigen, or relative to the binding affinity of the same antibody for a different antigen (such as the antigen with one or more changes in its amino acid sequence).
  • the binding affinity of an antibody for a first antigen is considered “stronger” than its affinity for a second antigen, for example, when the K D of the antibody for the first antigen is lower than the K D of the antibody for the second antigen.
  • the binding affinity of an antibody for a first antigen is considered “stronger” when the K D of the antibody for the first antigen is at least 1.5-fold, at least 2-fold, at least 3-fold, at least 5-fold, or at least 10-fold lower than the K D of the antibody for the second antigen.
  • the binding affinity of an antibody for a first a ntigen is considered “weaker” than its affinity for a second antigen, for example, when the K D of the antibody for the first antigen is higher than the K D of the antibody for the second antigen.
  • the binding affinity of an antibody for a first antigen is considered “weaker” when the K D of the antibody for the first antigen is at least 1.5-fold, at least 2-fold, at least 3-fold, at least 5-fold, or at least 10-fold higher than the K D of the antibody for the second antigen.
  • a "chimeric" antibody refers to an antibody made up of components from at least two different sources.
  • a chimeric antibody comprises a portion of an antibody derived from a first species fused to another molecule, e.g., a portion of an antibody derived from a second species.
  • a chimeric antibody comprises a portion of an antibody derived from a non-human animal fused to a portion of an antibody derived from a human.
  • a chimeric antibody comprises all or a portion of a variable region of an antibody derived from a non-human animal fused to a constant region of an antibody derived from a human.
  • epitope refers to any polypeptide determinant capable of specifically binding to an immunoglobulin or a T-cell receptor.
  • an epitope is a region of an antigen that is specifically bound by an antibody.
  • an epitope may include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl, or sulfonyl groups.
  • an epitope may have specific three dimensional structural characteristics (e.g., a "conformational" epitope) and/or specific charge characteristics.
  • An epitope is defined as "the same” as another epitope if a particular antibody specifically binds to both epitopes.
  • polypeptides having different primary amino acid sequences may comprise epitopes that are the same. Different antibodies are said to bind to the same epitope if they compete for specific binding to that epitope.
  • a "fragment" of a reference polypeptide refers to a contiguous stretch of amino acids from any portion of the reference polypeptide.
  • a fragment may be of any length that is less than the length of the reference polypeptide.
  • a fragment is a contiguous stretch of amino acids from any portion of the reference polypeptide that has a particular activity or contains a particular epitope.
  • human antibody refers to a monoclonal antibody that contains human antibody sequences and does not contain antibody sequences from a non-human animal.
  • a human antibody may contain synthetic sequences not found in native antibodies. The term is not limited by the manner in which the antibodies are made.
  • a human antibody may be made in a transgenic mouse, by phage display, by human B-lymphocytes, or by recombinant methods.
  • a “humanized” antibody refers to a non-human antibody that has been modified so that it more closely matches (in amino acid sequence) a human antibody.
  • a humanized antibody is thus a type of chimeric antibody.
  • amino acid residues outside of the antigen binding residues of the variable region of the non-human antibody are modified.
  • a humanized antibody is constructed by replacing all or a portion of one or more complementarity determining region (CDRs) of a human antibody with all or a portion of one or more CDRs from another antibody, such as a non-human antibody, having the desired antigen binding specificity.
  • CDRs complementarity determining region
  • a humanized antibody comprises variable regions in which all or substantially all of the CDRs correspond to CDRs of a non-human antibody and all or substantially all of the framework regions (FRs) correspond to FRs of a human antibody.
  • one or more amino acids within one or more CDRs of the non-human antibody are changed in the humanized antibody, e.g., through a process of affinity maturation. Exemplary methods of affinity maturation are known in the art.
  • a humanized antibody further comprises a constant region (Fc) of a human antibody.
  • the term “include” has the same meaning as “include, but are not limited to,” the term “includes” has the same meaning as “includes, but is not limited to,” and the term “including” has the same meaning as “including, but not limited to.” Similarly, the term “such as” has the same meaning as the term “such as, but not limited to.”
  • the terms “manage,” “managing” and “management” encompass preventing the recurrence of the specified disease or disorder in a patient who has already suffered from the disease or disorder, and/or lengthening the time that a patient who has suffered from the disease or disorder remains in remission.
  • the terms encompass modulating the threshold, development and/or duration of the disease or disorder, or changing the way that a patient responds to the disease or disorder.
  • the term "monoclonal antibody” refers to an antibody from a substantially homogeneous population of antibodies that specifically bind to the same epitope.
  • a monoclonal antibody is secreted by a hybridoma.
  • a hybridoma is produced according to some methods known to those skilled in the art. See, e.g., Kohler and Milstein (1975) Nature 256: 495-499.
  • a monoclonal antibody is produced using recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567).
  • a monoclonal antibody refers to an antibody fragment isolated from a phage display library.
  • neutralizing antibody or “antibody that neutralizes” refers to an antibody that reduces at least one activity of a polypeptide comprising the epitope to which the antibody specifically binds. In some embodiments, a neutralizing antibody reduces an activity of the polypeptide in vitro and/or in vivo.
  • NOTUM refers to notum pectinaceylesterase having an amino acid sequence from any vertebrate or mammalian source, including human, bovine, chicken, rodent, mouse, rat, porcine, ovine, primate, monkey, and guinea pig, unless specified otherwise.
  • the term also refers to fragments and variants of native NOTUM that maintain at least one in vivo or in vitro activity of a native NOTUM.
  • the term encompasses full-length unprocessed precursor forms of NOTUM as well as mature forms resulting from post-translational cleavage of a signal peptide and other forms of proteolytic processing.
  • a full-length, unprocessed human NOTUM has the amino acid sequence set forth in SEQ ID NO: 1.
  • a full- length, unprocessed mouse NOTUM has the amino acid sequence set forth in SEQ ID NO: 2.
  • polypeptide refers to a polymer of amino acid residues.
  • the terms apply to amino acid polymers containing naturally occurring amino acids as well as amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid.
  • the amino acid polymers can be of any length.
  • native polypeptide refers to a naturally occurring polypeptide.
  • the terms “prevent,” “preventing” and “prevention” contemplate an action that occurs before a patient begins to suffer from the specified disease or disorder, which inhibits or reduces the severity of the disease or disorder. In other words, the terms encompass prophylaxis.
  • a “prophylactically effective amount” of a compound is an amount sufficient to prevent a disease or condition, or one or more symptoms associated with the disease or condition, or prevent its recurrence.
  • a “prophylactically effective amount” of a compound means an amount of therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease.
  • the term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.
  • an antibody "specifically binds" an antigen when it preferentially recognizes the antigen in a complex mixture of proteins and/or macromolecules.
  • an antibody comprises an antigen-binding site that specifically binds to a particular epitope.
  • the antibody is capable of binding different antigens so long as the different antigens comprise that particular epitope.
  • homologous proteins from different species may comprise the same epitope.
  • an antibody is said to specifically bind an antigen when the dissociation constant (K D ) is ⁇ 1 ⁇ , in some embodiments, when the dissociation constant is ⁇ 100 nM, and in some embodiments, when the dissociation constant is ⁇ 10 nM.
  • a “therapeutically effective amount” of a compound is an amount sufficient to provide a therapeutic benefit in the treatment or management of a disease or condition, or to delay or minimize one or more symptoms associated with the disease or condition.
  • a “therapeutically effective amount” of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment or management of the disease or condition.
  • the term “therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of a disease or condition, or enhances the therapeutic efficacy of another therapeutic agent.
  • the terms “treat,” “treating” and “treatment” contemplate an action that occurs while a patient is suffering from the specified disease or disorder, which reduces the severity of the disease or disorder, or retards or slows the progression of the disease or disorder.
  • a native antibody typically has a tetrameric structure.
  • a tetramer typically comprises two identical pairs of polypeptide chains, each pair having one light chain (In some embodiments, about 25 kDa) and one heavy chain (In some embodiments, about 50-70 kDa).
  • a heavy chain comprises a variable region, VH, and three constant regions, CHI, CH2, and CH3.
  • the VH domain is at the amino-terminus of the heavy chain
  • the CH3 domain is at the carboxy-terminus.
  • a light chain comprises a variable region, VL, and a constant region, CL.
  • the variable region of the light chain is at the amino-terminus of the light chain.
  • the variable regions of each light/heavy chain pair typically form the antigen binding site.
  • the constant regions are typically responsible for effector function.
  • Native human light chains are typically classified as kappa and lambda light chains.
  • Native human heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively.
  • IgG has subclasses, including IgGl, lgG2, lgG3, and lgG4.
  • IgM has subclasses including IgMl and lgM2.
  • IgA has subclasses including IgAl and lgA2.
  • variable and constant regions are typically joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D” region of about 10 more amino acids.
  • J Fundamental Immunology (1989) Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y.).
  • variable regions typically exhibit the same general structure in which relatively conserved framework regions (FRs) are joined by three hypervariable regions, also called complementarity determining regions (CDRs).
  • the CDRs from the two chains of each pair typically are aligned by the framework regions, which may enable binding to a specific epitope.
  • both light and heavy chain variable regions typically comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4.
  • the CDRs on the heavy chain are referred to as HI, H2, and H3, while the CDRs on the light chain are referred to as LI, L2, and L3.
  • CDR3 is the greatest source of molecular diversity within the antigen binding site.
  • H3 for example, in certain instances, can be as short as two amino acid residues or greater than 26.
  • the assignment of amino acids to each domain is typically in accordance with the definitions of Kabat et al. (1991) Sequences of Proteins of Immunological Interest (National Institutes of Health,
  • CDR refers to a CDR from either the light or heavy chain, unless otherwise specified.
  • a "Fab” fragment comprises one light chain and the CHI and variable region of one heavy chain.
  • the heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule.
  • a " Fab' " fragment comprises one light chain and one heavy chain that comprises additional constant region, extending between the CHI and CH2 domains.
  • An interchain disulfide bond can be formed between two heavy chains of a Fab' fragment to form a "F(ab')2" molecule.
  • An "Fv” fragment comprises the variable regions from both the heavy and light chains, but lacks the constant regions.
  • a single-chain Fv (scFv) fragment comprises heavy and light chain variable regions connected by a flexible linker to form a single polypeptide chain with an antigen-binding region.
  • Exemplary single chain antibodies are discussed in detail in WO 88/01649 and U.S. Patent Nos. 4,946,778 and 5,260,203.
  • a single variable region i.e., a heavy chain variable region or a light chain variable region
  • heavy chain refers to a polypeptide comprising sufficient heavy chain variable region sequence to confer antigen specificity either alone or in combination with a light chain.
  • light chain refers to a polypeptide comprising sufficient light chain variable region sequence to confer antigen specificity either alone or in combination with a heavy chain.
  • monoclonal antibodies that specifically bind to NOTUM are provided.
  • the monoclonal antibodies are neutralizing antibodies that reduce at least one activity of NOTUM in vivo and/or in vitro.
  • a neutralizing antibody against NOTUM reduces NOTUM activity in a trisodium 8-octanoyloxypyrene-l,3,6-trisulfonate (OPTS) assay in vitro. In some embodiments, a neutralizing antibody against NOTUM reduces NOTUM activity in a Wnt signaling assay in vitro.
  • OPTS trisodium 8-octanoyloxypyrene-l,3,6-trisulfonate
  • a neutralizing antibody against NOTUM increases serum PINP levels in vivo when administered to a subject in a sufficient amount and for a sufficient duration. Exemplary dosages and dosing schedules for administering a sufficient amount for a sufficient duration are discussed herein.
  • a neutralizing antibody against NOTUM increases bone mineral density.
  • a neutralizing antibody against NOTUM increases midshaft femur cortical thickness in vivo.
  • a neutralizing antibody against NOTUM increases midshaft femur bone area in vivo.
  • a neutralizing antibody against NOTUM increases midshaft humerus cortical thickness in vivo.
  • a neutralizing antibody against NOTUM increases endocorticai bone formation in vivo. In some embodiments, a neutralizing antibody against NOTUM increases the proportion of cortical bone volume in the LV5 vertebral body in vivo. By “proportion of cortical bone volume in the LV5 vertebral body” is meant the proportion of cortical bone volume to total volume of the LV5 vertebral body. In some embodiments, a neutralizing antibody against NOTUM increases the proportion of femoral neck bone volume to total volume of the femoral neck in vivo.
  • neutralizing antibodies that specifically bind to mouse NOTUM are provided.
  • neutralizing antibodies that specifically bind to human NOTUM are provided.
  • neutralizing antibodies that bind to a region from Q47 to M177 of human NOTUM are provided.
  • neutralizing antibodies that depend upon a region from Q47 to M177 of human NOTUM for binding are provided.
  • neutralizing antibodies that specifically bind to the same region of NOTUM from different species are provided.
  • neutralizing antibodies that bind to human NOTUM and NOTUM from at least one species selected from mouse, rat, guinea pig, cynomolgus monkey, marmoset, and rhesus macaque, are provided.
  • the antibodies specifically bind to both non-human primate NOTUM and human NOTUM.
  • the antibodies specifically bind to both mouse NOTUM and human NOTUM.
  • neutralizing antibodies that bind to a region of human NOTUM from Q47 to M177 are provided.
  • neutralizing antibodies that depend upon a region of human NOTUM from Q47 to M177 for binding are provided.
  • NOTUM neutralizing antibodies are provided that bind to human-mouse chimeric NOTUM (SEQ ID NO: 83) with an affinity that is at least 5-fold, at least 10-fold, or at least 20-fold stronger than the affinity for mouse-human chimeric NOTUM (SEQ ID NO: 84).
  • NOTUM neutralizing antibodies are provided that bind to human-mouse-human chimeric NOTUM (SEQ ID NO: 85) with an affinity that is at least 5-fold, at least 10-fold, or at least 20-fold stronger than the affinity for mouse-human-mouse chimeric NOTUM (SEQ ID NO: 86).
  • NOTUM neutralizing antibodies are provided that bind to human NOTUM (SEQ ID NO: 1) with an affinity that is at least 5-fold, at least 10-fold, or at least 20-fold stronger than the affinity for NOTUM D141S (SEQ ID NO: 94).
  • NOTUM neutralizing antibodies are provided that bind to mouse NOTUM S148D (SEQ ID NO: 95) with an affinity that is at least 5- fold, at least 10-fold, or at least 20-fold stronger than the affinity for mouse NOTUM (SEQ ID NO: 2).
  • NOTUM neutralizing antibodies are provided that bind to human NOTUM (SEQ ID NO: 1) with an affinity that is at least 5-fold, at least 10-fold, or at least 20-fold stronger than the affinity for human NOTUM R144A/R145A (SEQ ID NO: 99).
  • a neutralizing antibody against NOTUM binds to human NOTUM (SEQ ID NO: 1) with an affinity (K D ) of less than 100 nM, less than 50 nM, less than 40 nM, less than 30 nM, less than 25 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 3 nM, or less than 2 nM, determined as described in Example 6.8.
  • a neutralizing antibody against NOTUM has an IC 50 in an OPTS assay of less than 100 nM, less than 75 nM, less than 50 nM, less than 40 nM, less than 30 nM, less than 25 nM, less than 20 nM, less than 15 nM, or less than 10 nM, determined as described in Example 6.4.1.
  • a neutralizing antibody against NOTUM has an IC 50 in a Wnt signaling assay of less than 100 nM, less than 75 nM, less than 50 nM, less than 40 nM, less than 30 nM, less than 25 nM, less than 20 nM, less than 15 nM, or less than 10 nM, determined as described in Example 6.4.2.
  • the IC 50 is for human NOTUM. In some embodiments, the IC 50 is for mouse NOTUM.
  • neutralizing antibodies are non-human monoclonal antibodies. In some such embodiments, neutralizing antibodies are rodent monoclonal antibodies. In some such embodiments, neutralizing antibodies are mouse monoclonal antibodies. In some embodiments, neutralizing antibodies are chimeric monoclonal antibodies. In some embodiments, neutralizing antibodies are humanized monoclonal antibodies. In some embodiments, neutralizing antibodies are human monoclonal antibodies. In some embodiments, chimeric, humanized, and/or human monoclonal antibodies are useful as therapeutic antibodies in humans.
  • neutralizing antibodies are antibody fragments.
  • Exemplary antibody fragments include, but are not limited to, Fab, Fab', F(ab') 2 , Fv, scFv, Fd, diabodies, and the like.
  • Nonlimiting exemplary NOTUM neutralizing antibodies include MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78. Each of MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78 neutralizes at least one activity of NOTUM. Further, at least MAbs 1.802, 1.815, 1.846, and 2.78 are dependent for binding to NOTUM on at least a portion of the region of human NOTUM bounded by amino acids Q47 to M177.
  • a NOTUIVI neutralizing antibody competes for binding to NOTUM with at least one antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78.
  • a NOTU M neutralizing antibody binds to an epitope of NOTUM that at least partially overlaps with the epitope bound by at least one antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78.
  • an antibody that competes for binding to NOTUM with at least one antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78 is predicted to be a NOTUM neutralizing antibody.
  • the sequences of the CDRs and variable regions of MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78 are shown in Section 7, below.
  • NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 1.731 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 1.802 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 1.815 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 1.846 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 2.1029 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 2.55 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 2.78 binds.
  • a NOTUM neutralizing antibody comprises a heavy chain variable region selected from SEQ ID NOs: 7, 15, 23, 31, 39, and 47. In some embodiments, a NOTUM neutralizing antibody comprises a light chain variable region selected from SEQ ID NOs: 8, 16, 24, 32, 40, and 48. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 7, and a light chain variable region having the amino acid sequence of SEQ ID NO: 8. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 15, and a light chain variable region having the amino acid sequence of SEQ ID NO: 16.
  • a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 23, and a light chain variable region having the amino acid sequence of SEQ ID NO: 24. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 31, and a light chain variable region having the amino acid sequence of SEQ ID NO: 32. In some
  • a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 39, and a light chain variable region having the amino acid sequence of SEQ ID NO: 40.
  • a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 47, and a light chain variable region having the amino acid sequence of SEQ ID NO: 48.
  • a NOTU neutralizing antibody comprises a heavy chain
  • a NOTUM neutralizing antibody comprises a heavy chain CDR2 selected from SEQ ID NOs: 10, 18, 26, 34, 42, and 50.
  • a NOTUM neutralizing antibody comprises a heavy chain CDR3 selected from SEQ ID NOs: 11, 19, 27, 35, 43, 51, and 91.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 17 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having an amino acid sequence selected from SEQ ID NOs: 19 and 91.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 25 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 25, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 33 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having an amino acid sequence selected from SEQ ID NOs: 35 and 91.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 33, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 35.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 41, a CDR2 having the amino acid sequence of SEQ ID NO: 42, and a CDR3 having the amino acid sequence of SEQ ID NO: 43.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 49, a CDR2 having the amino acid sequence of SEQ ID NO: 50, and a CDR3 having the amino acid sequence of SEQ ID NO: 51.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 57, a CDR2 having the amino acid sequence of SEQ ID NO: 58, and a CDR3 having the amino acid sequence of SEQ ID NO: 59.
  • X x in SEQ ID NO: 90 is selected from Y and F.
  • X 2 in SEQ ID NO: 91 is selected from H and N.
  • a NOTUM neutralizing antibody comprises a light chain CDRl selected from SEQ ID NOs: 12, 20, 28, 36, 44, 52, 60, and 92.
  • a NOTUM neutralizing antibody comprises a light chain CDR2 selected from SEQ ID NOs: 13, 21, 29, 37, 45, 53, 61, and 93. In some embodiments, a NOTUM neutralizing antibody comprises a light chain CDR3 selected from SEQ ID NOs: 14, 22, 30, 38, 46, 54, and 62. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 20 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 21 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 28 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 29 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 30.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 28, a CDR2 having the amino acid sequence of SEQ ID NO: 29, and a CDR3 having the amino acid sequence of SEQ ID NO: 30.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 36 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 37 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 38.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 36, a CDR2 having the amino acid sequence of SEQ ID NO: 37, and a CDR3 having the amino acid sequence of SEQ ID NO: 38.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 44, a CDR2 having the amino acid sequence of SEQ ID NO: 45, and a CDR3 having the amino acid sequence of SEQ ID NO: 46.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 52, a CDR2 having the amino acid sequence of SEQ ID NO: 53, and a CDR3 having the amino acid sequence of SEQ ID NO: 54.
  • a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 60, a CDR2 having the amino acid sequence of SEQ ID NO: 61, and a CDR3 having the amino acid sequence of SEQ ID NO: 62.
  • X 3 in SEQ ID NO: 92 is selected from I and S;
  • X 4 in SEQ ID NO: 92 is selected from T and E; and
  • X 5 in SEQ ID NO: 92 is selected from and I.
  • X 6 in SEQ ID NO: 93 is selected from D and N.
  • a NOTU neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 17 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having an amino acid sequence selected from SEQ ID NOs: 19 and 91; and a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 20 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 21 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 25 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27; and a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 28 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 29 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 30.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 25, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 28, a CDR2 having the amino acid sequence of SEQ ID NO: 29, and a CDR3 having the amino acid sequence of SEQ ID NO: 30.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 33 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having an amino acid sequence selected from SEQ ID NOs: 35 and 91; and a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 36 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 37 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 38.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 33, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 35; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 36, a CDR2 having the amino acid sequence of SEQ ID NO: 37, and a CDR3 having the amino acid sequence of SEQ ID NO: 38.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 41, a CDR2 having the amino acid sequence of SEQ ID NO: 42, and a CDR3 having the amino acid sequence of SEQ ID NO: 43; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 44, a CDR2 having the amino acid sequence of SEQ ID NO: 45, and a CDR3 having the amino acid sequence of SEQ ID NO: 46.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 49, a CDR2 having the amino acid sequence of SEQ ID NO: 50, and a CDR3 having the amino acid sequence of SEQ ID NO: 51; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 52, a CDR2 having the amino acid sequence of SEQ ID NO: 53, and a CDR3 having the amino acid sequence of SEQ ID NO: 54.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 57, a CDR2 having the amino acid sequence of SEQ ID NO: 58, and a CDR3 having the amino acid sequence of SEQ ID NO: 59; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 60, a CDR2 having the amino acid sequence of SEQ ID NO: 61, and a CDR3 having the amino acid sequence of SEQ ID NO: 62.
  • X x in SEQ ID NO: 90 is selected from Y and F.
  • X 2 in SEQ ID NO: 91 is selected from H and N.
  • X 3 in SEQ ID NO: 92 is selected from I and S; X 4 in SEQ ID NO: 92 is selected from T and E; and X 5 in SEQ ID NO: 92 is selected from M and I.
  • X 6 in SEQ ID NO: 93 is selected from D and N.
  • NOTUM neutralizing antibodies that specifically bind human NOTUM are provided.
  • NOTUM neutralizing antibodies that specifically bind to the same epitope in NOTUM from different species i.e., antibodies that demonstrate cross- reactivity
  • NOTUM neutralizing antibodies that specifically bind human NOTUM and also specifically bind at least one species of NOTUM selected from mouse, rat, guinea pig, cynomolgus monkey, marmoset, and rhesus macaque are provided.
  • NOTUM neutralizing antibodies that specifically bind human NOTUM and NOTUM from at least one species of non-human primate are provided.
  • NOTUM neutralizing antibodies that specifically bind human NOTUM and mouse NOTUM are provided.
  • non-human antibodies are chimerized.
  • mouse monoclonal antibodies that specifically bind human NOTUM are chimerized.
  • Certain exemplary methods for making chimeric antibodies are provided, for example, in Morrison et a l. (1984) Proc. Nat'l Acad. Sci. USA 81:6851-6855; Neuberger et al. (1984) Nature 312:604-608; Ta keda et al. (1985) Nature 314:452-454; and U.S. Patent Nos. 6,075,181 and 5,877,397.
  • non-human antibodies are "huma nized .”
  • mouse monoclonal antibodies that specifically bind hu man NOTUM are humanized.
  • mouse monoclonal antibodies raised against mouse NOTUM, but which specifically bind (i.e., cross react) with human NOTUM are humanized.
  • humanized antibodies retain their binding specificity and have reduced imm unogenicity (e.g., reduced human anti-mouse antibody (HAMA) response) when administered to a human.
  • HAMA reduced human anti-mouse antibody
  • humanization is achieved by methods including CDR grafting and human engineering, as described in detail below.
  • one or more complementarity determining regions (CDRs) from the light and heavy chain variable regions of an antibody with the desired binding specificity are grafted onto human framework regions (FRs) in an "acceptor” antibody.
  • CDR grafting is described, e.g., in U.S. Patent Nos. 6,180,370, 5,693,762, 5,693,761, 5,585,089, a nd 5,530,101; Queen et al. ( 1989) Proc. Nat'l Acad. Sci. USA 86: 10029-10033.
  • one or more CDRs from the light a nd heavy chain variable regions are grafted onto consensus human FRs in an acceptor antibody.
  • consensus human FRs in some embodiments, FRs from several human heavy chain or light chain amino acid sequences are aligned to identify a consensus amino acid seq uence.
  • FR amino acids in the acceptor antibody are replaced with FR amino acids from the donor antibody.
  • FR amino acids from the donor antibody are amino acids that contribute to the affinity of the donor antibody for the target antigen. See, e.g., in U.S. Patent Nos. 6,180,370, 5,693,762, 5,693,761, 5,585,089, and 5,530,101; Queen et al. (1989) Proc. Nat'l Acad. Sci. USA 86:10029-10033.
  • computer programs are used for modeling donor and/or acceptor antibodies to identify residues that are likely to be involved in binding antigen and/or to contribute to the structure of the antigen binding site, thus assisting in the selection of residues, such as FR residues, to be replaced in the donor antibody.
  • CDRs from a donor antibody are grafted onto an acceptor antibody comprising a human constant region.
  • FRs are also grafted onto the acceptor.
  • CDRs from a donor antibody are derived from a single chain Fv antibody.
  • FRs from a donor antibody are derived from a single chain Fv antibody.
  • grafted CDRs in a humanized antibody are further modified (e.g., by amino acid substitutions, deletions, or insertions) to increase the affinity of the huma nized a ntibody for the target antigen.
  • grafted FRs in a humanized a ntibody are further modified (e.g., by amino acid substitutions, deletions, or insertions) to increase the affinity of the humanized antibody for the target antigen.
  • non-human antibodies may be humanized using a "human engineering" method. See, e.g., U.S. Patent Nos. 5,766,886 and 5,869,619.
  • information on the structure of antibody va riable domains e.g., information obtained from crystal structures and/or molecular modeling
  • human variable region consensus sequences are generated to identify residues that are conserved among human variable regions. In some embodiments, that information provides guidance as to whether an amino acid residue in the variable region of a non-huma n antibody should be substituted.
  • a humanized NOTUM neutra lizing antibody comprises a heavy chain com prising at least one of CDRl, CDR2, and CDR3 of an a ntibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising CDRl, CDR2, and CDR3 of an antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78.
  • a NOTUM neutralizing a ntibody com prises a light chain comprising at least one of CDRl, CDR2, and CDR3 of an antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78.
  • a NOTUM neutralizing antibody comprises a light chain comprising CDRl, CDR2, and CDR3 of an antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78.
  • a NOTU M neutralizing antibody comprises heavy chain CDRl, CDR2, and CDR3, and light chain CDRl, CDR2, and CDR3 from an antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising an amino acid sequence selected from SEQ ID NOs: 63, 67, 71, 75, and 79.
  • a NOTU M neutralizing antibody comprises a heavy chain comprising an amino acid sequence selected from SEQ I D NOs: 64, 68, 72, 76, and 80.
  • a NOTUM neutralizing antibody comprises a light chain comprising an amino acid sequence selected from SEQ ID NOs: 65, 69, 73, 77, and 81.
  • a NOTUM neutralizing antibody comprises a light chain comprising an amino acid sequence selected from SEQ ID NOs: 66, 70, 74, 78, and 82.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 63 and a light chain comprising the amino acid sequence of SEQ I D NO: 65.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising the a mino acid sequence of SEQ ID NO: 67 a nd a light chain comprising the a mino acid seq uence of SEQ I D NO: 69.
  • a NOTUM neutralizing antibody com prises a heavy chain comprising the amino acid sequence of SEQ ID NO: 71 and a light chain comprising the amino acid sequence of SEQ ID NO: 73.
  • a NOTU M neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 75 and a light chain comprising the amino acid sequence of SEQ ID NO: 77. In some embodiments, a NOTU M neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 79 and a light chain comprising the amino acid sequence of SEQ ID NO: 81. In some embodiments, a NOTUM neutra lizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 64 and a light chain comprising the amino acid sequence of SEQ ID NO: 66.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising the amino acid seq uence of SEQ I D NO: 68 and a light chain com prising the amino acid sequence of SEQ ID NO: 70.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 72 and a light chain comprising the amino acid sequence of SEQ ID NO: 74.
  • a NOTU M neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 76 and a light chain comprising the amino acid sequence of SEQ I D NO: 78.
  • a NOTUM neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 80 and a light chain comprising the amino acid sequence of SEQ ID NO: 82.
  • an antibody against NOTUM is of any isotype selected from IgM, IgD, IgG, IgA, and IgE.
  • an antibody against NOTUM is of the IgG isotype.
  • an antibody is of the subclass IgGl, lgG2, lgG3, or lgG4.
  • an antibody against NOTUM is of the IgM isotype.
  • an antibody is of the subclass IgM l or lgM2.
  • an antibody against NOTUM is of the IgA isotype. In certain such embodiments, an antibody is of the subclass IgAl or lgA2.
  • An antibody against NOTUM may comprise a lambda or kappa light chain constant region of, e.g., either human or mouse origin.
  • an antibody against NOTUM comprises a human kappa light chain constantnt region and a human IgGl, lgG2, or lgG4 heavy chain constant region.
  • an antibody against NOTU M comprises a mouse kappa light chain and a mouse IgGl or lgG2 heavy chain.
  • an antibody is modified to alter one or more of its properties.
  • a modified antibody may possess advantages over an unmodified antibody, such as increased stability, increased time in circulation, or decreased immunogenicity ⁇ see, e.g., U.S. Patent No. 4,179,337).
  • an antibody is modified by linking it to a nonproteinaceous moiety.
  • an antibody is modified by altering the glycosylation state of the antibody, e.g., by altering the number, type, linkage, and/or position of carbohydrate chains on the antibody.
  • an antibody is altered so that it is not glycosylated.
  • one or more chemical moieties are linked to the amino acid backbone and/or carbohydrate residues of the antibody.
  • Certain exemplary methods for linking a chemical moiety to an antibody include, but are not limited to, acylation reactions or alkylation reactions. See, e.g, EP 0 401 384; Malik et al. (1992), Exp. Hematol..
  • any of these reactions are used to generate an antibody that is chemically modified at its amino-terminus.
  • an antibody is linked to a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label.
  • a detectable label allows for the detection or isolation of the antibody.
  • a detectable label allows for the detection of an antigen bound by the antibody.
  • an antibody is modified by linking it to one or more polymers.
  • an antibody is linked to one or more water-soluble polymers.
  • linkage to a water-soluble polymer reduces the likelihood that the antibody will precipitate in an aqueous environment, such as a physiological environment.
  • a therapeutic antibody is linked to a water-soluble polymer.
  • one skilled in the art can select a suitable water-soluble polymer based on considerations including whether the polymer/antibody conjugate will be used in the treatment of a patient and, if so, the pharmacological profile of the antibody (e.g., half-life, dosage, activity, antigenicity, and/or other factors).
  • Certain exemplary clinically acceptable, water-soluble polymers include, but are not limited to, polyethylene glycol (PEG); polyethylene glycol propionaldehyde; copolymers of ethylene glycol/propylene glycol; monomethoxy-polyethylene glycol; carboxymethylcellulose; dextran; polyvinyl alcohol (PVA); polyvinyl pyrrolidone, poly-1, 3-dioxolane; poly-l,3,6-trioxane;
  • ethylene/maleic anhydride copolymer ethylene/maleic anhydride copolymer; poly-p-amino acids (either homopolymers or random copolymers); poly(n-vinyl pyrrolidone)polyethylene glycol; polypropylene glycol homopolymers (PPG) and other polyalkylene oxides; polypropylene oxide/ethylene oxide copolymers;
  • PEG polyoxyethylated polyols
  • glycerol e.g., glycerol
  • other polyoxyethylated polyols e.g., glycerol
  • PEGs include, but are not limited to, certain forms known in the art to be useful in antibody modification, such as mono-(Ci-C 10 ) alkoxy- or aryloxy-PEG.
  • PEG propionaldehyde may have advantages in
  • a water-soluble polymer is of any molecular weight. In some embodiments, a water-soluble polymer is branched or unbranched. In some embodiments, a water-soluble polymer has an average molecular weight of about 2 kDa to about 100 kDa, including all points between the end points of the range. In some embodiments, a water-soluble polymer has an average molecular weight of about 5 kDa to about 40 kDa. In some embodiments, a water- soluble polymer has an average molecular weight of about 10 kDa to about 35 kDa. In some embodiments, a water-soluble polymer has an average molecular weight of about 15 kDa to about 30 kDa.
  • an antibody is linked to polyethylene glycol (PEG; i.e., an antibody is "pegylated”).
  • PEG polyethylene glycol
  • PEG has low toxicity in mammals. See Carpenter et al. (1971) Toxicol. Appl. Pharmacol., 18:35-40.
  • a PEG adduct of adenosine deaminase was approved in the United States for use in humans for the treatment of severe combined immunodeficiency syndrome.
  • PEG may reduce the immunogenicity of antibodies.
  • linkage of PEG to an antibody having non-huma n sequences may red uce the antigenicity of that antibody when administered to a human.
  • a polymer is linked to one or more reactive amino acid residues in an antibody.
  • Certain exemplary reactive amino acid residues include, but are not limited to, the alpha-amino group of the amino-terminal amino acid, the epsilon amino groups of lysine side chains, the sulfhydryl groups of cysteine side chains, the carboxyl groups of aspartyl and glutamyl side chains, the alpha-carboxyl group of the carboxy-terminal amino acid, tyrosine side chains, a nd activated glycosyl chains linked to certain asparagine, serine or threonine residues.
  • PEG reagents suitable for direct reaction with proteins are known to those skilled in the art.
  • PEG reagents suitable for linkage to amino groups include, but are not limited to, active esters of carboxylic acid or carbonate derivatives of PEG, for example, those in which the leaving groups are N-hydroxysuccinimide, p- nitrophenol, imidazole or l-hydroxy-2-nitrobenzene-4-sulfonate.
  • PEG reagents containing maleimido or haloacetyl groups are used to modify sulfhydryl groups.
  • PEG reagents containing amino, hydrazine and/or hydrazide groups may be used in reactions with aldehydes generated by periodate oxidation of carbohydrate groups in proteins.
  • a water-soluble polymer has at least one reactive group.
  • an activated derivative of a water-soluble polymer such as PEG, is created by reacting the water-soluble polymer with a n activating group.
  • an activating group may be monofunctional, bifunctional, or multifunctional.
  • Certain exemplary activating groups that can be used to link a water-soluble polymer to two or more antibodies include, but are not limited to, the following groups: sulfone (e.g., chlorosulfone, vi nylsulfone and divinylsulfone), maleimide, sulfhydryl, thiol, triflate, tresylate, azidirine, oxirane and 5-pyridyl.
  • sulfone e.g., chlorosulfone, vi nylsulfone and divinylsulfone
  • maleimide e.g., sulfhydryl
  • thiol e.g., triflate
  • tresylate e.g., azidirine, oxirane and 5-pyridyl.
  • a PEG derivative is typically stable against hydrolysis for extended periods in aqueous environments at pHs of about 11 or less.
  • a PEG derivative linked to another molecule, such as an antibody confers stability from hydrolysis on that molecule.
  • Certain exemplary homobifunctional PEG derivatives include, but are not limited to, PEG-bis-chlorosulfone and PEG-bis-vinylsulfone (see WO 95/13312).
  • monoclonal antibodies are produced by standard techniques.
  • monoclonal antibodies are produced by hybridoma-based methods. Certain such methods are known to those skilled in the art. See, e.g., Kohler et al. (1975) Nature 256:495-497; Harlow and Lane (1988) Antibodies: A Laboratory Manual Ch. 6 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
  • a suitable animal such as a mouse, rat, hamster, monkey, or other mammal, is immunized with an immunogen to produce antibody-secreting cells.
  • the antibody-secreting cells are B-cells, such as lymphocytes or splenocytes.
  • lymphocytes e.g., human lymphocytes
  • lymphocytes are immunized in vitro to generate antibody-secreting cells. See, e.g., Borreback et al. (1988) Proc. Nat'l Acad. Sci. USA 85:3995-3999.
  • antibody secreting cells are fused with an "immortalized" cell line, such as a myeloid-type cell line, to produce hybridoma cells.
  • hybridoma cells that produce the desired antibodies are identified, for example, by ELISA.
  • such cells can then be subcloned and cultured using standard methods.
  • such cells can also be grown in vivo as ascites tumors in a suitable animal host.
  • monoclonal antibodies are isolated from hybridoma culture medium, serum, or ascites fluid using standard separation procedures, such as affinity chromatography. Guidance for the production of hybridomas and the purification of monoclonal antibodies according to certain embodiments is provided, for example, in Harlow and Lane (1988) Antibodies: A Laboratory Manual Ch. 8 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
  • mouse monoclonal antibodies are produced by immunizing genetically altered mice with an immunogen.
  • the mice are NOTUM- deficient mice, which partially or completely lack NOTUM function.
  • the mice are "knockout" mice that lack all or part of a gene encoding NOTUM.
  • such knockout mice are immunized with mouse NOTU M.
  • such knockout mice are immunized with human NOTUM .
  • human monoclonal antibodies are raised in transgenic anima ls (e.g., mice) that are capable of producing human antibodies. See, e.g., U.S. Patent Nos. 6,075,181 A and 6,114,598 A; and WO 98/24893 A2.
  • human immunoglobulin genes are introduced ⁇ e.g., using yeast artificial chromosomes, huma n
  • mice in which the endogenous Ig genes have been inactivated.
  • Ig genes e.g., Jakobovits et al. (1993) Nature 362:255-258; Tomizuka et al. (2000) Proc. Nat'l Acad. Sci. USA 97:722-727; and Mendez et al. (1997) Nat. Genet. 15:146-156 (describing the XenoMouse I I ® line of transgenic mice).
  • such transgenic mice are immunized with an imm unogen.
  • lymphatic cells such as B-cells
  • recovered cells are fused with an "immortalized" cell line, such as a myeloid-type cell line, to produce hybridoma cells.
  • hybridoma cells are screened and selected to identify those that produce antibodies specific to the antigen of interest.
  • human monoclonal antibodies are produced using a display- based method, such as, for example, any of those described below.
  • a monoclonal antibody is produced using phage display techniques.
  • phage display techniques are known to those skilled in the art and are described, for example, in Hoogenboom, Overview of Antibody Phage-Display Technology and Its Applications, from Methods in Molecular Biology: Antibody Phage Display: Methods and Protocols (2002) 178: 1-37 (O'Brien and Aitken, eds., Human Press, Totowa, NJ).
  • a library of antibodies are displayed on the surface of a filamentous phage, such as the nonlytic filamentous phage fd or M 13.
  • the antibodies are antibody fragments, such as scFvs, Fabs, Fvs with an engineered intermoiecular disulfide bond to stabilize the V H -V L pair, and diabodies.
  • antibodies with the desired binding specificity can then be selected.
  • Nonlimiting exemplary embodiments of antibody phage display methods are described in further detail below.
  • an antibody phage-display library can be prepared using certain methods known to those skilled in the art. See, e.g., Hoogenboom, Overview of Antibody Phage-Display Technology and Its Applications, from Methods in Molecular Biology: Antibody Phage Display: Methods and Protocols (2002) 178:1-37 (O'Brien and Aitken, eds., Human Press, Totowa, NJ).
  • variable gene repertoires are prepared by PCR amplification of genomic DNA or cDNA derived from the mRNA of antibody-secreting cells.
  • cDNA is prepared from mRNA of B-cells.
  • cDNA encoding the variable regions of heavy and light chains is amplified, for example, by PCR.
  • heavy chain cDNA and light chain cDNA are cloned into a suitable vector.
  • heavy chain cDNA and light chain cDNA are randomly combined during the cloning process, thereby resulting in the assembly of a cDNA library encoding diverse scFvs or Fabs.
  • heavy chain cDNA and light chain cDNA are ligated before being cloned into a suitable vector.
  • heavy chain cDNA and light chain cDNA are ligated by stepwise cloning into a suitable vector.
  • cDNA is cloned into a phage display vector, such as a phagemid vector.
  • a phagemid vector such as a phagemid vector.
  • Certain exemplary phagemid vectors, such as pCESl, are known to those skilled in the art.
  • cDNA encoding both heavy and light chains is present on the same vector.
  • cDNA encoding scFvs are cloned in frame with all or a portion of gene III, which encodes the minor phage coat protein pill.
  • the phagemid directs the expression of the scFv-plll fusion on the phage surface.
  • cDNA encoding heavy chain is cloned in frame with all or a portion of gene III, and cDNA encoding light chain (or heavy chain) is cloned downstream of a signal sequence in the same vector.
  • the signal sequence directs expression of the light chain (or heavy chain) into the periplasm of the host cell, where the heavy and light chains assemble into Fab fragments.
  • cDNA encoding heavy chain and cDNA encoding light chain are present on separate vectors.
  • heavy chain and light chain cDNA is cloned separately, one into a phagemid and the other into a phage vector, which both contain signals for in vivo recombination in the host cell.
  • recombinant phagemid or phage vectors are introduced into a suitable bacterial host, such as E. coli.
  • a suitable bacterial host such as E. coli.
  • the host is infected with helper phage to supply phage structural proteins, thereby allowing expression of phage particles carrying the antibody-pill fusion protein on the phage surface.
  • "synthetic" antibody libraries are constructed using repertoires of variable genes that are rearranged in vitro. For example, in some embodiments, individual gene segments encoding heavy or light chains (V-D-J or V-J, respectively) are randomly combined using PCR. In some embodiments, additional sequence diversity can be introduced into the CDRs, and possibly FRs, e.g., by error prone PCR. In some such embodiments, additional sequence diversity is introduced into CDR3, e.g., H3 of the heavy chain.
  • "naive" or “universal” phage display libraries are constructed as described above using nucleic acid from an unimmunized animal.
  • the unimmunized animal is a human.
  • "immunized” phage display libraries are constructed as described above using nucleic acid from an immunized animal.
  • the immunized animal is a human, rat, mouse, hamster, or monkey. In certain such embodiments, the animals are immunized with any of the immunogens described below.
  • Certain exemplary universal human antibody phage display libraries are available from commercial sources.
  • Certain exemplary libraries include, but are not limited to, the HuCAL * series of libraries from MorphoSys AG ( artinstreid/Munich, Germany); libraries from Crucell (Leiden, the Netherlands) using MAbstract' technology; the n-CoDeRTM Fab library from Biolnvent (Lund, Sweden); and libraries available from Cambridge Antibody Technology (Cambridge, UK).
  • the selection of antibodies having the desired binding specificity from a phage display library is achieved by successive panning steps.
  • library phage preparations are exposed to antigen.
  • the phage-antigen complexes are washed, and unbound phage are discarded.
  • bound phage are recovered and subsequently amplified by infecting £ coli.
  • monoclonal antibody-producing phage may be cloned by picking single plaques. In some embodiments, the above process is repeated.
  • the antigen used in panning is any of the immunogens described below.
  • the antigen is immobilized on a solid support to allow purification of antigen-binding phage by affinity chromatography.
  • the antigen is biotinylated, thereby allowing the separation of bound phage from unbound phage using streptavidin-coated magnetic beads.
  • the antigen may be immobilized on cells (for direct panning), in tissue cryosections, or on membranes (e.g., nylon or nitrocellulose membranes). Other variations of certain panning procedures may be routinely determined by one skilled in the art.
  • a yeast display system is used to produce monoclonal antibodies.
  • an antibody is expressed as a fusion protein with all or a portion of the yeast AGA2 protein, which becomes displayed on the surface of the yeast cell wall.
  • yeast cells expressing antibodies with the desired binding specificity can then be identified by exposing the cells to fluorescently labeled antigen.
  • yeast cells that bind the antigen can then be isolated by flow cytometry. See, e.g., Boder et al. (1997) Nat. Biotechnol. 15:553-557.
  • the affinity of an antibody for a particular antigen is increased by subjecting the antibody to affinity maturation (or "directed evolution") in vitro, in vivo, native antibodies undergo affinity maturation through somatic hypermutation followed by selection.
  • affinity maturation or "directed evolution"
  • affinity maturation or "directed evolution”
  • in vitro methods mimic that in vivo process, thereby allowing the production of antibodies having affinities that equal or surpass that of native antibodies.
  • mutations are introduced into a nucleic acid sequence encoding the variable region of an antibody having the desired binding specificity. See, e.g., Hudson et al. (2003) Nat. Med. 9:129-134; Brekke et al. (2002) Nat. Reviews 2:52-62.
  • mutations are introduced into the variable region of the heavy chain, light chain, or both.
  • mutations are introduced into one or more CDRs. In certain such embodiments, mutations are introduced into H3, L3, or both.
  • mutations are introduced into one or more FRs.
  • a library of mutations is created, for example, in a phage, ribosome, or yeast display library, so that antibodies with increased affinity may be identified by standard screening methods. See, e.g., Boder et al. (2000) Proc. Nat'l Acad. Sci. USA 97:10701-10705; Foote et al. (2000) Proc. Nat'l Acad. Sci. USA
  • mutations are introduced by site-specific mutagenesis based on information on the antibody's structure, e.g., the antigen binding site.
  • mutations are introduced using combinatorial mutagenesis of CDRs.
  • all or a portion of the variable region coding sequence is randomly mutagenized, e.g., using E. coli mutator cells, homologous gene rearrangement, or error prone PCR.
  • mutations are introduced using "DNA shuffling.” See, e.g., Crameri et al. (1996) Nat. Med. 2:100-102; Fermer et al. (2004) Tumor Biol. 25:7-13.
  • chain shuffling is used to generate antibodies with increased affinity.
  • one of the chains e.g., the light chain
