WO2012069568A2 - Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination - Google Patents
Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination Download PDFInfo
- Publication number
- WO2012069568A2 WO2012069568A2 PCT/EP2011/070898 EP2011070898W WO2012069568A2 WO 2012069568 A2 WO2012069568 A2 WO 2012069568A2 EP 2011070898 W EP2011070898 W EP 2011070898W WO 2012069568 A2 WO2012069568 A2 WO 2012069568A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- nkt
- peptide
- antigen
- motif
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 307
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 148
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 103
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 73
- 238000001415 gene therapy Methods 0.000 title claims abstract description 47
- 238000002255 vaccination Methods 0.000 title claims abstract description 47
- 208000023275 Autoimmune disease Diseases 0.000 title claims abstract description 19
- 230000002163 immunogen Effects 0.000 title claims description 100
- 239000013603 viral vector Substances 0.000 title claims description 72
- 230000028993 immune response Effects 0.000 title claims description 53
- 206010052779 Transplant rejections Diseases 0.000 title abstract description 20
- 230000002265 prevention Effects 0.000 title abstract description 13
- 208000026935 allergic disease Diseases 0.000 title abstract description 11
- 208000035473 Communicable disease Diseases 0.000 title abstract description 7
- 238000011282 treatment Methods 0.000 title description 21
- 210000000581 natural killer T-cell Anatomy 0.000 claims abstract description 235
- 108010067390 Viral Proteins Proteins 0.000 claims abstract description 8
- 230000008105 immune reaction Effects 0.000 claims abstract description 3
- 239000000427 antigen Substances 0.000 claims description 156
- 108091007433 antigens Proteins 0.000 claims description 155
- 102000036639 antigens Human genes 0.000 claims description 155
- 210000004027 cell Anatomy 0.000 claims description 124
- 239000013566 allergen Substances 0.000 claims description 65
- 238000000034 method Methods 0.000 claims description 62
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 61
- 244000052769 pathogen Species 0.000 claims description 59
- 235000001014 amino acid Nutrition 0.000 claims description 54
- 150000001413 amino acids Chemical class 0.000 claims description 54
- 102000004169 proteins and genes Human genes 0.000 claims description 51
- 230000001717 pathogenic effect Effects 0.000 claims description 50
- 235000018102 proteins Nutrition 0.000 claims description 47
- 230000000961 alloantigen Effects 0.000 claims description 42
- 239000003814 drug Substances 0.000 claims description 36
- 230000003834 intracellular effect Effects 0.000 claims description 27
- 208000015181 infectious disease Diseases 0.000 claims description 18
- 238000000338 in vitro Methods 0.000 claims description 14
- 150000007523 nucleic acids Chemical class 0.000 claims description 13
- 241000700605 Viruses Species 0.000 claims description 12
- 230000000890 antigenic effect Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 11
- 108020004707 nucleic acids Proteins 0.000 claims description 10
- 102000039446 nucleic acids Human genes 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 10
- 230000001225 therapeutic effect Effects 0.000 claims description 10
- 108091022930 Glutamate decarboxylase Proteins 0.000 claims description 9
- 102000008214 Glutamate decarboxylase Human genes 0.000 claims description 9
- 241001465754 Metazoa Species 0.000 claims description 9
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 9
- 102000004127 Cytokines Human genes 0.000 claims description 8
- 108090000695 Cytokines Proteins 0.000 claims description 8
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 8
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 7
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 7
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 7
- 241000701161 unidentified adenovirus Species 0.000 claims description 7
- 241000894006 Bacteria Species 0.000 claims description 6
- 241000124008 Mammalia Species 0.000 claims description 6
- 244000045947 parasite Species 0.000 claims description 6
- 241000702421 Dependoparvovirus Species 0.000 claims description 5
- 108010058846 Ovalbumin Proteins 0.000 claims description 5
- 229940092253 ovalbumin Drugs 0.000 claims description 5
- 102100036255 Glucose-6-phosphatase 2 Human genes 0.000 claims description 4
- 102000002812 Heat-Shock Proteins Human genes 0.000 claims description 4
- 108010004889 Heat-Shock Proteins Proteins 0.000 claims description 4
- 102000004877 Insulin Human genes 0.000 claims description 4
- 108090001061 Insulin Proteins 0.000 claims description 4
- 108090000172 Interleukin-15 Proteins 0.000 claims description 4
- 108010002350 Interleukin-2 Proteins 0.000 claims description 4
- 108010002586 Interleukin-7 Proteins 0.000 claims description 4
- 239000000428 dust Substances 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims description 4
- 229940125396 insulin Drugs 0.000 claims description 4
- 238000003259 recombinant expression Methods 0.000 claims description 4
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 3
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 3
- 235000018262 Arachis monticola Nutrition 0.000 claims description 3
- 241000713666 Lentivirus Species 0.000 claims description 3
- 108700018351 Major Histocompatibility Complex Proteins 0.000 claims description 3
- 102000006386 Myelin Proteins Human genes 0.000 claims description 3
- 108010083674 Myelin Proteins Proteins 0.000 claims description 3
- 239000013572 airborne allergen Substances 0.000 claims description 3
- 230000020411 cell activation Effects 0.000 claims description 3
- 235000013339 cereals Nutrition 0.000 claims description 3
- 235000013399 edible fruits Nutrition 0.000 claims description 3
- 239000013568 food allergen Substances 0.000 claims description 3
- 239000003102 growth factor Substances 0.000 claims description 3
- 229940088597 hormone Drugs 0.000 claims description 3
- 239000005556 hormone Substances 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 235000021374 legumes Nutrition 0.000 claims description 3
- 210000005012 myelin Anatomy 0.000 claims description 3
- 235000020232 peanut Nutrition 0.000 claims description 3
- 210000004976 peripheral blood cell Anatomy 0.000 claims description 3
- 241001529453 unidentified herpesvirus Species 0.000 claims description 3
- 241001430294 unidentified retrovirus Species 0.000 claims description 3
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 claims description 2
- 108091006112 ATPases Proteins 0.000 claims description 2
- 102000057290 Adenosine Triphosphatases Human genes 0.000 claims description 2
- 108010009685 Cholinergic Receptors Proteins 0.000 claims description 2
- 102000000503 Collagen Type II Human genes 0.000 claims description 2
- 108010041390 Collagen Type II Proteins 0.000 claims description 2
- 102000004427 Collagen Type IX Human genes 0.000 claims description 2
- 108010042106 Collagen Type IX Proteins 0.000 claims description 2
- 101710172364 Glucose-6-phosphatase 2 Proteins 0.000 claims description 2
- 102000003886 Glycoproteins Human genes 0.000 claims description 2
- 108090000288 Glycoproteins Proteins 0.000 claims description 2
- 108010014095 Histidine decarboxylase Proteins 0.000 claims description 2
- 102100037095 Histidine decarboxylase Human genes 0.000 claims description 2
- 108010033040 Histones Proteins 0.000 claims description 2
- 101000930907 Homo sapiens Glucose-6-phosphatase 2 Proteins 0.000 claims description 2
- 108010036012 Iodide peroxidase Proteins 0.000 claims description 2
- 108090001030 Lipoproteins Proteins 0.000 claims description 2
- 102000004895 Lipoproteins Human genes 0.000 claims description 2
- 102000008109 Mixed Function Oxygenases Human genes 0.000 claims description 2
- 108010074633 Mixed Function Oxygenases Proteins 0.000 claims description 2
- 108700039882 Protein Glutamine gamma Glutamyltransferase 2 Proteins 0.000 claims description 2
- 102100038095 Protein-glutamine gamma-glutamyltransferase 2 Human genes 0.000 claims description 2
- 108010010974 Proteolipids Proteins 0.000 claims description 2
- 102000016202 Proteolipids Human genes 0.000 claims description 2
- 102000001854 Steroid 17-alpha-Hydroxylase Human genes 0.000 claims description 2
- 108010015330 Steroid 17-alpha-Hydroxylase Proteins 0.000 claims description 2
- 108050006783 Synuclein Proteins 0.000 claims description 2
- 102000019355 Synuclein Human genes 0.000 claims description 2
- 102000014267 Thyroid peroxidases Human genes 0.000 claims description 2
- 102000003911 Thyrotropin Receptors Human genes 0.000 claims description 2
- 108090000253 Thyrotropin Receptors Proteins 0.000 claims description 2
- 102000005506 Tryptophan Hydroxylase Human genes 0.000 claims description 2
- 108010031944 Tryptophan Hydroxylase Proteins 0.000 claims description 2
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 claims description 2
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 claims description 2
- 102000034337 acetylcholine receptors Human genes 0.000 claims description 2
- 230000006472 autoimmune response Effects 0.000 claims description 2
- 230000015271 coagulation Effects 0.000 claims description 2
- 238000005345 coagulation Methods 0.000 claims description 2
- 229940029329 intrinsic factor Drugs 0.000 claims description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 claims description 2
- 241001553178 Arachis glabrata Species 0.000 claims 1
- 102000023732 binding proteins Human genes 0.000 claims 1
- 108091008324 binding proteins Proteins 0.000 claims 1
- 239000003153 chemical reaction reagent Substances 0.000 claims 1
- 239000003527 fibrinolytic agent Substances 0.000 claims 1
- 230000003480 fibrinolytic effect Effects 0.000 claims 1
- 230000004614 tumor growth Effects 0.000 claims 1
- 230000003053 immunization Effects 0.000 abstract description 20
- 238000002649 immunization Methods 0.000 abstract description 18
- 230000001965 increasing effect Effects 0.000 abstract description 15
- 238000002560 therapeutic procedure Methods 0.000 abstract description 5
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 71
- 229940024606 amino acid Drugs 0.000 description 49
- 230000027455 binding Effects 0.000 description 33
- 210000000612 antigen-presenting cell Anatomy 0.000 description 30
- 210000004881 tumor cell Anatomy 0.000 description 27
- 230000002209 hydrophobic effect Effects 0.000 description 23
- 241000699670 Mus sp. Species 0.000 description 22
- 230000004913 activation Effects 0.000 description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- 239000004480 active ingredient Substances 0.000 description 16
- 201000010099 disease Diseases 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 15
- 230000002147 killing effect Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 102000002233 Myelin-Oligodendrocyte Glycoprotein Human genes 0.000 description 13
- 108010000123 Myelin-Oligodendrocyte Glycoprotein Proteins 0.000 description 13
- 230000006907 apoptotic process Effects 0.000 description 12
- 230000008030 elimination Effects 0.000 description 12