  • the other chain e.g., the heavy chain
  • a library of chain shuffled antibodies is created, wherein the unchanged heavy chain is expressed in combination with each light chain from the repertoire of light chains.
  • such libraries may then be screened for antibodies with increased affinity.
  • both the heavy and light chains are sequentially replaced. In some embodiments, only the varia ble regions of the heavy and/or light chains are replaced.
  • variable regions e.g., CDRs
  • CDRs variable regions
  • mouse monoclonal antibodies that specifically bind human NOTU M are subject to sequential chain shuffling.
  • the heavy chain of a given mouse monoclonal antibody is combined with a new repertoire of human light chains, and antibodies with the desired affinity are selected.
  • the light chains of the selected antibodies are then combined with a new repertoire of human heavy chains, and antibodies with the desired affinity are selected.
  • human antibodies having the desired antigen binding specificity and affinity are selected.
  • the heavy chain of a given mouse monoclonal antibody is combined with a new repertoire of human light chains, and antibodies with the desired affinity are selected from this first round of shuffling.
  • the light chain of the original mouse monoclonal antibody is combined with a new repertoire of human heavy chains, and antibodies with the desired affinity are selected from this second round of shuffling.
  • human light chains from the antibodies selected in the first round of shuffling are then combined with human heavy chains from the antibodies selected in the second round of shuffling.
  • huma n antibodies having the desired a ntigen binding specificity and affinity are selected.
  • a "ribosome display” method is used that alternates antibody selection with affinity maturation.
  • antibody-encoding nucleic acid is amplified by RT-PCR between the selection steps.
  • error prone polymerases may be used to introduce mutations into the nucleic acid. A nonlimiting example of such a method is described in detail in Ha nes et al. (1998) Proc. Natl Acad. Sci. USA 95:14130-14135.
  • a monoclonal antibody is produced by recombinant techniques. See, e.g., U.S. Patent No. 4,816,567.
  • nucleic acid encoding monoclonal antibody chains are cloned and expressed in a suitable host cell.
  • RNA can be prepared from cells expressing the desired antibody, such as mature B-cells or hybridoma cells, using standard methods.
  • the RNA can then be used to make cDNA using standard methods.
  • cDNA encoding a heavy or light chain polypeptide is amplified, for example, by PCR, using specific oligonucleotide primers.
  • the cDNA is cloned into a suitable expression vector.
  • the expression vector is then transformed or transfected into a suitable host cell, such as a host cell that does not endogenously produce antibody.
  • suitable host cells include, but are not limited to, f. coll, COS cells, Chinese hamster ovary (CHO) cells, and myeloma cells.
  • reconstituted antibody may be isolated.
  • cDNA encoding a heavy or light chain can be modified.
  • the constant region of a mouse heavy or light chain can be replaced with the constant region of a human heavy or light chain.
  • a chimeric antibody can be produced which possesses human antibody constant regions but retains the binding specificity of a mouse antibody.
  • a nucleic acid molecule comprises a polynucleotide sequence that encodes the heavy chain or the light chain of a NOTUM neutralizing antibody.
  • a single nucleic acid molecule comprises a first polynucleotide sequence that encodes the heavy chain of a NOTUM neutralizing antibody and a second polynucleotide sequence that encodes the light chain of a NOTUM neutralizing antibody.
  • the coding sequence for the heavy chain and the coding sequence for the light chain are part of a continuous coding sequence such that a single polypeptide is expressed, which comprises both the heavy chain and the light chain of the antibody.
  • a single nucleic acid molecule that encodes both a heavy chain and a light chain is capable of expressing the two chains as separate polypeptides.
  • each chain is under the control of a separate promoter.
  • the two chains are under the control of the same promoter.
  • One skilled in the art can select a suitable configuration and suitable control elements for the heavy and light chain of the NOTUM neutralizing antibody according to the intended application.
  • the nucleic acid is a vector, such as an expression vector suitable for expressing the heavy chain and/or light chain in a particular host cell.
  • a suitable expression vector, or expression vectors can select a suitable expression vector, or expression vectors, according to the host cell to be used for expression. Many exemplary such vectors are known in the art.
  • a nucleic acid molecule comprises a polynucleotide sequence that encodes a heavy chain of a NOTUM neutralizing antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, 2.78, and humanized versions of such MAbs.
  • a nucleic acid molecule comprises a polynucleotide sequence selected from SEQ ID NOs: 101, 103, 105, 107, 109, 111, 112, 115, 116, 119, 120, 123, 124, 127, and 128.
  • a nucleic acid molecule comprises a polynucleotide sequence that encodes a light chain of a NOTUM neutralizing antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, 2.78, and humanized versions of such MAbs.
  • a nucleic acid molecule comprises a polynucleotide sequence selected from SEQ ID NOs: 102, 104, 106, 108, 110, 113, 114, 117, 118, 121, 122, 125, 126, 129, and 130.
  • a nucleic acid molecule comprises a first polynucleotide sequence that encodes the heavy chain and a second polynucleotide sequence that encodes the light chain, of a NOTUM neutralizing antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, 2.78, and humanized versions of such MAbs.
  • recombinant antibodies can be expressed in certain cell lines.
  • sequences encoding particular antibodies can be used for transformation of a suitable mammalian host cell.
  • transformation can be by any known method for introducing polynucleotides into a host cell.
  • Certain exemplary methods include, but are not limited to, packaging the polynucleotide in a virus (or into a viral vector) and transducing a host cell with the virus (or vector) and using certain transfection procedures known in the art, as exemplified by U.S. Pat. Nos. 4,399,216, 4,912,040, 4,740,461, and 4,959,455.
  • the transformation procedure used may depend upon the host to be transformed.
  • Certain exemplary methods for introduction of heterologous polynucleotides into mammalian cells include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
  • Certain exemplary mammalian cell lines available as hosts for expression are known in the art and include, but are not limited to, many immortalized cell lines available from the American Type Culture Collection (ATCC), including Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines.
  • ATCC American Type Culture Collection
  • CHO Chinese hamster ovary
  • HeLa cells HeLa cells
  • BHK baby hamster kidney
  • COS monkey kidney cells
  • human hepatocellular carcinoma cells e.g., Hep G2
  • cell lines may be selected by determining which cell lines produce high levels of antibodies that specifically bind NOTUM.
  • This invention encompasses a method of stimulating endocortical bone formation in a patient, which comprises administering to a patient in need thereof an effective amount of an antibody of the invention. It also encompasses a method of increasing cortical bone thickness, comprising administering to a patient in need thereof an effective amount of an antibody of the invention. [0129] This invention encompasses a method of treating, managing, or preventing a disease or disorder associated with bone loss, which comprises adm i nostiring to a patient in need thereof a therapeutically or prophylactically effective amount of an a ntibody of the invention.
  • osteoporosis e.g., postmenopausal osteoporosis, steroid- or glucocorticoid-induced osteoporosis, male osteoporosis, a nd idiopathic osteoporosis), osteopenia, and Paget's disease.
  • Also encom passed by the invention is a method of treating, managing, or preventing bone fractures, which comprises administering to a patient in need thereof a therapeutically or prophylactically effective amount of an antibody of the invention.
  • Particular bone fractures are associated with metastatic bone disease, i.e., ca ncer that has metastasized to bone.
  • metastatic bone disease i.e., ca ncer that has metastasized to bone.
  • cancers that can metastasize to bone include prostate, breast, lung, thyroid, and kidney cancer.
  • This invention also encompasses a method of treating, managing, or preventing bone loss associated with, or caused by, a disease or disorder, which comprises administering to a patient in need thereof a therapeutically or prophylactically effective amount of an antibody of the invention.
  • diseases and disorders include celiac disease, Crohn's Disease, Cushing's syndrome, hyperparathyroidism, inflammatory bowel disease, and ulcerative colitis.
  • Nonlimiting exemplary patients that may benefit from methods of this invention include men and women aged 55 years or older, post-menopausal women, and patients suffering from renal insufficiency.
  • Antibodies of the invention can be administered in combination (e.g., at the same or at different times) with other drugs known to be useful in the treatment, management, or prevention of diseases or conditions affecting the bone.
  • drugs known to be useful in the treatment, management, or prevention of diseases or conditions affecting the bone.
  • examples include: androgen receptor modulators; bisphosphonates; calcitonin; calcium sensing receptor antagonists; RANKL antibodies, cathepsin K inhibitors; estrogen and estrogen receptor modulators; integrin binders, antibodies, and receptor antagonists; parathyroid hormone (PTH) and analogues and mimics thereof; and vitamin D and synthetic vita min D analogues.
  • PTH parathyroid hormone
  • Examples of and rogen receptor modulators include finasteride and other 5a- reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, and abiraterone acetate.
  • bisphosphonates include alendronate, cimadronate, clodronate, etidronate, ibandronate, incadronate, minodronate, neridronate, olpadronate, pamidronate, piridronate, risedronate, tiludronate, and zolendronate, and pharmaceutically acceptable salts and esters thereof.
  • cathepsin K inhibitors examples include VEL-0230, AAE581 (balicatib),
  • estrogen and estrogen receptor modulators include naturally occurring estrogens (e.g., 7-estradiol, estrone, and estriol), conjugated estrogens [e.g., conjugated equine estrogens), oral contraceptives, sulfated estrogens, progestogen, estradiol, droloxifene, raloxifene, lasofoxifene, TSE-424, ta moxifen, idoxifene, LY353381, LY117081, toremifene, fulvestrant, 4-[7-(2,2- dimethyl-l-oxopropoxy-4-methyl-2-[4-[2-(l-piperidinyl)ethoxy]phenyl]-2H-l-benzopyran-3-yl]- phenyl-2,2-dimethylpropanoate, 4,
  • integrin binders examples include vitaxin (M EDI-522), cilengitide a nd L-000845704.
  • This invention encompasses pharmaceutica l compositions comprising one or more a ntibodies of the invention, and optionally one or more other drugs, such as those described above.
  • a NOTUM neutralizing antibody may be used as a therapeutic antibody.
  • Exemplary NOTUM neutralizing antibodies to be used as thera Chamberic antibodies include, but are not limited to, chimeric antibodies, humanized antibodies, and human antibodies. Those skilled in the art are familiar with the use of antibodies as therapeutic agents.
  • a pharmaceutical composition that comprises an effective amount of an antibody to NOTUM and a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative and/or adjuvant.
  • a pharmaceutical composition is provided that comprises an effective amount of an antibody to NOTUM and an effective amount of at least one additional therapeutic agent, together with a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative and/or adjuvant.
  • at least one additional therapeutic agent is selected from those described above.
  • formulation materials for pharmaceutical compositions are nontoxic to recipients at the dosages and concentrations employed.
  • the pharmaceutical composition comprises formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition.
  • suitable formulation materials include, but are not limited to, amino acids (for example, glycine, glutamine, asparagine, arginine and lysine); antimicrobials; antioxidants (for example, ascorbic acid, sodium sulfite and sodium hydrogen- sulfite); buffers (for example, borate, bicarbonate, Tris-HCI, citrates, phosphates and other organic acids); bulking agents (for example, mannitol and glycine); chelating agents (for example, ethylenediamine tetraacetic acid (EDTA)); complexing agents (for example, caffeine,
  • amino acids for example, glycine, glutamine, asparagine, arginine and lysine
  • antimicrobials for example, ascorbic acid, sodium sulfite and sodium hydrogen- sulfite
  • buffers for example, borate, bicarbonate, Tris-HCI, citrates, phosphates and other organic acids
  • bulking agents for example,
  • polyvinylpyrrolidone beta-cyclodextrin, and hydroxypropyl-beta-cyclodextrin
  • fillers ; monosaccharides, disaccharides, and other carbohydrates (for exam ple, glucose, mannose and dextrins); proteins (for example, serum albumin, gelatin and immunoglobulins); coloring, flavoring, and diluting agents; emulsifying agents; hydrophilic polymers (for example, polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (for example, sodium); preservatives (for example, benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid and hydrogen peroxide); solvents (for example, glycerin, propylene glycol and polyethylene glycol); sugar alcohols (for example, mannitol and sorbi
  • tromethamine lecithin, cholesterol, and tyloxapal
  • stability enhancing agents for example, sucrose and sorbitol
  • tonicity enhancing agents for example, alkali metal halides (for example, sodium or potassium chloride), mannitol, and sorbitol
  • delivery vehicles diluents; excipients; and
  • an antibody to NOTUM or other therapeutic molecule is linked to a half-life extending vehicle.
  • exemplary half-life extending vehicles include those known in the art. Such vehicles include, but are not limited to, the Fc domain, polyethylene glycol, and dextran. Exemplary such vehicles are described, e.g., in published PCT Application No. WO 99/25044.
  • an optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format, and desired dosage. See, e.g., Remington's Pharmaceutical Sciences, supra. In some embodiments, such compositions may influence the physical state, stability, rate of in vivo release, or rate of in vivo clearance of a neutralizing antibody.
  • a primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature.
  • a suitable vehicle or carrier may be water for injection, physiological saline solution, or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration.
  • Exemplary vehicles include, but are not limited to, neutral buffered saline and saline mixed with serum albumin.
  • pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, which may further include sorbitol or a suitable substitute therefor.
  • a composition comprising an antibody to NOTUM, with or without at least one additional therapeutic agents may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (Remington's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or an aqueous solution.
  • a composition comprising an antibody to NOTUM, with or without at least one additional therapeutic agent may be formulated as a lyophilizate using appropriate excipients such as sucrose.
  • a pharmaceutical composition is selected for parenteral delivery. In some embodiments, a pharmaceutical composition is selected for inhalation or for delivery through the digestive tract, such as orally.
  • compositions are within the skill of one skilled in the art.
  • formulation components are present in concentrations that are acceptable to the site of administration.
  • buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8.
  • a pharmaceutical composition when parenteral administration is contemplated, may be in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antibody to NOTUM, with or without additional therapeutic agents, in a pharmaceutically acceptable vehicle.
  • a vehicle for parenteral injection is sterile distilled water in which the antibody to NOTUM, with or without at least one additional therapeutic agent, is formulated as a sterile, isotonic solution, properly preserved.
  • the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide for the controlled or sustained release of the product which may then be delivered via a depot injection.
  • an agent such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide for the controlled or sustained release of the product which may then be delivered via a depot injection.
  • hyaluronic acid may also be used, and may have the effect of promoting sustained duration in the circulation.
  • implantable drug delivery devices may be used to introduce the desired molecule.
  • a pharmaceutical composition may be formulated for inhalation.
  • an antibody to NOTUM, with or without at least one additional therapeutic agent may be formulated as a dry powder for inhalation.
  • an inhalation solution comprising an antibody to NOTUM, with or without at least one additional therapeutic agent, may be formulated with a propellant for aerosol delivery.
  • solutions may be nebulized.
  • a formulation may be administered orally.
  • an antibody to NOTUM, with or without at least one additional therapeutic agent, that is administered in this fashion may be formulated with or without carriers customarily used in the compounding of solid dosage forms such as tablets and capsules.
  • a capsule may be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized.
  • at least one additional agent can be included to facilitate absorption of the antibody to NOTUM with or without any additional therapeutic agents.
  • diluents, flavorings, low melting point waxes, vegetable oils, lubrica nts, suspending agents, tablet disintegrating agents, and/or binders may also be employed.
  • a pharmaceutical composition comprises an effective amount of an antibody to NOTUM, with or without at least one additional therapeutic agent, in a mixture with non-toxic excipients which are suitable for the manufacture of tablets.
  • excipients include, but are not limited to, inert diluents (for example, calcium carbonate, sodium carbonate, sodium bicarbonate, lactose, and calcium phosphate); binding agents (for example, starch, gelatin, and acacia); and lubricating agents (for example, magnesium stearate, stearic acid, and talc).
  • sustained- or controlled-delivery formulations include, but are not limited to, liposome carriers, bio-erodible microparticles, porous beads, and depot injections.
  • sustained-release preparations may include semipermeable polymer matrices in the form of shaped articles, e.g. films or microcapsules.
  • sustained release matrices include, but are not limited to, polyesters, hydrogels, polylactides (see, e.g., U.S.
  • Patent No. 3,773,919 and EP 058,481 copolymers of L-glutamic acid and gamma ethyl-L-glutamate (see, e.g., Sidman et al. (1983) Biopolvmers 22:547-556), poly (2- hydroxyethyl-methacrylate) (see, e.g., Langer et al. (1981) J. Biomed. Mater. Res. 15:167-277 and Langer (1982) Chem. Tech. 12:98-105), ethylene vinyl acetate (Langer er al., supra), and poly-D(-)-3- hydroxybutyric acid (EP 133,988).
  • L-glutamic acid and gamma ethyl-L-glutamate see, e.g., Sidman et al. (1983) Biopolvmers 22:547-556
  • poly (2- hydroxyethyl-methacrylate) see, e.g
  • sustained release compositions may include liposomes, which can be prepared, in some embodiments, by any of several methods known in the art. See e.g., Eppstein et al. (1985) Proc. Natl. Acad. Sci. USA. 82:3688-3692; EP 036,676; EP 088,046; and EP 143,949.
  • a pharmaceutical composition to be used for in vivo administration typically is sterile. In some embodiments, this may be accomplished by filtration through sterile filtration membranes. In some embodiments, where the composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution. In some embodiments, the composition for parenteral administration may be stored in lyophilized form or in a solution. In some embodiments, parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • the pharmaceutical com position may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or as a dehydrated or lyophilized powder.
  • such formulations may be stored either in a ready-to- use form or in a form ⁇ e.g., lyophilized) that is reconstituted prior to administration.
  • kits for producing a single-dose administration unit are provided.
  • the kits may each contain both a first container having a dried protein and a second container having an aqueous formulation.
  • kits containing single or multi-chambered pre-filled syringes e.g., liquid syringes and lyosyringes are included.
  • the effective amount of a pharmaceutical composition comprising an antibody to NOTUM, with or without at least one additional therapeutic agent, to be employed therapeutically will depend, for example, upon the context and objectives of treatment.
  • the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which the antibody to NOTU M, with or without at least one additional therapeutic agent, is being used, the route of administration, and the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient.
  • the clinician may titer the dosage and modify the route of administration to obtain the optimal therapeutic effect.
  • a typical dosage may range from about 0.1 ⁇ g/kg of patient body weight, up to about 100 mg/kg or more, depending on the factors mentioned above. I n some embodiments, the dosage may range from 0.1 ⁇ g/kg up to about 100 mg/kg; 1 ⁇ g/kg up to about 100 mg/kg; or 5 ⁇ g/kg up to a bout 100 mg/kg, including all points (including fractions) between any of the foregoing endpoints. In some embodiments, the dosage is between about 1 mg/kg body weight and about 60 mg/kg body weight.
  • the dosage is about 1 mg/kg body weight, about 3 mg/kg body weight, about 5 mg/kg body weight, about 10 mg/kg body weight, about 20 mg/kg body weight, about 30 mg/kg body weight, about 40 mg/kg body weight, about 50 mg/kg body weight, or about 60 mg/kg body weight.
  • a human dose of a neutralizing antibody against NOTUM is determined based on the efficacious dose of the same antibody in another species, such as mice, dogs, monkeys, etc.
  • a human dose of a neutralizing antibody against NOTU M is determined using "Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Hea lthy Volunteers," U.S. Department of Health and Human Services, Food and Drug Administration, and Center for Drug Evaluation and Research (CDER), July 2005 (Pharmacology and Toxicology).
  • a suitable dosage may be determined by one skilled in the art, for exa m ple, based on animal studies.
  • a neutralizing antibody against NOTU is administered to a patient twice per week, once per week, once every two weeks, once per month, once every other month, or even less frequently.
  • the frequency of dosing will take into account the pharmacokinetic parameters of an antibody to NOTUM and, if applicable, any additional therapeutic agents in the formulation used.
  • a clinician will administer the composition until a dosage is reached that achieves the desired effect.
  • the composition may therefore be administered as a single dose, or as two or more doses (which may or may not contain the same amount of the desired molecule) over time, or as a continuous infusion via an implantation device or catheter.
  • further refinement of the appropriate dosage is routinely made by those skilled in the art and is within the ambit of tasks routinely performed by them.
  • appropriate dosages may be ascertained through use of appropriate dose-response data.
  • a patient receives one dose of a pharmaceutical composition comprising an antibody to NOTUM. In some embodiments, a patient receives one, two, three, or four doses per day of a pharmaceutical composition comprising an antibody to NOTUM. In some embodiments, a patient receives one, two, three, four, five, or six doses per week of a pharmaceutical composition comprising an antibody to NOTUM. In some embodiments, a patient receives one, two, three, or four doses per month of a pharmaceutical composition comprising an antibody to NOTUM.
  • the route of administration of the pharmaceutical composition is in accord with known methods, e.g. orally, through injection by subcutaneous, intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, or intralesional routes; by sustained release systems or by implantation devices.
  • the compositions may be administered by bolus injection or continuously by infusion, or by implantation device.
  • the composition may be administered locally via implantation of a membrane, sponge or another appropriate material onto which the desired molecule has been absorbed or encapsulated.
  • the device may be implanted into any suitable tissue or organ, and delivery of the desired molecule may be via diffusion, timed-release bolus, or continuous administration.
  • an antibody to NOTUM, with or without at least one additional therapeutic agent is delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the
  • such cells may be animal or human cells, and may be autologous, heterologous, or xenogeneic.
  • the cells may be immortalized.
  • the cells in order to decrease the chance of an immunological response, the cells may be encapsulated to avoid infiltration of surrounding tissues.
  • the encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.
  • mice homozygous for a genetically engineered mutation in the murine ortholog of the human NOTUM gene were generated using corresponding mutated embryonic stem (ES) cell clones from the OMNIBANK collection of mutated murine ES cell clones (see generally, U.S. Patent No. 6,080,576).
  • ES cell clones containing a mutagenic viral insertion into the murine NOTUM locus were microinjected into blastocysts which were in turn implanted into
  • mice homozygous (-/-) for the disruption of the NOTUM gene were studied in conjunction with mice heterozygous (+/-) for the disruption of the NOTUM gene and wild-type (+/+) litter mates.
  • the mice were subject to a medical work-up using an integrated suite of medical diagnostic procedures designed to assess the function of the major organ systems in a mammalian subject.
  • studying the homozygous (-/-) "knockout" mice in the described numbers and in conjunction with heterozygous (+/-) and wild-type (+/+) litter mates more reliable and repeatable data were obtained.
  • N number of mice
  • HEK293F cells were transfected using Lipofectamine2000 (Invitrogen) and grown in suspension culture in Freestyle 293 Expression Medium (Invitrogen) in shaker flasks. For transient transfections, conditioned medium was harvested four days after transfection, sterile filtered and stored at 4°C. For the generation of cell lines stably expressing NOTUM protein, genomic integration of the expression plasmid was selected for in the presence of puromycin.
  • NOTUM protein Expression and secretion of NOTUM protein was confirmed by Western blot of cell lysates and/or conditioned medium, using an anti-His antibody. Subcloning of NOTUM-producing bulk stable transfectants by limiting dilution enabled the identification by anti-His Western blot of individual clones expressing NOTUM at relatively high levels.
  • clonal HEK293F cell lines expressing either mouse or human NOTUM were expanded in suspension culture to a volume of 3L.
  • the cell density at this volume reached 1 ⁇ 10 ⁇ 6 viable cells per ml, the cells were pelleted by centrifugation and resuspended in fresh Freestyle 293 Expression Medium and maintained in culture for a further 96 hours without additional medium changes. After 96 hours, cultures were harvested, cells were pelleted by centrifugation, and the conditioned medium was sterile filtered and stored at 4°C for subsequent processing.
  • NOTUM-containing conditioned medium was concentrated from 3L to 1L and then buffer exchanged into nickel immobilized metal affinity chromatography (IMAC) buffer (20 mM Tris-HCI, 10 mM imidazole, 0.5 M NaCI, pH 7.4) by tangential flow filtration using a membrane with a lOkDa nominal molecular weight cut off.
  • IMAC nickel immobilized metal affinity chromatography
  • Antibodies were raised against purified recombinant human and mouse NOTUM proteins in two separate immunization campaigns.
  • mice homozygous for a gene trap insertion in the NOTUM gene and therefore lacking endogenous NOTUM protein were immunized with human NOTUM protein as follows. Mice were primed with 20 g human NOTUM protein in complete Freund's adjuvant injected intraperitoneal ⁇ . Mice were boosted with 20 g human NOTUM protein in incomplete Freund's adjuvant injected intraperitoneal ⁇ every two to three weeks. Mice exhibiting a robust serum titer against human NOTUM as determined by ELISA received a final boost of 10 ⁇ g human NOTUM protein in PBS injected intravenously (i.v.).
  • mice homozygous for a gene trap insertion in the NOTUM gene were immunized via the hind footpads with a priming immunization of 10 ⁇ g mouse NOTUM protein in TiterMax adjuvant with CpG DNA followed by ten boosts of 10 ⁇ g mouse NOTUM protein in Alum adjuvant with CpG DNA at three or four day intervals.
  • Inguinal and popliteal lymph nodes were harvested from high titer mice after a final footpad boost with 10 ⁇ g mouse NOTUM protein in PBS.
  • Spleens from i.v. boosted mice or lymph nodes from footpad immunized mice were collected four days after the final boost and were minced and strained to yield a cell suspension.
  • Red blood cells were lysed and the cell suspension was enriched for B-cells by negative selection using magnetic beads coated with antibodies specific for non-B-cell populations.
  • Hybridomas were generated by electro-cell fusion of enriched B-cells with mouse NSl myeloma cells and were seeded onto 96-well plates in hybridoma medium containing hypoxanthine and aminopterin to select for viable B-cell/myeloma cell hybridomas.
  • Hybridomas were screened for the production of NOTUM-specific antibodies by assaying hybridoma conditioned medium for immunoreactivity with passively adsorbed NOTUM protein in an ELISA format. Hundreds of hybridomas secreting antibody specific for mouse and/or human NOTUM were found from both immunization campaigns.
  • OPTS trisodium 8-octanoyloxypyrene-l,3,6-trisulfonate
  • hybridoma conditioned medium in general interfered in the OPTS assay perhaps due to the release from dying cells of hydrolases that could also cleave the OPTS. For this reason, additional hybridoma conditioned medium was generated for those lines originally showing the highest level of binding activity by ELISA and antibody was purified in a 96-well format by affinity chromatography using protein A beads. These purified antibodies were then tested in the OPTS assay at a four-fold dilution without prior quantitation.
  • Antibodies were tested in quadruplicate in 384-well plates. 12.5 ⁇ containing 125 ng of purified NOTUM in 4X reaction buffer (20 mM CaCI2, 2mM MgCI2, 50mM Tris-HCI, pH7.4) was added to 12.5 ⁇ of purified antibody. After mixing, antibody and NOTUM were incubated at room temperature for 20 minutes followed by addition of 25 ⁇ of 1.25 ⁇ OPTS (Sigma, catalog # 74875) in 50 mM Tric-HCI, pH7.4. After mixing, the enzyme reaction was allowed to proceed at room temperature for 10 minutes before being stopped by addition of 25 ⁇ of 3% SDS. Plates were read on an Envision plate reader with an excitation wavelength of 485nm and emission wavelength of 535 nm to quantify the amount of cleavage product.
  • OPTS assay screening of 1,056 mouse NOTUM immunoreactive hybridomas identified from Campaign 2 yielded six antibodies that showed greater than 50% inhibition of mouse NOTUM. These six together with an additional six hybridomas exhibiting some degree of neutralization in the OPTS assay were selected for subcloning by limiting dilution and small scale purified antibody production by protein A affinity chromatography using 50ml conditioned medium from clonal hybridomas.
  • NOTUM can act as a negative regulator of Wnt signaling.
  • Antibody neutralizing activity determined through the effect on Wnt signaling, was determined in a Wnt signaling assay, which uses CellSensor ® technology and conditioned media prepared as follows. Plasmid containing human NOTUM in pcDNA3.1(+) vector was transfected into HEK293 cells and clones were selecting by growing in presence of 400 ⁇ g/mL of G418. Condition media from these cells was used for the assay. L cells overexpressing and secreting Wnt3a into the conditioned media were purchased from ATCC.
  • the assay protocol was as follows. CellSensor ® LEF/TCF-bla FreestyleTM 293F cells (Invitrogen) were grown to near confluency in 15-cm plates in DMEM with 10% Dialyzed FBS, 5 ⁇ Blasticidin (Invitrogen, R210-01), 0.1 mM NEAA, 25 mM HEPES and lxGPS. Cells were trypsinized by first rinsing with PBS, followed by addition of 5 mL trypsin and incubation of plates at room temperature for two minutes.
  • a total of 10 mL of assay media (Opti-MEM, plus 0.5% dialyzed FBS, 0.1 mM NEAA, ImM sodium pyruvate, 10 mM HEPES, lx GPS) was then added per 15 cm plate. Cells were counted and suspended at 50,000 cells per mL. Cells were seeded into Biocoat 384-well plates (Fisher, Catalogue #356663) at a density of 10000 cells per 20 ⁇ per well. After incubation of cells at 37°C for 3 hours, 10 ⁇ of 30 mM LiCI in assay medium was added per well, followed by incubation at 37°C overnight.
  • assay media Opti-MEM, plus 0.5% dialyzed FBS, 0.1 mM NEAA, ImM sodium pyruvate, 10 mM HEPES, lx GPS
  • the assay plate was incubated for 5 hours at 37°C to enable Wnt-mediated beta-lactamase upregulation, and then 8 ⁇ LiveBLAzerTM-FRET B/G Substrate (CCF4- AM, Invitrogen) was added to each well and the plate incubated in the dark at room temperature for 3 hours. Plates were then read on an Envision plate reader using an excitation wavelength of 400 nm and emission wavelengths of 460 nm and 535 nm.
  • Antibodies purified from clonal hybridomas were characterized with respect to their species cross-reactivity by ELISA, their ability to recognize reduced, denatured NOTUM protein by Western blot, and their neutralizing potency in the cell-free OPTS assay and the cell-based Wnt signaling assay, both of which are described above in Example 6.4.
  • Table 1 shows the results of various characterization experiments for certain antibodies from Campaign 1. The data in the "Bin” column was generated using the method described in Example 6.6, below.
  • Table 2 shows the results of various characterization experiments for certain antibodies from Campaign 2. The data in the "Bin” column was generated using the method described in Example 6.6, below. Table 2: Characterization of certain antibodies raised against mouse NOTUM
  • Antibodies from both immunization campaigns were assessed for their ability to interfere with each other's binding to NOTUM protein in an epitope binning assay.
  • This assay was performed in an ELISA format using anti-His captured NOTUM protein.
  • the captured NOTUM protein was incubated with an excess of an unlabelled NOTUM-specific antibody (the 'blocking' antibody) followed by addition of a biotinylated NOTUM-specific antibody (the 'probe' antibody). Binding of the probe antibody was measured using HRP conjugated to streptavidin. If the two antibodies compete for binding in the same epitope space or if the blocking antibody otherwise affects the ability of the probe antibody to bind, e.g., by allosteric interference, no signal is generated.
  • Antibodies are tested in a reciprocal matrix format. Typically, a pair of antibodies will show the same level of interference regardless of which of the two is the blocking antibody and which is the probe antibody. Antibodies exhibiting similar profiles are assigned to the same epitope 'bin'.
  • MAbs 1.802, 1.815, 1.846, 2.78, and 2.1029 all interfere with each other's binding to human NOTUM while they do not interfere with the binding of several other less potent neutralizers or non-neutralizers.
  • MAbs 1.802, 1.815, and 1.846 depend on human NOTUM amino acids between Q47 and M177 for binding. See Figure 5. Within this region, mouse and human NOTUM differ at five positions (R115K, D141S. R150K, R154H, and Y171H, based on the human sequence numbering). Human NOTUM point mutants were generated by transient transfection of constructs expressing human NOTUM with the mouse amino acid at each of these five positions and the point mutants were all shown to be functional in the OPTS assay.
  • MAbs 1.802, 1.815, and 1.846 bound all point mutants except human NOTUM D141S, indicating that this amino acid is important for their binding to human NOTUM.
  • Mouse NOTUM with the reciprocal point mutation, mouse NOTUM S148D was generated by transient transfection, shown to be active in the OPTS assay, and was shown to support binding of the human NOTUM-specific MAbs. Therefore, the species specificity of MAbs 1.802, 1.815, and 1.846 appears to be dependent upon the amino acid at position 141 in human NOTUM, which is aspartic acid in the native human NOTUM protein.
  • human NOTUM mutants Five human NOTUM mutants were constructed, each with a pair of charged residues mutated to alanines: human NOTUM N132A/R133A (SEQ ID NO: 96); human NOTUM E134A/N135A (SEQ ID NO: 97); human NOTUM D137A/R139A (SEQ ID NO: 98); human NOTUM R144A/R145A (SEQ ID NO: 99); and human NOTUM R150A/D151A (SEQ ID NO: 100). All five human mutants were effectively expressed and secreted after transient transfection. Four of the five mutants exhibited significant activity in the OPTS assay while the fifth (human NOTUM D137A/R139A) showed little to no activity.
  • Binding affinities of certain anti-NOTUM MAbs was determined using a Biacore 3000.
  • antibody FAb fragments were generated by digestion of whole IgG with the protease Ficin, followed by removal of undigested IgG and Fc fragments by protein A affinity chromatography. Affinity values for binding of FAbs and whole IgG to human NOTUM corresponded, and their affinity values were in the single to low double digit nM range, as shown in Table 3.
  • mice Eight week old male Fl hybrid (129 x C57) mice were administered NOTUM neutralizing antibody 2.1029 or 2.78b, or a control antibody, by intraperitoneal injection at 30 mg/kg once per week for eight weeks. There were 12 mice per group. At the end of the study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco ⁇ " 40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
  • midshaft femur cortical thickness increased by 12% (P ⁇ 0.001) with administration of NOTUM neutralizing antibody 2.1029, and 16% (P ⁇ 0.001) with administration of NOTUM neutralizing antibody 2.78b, as compared to the control antibody.
  • mice Eight week old male Fl hybrid (129 x C57) mice were administered NOTUM neutralizing antibody 2.1029 by intraperitoneal injection at 3 mg/kg, 10 mg/kg, or 30 mg/kg once per week for four weeks. There were 10 mice per group. At the end of the study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco ⁇ ( ⁇ 40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
  • mice Eight week old male Fl hybrid (129 x C57) mice were administered NOTUM neutralizing antibody 2.78b by intraperitoneal injection at 3 mg/kg, 10 mg/kg, or 30 mg/kg once per week for four weeks. There were 10 mice per group in the first experiment. In a second experiment, NOTUM neutralizing antibody 2.78b was administered by intraperitoneal injection at 0.3 mg/kg, 1 mg/kg, or 3 mg/kg once per week for four weeks. There were 12 mice per group in the second experiment. At the end of each study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco ⁇ 40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
  • midshaft femur cortical thickness increased by 13% (P ⁇ 0.001), 17% (P ⁇ 0.001), and 16% (P ⁇ 0.001) with administration of 3 mg/kg, 10 mg/kg, and 30 mg/kg, respectively, of NOTUM neutralizing antibody 2.78b, relative to administration of control antibody, in the first experiment.
  • PINP levels increased by 14 ng/mL, or 47% (P ⁇ 0.001) in mice administered NOTUM neutralizing antibody 2.78b without zoledronate pretreatment, relative to mice administered saline and control antibody, and increased by 12 ng/mL, or 79% (P ⁇ 0.001) in mice administered NOTUM neutralizing antibody 2.78b with zoledronate pretreatment, relative to mice administered zeledronate and control antibody.
  • Mab 2.78 (also referred to as "2.78b”), which is an lgG2b antibody, was reformatted as an lgG2a antibody (lgG2a antibodies often have longer half-lives than lgG2b antibodies). Reformatted Mab 2.78 is referred to as "2.78a.”
  • 13-week old male Fl hybrid mice (129 x C57) were administered NOTUM neutralizing antibody 2.78a by intraperitoneal injection at 0.3 mg/kg, 1 mg/kg, 3 mg/kg, or 10 mg/kg once per week for four weeks. There were 10 or 12 mice per group. At the end of each study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco ⁇ 40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
  • mice Ten week old male Fl hybrid mice (129 x C57) were administered a control antibody, 0.3 mg/kg NOTUM neutralizing antibody 2.78a by i.p. injection weekly for 12 weeks, or 1 mg/kg NOTUM neutralizing antibody 2.78a by i.p. injection every other week (biweekly) for 12 weeks or 24 weeks. There were twelve mice per administration group. At the end of each study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco ⁇ ( ⁇ 40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
  • the midshaft femur cortical thickness increased by 6% (P ⁇ 0.001) and 9% (P ⁇ 0.001) in mice administered 0.3 mg/kg weekly and 1 mg/kg biweekly, respectively, of NOTUM neutralizing antibody 2.78a for 12 weeks.
  • mice Following surgery and prior to the start of treatment, ovariectomized mice showed increased bone remodeling relative to sham surgery mice, as shown in Table 4. Since trabecular bone contains many more bone cells than cortical bone, these data likely reflect primarily increased trabecular bone remodeling.
  • NOTUM neutralizing antibody 2.78b or a control antibody was administered at 10 mg/kg by intraperitoneal injection once per week for 4 weeks, starting 8 weeks after surgery.
  • fluorochrome bone labels were administered on treatment days 7, 14, and 21 (i.e., with the 2 nd , 3 rd , and 4 th treatments). Calcein, which fluoresces green, was administered on day 7; alizarin, which fluoresces red, was administered on day 14; and tetracycline, which fluoresces yellow, was administered on day 21. The mice were sacrificed at the end of the 4 week treatment. Uterine weight at necropsy confirmed that the ovariectomy surgery was successful. (Data not shown.)
  • Bone mass and architecture were determined by microCT following necropsy, using a Scanco ⁇ " 40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
  • the midshaft femur, LV5 vertebral body, and the femoral neck were scanned.
  • the midshaft femur cortical thickness increased by 22 ⁇ , or 9%, in sham surgery mice administered NOTUM neutralizing antibody 2.78b, relative to sham surgery mice administered control antibody, and increased by 26 ⁇ , or 12%, in ovariectomized mice administered NOTUM neutralizing antibody 2.78b, relative to ovariectomized mice administered control antibody.
  • the midshaft femur mineralized bone area increased by 0.1 mm 2 , or 11%, in sham surgery mice administered NOTUM neutralizing antibody 2.78b, relative to sham surgery mice administered control antibody, and increased by 0.08 mm 2 , or 10%, in ovariectomized mice administered NOTUM neutralizing antibody 2.78b, relative to ovariectomized mice administered control antibody.
  • the proportion in the LV5 vertebral body of cortical bone volume to total volume increased by 13% in sham surgery mice administered NOTUM neutralizing antibody 2.78b, relative to sham surgery mice administered control antibody, and increased by 9% in ovariectomized mice administered NOTUM neutralizing antibody 2.78b, relative to ovariectomized mice administered control antibody.
  • the proportion in the LV5 vertebral body of trabecular bone volume to total volume was not significantly affected by administration of NOTUM neutralizing antibody 2.78b in either the sham surgery mice or the ovariectomized mice.
  • Femur shafts were embedded in methylmethacrylate using a rapid embedding protocol. See Brlow and Vafai, Calcified Tissue Int'l 67: 479 (2000). Midshaft cross-sections with a thickness of about 80 ⁇ were prepared using a Leica SP160O bone saw. Sections were then examined with an Olympus BX60 fluorescent microscope. Various bone histomorphometric parameters were determined using OsteoMeasureTM software (OsteoMetrics, Decatur, GA). Both static parameters (such as bone area and thickness) and dynamic parameters (such as single label surface (SLS), mineral aposition rater (MAR), and bone formation rate (BFR)) were measured at lOOx magnification.
  • SLS single label surface
  • MAR mineral aposition rater
  • BFR bone formation rate
  • Figure 16 shows the percentage of the endocortical surface of the midshaft femur cross-sections that were labeled with calcein, which was administered on day 7, with alizarin, which was administered on day 14, and with tetracycline, which was administered on day 21.
  • Table 6 shows the statistical analysis of the data in Figure 16.
  • Mice administered NOTUM neutralizing antibody 2.78b showed a significantly higher percentage of endocortical labeling at days 7 and 14 compared to mice administered control antibody.
  • Figure 17 shows the mineral appositional rate (A) and the volume-referent bone formation rate (B) of sham surgery and ovariectomized mice that were administered control antibody or NOTUM neutralizing antibody 2.78b.
  • the mineral appositional rate ( Figure 17A) was determined by measuring the distance between the calcein label (day 7) and the alizarin label (day 14) and dividing by 7 to obtain the "days 7 to 14 rate,” and measuring the distance between the alizarin label (day 14) and the tetracycline label (day 21) and dividing by 7 to obtain the "days 14 to 21 rate.”
  • Table 7 shows the statistical analysis of the data in Figure 17A.
  • Mice administered NOTUM neutralizing antibody 2.78b showed a greater rate of mineral apposition than mice administered control antibody during the time period from days 7 to 14.
  • the volume-referent bone formation rate (Figure 17B) was determined by standard calculations involving multiplying the endocortical mineralization surface (percentage of double- labeled surface plus one-half of the single labeled surface, derived from Figure 16) by the mineral apposition rate (see Figure 17A). The result is the bone formation rate divided by the bone volume, expressed as a percentage per 7 days.
  • Table 8 shows the statistical a nalysis of the data in Figure 17B. As evident in Figure 17B, the bone formation rate per bone volume is significantly higher in mice administered NOTUIVI neutralizing antibody 2.78b than in mice administered control antibody. Table 8: Two-factor ANOVA of Volume-Referent Bone Formation Rate
  • MAb 2.78 bound guinea pig NOTUM with lower affinity than MAb 1.802, and had correspondingly lower inhibiting activity in the OPTS assay.
  • MAb 2.1029 bound guinea pig NOTUM only weakly, and did not significantly inhibit it in the OPTS assay.
  • Cynomoigus and rhesus monkey NOTUM were cloned from cDNA preparations from those species. Analysis of the sequences revealed that the amino acid at the position equivalent to human NOTUM D141 is an asparagine, which is different from the amino acid at that position in both mouse and human NOTUM . Active (as determined by OPTS assay) cynomoigus and rhesus NOTUM proteins were generated by transient transfection, and it was found that MAb 1.802 neither binds nor inhibits either protein. An active human NOTUM point mutant, human NOTUM D141N, was generated by transient transfection, and it was found that MAb 1.802 does not bind to that human NOTUM point mutant.
  • MAb 2.78 bound both cynomoigus and rhesus NOTU M weakly by ELISA, but did not inhibit either protein significantly in the OPTS assay.
  • MAb 2.1029 bound both cynomoigus and rhesus monkey NOTUM by ELISA as well as it binds human NOTUM, and also inhibited both proteins in the OPTS assay as well as it inhibited human NOTUM . 6.12. Antibody Sequencing and Humanization
  • Heavy and light chain variable regions were sequenced by specific RT-PCR using total RNA from the relevant hybridoma cell line followed by sequencing of the PCR product.
  • the variable region sequences, without signal sequences, for each of those antibodies are shown in Section 7 (Table of Sequences), below. Section 7 also shows the sequences for the heavy and light chain CDRl, CDR2, and CDR3 for each of those antibodies.
  • the following table shows the SEQ ID NOs corresponding to the heavy and light chain variable regions, and to CDRl, CDR2, and CDR3, for each of those antibodies.
  • MAbs 1.802 and 1.846 share an identical heavy chain CDRl (GFTFSDYGMH; SEQ ID NOs: 17 and 33), while heavy chain CDRl of MAb 1.815 (GFTFSDFGMH; SEQ ID NO: 25) differs from MAbs 1.802 and 1.846 by only one conservative amino acid substitution (Phenylalanine (F) in place of Tyrosine (Y)).
  • the consensus sequence for the heavy chain CDRl for those antibodies is therefore GFTFSDXiGMH (SEQ ID NO: 90), wherein X x is F or Y.
  • Heavy chain CDR3 of MAbs 1.802 and 1.846 differ by only one conservative amino acid substitution (histidine (H) versus asparagine (N)).
  • the consensus sequence for the heavy chain CDR3 for those antibodies is therefore KX 2 YNGGYFDV (SEQ ID NO: 91), wherein X 2 is H or N.
  • MAbs 1.802 and 1.846 share an identical light chain CDR2 (LASNLES; SEQ ID NOs: 21 and 37), while light chain CDR2 of MAb 1.815 (LASDLES; SEQ ID NO: 29) differs from MAbs 1.802 and 1.846 by only one conservative amino acid substitution (aspartic acid (D) in place of asparagine (N)).
  • LASX 6 LES SEQ ID NO: 93
  • X 6 is D or N
  • a consensus sequence for the light chain CDRl for the three antibodies from Campaign 1, 1.802, 1.846, and 1.815 is RASKX 3 VSX 4 SGYSYX 5 H (SEQ ID NO: 92), wherein X 3 is I or S, X 4 is T or E, and X 5 is M or I.
  • BLAST searching was performed against public databases to identify the human germline variable region sequences with greatest similarity to each of the mouse heavy and light chain variable regions.
  • CDRs from the mouse variable regions were then grafted in silico into these human germline variable sequences in place of the human germline CDRs.
  • the resulting humanized variable regions for five of the mouse antibodies (2.78, 2.1029, 1.802, 1.815, and 1.846) were synthesized with a 5' leader sequence encoding an in-frame signal peptide and cloned upstream of sequence encoding human lgG2 constant regions in the case of the heavy chain variable sequences or human kappa constant region in the case of the light chain variable sequences.
  • the sequences for each of the humanized variable regions are shown in Section 7 (Table of Sequences), below, along with the sequences for the full-length humanized heavy and light chains (without the signal peptide).
  • Coding sequences for full length humanized heavy and light chains were subcloned into mammalian expression vectors and corresponding heavy and light chain constructs were cotransfected into CHO-S cells. The resulting conditioned media were checked by Western blotting with an anti-human secondary antibody to confirm expression and secretion of intact humanized antibody. The conditioned media were then tested in ELISA format to determine whether the humanized antibodies retained the capacity to bind human NOTUM protein.
  • Humanized MAbs 1.802, 1.815, 1.846, and 2.1029 bound human NOTUM while humanized MAb 2.78 exhibited little to no binding to either human or mouse NOTUM.
  • HumAb 2.1029 1 ght DIQMTQSPSS LSASVGDRVT ITCRASQDIS NYLNWYQQKP GKAPKLLIYY chain variable TSRLHSGVPS RFSGSGTD FTFTISSLQP EDIATYYCQQ GKTLPRTFGG region GTKVE I
  • HumAb 2.1029 1 ght DIQMTQSPSS LSASVGDRVT ITCRASQDIS NYLNWYQQKP GKAPKLLIYY chain TSRLHSGVPS RFSGSGTD FTFTI SSLQP EDIATYYCQQ GKTLPRTFGG
  • HumAb 1.846 light DIVMTQSPDS LAVSLGERAT INCRASKSVS ESGYSYMHWY QQKPGQPPKL chain variable LIYLASNLES GVPDRFSGSG SGTDFTLTI S SLQAEDVAVY YCQHSRVLPP region TFGQGTKLEI
  • CTCTGGATTC ACTTTCAGTA GCTTTGGCAT GCACTGGGTT CGTCAGGCTC CAGAGAAGGG ACTGGAGTGG GTCGCATACA TTACTAGTGG CAGTGGTGCC ATCTACTATG CAGACACAGT GAGGGGCCGA TTCACCATCT CCAGAGACAC T C C CAAGAAC ACCCTGTTCC TGCAGATGAC CAGTCTAAGG TCTGAGGACA CGGCCATGTA TTACTGTGCA AGATCGGCTG ATGGTTTGGA CTACTGGGGT CAAGGAACCT CAGTCACCGT CTCCTCAGCC AAAACAACAC CCCCATCAGT CTATCCACTG GCCCCTGGGT GTGGAGATAC AACTG
  • AAACAGGGAA AATCTCCTCA GCTCCTGGTC TATGGTGCAA CAAACTTAGC AGATGGTGTG CCATCAAGGT TCAGTGGCAG TGGATCAGGC ACACAGTATT CCCTCAAGAT CAACAGCCTG AAGTCTGAAG ATTTTGGGAG TTATTACTGT CAACATTTTT GGGGTACTCC ATTCACGTTC GGCTCGGGGA CAAAGTTGGA AATAAAACGG GCTGATGCTG CACCAACTGT ATCCATCTTC CCACCATCCA GTGAGCAGTT AACATCTGGA GGTGCCTCAG TCGTGTGC
  • GAGCTACATC ACCAGCGGCA GCGGCCAT CTACTACGCC GACAGCGTGA AGGGCAGATT CACCATCAGC AGAGACAACG CCAAGAACAG CCTGTACCTG CAGATGAACA GCCTGAGAGC CGAGGACACC
  • GCCGTGTACT ACTGCGCCAG AAGCGCCGAC GGCCTGGACT ACTGGGGCCA GGGCACCACC GTGACCGTGA GCAGCGATGT GTGGGGCCAG GGCACCACCG TGACCGTGAG CAGCGCGTCG ACCAAGGGCC CATCGGTCTT CCCCCTGGCG CCCTGCTCCA

Abstract

Antibodies that neutralize Notum Pectinacetylesterase are described, as well as compositions comprising them, and methods of their use to treat diseases and disorders affecting the bone.

Description

ANTIBODIES THAT BIND NOTUM PECTIN ACETYLESTE RASE
[001] This application claims the benefit of U.S. Provisional Application No. 61/416,927, filed November 24, 2010, which is incorporated by reference herein in its entirety for any purpose.
1. FIELD OF THE INVENTION
[002] This invention relates to antibody inhibitors of Notum Pectinacetylesterase, compositions comprising them, and methods of their use.
2. BACKGROUND OF THE INVENTION
[003] Bone health depends on the coordinated activities of bone forming osteoblasts and bone resorbing osteoclasts. "Bone turnover reflects a balance between these anabolic and catabolic cellular functions and ensures that the mature skeleton can repair itself when damaged and sustain its endocrine function by release of minerals such as calcium and phosphorous into the circulation." Allen, J.G. et al., J. Med. Chem., 53 (June 10, 2010), pp. 4332 - 4353, 4332. Many disease states alter this balance, resulting in increased or decreased bone mass or changes in bone quality. Gradual loss of bone mineral density is known as osteopenia; severe loss of bone is known as osteoporosis. Id.
[004] The current standard of care for the treatment and prevention of osteoporosis utilizes the bisphosphonate class of oral, small molecule antiresportives. Id. at 4333. Zoledronic acid, raloxifene, calcium, and vitamin D supplements are also typically used in the osteoporosis treatment. Id. While antiresorptive agents can help prevent bone loss, anabolic agents "are capable of increasing bone mass to a greater degree ... and also have the capacity to improve bone quality and increase bone strength." Guo, H., et al., J. Med. Chem., 53 (February 25, 2010), pp. 1819 - 1829, 1819. In the United States, human PTH is the only FDA-approved anabolic agent. Id.; Allen at 4333. "Because of the paucity of available anabolic agents for osteoporosis treatment, there is an urgent need to develop small molecular compounds to treat this disease that are nontoxic, cost-effective, and easy to administer." Guo, at 1819.
[005] "Although the development of pharmacological agents that stimulate bone formation is less advanced compared to antiresorptive therapies, several pathways are known to facilitate osteoblast function." Allen at 4338. These pathways include bone morphogenic proteins, transforming growth factor β, parathyroid hormone, insulin-like growth factor, fibroblast growth factor, and wingless-type MMTV integration site (WNT) signaling. Id. Guo and coworkers recently reported results concerning the first of these pathways. Guo, supra. In particular, they reported that certain substituted benzothiophene and benzofuran compounds enhance bone morphogenic protein 2 expression in mice and rats. Two of the compounds reportedly stimulate bone formation and trabecular connectivity restoration in vivo. Id. at 1819. [006] Another of these pathways is the WNT pathway, which is implicated in a variety of developmental and regenerative processes. Allen at 4340. The pathway is complex, however, and much about it and about how its components affect bone remains unclear. For example, it has been suggested that LRP-5, mutations of which are associated with increased bone mass in humans, and β-catenin, through which canonical WNT signaling occurs, "may not be linked directly via WNT signaling to the control of bone mass." Id.
[007] Recent analysis of gene expression data has led to the identification of new targets of WNT signaling. See, e.g., Torisu, Y., et al., Cancer Sci., 99(6):1139-1146, 1143 (2008). One such target is Notum Pectinacetylesterase, also known as NOTUM and LOC174111.
3. SUMMARY OF THE INVENTION
[008] In some embodiments, a monoclonal antibody that binds human notum
pectinacetylesterase (NOTUM) and neutralizes at least one activity of NOTUM is provided. In some embodiments, the antibody binds to a NOTUM selected from mouse NOTUM, guinea pig NOTUM, cynomolgus monkey NOTUM, and rhesus monkey NOTUM. In some embodiments, the antibody has at least one activity selected from reducing NOTUM activity in a trisodium 8- octanoyloxypyrene-l,3,6-trisulfonate (OPTS) assay in vitro, and reducing NOTUM activity in a Wnt signaling assay in vitro. In some embodiments, the antibody has at least one activity selected from increasing serum PINP levels in vivo, increasing bone mineral density in vivo, increasing midshaft femur cortical thickness in vivo, increasing midshaft femur bone area in vivo, increasing midshaft humerus cortical thickness in vivo, increasing endocortical bone formation in vivo, increasing the proportion of cortical bone volume in the LV5 vertebral body in vivo, and increasing the proportion of femoral neck bone volume to femoral neck total volume in vivo. In some embodiments, an antibody that binds NOTUM binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with KD of less than 50 nM, less than 20 nM, or less than 10 nM.
[009] In some embodiments, the antibody has at least one binding characteristic selected from: a) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 83 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 84; b) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 85 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 86; c) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 94; d) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 99; e) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 95 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 2; f) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 7 and a light chain variable region having the amino acid sequence of SEQ ID NO: 8; g) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 15 and a light chain variable region having the amino acid sequence of SEQ ID NO: 16; h) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 23 and a light chain variable region having the amino acid sequence of SEQ ID NO: 24; i) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 31 and a light chain variable region having the amino acid sequence of SEQ ID NO: 32; j) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 39 and a light chain variable region having the amino acid sequence of SEQ ID NO: 40; k) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 47 and a light chain variable region having the amino acid sequence of SEQ ID NO: 48; and I) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 55 and a light chain variable region having the amino acid sequence of SEQ ID NO: 56.
[010] In some embodiments, the antibody is selected from a mouse antibody, a chimeric antibody, a humanized antibody, and a human antibody.
[011] In some embodiments, an antibody that binds NOTUM comprises a heavy chain and a light chain, wherein the heavy chain comprises at least one CDR selected from: a) a CDR1 comprising an amino acid sequence selected from SEQ ID NOs: 9, 17, 25, 33, 41, 49, and 90; b) a CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 10, 18, 26, 34, 42, and 50; and c) a CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 11, 19, 27, 35, 43, 51, and 91. In some embodiments, the heavy chain comprises a set comprising a CDR1, a CDR2, and a CDR3, wherein the set is selected from: a) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11; b) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 91; c) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19; d) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27; e) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 25, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27; f) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 91; g) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 33, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 35; h) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 41, a CDR2 having the amino acid sequence of SEQ ID NO: 42, and a CDR3 having the amino acid sequence of SEQ ID NO: 43; i) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 49, a CDR2 having the amino acid sequence of SEQ ID NO: 50, and a CDR3 having the amino acid sequence of SEQ ID NO: 51; and j) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 57, a CDR2 having the amino acid sequence of SEQ ID NO: 58, and a CDR3 having the amino acid sequence of SEQ ID NO: 59. In some embodiments, the heavy chain comprises a heavy chain variable regions comprising an amino acid sequence selected from SEQ ID NOs: 7, 15, 23, 31, 39, 47, 63, 67, 71, 75, and 79.
[012] In some embodiments, an antibody that binds NOTUM comprises a heavy chain and a light chain, wherein the light chain comprises at least one CDR selected from: a) a CDRl comprising an amino acid sequence selected from SEQ ID NOs: 12, 20, 28, 36, 44, 52, and 92; b) a CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 13, 21, 29, 37, 45, 53, 61, and 93; and c) a CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 14, 22, 30, 38, 46, 54, and 62. In some embodiments, the light chain comprises a set comprising a CDRl, a CDR2, and a CDR3, wherein the set is selected from: a) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14; b) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22; c) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22; d) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 30; e) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 28, a CDR2 having the amino acid sequence of SEQ ID NO: 29, and a CDR3 having the amino acid sequence of SEQ ID NO: 30; f) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 38; g) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 36, a CDR2 having the amino acid sequence of SEQ ID NO: 37, and a CDR3 having the amino acid sequence of SEQ ID NO: 38; h) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 44, a CDR2 having the amino acid sequence of SEQ ID NO: 45, and a CDR3 having the amino acid sequence of SEQ ID NO; 46; i) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 52, a CDR2 having the amino acid sequence of SEQ ID NO: 53, and a CDR3 having the amino acid sequence of SEQ ID NO: 54; and j) a set comprising a CDRl having the amino acid sequence of SEQ ID NO: 60, a CDR2 having the amino acid sequence of SEQ ID NO: 61, and a CDR3 having the amino acid sequence of SEQ ID NO: 62. In some embodiments, the light chain comprises a light chain variable regions comprising an amino acid sequence selected from SEQ ID NOs: 8, 16, 24, 32, 40, 48, 56, 65, 69, 73, 77, and 81.
[013] In some embodiments, an antibody that binds NOTUM comprises a heavy chain variable region and a light chain variable region, wherein: a) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14; or b) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 91, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22; or c) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19, and the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22; or d) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 30; or e) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 25, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 28, a CDR2 having the amino acid sequence of SEQ ID NO: 29, and a CDR3 having the amino acid sequence of SEQ ID NO: 30; or f) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 91, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 38; or g) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 33, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 35, and the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 36, a CDR2 having the amino acid sequence of SEQ ID NO: 37, and a CDR3 having the amino acid sequence of SEQ ID NO: 38; or h) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 41, a CDR2 having the amino acid sequence of SEQ ID NO: 42, and a CDR3 having the amino acid sequence of SEQ ID NO: 43, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 44, a CDR2 having the amino acid sequence of SEQ ID NO: 45, and a CDR3 having the amino acid sequence of SEQ ID NO: 46; or i) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 49, a CDR2 having the amino acid sequence of SEQ ID NO: 50, and a CDR3 having the amino acid sequence of SEQ ID NO: 51, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 52, a CDR2 having the amino acid sequence of SEQ ID NO: 53, and a CDR3 having the amino acid sequence of SEQ ID NO: 54; or j) the heavy chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 57, a CDR2 having the amino acid sequence of SEQ ID NO: 58, and a CDR3 having the amino acid sequence of SEQ ID NO: 59, and wherein the light chain variable region comprises a CDRl having the amino acid sequence of SEQ ID NO: 60, a CDR2 having the amino acid sequence of SEQ ID NO: 61, and a CDR3 having the amino acid sequence of SEQ ID NO: 62.
[014] In some embodiments, an antibody that binds NOTUM comprises a heavy chain variable region and a light chain variable region, wherein a) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 7 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 8; or b) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 15 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 16; or c) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 71 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 73; or d) the heavy chain comprises the amino acid sequence of SEQ ID NO: 72 and the light chain comprises the amino acid sequence of SEQ ID NO: 74; or e) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 23 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 24; or f) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 75 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 77; or g) the heavy chain comprises the amino acid sequence of SEQ ID NO: 76 and the light chain comprises the amino acid sequence of SEQ ID NO: 78; or h) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 31 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 32; or i) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 79 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 81; or j) the heavy chain comprises the amino acid sequence of SEQ ID NO: 80 and the light chain comprises the amino acid sequence of SEQ ID NO: 82; or k) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 39 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 40; or I) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 67 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 69; or m) the heavy chain comprises the amino acid sequence of SEQ ID NO: 68 and the light chain comprises the amino acid sequence of SEQ ID NO: 70; or n) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 47 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 48; or o) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 55 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 56; or p) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 63 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 65; or q) the heavy chain comprises the amino acid sequence of SEQ ID NO: 64 and the light chain comprises the amino acid sequence of SEQ ID NO: 66.
[015] In some embodiments, a nucleic acid molecule is provided that comprises a polynucleotide sequence that encodes a heavy chain or a light chain of an antibody that binds NOTUM and neutralizes at least one activity of NOTUM. In some embodiments, the nucleic acid molecule comprises a first polynucleotide sequence that encodes the heavy chain, and a second polynucleotide sequence that encodes the light chain. In some embodiments, the nucleic acid molecule is a vector. In some embodiments, a host cell comprising a nucleic acid molecule that comprises a polynucleotide sequence that encodes a heavy chain or a light chain of an antibody that binds NOTUM and neutralizes at least one activity of NOTUM is provided. In some embodiments, a host cell comprising a nucleic acid molecule that comprises a first polynucleotide sequence that encodes a heavy chain, and a second polynucleotide sequence that encodes a light chain, is provided. In some embodiments, a host cell comprises a first nucleic acid molecule comprising a polynucleotide sequence that encodes a heavy chain, and a second nucleic acid molecule comprising a polynucleotide sequence that encodes a light chain. In some embodiments, a method of producing an antibody that binds to NOTUM and neutralizes at least one activity of NOTUM is provided, comprising incubating a host cell under conditions sufficient to express the antibody.
[016] In some embodiments, a pharmaceutical composition comprising an antibody that binds NOTUM and neutralizes at least one activity of NOTUM is provided. In some embodiments, a method of stimulating endocortical bone formation in a patient, comprising administering an effective amount of the pharmaceutical composition is provided. In some embodiments, a method of treating, managing, or preventing a disease or disorder characterized by bone loss in a patient, comprising administering an effective amount of the pharmaceutica l composition is provided. In some embodiments, the disease or disorder is osteoporosis. In some embodiments, a single unit dosage form comprising the pharmaceutical composition is provided.
4. BRIEF DESCRIPTION OF THE FIGURES
[017] Figure 1 provides a graphical representation of differences between the cortical thicknesses of various bone sites in NOTUM homozygous knockout mice ("HOM") and those in the wildtype littermates ("WT").
[018] Figure 2 provides a graphical representation of an increase in cortical bone thicknesses observed in both NOTUIVI homozygous and heterozygous ("HET") knockout mice as compared to their wildtype littermates.
[019] Figure 3 provides a graphical representation of results obtained from femur breaking strength and spine compression tests performed on the bones of male NOTUM homozygous and heterozygous knockout mice and their wildtype littermates.
[020] Figure 4 provides a graphical representation of results obtained from femur breaking strength and spine compression tests performed on the bones of female NOTUIVI homozygous and heterozygous knockout mice and their wildtype littermates
[021] Figure 5 provides a graphical representation of certain human/mouse chimeric proteins, and indicates a region that appears to be involved in binding of NOTUM neutralizing antibodies in Bin 1, as described in Example 6.7.
[022] Figure 6 provides a graphical representation of midshaft femur cortical thickness measurements obtained in mice after eight weeks of administering MAb 2.1029 or MAb 2.78, as described in Example 6.9.1.
[023] Figure 7 provides a graphical representation of midshaft femur cortical thickness measurements obtained in mice after four weeks of administering various dosages of MAb 2.1029, as described in Example 6.9.2.
[024] Figure 8 provides a graphical representation of midshaft femur cortical thickness measurements obtained in mice after four weeks of administering various dosages of MAb 2.78b, described in Example 6.9.3. Figure 8A shows 3 mg/kg, 10 mg/kg, and 30 mg/kg dosages of MAb 2.78b. Figure 8B shows 0.3 mg/kg, 1 mg/kg, and 3 mg/kg dosages of MAb 2.78b.
[025] Figure 9 provides a graphical representation of midshaft femur cortical thickness measurements (A) and serum PINP levels (B) obtained in mice after 4 weeks of administering MAb 2.78b, with and without pretreatment with zoledronate, as described in Example 6.9.4. [026] Figure 10 provides a graphical representation of midshaft femur cortical thickness measurements obtained in mice after 4 weeks of administering MAb 2.78a, as described in Example 6.9.5.
[027] Figure 11 provides a graphical representation of midshaft femur cortical thickness measurements (A) and midshaft humerus cortical thickness measurements (B) obtained in mice after 12 weeks of administering MAb 2.78a, as described in Example 6.9.6.
[028] Figure 12 provides a graphical representation of midshaft femur cortical thickness measurements (A), midshaft humerus cortical thickness measurements (B), and ninth rib cortical thickness (C) obtained in mice after 24 weeks of administering MAb 2.78a, as described in Example 6.9.6.
[029] Figure 13 provides a graphical representation of midshaft femur cortical thickness (A) and midshaft femur mineralized bone area (B) in sham surgery and ovariectomized mice administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.3.
[030] Figure 14 provides a graphical representation of the proportion in the LV5 vertebral body of bone volume to total volume (A), the proportion in the LV5 vertebral body of cortical bone volume to total volume (B), and the proportion in the LV5 vertebral body of trabecular bone volume to total volume (C) in sham surgery and ovariectomized mice administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.3.
[031] Figure 15 provides a graphical representation of the proportion of femoral neck bone volume to total volume in sham surgery and ovariectomized mice administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.3.
[032] Figure 16 provides a graphical representation of the percentage of the endocortical surface of the midshaft femur cross-sections that were labeled with calcein, alizarin, and tetracycline in sham surgery and ovariectomized mice administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.4.
[033] Figure 17 provides a graphical representation of the mineral apositional rate (A) and the volume-referent bone formation rate (B) in sham surgery and ovariectomized mice
administered NOTUM neutralizing antibody 2.78b or control antibody, as described in Example 6.10.4.
5. DETAILED DESCRIPTION OF THE INVENTION
[034] This invention is based, in part, on the discovery that inhibition of NOTUM can affect endocortical bone formation. Particular aspects of the invention are based on studies of mice lacking a functional NOTUM gene ("knockout mice"), on the development of antibodies that inhibit NOTU M, and on the discovery that such antibodies can be used to stimulate cortical bone formation in mice and rats.
[035] The section headings used herein are for organizatio nal purposes only and a re not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application, including patents, patent applications, articles, books, and treatises are hereby expressly incorporated by reference in their entirety for any purpose. In the event that one or more of the incorporated literature and similar materials defines a term that contradicts that term's definition in this application, this application controls.
5.1. Definitions
[036] The term "antibody," as used herein, refers to an intact antibody or a fragment of an antibody that com petes with the intact antibody for antigen bind ing. Antibody fragments include, but are not limited to, Fab, Fab', F(ab')2, Fv, scFv, Fd, diabodies, and other antibody fragments that retain at least a portion of the variable region of an intact antibody. See, e.g., Hudson et al. (2003) Nat. Med. 9:129-134. In some embodiments, antibody fragments are produced by enzymatic or chemical cleavage of intact antibodies. In some embodiments, antibody fragments are produced by recombinant DNA techniques.
[037] The term "antigen-binding site" refers to a portion of an antibody capable of specifically binding an antigen. In some embodiments, an antigen-binding site is provided by one or more antibody variable regions.
[038] The term "binding affinity" refers to a qualitative or quantitative determination of the strength with which an antibody binds to an antigen. In some embodiments, the binding affinity is the dissociation constant (KD) of the antibody for the antigen. In some embodiments, the binding affinity of an antibody for an antigen is determined qualitatively, such as relative to the binding affinity of a different antibody for an a ntigen, or relative to the binding affinity of the same antibody for a different antigen (such as the antigen with one or more changes in its amino acid sequence). The binding affinity of an antibody for a first antigen is considered "stronger" than its affinity for a second antigen, for example, when the KD of the antibody for the first antigen is lower than the KD of the antibody for the second antigen. In some em bodiments, the binding affinity of an antibody for a first antigen is considered "stronger" when the KD of the antibody for the first antigen is at least 1.5-fold, at least 2-fold, at least 3-fold, at least 5-fold, or at least 10-fold lower than the KD of the antibody for the second antigen. Conversely, the binding affinity of an antibody for a first a ntigen is considered "weaker" than its affinity for a second antigen, for example, when the KD of the antibody for the first antigen is higher than the KD of the antibody for the second antigen. In some embodiments, the binding affinity of an antibody for a first antigen is considered "weaker" when the KD of the antibody for the first antigen is at least 1.5-fold, at least 2-fold, at least 3-fold, at least 5-fold, or at least 10-fold higher than the KD of the antibody for the second antigen.
[039] A "chimeric" antibody refers to an antibody made up of components from at least two different sources. In some embodiments, a chimeric antibody comprises a portion of an antibody derived from a first species fused to another molecule, e.g., a portion of an antibody derived from a second species. In some such embodiments, a chimeric antibody comprises a portion of an antibody derived from a non-human animal fused to a portion of an antibody derived from a human. In some such embodiments, a chimeric antibody comprises all or a portion of a variable region of an antibody derived from a non-human animal fused to a constant region of an antibody derived from a human.
[040] The term "epitope" refers to any polypeptide determinant capable of specifically binding to an immunoglobulin or a T-cell receptor. In some embodiments, an epitope is a region of an antigen that is specifically bound by an antibody. In some embodiments, an epitope may include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl, or sulfonyl groups. In some embodiments, an epitope may have specific three dimensional structural characteristics (e.g., a "conformational" epitope) and/or specific charge characteristics.
[041] An epitope is defined as "the same" as another epitope if a particular antibody specifically binds to both epitopes. In some embodiments, polypeptides having different primary amino acid sequences may comprise epitopes that are the same. Different antibodies are said to bind to the same epitope if they compete for specific binding to that epitope.
[042] A "fragment" of a reference polypeptide refers to a contiguous stretch of amino acids from any portion of the reference polypeptide. A fragment may be of any length that is less than the length of the reference polypeptide. In some embodiments, a fragment is a contiguous stretch of amino acids from any portion of the reference polypeptide that has a particular activity or contains a particular epitope.
[043] The term "human antibody" refers to a monoclonal antibody that contains human antibody sequences and does not contain antibody sequences from a non-human animal. In some embodiments, a human antibody may contain synthetic sequences not found in native antibodies. The term is not limited by the manner in which the antibodies are made. For example, in various embodiments, a human antibody may be made in a transgenic mouse, by phage display, by human B-lymphocytes, or by recombinant methods.
[044] A "humanized" antibody refers to a non-human antibody that has been modified so that it more closely matches (in amino acid sequence) a human antibody. A humanized antibody is thus a type of chimeric antibody. In some embodiments, amino acid residues outside of the antigen binding residues of the variable region of the non-human antibody are modified. In some embodiments, a humanized antibody is constructed by replacing all or a portion of one or more complementarity determining region (CDRs) of a human antibody with all or a portion of one or more CDRs from another antibody, such as a non-human antibody, having the desired antigen binding specificity. In some embodiments, a humanized antibody comprises variable regions in which all or substantially all of the CDRs correspond to CDRs of a non-human antibody and all or substantially all of the framework regions (FRs) correspond to FRs of a human antibody. In some embodiments, one or more amino acids within one or more CDRs of the non-human antibody are changed in the humanized antibody, e.g., through a process of affinity maturation. Exemplary methods of affinity maturation are known in the art. In some such embodiments, a humanized antibody further comprises a constant region (Fc) of a human antibody.
[045] Unless otherwise indicated, the term "include" has the same meaning as "include, but are not limited to," the term "includes" has the same meaning as "includes, but is not limited to," and the term "including" has the same meaning as "including, but not limited to." Similarly, the term "such as" has the same meaning as the term "such as, but not limited to."
[046] Unless otherwise indicated, the terms "manage," "managing" and "management" encompass preventing the recurrence of the specified disease or disorder in a patient who has already suffered from the disease or disorder, and/or lengthening the time that a patient who has suffered from the disease or disorder remains in remission. The terms encompass modulating the threshold, development and/or duration of the disease or disorder, or changing the way that a patient responds to the disease or disorder.
[047] The term "monoclonal antibody" refers to an antibody from a substantially homogeneous population of antibodies that specifically bind to the same epitope. In some embodiments, a monoclonal antibody is secreted by a hybridoma. In some such embodiments, a hybridoma is produced according to some methods known to those skilled in the art. See, e.g., Kohler and Milstein (1975) Nature 256: 495-499. In some embodiments, a monoclonal antibody is produced using recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567). In some embodiments, a monoclonal antibody refers to an antibody fragment isolated from a phage display library. See, e.g., Clackson et al. (1991) Nature 352: 624-628, and Marks et al. (1991) J. Mol. Biol. 222: 581-597. For various other monoclonal antibody production techniques, see, e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
[048] The term "neutralizing antibody" or "antibody that neutralizes" refers to an antibody that reduces at least one activity of a polypeptide comprising the epitope to which the antibody specifically binds. In some embodiments, a neutralizing antibody reduces an activity of the polypeptide in vitro and/or in vivo.
[049] The term "NOTUM" refers to notum pectinaceylesterase having an amino acid sequence from any vertebrate or mammalian source, including human, bovine, chicken, rodent, mouse, rat, porcine, ovine, primate, monkey, and guinea pig, unless specified otherwise. The term also refers to fragments and variants of native NOTUM that maintain at least one in vivo or in vitro activity of a native NOTUM. The term encompasses full-length unprocessed precursor forms of NOTUM as well as mature forms resulting from post-translational cleavage of a signal peptide and other forms of proteolytic processing. In some embodiments, a full-length, unprocessed human NOTUM has the amino acid sequence set forth in SEQ ID NO: 1. In some embodiments, a full- length, unprocessed mouse NOTUM has the amino acid sequence set forth in SEQ ID NO: 2.
[050] The terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers containing naturally occurring amino acids as well as amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid. The amino acid polymers can be of any length. The term "native polypeptide" refers to a naturally occurring polypeptide.
[051] Unless otherwise indicated, the terms "prevent," "preventing" and "prevention" contemplate an action that occurs before a patient begins to suffer from the specified disease or disorder, which inhibits or reduces the severity of the disease or disorder. In other words, the terms encompass prophylaxis.
[052] Unless otherwise indicated, a "prophylactically effective amount" of a compound is an amount sufficient to prevent a disease or condition, or one or more symptoms associated with the disease or condition, or prevent its recurrence. A "prophylactically effective amount" of a compound means an amount of therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease. The term "prophylactically effective amount" can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.
[053] An antibody "specifically binds" an antigen when it preferentially recognizes the antigen in a complex mixture of proteins and/or macromolecules. In some embodiments, an antibody comprises an antigen-binding site that specifically binds to a particular epitope. In some such embodiments, the antibody is capable of binding different antigens so long as the different antigens comprise that particular epitope. In some instances, for example, homologous proteins from different species may comprise the same epitope. In some embodiments, an antibody is said to specifically bind an antigen when the dissociation constant (KD) is < 1 μΜ, in some embodiments, when the dissociation constant is < 100 nM, and in some embodiments, when the dissociation constant is < 10 nM.
[054] The terms "subject" and "patient" include both humans and animals. In some embodiments, a subject or patient is a mammal. In some such embodiments, a subject or patient is a human. [055] Unless otherwise indicated, a "therapeutically effective amount" of a compound is an amount sufficient to provide a therapeutic benefit in the treatment or management of a disease or condition, or to delay or minimize one or more symptoms associated with the disease or condition. A "therapeutically effective amount" of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment or management of the disease or condition. The term "therapeutically effective amount" can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of a disease or condition, or enhances the therapeutic efficacy of another therapeutic agent.
[056] Unless otherwise indicated, the terms "treat," "treating" and "treatment" contemplate an action that occurs while a patient is suffering from the specified disease or disorder, which reduces the severity of the disease or disorder, or retards or slows the progression of the disease or disorder.
5.2. Antibodies
5.2.1. Exemplary Antibody Structure
[057] A native antibody typically has a tetrameric structure. A tetramer typically comprises two identical pairs of polypeptide chains, each pair having one light chain (In some embodiments, about 25 kDa) and one heavy chain (In some embodiments, about 50-70 kDa). In a native antibody, a heavy chain comprises a variable region, VH, and three constant regions, CHI, CH2, and CH3. The VH domain is at the amino-terminus of the heavy chain, and the CH3 domain is at the carboxy-terminus. In a native antibody, a light chain comprises a variable region, VL, and a constant region, CL. The variable region of the light chain is at the amino-terminus of the light chain. In a native antibody, the variable regions of each light/heavy chain pair typically form the antigen binding site. The constant regions are typically responsible for effector function.
[058] Native human light chains are typically classified as kappa and lambda light chains. Native human heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. IgG has subclasses, including IgGl, lgG2, lgG3, and lgG4. IgM has subclasses including IgMl and lgM2. IgA has subclasses including IgAl and lgA2. Within native human light and heavy chains, the variable and constant regions are typically joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D" region of about 10 more amino acids. See, e.g., Fundamental Immunology (1989) Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y.).
[059] In a native antibody, the variable regions typically exhibit the same general structure in which relatively conserved framework regions (FRs) are joined by three hypervariable regions, also called complementarity determining regions (CDRs). The CDRs from the two chains of each pair typically are aligned by the framework regions, which may enable binding to a specific epitope. From N-terminus to C-terminus, both light and heavy chain variable regions typically comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The CDRs on the heavy chain are referred to as HI, H2, and H3, while the CDRs on the light chain are referred to as LI, L2, and L3. Typically, CDR3 is the greatest source of molecular diversity within the antigen binding site. H3, for example, in certain instances, can be as short as two amino acid residues or greater than 26. The assignment of amino acids to each domain is typically in accordance with the definitions of Kabat et al. (1991) Sequences of Proteins of Immunological Interest (National Institutes of Health,
Publication No. 91-3242, vols. 1-3, Bethesda, MD); Chothia, C, and Lesk, A.M. (1987) J. Mol. Biol. 196:901-917; or Chothia, C. et al. Nature 342:878-883 (1989). In the present application, the term "CDR" refers to a CDR from either the light or heavy chain, unless otherwise specified.
[060] A "Fab" fragment comprises one light chain and the CHI and variable region of one heavy chain. The heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule. A " Fab' " fragment comprises one light chain and one heavy chain that comprises additional constant region, extending between the CHI and CH2 domains. An interchain disulfide bond can be formed between two heavy chains of a Fab' fragment to form a "F(ab')2" molecule.
[061] An "Fv" fragment comprises the variable regions from both the heavy and light chains, but lacks the constant regions. A single-chain Fv (scFv) fragment comprises heavy and light chain variable regions connected by a flexible linker to form a single polypeptide chain with an antigen-binding region. Exemplary single chain antibodies are discussed in detail in WO 88/01649 and U.S. Patent Nos. 4,946,778 and 5,260,203. In certain instances, a single variable region (i.e., a heavy chain variable region or a light chain variable region) may have the ability to recognize and bind antigen.
[062] As used herein, the term "heavy chain" refers to a polypeptide comprising sufficient heavy chain variable region sequence to confer antigen specificity either alone or in combination with a light chain.
[063] As used herein, the term "light chain" refers to a polypeptide comprising sufficient light chain variable region sequence to confer antigen specificity either alone or in combination with a heavy chain.
5.2.2. Exemplary Antibodies
[064] In some embodiments, monoclonal antibodies that specifically bind to NOTUM are provided. In some such embodiments, the monoclonal antibodies are neutralizing antibodies that reduce at least one activity of NOTUM in vivo and/or in vitro.
[065] In some embodiments, a neutralizing antibody against NOTUM reduces NOTUM activity in a trisodium 8-octanoyloxypyrene-l,3,6-trisulfonate (OPTS) assay in vitro. In some embodiments, a neutralizing antibody against NOTUM reduces NOTUM activity in a Wnt signaling assay in vitro.