- 238000003379 elimination reaction Methods 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 description 11
- 101710168331 ALK tyrosine kinase receptor Proteins 0.000 description 11
- 125000003275 alpha amino acid group Chemical group 0.000 description 11
- 230000001461 cytolytic effect Effects 0.000 description 11
- 230000000638 stimulation Effects 0.000 description 11
- 230000008685 targeting Effects 0.000 description 11
- 241000282414 Homo sapiens Species 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229920001184 polypeptide Polymers 0.000 description 10
- 230000001603 reducing effect Effects 0.000 description 10
- 108091008874 T cell receptors Proteins 0.000 description 9
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 9
- 235000018417 cysteine Nutrition 0.000 description 9
- 210000001163 endosome Anatomy 0.000 description 9
- 125000001165 hydrophobic group Chemical group 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 8
- 108010074328 Interferon-gamma Proteins 0.000 description 8
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000036755 cellular response Effects 0.000 description 8
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 8
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 8
- 150000002632 lipids Chemical group 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 238000011740 C57BL/6 mouse Methods 0.000 description 7
- 108010054218 Factor VIII Proteins 0.000 description 7
- 102000001690 Factor VIII Human genes 0.000 description 7
- 241001135569 Human adenovirus 5 Species 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 7
- 208000006673 asthma Diseases 0.000 description 7
- 229960000301 factor viii Drugs 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000008194 pharmaceutical composition Substances 0.000 description 7
- 102100037850 Interferon gamma Human genes 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- -1 allofactor Substances 0.000 description 6
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 238000010647 peptide synthesis reaction Methods 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 230000007115 recruitment Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 201000009030 Carcinoma Diseases 0.000 description 5
- 108010061629 Dermatophagoides pteronyssinus antigen p 1 Proteins 0.000 description 5
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 5
- 102000004316 Oxidoreductases Human genes 0.000 description 5
- 108090000854 Oxidoreductases Proteins 0.000 description 5
- 229940037003 alum Drugs 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 210000005007 innate immune system Anatomy 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 210000000952 spleen Anatomy 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 108091008875 B cell receptors Proteins 0.000 description 4
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- 208000034578 Multiple myelomas Diseases 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 4
- 239000004473 Threonine Substances 0.000 description 4
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 201000009961 allergic asthma Diseases 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 4
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 150000002333 glycines Chemical class 0.000 description 4
- 201000006417 multiple sclerosis Diseases 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000000069 prophylactic effect Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 238000010254 subcutaneous injection Methods 0.000 description 4
- 239000007929 subcutaneous injection Substances 0.000 description 4
- 108090000672 Annexin A5 Proteins 0.000 description 3
- 102000004121 Annexin A5 Human genes 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 3
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 description 3
- 108090000978 Interleukin-4 Proteins 0.000 description 3
- 108091054437 MHC class I family Proteins 0.000 description 3
- 102000043131 MHC class II family Human genes 0.000 description 3
- 108091054438 MHC class II family Proteins 0.000 description 3
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 210000005006 adaptive immune system Anatomy 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010366 cell biology technique Methods 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001945 cysteines Chemical class 0.000 description 3
- 230000016396 cytokine production Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 241001493065 dsRNA viruses Species 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 208000026278 immune system disease Diseases 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- 206010002199 Anaphylactic shock Diseases 0.000 description 2
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 102100022641 Coagulation factor IX Human genes 0.000 description 2
- 102100026735 Coagulation factor VIII Human genes 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 108050006400 Cyclin Proteins 0.000 description 2
- 102000016736 Cyclin Human genes 0.000 description 2
- 150000008574 D-amino acids Chemical class 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 208000016192 Demyelinating disease Diseases 0.000 description 2
- 206010012305 Demyelination Diseases 0.000 description 2
- 206010012438 Dermatitis atopic Diseases 0.000 description 2
- 206010012442 Dermatitis contact Diseases 0.000 description 2
- 241000238740 Dermatophagoides pteronyssinus Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 108010076282 Factor IX Proteins 0.000 description 2