[066] In some embodiments, a neutralizing antibody against NOTUM increases serum PINP levels in vivo when administered to a subject in a sufficient amount and for a sufficient duration. Exemplary dosages and dosing schedules for administering a sufficient amount for a sufficient duration are discussed herein. In some embodiments, a neutralizing antibody against NOTUM increases bone mineral density. In some embodiments, a neutralizing antibody against NOTUM increases midshaft femur cortical thickness in vivo. In some embodiments, a neutralizing antibody against NOTUM increases midshaft femur bone area in vivo. In some embodiments, a neutralizing antibody against NOTUM increases midshaft humerus cortical thickness in vivo. In some embodiments, a neutralizing antibody against NOTUM increases endocorticai bone formation in vivo. In some embodiments, a neutralizing antibody against NOTUM increases the proportion of cortical bone volume in the LV5 vertebral body in vivo. By "proportion of cortical bone volume in the LV5 vertebral body" is meant the proportion of cortical bone volume to total volume of the LV5 vertebral body. In some embodiments, a neutralizing antibody against NOTUM increases the proportion of femoral neck bone volume to total volume of the femoral neck in vivo.
[067] In some embodiments, neutralizing antibodies that specifically bind to mouse NOTUM are provided. In some embodiments, neutralizing antibodies that specifically bind to human NOTUM are provided. In some embodiments, neutralizing antibodies that bind to a region from Q47 to M177 of human NOTUM are provided. In some embodiments, neutralizing antibodies that depend upon a region from Q47 to M177 of human NOTUM for binding are provided. In some embodiments, neutralizing antibodies that specifically bind to the same region of NOTUM from different species (i.e., antibodies that demonstrate cross-reactivity) are provided. In some embodiments, neutralizing antibodies that bind to human NOTUM and NOTUM from at least one species selected from mouse, rat, guinea pig, cynomolgus monkey, marmoset, and rhesus macaque, are provided. In some such embodiments, the antibodies specifically bind to both non-human primate NOTUM and human NOTUM. In some embodiments, the antibodies specifically bind to both mouse NOTUM and human NOTUM.
[068] In some embodiments, neutralizing antibodies that bind to a region of human NOTUM from Q47 to M177 are provided. In some embodiments, neutralizing antibodies that depend upon a region of human NOTUM from Q47 to M177 for binding are provided. In some embodiments, NOTUM neutralizing antibodies are provided that bind to human-mouse chimeric NOTUM (SEQ ID NO: 83) with an affinity that is at least 5-fold, at least 10-fold, or at least 20-fold stronger than the affinity for mouse-human chimeric NOTUM (SEQ ID NO: 84). In some
embodiments, NOTUM neutralizing antibodies are provided that bind to human-mouse-human chimeric NOTUM (SEQ ID NO: 85) with an affinity that is at least 5-fold, at least 10-fold, or at least 20-fold stronger than the affinity for mouse-human-mouse chimeric NOTUM (SEQ ID NO: 86). In some embodiments, NOTUM neutralizing antibodies are provided that bind to human NOTUM (SEQ ID NO: 1) with an affinity that is at least 5-fold, at least 10-fold, or at least 20-fold stronger than the affinity for NOTUM D141S (SEQ ID NO: 94). In some embodiments, NOTUM neutralizing antibodies are provided that bind to mouse NOTUM S148D (SEQ ID NO: 95) with an affinity that is at least 5- fold, at least 10-fold, or at least 20-fold stronger than the affinity for mouse NOTUM (SEQ ID NO: 2). In some embodiments, NOTUM neutralizing antibodies are provided that bind to human NOTUM (SEQ ID NO: 1) with an affinity that is at least 5-fold, at least 10-fold, or at least 20-fold stronger than the affinity for human NOTUM R144A/R145A (SEQ ID NO: 99).
[069] In some embodiments, a neutralizing antibody against NOTUM binds to human NOTUM (SEQ ID NO: 1) with an affinity (KD) of less than 100 nM, less than 50 nM, less than 40 nM, less than 30 nM, less than 25 nM, less than 20 nM, less than 15 nM, less than 10 nM, less than 5 nM, less than 3 nM, or less than 2 nM, determined as described in Example 6.8. In some embodiments, a neutralizing antibody against NOTUM has an IC50 in an OPTS assay of less than 100 nM, less than 75 nM, less than 50 nM, less than 40 nM, less than 30 nM, less than 25 nM, less than 20 nM, less than 15 nM, or less than 10 nM, determined as described in Example 6.4.1. In some embodiments, a neutralizing antibody against NOTUM has an IC50 in a Wnt signaling assay of less than 100 nM, less than 75 nM, less than 50 nM, less than 40 nM, less than 30 nM, less than 25 nM, less than 20 nM, less than 15 nM, or less than 10 nM, determined as described in Example 6.4.2. In some embodiments, the IC50 is for human NOTUM. In some embodiments, the IC50 is for mouse NOTUM.
[070] In some embodiments, neutralizing antibodies are non-human monoclonal antibodies. In some such embodiments, neutralizing antibodies are rodent monoclonal antibodies. In some such embodiments, neutralizing antibodies are mouse monoclonal antibodies. In some embodiments, neutralizing antibodies are chimeric monoclonal antibodies. In some embodiments, neutralizing antibodies are humanized monoclonal antibodies. In some embodiments, neutralizing antibodies are human monoclonal antibodies. In some embodiments, chimeric, humanized, and/or human monoclonal antibodies are useful as therapeutic antibodies in humans.
[071] In some embodiments, neutralizing antibodies are antibody fragments. Exemplary antibody fragments include, but are not limited to, Fab, Fab', F(ab')2, Fv, scFv, Fd, diabodies, and the like.
[072] Nonlimiting exemplary NOTUM neutralizing antibodies include MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78. Each of MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78 neutralizes at least one activity of NOTUM. Further, at least MAbs 1.802, 1.815, 1.846, and 2.78 are dependent for binding to NOTUM on at least a portion of the region of human NOTUM bounded by amino acids Q47 to M177. In some embodiments, a NOTUIVI neutralizing antibody competes for binding to NOTUM with at least one antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78. In some embodiments, a NOTU M neutralizing antibody binds to an epitope of NOTUM that at least partially overlaps with the epitope bound by at least one antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78. In addition, in some embodiments, an antibody that competes for binding to NOTUM with at least one antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78 is predicted to be a NOTUM neutralizing antibody. The sequences of the CDRs and variable regions of MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78 are shown in Section 7, below.
[073] In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 1.731 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 1.802 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 1.815 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 1.846 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 2.1029 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 2.55 binds. In some embodiments, NOTUM neutralizing antibodies are provided that bind to the same epitope to which MAb 2.78 binds.
[074] In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region selected from SEQ ID NOs: 7, 15, 23, 31, 39, and 47. In some embodiments, a NOTUM neutralizing antibody comprises a light chain variable region selected from SEQ ID NOs: 8, 16, 24, 32, 40, and 48. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 7, and a light chain variable region having the amino acid sequence of SEQ ID NO: 8. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 15, and a light chain variable region having the amino acid sequence of SEQ ID NO: 16. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 23, and a light chain variable region having the amino acid sequence of SEQ ID NO: 24. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 31, and a light chain variable region having the amino acid sequence of SEQ ID NO: 32. In some
embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 39, and a light chain variable region having the amino acid sequence of SEQ ID NO: 40. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain variable region having the amino acid sequence of SEQ ID NO: 47, and a light chain variable region having the amino acid sequence of SEQ ID NO: 48. [075] In some embodiments, a NOTU neutralizing antibody comprises a heavy chain
CDRl selected from SEQ ID NOs: 9, 17, 25, 33, 41, 49, and 90. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain CDR2 selected from SEQ ID NOs: 10, 18, 26, 34, 42, and 50. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain CDR3 selected from SEQ ID NOs: 11, 19, 27, 35, 43, 51, and 91. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 17 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having an amino acid sequence selected from SEQ ID NOs: 19 and 91. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 25 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 25, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 33 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having an amino acid sequence selected from SEQ ID NOs: 35 and 91. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 33, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 35. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 41, a CDR2 having the amino acid sequence of SEQ ID NO: 42, and a CDR3 having the amino acid sequence of SEQ ID NO: 43. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 49, a CDR2 having the amino acid sequence of SEQ ID NO: 50, and a CDR3 having the amino acid sequence of SEQ ID NO: 51. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 57, a CDR2 having the amino acid sequence of SEQ ID NO: 58, and a CDR3 having the amino acid sequence of SEQ ID NO: 59. In some embodiments, Xx in SEQ ID NO: 90 is selected from Y and F. In some embodiments, X2 in SEQ ID NO: 91 is selected from H and N. [076] In some embodiments, a NOTUM neutralizing antibody comprises a light chain CDRl selected from SEQ ID NOs: 12, 20, 28, 36, 44, 52, 60, and 92. In some embodiments, a NOTUM neutralizing antibody comprises a light chain CDR2 selected from SEQ ID NOs: 13, 21, 29, 37, 45, 53, 61, and 93. In some embodiments, a NOTUM neutralizing antibody comprises a light chain CDR3 selected from SEQ ID NOs: 14, 22, 30, 38, 46, 54, and 62. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 20 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 21 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 28 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 29 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 30. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 28, a CDR2 having the amino acid sequence of SEQ ID NO: 29, and a CDR3 having the amino acid sequence of SEQ ID NO: 30. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 36 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 37 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 38. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 36, a CDR2 having the amino acid sequence of SEQ ID NO: 37, and a CDR3 having the amino acid sequence of SEQ ID NO: 38. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 44, a CDR2 having the amino acid sequence of SEQ ID NO: 45, and a CDR3 having the amino acid sequence of SEQ ID NO: 46. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 52, a CDR2 having the amino acid sequence of SEQ ID NO: 53, and a CDR3 having the amino acid sequence of SEQ ID NO: 54. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 60, a CDR2 having the amino acid sequence of SEQ ID NO: 61, and a CDR3 having the amino acid sequence of SEQ ID NO: 62. In some embodiments, X3 in SEQ ID NO: 92 is selected from I and S; X4 in SEQ ID NO: 92 is selected from T and E; and X5 in SEQ ID NO: 92 is selected from and I. In some embodiments, X6 in SEQ ID NO: 93 is selected from D and N.
[077] In some embodiments, a NOTU neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 17 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having an amino acid sequence selected from SEQ ID NOs: 19 and 91; and a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 20 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 21 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 25 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27; and a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 28 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 29 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 30. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 25, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 28, a CDR2 having the amino acid sequence of SEQ ID NO: 29, and a CDR3 having the amino acid sequence of SEQ ID NO: 30. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 33 and 90, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having an amino acid sequence selected from SEQ ID NOs: 35 and 91; and a light chain comprising a CDRl having an amino acid sequence selected from SEQ ID NOs: 36 and 92, a CDR2 having an amino acid sequence selected from SEQ ID NOs: 37 and 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 38. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 33, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 35; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 36, a CDR2 having the amino acid sequence of SEQ ID NO: 37, and a CDR3 having the amino acid sequence of SEQ ID NO: 38. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 41, a CDR2 having the amino acid sequence of SEQ ID NO: 42, and a CDR3 having the amino acid sequence of SEQ ID NO: 43; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 44, a CDR2 having the amino acid sequence of SEQ ID NO: 45, and a CDR3 having the amino acid sequence of SEQ ID NO: 46. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 49, a CDR2 having the amino acid sequence of SEQ ID NO: 50, and a CDR3 having the amino acid sequence of SEQ ID NO: 51; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 52, a CDR2 having the amino acid sequence of SEQ ID NO: 53, and a CDR3 having the amino acid sequence of SEQ ID NO: 54. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 57, a CDR2 having the amino acid sequence of SEQ ID NO: 58, and a CDR3 having the amino acid sequence of SEQ ID NO: 59; and a light chain comprising a CDRl having the amino acid sequence of SEQ ID NO: 60, a CDR2 having the amino acid sequence of SEQ ID NO: 61, and a CDR3 having the amino acid sequence of SEQ ID NO: 62. In some embodiments, Xx in SEQ ID NO: 90 is selected from Y and F. In some embodiments, X2 in SEQ ID NO: 91 is selected from H and N. In some
embodiments, X3 in SEQ ID NO: 92 is selected from I and S; X4 in SEQ ID NO: 92 is selected from T and E; and X5 in SEQ ID NO: 92 is selected from M and I. In some embodiments, X6 in SEQ ID NO: 93 is selected from D and N.
[078] In some embodiments, NOTUM neutralizing antibodies that specifically bind human NOTUM are provided. In some embodiments, NOTUM neutralizing antibodies that specifically bind to the same epitope in NOTUM from different species (i.e., antibodies that demonstrate cross- reactivity) are provided. In some embodiments, NOTUM neutralizing antibodies that specifically bind human NOTUM and also specifically bind at least one species of NOTUM selected from mouse, rat, guinea pig, cynomolgus monkey, marmoset, and rhesus macaque are provided. In some embodiments, NOTUM neutralizing antibodies that specifically bind human NOTUM and NOTUM from at least one species of non-human primate are provided. In some embodiments, NOTUM neutralizing antibodies that specifically bind human NOTUM and mouse NOTUM are provided.
5.2.2.1. Chimerized and humanized monoclonal antibodies
[079] In some embodiments, non-human antibodies are chimerized. In some
embodiments, mouse monoclonal antibodies that specifically bind human NOTUM are chimerized. Certain exemplary methods for making chimeric antibodies are provided, for example, in Morrison et a l. (1984) Proc. Nat'l Acad. Sci. USA 81:6851-6855; Neuberger et al. (1984) Nature 312:604-608; Ta keda et al. (1985) Nature 314:452-454; and U.S. Patent Nos. 6,075,181 and 5,877,397.
[080] I n some embodiments, non-human antibodies are "huma nized ." In some embodiments, mouse monoclonal antibodies that specifically bind hu man NOTUM are humanized. In some embodiments, mouse monoclonal antibodies raised against mouse NOTUM, but which specifically bind (i.e., cross react) with human NOTUM, are humanized. In some embodiments, humanized antibodies retain their binding specificity and have reduced imm unogenicity (e.g., reduced human anti-mouse antibody (HAMA) response) when administered to a human. In some embodiments, humanization is achieved by methods including CDR grafting and human engineering, as described in detail below.
[081] In some embodiments of humanized antibodies, one or more complementarity determining regions (CDRs) from the light and heavy chain variable regions of an antibody with the desired binding specificity (the "donor" antibody) are grafted onto human framework regions (FRs) in an "acceptor" antibody. Exemplary CDR grafting is described, e.g., in U.S. Patent Nos. 6,180,370, 5,693,762, 5,693,761, 5,585,089, a nd 5,530,101; Queen et al. ( 1989) Proc. Nat'l Acad. Sci. USA 86: 10029-10033. In some embodiments, one or more CDRs from the light a nd heavy chain variable regions are grafted onto consensus human FRs in an acceptor antibody. To create consensus human FRs, in some embodiments, FRs from several human heavy chain or light chain amino acid sequences are aligned to identify a consensus amino acid seq uence.
[082] In some embodiments, certain FR amino acids in the acceptor antibody are replaced with FR amino acids from the donor antibody. In certain such embodiments, FR amino acids from the donor antibody are amino acids that contribute to the affinity of the donor antibody for the target antigen. See, e.g., in U.S. Patent Nos. 6,180,370, 5,693,762, 5,693,761, 5,585,089, and 5,530,101; Queen et al. (1989) Proc. Nat'l Acad. Sci. USA 86:10029-10033. In some embodiments, computer programs are used for modeling donor and/or acceptor antibodies to identify residues that are likely to be involved in binding antigen and/or to contribute to the structure of the antigen binding site, thus assisting in the selection of residues, such as FR residues, to be replaced in the donor antibody.
[083] In some embodiments, CDRs from a donor antibody are grafted onto an acceptor antibody comprising a human constant region. In some such embodiments, FRs are also grafted onto the acceptor. In some embodiments, CDRs from a donor antibody are derived from a single chain Fv antibody. In some embodiments, FRs from a donor antibody are derived from a single chain Fv antibody. In some embodiments, grafted CDRs in a humanized antibody are further modified (e.g., by amino acid substitutions, deletions, or insertions) to increase the affinity of the huma nized a ntibody for the target antigen. In some embodiments, grafted FRs in a humanized a ntibody are further modified (e.g., by amino acid substitutions, deletions, or insertions) to increase the affinity of the humanized antibody for the target antigen.
[084] In some embodiments, non-human antibodies may be humanized using a "human engineering" method. See, e.g., U.S. Patent Nos. 5,766,886 and 5,869,619. In some embodiments of human engineering, information on the structure of antibody va riable domains (e.g., information obtained from crystal structures and/or molecular modeling) is used to assess the likelihood that a given amino acid residue in a variable region is (a) involved in antigen binding, (b) exposed on the antibody surface (i.e., accessible to solvent), or (c) buried within the antibody variable region (i.e., involved in maintaining the structure of the variable region). Furthermore, in some embodiments, human variable region consensus sequences are generated to identify residues that are conserved among human variable regions. In some embodiments, that information provides guidance as to whether an amino acid residue in the variable region of a non-huma n antibody should be substituted.
[085] In some embodiments, a humanized NOTUM neutra lizing antibody comprises a heavy chain com prising at least one of CDRl, CDR2, and CDR3 of an a ntibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78. In some embod iments, a NOTUM neutralizing antibody comprises a heavy chain comprising CDRl, CDR2, and CDR3 of an antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78. In some embodiments, a NOTUM neutralizing a ntibody com prises a light chain comprising at least one of CDRl, CDR2, and CDR3 of an antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising CDRl, CDR2, and CDR3 of an antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78. In some embodiments, a NOTU M neutralizing antibody comprises heavy chain CDRl, CDR2, and CDR3, and light chain CDRl, CDR2, and CDR3 from an antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, and 2.78.
[086] In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising an amino acid sequence selected from SEQ ID NOs: 63, 67, 71, 75, and 79. In some embodiments, a NOTU M neutralizing antibody comprises a heavy chain comprising an amino acid sequence selected from SEQ I D NOs: 64, 68, 72, 76, and 80. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising an amino acid sequence selected from SEQ ID NOs: 65, 69, 73, 77, and 81. In some embodiments, a NOTUM neutralizing antibody comprises a light chain comprising an amino acid sequence selected from SEQ ID NOs: 66, 70, 74, 78, and 82. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 63 and a light chain comprising the amino acid sequence of SEQ I D NO: 65. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising the a mino acid sequence of SEQ ID NO: 67 a nd a light chain comprising the a mino acid seq uence of SEQ I D NO: 69. In some embodiments, a NOTUM neutralizing antibody com prises a heavy chain comprising the amino acid sequence of SEQ ID NO: 71 and a light chain comprising the amino acid sequence of SEQ ID NO: 73. In some embodiments, a NOTU M neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 75 and a light chain comprising the amino acid sequence of SEQ ID NO: 77. In some embodiments, a NOTU M neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 79 and a light chain comprising the amino acid sequence of SEQ ID NO: 81. In some embodiments, a NOTUM neutra lizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 64 and a light chain comprising the amino acid sequence of SEQ ID NO: 66. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising the amino acid seq uence of SEQ I D NO: 68 and a light chain com prising the amino acid sequence of SEQ ID NO: 70. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 72 and a light chain comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, a NOTU M neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 76 and a light chain comprising the amino acid sequence of SEQ I D NO: 78. In some embodiments, a NOTUM neutralizing antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 80 and a light chain comprising the amino acid sequence of SEQ ID NO: 82.
5.2.2.2. Antibody isotypes
[087] In some embodiments, an antibody against NOTUM is of any isotype selected from IgM, IgD, IgG, IgA, and IgE. In some embodiments, an antibody against NOTUM is of the IgG isotype. In certain such embodiments, an antibody is of the subclass IgGl, lgG2, lgG3, or lgG4. In some embodiments, an antibody against NOTUM is of the IgM isotype. In certain such embodiments, an antibody is of the subclass IgM l or lgM2. In some embodiments, an antibody against NOTUM is of the IgA isotype. In certain such embodiments, an antibody is of the subclass IgAl or lgA2. An antibody against NOTUM may comprise a lambda or kappa light chain constant region of, e.g., either human or mouse origin. In some embodiments, an antibody against NOTUM comprises a human kappa light chain constatnt region and a human IgGl, lgG2, or lgG4 heavy chain constant region. In some embodiments, an antibody against NOTU M comprises a mouse kappa light chain and a mouse IgGl or lgG2 heavy chain.
5.2.2.3. Modified antibodies
[088] In some embodiments, an antibody is modified to alter one or more of its properties. In some embodiments, a modified antibody may possess advantages over an unmodified antibody, such as increased stability, increased time in circulation, or decreased immunogenicity {see, e.g., U.S. Patent No. 4,179,337). In some embodiments, an antibody is modified by linking it to a nonproteinaceous moiety. In some embodiments, an antibody is modified by altering the glycosylation state of the antibody, e.g., by altering the number, type, linkage, and/or position of carbohydrate chains on the antibody. In some embodiments, an antibody is altered so that it is not glycosylated.
[089] In some embodiments, one or more chemical moieties are linked to the amino acid backbone and/or carbohydrate residues of the antibody. Certain exemplary methods for linking a chemical moiety to an antibody are known to those skilled in the art. Such methods include, but are not limited to, acylation reactions or alkylation reactions. See, e.g, EP 0 401 384; Malik et al. (1992), Exp. Hematol.. 20:1028-1035; Francis (1992) Focus on Growth Factors 3(2):4-10, published by Mediscript, Mountain Court, Friern Barnet Lane, London N20 OLD, UK; EP 0 154 316; EP 0 401 384; WO 92/16221; WO 95/34326; WO 95/13312; WO 96/11953; WO 96/19459 and WO 96/19459. In some embodiments, any of these reactions are used to generate an antibody that is chemically modified at its amino-terminus.
[090] In some embodiments, an antibody is linked to a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label. In certain such embodiments, a detectable label allows for the detection or isolation of the antibody. In some embodiments, a detectable label allows for the detection of an antigen bound by the antibody.
[091] In some embodiments, an antibody is modified by linking it to one or more polymers. In some embodiments, an antibody is linked to one or more water-soluble polymers. In certain such embodiments, linkage to a water-soluble polymer reduces the likelihood that the antibody will precipitate in an aqueous environment, such as a physiological environment. In some embodiments, a therapeutic antibody is linked to a water-soluble polymer. In some embodiments, one skilled in the art can select a suitable water-soluble polymer based on considerations including whether the polymer/antibody conjugate will be used in the treatment of a patient and, if so, the pharmacological profile of the antibody (e.g., half-life, dosage, activity, antigenicity, and/or other factors).
[092] Certain exemplary clinically acceptable, water-soluble polymers include, but are not limited to, polyethylene glycol (PEG); polyethylene glycol propionaldehyde; copolymers of ethylene glycol/propylene glycol; monomethoxy-polyethylene glycol; carboxymethylcellulose; dextran; polyvinyl alcohol (PVA); polyvinyl pyrrolidone, poly-1, 3-dioxolane; poly-l,3,6-trioxane;
ethylene/maleic anhydride copolymer; poly-p-amino acids (either homopolymers or random copolymers); poly(n-vinyl pyrrolidone)polyethylene glycol; polypropylene glycol homopolymers (PPG) and other polyalkylene oxides; polypropylene oxide/ethylene oxide copolymers;
polyoxyethylated polyols (POG) (e.g., glycerol) and other polyoxyethylated polyols;
polyoxyethylated sorbitol, polyoxyethylated glucose, colonic acids or other carbohydrate polymers; and Ficoll, dextran, or mixtures thereof. Certain exemplary PEGs include, but are not limited to, certain forms known in the art to be useful in antibody modification, such as mono-(Ci-C10) alkoxy- or aryloxy-PEG. In some embodiments, PEG propionaldehyde may have advantages in
manufacturing due to its stability in water.
[093] In some embodiments, a water-soluble polymer is of any molecular weight. In some embodiments, a water-soluble polymer is branched or unbranched. In some embodiments, a water-soluble polymer has an average molecular weight of about 2 kDa to about 100 kDa, including all points between the end points of the range. In some embodiments, a water-soluble polymer has an average molecular weight of about 5 kDa to about 40 kDa. In some embodiments, a water- soluble polymer has an average molecular weight of about 10 kDa to about 35 kDa. In some embodiments, a water-soluble polymer has an average molecular weight of about 15 kDa to about 30 kDa.
[094] In some embodiments, an antibody is linked to polyethylene glycol (PEG; i.e., an antibody is "pegylated"). In various embodiments, PEG has low toxicity in mammals. See Carpenter et al. (1971) Toxicol. Appl. Pharmacol., 18:35-40. Notably, a PEG adduct of adenosine deaminase was approved in the United States for use in humans for the treatment of severe combined immunodeficiency syndrome. In various embodiments, PEG may reduce the immunogenicity of antibodies. For example, in some embodiments, linkage of PEG to an antibody having non-huma n sequences may red uce the antigenicity of that antibody when administered to a human.
[095] In some embodiments, a polymer is linked to one or more reactive amino acid residues in an antibody. Certain exemplary reactive amino acid residues include, but are not limited to, the alpha-amino group of the amino-terminal amino acid, the epsilon amino groups of lysine side chains, the sulfhydryl groups of cysteine side chains, the carboxyl groups of aspartyl and glutamyl side chains, the alpha-carboxyl group of the carboxy-terminal amino acid, tyrosine side chains, a nd activated glycosyl chains linked to certain asparagine, serine or threonine residues. Certain exemplary activated forms of PEG ("PEG reagents") suitable for direct reaction with proteins are known to those skilled in the art. For example, in some embodiments, PEG reagents suitable for linkage to amino groups include, but are not limited to, active esters of carboxylic acid or carbonate derivatives of PEG, for example, those in which the leaving groups are N-hydroxysuccinimide, p- nitrophenol, imidazole or l-hydroxy-2-nitrobenzene-4-sulfonate. In some embodiments, PEG reagents containing maleimido or haloacetyl groups are used to modify sulfhydryl groups. In some embodiments, PEG reagents containing amino, hydrazine and/or hydrazide groups may be used in reactions with aldehydes generated by periodate oxidation of carbohydrate groups in proteins.
[096] In some embodiments, a water-soluble polymer has at least one reactive group. In some embodiments, an activated derivative of a water-soluble polymer, such as PEG, is created by reacting the water-soluble polymer with a n activating group. In some embodiments, an activating group may be monofunctional, bifunctional, or multifunctional. Certain exemplary activating groups that can be used to link a water-soluble polymer to two or more antibodies include, but are not limited to, the following groups: sulfone (e.g., chlorosulfone, vi nylsulfone and divinylsulfone), maleimide, sulfhydryl, thiol, triflate, tresylate, azidirine, oxirane and 5-pyridyl. In some
embodiments, a PEG derivative is typically stable against hydrolysis for extended periods in aqueous environments at pHs of about 11 or less. In some embodiments, a PEG derivative linked to another molecule, such as an antibody, confers stability from hydrolysis on that molecule. Certain exemplary homobifunctional PEG derivatives include, but are not limited to, PEG-bis-chlorosulfone and PEG-bis-vinylsulfone (see WO 95/13312).
5.2.3. Certain methods of making monoclonal antibodies
5.2.3.1. Certain hybridoma methods
[097] In some embodiments, monoclonal antibodies are produced by standard techniques. In some embodiments, monoclonal antibodies are produced by hybridoma-based methods. Certain such methods are known to those skilled in the art. See, e.g., Kohler et al. (1975) Nature 256:495-497; Harlow and Lane (1988) Antibodies: A Laboratory Manual Ch. 6 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). In certain such embodiments, a suitable animal, such as a mouse, rat, hamster, monkey, or other mammal, is immunized with an immunogen to produce antibody-secreting cells. In some embodiments, the antibody-secreting cells are B-cells, such as lymphocytes or splenocytes. In some embodiments, lymphocytes (e.g., human lymphocytes) are immunized in vitro to generate antibody-secreting cells. See, e.g., Borreback et al. (1988) Proc. Nat'l Acad. Sci. USA 85:3995-3999.
[098] In some embodiments, antibody secreting cells are fused with an "immortalized" cell line, such as a myeloid-type cell line, to produce hybridoma cells. In some embodiments, hybridoma cells that produce the desired antibodies are identified, for example, by ELISA. In some embodiments, such cells can then be subcloned and cultured using standard methods. In some embodiments, such cells can also be grown in vivo as ascites tumors in a suitable animal host. In some embodiments, monoclonal antibodies are isolated from hybridoma culture medium, serum, or ascites fluid using standard separation procedures, such as affinity chromatography. Guidance for the production of hybridomas and the purification of monoclonal antibodies according to certain embodiments is provided, for example, in Harlow and Lane (1988) Antibodies: A Laboratory Manual Ch. 8 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
[099] In some embodiments, mouse monoclonal antibodies are produced by immunizing genetically altered mice with an immunogen. In certain such embodiments, the mice are NOTUM- deficient mice, which partially or completely lack NOTUM function. In certain such embodiments, the mice are "knockout" mice that lack all or part of a gene encoding NOTUM. In some embodiments, such knockout mice are immunized with mouse NOTU M. In some embodiments, such knockout mice are immunized with human NOTUM .
[0100] In some embodiments, human monoclonal antibodies are raised in transgenic anima ls (e.g., mice) that are capable of producing human antibodies. See, e.g., U.S. Patent Nos. 6,075,181 A and 6,114,598 A; and WO 98/24893 A2. For example, in some embodiments, human immunoglobulin genes are introduced {e.g., using yeast artificial chromosomes, huma n
chromosome fragments, or germline integration) into mice in which the endogenous Ig genes have been inactivated. See, e.g., Jakobovits et al. (1993) Nature 362:255-258; Tomizuka et al. (2000) Proc. Nat'l Acad. Sci. USA 97:722-727; and Mendez et al. (1997) Nat. Genet. 15:146-156 (describing the XenoMouse I I® line of transgenic mice).
[0101] In some embodiments, such transgenic mice are immunized with an imm unogen. In certain such embodiments, lymphatic cells (such as B-cells) from mice that express antibodies are obtained. In certain such embodiments, such recovered cells are fused with an "immortalized" cell line, such as a myeloid-type cell line, to produce hybridoma cells. In certain such embodiments, hybridoma cells are screened and selected to identify those that produce antibodies specific to the antigen of interest. Certain exemplary methods and transgenic mice suitable for the production of human monoclonal antibodies are described, e.g., in Jakobovits et al. (1993) Nature 362:255-258; Jakobovits (1995) Curr. Opin. Biotechnol. 6:561-566; Lonberg et al. (1995) Int'l Rev. Immunol. 13:65- 93; Fishwild et al. (1996) Nat. Biotechnol. 14:845-851; Mendez et al. (1997) Nat. Genet. 15:146-156; Green (1999) J. Immunol. Methods 231:11-23; Tomizuka et al. (2000) Proc. Nat'l Acad. Sci. USA 97:722-727; and reviewed in Little et al. (2000) Immunol. Today 21:364-370; and WO 98/24893. In some embodiments, human monoclonal antibodies against NOTUM are suitable for use as therapeutic antibodies. See Part V.G., below.
5.2.3.2. Certain display-based methods
[0102] In some embodiments, human monoclonal antibodies are produced using a display- based method, such as, for example, any of those described below.
[0103] In some embodiments, a monoclonal antibody is produced using phage display techniques. Various antibody phage display methods are known to those skilled in the art and are described, for example, in Hoogenboom, Overview of Antibody Phage-Display Technology and Its Applications, from Methods in Molecular Biology: Antibody Phage Display: Methods and Protocols (2002) 178: 1-37 (O'Brien and Aitken, eds., Human Press, Totowa, NJ). For example, in some embodiments, a library of antibodies are displayed on the surface of a filamentous phage, such as the nonlytic filamentous phage fd or M 13. In some embodiments, the antibodies are antibody fragments, such as scFvs, Fabs, Fvs with an engineered intermoiecular disulfide bond to stabilize the VH-VL pair, and diabodies. In some embodiments, antibodies with the desired binding specificity can then be selected. Nonlimiting exemplary embodiments of antibody phage display methods are described in further detail below.
[0104] In some embodiments, an antibody phage-display library can be prepared using certain methods known to those skilled in the art. See, e.g., Hoogenboom, Overview of Antibody Phage-Display Technology and Its Applications, from Methods in Molecular Biology: Antibody Phage Display: Methods and Protocols (2002) 178:1-37 (O'Brien and Aitken, eds., Human Press, Totowa, NJ). In some embodiments, variable gene repertoires are prepared by PCR amplification of genomic DNA or cDNA derived from the mRNA of antibody-secreting cells. For example, in some embodiments, cDNA is prepared from mRNA of B-cells. In some embodiments, cDNA encoding the variable regions of heavy and light chains is amplified, for example, by PCR.
[0105] In some embodiments, heavy chain cDNA and light chain cDNA are cloned into a suitable vector. In some embodiments, heavy chain cDNA and light chain cDNA are randomly combined during the cloning process, thereby resulting in the assembly of a cDNA library encoding diverse scFvs or Fabs. In some embodiments, heavy chain cDNA and light chain cDNA are ligated before being cloned into a suitable vector. In some embodiments, heavy chain cDNA and light chain cDNA are ligated by stepwise cloning into a suitable vector.
[0106] In some embodiments, cDNA is cloned into a phage display vector, such as a phagemid vector. Certain exemplary phagemid vectors, such as pCESl, are known to those skilled in the art. In some embodiments, cDNA encoding both heavy and light chains is present on the same vector. For example, in some embodiments, cDNA encoding scFvs are cloned in frame with all or a portion of gene III, which encodes the minor phage coat protein pill. In certain such embodiments, the phagemid directs the expression of the scFv-plll fusion on the phage surface. Alternatively, in some embodiments, cDNA encoding heavy chain (or light chain) is cloned in frame with all or a portion of gene III, and cDNA encoding light chain (or heavy chain) is cloned downstream of a signal sequence in the same vector. The signal sequence directs expression of the light chain (or heavy chain) into the periplasm of the host cell, where the heavy and light chains assemble into Fab fragments. Alternatively, in some embodiments, cDNA encoding heavy chain and cDNA encoding light chain are present on separate vectors. In certain such embodiments, heavy chain and light chain cDNA is cloned separately, one into a phagemid and the other into a phage vector, which both contain signals for in vivo recombination in the host cell.
[0107] In some embodiments, recombinant phagemid or phage vectors are introduced into a suitable bacterial host, such as E. coli. In some embodiments using phagemid, the host is infected with helper phage to supply phage structural proteins, thereby allowing expression of phage particles carrying the antibody-pill fusion protein on the phage surface.