- 229930186217 Glycolipid Natural products 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 102000018997 Growth Hormone Human genes 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 241000222722 Leishmania <genus> Species 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 102000043129 MHC class I family Human genes 0.000 description 2
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 2
- 102000043276 Oncogene Human genes 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 108700020978 Proto-Oncogene Proteins 0.000 description 2
- 102000052575 Proto-Oncogene Human genes 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- 101710145796 Staphylokinase Proteins 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 208000024780 Urticaria Diseases 0.000 description 2
- 230000008649 adaptation response Effects 0.000 description 2
- 230000000172 allergic effect Effects 0.000 description 2
- 208000003455 anaphylaxis Diseases 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 201000008937 atopic dermatitis Diseases 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000003501 co-culture Methods 0.000 description 2
- 230000009852 coagulant defect Effects 0.000 description 2
- 208000010247 contact dermatitis Diseases 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 210000005220 cytoplasmic tail Anatomy 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003979 eosinophil Anatomy 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 229960004222 factor ix Drugs 0.000 description 2
- 208000000065 fibrinolytic defect Diseases 0.000 description 2
- 201000003444 follicular lymphoma Diseases 0.000 description 2
- 238000002825 functional assay Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 201000001421 hyperglycemia Diseases 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 238000000126 in silico method Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000015788 innate immune response Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 201000006370 kidney failure Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000007898 magnetic cell sorting Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000012737 microarray-based gene expression Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 108091005601 modified peptides Proteins 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 2
- 206010028417 myasthenia gravis Diseases 0.000 description 2
- 230000000849 parathyroid Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229960003742 phenol Drugs 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 108020003519 protein disulfide isomerase Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000009256 replacement therapy Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102000029752 retinol binding Human genes 0.000 description 2
- 108091000053 retinol binding Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 201000009890 sinusitis Diseases 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229940075582 sorbic acid Drugs 0.000 description 2
- 235000010199 sorbic acid Nutrition 0.000 description 2
- 239000004334 sorbic acid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- DVQCNGKZAMNXCR-BYPYZUCNSA-N (2s)-3-methyl-2-(sulfanylamino)butanoic acid Chemical compound CC(C)[C@H](NS)C(O)=O DVQCNGKZAMNXCR-BYPYZUCNSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- VQFKFAKEUMHBLV-BYSUZVQFSA-N 1-O-(alpha-D-galactosyl)-N-hexacosanoylphytosphingosine Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@H]([C@H](O)[C@H](O)CCCCCCCCCCCCCC)CO[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQFKFAKEUMHBLV-BYSUZVQFSA-N 0.000 description 1
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 1
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000589968 Borrelia Species 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010066091 Bronchial Hyperreactivity Diseases 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- 108010041397 CD4 Antigens Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 241001185363 Chlamydiae Species 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 108010030351 DEC-205 receptor Proteins 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 101710106383 Disulfide bond formation protein B Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 206010051841 Exposure to allergen Diseases 0.000 description 1
- 201000003542 Factor VIII deficiency Diseases 0.000 description 1
- 241000710781 Flaviviridae Species 0.000 description 1
- 241001663880 Gammaretrovirus Species 0.000 description 1
- 108050005205 Glutaredoxin Proteins 0.000 description 1
- 102000017278 Glutaredoxin Human genes 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 102100021410 Heat shock 70 kDa protein 14 Human genes 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 241000700586 Herpesviridae Species 0.000 description 1
- VJLLLMIZEJJZTE-VNQXHBPZSA-N HexCer(d18:1/16:0) Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H]([C@H](O)\C=C\CCCCCCCCCCCCC)COC1OC(CO)C(O)C(O)C1O VJLLLMIZEJJZTE-VNQXHBPZSA-N 0.000 description 1
- 101710094396 Hexon protein Proteins 0.000 description 1
- 241000228402 Histoplasma Species 0.000 description 1
- 101001041756 Homo sapiens Heat shock 70 kDa protein 14 Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- 208000004554 Leishmaniasis Diseases 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 206010025102 Lung infiltration Diseases 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 241001575980 Mendoza Species 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100077708 Mus musculus Mog gene Proteins 0.000 description 1
- 206010062207 Mycobacterial infection Diseases 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 101000944608 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Chaperonin GroEL 2 Proteins 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 102100038082 Natural killer cell receptor 2B4 Human genes 0.000 description 1
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 1
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101710116318 Probable disulfide formation protein Proteins 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 108060008225 Thiolase Proteins 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 208000024799 Thyroid disease Diseases 0.000 description 1
- 241000223997 Toxoplasma gondii Species 0.000 description 1
- 241000255993 Trichoplusia ni Species 0.000 description 1
- 241000223104 Trypanosoma Species 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010048249 Yersinia infections Diseases 0.000 description 1
- 208000025079 Yersinia infectious disease Diseases 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 102000006707 alpha-beta T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010087408 alpha-beta T-Cell Antigen Receptors Proteins 0.000 description 1
- UCKDWANVYDOPEV-SVYNEFFASA-N alpha-glucuronosylceramide Chemical compound CCCCCCCCCCCCCCCCC[C@@H](O)C(=O)N[C@H]([C@H](O)CCCCCCCCCCCCCCCCC)CO[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O UCKDWANVYDOPEV-SVYNEFFASA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 201000005000 autoimmune gastritis Diseases 0.000 description 1
- 208000027625 autoimmune inner ear disease Diseases 0.000 description 1
- 201000011385 autoimmune polyendocrine syndrome Diseases 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- 238000013357 binding ELISA Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000036427 bronchial hyperreactivity Effects 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000002347 carcinogenetic effect Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 210000004970 cd4 cell Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 238000009172 cell transfer therapy Methods 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 241001492478 dsDNA viruses, no RNA stage Species 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 238000001400 expression cloning Methods 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 102000057593 human F8 Human genes 0.000 description 1
- 229960000900 human factor viii Drugs 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 239000000677 immunologic agent Substances 0.000 description 1
- 229940124541 immunological agent Drugs 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 230000017307 interleukin-4 production Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000014725 late viral mRNA transcription Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 150000008146 mannosides Chemical class 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- NZWOPGCLSHLLPA-UHFFFAOYSA-N methacholine Chemical compound C[N+](C)(C)CC(C)OC(C)=O NZWOPGCLSHLLPA-UHFFFAOYSA-N 0.000 description 1
- 229960002329 methacholine Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 208000027531 mycobacterial infectious disease Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 108010087904 neutravidin Proteins 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000005868 ontogenesis Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000008756 pathogenetic mechanism Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 230000033064 perforin production Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000003906 phosphoinositides Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000008884 pinocytosis Effects 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000009117 preventive therapy Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 241001147420 ssDNA viruses Species 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 208000008732 thymoma Diseases 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 206010043778 thyroiditis Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0051—Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0008—Antigens related to auto-immune diseases; Preparations to induce self-tolerance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/35—Allergens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/385—Haptens or antigens, bound to carriers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0646—Natural killers cells [NK], NKT cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y503/00—Intramolecular oxidoreductases (5.3)
- C12Y503/04—Intramolecular oxidoreductases (5.3) transposing S-S bonds (5.3.4)
- C12Y503/04001—Protein disulfide-isomerase (5.3.4.1), i.e. disufide bond-forming enzyme
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5158—Antigen-pulsed cells, e.g. T-cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/62—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
- A61K2039/627—Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10334—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination
- the present invention relates to immunogenic peptides and their use in treating infectious diseases, autoimmune diseases, immune responses towards allofactors, allergic diseases, tumor, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination
- pathogens In infections caused by intracellular pathogens infection persists because of the insufficiency of immune response which would recognize and eliminate infected cells. Many pathogens reduce the surface expression of molecules such as the major histocompatibility complex of class I (class I MHC) in the cells invaded by said pathogens, thereby reducing the capacity of the immune system to elicit a cytolytic immune response which is elicited when T lymphocytes of the CD8+ lineage recognize and are activated by class I MHC presenting pathogen-derived epitopes.