[0108] In some embodiments, "synthetic" antibody libraries are constructed using repertoires of variable genes that are rearranged in vitro. For example, in some embodiments, individual gene segments encoding heavy or light chains (V-D-J or V-J, respectively) are randomly combined using PCR. In some embodiments, additional sequence diversity can be introduced into the CDRs, and possibly FRs, e.g., by error prone PCR. In some such embodiments, additional sequence diversity is introduced into CDR3, e.g., H3 of the heavy chain.
[0109] In some embodiments, "naive" or "universal" phage display libraries are constructed as described above using nucleic acid from an unimmunized animal. In some embodiments, the unimmunized animal is a human. In some embodiments, "immunized" phage display libraries are constructed as described above using nucleic acid from an immunized animal. In some embodiments, the immunized animal is a human, rat, mouse, hamster, or monkey. In certain such embodiments, the animals are immunized with any of the immunogens described below.
[0110] Certain exemplary universal human antibody phage display libraries are available from commercial sources. Certain exemplary libraries include, but are not limited to, the HuCAL* series of libraries from MorphoSys AG ( artinstreid/Munich, Germany); libraries from Crucell (Leiden, the Netherlands) using MAbstract' technology; the n-CoDeR™ Fab library from Biolnvent (Lund, Sweden); and libraries available from Cambridge Antibody Technology (Cambridge, UK).
[0111] In some embodiments, the selection of antibodies having the desired binding specificity from a phage display library is achieved by successive panning steps. In some embodiments of panning, library phage preparations are exposed to antigen. In certain such embodiments, the phage-antigen complexes are washed, and unbound phage are discarded. In certain such embodiments, bound phage are recovered and subsequently amplified by infecting £ coli. In certain such embodiments, monoclonal antibody-producing phage may be cloned by picking single plaques. In some embodiments, the above process is repeated.
[0112] In some embodiments, the antigen used in panning is any of the immunogens described below. In some embodiments, the antigen is immobilized on a solid support to allow purification of antigen-binding phage by affinity chromatography. In some embodiments, the antigen is biotinylated, thereby allowing the separation of bound phage from unbound phage using streptavidin-coated magnetic beads. In some embodiments, the antigen may be immobilized on cells (for direct panning), in tissue cryosections, or on membranes (e.g., nylon or nitrocellulose membranes). Other variations of certain panning procedures may be routinely determined by one skilled in the art.
[0113] In some embodiments, a yeast display system is used to produce monoclonal antibodies. In certain such systems, an antibody is expressed as a fusion protein with all or a portion of the yeast AGA2 protein, which becomes displayed on the surface of the yeast cell wall. In certain such embodiments, yeast cells expressing antibodies with the desired binding specificity can then be identified by exposing the cells to fluorescently labeled antigen. In certain such embodiments, yeast cells that bind the antigen can then be isolated by flow cytometry. See, e.g., Boder et al. (1997) Nat. Biotechnol. 15:553-557.
5.2.3.3. Certain affinity maturation methods
[0114] In some embodiments, the affinity of an antibody for a particular antigen is increased by subjecting the antibody to affinity maturation (or "directed evolution") in vitro, in vivo, native antibodies undergo affinity maturation through somatic hypermutation followed by selection. Some in vitro methods mimic that in vivo process, thereby allowing the production of antibodies having affinities that equal or surpass that of native antibodies.
[0115] In some embodiments of affinity maturation, mutations are introduced into a nucleic acid sequence encoding the variable region of an antibody having the desired binding specificity. See, e.g., Hudson et al. (2003) Nat. Med. 9:129-134; Brekke et al. (2002) Nat. Reviews 2:52-62. In some embodiments, mutations are introduced into the variable region of the heavy chain, light chain, or both. In some embodiments, mutations are introduced into one or more CDRs. In certain such embodiments, mutations are introduced into H3, L3, or both. In some
embodiments, mutations are introduced into one or more FRs. In some embodiments, a library of mutations is created, for example, in a phage, ribosome, or yeast display library, so that antibodies with increased affinity may be identified by standard screening methods. See, e.g., Boder et al. (2000) Proc. Nat'l Acad. Sci. USA 97:10701-10705; Foote et al. (2000) Proc. Nat'l Acad. Sci. USA
97:10679-10681; Hoogenboom, Overview of Antibody Phage-Displav Technology and Its
Applications, from Methods in Molecular Biology: Antibody Phage Display: Methods and Protocols (2002) 178:1-37 (O'Brien and Aitken, eds., Human Press, Totowa, NJ); and Hanes et al. (1998) Proc. Nat'l Acad. Sci. USA 95:14130-14135.
[0116] In some embodiments, mutations are introduced by site-specific mutagenesis based on information on the antibody's structure, e.g., the antigen binding site. In some embodiments, mutations are introduced using combinatorial mutagenesis of CDRs. In some embodiments, all or a portion of the variable region coding sequence is randomly mutagenized, e.g., using E. coli mutator cells, homologous gene rearrangement, or error prone PCR. In some embodiments, mutations are introduced using "DNA shuffling." See, e.g., Crameri et al. (1996) Nat. Med. 2:100-102; Fermer et al. (2004) Tumor Biol. 25:7-13.
[0117] In some embodiments, "chain shuffling" is used to generate antibodies with increased affinity. In some embodiments of chain shuffling, one of the chains, e.g., the light chain, is replaced with a repertoire of light chains, while the other chain, e.g., the heavy chain, is unchanged, thus providing specificity. In certain such embodiments, a library of chain shuffled antibodies is created, wherein the unchanged heavy chain is expressed in combination with each light chain from the repertoire of light chains. In some embodiments, such libraries may then be screened for antibodies with increased affinity. In some embodiments, both the heavy and light chains are sequentially replaced. In some embodiments, only the varia ble regions of the heavy and/or light chains are replaced. In some embodiments, only a portion of the variable regions, e.g., CDRs, of the heavy and/or light chains are replaced. See, e.g., Hudson et al. (2003) Nat. Med. 9:129- 134; Brekke et al. (2002) Nat. Reviews 2:52-62; Rang et al. (1991) Proc. Nat'l Acad. Sci. USA
88: 11120-11123; Marks et al. (1992) Biotechnol. 10:779-83.
[0118] In some embodiments, mouse monoclonal antibodies that specifically bind human NOTU M (including mouse monoclonal antibodies raised against mouse NOTU M but which specifically bind (i.e., cross react) with human NOTUM) are subject to sequential chain shuffling. In some embodiments, for example, the heavy chain of a given mouse monoclonal antibody is combined with a new repertoire of human light chains, and antibodies with the desired affinity are selected. In certain such embodiments, the light chains of the selected antibodies are then combined with a new repertoire of human heavy chains, and antibodies with the desired affinity are selected. Thus, in some embodiments, human antibodies having the desired antigen binding specificity and affinity are selected.
[0119] Alternatively, in some embodiments, the heavy chain of a given mouse monoclonal antibody is combined with a new repertoire of human light chains, and antibodies with the desired affinity are selected from this first round of shuffling. In some embodiments, the light chain of the original mouse monoclonal antibody is combined with a new repertoire of human heavy chains, and antibodies with the desired affinity are selected from this second round of shuffling. In some embodiments, human light chains from the antibodies selected in the first round of shuffling are then combined with human heavy chains from the antibodies selected in the second round of shuffling. Thus, in some embodiments, huma n antibodies having the desired a ntigen binding specificity and affinity are selected.
[0120] In some embodiments, a "ribosome display" method is used that alternates antibody selection with affinity maturation. In some embodiments of a ribosome display method, antibody-encoding nucleic acid is amplified by RT-PCR between the selection steps. Thus, in some embodiments, error prone polymerases may be used to introduce mutations into the nucleic acid. A nonlimiting example of such a method is described in detail in Ha nes et al. (1998) Proc. Natl Acad. Sci. USA 95:14130-14135.
5.2.3.4. Certain recombinant methods
[0121] I n some embodiments, a monoclonal antibody is produced by recombinant techniques. See, e.g., U.S. Patent No. 4,816,567. In certain such embodiments, nucleic acid encoding monoclonal antibody chains are cloned and expressed in a suitable host cell. For example, in some embodiments, RNA can be prepared from cells expressing the desired antibody, such as mature B-cells or hybridoma cells, using standard methods. In some embodiments, the RNA can then be used to make cDNA using standard methods. In some embodiments, cDNA encoding a heavy or light chain polypeptide is amplified, for example, by PCR, using specific oligonucleotide primers. In some embodiments, the cDNA is cloned into a suitable expression vector. In some embodiments, the expression vector is then transformed or transfected into a suitable host cell, such as a host cell that does not endogenously produce antibody. Certain exemplary host cells include, but are not limited to, f. coll, COS cells, Chinese hamster ovary (CHO) cells, and myeloma cells. In some embodiments, wherein heavy and light chains are coexpressed in the same host, reconstituted antibody may be isolated.
[0122] In some embodiments, cDNA encoding a heavy or light chain can be modified. For example, in some embodiments, the constant region of a mouse heavy or light chain can be replaced with the constant region of a human heavy or light chain. In this manner, in some embodiments, a chimeric antibody can be produced which possesses human antibody constant regions but retains the binding specificity of a mouse antibody.
[0123] In some embodiments, a nucleic acid molecule comprises a polynucleotide sequence that encodes the heavy chain or the light chain of a NOTUM neutralizing antibody. In some embodiments, a single nucleic acid molecule comprises a first polynucleotide sequence that encodes the heavy chain of a NOTUM neutralizing antibody and a second polynucleotide sequence that encodes the light chain of a NOTUM neutralizing antibody. In some embodiments, for example, when the antibody is a single-chain Fv (scFv), the coding sequence for the heavy chain and the coding sequence for the light chain are part of a continuous coding sequence such that a single polypeptide is expressed, which comprises both the heavy chain and the light chain of the antibody. In some embodiments, a single nucleic acid molecule that encodes both a heavy chain and a light chain is capable of expressing the two chains as separate polypeptides. In some such embodiments, each chain is under the control of a separate promoter. In some embodiments, the two chains are under the control of the same promoter. One skilled in the art can select a suitable configuration and suitable control elements for the heavy and light chain of the NOTUM neutralizing antibody according to the intended application.
[0124] In some embodiments, the nucleic acid is a vector, such as an expression vector suitable for expressing the heavy chain and/or light chain in a particular host cell. One skilled in the art can select a suitable expression vector, or expression vectors, according to the host cell to be used for expression. Many exemplary such vectors are known in the art.
[0125] In some embodiments, a nucleic acid molecule comprises a polynucleotide sequence that encodes a heavy chain of a NOTUM neutralizing antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, 2.78, and humanized versions of such MAbs. In some such embodiments, a nucleic acid molecule comprises a polynucleotide sequence selected from SEQ ID NOs: 101, 103, 105, 107, 109, 111, 112, 115, 116, 119, 120, 123, 124, 127, and 128. In some embodiments, a nucleic acid molecule comprises a polynucleotide sequence that encodes a light chain of a NOTUM neutralizing antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, 2.78, and humanized versions of such MAbs. In some such embodiments, a nucleic acid molecule comprises a polynucleotide sequence selected from SEQ ID NOs: 102, 104, 106, 108, 110, 113, 114, 117, 118, 121, 122, 125, 126, 129, and 130. In some embodiments, a nucleic acid molecule comprises a first polynucleotide sequence that encodes the heavy chain and a second polynucleotide sequence that encodes the light chain, of a NOTUM neutralizing antibody selected from MAbs 1.731, 1.802, 1.815, 1.846, 2.1029, 2.55, 2.78, and humanized versions of such MAbs.
[0126] In some embodiments, recombinant antibodies can be expressed in certain cell lines. In some embodiments, sequences encoding particular antibodies can be used for transformation of a suitable mammalian host cell. According to certain embodiments, transformation can be by any known method for introducing polynucleotides into a host cell. Certain exemplary methods include, but are not limited to, packaging the polynucleotide in a virus (or into a viral vector) and transducing a host cell with the virus (or vector) and using certain transfection procedures known in the art, as exemplified by U.S. Pat. Nos. 4,399,216, 4,912,040, 4,740,461, and 4,959,455. In some embodiments, the transformation procedure used may depend upon the host to be transformed. Certain exemplary methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
[0127] Certain exemplary mammalian cell lines available as hosts for expression are known in the art and include, but are not limited to, many immortalized cell lines available from the American Type Culture Collection (ATCC), including Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines. In some embodiments, cell lines may be selected by determining which cell lines produce high levels of antibodies that specifically bind NOTUM.
5.3. Methods of Treatment
[0128] This invention encompasses a method of stimulating endocortical bone formation in a patient, which comprises administering to a patient in need thereof an effective amount of an antibody of the invention. It also encompasses a method of increasing cortical bone thickness, comprising administering to a patient in need thereof an effective amount of an antibody of the invention. [0129] This invention encompasses a method of treating, managing, or preventing a disease or disorder associated with bone loss, which comprises adm i nistering to a patient in need thereof a therapeutically or prophylactically effective amount of an a ntibody of the invention. Examples of diseases and disorders include osteoporosis (e.g., postmenopausal osteoporosis, steroid- or glucocorticoid-induced osteoporosis, male osteoporosis, a nd idiopathic osteoporosis), osteopenia, and Paget's disease.
[0130] Also encom passed by the invention is a method of treating, managing, or preventing bone fractures, which comprises administering to a patient in need thereof a therapeutically or prophylactically effective amount of an antibody of the invention. Particular bone fractures are associated with metastatic bone disease, i.e., ca ncer that has metastasized to bone. Examples of cancers that can metastasize to bone include prostate, breast, lung, thyroid, and kidney cancer.
[0131] This invention also encompasses a method of treating, managing, or preventing bone loss associated with, or caused by, a disease or disorder, which comprises administering to a patient in need thereof a therapeutically or prophylactically effective amount of an antibody of the invention. Examples of diseases and disorders include celiac disease, Crohn's Disease, Cushing's syndrome, hyperparathyroidism, inflammatory bowel disease, and ulcerative colitis.
[0132] Nonlimiting exemplary patients that may benefit from methods of this invention include men and women aged 55 years or older, post-menopausal women, and patients suffering from renal insufficiency.
[0133] Antibodies of the invention can be administered in combination (e.g., at the same or at different times) with other drugs known to be useful in the treatment, management, or prevention of diseases or conditions affecting the bone. Examples include: androgen receptor modulators; bisphosphonates; calcitonin; calcium sensing receptor antagonists; RANKL antibodies, cathepsin K inhibitors; estrogen and estrogen receptor modulators; integrin binders, antibodies, and receptor antagonists; parathyroid hormone (PTH) and analogues and mimics thereof; and vitamin D and synthetic vita min D analogues.
[0134] Examples of and rogen receptor modulators include finasteride and other 5a- reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, and abiraterone acetate.
[0135] Examples of bisphosphonates include alendronate, cimadronate, clodronate, etidronate, ibandronate, incadronate, minodronate, neridronate, olpadronate, pamidronate, piridronate, risedronate, tiludronate, and zolendronate, and pharmaceutically acceptable salts and esters thereof.
[0136] Examples of cathepsin K inhibitors include VEL-0230, AAE581 (balicatib),
MV061194, SB-462795 (relacatib), M K-0822 (odanacatib), and M K-1256. [0137] Examples of estrogen and estrogen receptor modulators include naturally occurring estrogens (e.g., 7-estradiol, estrone, and estriol), conjugated estrogens [e.g., conjugated equine estrogens), oral contraceptives, sulfated estrogens, progestogen, estradiol, droloxifene, raloxifene, lasofoxifene, TSE-424, ta moxifen, idoxifene, LY353381, LY117081, toremifene, fulvestrant, 4-[7-(2,2- dimethyl-l-oxopropoxy-4-methyl-2-[4-[2-(l-piperidinyl)ethoxy]phenyl]-2H-l-benzopyran-3-yl]- phenyl-2,2-dimethylpropanoate, 4,4'-dihydroxybenzophenone-2,4-dinitrophenyl-hydrazone, and SH646.
[0138] Examples of integrin binders, antibodies, and receptor antagonists include vitaxin (M EDI-522), cilengitide a nd L-000845704.
5.4. Pharmaceutical Formulations
[0139] This invention encompasses pharmaceutica l compositions comprising one or more a ntibodies of the invention, and optionally one or more other drugs, such as those described above.
[0140] In some embodiments, a NOTUM neutralizing antibody may be used as a therapeutic antibody. Exemplary NOTUM neutralizing antibodies to be used as thera peutic antibodies include, but are not limited to, chimeric antibodies, humanized antibodies, and human antibodies. Those skilled in the art are familiar with the use of antibodies as therapeutic agents.
[0141] In some embodiments, a pharmaceutical composition is provided that comprises an effective amount of an antibody to NOTUM and a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative and/or adjuvant. In some embodiments, a pharmaceutical composition is provided that comprises an effective amount of an antibody to NOTUM and an effective amount of at least one additional therapeutic agent, together with a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative and/or adjuvant. In some embodiments, at least one additional therapeutic agent is selected from those described above.
[0142] In some embodiments, formulation materials for pharmaceutical compositions are nontoxic to recipients at the dosages and concentrations employed.
[0143] In some embodiments, the pharmaceutical composition comprises formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. In some embodiments, suitable formulation materials include, but are not limited to, amino acids (for example, glycine, glutamine, asparagine, arginine and lysine); antimicrobials; antioxidants (for example, ascorbic acid, sodium sulfite and sodium hydrogen- sulfite); buffers (for example, borate, bicarbonate, Tris-HCI, citrates, phosphates and other organic acids); bulking agents (for example, mannitol and glycine); chelating agents (for example, ethylenediamine tetraacetic acid (EDTA)); complexing agents (for example, caffeine,
polyvinylpyrrolidone, beta-cyclodextrin, and hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides, disaccharides, and other carbohydrates (for exam ple, glucose, mannose and dextrins); proteins (for example, serum albumin, gelatin and immunoglobulins); coloring, flavoring, and diluting agents; emulsifying agents; hydrophilic polymers (for example, polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (for example, sodium); preservatives (for example, benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid and hydrogen peroxide); solvents (for example, glycerin, propylene glycol and polyethylene glycol); sugar alcohols (for example, mannitol and sorbitol); suspending agents; surfactants or wetting agents (for example, pluronics, PEG, sorbitan esters, polysorbates (for example, polysorbate 20 and polysorbate 80), triton,
tromethamine, lecithin, cholesterol, and tyloxapal); stability enhancing agents (for example, sucrose and sorbitol); tonicity enhancing agents (for example, alkali metal halides (for example, sodium or potassium chloride), mannitol, and sorbitol); delivery vehicles; diluents; excipients; and
pharmaceutical adjuvants. {Remington's Pharmaceutical Sciences, 18th Edition, A.R. Gennaro, ed., Mack Publishing Company (1990).
[0144] In some embodiments, an antibody to NOTUM or other therapeutic molecule is linked to a half-life extending vehicle. Nonlimiting exemplary half-life extending vehicles include those known in the art. Such vehicles include, but are not limited to, the Fc domain, polyethylene glycol, and dextran. Exemplary such vehicles are described, e.g., in published PCT Application No. WO 99/25044.
[0145] In some embodiments, an optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format, and desired dosage. See, e.g., Remington's Pharmaceutical Sciences, supra. In some embodiments, such compositions may influence the physical state, stability, rate of in vivo release, or rate of in vivo clearance of a neutralizing antibody.
[0146] In some embodiments, a primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature. For example, in some embodiments, a suitable vehicle or carrier may be water for injection, physiological saline solution, or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Exemplary vehicles include, but are not limited to, neutral buffered saline and saline mixed with serum albumin. In some embodiments, pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, which may further include sorbitol or a suitable substitute therefor. In some embodiments, a composition comprising an antibody to NOTUM, with or without at least one additional therapeutic agents, may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (Remington's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or an aqueous solution. In some embodiments, a composition comprising an antibody to NOTUM, with or without at least one additional therapeutic agent, may be formulated as a lyophilizate using appropriate excipients such as sucrose.
[0147] In some embodiments, a pharmaceutical composition is selected for parenteral delivery. In some embodiments, a pharmaceutical composition is selected for inhalation or for delivery through the digestive tract, such as orally. Various techniques for preparing
pharmaceutically acceptable compositions are within the skill of one skilled in the art.
[0148] In some embodiments, formulation components are present in concentrations that are acceptable to the site of administration. In some embodiments, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8.
[0149] In some embodiments, when parenteral administration is contemplated, a pharmaceutical composition may be in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antibody to NOTUM, with or without additional therapeutic agents, in a pharmaceutically acceptable vehicle. In some embodiments, a vehicle for parenteral injection is sterile distilled water in which the antibody to NOTUM, with or without at least one additional therapeutic agent, is formulated as a sterile, isotonic solution, properly preserved. In some embodiments, the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide for the controlled or sustained release of the product which may then be delivered via a depot injection. In some embodiments, hyaluronic acid may also be used, and may have the effect of promoting sustained duration in the circulation. In some embodiments, implantable drug delivery devices may be used to introduce the desired molecule.
[0150] In some embodiments, a pharmaceutical composition may be formulated for inhalation. In some embodiments, an antibody to NOTUM, with or without at least one additional therapeutic agent, may be formulated as a dry powder for inhalation. In some embodiments, an inhalation solution comprising an antibody to NOTUM, with or without at least one additional therapeutic agent, may be formulated with a propellant for aerosol delivery. In some
embodiments, solutions may be nebulized.
[0151] In some embodiments, a formulation may be administered orally. In some embodiments, an antibody to NOTUM, with or without at least one additional therapeutic agent, that is administered in this fashion may be formulated with or without carriers customarily used in the compounding of solid dosage forms such as tablets and capsules. In some embodiments, a capsule may be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. In some embodiments, at least one additional agent can be included to facilitate absorption of the antibody to NOTUM with or without any additional therapeutic agents. In some embodiments, diluents, flavorings, low melting point waxes, vegetable oils, lubrica nts, suspending agents, tablet disintegrating agents, and/or binders may also be employed.
[0152] In some embodiments, a pharmaceutical composition comprises an effective amount of an antibody to NOTUM, with or without at least one additional therapeutic agent, in a mixture with non-toxic excipients which are suitable for the manufacture of tablets. In some embodiments, by dissolving the tablets in sterile water, or another appropriate vehicle, solutions may be prepared in unit-dose form. Exemplary excipients include, but are not limited to, inert diluents (for example, calcium carbonate, sodium carbonate, sodium bicarbonate, lactose, and calcium phosphate); binding agents (for example, starch, gelatin, and acacia); and lubricating agents (for example, magnesium stearate, stearic acid, and talc).
[0153] Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations comprising an antibody to NOTUM, with or without at least one additional therapeutic agent, in sustained- or controlled-delivery formulations. Exemplary sustained- or controlled-delivery formulations include, but are not limited to, liposome carriers, bio-erodible microparticles, porous beads, and depot injections. Various techniques for preparing formulations are known to those skilled in the art. In some embodiments, sustained-release preparations may include semipermeable polymer matrices in the form of shaped articles, e.g. films or microcapsules. Exemplary sustained release matrices include, but are not limited to, polyesters, hydrogels, polylactides (see, e.g., U.S. Patent No. 3,773,919 and EP 058,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (see, e.g., Sidman et al. (1983) Biopolvmers 22:547-556), poly (2- hydroxyethyl-methacrylate) (see, e.g., Langer et al. (1981) J. Biomed. Mater. Res. 15:167-277 and Langer (1982) Chem. Tech. 12:98-105), ethylene vinyl acetate (Langer er al., supra), and poly-D(-)-3- hydroxybutyric acid (EP 133,988). In some embodiments, sustained release compositions may include liposomes, which can be prepared, in some embodiments, by any of several methods known in the art. See e.g., Eppstein et al. (1985) Proc. Natl. Acad. Sci. USA. 82:3688-3692; EP 036,676; EP 088,046; and EP 143,949.
[0154] In some embodiments, a pharmaceutical composition to be used for in vivo administration typically is sterile. In some embodiments, this may be accomplished by filtration through sterile filtration membranes. In some embodiments, where the composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution. In some embodiments, the composition for parenteral administration may be stored in lyophilized form or in a solution. In some embodiments, parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. [0155] In some embodiments, once the pharmaceutical com position has been formulated, it may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or as a dehydrated or lyophilized powder. In some embodiments, such formulations may be stored either in a ready-to- use form or in a form {e.g., lyophilized) that is reconstituted prior to administration.
[0156] In some embodiments, kits for producing a single-dose administration unit are provided. In some embodiments, the kits may each contain both a first container having a dried protein and a second container having an aqueous formulation. In some embodiments, kits containing single or multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes) are included.
[0157] In some embodiments, the effective amount of a pharmaceutical composition comprising an antibody to NOTUM, with or without at least one additional therapeutic agent, to be employed therapeutically will depend, for example, upon the context and objectives of treatment. One skilled in the art will appreciate that the appropriate dosage levels for treatment, according to some embodiments, will thus vary depending, in part, upon the molecule delivered, the indication for which the antibody to NOTU M, with or without at least one additional therapeutic agent, is being used, the route of administration, and the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient. I n some embodiments, the clinician may titer the dosage and modify the route of administration to obtain the optimal therapeutic effect. In some embodiments, a typical dosage may range from about 0.1 μg/kg of patient body weight, up to about 100 mg/kg or more, depending on the factors mentioned above. I n some embodiments, the dosage may range from 0.1 μg/kg up to about 100 mg/kg; 1 μg/kg up to about 100 mg/kg; or 5 μg/kg up to a bout 100 mg/kg, including all points (including fractions) between any of the foregoing endpoints. In some embodiments, the dosage is between about 1 mg/kg body weight and about 60 mg/kg body weight. In some embodiments, the dosage is about 1 mg/kg body weight, about 3 mg/kg body weight, about 5 mg/kg body weight, about 10 mg/kg body weight, about 20 mg/kg body weight, about 30 mg/kg body weight, about 40 mg/kg body weight, about 50 mg/kg body weight, or about 60 mg/kg body weight.
[0158] In some embodiments, a human dose of a neutralizing antibody against NOTUM is determined based on the efficacious dose of the same antibody in another species, such as mice, dogs, monkeys, etc. In some embodiments, a human dose of a neutralizing antibody against NOTU M is determined using "Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Hea lthy Volunteers," U.S. Department of Health and Human Services, Food and Drug Administration, and Center for Drug Evaluation and Research (CDER), July 2005 (Pharmacology and Toxicology).
[0159] In some embodiments, a suitable dosage may be determined by one skilled in the art, for exa m ple, based on animal studies. [0160] In various embodiments, a neutralizing antibody against NOTU is administered to a patient twice per week, once per week, once every two weeks, once per month, once every other month, or even less frequently.
[0161] In some embodiments, the frequency of dosing will take into account the pharmacokinetic parameters of an antibody to NOTUM and, if applicable, any additional therapeutic agents in the formulation used. In some embodiments, a clinician will administer the composition until a dosage is reached that achieves the desired effect. In some embodiments, the composition may therefore be administered as a single dose, or as two or more doses (which may or may not contain the same amount of the desired molecule) over time, or as a continuous infusion via an implantation device or catheter. In some embodiments, further refinement of the appropriate dosage is routinely made by those skilled in the art and is within the ambit of tasks routinely performed by them. In some embodiments, appropriate dosages may be ascertained through use of appropriate dose-response data. In some embodiments, a patient receives one dose of a pharmaceutical composition comprising an antibody to NOTUM. In some embodiments, a patient receives one, two, three, or four doses per day of a pharmaceutical composition comprising an antibody to NOTUM. In some embodiments, a patient receives one, two, three, four, five, or six doses per week of a pharmaceutical composition comprising an antibody to NOTUM. In some embodiments, a patient receives one, two, three, or four doses per month of a pharmaceutical composition comprising an antibody to NOTUM.
[0162] In some embodiments, the route of administration of the pharmaceutical composition is in accord with known methods, e.g. orally, through injection by subcutaneous, intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, or intralesional routes; by sustained release systems or by implantation devices. In some embodiments, the compositions may be administered by bolus injection or continuously by infusion, or by implantation device.
[0163] In some embodiments, the composition may be administered locally via implantation of a membrane, sponge or another appropriate material onto which the desired molecule has been absorbed or encapsulated. In some embodiments, where an implantation device is used, the device may be implanted into any suitable tissue or organ, and delivery of the desired molecule may be via diffusion, timed-release bolus, or continuous administration.
[0164] In some embodiments, an antibody to NOTUM, with or without at least one additional therapeutic agent, is delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the
polypeptides. In some embodiments, such cells may be animal or human cells, and may be autologous, heterologous, or xenogeneic. In some embodiments, the cells may be immortalized. In some embodiments, in order to decrease the chance of an immunological response, the cells may be encapsulated to avoid infiltration of surrounding tissues. In some embodiments, the encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.
6. EXAMPLES
6.1. Knock-out Mouse
[0165] Mice homozygous for a genetically engineered mutation in the murine ortholog of the human NOTUM gene were generated using corresponding mutated embryonic stem (ES) cell clones from the OMNIBANK collection of mutated murine ES cell clones (see generally, U.S. Patent No. 6,080,576). In brief, ES cell clones containing a mutagenic viral insertion into the murine NOTUM locus were microinjected into blastocysts which were in turn implanted into
pseudopregnant female hosts and carried to term. The resulting chimeric offspring were subsequently bred to C57 black 6 female mice and the offspring checked for the germline transmission of the knocked-out NOTUM allele. Animals heterozygous for the mutated NOTUM allele were subsequently bred to produce offspring that were homozygous for the mutated NOTUM allele, heterozygous for the mutated NOTUM allele, or wild type offspring at an approximate ratio of 1:2:1.
[0166] Mice homozygous (-/-) for the disruption of the NOTUM gene were studied in conjunction with mice heterozygous (+/-) for the disruption of the NOTUM gene and wild-type (+/+) litter mates. During this analysis, the mice were subject to a medical work-up using an integrated suite of medical diagnostic procedures designed to assess the function of the major organ systems in a mammalian subject. By studying the homozygous (-/-) "knockout" mice in the described numbers and in conjunction with heterozygous (+/-) and wild-type (+/+) litter mates, more reliable and repeatable data were obtained.
[0167] As shown in Figure 1, male mice having homozygous disruption of the NOTUM gene ("horns") exhibited greater cortical thicknesses at various bone sites, compared to their wildtype littermates at 16 weeks of age (number of mice N = 10 for both groups). These differences, which were measured by microCT (Scanco μΓΓ40), were: 28% (p < 0.001) at midshaft femur; 19% (p < 0.001) at midshaft humerus; 17% (p < 0.001) at midshaft tibia; and 11% (p < 0.001) at tibia-fibula junction. As shown in Figure 2, at 16 weeks of age, the midshaft femur cortical bone thickness of mice heterozygous for the NOTUM mutation ("hets") was also greater than that of their wildtype littermates: male hets (N = 50) exhibited a 6% (p = 0.007) increase compared to their wildtype littermates (N = 23); and female hets (N = 57) exhibited a 9% (p < 0.001) increase compared to their wildtype littermates (N = 22). [0168] Practical manifestations of the observed redistribution of bone formation in NOTU animals are reflected in Figures 3 and 4, which show results of femur breaking strength tests (performed by SkeleTech, now Ricerca Biosciences) using a sta ndard 4-point bending test. As shown in Figure 3, which provides results obtained for male mice at 16 weeks of age, hets (N = 20) exhibited a 5% ( p = 0.54) increase in femur breaking strength compared to their wildtype littermates (N = 23), whereas homs (N = 17) exhibited a 28% (p < 0.O01) increase. On the other hand, spine compression tests of both NOTUM homs and hets did not show a significant reduction in maximum spine compression loads as compared to wildtype controls. Similar results were obtained for female mice at 16 weeks of age. As shown in Figure 4, hets (N = 20) exhibited a 12% (p = 0.04) increase in femur breaking strength compared to their wildtype littermates (N = 21), whereas homs (N = 18) exhibited a 28% (p < 0.001) increase. Analysis of these and other data revealed a strong correlation between cortical thickness and femur breaking strength.
6.2. Production and Purification of Recombinant NOTUM Proteins
[0169] The full-length coding sequences for human, catalytically inactive human (S232A), mouse, catalytically inactive mouse (S239A), rat, guinea pig, cynomolgus monkey, and rhesus monkey NOTUM, each with a C-terminal 6XHis epitope tag, were subcloned into the expression vector plRESpuro2 (Clontech). The expression constructs can be used to generate conditioned medium containing secreted NOTUM protein by transient transfection, or to establish stable transfectants for the generation of larger quantities of conditioned medium, e.g., for subsequent purification of NOTUM protein.
[0170] HEK293F cells were transfected using Lipofectamine2000 (Invitrogen) and grown in suspension culture in Freestyle 293 Expression Medium (Invitrogen) in shaker flasks. For transient transfections, conditioned medium was harvested four days after transfection, sterile filtered and stored at 4°C. For the generation of cell lines stably expressing NOTUM protein, genomic integration of the expression plasmid was selected for in the presence of puromycin.
[0171] Expression and secretion of NOTUM protein was confirmed by Western blot of cell lysates and/or conditioned medium, using an anti-His antibody. Subcloning of NOTUM-producing bulk stable transfectants by limiting dilution enabled the identification by anti-His Western blot of individual clones expressing NOTUM at relatively high levels.