- An alternative strategy by which cytolytic lymphocytes could eliminate cells invaded by a pathogen would be much desirable.
- autoimmune diseases as in immune responses to administration of an allofactor and in allergic diseases, it is advantageous to eliminate cells presenting peptides from an autoantigen, an allofactor or an allergen, so as to prevent any unwanted immune responses and thereby diseases associated with such unwanted immune responses.
- epitopes from autoantigens allofactors or allergens are primarily presented by class II MHC and the complex formed between the epitope and class II determinants activated T lymphocytes of the CD4+ lineage. This results in activation of B lymphocytes and production of antibodies to said autoantigens, allofactors or allergens.
- a method which would result in eliminating of APC by cytolysis would prevent CD4+ T cell activation and thereby the production of antibodies.
- cytolytic T cells In the case of tumors, cells escape elimination by down-regulating surface expression of class I and class II MHC determinants. Any strategy by which cytolytic T cells specific to tumor antigens would be elicited would therefore represent a much desirable strategy for the treatment of tumors.
- WO 2009/101205 teaches that cytolytic T cells activated by class II restricted presentation of tumor derived antigens is of use for tumor elimination. However, this approach is limited by the poor expression of MHC class II determinants by tumors.
- graft rej ection the process of chronic rej ection is driven by the indirect presentation of antigens shed by the graft and presented by the recipient antigen-presenting cells to his/her own T lymphocytes.
- the indirect presentation occurs by presentation of graft derived epitopes by both class I and class II epitopes.
- T lymphocytes of the CD8 lineage activated by class I MHC presentation of graft antigens migrate to the graft wherein they mediate rej ection by recognition of their cognate epitopes directly on grafted cells.
- CD8 cells require help from CD4 cells activated by indirect presentation of graft derived antigens by class II MHC determinants.
- WO 2009/100505 teaches that the use of class II restricted T cell epitopes derived from the graft and coupled to a thiol-oxidoreductase motif allows elimination by apoptosis of APC participating in indirect presentation.
- an alternative strategy by which another subset of cytolytic T cells would be generated would be much desirable.
- novel therapeutic approaches such as gene therapy and gene vaccination are severely limited by the host immune response to viral vectors used for transgenesis or vaccination.
- antigens derived from viral vectors are shed by cells transduced with the vector and presented to host lymphocytes by host APC, namely by indirect antigen presentation.
- many viral vectors activate not only the adaptive immune system, leading to the production of specific antibodies and specific T cell activation, but said viral vectors also activate the innate immune system. Activation of innate immunity serves as an adjuvant for the adaptive response.
- WO 2009/101204 teaches that class II restricted epitopes derived from viral vectors and coupled to a thiol- oxidoreductase motif can elicit the activation of cytolytic class II restricted CD4 T cells.
- an alternative strategy is highly desirable, which would suppress activation of the innate immune system.
- the present invention presents such an alternative strategy.
- Natural killer T (NKT) cells constitute a distinct subset of non-conventional T lymphocytes that recognize antigens presented by the non-classical MHC complex molecule CD Id. Two subsets of NKT cells are presently described. Type 1 NKT cells, also called invariant NKT cells (iNKT), are the most abundant. They are characterized by the presence of an alpha- beta T cell receptor (TCR) made of an invariant alpha chain, Valphal4 in the mouse and
- Type 2 NKT cells have an alpha-beta TCR but with a polymorphic alpha chain. However, it is apparent that other subsets of NKT cells exist, the phenotype of which is still incompletely defined, but which share the characteristics of being activated by glycolipids presented in the context of the CDld molecule.