[0172] To produce purified mouse and human NOTUM proteins at 10-20 mg scale, clonal HEK293F cell lines expressing either mouse or human NOTUM were expanded in suspension culture to a volume of 3L. When the cell density at this volume reached 1χ10Λ6 viable cells per ml, the cells were pelleted by centrifugation and resuspended in fresh Freestyle 293 Expression Medium and maintained in culture for a further 96 hours without additional medium changes. After 96 hours, cultures were harvested, cells were pelleted by centrifugation, and the conditioned medium was sterile filtered and stored at 4°C for subsequent processing.
[0173] Immediately prior to purification, NOTUM-containing conditioned medium was concentrated from 3L to 1L and then buffer exchanged into nickel immobilized metal affinity chromatography (IMAC) buffer (20 mM Tris-HCI, 10 mM imidazole, 0.5 M NaCI, pH 7.4) by tangential flow filtration using a membrane with a lOkDa nominal molecular weight cut off.
Concentrated, buffer exchanged conditioned medium was then applied to an equilibrated, nickel charged, metal chelating column. Bound protein was washed and eluted using an imidazole concentration gradient. Elution fractions containing pure NOTUM protein were pooled and diaiyzed against phosphate buffered saline to remove the elution buffer. Purified, diaiyzed protein was aliquotted and frozen at -80°C.
[0174] For each batch of protein, one aliquot was used to determine protein concentration by bicinchoninic acid (BCA) assay (Thermo Scientific, Rockford, IL), purity by SDS PAGE followed by Coomassie or silver staining, activity in both the cell-free OPTS enzymatic assay (described in Example 6.4.1, below) and the cell-based Wnt signaling assay (described in Example 6.4.2, below), and endotoxin concentration by Limu!us Amoebocyte Lysate (LAL) assay (Lonza, Basel, Switzerland).
6.3. Generation of Mouse Monoclonal Antibodies to NOTUM
[0175] Antibodies were raised against purified recombinant human and mouse NOTUM proteins in two separate immunization campaigns.
[0176] In Campaign 1, mice homozygous for a gene trap insertion in the NOTUM gene and therefore lacking endogenous NOTUM protein were immunized with human NOTUM protein as follows. Mice were primed with 20 g human NOTUM protein in complete Freund's adjuvant injected intraperitoneal^. Mice were boosted with 20 g human NOTUM protein in incomplete Freund's adjuvant injected intraperitoneal^ every two to three weeks. Mice exhibiting a robust serum titer against human NOTUM as determined by ELISA received a final boost of 10μg human NOTUM protein in PBS injected intravenously (i.v.).
[0177] In Campaign 2, mice homozygous for a gene trap insertion in the NOTUM gene were immunized via the hind footpads with a priming immunization of 10μg mouse NOTUM protein in TiterMax adjuvant with CpG DNA followed by ten boosts of 10μg mouse NOTUM protein in Alum adjuvant with CpG DNA at three or four day intervals. Inguinal and popliteal lymph nodes were harvested from high titer mice after a final footpad boost with 10μg mouse NOTUM protein in PBS.
[0178] Spleens from i.v. boosted mice or lymph nodes from footpad immunized mice were collected four days after the final boost and were minced and strained to yield a cell suspension. Red blood cells were lysed and the cell suspension was enriched for B-cells by negative selection using magnetic beads coated with antibodies specific for non-B-cell populations. Hybridomas were generated by electro-cell fusion of enriched B-cells with mouse NSl myeloma cells and were seeded onto 96-well plates in hybridoma medium containing hypoxanthine and aminopterin to select for viable B-cell/myeloma cell hybridomas.
[0179] Hybridomas were screened for the production of NOTUM-specific antibodies by assaying hybridoma conditioned medium for immunoreactivity with passively adsorbed NOTUM protein in an ELISA format. Hundreds of hybridomas secreting antibody specific for mouse and/or human NOTUM were found from both immunization campaigns.
6.4. NOTUM Neutralization Assays
6.4.1. OPTS Assay
[0180] In the OPTS assay, trisodium 8-octanoyloxypyrene-l,3,6-trisulfonate (OPTS), a water soluble enzyme substrate for fluorimetric assays of esterases and lipases, is used to measure NOTUM activity. Enzymatic cleavage of the ester bond in OPTS yields a fluorescent product.
[0181] It was found that hybridoma conditioned medium in general interfered in the OPTS assay perhaps due to the release from dying cells of hydrolases that could also cleave the OPTS. For this reason, additional hybridoma conditioned medium was generated for those lines originally showing the highest level of binding activity by ELISA and antibody was purified in a 96-well format by affinity chromatography using protein A beads. These purified antibodies were then tested in the OPTS assay at a four-fold dilution without prior quantitation.
[0182] Antibodies were tested in quadruplicate in 384-well plates. 12.5 μΙ containing 125 ng of purified NOTUM in 4X reaction buffer (20 mM CaCI2, 2mM MgCI2, 50mM Tris-HCI, pH7.4) was added to 12.5 μΙ of purified antibody. After mixing, antibody and NOTUM were incubated at room temperature for 20 minutes followed by addition of 25μΙ of 1.25 μΜ OPTS (Sigma, catalog # 74875) in 50 mM Tric-HCI, pH7.4. After mixing, the enzyme reaction was allowed to proceed at room temperature for 10 minutes before being stopped by addition of 25μΙ of 3% SDS. Plates were read on an Envision plate reader with an excitation wavelength of 485nm and emission wavelength of 535 nm to quantify the amount of cleavage product.
[0183] Screening of 1,135 human NOTUM immunoreactive hybridomas from Campaign 1 yielded three antibodies that showed greater than 70% inhibition of human NOTUM. These three together with an additional five hybridomas exhibiting some degree of neutralization in the OPTS assay were selected for subcloning by limiting dilution and small scale purified antibody production by protein A affinity chromatography using 50ml conditioned medium from clonal hybridomas.
[0184] OPTS assay screening of 1,056 mouse NOTUM immunoreactive hybridomas identified from Campaign 2 yielded six antibodies that showed greater than 50% inhibition of mouse NOTUM. These six together with an additional six hybridomas exhibiting some degree of neutralization in the OPTS assay were selected for subcloning by limiting dilution and small scale purified antibody production by protein A affinity chromatography using 50ml conditioned medium from clonal hybridomas.
6.4.2. Wnt Signaling Assay
[0185] NOTUM can act as a negative regulator of Wnt signaling. Antibody neutralizing activity, determined through the effect on Wnt signaling, was determined in a Wnt signaling assay, which uses CellSensor® technology and conditioned media prepared as follows. Plasmid containing human NOTUM in pcDNA3.1(+) vector was transfected into HEK293 cells and clones were selecting by growing in presence of 400 μg/mL of G418. Condition media from these cells was used for the assay. L cells overexpressing and secreting Wnt3a into the conditioned media were purchased from ATCC.
[0186] The assay protocol was as follows. CellSensor®LEF/TCF-bla Freestyle™ 293F cells (Invitrogen) were grown to near confluency in 15-cm plates in DMEM with 10% Dialyzed FBS, 5 μ§ΑηΙ Blasticidin (Invitrogen, R210-01), 0.1 mM NEAA, 25 mM HEPES and lxGPS. Cells were trypsinized by first rinsing with PBS, followed by addition of 5 mL trypsin and incubation of plates at room temperature for two minutes. A total of 10 mL of assay media (Opti-MEM, plus 0.5% dialyzed FBS, 0.1 mM NEAA, ImM sodium pyruvate, 10 mM HEPES, lx GPS) was then added per 15 cm plate. Cells were counted and suspended at 50,000 cells per mL. Cells were seeded into Biocoat 384-well plates (Fisher, Catalogue #356663) at a density of 10000 cells per 20 μί per well. After incubation of cells at 37°C for 3 hours, 10 μί of 30 mM LiCI in assay medium was added per well, followed by incubation at 37°C overnight. The next day, 15 μί of antibody and 15 μί of purified NOTUM, both in assay medium, were coincubated in a total volume of 45 μΐ assay medium at room temperature for 30 minutes in a 96-well plate. NOTUM was used in a concentration previously determined to give 50% inhibition in the assay, typically 25 nM. Following the 30 minute incubation, 15 μί of undiluted L-Wnt3a conditioned medium was added to the 45 μί antibody/NOTUM mixture, and 10 μΙ of the resulting mixture was added to the wells of the 384-well plate containing the CellSensor® cells, in quadruplicate. Controls included wells lacking any cells, wells lacking NOTUM, and wells lacking L-Wnt3a conditioned medium. The assay plate was incubated for 5 hours at 37°C to enable Wnt-mediated beta-lactamase upregulation, and then 8 μΙ LiveBLAzer™-FRET B/G Substrate (CCF4- AM, Invitrogen) was added to each well and the plate incubated in the dark at room temperature for 3 hours. Plates were then read on an Envision plate reader using an excitation wavelength of 400 nm and emission wavelengths of 460 nm and 535 nm.
6.5. Characterization of NOTUM Neutralizing Antibodies
[0187] Antibodies purified from clonal hybridomas were characterized with respect to their species cross-reactivity by ELISA, their ability to recognize reduced, denatured NOTUM protein by Western blot, and their neutralizing potency in the cell-free OPTS assay and the cell-based Wnt signaling assay, both of which are described above in Example 6.4.
[0188] Functional testing of monoclonal antibodies from Campaign 1 revealed three antibodies, 1.802, 1.815, 1.846, that neutralize human NOTUM in both the OPTS and Wnt signaling assays with an IC50 in the range of 1 to ΙΟηΜ. These antibodies do not have any effect on the activity of mouse NOTUM and were shown by ELISA to bind human NOTUM but not mouse NOTUM. Furthermore, these antibodies recognized human NOTUM only weakly when NOTUM protein was passively adsorbed to the assay plate and were much more sensitive to anti-His displayed human NOTUM protein.
[0189] Table 1 shows the results of various characterization experiments for certain antibodies from Campaign 1. The data in the "Bin" column was generated using the method described in Example 6.6, below.
Table 1: Characterization of certain antibodies raised against human NOTUM
Figure imgf000049_0001
[0190] Functional testing of monoclonal antibodies from Campaign 2 revealed interesting activity profiles. In particular, MAb 2.78 neutralized both mouse and human NOTUM in both the OPTS and Wnt signaling assays with an ICS0 in the range of 3 to 50 nM while MAb 2.1029 neutralized both mouse and human NOTUM in the OPTS assay with an ICS0 in the range of 5 to 30nM but only human NOTUM in the Wnt signaling assay with an IC50 of 14 nM. This latter observation was ascribed to there being some difference in the quality of the recombinant mouse and human NOTUM proteins. One known difference between the proteins is that recombinant mouse NOTUM exists as multimers/aggregates to a much greater extent than does recombinant human NOTUM. Neither 2.78 nor 2.1029 recognized reduced, denatured NOTUM protein by Western blotting and both were substantially more immunoreactive with anti-His displayed NOTUM than with passively adsorbed NOTUM.
[0191] Table 2 shows the results of various characterization experiments for certain antibodies from Campaign 2. The data in the "Bin" column was generated using the method described in Example 6.6, below. Table 2: Characterization of certain antibodies raised against mouse NOTUM
Figure imgf000050_0001
Maximum inhibition =50%.
6.6. Binding Competition Studies Using NOTUM Neutralizing Antibodies
[0192] Antibodies from both immunization campaigns were assessed for their ability to interfere with each other's binding to NOTUM protein in an epitope binning assay. This assay was performed in an ELISA format using anti-His captured NOTUM protein. The captured NOTUM protein was incubated with an excess of an unlabelled NOTUM-specific antibody (the 'blocking' antibody) followed by addition of a biotinylated NOTUM-specific antibody (the 'probe' antibody). Binding of the probe antibody was measured using HRP conjugated to streptavidin. If the two antibodies compete for binding in the same epitope space or if the blocking antibody otherwise affects the ability of the probe antibody to bind, e.g., by allosteric interference, no signal is generated. If the two antibodies do not interfere with one another, a signal similar to that of the biotinylated antibody tested in the absence of blocking antibody is generated. Antibodies are tested in a reciprocal matrix format. Typically, a pair of antibodies will show the same level of interference regardless of which of the two is the blocking antibody and which is the probe antibody. Antibodies exhibiting similar profiles are assigned to the same epitope 'bin'.
[0193] Using this methodology it was shown that MAbs 1.802, 1.815, 1.846, 2.78, and 2.1029 all interfere with each other's binding to human NOTUM while they do not interfere with the binding of several other less potent neutralizers or non-neutralizers.
6.7. Epitope Mapping of NOTUM Neutralizing Antibodies
[0194] In an effort to map the amino acids involved in binding of human NOTUM-specific MAbs 1.802, 1.815, and 1.846, human/mouse chimeric NOTUM proteins were produced by transient transfection in HEK293F of expression constructs encoding NOTUM open reading frames with a mixture of human and mouse sequences. By Western blotting with anti-His antibody and by OPTS assay it was shown that conditioned media from these transfections contained functional NOTUM chimeras. [0195] Figure 5 shows schematic representations of the human/mouse chimeric NOTUM proteins used in this experiment. The sequences of those proteins a re shown in Section 7 (Table of Sequences). The conditioned media were used in ELISA format to determine antibody specificity. Based on loss of human-specific MAb binding to particular chimeras it was determined that MAbs 1.802, 1.815, and 1.846 (all of which are "Bin 1" antibodies) depend on human NOTUM amino acids between Q47 and M177 for binding. See Figure 5. Within this region, mouse and human NOTUM differ at five positions (R115K, D141S. R150K, R154H, and Y171H, based on the human sequence numbering). Human NOTUM point mutants were generated by transient transfection of constructs expressing human NOTUM with the mouse amino acid at each of these five positions and the point mutants were all shown to be functional in the OPTS assay. By ELISA, MAbs 1.802, 1.815, and 1.846 bound all point mutants except human NOTUM D141S, indicating that this amino acid is important for their binding to human NOTUM. Mouse NOTUM with the reciprocal point mutation, mouse NOTUM S148D was generated by transient transfection, shown to be active in the OPTS assay, and was shown to support binding of the human NOTUM-specific MAbs. Therefore, the species specificity of MAbs 1.802, 1.815, and 1.846 appears to be dependent upon the amino acid at position 141 in human NOTUM, which is aspartic acid in the native human NOTUM protein.
[0196] The chimera approach could not be used to map amino acids involved in binding of MAbs 2.78 or 2.1029 because those cross-react with both human and mouse NOTUM. Based on the finding that MAbs 1.802, 1.815, 1.846, 2.78, and 2.1029 interfere with one another's binding, alanine scanning mutagenesis of charged amino acid residues in the vicinity of human D141 was performed. Five human NOTUM mutants were constructed, each with a pair of charged residues mutated to alanines: human NOTUM N132A/R133A (SEQ ID NO: 96); human NOTUM E134A/N135A (SEQ ID NO: 97); human NOTUM D137A/R139A (SEQ ID NO: 98); human NOTUM R144A/R145A (SEQ ID NO: 99); and human NOTUM R150A/D151A (SEQ ID NO: 100). All five human mutants were effectively expressed and secreted after transient transfection. Four of the five mutants exhibited significant activity in the OPTS assay while the fifth (human NOTUM D137A/R139A) showed little to no activity. All five mutants were detected in ELISA format by at least some of the Campaign 1 and Campaign 2 MAbs. MAb 2.78 failed to bind human NOTUM D137A/R139A and human NOTUM R144A/R145A, while MAbs 1.802, 1.815, and 1.846 failed to bind only NOTUM R144A/R145A. MAb 2.1029 was immunoreactive with all five of the alanine mutants.
6.8. Binding Affinities of NOTUM Neutralizing Antibodies
[0197] Binding affinities of certain anti-NOTUM MAbs was determined using a Biacore 3000. In order to obtain meaningful affinity values for binding to multimeric mouse NOTUM protein, antibody FAb fragments were generated by digestion of whole IgG with the protease Ficin, followed by removal of undigested IgG and Fc fragments by protein A affinity chromatography. Affinity values for binding of FAbs and whole IgG to human NOTUM corresponded, and their affinity values were in the single to low double digit nM range, as shown in Table 3.
Table 3: Binding affinity of certain antibodies raised against human and mouse NOTUM
Figure imgf000052_0001
6.9. Administration of NOTUM Neutralizing Antibodies to Mice
6.9.1. Administration of NOTUM Neutralizing Antibodies Weekly for 8 Weeks
[0198] Eight week old male Fl hybrid (129 x C57) mice were administered NOTUM neutralizing antibody 2.1029 or 2.78b, or a control antibody, by intraperitoneal injection at 30 mg/kg once per week for eight weeks. There were 12 mice per group. At the end of the study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco μΠ"40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
[0199] As shown in Figure 6, midshaft femur cortical thickness increased by 12% (P < 0.001) with administration of NOTUM neutralizing antibody 2.1029, and 16% (P < 0.001) with administration of NOTUM neutralizing antibody 2.78b, as compared to the control antibody.
6.9.2. Administration of NOTUM Neutralizing Antibody 2.1029 Weekly for 4 Weeks
[0200] Eight week old male Fl hybrid (129 x C57) mice were administered NOTUM neutralizing antibody 2.1029 by intraperitoneal injection at 3 mg/kg, 10 mg/kg, or 30 mg/kg once per week for four weeks. There were 10 mice per group. At the end of the study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco μ(ΙΤ40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
[0201] As shown in Figure 7, midshaft femur cortical thickness increased by 5% (P = 0.12) with administration of 30 mg/kg NOTUM neutralizing antibody 2.1029, relative to administration of control antibody. 6.9.3. Administration of NOTUM Neutralizing Antibody 2.78b Weekly for 4
Weeks
[0202] Eight week old male Fl hybrid (129 x C57) mice were administered NOTUM neutralizing antibody 2.78b by intraperitoneal injection at 3 mg/kg, 10 mg/kg, or 30 mg/kg once per week for four weeks. There were 10 mice per group in the first experiment. In a second experiment, NOTUM neutralizing antibody 2.78b was administered by intraperitoneal injection at 0.3 mg/kg, 1 mg/kg, or 3 mg/kg once per week for four weeks. There were 12 mice per group in the second experiment. At the end of each study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco μΟΤ40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
[0203] As shown in Figure 8A, midshaft femur cortical thickness increased by 13% (P < 0.001), 17% (P < 0.001), and 16% (P < 0.001) with administration of 3 mg/kg, 10 mg/kg, and 30 mg/kg, respectively, of NOTUM neutralizing antibody 2.78b, relative to administration of control antibody, in the first experiment. As shown in Figure 8B, midshaft femur cortical thickness increased by 3% (P=0.46), 7% (P = 0.01), and 10% (P < 0.001) with administration of 0.3 mg/kg, 1 mg/kg, and 3 mg/kg, respectively, of NOTUM neutralizing antibody 2.78b, relative to administration of control antibody, in the second experiment.
6.9.4. Administration of NOTUM Neutralizing Antibody 2.78b Weekly for 4
Weeks with Zoledronate Pretreatment
[0204] 28-week old male Fl hybrid mice (129 x C57) were administered a single dose 50 μg/kg zoledronate by intraperitoneal injection. Four weeks after the dose of zolendronate, the mice were administered 10 mg/kg NOTUM neutralizing antibody 2.78b by i.p. injection weekly for 4 weeks. At the end of each study, the mice were sacrificed. There were 11 or 12 mice per group. Bone mass and architecture were determined by microCT following necropsy, using a Scanco μΟΤ40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV. In addition, serum levels of PINP, which is a marker of bone formation, were measured using a commercially available ELISA assay (Immunodiagnostic Systems, Scottsdale, AZ) at day 7 after the first dose of Mab 2.78b.
[0205] As shown in Figure 9A, the midshaft femur cortical thickness increased by 10 μιτι, or
4% (P = 0.31), in mice administered zoledronate and control antibody, relative to mice administered saline and control antibody. Midshaft femur cortical thickness increased by 23 μηη, or 9% (P <
0.001), in mice administered NOTUM neutralizing antibody 2.78b without zoledronate
pretreatment, relative to mice administered saline and control antibody, and increased by 14 μιη, or 5% (P = 0.06), in mice administered NOTUM neutralizing antibody 2.78b with zoledronate pretreatment, relative to mice administered zeledronate and control antibody. Figure 9B shows that serum PINP levels decreased by 15 ng/mL, or 50% (P < 0.001) in mice administered
zolendronate treatment and control antibody, relative to mice administered saline and control antibody. PINP levels increased by 14 ng/mL, or 47% (P < 0.001) in mice administered NOTUM neutralizing antibody 2.78b without zoledronate pretreatment, relative to mice administered saline and control antibody, and increased by 12 ng/mL, or 79% (P < 0.001) in mice administered NOTUM neutralizing antibody 2.78b with zoledronate pretreatment, relative to mice administered zeledronate and control antibody.
6.9.5. Administration of NOTUM Neutralizing Antibody 2.78a for 4 Weeks
[0206] For this experiment, Mab 2.78 (also referred to as "2.78b"), which is an lgG2b antibody, was reformatted as an lgG2a antibody (lgG2a antibodies often have longer half-lives than lgG2b antibodies). Reformatted Mab 2.78 is referred to as "2.78a."
[0207] 13-week old male Fl hybrid mice (129 x C57) were administered NOTUM neutralizing antibody 2.78a by intraperitoneal injection at 0.3 mg/kg, 1 mg/kg, 3 mg/kg, or 10 mg/kg once per week for four weeks. There were 10 or 12 mice per group. At the end of each study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco μΟΤ40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
[0208] As shown in Figure 10, midshaft femur cortical thickness increased by 3% (P = 0.57), 7% (P = 0.02), 9% (P = 0.002), and 10% (P < 0.001) with administration of 0.3 mg/gk, 1 mg/kg, 3 mg/kg, and 10 mg/kg, respectively, of NOTUM neutralizing antibody 2.78a in that experiment.
6.9.6. Administration of NOTUM Neutralizing Antibody 2.78a Weekly or
Biweekly for 12 Weeks
[0209] Ten week old male Fl hybrid mice (129 x C57) were administered a control antibody, 0.3 mg/kg NOTUM neutralizing antibody 2.78a by i.p. injection weekly for 12 weeks, or 1 mg/kg NOTUM neutralizing antibody 2.78a by i.p. injection every other week (biweekly) for 12 weeks or 24 weeks. There were twelve mice per administration group. At the end of each study, the mice were sacrificed. Bone mass and architecture were determined by microCT following necropsy, using a Scanco μ(ΖΤ40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV.
[0210] As shown in Figure 11A, the midshaft femur cortical thickness increased by 6% (P < 0.001) and 9% (P < 0.001) in mice administered 0.3 mg/kg weekly and 1 mg/kg biweekly, respectively, of NOTUM neutralizing antibody 2.78a for 12 weeks. Similarly, as shown in Figure 11B, the midshaft humerus cortical thickness increased by 5% (P = 0.007) and 7% (P < 0.001) in mice administered 0.3 mg/kg weekly and 1 mg/kg biweekly, respectively, of NOTUM neutralizing antibody 2.78a for 12 weeks.
[0211] As shown in Figure 12A, the midshaft femur cortical thickness increased by 7% (P = 0.002) and 9% (P < 0.001) in mice administered 0.3 mg/kg weekly and 1 mg/kg biweekly, respectively, of NOTUM neutralizing antibody 2.78a for 24 weeks. As shown in Figure 12B, the midshaft humerus cortical thickness increased by 3% (P = 0.09) and 8% (P < 0.001) in mice administered 0.3 mg/kg weekly and 1 mg/kg biweekly, respectively, of NOTUM neutralizing antibody 2.78a for 24 weeks. Finally, as shown in Figure 12C, the ninth rib cortical thickness increased by 7% (P = 0.02) and 9% (P = 0.003) in mice administered 0.3 mg/kg weekly and 1 mg/kg biweekly, respectively, of NOTUM neutralizing antibody 2.78a for 24 weeks.
6.10. Administration of NOTUM Neutralizing Antibodies to Ovariectomized Mice
6.10.1. Ovariectomy
[0212] Sixteen-week-old albino C57BL/6J female mice were ovariectomized or given sham surgery. Serum levels of PINP, which is a marker of bone formation, and CTX, which is a marker of bone resorption, were measured using a commercially available ELISA assay (Immunodiagnostic Systems, Scottsdale, AZ) in the interval after ovariectomy and before administration of NOTUM neutralizing antibody, to confirm that increased bone remodelling was occuring after ovariectomy.
[0213] Following surgery and prior to the start of treatment, ovariectomized mice showed increased bone remodeling relative to sham surgery mice, as shown in Table 4. Since trabecular bone contains many more bone cells than cortical bone, these data likely reflect primarily increased trabecular bone remodeling.
Table 4: Bone marker levels following surgery
Figure imgf000055_0001
6.10.2. Administration of NOTUM Neutralizing Antibody 2.78b to Ovariectomized Mice
[0214] NOTUM neutralizing antibody 2.78b or a control antibody was administered at 10 mg/kg by intraperitoneal injection once per week for 4 weeks, starting 8 weeks after surgery. The study included the treatment groups shown in Table 5.
Table 5: Treatment groups in ovariectomy (OVX) study
Figure imgf000055_0002
* There were originally 14 mice in this group, but one mouse died during the study.
[0215] To assess the location and extent of new bone formation, fluorochrome bone labels were administered on treatment days 7, 14, and 21 (i.e., with the 2nd, 3rd, and 4th treatments). Calcein, which fluoresces green, was administered on day 7; alizarin, which fluoresces red, was administered on day 14; and tetracycline, which fluoresces yellow, was administered on day 21. The mice were sacrificed at the end of the 4 week treatment. Uterine weight at necropsy confirmed that the ovariectomy surgery was successful. (Data not shown.)
6.10.3. Bone Mass and Architecture in NOTUM Neutralizing Antibody-Treated Ovariectomized Mice
[0216] Bone mass and architecture were determined by microCT following necropsy, using a Scanco μΠ"40 with a threshold value of 240, an integration time of 200 milliseconds, and an X-ray tube voltage of 55 keV. The midshaft femur, LV5 vertebral body, and the femoral neck were scanned.
[0217] As shown in Figure 13A, the midshaft femur cortical thickness increased by 22 μιη, or 9%, in sham surgery mice administered NOTUM neutralizing antibody 2.78b, relative to sham surgery mice administered control antibody, and increased by 26 μιτι, or 12%, in ovariectomized mice administered NOTUM neutralizing antibody 2.78b, relative to ovariectomized mice administered control antibody. As shown in Figure 13B, the midshaft femur mineralized bone area increased by 0.1 mm2, or 11%, in sham surgery mice administered NOTUM neutralizing antibody 2.78b, relative to sham surgery mice administered control antibody, and increased by 0.08 mm2, or 10%, in ovariectomized mice administered NOTUM neutralizing antibody 2.78b, relative to ovariectomized mice administered control antibody.
[0218] As shown in Figure 14A, the proportion in the LV5 vertebral body of total (cortical plus trabecular) bone volume to total volume increased by 9% in sham surgery mice administered NOTUM neutralizing antibody 2.78b, relative to sham surgery mice administered control antibody, and increased by 3% in ovariectomized mice administered NOTUM neutralizing antibody 2.78b, relative to ovariectomized mice administered control antibody. As shown in Figure 14B, the proportion in the LV5 vertebral body of cortical bone volume to total volume increased by 13% in sham surgery mice administered NOTUM neutralizing antibody 2.78b, relative to sham surgery mice administered control antibody, and increased by 9% in ovariectomized mice administered NOTUM neutralizing antibody 2.78b, relative to ovariectomized mice administered control antibody. As shown in Figure 14C, the proportion in the LV5 vertebral body of trabecular bone volume to total volume was not significantly affected by administration of NOTUM neutralizing antibody 2.78b in either the sham surgery mice or the ovariectomized mice.
[0219] Finally, as shown in Figure 15, the proportion of femoral neck bone volume to total volume increased by 4% in sham surgery mice administered NOTUM neutralizing antibody 2.78b, relative to sham surgery mice administered control antibody, and increased by 6% in
ovariectomized mice administered NOTUM neutralizing antibody 2.78b, relative to ovariectomized mice administered control antibody. 6.10.4. Bone Histomorphometry in NOTUM Neutralizing Antibody-Treated
Ovariectomized Mice
[0220] Femur shafts were embedded in methylmethacrylate using a rapid embedding protocol. See Brommage and Vafai, Calcified Tissue Int'l 67: 479 (2000). Midshaft cross-sections with a thickness of about 80 μιη were prepared using a Leica SP160O bone saw. Sections were then examined with an Olympus BX60 fluorescent microscope. Various bone histomorphometric parameters were determined using OsteoMeasure™ software (OsteoMetrics, Decatur, GA). Both static parameters (such as bone area and thickness) and dynamic parameters (such as single label surface (SLS), mineral aposition rater (MAR), and bone formation rate (BFR)) were measured at lOOx magnification.
[0221] Figure 16 shows the percentage of the endocortical surface of the midshaft femur cross-sections that were labeled with calcein, which was administered on day 7, with alizarin, which was administered on day 14, and with tetracycline, which was administered on day 21. Table 6 shows the statistical analysis of the data in Figure 16. Mice administered NOTUM neutralizing antibody 2.78b showed a significantly higher percentage of endocortical labeling at days 7 and 14 compared to mice administered control antibody.
Table 6: Two-factor ANOVA of Single-Label Surface %
Figure imgf000057_0001
[0222] Figure 17 shows the mineral appositional rate (A) and the volume-referent bone formation rate (B) of sham surgery and ovariectomized mice that were administered control antibody or NOTUM neutralizing antibody 2.78b. The mineral appositional rate (Figure 17A) was determined by measuring the distance between the calcein label (day 7) and the alizarin label (day 14) and dividing by 7 to obtain the "days 7 to 14 rate," and measuring the distance between the alizarin label (day 14) and the tetracycline label (day 21) and dividing by 7 to obtain the "days 14 to 21 rate." Table 7 shows the statistical analysis of the data in Figure 17A. Mice administered NOTUM neutralizing antibody 2.78b showed a greater rate of mineral apposition than mice administered control antibody during the time period from days 7 to 14.
Table 7: Two-factor ANOVA of Mineral Appositional Rate
Figure imgf000057_0002
[0223] The volume-referent bone formation rate (Figure 17B) was determined by standard calculations involving multiplying the endocortical mineralization surface (percentage of double- labeled surface plus one-half of the single labeled surface, derived from Figure 16) by the mineral apposition rate (see Figure 17A). The result is the bone formation rate divided by the bone volume, expressed as a percentage per 7 days. Table 8 shows the statistical a nalysis of the data in Figure 17B. As evident in Figure 17B, the bone formation rate per bone volume is significantly higher in mice administered NOTUIVI neutralizing antibody 2.78b than in mice administered control antibody. Table 8: Two-factor ANOVA of Volume-Referent Bone Formation Rate
Figure imgf000058_0001
6.11. Identification of Species Suitable for Testing NOTUM Neutralizing Antibodies
[0224] Based upon multi-species protein sequence alignments taken from the public domain, it was predicted that Abs 1.802, 1.815, and 1.846 would bind to guinea pig NOTUM and that this species might therefore be suitable for preclinica l studies. To test this hypothesis, guinea pig NOTUM was cloned and expressed by transient transfection, and shown to be active in the OPTS assay. MAbs 1.802, 1.815, and 1.846 were found to bind to guinea pig NOTUM by ELISA and MAb 1.802 was shown to neutralize guinea pig NOTUM activity in the OPTS assay. MAb 2.78 bound guinea pig NOTUM with lower affinity than MAb 1.802, and had correspondingly lower inhibiting activity in the OPTS assay. MAb 2.1029 bound guinea pig NOTUM only weakly, and did not significantly inhibit it in the OPTS assay.
[0225] Cynomoigus and rhesus monkey NOTUM were cloned from cDNA preparations from those species. Analysis of the sequences revealed that the amino acid at the position equivalent to human NOTUM D141 is an asparagine, which is different from the amino acid at that position in both mouse and human NOTUM . Active (as determined by OPTS assay) cynomoigus and rhesus NOTUM proteins were generated by transient transfection, and it was found that MAb 1.802 neither binds nor inhibits either protein. An active human NOTUM point mutant, human NOTUM D141N, was generated by transient transfection, and it was found that MAb 1.802 does not bind to that human NOTUM point mutant.
[0226] MAb 2.78 bound both cynomoigus and rhesus NOTU M weakly by ELISA, but did not inhibit either protein significantly in the OPTS assay. In contrast, MAb 2.1029 bound both cynomoigus and rhesus monkey NOTUM by ELISA as well as it binds human NOTUM, and also inhibited both proteins in the OPTS assay as well as it inhibited human NOTUM . 6.12. Antibody Sequencing and Humanization
[0227] Heavy and light chain variable regions were sequenced by specific RT-PCR using total RNA from the relevant hybridoma cell line followed by sequencing of the PCR product. The heavy and light chain variable regions from four Campaign 1 antibodies: 1.731, 1.802, 1.815, and 1.846, and three Campaign 2 antibodies: 2.1029, 2.55, and 2.78, were sequenced. The variable region sequences, without signal sequences, for each of those antibodies are shown in Section 7 (Table of Sequences), below. Section 7 also shows the sequences for the heavy and light chain CDRl, CDR2, and CDR3 for each of those antibodies. The following table shows the SEQ ID NOs corresponding to the heavy and light chain variable regions, and to CDRl, CDR2, and CDR3, for each of those antibodies.
Table 9: SEQ ID NOs for heavy and light chain variable regions and CDRs
Figure imgf000059_0001
[0228] Certain heavy and light chain CDRs were found to have high homology among two or more of the sequenced antibodies. MAbs 1.802 and 1.846 share an identical heavy chain CDRl (GFTFSDYGMH; SEQ ID NOs: 17 and 33), while heavy chain CDRl of MAb 1.815 (GFTFSDFGMH; SEQ ID NO: 25) differs from MAbs 1.802 and 1.846 by only one conservative amino acid substitution (Phenylalanine (F) in place of Tyrosine (Y)). The consensus sequence for the heavy chain CDRl for those antibodies is therefore GFTFSDXiGMH (SEQ ID NO: 90), wherein Xx is F or Y. Heavy chain CDR3 of MAbs 1.802 and 1.846 differ by only one conservative amino acid substitution (histidine (H) versus asparagine (N)). The consensus sequence for the heavy chain CDR3 for those antibodies is therefore KX2YNGGYFDV (SEQ ID NO: 91), wherein X2 is H or N. MAbs 1.802 and 1.846 share an identical light chain CDR2 (LASNLES; SEQ ID NOs: 21 and 37), while light chain CDR2 of MAb 1.815 (LASDLES; SEQ ID NO: 29) differs from MAbs 1.802 and 1.846 by only one conservative amino acid substitution (aspartic acid (D) in place of asparagine (N)). The consensus sequence for the light chain CDR2 for those antibodies is therefore LASX6LES (SEQ ID NO: 93), wherein X6 is D or N. Finally, a consensus sequence for the light chain CDRl for the three antibodies from Campaign 1, 1.802, 1.846, and 1.815, is RASKX3VSX4SGYSYX5H (SEQ ID NO: 92), wherein X3 is I or S, X4 is T or E, and X5 is M or I.
[0229] BLAST searching was performed against public databases to identify the human germline variable region sequences with greatest similarity to each of the mouse heavy and light chain variable regions. Using the AbM definition, CDRs from the mouse variable regions were then grafted in silico into these human germline variable sequences in place of the human germline CDRs. The resulting humanized variable regions for five of the mouse antibodies (2.78, 2.1029, 1.802, 1.815, and 1.846) were synthesized with a 5' leader sequence encoding an in-frame signal peptide and cloned upstream of sequence encoding human lgG2 constant regions in the case of the heavy chain variable sequences or human kappa constant region in the case of the light chain variable sequences. The sequences for each of the humanized variable regions are shown in Section 7 (Table of Sequences), below, along with the sequences for the full-length humanized heavy and light chains (without the signal peptide).
[0230] Coding sequences for full length humanized heavy and light chains were subcloned into mammalian expression vectors and corresponding heavy and light chain constructs were cotransfected into CHO-S cells. The resulting conditioned media were checked by Western blotting with an anti-human secondary antibody to confirm expression and secretion of intact humanized antibody. The conditioned media were then tested in ELISA format to determine whether the humanized antibodies retained the capacity to bind human NOTUM protein. Humanized MAbs 1.802, 1.815, 1.846, and 2.1029 bound human NOTUM while humanized MAb 2.78 exhibited little to no binding to either human or mouse NOTUM.
[0231] All references cited above are incorporated herein by reference in their entireties for any purpose.
7. Table of Sequences
SEQ ID NO Description Sequence
1 Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE
SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT CNDGSPAGYY LKESRGSRR LLFLEGGWYC FNRENCDSRY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDV SG ASSKSEK EY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSH TDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
Mouse NOTUM MGGEVRVLLL LGLLHWVGGS EGRKTWRRRG QQPPQPPPPP PLPQRAEVEP
GAGQPVESFP LDFTAVEGNM DSFMAQVKSL AQSLYPCSAQ QLNEDLRLHL LLNTSVTCND GSPAGYYLKE SKGSRRWLLF LEGGWYCFNR ENCDSRYSTM RRL SSKDWP HTRTGTGILS SQPEENPHWW NANMVFIPYC SSDVWSGASP KSDKNEYAFM GSLIIQEWR ELLGKGLSGA KVLLLAGSSA GGTGVLLNVD RVAELLEELG YPSIQVRGLA DSGWFLDNKQ YRRSDCIDTI NCAPTDAIRR GIRYWSGMVP ERCQRQFKEG EE NCFFGYK VYPTLRCPVF WQWLFDEAQ LTVDNVHLTG QPVQEGQWLY IQNLGRELRG TLKDVQASFA PACLSHEIII RSYWTDVQVK GTSLPRALHC WDRSFHDSHK ASKTP KGCP FHLVDSCPWP HCNPSCPTIR DQFTGQEMNV AQFLMHMGFD VQTVAQQQGM EPSKLLGMLS NGN
Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE S232A SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SAAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQ LFD EAQLTVDNVH
LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV
QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC P PHCNPSCP
TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
Mouse NOTUM MGGEVRVLLL LGLLHWVGGS EGRKTWRRRG QQPPQPPPPP PLPQRAEVEP S239A mutant GAGQPVESFP LDFTAVEGNM DSFMAQVKSL AQSLYPCSAQ QLNEDLRLHL
LLNTSVTCND GSPAGYYLKE SKGSRRWLLF LEGGWYCFNR ENCDSRYSTM RRLMSSKDWP HTRTGTGILS SQPEENPHW NANMVFIPYC SSDVWSGASP KSDKNEYAFM GSLIIQEWR ELLGKGLSGA KVLLLAGSAA GGTGVLLNVD RVAELLEELG YPSIQVRGLA DSGWFLDNKQ YRRSDCIDTI NCAPTDAIRR GIRYWSGMVP ERCQRQFKEG EEWNCFFGYK VYPTLRCPVF WQWLFDEAQ LTVDNVHLTG QPVQEGQWLY IQNLGRELRG TLKDVQASFA PACLSHEIII RSYWTDVQVK GTSLPRALHC WDRSFHDSHK ASKTPMKGCP FHLVDSCPWP HCNPSCPTIR DQFTGQEMNV AQFLMHMGFD VQTVAQQQGM EPSKLLGMLS NGN
Guinea pig NOTUM MGRGVRVLFL LGLLHWAGGG EGRKTWRRRG QQPAPAPLPP QRTEAAPGTG
QPVESFPLDF TAVEGNMDSF MAQVKSLAQS LYPCSAQQLN EDLRLHLLLN TSVTCNDGSP AGYYLKESKG SRRWLLFLEG GWYCFSRENC DSRYDTMRRL MSSKDWPQTR TGTGILSSQP EENPYWWNAN MVFIPYCSSD VWSGASSKSE KNEYVFMGAL IIREWQELL GRGLSGAKVL LLAGSSAGGT GVLLNVDRVA EQLEQLGYPA IQVRGLADSG WFLDNKQYRR TDCVDTVTCA PTEAIRRGIR YWNGMVPERC RSQFKEGEEW NCFLGYKVYP TLRCPVFWQ WLFDEAQLTA DNAHLTGQPV QEGQWLYIQN LGHELRNTLK DVPASFAPAC LSHEIIIRSH WTDVQVKGTS LPRALHCWDR SLHDSHKASK TPLKGCPIHL VDSCPWPHCN PSCPTIRDQF TGQEMNVAQF LMHMGFDVQT VAQQQGLEPS KLLGMLSSGS
Cynomolgus MGRGVRVLLL LGLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE monkey NOTUM SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY NTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE ELGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKIYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQESQ RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKTSKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDVQTVAQQ QGPEPSKLLG LPSDGS
Rhesus macaque MGRGVRVLLL LGLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE NOTUM SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY NTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE ELGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKIYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQESQ RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKNSKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDVQTVAQQ QGPEPSKLLG LPSDGS
MAb 1.731 heavy EVQLQQSGPE LVKPGASVKV SCKASGYPFT DYFIHWVKQT HGKSLEWIGY chain variable FFPKNGANGY NQKFEGKVTL TVDKSSSTAY MELRSLTSED SAVYYCARRY region GNYYSMDYWG QGTSVTVSSA KTTPP
MAb 1.731 light SFVMTQTPKF LLVSAGDRVT ITCKASQSVG DDVAWYQQKP GQSPTLLIYR chain variable VSNRYTGVPD RFTGSGYGTD FTFTINTVQA EDLAVYFCQQ DYSSPYTFGG region GTQLEVKRAD AAP
MAb 1.731 heavy GYPFTDYFIH
chain CDR1
MAb 1.731 heavy YFFPKNGANG
chain CDR2
MAb 1.731 heavy RYGNYYSMDY
chain CDR3
MAb 1.731 light KASQSVGDDVA
chain CDR1
MAb 1.731 light RVSNRYT
chain CDR2
MAb 1.731 li QQDYSSPYT
chain CDR3
MAb 1.802 heavy EVQLVESGGG LVKPGGSLKL SCAASGFTFS DYGMHWFRQA PEKGLEWVAY chain variable ISSGSRTVYY ADTVKGRFTI SRDNAKNTLS LQMTSLRSED TAMYYCARKH region YNGGYFDVWG TGTTVTVSSA KTTP
MAb 1.802 light DIVLTQSPAS LAVSLGQRAT ISCRAS IVS TSGYSYMHWY QQKPGQPPKL chain variable LIYLASNLES GVPARFSGSG SGTDFTLNIH PVEEEDAATY YCQHSRELPP region TFGSGTKLEI KRADAAP
MAb 1.802 heavy GFTFSDYGMH
chain CDR1
MAb 1.802 heavy YISSGSRTVY
chain CDR2
MAb 1.802 heavy KHYNGGYFDV
chain CDR3
MAb 1.802 light RASKIVSTSGYSYMH
chain CDR1
MAb 1.802 light LASNLES
chain CDR2
MAb 1.802 light QHSRELPPT
chain CDR3
MAb 1.815 heavy DVQLLESGGG LVQPGGSRKL SCAASGFTFS DFGMHWVRQA PEKGLEWVAY chain variable SSSGGTTVYY ADTVKGRLTL SRDNSKNTLF LEMTSLRSED TAMYYCARAS region YDGGYFDCWG QGTSLTVSSA KTTPP
MAb 1.815 light DIVLTQSPAS LAVSLGQRAT ISCRASKSVS TSGYSYIHWY QQKPGQPPKL chain variable LIYLASDLES GVPARFSGSG SGAAFTLNIH PVEEEDAATY YCHHSRELPF region TFGSGTKLEI KRADAAP
MAb 1.815 heavy GFTFSDFGMH
chain CDR1
MAb 1.815 heavy YSSSGGTTVY
chain CDR2
MAb 1.815 heavy ASYDGGYFDC
chain CDR3
MAb 1.815 light RASKSVSTSGYSYIH
chain CDR1
MAb 1.815 light LASDLES
chain CDR2
MAb 1.815 light HHSRELPFT
chain CDR3
MAb 1.846 heavy EVQLVESGGD LVKPGGSLKL SCAASGFTFS DYGMHWLRQA PEKGLEWVAY chain variable ISSGSTTLSY ANTMKGRFTI SRDNAKKTLS LQMTSLRSED TAIYYCARKN region YNGGYFDVWG TGTTVTVSSA KTTPP
MAb 1.846 light DIVLTQSPAS LWSLGQRAT ISCRASKSVS ESGYSYMHWY QQKPGQPPKL chain variable LIYLASNLES GVPARFSGSG SGTDFTLNIH PVEEGDATTY YCQHSRVLPP region TFGSGTKLEI KRADAAP
MAb 1.846 heavy GFTFSDYGMH
chain CDR1
MAb 1.846 heavy YISSGSTTLS
chain CDR2
MAb 1.846 heavy KNYNGGYFDV
chain CDR3
MAb 1.846 light RASKSVSESGYSYMH
chain CDR1
MAb 1.846 light LASNLES
chain CDR2
MAb 1.846 light QHSRVLPPT
chain CDR3
MAb 2.1029 heavy QVQLKESGPG LVAPSQSLSI TCTVSGFSLT SYGVHWVRQP PGKGLEWLGV chain variable IWAGGSTNYN SALMSRLSIS KDNSKSQVFL KMNSLQTDDT AIYFCARDGD region YGTIYAMDYW GQGTSVTVSS AKTTAPS
MAb 2.1029 light DIQMTQTTSS LSASLGDRVT ISCRASQDIS NYLNWYQQKP DGTVKLLIYY chain variable TSRLHSGVPS RFTGSGSGTD YSLTISNLEQ EDIATYFCQQ GKTLPRTFGG region GTMLEIKRAD AAP
MAb 2.1029 heavy GFSLTSYGVH
chain CDR1
MAb 2.1029 heavy VIWAGGSTN chain CDR2
I MAb 2.1029 heavy DGDYGTIYAMDY
chain CDR3
MAb 2.1029 light RASQDISNYLN
chain CDR1
MAb 2.1029 light YTSRLHS
chain CDR2
MAb 2.1029 light QQGKTLPRT
chain CDR3
MAb 2.55 heavy EVQLQQSGTV LARPGALVKM SCKASGYTFT SYWMHWVKQR PGQGLEWIGA chain variable lYPGKSDTRY NQKFKDKAKL TAVTSTSTAY MDLSSLTDED SAVYYCSRRY region GNFYAMDYWG QGTSVTVSSA KTTAPS
MAb 2.55 light SIVMTQTPKF LLVSAGDRVT MTCKASQSVS NDVAWYQQKP GQSPELLIYY chain variable ASDRYTGVPD RFTGSGYGTD FTLTISTVQA EDLAVYFCQQ DYSSPYTFGG region GTKLETKRAD AAP
MAb 2.55 heavy GYTFTSYWMH
chain CDR1
MAb 2.55 heavy AIYPGKSDTR
chain CDR2
MAb 2.55 heavy RYGNFYAMDY
chain CDR3
MAb 2.55 lig KASQSVSNDVA
chain CDR1
MAb 2.55 lig YASDRYT
chain CDR2
MAb 2.55 light QQDYSSPYT
chain CDR3
MAb 2.78 heavy DVQLVESGGG LVQPGGSRKL SCAASGFTFS SFGMHWVRQA PEKGLEWVAY chain variable ITSGSGAIYY ADTVRGRFTI SRDTPKNTLF LQMTSLRSED TAMYYCARSA region DGLDYWGQGT SVTVSSAKTT PPS
MAb 2.78 light DIQMTQSPAS LYVSVGETVT ITCRASENIY SNLAWYQQKQ GKSPQLLVYG chain variable ATNLADGVPS RFSGSGSGTQ YSLKINSLKS EDFGSYYCQH FWGTPFTFGS region GTKLEIKRAD AAP
MAb 2.78 heavy GFTFSSFGMH
chain CDR1
MAb 2.78 heavy YITSGSGAIY
chain CDR2
MAb 2.78 heavy SADGLDY
chain CDR3
MAb 2.78 lig RASENIYSNLA
chain CDR1
MAb 2.78 lig GATNLAD
chain CDR2
MAb 2.78 lig QHFWGTPFT
chain CDR3
Humanized Ab EVQLVESGGG LVQPGGSLRL SCAASGFTFS SFGMHWVRQA PGKGLEWVSY (HumAb) 2.78 ITSGSGAIYY ADSVKGRFTI SRDNAKNSLY LQMNSLRAED TAVYYCARSA heavy chain DGLDYWGQGT TVTVSS
variable region
I HumAb 2.78 heavy EVQLVESGGG LVQPGGSLRL SCAASGFTFS SFGMHWVRQA PGKGLEWVSY chain ITSGSGAIYY ADSVKGRFTI SRDNAKNSLY LQMNSLRAED TAVYYCARSA
DGLDYWGQGT TVTVSSDVWG QGTTVTVSSA STKGPSVFPL APCSRSTSES TAALGCLVKD YFPEPVTVSW NSGALTSGVH TFPAVLQSSG LYSLSSWTV TSSNFGTQTY TCNVDHKPSN TKVDKTVERK CCVECPPCPA PPVAGPSVFL FPPKPKDTLM ISRTPEVTCV WDVSHEDPE VQFNWYVDGM EVHNAKTKPR EEQFNSTFRV VSVLTWHQD WLNGKEYKCK VSNKGLPAPI EKTISKTKGQ PREPQVYTLP PSREEMTKNQ VSLTCLVKGF YPSDIAVEWE SNGQPENNYK TTPPMLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL HNHYTQKSLS LSPGK
HumAb 2.78 li DIQMTQSPSS LSASVGDRVT ITCRASENIY SNLAWYQQKP GKAPKLLIYG chain variable ATNLADGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQH FWGTPFTFGQ region GTKVEI
HumAb 2.78 light DIQMTQSPSS LSASVGDRVT ITCRASENIY SNLAWYQQKP GKAPKLLIYG chain ATNLADGVPS RFSGSGSGTD FTLTI SSLQP EDFATYYCQH FWGTPFTFGQ
GTKVEIKRTV AAPSVFI FPP SDEQLKSGTA SWCLLNNFY PREAKVQWKV
DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG
LSSPVTKSFN RGEC
HumAb 2.1029 QVQLQESGPG LVKPSETLSL TCTVSGFSLT SYGVHWIRQP PGKGLEWIGV heavy chain I WAGGS TNYN PSLKSRVTIS VDTSKNQFSL KLSSVTAADT AVYYCARDGD variable region YGTIYA DYW GQGTLVTVSS
HumAb 2.1029 QVQLQESGPG LVKPSETLSL TCTVSGFSLT SYGVHWIRQP PGKGLEWIGV heavy chain I WAGGS TNYN PSLKSRVTIS VDTSKNQFSL KLSSVTAADT AVYYCARDGD
YGTIYAMDYW GQGTLVTVSS DVWGQGTTVT VSSASTKGPS VFPLAPCSRS
TSESTAALGC LVKDYFPEPV TVSWNSGALT SGVHTFPAVL QSSGLYSLSS
WTVTSSNFG TQTYTCNVDH KPSNTKVDKT VERKCCVECP PCPAPPVAGP
SVFLFPPKPK DTLMISRTPE VTCWVDVSH EDPEVQFNWY VDGMEVHNAK
TKPREEQFNS TFRWSVLTV VHQDWLNGKE YKCKVSNKGL PAPIEKTI SK
TKGQPREPQV YTLPPSREEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE
NNYKTTPPML DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ
KSLSLSPGK
HumAb 2.1029 1 ght DIQMTQSPSS LSASVGDRVT ITCRASQDIS NYLNWYQQKP GKAPKLLIYY chain variable TSRLHSGVPS RFSGSGSGTD FTFTISSLQP EDIATYYCQQ GKTLPRTFGG region GTKVE I
HumAb 2.1029 1 ght DIQMTQSPSS LSASVGDRVT ITCRASQDIS NYLNWYQQKP GKAPKLLIYY chain TSRLHSGVPS RFSGSGSGTD FTFTI SSLQP EDIATYYCQQ GKTLPRTFGG
GTKVEIKRTV AAPSVFI FPP SDEQLKSGTA SWCLLNNFY PREAKVQWKV
DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG
LSSPVTKSFN RGEC
HumAb 1.802 EVQLVESGGG LVQPGGSLRL SCAASGFTFS DYGMHWVRQA PGKGLEWVSY heavy chain ISSGSRTVYY ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARKH variable region YNGGYFDVWG QGTLVTVSS
HumAb 1.802 EVQLVESGGG LVQPGGSLRL SCAASGFTFS DYGMHWVRQA PGKGLEWVSY heavy chain I SSGSRTVYY ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARKH
YNGGYFDVWG QGTLVTVSS D VWGQGTTVTV SSASTKGPSV FPLAPCSRST
SESTAALGCL VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV
VTVTS SNFGT QTYTCNVDHK PSNTKVDKTV ERKCCVECPP CPAPPVAGPS
VFLFPPKPKD TLMISRTPEV TCVWDVSHE DPEVQFNWYV DGMEVHNAKT
KPREEQFNST FRWSVLTW HQDWLNGKEY KCKVSNKGLP APIEKTISKT
KGQPREPQVY TLPPSREEMT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN
NYKTTPPMLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK
SLSLSPGK
HumAb 1.802 lig ht DIVMTQSPDS LAVSLGERAT INCRASKIVS TSGYSYMHWY QQKPGQPPKL chain variable LIYLASNLES GVPDRFSGSG SGTDFTLTIS SLQAEDVAVY YCQHSRELPP region TFGQGTKLEI
HumAb 1.802 lig ht DIVMTQSPDS LAVSLGERAT INCRASKIVS TSGYSYMHWY QQKPGQPPKL chain LIYLASNLES GVPDRFSGSG SGTDFTLTIS SLQAEDVAVY YCQHSRELPP
TFGQGTKLE I KRTVAAPSVF IFPPSDEQLK SGTASWCLL NNFYPREAKV
QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV
THQGLSSPVT KSFNRGEC
HumAb 1.815 QVQLVESGGG LVKPGGSLRL SCAASGFTFS DFGMHWIRQA PGKGLEWVSY heavy chain SSSGGTTVYY ADSVKGRFTI SRDNAKNSLY LQMNSLRAED TAVYYCARAS variable region YDGGYFDCWG QGTTVTVSS
HumAb 1.815 QVQLVESGGG LVKPGGSLRL SCAASGFTFS DFGMHWIRQA PGKGLEWVSY heavy chain SSSGGTTVYY ADSVKGRFTI SRDNAKNSLY LQMNSLRAED TAVYYCARAS
YDGGYFDCWG QGTTVTVSS D VWGQGTTVTV SSASTKGPSV FPLAPCSRST
SESTAALGCL VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV
VTVTS SNFGT QTYTCNVDHK PSNTKVDKTV ERKCCVECPP CPAPPVAGPS
VFLFPPKPKD TLMISRTPEV TCVWDVSHE DPEVQFNWYV DGMEVHNAKT
KPREEQFNST FRWSVLTW HQDWLNGKEY KCKVSNKGLP APIEKTISKT
KGQPREPQVY TLPPSREEMT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN
NYKTTPPMLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK
SLSLSPGK
HumAb 1.815 lig ht DIVMTQSPDS LAVSLGERAT INCRASKSVS TSGYSYIHWY QQKPGQPPKL chain variable LIYLASDLES GVPDRFSGSG SGTDFTLTIS SLQAEDVAVY YCHHSRELPF region TFGQGTKLE I
HumAb 1.815 lig ht DIVMTQSPDS LAVSLGERAT INCRASKSVS TSGYSYIHWY QQKPGQPPKL chain LIYLASDLES GVPDRFSGSG SGTDFTLTI S SLQAEDVAVY YCHHSRELPF TFGQGTKLEI KRTVAAPSVF I FPPSDEQLK SGTASWCLL NNFYPREAKV QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV THQGLSSPVT KSFNRGEC
79 HumAb 1.846 EVQLVESGGG LVQPGGSLRL SCAASGFTFS DYGMHWVRQA PGKGLEWVSY heavy chain ISSGSTTLSY ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARKN variable region YNGGYFDVWG QGTLVTVSS
80 HumAb 1.846 EVQLVESGGG LVQPGGSLRL SCAASGFTFS DYGMHWVRQA PGKGLEWVSY heavy chain ISSGSTTLSY ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARKN
YNGGYFDVWG QGTLVTVSS D VWGQGTTVTV SSASTKGPSV FPLAPCSRST SESTAALGCL VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVTSSNFGT QTYTCNVDHK PSNTKVDKTV ERKCCVECPP CPAPPVAGPS VFLFPPKPKD TLMISRTPEV TCVWDVSHE DPEVQFNWYV DGMEVHNAKT KPREEQFNST FRWSVLTW HQDWLNGKEY KCKVSNKGLP APIEKTI SKT KGQPREPQVY TLPPSREEMT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPMLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK SLSLSPGK
HumAb 1.846 light DIVMTQSPDS LAVSLGERAT INCRASKSVS ESGYSYMHWY QQKPGQPPKL chain variable LIYLASNLES GVPDRFSGSG SGTDFTLTI S SLQAEDVAVY YCQHSRVLPP region TFGQGTKLEI
82 j HumAb 1.846 light DIVMTQSPDS LAVSLGERAT INCRASKSVS ESGYSYMHWY QQKPGQPPKL chain LIYLASNLES GVPDRFSGSG SGTDFTLTI S SLQAEDVAVY YCQHSRVLPP
TFGQGTKLEI KRTVAAPSVF I FPPSDEQLK SGTASWCLL NNFYPREAKV QWKVDNALQS GNSQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV THQGLSSPVT KSFNRGEC
I Campaign 1 heavy GFTFSDXjGMH
chain CDR1
consensus
I Campaign 1 heavy KXjYNGGYFDV
chain CDR3
consensus
92 Campaign 1 light RASKX3VSX4SGYSYX5H
chain CDR1
consensus
93 Campaign 1 light LASXpLES
chain CDR2
consensus
83 Human-mouse MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE chimeric NOTUM S FPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALI IQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRRSDCI DTINCAPTDA IRRGIRYWSG MVPERCQRQF KEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGQ WLYIQNLGRE LRGTLKDVQA S FAPACLSHE I I IRSYWTDV QVKGTSLPRA LHCWDRSFHD SHKASKTPMK GCPFHLVDSC PWPHCNPSCP TIRDQFTGQE MNVAQFLMHM GFDVQTVAQQ QGMEPSKLLG MLSNGN
84 Mouse-human MGGEVRVLLL LGLLHWVGGS EGRKTWRRRG QQPPQPPPPP PLPQRAEVEP chimeric NOTUM GAGQPVESFP LDFTAVEGNM DSFMAQVKSL AQSLYPCSAQ QLNEDLRLHL
LLNTSVTCND GSPAGYYLKE SKGSRRWLLF LEGGWYCFNR ENCDSRYSTM RRLMSSKDWP HTRTGTGILS SQPEENPHWW NANMVFIPYC SSDVWSGASP KSDKNEYAFM GSLI IQEWR ELLGKGLSGA KVLLLAGSSA GGTGVLLNVD RVAELLEELG YPSIQVRGLA DSGWFLDNKQ YRHTDCVDTI TCAPTEAIRR GIRYWNGWP ERCRRQFQEG EEWNCFFGYK VYPTLRCPVF WQWLFDEAQ LTVDNVHLTG QPVQEGLRLY IQNLGRELRH TLKDVPASFA PACLSHE I I I RSHWTDVQVK GTSLPRALHC WDRSLHDSHK AS KTPLKGCP VHLVDSCPWP HCNPSCPTVR DQFTGQEMNV AQFLMHMGFD MQTVAQPQGL EPSELLGMLS NGS
Human-mouse- MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE human chimeric SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT NOTUM CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASPKSDKNEY AFMGSLI IQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAELLE ELGYPSIQVR GLADSGWFLD NKQYRRSDCI DTINCAPTDA IRRGIRYWSG MVPERCQRQF KEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHC DRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
86 Mouse-human- MGGEVRVLLL LGLLHWVGGS EGRKTWRRRG QQPPQPPPPP PLPQRAEVEP mouse chimeric GAGQPVESFP LDFTAVEGNM DSFMAQVKSL AQSLYPCSAQ QLNEDLRLHL NOTUM LLNTSVTCND GSPAGYYLKE SKGSRRWLLF LEGGWYCFNR ENCDSRYSTM RRLMSSKD P HTRTGTGILS SQPEENPHWW NANMVFIPYC SSDVWSGASS KSEKNEYAFM GALIIQEWR ELLGRGLSGA KVLLLAGSSA GGTGVLLNVD RVAEQLEKLG YPAIQVRGLA DSGWFLDNKQ YRHTDCVDTI TCAPTEAIRR GIRYWNGWP ERCRRQFQEG EEWNCFFGYK VYPTLRCPVF WQWLFDEAQ LTVDNVHLTG QPVQEGQ LY IQNLGRELRG TLKDVQASFA PACLSHEIII RSYWTDVQVK GTSLPRALHC WDRSFHDSHK ASKTPMKGCP FHLVDSCPWP HCNPSCPTIR DQFTGQEMNV AQFLMHMGFD VQTVAQQQGM EPSKLLGMLS NGN
87 Human NOTUM MPLLLLLPLL RWGALAQPVE SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC (Δ1-46); CD33 SAQQLNEDLR LHLLLNTSVT CNDGSPAGYY LKESRGSRRW LLFLEGGWYC signal peptide in FNRENCDSRY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI italics PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG
SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE N96D SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLDTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
89 Human NOTUM QPVE SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR
Q47-M177 LHLLLNTSVT CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY
DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANM
94 Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE D141S SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY STMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
95 Mouse NOTUM MGGEVRVLLL LGLLHWVGGS EGRKTWRRRG QQPPQPPPPP PLPQRAEVEP S148D GAGQPVESFP LDFTAVEGNM DSFMAQVKSL AQSLYPCSAQ QLNEDLRLHL
LLNTSVTCND GSPAGYYLKE SKGSRRWLLF LEGGWYCFNR ENCDSRYDTM RRLMSSKDWP HTRTGTGILS SQPEENPHWW NANMVFIPYC SSDVWSGASP KSDKNEYAFM GSLIIQEWR ELLGKGLSGA KVLLLAGSSA GGTGVLLNVD RVAELLEELG YPSIQVRGLA DSGWFLDNKQ YRRSDCIDTI NCAPTDAIRR GIRYWSGMVP ERCQRQFKEG EEWNCFFGYK VYPTLRCPVF WQWLFDEAQ LTVDNVHLTG QPVQEGQWLY IQNLGRELRG TLKDVQASFA PACLSHEIII RSYWTDVQVK GTSLPRALHC WDRSFHDSHK ASKTPMKGCP FHLVDSCPWP HCNPSCPTIR DQFTGQEMNV AQFLMHMGFD VQTVAQQQGM EPSKLLGMLS NGN
96 Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE N132A/R133A SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FAAENCDSRY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFL HM GFDMQTVAQP QGLEPSELLG MLSNGS
97 Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE E134A/N135A SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRAACDSRY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANM FI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
98 Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE D137A/R139A SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCASAY DTMRRLMSSR DWPRTRTGTG ILSSQPEENP YWWNANM FI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
99 Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE R144A/R145A SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY DTMAALMSSR DWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
100 Human NOTUM MGRGVRVLLL LSLLHCAGGS EGRKTWRRRG QQPPPPPRTE AAPAAGQPVE R150A/D151A SFPLDFTAVE GNMDSFMAQV KSLAQSLYPC SAQQLNEDLR LHLLLNTSVT
CNDGSPAGYY LKESRGSRRW LLFLEGGWYC FNRENCDSRY DTMRRLMSSA AWPRTRTGTG ILSSQPEENP YWWNANMVFI PYCSSDVWSG ASSKSEKNEY AFMGALIIQE WRELLGRGL SGAKVLLLAG SSAGGTGVLL NVDRVAEQLE KLGYPAIQVR GLADSGWFLD NKQYRHTDCV DTITCAPTEA IRRGIRYWNG WPERCRRQF QEGEEWNCFF GYKVYPTLRC PVFWQWLFD EAQLTVDNVH LTGQPVQEGL RLYIQNLGRE LRHTLKDVPA SFAPACLSHE IIIRSHWTDV QVKGTSLPRA LHCWDRSLHD SHKASKTPLK GCPVHLVDSC PWPHCNPSCP TVRDQFTGQE MNVAQFLMHM GFDMQTVAQP QGLEPSELLG MLSNGS
I 1.802 heavy chain ATGGACTCCA GGCTCAATTT AGTTTTCCTT GTCCTTATTT TAAAAGGTGT variable region CCAGTGTGAG GTGCAGCTGG TGGAGTCTGG GGGAGGCTTA GTGAAGCCTG polynucleotide GAGGGTCCCT GAAACTCTCC TGTGCAGCCT CTGGATTCAC TTTCAGTGAC sequence TATGGAATGC ACTGGTTTCG TCAGGCTCCA GAGAAGGGGC TGGAGTGGGT
TGCATATATT AGTAGTGGCA GTAGAACCGT CTACTATGCA GACACAGTGA AGGGCCGATT CACCATCTCC AGAGACAATG CCAAGAACAC CCTGTCCCTG CAAATGACCA GTCTGAGGTC TGAGGACACG GCCATGTATT ACTGTGCGAG GAAACATTAC AACGGTGGAT ACTTCGATGT CTGGGGCACA GGGACCACGG TCACCGTCTC CTCAGCCAAA ACGACACCCC CATCTGTCTA TCCACTGGCC CCTGGATCTG CTGCCCAAAC TAACTCCATG GTGACCCTGG GATGC
102 1.802 light chain ATCCTCTCTT CCAGCTCTCA GAGATGGAGA CAGACACACT CCTGTTATGG variable region GTACTGCTGC TCTGGGTTCC AGGTTCCACT GGTGACATTG TGCTGACACA polynucleotide GTCTCCTGCT TCCTTAGCTG TATCTCTGGG GCAGAGGGCC ACCATCTCAT sequence GCAGGGCCAG CAAAATTGTC AGTACATCTG GCTATAGTTA TATGCACTGG
TACCAACAGA AACCAGGACA GCCGCCCAAA CTCCTCATCT ATCTTGCATC CAACCTAGAA TCTGGGGTCC CTGCCAGGTT CAGTGGCAGT GGGTCTGGGA CAGACTTCAC CCTCAACATC CATCCTGTGG AGGAGGAGGA TGCTGCAACC TATTACTGTC AGCACAGTAG GGAGCTTCCT CCCACGTTCG GCTCGGGGAC AAAGTTGGAA ATAAAACGGG CTGATGCTGC ACCAACTGTA TCCATCTTCC CACCATCCAG TGAGCAGTTA ACATCTGGAG GT
I 1.815 heavy chain TCTGACAGAG GAGCCAAGCC CTGGATTCCC AGGTCCTCAC ATTCAGTGAT variable region CAGCACTGAA CACAGACCAC TCACCATGGA CTCCAGGCTC AATTTAGTTT polynucleotide TCCTTGTCCT TATTTTAAAA GGTGTCCAGT GTGATGTGCA ACTGCTGGAA
TCTGGGGGAG GCTTAGTGCA GCCTGGAGGG TCCCGGAAAC TCTCCTGTGC sequence AGCCTCTGGA TTCACTTTCA GTGACTTTGG AATGCACTGG GTTCGTCAGG CTCCAGAGAA GGGGCTGGAG TGGGTCGCAT ACAGTAGTAG TGGCGGTACT ACCGTCTACT ATGCAGACAC GGTGAAGGGC CGACTCACCC TCTCCAGAGA CAATTCCAAG AACACCCTGT TCCTGGAAAT GACCAGTCTA AGGTCTGAGG ACACGGCCAT GTATTACTGT GCAAGAGCGT CCTATGATGG AGGGTACTTT GACTGCTGGG GCCAAGGCAC CTCTCTCACA GTCTCCTCAG CCAAAACGAC ACCCCCATCT GTCTATCCAC TGGCCCCTGG ATCTGCTGCC CAAACTAACT CCATGGTGAC CCTGGGATGC
104 1.815 light chain ATCCTCTCTT CCAGCTCTCA GAGATGGAGA CAGACACACT CCTGTTATGG variable region GTACTGCTGC TCTGGGTTCC AGGTTCCACT GGTGACATTG TGCTGACACA polynucleotide GTCTCCTGCT TCCTTAGCTG TATCTCTGGG GCAGAGGGCC ACCATCTCAT sequence GCAGGGCCAG CAAAAGTGTC AGTACATCTG GCTATAGTTA TATACACTGG
TACCAACAGA AACCAGGACA GCCACCCAAA CTCCTCATCT ATCTTGCATC CGACCTAGAA TCTGGGGTCC CTGCCAGGTT CAGTGGCAGT GGATCTGGGG CAGCCTTCAC CCTCAACATC CATCCTGTGG AGGAGGAGGA TGCTGCAACC TATTACTGTC ACCACAGTAG GGAGCTTCCA TTCACGTTCG GCTCGGGGAC AAAGTTGGAA ATAAAACGGG CTGATGCTGC ACCAACTGTA TCCATCTTCC CACCATCCAG TGAGCAGTTA ACATCTGGAG GTGCCTCAGT CGTGTGC
1.846 heavy chai AGAGGAGCCA AACCCTGGAT TCCCAGGTCC TCACATTCAG TGATCAGCAC variable region TGAACACAGA CCACTCACCA TGGACTCCAG GCTCAATTTA GTTTTCCTTG polynucleotide TCCTTATTTT AAAAGGTGTC CAGTGTGAGG TGCAGCTGGT GGAGTCTGGG sequence GGAGACTTAG TGAAGCCTGG AGGGTCCCTG AAACTCTCCT GTGCAGCCTC
TGGATTCACT TTCAGTGACT ATGGAATGCA CTGGCTTCGT CAGGCTCCAG AGAAGGGGCT GGAGTGGGTT GCATATATTA GTAGTGGCAG TACTACCCTC TCCTATGCAA ACACAATGAA GGGCCGATTC ACCATCTCCA GAGACAATGC CAAGAAAACC CTGTCCCTGC AAATGACCAG TCTGAGGTCT GAGGACACGG CCATTTATTA CTGTGCGCGG AAAAATTACA ACGGTGGTTA CTTCGATGTC TGGGGCACAG GGACCACGGT CACCGTCTCC TCAGCCAAAA CAACACCCCC ATCAGTCTAT CCACTGGCCC CTGGGTGTGG AGATACAACT GGTTCCTCTG TGACTCTGGG ATGCCTGGTC AAGGG
106 1.846 light chain ATCCTCTCTT CCAGCTCTCA GAGATGGAGA CAGACACACT CCTGTTATGG variable region GTACTGCTGC TCTGGGTTCC AGGTTCCACT GGTGACATTG TGCTGACACA polynucleotide GTCTCCTGCT TCCTTAGTTG TATCTCTGGG GCAGAGGGCC ACCATCTCAT sequence GCAGGGCCAG CAAAAGTGTC AGTGAAT CTG GCTATAGTTA TATGCACTGG
TACCAACAGA AACCAGGACA GCCACCCAAA CTCCTCATCT ATCTTGCATC CAACCTAGAG TCTGGGGTCC CTGCCAGGTT CAGTGGCAGT GGGTCTGGGA CAGACTTCAC CCTCAACATC CATCCTGTGG AGGAGGGGGA TGCTACAACC TATTACTGTC AGCACAGTAG GGTCCTTCCT CCCACGTTCG GCTCGGGGAC AAAGTTGGAA ATAAAACGGG CTGATGCTGC ACCAACTGTA TCCATCTTCC CACCATCCAG TGAGCAGTTA ACATCTGGAG GTGC
107 2.78 heavy chain GACAGAGGAG CCAAGCCCTG GATTCCCAGG TCCTCACATT CAGTGATCAG variable region CACTGAACAC AGACCACTCA CCATGGACTC CAGGCTCAAT TTAGTTTTCC polynucleotide TTGTCCTTAT TTTAAAAGGT GTCCAGTGTG ATGTGCAGCT GGTGGAGTCT sequence GGGGGAGGCT TAGTGCAGCC TGGAGGGTCC CGGAAACTCT CCTGTGCAGC
CTCTGGATTC ACTTTCAGTA GCTTTGGCAT GCACTGGGTT CGTCAGGCTC CAGAGAAGGG ACTGGAGTGG GTCGCATACA TTACTAGTGG CAGTGGTGCC ATCTACTATG CAGACACAGT GAGGGGCCGA TTCACCATCT CCAGAGACAC T C C CAAGAAC ACCCTGTTCC TGCAGATGAC CAGTCTAAGG TCTGAGGACA CGGCCATGTA TTACTGTGCA AGATCGGCTG ATGGTTTGGA CTACTGGGGT CAAGGAACCT CAGTCACCGT CTCCTCAGCC AAAACAACAC CCCCATCAGT CTATCCACTG GCCCCTGGGT GTGGAGATAC AACTG
108 2.78 light chain CAGCCTCACA CTGATCACAC ACAGACATGA GTGTGGCCAC TCAGGTCCTG variable region GGGTTGCTGC TGCTGTGGCT TACAGATGCC AGATGTGACA TCCAGATGAC polynucleotide TCAGTCTCCA GCCTCCCTAT ATGTATCTGT GGGAGAAACT GTCACCATCA sequence CATGTCGAGC AAGTGAGAAT ATTTACAGTA ATTTAGCATG GTATCAGCAG
AAACAGGGAA AATCTCCTCA GCTCCTGGTC TATGGTGCAA CAAACTTAGC AGATGGTGTG CCATCAAGGT TCAGTGGCAG TGGATCAGGC ACACAGTATT CCCTCAAGAT CAACAGCCTG AAGTCTGAAG ATTTTGGGAG TTATTACTGT CAACATTTTT GGGGTACTCC ATTCACGTTC GGCTCGGGGA CAAAGTTGGA AATAAAACGG GCTGATGCTG CACCAACTGT ATCCATCTTC CCACCATCCA GTGAGCAGTT AACATCTGGA GGTGCCTCAG TCGTGTGC
I 2.1029 heavy chai ATCTCCTCAC TAGAGCCCCC AT CAGAG CAT GGCTGTCCTG GTGCTGTTCC variable region TCTGCCTGGT TGCATTTCCA AGCTGTGTCC TGTCCCAGGT GCAGCTGAAG polynucleotide GAGTCAGGAC CTGGCCTGGT GGCGCCCTCA CAGAGCCTGT CCATCACTTG sequence CACTGTCTCT GGGTTTTCAT TAACCAGCTA TGGTGTACAC TGGGTTCGCC
AGCCTCCAGG AAAGGGTCTG GAGTGGCTGG GAGTAATATG GGCTGGTGGA AGCACAAATT ATAATTCGGC TCTCATGTCC AGACTGAGCA TCAGCAAAGA CAACTCCAAG AGCCAAGTTT TCTTAAAAAT GAACAGTCTG CAAACTGATG ACACAGCCAT CTACTTCTGT GCCAGAGATG GCGACTACGG TACTATCTAC GCTATGGACT ACTGGGGTCA AGGAACCTCA GTCACCGTCT CCTCAGCCAA AACAACAGCC CCATCGGTCT ATCCACTGGC CCCTGTGTGT GGAGATACAA CTGGCTCCTC GGTGACTCTA GGATGCCTGG TCAAGG
110 2.1029 light chain ATTGAAGTCA AGACTCAGCC TGGACATGAT GTCCTCTGCT CAGTTCCTTG variable region GTCTCCTGTT GCTCTGTTTT CAAGGTACCA GATGTGATAT CCAGATGACA polynucleotide CAGACTACAT CCTCCCTGTC TGCCTCTCTG GGAGACAGAG TCACCATCAG sequence TTGCAGGGCA AGTCAGGACA TTAGCAATTA TTTAAACTGG TATCAGCAGA
AACCAGATGG AACTGTTAAA CTCCTGATCT ACTACACATC AAGATTACAC TCAGGAGTCC CATCAAGGTT CACTGGCAGT GGGTCTGGAA CAGATTATTC TCTCACCATT AGCAACCTGG AGCAAGAAGA TATTGCCACT TACTTTTGCC AACAGGGTAA AACGCTTCCT CGGACGTTCG GTGGAGGCAC CATGCTGGAA ATCAAACGGG CTGATGCTGC ACCAACTGTA TCCATCTTCC CACCATCCAG TGAGCAGTTA ACATCTGGAG GTGCCTCAGT CGTGTGC
111 Humanized Ab gaggtgcagc tggtggagag cggcggcggc ctggtgcagc ccggcggcag (HumAb) 2.78 cctgagactg agctgcgccg ccagcggctt caccttcagc agcttcggca heavy chain tgcactgggt gagacaggcc cccggcaagg gcctggagtg ggtgagctac variable region atcaccagcg gcagcggcgc catctactac gccgacagcg tgaagggcag polynucleotide attcaccatc agcagagaca acgccaagaa cagcctgtac ctgcagatga acagcctgag agccgaggac accgccgtgt actactgcgc cagaagcgcc sequence
gacggcctgg actactgggg ccagggcacc accgtgaccg tgagcagc
HumAb 2.78 heavy ATGCGTACTC TGGCTATCCT TGCAGCTATT CTGCTTGTTG CACTGCAGGC chain TCAAGCGGAG GTGCAGCTGG TGGAGAGCGG CGGCGGCCTG GTGCAGCCCG polynucleotide GCGGCAGCCT GAGACTGAGC TGCGCCGCCA GCGGCTTCAC CTTCAGCAGC sequence TTCGGCATGC ACTGGGTGAG ACAGGCCCCC GGCAAGGGCC TGGAGTGGGT
GAGCTACATC ACCAGCGGCA GCGGCGCCAT CTACTACGCC GACAGCGTGA AGGGCAGATT CACCATCAGC AGAGACAACG CCAAGAACAG CCTGTACCTG CAGATGAACA GCCTGAGAGC CGAGGACACC GCCGTGTACT ACTGCGCCAG AAGCGCCGAC GGCCTGGACT ACTGGGGCCA GGGCACCACC GTGACCGTGA GCAGCGATGT GTGGGGCCAG GGCACCACCG TGACCGTGAG CAGCGCGTCG ACCAAGGGCC CATCGGTCTT CCCCCTGGCG CCCTGCTCCA GGAGCACCTC CGAGAGCACA GCGGCCCTGG GCTGCCTGGT CAAGGACTAC TTCCCCGAAC CGGTGACGGT GTCGTGGAAC TCAGGCGCTC TGACCAGCGG CGTGCACACC TTCCCGGCTG TCCTACAGTC CTCAGGACTC TACTCCCTCA GCAGCGTGGT GACCGTGACC TCCAGCAACT TCGGCACCCA GACCTACACC TGCAACGTAG ATCACAAGCC CAGCAACACC AAGGTGGACA AGACAGTTGA GCGCAAATGT TGTGTCGAGT GCCCACCGTG CCCAGCACCA CCTGTGGCAG GACCGTCAGT CTTCCTCTTC CCCCCAAAAC CCAAGGACAC CCTCATGATC TCCCGGACCC CTGAGGTCAC GTGCGTGGTG GTGGACGTGA GCCACGAAGA CCCCGAGGTC CAGTTCAACT GGTACGTGGA CGGCATGGAG GTGCATAATG CCAAGACAAA GCCGCGGGAG GAGCAGTTCA ACAGCACGTT CCGTGTGGTC AGCGTCCTCA CCGTCGTGCA CCAGGACTGG CTGAACGGCA AGGAGTACAA GTGCAAGGTC TCCAACAAAG GCCTCCCAGC CCCCATCGAG AAAACCATCT CCAAAACCAA AGGGCAGCCC CGAGAACCAC AGGTGTACAC CCTGCCCCCA TCCCGGGAGG AGATGACCAA GAACCAGGTC AGCCTGACCT GCCTGGTCAA AGGCTTCTAC CCCAGCGACA TCGCCGTGGA GTGGGAGAGC AATGGGCAGC CGGAGAACAA CTACAAGACC ACACCTCCCA TGCTGGACTC CGACGGCTCC TTCTTCCTCT ACAGCAAGCT CACCGTGGAC AAGAGCAGGT GGCAGCAGGG GAACGTCTTC TCATGCTCCG TGATGCATGA GGCTCTGCAC AACCACTACA CACAGAAGAG CCTCTCCCTG TCTCCGGGTA AATGA
113 HumAb 2.78 light gacatccaga tgacccagag ccccagcagc ctgagcgcca gcgtgggcga chain variable cagagtgacc atcacctgca gagccagcga gaacatctac agcaacctgg region cctggtacca gcagaagccc ggcaaggccc ccaagctgct gatctacggc polynucleotide gccaccaacc tggccgacgg cgtgcccagc agattcagcg gcagcggcag sequence cggcaccgac ttcaccctga ccatcagcag cctgcagccc gaggacttcg ccacctacta ctgccagcac ttctggggca cccccttcac cttcggccag ggcaccaagg tggagatc
114 HumAb 2.78 light ATGAAAATCC TGATTCTCGG TATCTTCCTG TTTCTCTGTT CTACTCCAGC chain TTGGGCAGAC ATCCAGATGA CCCAGAGCCC CAGCAGCCTG AGCGCCAGCG polynucleotide TGGGCGACAG AGTGACCATC ACCTGCAGAG CCAGCGAGAA CATCTACAGC sequence AACCTGGCCT GGTACCAGCA GAAGCCCGGC AAGGCCCCCA AGCTGCTGAT
CTACGGCGCC ACCAACCTGG CCGACGGCGT GCCCAGCAGA TTCAGCGGCA GCGGCAGCGG CACCGACTTC ACCCTGACCA TCAGCAGCCT GCAGCCCGAG GACTTCGCCA CCTACTACTG CCAGCACTTC TGGGGCACCC CCTTCACCTT CGGCCAGGGC ACCAAGGTGG AGATCAAACG TACGGTGGCT GCACCATCTG TCTTCATCTT CCCGCCATCT GATGAGCAGT TGAAATCTGG AACTGCCTCT GTTGTGTGCC TGCTGAATAA CTTCTATCCC AGAGAGGCCA AAGTACAGTG GAAGGTGGAT AACGCCCTCC AA CGGGTAA CTCCCAGGAG AGTGTCACAG AGCAGGACAG CAAGGACAGC ACCTACAGCC TCAGCAGCAC CCTGACGCTG AGCAAAGCAG ACTACGAGAA ACACAAAGTC TACGCCTGCG AAGTCACCCA TCAGGGCCTG AGCTCGCCCG TCACAAAGAG CTTCAACAGG GGAGAGTGTT GA
115 HumAb 2.1029 caggtgcagc tgcaggagag cggccccggc ctggtgaagc ccagcgagac heavy chain cctgagcctg acctgcaccg tgagcggctt cagcctgacc agctacggcg variable region tgcactggat cagacagccc cccggcaagg gcctggagtg gatcggcgtg polynucleotide atctgggccg gcggcagcac caactacaac cccagcctga agagcagagt sequence gaccatcagc gtggacacca gcaagaacca gttcagcctg aagctgagca gcgtgaccgc cgccgacacc gccgtgtact actgcgccag agacggcgac tacggcacca tctacgccat ggactactgg ggccagggca ccctggtgac cgtgagcagc
116 HumAb 2.1029 ATGCGTACTC TGGCTATCCT TGCAGCTATT CTGCTTGTTG CACTGCAGGC heavy chain TCAAGCGCAG GTGCAGCTGC AGGAGAGCGG CCCCGGCCTG GTGAAGCCCA polynucleotide GCGAGACCCT GAGCCTGACC TGCACCGTGA GCGGCTTCAG CCTGACCAGC sequence TACGGCGTGC ACTGGATCAG ACAGCCCCCC GGCAAGGGCC TGGAGTGGAT
CGGCGTGATC TGGGCCGGCG GCAGCACCAA CTACAACCCC AGCCTGAAGA GCAGAGTGAC CATCAGCGTG GACACCAGCA AGAACCAGTT CAGCCTGAAG CTGAGCAGCG TGACCGCCGC CGACACCGCC GTGTACTACT GCGCCAGAGA CGGCGACTAC GGCACCATCT ACGCCATGGA CTACTGGGGC CAGGGCACCC TGGTGACCGT GAGCAGCGAT GTGTGGGGCC AGGGCACCAC CGTGACCGTG AGCAGCGCGT CGACCAAGGG CCCATCGGTC TTCCCCCTGG CGCCCTGCTC CAGGAGCACC TCCGAGAGCA CAGCGGCCCT GGGCTGCCTG GTCAAGGACT ACTTCCCCGA ACCGGTGACG GTGTCGTGGA ACTCAGGCGC TCTGACCAGC GGCGTGCACA CCTTCCCGGC TGTCCTACAG TCCTCAGGAC TCTACTCCCT CAGCAGCGTG GTGACCGTGA CCTCCAGCAA CTTCGGCACC CAGACCTACA CCTGCAACGT AGATCACAAG CCCAGCAACA CCAAGGTGGA CAAGACAGTT GAGCGCAAAT GTTGTGTCGA GTGCCCACCG TGCCCAGCAC CACCTGTGGC AGGACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA TCTCCCGGAC CCCTGAGGTC ACGTGCGTGG TGGTGGACGT GAGCCACGAA GACCCCGAGG TCCAGTTCAA CTGGTACGTG GACGGCATGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG AGGAGCAGTT CAACAGCACG TTCCGTGTGG TCAGCGTCCT CACCGTCGTG CACCAGGACT GGCTGAACGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGGCCTCCCA GCCCCCATCG AGAAAACCAT CTCCAAAACC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC CATCCCGGGA GGAGATGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT ACCCCAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA CCACACCTCC CATGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC ACAACCACTA CACACAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGA
117 HumAb 2.1029 light gacatccaga tgacccagag ccccagcagc ctgagcgcca gcgtgggcga chain variable cagagtgacc atcacctgca gagccagcca ggacatcagc aactacctga region actggtacca gcagaagccc ggcaaggccc ccaagctgct gatctactac polynucleotide accagcagac tgcacagcgg cgtgcccagc agattcagcg gcagcggcag sequence cggcaccgac ttcaccttca ccatcagcag cctgcagccc gaggacatcg ccacctacta ctgccagcag ggcaagaccc tgcccagaac cttcggcggc ggcaccaagg tggagatc
118 HumAb 2.1029 light ATGAAAATCC TGATTCTCGG TATCTTCCTG TTTCTCTGTT CTACTCCAGC chain TTGGGCAGAC ATCCAGATGA CCCAGAGCCC CAGCAGCCTG AGCGCCAGCG polynucleotide TGGGCGACAG AGTGACCATC ACCTGCAGAG CCAGCCAGGA CATCAGCAAC sequence TACCTGAACT GGTACCAGCA GAAGCCCGGC AAGGCCCCCA AGCTGCTGAT
CTACTACACC AGCAGACTGC ACAGCGGCGT GCCCAGCAGA TTCAGCGGCA GCGGCAGCGG CACCGACTTC ACCTTCACCA TCAGCAGCCT GCAGCCCGAG GACATCGCCA CCTACTACTG CCAGCAGGGC AAGACCCTGC CCAGAACCTT CGGCGGCGGC ACCAAGGTGG AGATCAAACG TACGGTGGCT GCACCATCTG TCTTCATCTT CCCGCCATCT GATGAGCAGT TGAAATCTGG AACTGCCTCT GTTGTGTGCC TGCTGAATAA CTTCTATCCC AGAGAGGCCA AAGTACAGTG GAAGGTGGAT AACGCCCTCC AATCGGGTAA CTCCCAGGAG AGTGTCACAG AGCAGGACAG CAAGGACAGC ACCTACAGCC TCAGCAGCAC CCTGACGCTG AGCAAAGCAG ACTACGAGAA ACACAAAGTC TACGCCTGCG AAGTCACCCA TCAGGGCCTG AGCTCGCCCG TCACAAAGAG CTTCAACAGG GGAGAGTGTT GA
119 HumAb 1.802 gaggtgcagc tggtggagag cggcggcggc ctggtgcagc ccggcggcag heavy chain cctgagactg agctgcgccg ccagcggctt caccttcagc gactacggca variable region tgcactgggt gagacaggcc cccggcaagg gcctggagtg ggtgagctac polynucleotide atcagcagcg gcagcagaac cgtgtactac gccgacagcg tgaagggcag sequence attcaccatc agcagagaca acgccaagaa cagcctgtac ctgcagatga acagcctgag agacgaggac accgccgtgt actactgcgc cagaaagcac tacaacggcg gctacttcga cgtgtggggc cagggcaccc tggtgaccgt gagcagc
120 HumAb 1.802 ATGCGTACTC TGGCTATCCT TGCAGCTATT CTGCTTGTTG CACTGCAGGC heavy chain TCAAGCGGAG GTGCAGCTGG TGGAGAGCGG CGGCGGCCTG GTGCAGCCCG polynucleotide GCGGCAGCCT GAGACTGAGC TGCGCCGCCA GCGGCTTCAC CTTCAGCGAC sequence TACGGCATGC ACTGGGTGAG ACAGGCCCCC GGCAAGGGCC TGGAGTGGGT
GAGCTACATC AGCAGCGGCA GCAGAACCGT GTACTACGCC GACAGCGTGA AGGGCAGATT CACCATCAGC AGAGACAACG CCAAGAACAG CCTGTACCTG CAGATGAACA GCCTGAGAGA CGAGGACACC GCCGTGTACT ACTGCGCCAG AAAGCACTAC AACGGCGGCT ACTTCGACGT GTGGGGCCAG GGCACCCTGG TGACCGTGAG CAGCGATGTG TGGGGCCAGG GCACCACCGT GACCGTGAGC AGCGCGTCGA CCAAGGGCCC ATCGGTCTTC CCCCTGGCGC CCTGCTCCAG GAGCACCTCC GAGAGCACAG CGGCCCTGGG CTGCCTGGTC AAGGACTACT TCCCCGAACC GGTGACGGTG TCGTGGAACT CAGGCGCTCT GACCAGCGGC GTGCACACCT TCCCGGCTGT CCTACAGTCC TCAGGACTCT ACTCCCTCAG CAGCGTGGTG ACCGTGACCT CCAGCAACTT CGGCACCCAG ACCTACACCT GCAACGTAGA TCACAAGCCC AGCAACACCA AGGTGGACAA GACAGTTGAG CGCAAATGTT GTGTCGAGTG CCCACCGTGC CCAGCACCAC CTGTGGCAGG ACCGTCAGTC TTCCTCTTCC CCCCAAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTCACG TGCGTGGTGG TGGACGTGAG CCACGAAGAC CCCGAGGTCC AGTTCAACTG GTACGTGGAC GGCATGGAGG TGCATAATGC CAAGACAAAG CCGCGGGAGG AGCAGTTCAA CAGCACGTTC CGTGTGGTCA GCGTCCTCAC CGTCGTGCAC CAGGACTGGC TGAACGGCAA GGAGTACAAG TGCAAGGTCT CCAACAAAGG CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAACCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC CTGCCCCCAT CCCGGGAGGA GATGACCAAG AACCAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTACC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAAC TACAAGACCA CACCTCCCAT GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC ACAGAAGAGC CTCTCCCTGT CTCCGGGTAA ATGA
! HumAb 1.802 li] gacatcgtga tgacccagag ccccgacagc ctggccgtga gcctgggcga chain variable gagagccacc atcaactgca gagccagcaa gatcgtgagc accagcggct region acagctacat gcactggtac cagcagaagc ccggccagcc ccccaagctg polynucleotide ctgatctacc tggccagcaa cctggagagc ggcgtgcccg acagattcag sequence cggcagcggc agcggcaccg acttcaccct gaccatcagc agcctgcagg ccgaggacgt ggccgtgtac tactgccagc acagcagaga gctgcccccc accttcggcc agggcaccaa gctggagatc
122 I HumAb 1.802 light ATGAAAATCC TGATTCTCGG TATCTTCCTG TTTCTCTGTT CTACTCCAGC chain TTGGGCAGAC ATCGTGATGA CCCAGAGCCC CGACAGCCTG GCCGTGAGCC polynucleotide TGGGCGAGAG AGCCACCATC AACTGCAGAG CCAGCAAGAT CGTGAGCACC sequence AGCGGCTACA GCTACATGCA CTGGTACCAG CAGAAGCCCG GCCAGCCCCC
CAAGCTGCTG ATCTACCTGG CCAGCAACCT GGAGAGCGGC GTGCCCGACA GATTCAGCGG CAGCGGCAGC GGCACCGACT TCACCCTGAC CATCAGCAGC CTGCAGGCCG AGGACGTGGC CGTGTACTAC TGCCAGCACA GCAGAGAGCT GCCCCCCACC TTCGGCCAGG GCACCAAGCT GGAGATCAAA CGTACGGTGG CTGCACCATC TGTCTTCATC TTCCCGCCAT CTGATGAGCA GTTGAAATCT GGAACTGCCT CTGTTGTGTG CCTGCTGAAT AACTTCTATC CCAGAGAGGC CAAAGTACAG TGGAAGGTGG ATAACGCCCT CCAATCGGGT AACTCCCAGG AGAGTGTCAC AGAGCAGGAC AGCAAGGACA GCACCTACAG CCTCAGCAGC ACCCTGACGC TGAGCAAAGC AGACTACGAG AAACACAAAG TCTACGCCTG CGAAGTCACC CATCAGGGCC TGAGCTCGCC CGTCACAAAG AGCTTCAACA GGGGAGAGTG TTGA
123 HumAb 1.815 caggtgcagc tggtggagag cggcggcggc ctggtgaagc ccggcggcag heavy chain cctgagactg agctgcgccg ccagcggctt caccttcagc gacttcggca variable region tgcactggat cagacaggcc cccggcaagg gcctggagtg ggtgagctac polynucleotide agcagcagcg gcggcaccac cgtgtactac gccgacagcg tgaagggcag sequence attcaccatc agcagagaca acgccaagaa cagcctgtac ctgcagatga acagcctgag agccgaggac accgccgtgt actactgcgc cagagccagc tacgacggcg gctacttcga ctgctggggc cagggcacca ccgtgaccgt gagcagc
124 HumAb 1.815 ATGCGTACTC TGGCTATCCT TGCAGCTATT CTGCTTGTTG CACTGCAGGC heavy chain TCAAGCGCAG GTGCAGCTGG TGGAGAGCGG CGGCGGCCTG GTGAAGCCCG polynucleotide GCGGCAGCCT GAGACTGAGC TGCGCCGCCA GCGGCTTCAC CTTCAGCGAC sequence TTCGGCATGC ACTGGATCAG ACAGGCCCCC GGCAAGGGCC TGGAGTGGGT GAGCTACAGC AGCAGCGGCG GCACCACCGT GTACTACGCC GACAGCGTGA AGGGCAGATT CACCATCAGC AGAGACAACG CCAAGAACAG CCTGTACCTG CAGATGAACA GCCTGAGAGC CGAGGACACC GCCGTGTACT ACTGCGCCAG AGCCAGCTAC GACGGCGGCT ACTTCGACTG CTGGGGCCAG GGCACCACCG TGACCGTGAG CAGCGATGTG TGGGGCCAGG GCACCACCGT GACCGTGAGC AGCGCGTCGA CCAAGGGCCC ATCGGTCTTC CCCCTGGCGC CCTGCTCCAG GAGCACCTCC GAGAGCACAG CGGCCCTGGG CTGCCTGGTC AAGGACTACT TCCCCGAACC GGTGACGGTG TCGTGGAACT CAGGCGCTCT GACCAGCGGC GTGCACACCT TCCCGGCTGT CCTACAGTCC TCAGGACTCT ACTCCCTCAG CAGCGTGGTG ACCGTGACCT CCAGCAACTT CGGCACCCAG ACCTACACCT GCAACGTAGA TCACAAGCCC AGCAACACCA AGGTGGACAA GACAGTTGAG CGCAAATGTT GTGTCGAGTG CCCACCGTGC CCAGCACCAC CTGTGGCAGG ACCGTCAGTC TTCCTCTTCC CCCCAAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTCACG TGCGTGGTGG TGGACGTGAG CCACGAAGAC CCCGAGGTCC AGTTCAACTG GTACGTGGAC GGCATGGAGG TGCATAATGC CAAGACAAAG CCGCGGGAGG AGCAGTTCAA CAGCACGTTC CGTGTGGTCA GCGTCCTCAC CGTCGTGCAC CAGGACTGGC TGAACGGCAA GGAGTACAAG TGCAAGGTCT CCAACAAAGG CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAACCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC CTGCCCCCAT CCCGGGAGGA GATGACCAAG AACCAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTACC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAAC TACAAGACCA CACCTCCCAT GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC ACAGAAGAGC CTCTCCCTGT CTCCGGGTAA ATGA
125 HumAb 1.815 li gacatcgtga tgacccagag ccccgacagc ctggccgtga gcctgggcga chain variable gagagccacc atcaactgca gagccagcaa gagcgtgagc accagcggct region acagctacat ccactggtac cagcagaagc ccggccagcc ccccaagctg polynucleotide ctgatctacc tggccagcga cctggagagc ggcgtgcccg acagattcag sequence cggcagcggc agcggcaccg acttcaccct gaccatcagc agcctgcagg ccgaggacgt ggccgtgtac tactgccacc acagcagaga gctgcccttc accttcggcc agggcaccaa gctggagatc
126 HumAb 1.815 ATGAAAATCC TGATTCTCGG TATCTTCCTG TTTCTCTGTT CTACTCCAGC chain TTGGGCAGAC ATCGTGATGA CCCAGAGCCC CGACAGCCTG GCCGTGAGCC polynucleotid TGGGCGAGAG AGCCACCATC AACTGCAGAG CCAGCAAGAG CGTGAGCACC sequence AGCGGCTACA GCTACATCCA CTGGTACCAG CAGAAGCCCG GCCAGCCCCC
CAAGCTGCTG ATCTACCTGG CCAGCGACCT GGAGAGCGGC GTGCCCGACA GATTCAGCGG CAGCGGCAGC GGCACCGACT TCACCCTGAC CATCAGCAGC CTGCAGGCCG AGGACGTGGC CGTGTACTAC TGCCACCACA GCAGAGAGCT GCCCTTCACC TTCGGCCAGG GCACCAAGCT GGAGATCAAA CGTACGGTGG CTGCACCATC TGTCTTCATC TTCCCGCCAT CTGATGAGCA GTTGAAATCT GGAACTGCCT CTGTTGTGTG CCTGCTGAAT AACTTCTATC CCAGAGAGGC CAAAGTACAG TGGAAGGTGG ATAACGCCCT CCAATCGGGT AACTCCCAGG AGAGTGTCAC AGAGCAGGAC AGCAAGGACA GCACCTACAG CCTCAGCAGC ACCCTGACGC TGAGCAAAGC AGACTACGAG AAACACAAAG TCTACGCCTG CGAAGTCACC CATCAGGGCC TGAGCTCGCC CGTCACAAAG AGCTTCAACA GGGGAGAGTG TTGA
127 HumAb 1.846 gaggtgcagc tggtggagag cggcggcggc ctggtgcagc ccggcggcag heavy chain cctgagactg agctgcgccg ccagcggctt caccttcagc gactacggca variable region tgcactgggt gagacaggcc cccggcaagg gcctggagtg ggtgagctac polynucleotide atcagcagcg gcagcaccac cctgagctac gccgacagcg tgaagggcag sequence attcaccatc agcagagaca acgccaagaa cagcctgtac ctgcagatga acagcctgag agacgaggac accgccgtgt actactgcgc cagaaagaac tacaacggcg gctacttcga cgtgtggggc cagggcaccc tggtgaccgt gagcagc
128 HumAb 1.846 ATGCGTACTC TGGCTATCCT TGCAGCTATT CTGCTTGTTG CACTGCAGGC heavy chain TCAAGCGGAG GTGCAGCTGG TGGAGAGCGG CGGCGGCCTG GTGCAGCCCG polynucleotide GCGGCAGCCT GAGACTGAGC TGCGCCGCCA GCGGCTTCAC CTTCAGCGAC sequence TACGGCATGC ACTGGGTGAG ACAGGCCCCC GGCAAGGGCC TGGAGTGGGT
GAGCTACATC AGCAGCGGCA GCACCACCCT GAGCTACGCC GACAGCGTGA AGGGCAGATT CACCATCAGC AGAGACAACG CCAAGAACAG CCTGTACCTG CAGATGAACA GCCTGAGAGA CGAGGACACC GCCGTGTACT ACTGCGCCAG AAAGAACTAC AACGGCGGCT ACTTCGACGT GTGGGGCCAG GGCACCCTGG TGACCGTGAG CAGCGATGTG TGGGGCCAGG GCACCACCGT GACCGTGAGC AGCGCGTCGA CCAAGGGCCC ATCGGTCTTC CCCCTGGCGC CCTGCTCCAG GAGCACCTCC GAGAGCACAG CGGCCCTGGG CTGCCTGGTC AAGGACTACT TCCCCGAACC GGTGACGGTG TCGTGGAACT CAGGCGCTCT GACCAGCGGC GTGCACACCT TCCCGGCTGT CCTACAGTCC TCAGGACTCT ACTCCCTCAG CAGCGTGGTG ACCGTGACCT CCAGCAACTT CGGCACCCAG ACCTACACCT GCAACGTAGA TCACAAGCCC AGCAACACCA AGGTGGACAA GACAGTTGAG CGCAAATGTT GTGTCGAGTG CCCACCGTGC CCAGCACCAC CTGTGGCAGG ACCGTCAGTC TTCCTCTTCC CCCCAAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTCACG TGCGTGGTGG TGGACGTGAG CCACGAAGAC CCCGAGGTCC AGTTCAACTG GTACGTGGAC GGCATGGAGG TGCATAATGC CAAGACAAAG CCGCGGGAGG AGCAGTTCAA CAGCACGTTC CGTGTGGTCA GCGTCCTCAC CGTCGTGCAC CAGGACTGGC TGAACGGCAA GGAGTACAAG TGCAAGGTCT CCAACAAAGG CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAACCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC CTGCCCCCAT CCCGGGAGGA GATGACCAAG AACCAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTACC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAAC TACAAGACCA CACCTCCCAT GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC ACAGAAGAGC CTCTCCCTGT CTCCGGGTAA ATGA
129 HumAb 1.846 lij ;ht gacatcgtga tgacccagag ccccgacagc ctggccgtga gcctgggcga chain variable gagagccacc atcaactgca gagccagcaa gagcgtgagc gagagcggct region acagctacat gcactggtac cagcagaagc ccggccagcc ccccaagctg polynucleotide ctgatctacc tggccagcaa cctggagagc ggcgtgcccg acagattcag sequence cggcagcggc agcggcaccg acttcaccct gaccatcagc agcctgcagg ccgaggacgt ggccgtgtac tactgccagc acagcagagt gctgcccccc accttcggcc agggcaccaa gctggagatc
130 HumAb 1.846 lij ;ht ATGAAAATCC TGATTCTCGG TATCTTCCTG TTTCTCTGTT CTACTCCAGC chain TTGGGCAGAC ATCGTGATGA CCCAGAGCCC CGACAGCCTG GCCGTGAGCC polynucleotide TGGGCGAGAG AGCCACCATC AACTGCAGAG CCAGCAAGAG CGTGAGCGAG sequence AGCGGCTACA GCTACATGCA CTGGTACCAG CAGAAGCCCG GCCAGCCCCC
CAAGCTGCTG ATCTACCTGG CCAGCAACCT GGAGAGCGGC GTGCCCGACA GATTCAGCGG CAGCGGCAGC GGCACCGACT TCACCCTGAC CATCAGCAGC CTGCAGGCCG AGGACGTGGC CGTGTACTAC TGCCAGCACA GCAGAGTGCT GCCCCCCACC TTCGGCCAGG GCACCAAGCT GGAGATCAAA CGTACGGTGG CTGCACCATC TGTCTTCATC TTCCCGCCAT CTGATGAGCA GTTGAAATCT GGAACTGCCT CTGTTGTGTG CCTGCTGAAT AACTTCTATC CCAGAGAGGC CAAAGTACAG TGGAAGGTGG ATAACGCCCT CCAATCGGGT AACTCCCAGG AGAGTGTCAC AGAGCAGGAC AGCAAGGACA GCACCTACAG CCTCAGCAGC ACCCTGACGC TGAGCAAAGC AGACTACGAG AAACACAAAG TCTACGCCTG CGAAGTCACC CATCAGGGCC TGAGCTCGCC CGTCACAAAG AGCTTCAACA GGGGAGAGTG TTGA