- NKT cells typically express a combination of natural killer (NK) cell receptor, including NKG2D and NK1.1.
- NK natural killer
- NKT cells are part of the innate immune system, which can be distinguished from the adaptive immune system by the fact that they do not require expansion before acquiring full effector capacity. Most of their mediators are preformed and do not require transcription. NKT cells have been shown to be major participants in the immune response against intracellular pathogens and tumor rej ection. Their role in the control of autoimmune diseases and of transplantation rejection is also advocated.
- the recognition unit the CDld molecule
- the recognition unit has a structure closely resembling that of the MHC class I molecule, including the presence of beta-2 microglobulin. It is characterized by a deep cleft bordered by two alpha chains and containing highly hydrophobic residues, which accepts lipid chains. The cleft is open at both extremities, allowing to accommodate longer chains.
- the canonical ligand for CDld is the synthetic alpha galactosyl ceramide (alpha GalCer).
- CDld binds only ligands containing lipid chains, or in general a common structure made of a lipid tail which is buried into CDld and a sugar residue head group that protrudes out of CDld.
- Hydrophobic peptides containing a structural motif made of an aromatic residue in position PI and P7, which represent anchoring residues for binding to CDld hydrophobic pockets located at each end of the CDld molecule and an aliphatic chain in position P4 were claimed by Castano et al (Science 269: 223, 1995) to contain a core motif for CDld binding epitopes. As described above, the conclusions reached by Castano et al are not supported by data.
- peptides encompassing an hydrophobic aminoacid sequence are in fact capable of eliciting activation of NKT cells.
- An example of such sequence is represented by the motif [FW]-xx-[ILM]-xx-[FW], wherein [FW] is an aminoacid selected from phenylalanine or tryptophan, and [ILM] is an aminoacid selected from isoleucine, leucine or methionine.
- [FW] in P7 is said to be permissive, meaning that T or H can substitute either for F or W.
- CDld binding motif was particularly efficient in modulating NKT activity when coupled to a thiol-oxidoreductase motif.
- This motif presents a general structure of C-XX-C in which C is cysteine and X is any aminoacid except tyrosine, phenylalanine and tryptophan.
- Patent application WO 2008/017517 Al teaches that class II restricted T cell epitopes coupled to a thiol-oxidoreductase motif acquire the property of transforming the phenotype and the function of class II restricted CD4 T cells into potent cytolytic cells, inducing apoptosis of APC.
- the present invention therefore relates to the use of hydrophobic peptides having the capacity to bind to CD Id and thereby recruit and activate NKT cells, coupled to a thiol - oxidoreductase motif.
- Such peptides ensure antigen-specificity and represent a valuable approach for the treatment of
- infectious diseases with intracellular pathogens in which infected cells present hydrophobic peptides derived from the pathogen and bound to CD Id. Increased NKT recruitment and/or activity of such NKT cells would therefore concur to the elimination of infected cells;
- tumors as tumor cells often express CD Id carrying tumor-specific antigens, which can be recognized by NKT cells. Increasing the activity and recruitment of such NKT cells would lead to increased tumor elimination;
- Peptides encompassing natural CD ld-restricted epitopes and at least one thioreductase motif of the CxxC format, in which C stands for cysteine and x for any aminoacids except cysteine or bulky residues, as described in the present invention, have therefore a major interest for:
- the present invention relates to the use of isolated immunogenic peptides for the prevention and treatment of infection with an intracellular pathogen in a subject by increasing the immune response towards specific antigens derived from said intracellular pathogen.
- the present invention also relates to the use of isolated immunogenic peptides for the prevention and treatment of autoimmune responses, immune responses to administration of allofactors and immune responses to exposure to allergens.
- the present invention further relates to the use of isolated immunogenic peptides for the treatment of tumors.
- the present invention also relates to the use of isolated immunogenic peptides for the prevention of graft rejection.
- the present invention also relates to the use of isolated immunogenic peptides for the prevention of immune response against viral proteins used for gene therapy and/or gene vaccination.
- the present invention also relates to peptides for the detection, preparation and depletion of KT cells.