Claims

CLAIMS What is claimed is:
1. A monoclonal antibody that binds human notum pectinacetylesterase (NOTUM) and neutralizes at least one activity of NOTUM.
2. The antibody of claim 1, wherein the antibody binds to a NOTUM selected from mouse NOTUM, guinea pig NOTUM, cynomolgus monkey NOTUM, and rhesus monkey NOTUM.
3. The antibody of any one of the preceding claims, wherein the antibody reduces NOTUM activity in a trisodium 8-octanoyloxypyrene-l,3,6-trisulfonate (OPTS) assay in vitro, and/or reduces NOTUM activity in a Wnt signaling assay in vitro.
4. The antibody of any one of the preceding claims, wherein upon administration to a subject the antibody increases serum PINP levels in vivo, increases bone mineral density in vivo, increases midshaft femur cortical thickness in vivo, increases midshaft femur bone area in vivo, increases midshaft humerus cortical thickness in vivo, increases endocortical bone formation in vivo, increases the proportion of cortical bone volume in the LV5 vertebral body in vivo, and/or increases the proportion of femoral neck bone volume to femoral neck total volume in vivo.
5. The antibody of any one of the preceding claims, wherein the antibody binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with KD of less than 50 nM.
6. The antibody of claim 5, wherein the KD is less than 20 nM.
7. The antibody of claim 6, wherein the KD is less than 10 nM.
8. The antibody of any one of the preceding claims, wherein the antibody has at least one binding characteristic selected from:
a) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 83 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 84;
b) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 85 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 86;
c) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 94;
d) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 1 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 99;
e) binds to a polypeptide having the amino acid sequence of SEQ ID NO: 95 with a binding affinity that is at least 5-fold stronger than the binding affinity of the antibody for a polypeptide having the amino acid sequence of SEQ ID NO: 2; f) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 7 and a light chain variable region having the amino acid sequence of SEQ ID NO: 8;
g) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 15 and a light chain variable region having the amino acid sequence of SEQ ID NO: 16;
h) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 23 and a light chain variable region having the amino acid sequence of SEQ ID NO: 24;
i) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 31 and a light chain variable region having the amino acid sequence of SEQ ID NO: 32;
j) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 39 and a light chain variable region having the amino acid sequence of SEQ ID NO: 40;
k) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 47 and a light chain variable region having the amino acid sequence of SEQ ID NO: 48; and
I) competes for binding to NOTUM with an antibody comprising a heavy chain variable region having an amino acid sequence of SEQ ID NO: 55 and a light chain variable region having the amino acid sequence of SEQ ID NO: 56.
9. The antibody of any one of the preceding claims, wherein the antibody is selected from a mouse antibody, a chimeric antibody, a humanized antibody, and a human antibody.
10. The antibody of any one of the preceding claims, wherein the antibody comprises a heavy chain and a light chain, wherein the heavy chain comprises at least one CDR selected from: a) a CDR1 comprising an amino acid sequence selected from SEQ ID NOs: 9, 17, 25, 33, 41, 49, and 90;
b) a CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 10, 18, 26,
34, 42, and 50; and
c) a CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 11, 19, 27,
35, 43, 51, and 91.
11. The antibody of claim 10, wherein the heavy chain comprises a set comprising a CDR1, a CDR2, and a CDR3, wherein the set is selected from:
a) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11; b) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 91;
c) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19;
d) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27;
e) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 25, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27;
f) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 91;
g) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 33, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 35;
h) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 41, a CDR2 having the amino acid sequence of SEQ ID NO: 42, and a CDR3 having the amino acid sequence of SEQ ID NO: 43;
i) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 49, a CDR2 having the amino acid sequence of SEQ ID NO: 50, and a CDR3 having the amino acid sequence of SEQ ID NO: 51; and
j) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 57, a CDR2 having the amino acid sequence of SEQ ID NO: 58, and a CDR3 having the amino acid sequence of SEQ ID NO: 59.
12. The antibody of claim 11, wherein the heavy chain comprises a heavy chain variable regions comprising an amino acid sequence selected from SEQ ID NOs: 7, 15, 23, 31, 39, 47, 63, 67, 71, 75, and 79.
13. The antibody of any one of the preceding claims, wherein the antibody comprises a heavy chain and a light chain, wherein the light chain comprises at least one CDR selected from: a) a CDR1 comprising an amino acid sequence selected from SEQ ID NOs: 12, 20, 28,
36, 44, 52, 60, and 92;
b) a CDR2 comprising an amino acid sequence selected from SEQ ID NOs: 13, 21, 29,
37, 45, 53, 61, and 93; and c) a CDR3 comprising an amino acid sequence selected from SEQ ID NOs: 14, 22, 30, 38, 46, 54, and 62.
14. The antibody of claim 13, wherein the light chain comprises a set comprising a CDR1, a CDR2, and a CDR3, wherein the set is selected from:
a) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14;
b) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22;
c) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22;
d) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 30;
e) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 28, a CDR2 having the amino acid sequence of SEQ ID NO: 29, and a CDR3 having the amino acid sequence of SEQ ID NO: 30;
f) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 38;
g) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 36, a CDR2 having the amino acid sequence of SEQ ID NO: 37, and a CDR3 having the amino acid sequence of SEQ ID NO: 38;
h) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 44, a CDR2 having the amino acid sequence of SEQ ID NO: 45, and a CDR3 having the amino acid sequence of SEQ ID NO: 46;
i) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 52, a CDR2 having the amino acid sequence of SEQ ID NO: 53, and a CDR3 having the amino acid sequence of SEQ ID NO: 54; and
j) a set comprising a CDR1 having the amino acid sequence of SEQ ID NO: 60, a CDR2 having the amino acid sequence of SEQ ID NO: 61, and a CDR3 having the amino acid sequence of SEQ ID NO: 62.
15. The antibody of claim 14, wherein the light chain comprises a light chain variable regions comprising an amino acid sequence selected from SEQ. ID NOs: 8, 16, 24, 32, 40, 48, 56, 65, 69, 73, 77, and 81.
16. The antibody of claim 1, wherein the antibody comprises a heavy chain variable region and a light chain variable region, wherein:
a) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 9, a CDR2 having the amino acid sequence of SEQ ID NO: 10, and a CDR3 having the amino acid sequence of SEQ ID NO: 11, and wherein the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 12, a CDR2 having the amino acid sequence of SEQ ID NO: 13, and a CDR3 having the amino acid sequence of SEQ ID NO: 14; or
b) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 91, and wherein the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 22; or
c) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 17, a CDR2 having the amino acid sequence of SEQ ID NO: 18, and a CDR3 having the amino acid sequence of SEQ ID NO: 19, and the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 20, a CDR2 having the amino acid sequence of SEQ ID NO: 21, and a CDR3 having the amino acid sequence of SEQ ID NO: 22; or
d) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27, and wherein the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 30; or
e) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 25, a CDR2 having the amino acid sequence of SEQ ID NO: 26, and a CDR3 having the amino acid sequence of SEQ ID NO: 27, and wherein the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 28, a CDR2 having the amino acid sequence of SEQ ID NO: 29, and a CDR3 having the amino acid sequence of SEQ ID NO: 30; or f) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 90, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 91, and wherein the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 92, a CDR2 having the amino acid sequence of SEQ ID NO: 93, and a CDR3 having the amino acid sequence of SEQ ID NO: 38; or
g) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 33, a CDR2 having the amino acid sequence of SEQ ID NO: 34, and a CDR3 having the amino acid sequence of SEQ ID NO: 35, and the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ I D NO: 36, a CDR2 having the amino acid sequence of SEQ ID NO: 37, and a CDR3 having the amino acid sequence of SEQ ID NO: 38; or
h) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 41, a CDR2 having the amino acid sequence of SEQ ID NO: 42, and a CDR3 having the amino acid sequence of SEQ ID NO: 43, and wherein the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 44, a CDR2 having the amino acid sequence of SEQ ID NO: 45, and a CDR3 having the amino acid sequence of SEQ ID NO: 46; or
i) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 49, a CDR2 having the amino acid sequence of SEQ ID NO: 50, and a CDR3 having the amino acid sequence of SEQ ID NO: 51, and wherein the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 52, a CDR2 having the amino acid sequence of SEQ ID NO: 53, and a CDR3 having the amino acid sequence of SEQ ID NO: 54; or
j) the heavy chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 57, a CDR2 having the amino acid sequence of SEQ ID NO: 58, and a CDR3 having the amino acid sequence of SEQ ID NO: 59, and wherein the light chain variable region comprises a CDR1 having the amino acid sequence of SEQ ID NO: 60, a CDR2 having the amino acid sequence of SEQ ID NO: 61, and a CDR3 having the amino acid sequence of SEQ ID NO: 62.
17. The antibody of claim 16, wherein:
a) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 7 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 8; or b) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 15 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 16; or c) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 71 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 73; or
d) the heavy chain comprises the amino acid sequence of SEQ ID NO: 72 and the light chain comprises the amino acid sequence of SEQ ID NO: 74; or
e) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 23 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 24; or
f) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 75 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 77; or
g) the heavy chain comprises the amino acid sequence of SEQ ID NO: 76 and the light chain comprises the amino acid sequence of SEQ ID NO: 78; or
h) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 31 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 32; or
i) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 79 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 81; or
j) the heavy chain comprises the amino acid sequence of SEQ ID NO: 80 and the light chain comprises the amino acid sequence of SEQ ID NO: 82; or
k) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 39 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 40; or
I) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 67 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 69; or
m) the heavy chain comprises the amino acid sequence of SEQ ID NO: 68 and the light chain comprises the amino acid sequence of SEQ ID NO: 70; or
n) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 47 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 48; or
o) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 55 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 56; or p) the heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 63 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 65; or
q) the heavy chain comprises the amino acid sequence of SEQ ID NO: 64 and the light chain comprises the amino acid sequence of SEQ ID NO: 66.
18. A pharmaceutical composition comprising the antibody of any one of the preceding claims.
19. A nucleic acid molecule comprising a polynucleotide sequence that encodes a heavy chain or a light chain of the antibody of any one of claims 1 to 17.
20. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule comprises a first polynucleotide sequence that encodes the heavy chain, and a second polynucleotide sequence that encodes the light chain.
21. The nucleic acid molecule of claim 19 or claim 20, wherein the nucleic acid molecule is a vector.
22. A host cell comprising the nucleic acid molecule of any one of claims 19 to 21.
23. The host ceil of claim 22, wherein the host ceil comprises a first nucleic acid molecule comprising a polynucleotide sequence that encodes a heavy chain, and a second nucleic acid molecule comprising a polynucleotide sequence that encodes a light chain.
24. The host cell of claim 22, wherein the nucleic acid molecule comprises a first polynucleotide sequence that encodes the heavy chain, and a second polynucleotide sequence that encodes the light chain.
25. A method of producing an antibody of any one of claims 1 to 17 comprising incubating the host cell of claim 23 or claim 24 under conditions sufficient to express the antibody.
26. A method of stimulating endocortical bone formation in a patient, comprising administering an effective amount of the pharmaceutical composition of claim 18.
27. A method of treating, managing, or preventing a disease or disorder characterized by bone loss in a patient, comprising administering an effective amount of the pharmaceutical composition of claim 18.
28. The method of claim 27, wherein the disease or disorder is osteoporosis.
29. A single unit dosage form comprising the pharmaceutical composition of claim 18.
PCT/US2011/061785 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase WO2012071381A1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
CN201180056452.6A CN103298490B (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase
DK11843652.6T DK2643019T3 (en) 2010-11-24 2011-11-22 ANTIBODIES AGAINST NOTE PECTINACETYL ESTERASE
KR1020187016214A KR20180069083A (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase
NZ609501A NZ609501A (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase
EP11843652.6A EP2643019B1 (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase
KR1020137013390A KR20140026334A (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase
ES11843652T ES2718849T3 (en) 2010-11-24 2011-11-22 Antibodies against notum pectin acetylesterase
PL11843652T PL2643019T3 (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase
SG2013031083A SG189982A1 (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase
JP2013541012A JP6033229B2 (en) 2010-11-24 2011-11-22 Antibody binding to NOTUM pectin acetylesterase
CA2817415A CA2817415C (en) 2010-11-24 2011-11-22 Antibodies that bind notum pectinacetylesterase
AU2011332007A AU2011332007C1 (en) 2010-11-24 2011-11-22 Antibodies to Notum Pectinacetylesterase
BR112013012858-5A BR112013012858B1 (en) 2010-11-24 2011-11-22 MONOCLONAL ANTIBODY BINDING PECTINACETYLESTERASE FROM NOTUM, PHARMACEUTICAL COMPOSITION, NUCLEIC ACID MOLECULE, HOST CELL AND METHOD FOR PRODUCING SUCH ANTIBODY
US13/885,815 US20130302346A1 (en) 2010-11-24 2011-11-22 Antibodies that bind notum pectinacetylesterase
MX2013005906A MX357166B (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase.
RU2013123793/10A RU2013123793A (en) 2010-11-24 2011-11-22 ANTIBODIES RELATING TO NOTUM PECTINACETHYLESTERASE
IL225876A IL225876A0 (en) 2010-11-24 2013-04-22 Antibodies to notum pectinacetylesterase
ZA2013/02983A ZA201302983B (en) 2010-11-24 2013-04-24 Antibodies to notum pectinacetylesterase
US14/952,264 US20160152731A1 (en) 2010-11-24 2015-11-25 Antibodies that bind notum pectinacetylesterase
US16/277,466 US11059907B2 (en) 2010-11-24 2019-02-15 Antibodies that bind Notum Pectinacetylesterase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41692710P 2010-11-24 2010-11-24
US61/416,927 2010-11-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/885,815 A-371-Of-International US20130302346A1 (en) 2010-11-24 2011-11-22 Antibodies that bind notum pectinacetylesterase
US14/952,264 Continuation US20160152731A1 (en) 2010-11-24 2015-11-25 Antibodies that bind notum pectinacetylesterase

Publications (1)

Publication Number Publication Date
WO2012071381A1 true WO2012071381A1 (en) 2012-05-31

Family

ID=46146184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/061785 WO2012071381A1 (en) 2010-11-24 2011-11-22 Antibodies to notum pectinacetylesterase

Country Status (20)

Country Link
US (3) US20130302346A1 (en)
EP (1) EP2643019B1 (en)
JP (1) JP6033229B2 (en)
KR (2) KR20140026334A (en)
CN (1) CN103298490B (en)
AU (1) AU2011332007C1 (en)
CA (1) CA2817415C (en)
CO (1) CO6721048A2 (en)
DK (1) DK2643019T3 (en)
ES (1) ES2718849T3 (en)
HU (1) HUE043576T2 (en)
IL (1) IL225876A0 (en)
MX (1) MX357166B (en)
NZ (1) NZ609501A (en)
PL (1) PL2643019T3 (en)
PT (1) PT2643019T (en)
RU (1) RU2013123793A (en)
SG (1) SG189982A1 (en)
WO (1) WO2012071381A1 (en)
ZA (1) ZA201302983B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120269798A1 (en) * 2011-03-22 2012-10-25 Peter Reddien Enhancement of regeneration by modulation of notum activity
EP2608807A1 (en) * 2010-08-27 2013-07-03 Stem Centrx, Inc. Notum protein modulators and methods of use
JP2015530087A (en) * 2012-08-31 2015-10-15 アルゲン−エックス エヌ.ブイ. Method for producing an antibody molecule having interspecific intra-target cross-reactivity
US11059907B2 (en) 2010-11-24 2021-07-13 Lexicon Pharmaceuticals, Inc. Antibodies that bind Notum Pectinacetylesterase

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604339B1 (en) 2011-01-14 2021-03-10 The Regents Of The University Of California Therapeutic antibodies against ror-1 protein and methods for use of same
WO2020150282A1 (en) * 2019-01-18 2020-07-23 Askgene Pharma Inc. Pd-l1 specific monoclonal antibodies for disease treatment and diagnosis
CN110317271B (en) * 2019-07-02 2021-04-30 武汉云克隆科技股份有限公司 Heavy/light chain variable region of PINP recombinant antibody, coding gene and recombinant antibody
WO2022133123A1 (en) * 2020-12-16 2022-06-23 Memorial Sloan Kettering Cancer Center Cd40 binding molecules and uses thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
EP0036676A1 (en) 1978-03-24 1981-09-30 The Regents Of The University Of California Method of making uniformly sized liposomes and liposomes so made
EP0058481A1 (en) 1981-02-16 1982-08-25 Zeneca Limited Continuous release pharmaceutical compositions
EP0088046A2 (en) 1982-02-17 1983-09-07 Ciba-Geigy Ag Lipids in the aqueous phase
EP0133988A2 (en) 1983-08-02 1985-03-13 Hoechst Aktiengesellschaft Regulating peptide-containing pharmaceutical preparations with retarded release, and process for their preparation
EP0143949A1 (en) 1983-11-01 1985-06-12 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Pharmaceutical composition containing urokinase
EP0154316A2 (en) 1984-03-06 1985-09-11 Takeda Chemical Industries, Ltd. Chemically modified lymphokine and production thereof
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
EP0401384A1 (en) 1988-12-22 1990-12-12 Kirin-Amgen, Inc. Chemically modified granulocyte colony stimulating factor
WO1992016221A1 (en) 1991-03-15 1992-10-01 Synergen, Inc. Pegylation of polypeptides
WO1995013312A1 (en) 1993-11-12 1995-05-18 Shearwater Polymers, Inc. Water soluble active sulfones of poly(ethylene glycol)
WO1995034326A1 (en) 1994-06-14 1995-12-21 Tadahiko Kohno Pegylation reagents and compounds formed therewith
WO1996011953A1 (en) 1994-10-12 1996-04-25 Amgen Inc. N-terminally chemically modified protein compositions and methods
WO1996019459A1 (en) 1994-12-20 1996-06-27 F. Hoffmann-La Roche Ag Novel sulfonamides
WO1998024893A2 (en) 1996-12-03 1998-06-11 Abgenix, Inc. TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
WO1999025044A1 (en) 1997-11-07 1999-05-20 Nathan Cohen Microstrip patch antenna with fractal structure
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6080576A (en) 1998-03-27 2000-06-27 Lexicon Genetics Incorporated Vectors for gene trapping and gene activation
US6114598A (en) 1990-01-12 2000-09-05 Abgenix, Inc. Generation of xenogeneic antibodies

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0201808D0 (en) * 2002-01-25 2002-03-13 European Molecular Biology Lab Embl Protein
US20040063924A1 (en) * 2002-01-28 2004-04-01 Y Tom Tang Secreted proteins
EP2311468B1 (en) * 2003-08-08 2014-01-15 Perseus Proteomics Inc. Gene overexpressed in cancer
EP2608807A1 (en) * 2010-08-27 2013-07-03 Stem Centrx, Inc. Notum protein modulators and methods of use
EP2643019B1 (en) 2010-11-24 2019-01-02 Lexicon Pharmaceuticals, Inc. Antibodies to notum pectinacetylesterase

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
EP0036676A1 (en) 1978-03-24 1981-09-30 The Regents Of The University Of California Method of making uniformly sized liposomes and liposomes so made
EP0058481A1 (en) 1981-02-16 1982-08-25 Zeneca Limited Continuous release pharmaceutical compositions
EP0088046A2 (en) 1982-02-17 1983-09-07 Ciba-Geigy Ag Lipids in the aqueous phase
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
EP0133988A2 (en) 1983-08-02 1985-03-13 Hoechst Aktiengesellschaft Regulating peptide-containing pharmaceutical preparations with retarded release, and process for their preparation
EP0143949A1 (en) 1983-11-01 1985-06-12 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Pharmaceutical composition containing urokinase
EP0154316A2 (en) 1984-03-06 1985-09-11 Takeda Chemical Industries, Ltd. Chemically modified lymphokine and production thereof
EP0401384A1 (en) 1988-12-22 1990-12-12 Kirin-Amgen, Inc. Chemically modified granulocyte colony stimulating factor
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6114598A (en) 1990-01-12 2000-09-05 Abgenix, Inc. Generation of xenogeneic antibodies
WO1992016221A1 (en) 1991-03-15 1992-10-01 Synergen, Inc. Pegylation of polypeptides
WO1995013312A1 (en) 1993-11-12 1995-05-18 Shearwater Polymers, Inc. Water soluble active sulfones of poly(ethylene glycol)
WO1995034326A1 (en) 1994-06-14 1995-12-21 Tadahiko Kohno Pegylation reagents and compounds formed therewith
WO1996011953A1 (en) 1994-10-12 1996-04-25 Amgen Inc. N-terminally chemically modified protein compositions and methods
WO1996019459A1 (en) 1994-12-20 1996-06-27 F. Hoffmann-La Roche Ag Novel sulfonamides
WO1998024893A2 (en) 1996-12-03 1998-06-11 Abgenix, Inc. TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
WO1999025044A1 (en) 1997-11-07 1999-05-20 Nathan Cohen Microstrip patch antenna with fractal structure
US6080576A (en) 1998-03-27 2000-06-27 Lexicon Genetics Incorporated Vectors for gene trapping and gene activation

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
"Fundamental Immunology", 1989, RAVEN PRESS
"Pharmacology and Toxicology", July 2005, U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, article "Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers"
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING COMPANY
BODER ET AL., NAT. BIOTECHNOL., vol. 15, 1997, pages 553 - 557
BODER ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 97, 2000, pages 10701 - 10705
BREKKE ET AL., NAT. REVIEWS, vol. 2, 2002, pages 52 - 62
BROMMAGE; VAFAI, CALCIFIED TISSUE INT'L, vol. 67, 2000, pages 479
CARPENTER ET AL., TOXICOL. APPL. PHARMACOL., vol. 18, 1971, pages 35 - 40
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
CRAMERI ET AL., NAT. MED., vol. 2, 1996, pages 100 - 102
EPPSTEIN ET AL., PROC. NATL. ACAD. SCI. USA., vol. 82, 1985, pages 3688 - 3692
FERMER ET AL., TUMOR BIOL., vol. 25, 2004, pages 7 - 13
FISHWILD ET AL., NAT. BIOTECHNOL., vol. 14, 1996, pages 845 - 851
FOOTE ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 97, 2000, pages 10679 - 10681
FRANCIS, FOCUS ON GROWTH FACTORS, vol. 3, no. 2, 1992, pages 4 - 10
GREEN, J. IMMUNOL. METHODS, vol. 231, 1999, pages 11 - 23
HANES ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 95, 1998, pages 14130 - 14135
HARLOW; LANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
HOOGENBOOM: "Methods in Molecular Biology: Antibody Phage Display: Methods and Protocols", vol. 178, 2002, HUMAN PRESS, article "Overview of Antibody Phage-Displav Technology and Its Applications", pages: 1 - 37
HOOGENBOOM: "Methods in Molecular Biology: Antibody Phage Display: Methods and Protocols", vol. 178, 2002, HUMAN PRESS, article "Overview of Antibody Phage-Display Technology and Its Applications", pages: 1 - 37
HUDSON ET AL., NAT. MED., vol. 9, 2003, pages 129 - 134
JAKOBOVITS ET AL., NATURE, vol. 362, 1993, pages 255 - 258
JAKOBOVITS, CURR. OPIN. BIOTECHNOL., vol. 6, 1995, pages 561 - 566
KANG ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 88, 1991, pages 11120 - 11123
KOHLER; MILSTEIN, NATURE, vol. 256, 1975, pages 495 - 499
LANGER ET AL., J. BIOMED. MATER. RES., vol. 15, 1981, pages 167 - 277
LANGER, CHEM. TECH., vol. 12, 1982, pages 98 - 105
LITTLE ET AL., IMMUNOL. TODAY, vol. 21, 2000, pages 364 - 370
LONBERG ET AL., INT'I REV. IMMUNOL., vol. 13, 1995, pages 65 - 93
MALIK ET AL., EXP. HEMATOL., vol. 20, 1992, pages 1028 - 1035
MARKS ET AL., BIOTECHNOL., vol. 10, 1992, pages 779 - 83
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
MENDEZ ET AL., NAT. GENET., vol. 15, 1997, pages 146 - 156
See also references of EP2643019A4
SIDMAN ET AL., BIOPOLVMERS, vol. 22, 1983, pages 547 - 556
TOMIZUKA ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 97, 2000, pages 722 - 727
TORISU ET AL.: "Human homolog of NOTUM, overexpressed in hepatocellular carcinoma, is regulated transcriptionally by beta-catenin/TCF", CANCER SCI, vol. 99, no. 6, June 2008 (2008-06-01), pages 1139 - 1146, XP002662071 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608807A1 (en) * 2010-08-27 2013-07-03 Stem Centrx, Inc. Notum protein modulators and methods of use
US11059907B2 (en) 2010-11-24 2021-07-13 Lexicon Pharmaceuticals, Inc. Antibodies that bind Notum Pectinacetylesterase
US20120269798A1 (en) * 2011-03-22 2012-10-25 Peter Reddien Enhancement of regeneration by modulation of notum activity
US8802365B2 (en) * 2011-03-22 2014-08-12 Whitehead Institute For Biomedical Research Methods for identifying candidate modulators of NOTUM activity
JP2015530087A (en) * 2012-08-31 2015-10-15 アルゲン−エックス エヌ.ブイ. Method for producing an antibody molecule having interspecific intra-target cross-reactivity

Also Published As

Publication number Publication date
HUE043576T2 (en) 2019-08-28
JP6033229B2 (en) 2016-11-30
EP2643019B1 (en) 2019-01-02
CN103298490B (en) 2017-04-26
ES2718849T3 (en) 2019-07-04
MX357166B (en) 2018-06-28
PT2643019T (en) 2019-04-23
MX2013005906A (en) 2013-06-28
NZ609501A (en) 2014-12-24
JP2014501513A (en) 2014-01-23
CA2817415C (en) 2020-05-12
AU2011332007A1 (en) 2013-05-09
EP2643019A1 (en) 2013-10-02
PL2643019T3 (en) 2019-07-31
KR20180069083A (en) 2018-06-22
EP2643019A4 (en) 2014-12-31
CA2817415A1 (en) 2012-05-31
BR112013012858A2 (en) 2018-09-04
CN103298490A (en) 2013-09-11
ZA201302983B (en) 2017-06-28
IL225876A0 (en) 2013-06-27
AU2011332007B2 (en) 2016-11-10
AU2011332007C1 (en) 2017-03-02
CO6721048A2 (en) 2013-07-31
KR20140026334A (en) 2014-03-05
US11059907B2 (en) 2021-07-13
US20160152731A1 (en) 2016-06-02
DK2643019T3 (en) 2019-04-15
US20190241677A1 (en) 2019-08-08
RU2013123793A (en) 2014-12-27
SG189982A1 (en) 2013-06-28
US20130302346A1 (en) 2013-11-14

Similar Documents

Publication Publication Date Title
US11059907B2 (en) Antibodies that bind Notum Pectinacetylesterase
AU2020264337B2 (en) Antigen binding molecules comprising a TNF family ligand trimer
KR101307868B1 (en) M-csf-specific monoclonal antibody and uses thereof
CN108602887B (en) Bispecific antibodies specific for co-stimulatory TNF receptors
AU2016334623A1 (en) Bispecific antibodies with tetravalency for a costimulatory TNF receptor
KR20140019385A (en) Bi- and monospecific, asymmetric antibodies and methods of generating the same
CN110382542B (en) Bispecific antigen binding molecules to costimulatory TNF receptors
CN110573528B (en) Bispecific antigen binding molecules to costimulatory TNF receptors
KR20180089510A (en) Antibodies targeting CD32b and methods of using the same
CN113980131A (en) anti-ALK 2 antibodies
JP2023018064A (en) Anti-fam19a5 antibodies and uses thereof
CN108530535A (en) In conjunction with the antibody of peptidoglycan recognition protein 1
KR20240017912A (en) Anti-CCR8 antibodies and uses thereof
KR20220081857A (en) Anti-OX40L antibody, anti-OX40L and anti-TNFα bispecific antibody, and uses thereof
BR112013012858B1 (en) MONOCLONAL ANTIBODY BINDING PECTINACETYLESTERASE FROM NOTUM, PHARMACEUTICAL COMPOSITION, NUCLEIC ACID MOLECULE, HOST CELL AND METHOD FOR PRODUCING SUCH ANTIBODY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 225876

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2817415

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011332007

Country of ref document: AU

Date of ref document: 20111122

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013541012

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137013390

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 001282-2013

Country of ref document: PE

Ref document number: MX/A/2013/005906

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: A201304960

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2011843652

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013123793

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13149527

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 13885815

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013012858

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013012858

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013012858

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130523