- the present invention relates in one aspect to the use of at least one isolated immunogenic peptide comprising (i) a NKT cell epitope derived from a pathogen-associated antigen and (ii) a thiol-oxidoreductase motif (thioredox motif in short) as a medicament for preventing and/or treating, in a subject, infection with said pathogen.
- the invention also covers the use of at least one isolated immunogenic peptide comprising (i) a NKT cell epitope derived from an autoantigen, an allofactor or an allergen and (ii) a thioredox motif as a medicament for preventing and/or treating, in a subject, immune responses against autoantigens, allofactors and/or allergens.
- the invention also covers the use of at least one isolated immunogenic peptide comprising (i) a NKT cell epitope derived from a tumor-associated antigen and (ii) a thioredox motif as a medicament for treating, in a subject, a tumor.
- the invention also covers the use of at least one isolated immunogenic peptide comprising (i) a NKT cell epitope derived from an alloantigen and
- the invention also covers the use of at least one isolated immunogenic peptide comprising (i) a NKT cell epitope derived from a viral vector for gene therapy or gene vaccination and (ii) a thioredox motif as a medicament for preventing, in a subject, an immune response against the viral vector.
- the invention also covers the use of at least one isolated immunogenic peptide comprising (i) a NKT cell epitope derived from a pathogen-associated antigen, an autoantigen, allofactor, allergen, a tumor-associated antigen, an alloantigen or a viral vector antigen, and (ii) a thioredox motif, as a medicament for increasing the activation, cytokine production and cytolytic activity of CD4+ NKT cells in said subject.
- the invention provides immunogenic peptides comprising (i) a NKT-cell epitope derived from a pathogen-associated antigen, an autoantigen, allofactor, allergen, a tumor-associated antigen, an alloantigen, or a viral vector antigen, and (ii) a thioredox motif for use in preventing or treating an infection with an intracellular pathogen, preventing or treating an immune response against autoantigens, allofactors, allergens, treating tumors, preventing immunization against alloantigens or against a viral vector antigen, in a recipient by increasing the CD4+ NKT cell response in said recipient.
- the present invention also relates to NKT cells of either type 1 (iNKT) or type 2 subset, as well as less characterized NKT subsets, all characterized as carrying the CD4 co-receptor and a TCR beta chain capable to recognize the CD Id bound peptide.
- the present invention also relates to hydrophobic peptides able to bind to CD Id for presentation to NKT cells.
- the present invention relates to hydrophobic peptides encompassing at least one CDld- restricted T cell epitope.
- the structure of the CD Id molecule indicates that hydrophobic aminoacid residues are required to occupy the two hydrophobic pockets located at the extremities of the CD Id cleft and that an aliphatic residue should occupy the position in the middle of the cleft. Therefore, as a general example of CD Id binding sequence, the motif [FW]-xx-[ILM]-xx-[FWTH] can be used in which [FW] indicates that either F or W can occupy the first anchoring residue (PI), that the P4 postion can be occupied by either I, L or M and that P7 can be occupied by F, W, T or H.
- PI first anchoring residue
- x in this general model motif stands for any aminoacid. It should be clear for the one skilled in the art that various combinations of these aminoacid residues are possible.
- the general model motif can be presented as a reverted sequence such as [FWTH]-xx-[ILM]-xx-[FW].
- Said thioredox motif is made of a consensus sequence ([CST]-XX-[CST]), wherein [CST] is an amino acid selected from cysteine, serine and threonine, and X can be any amino acid except tyrosine (Y), phenylalanine (F) and tryptophan (W).
- Said thioredox motif is added to the peptide at either amino-terminal or carboxy-terminal end, or on each terminal end, potentially separated from the said CDld-restricted T cell epitope by a linker of in between 1 to 7 aminoacids.
- said linker comprises aminoacids which are part of the natural flanking residues.
- the invention further relates to methods for obtaining or inducing populations of KT cells as described above, said methods comprising the steps of:
- the invention encompasses a method of identifying a population of CD4+ NKT cells, said method comprising the steps of:
- said intracellular pathogen-associated antigen may be any antigen derived from viruses, bacteria, mycobacteria or parasites with an intracellular life cycle.
- said autoantigen may be any antigen associated with an autoimmune disease. Examples of such diseases are insulin-dependent diabetes, multiple sclerosis, myasthenia gravis and thyroiditis.
- said allofactors are polypeptides or proteins and factors used for replacement therapy for coagulation defects or fibrinolytic defects, including factor VIII, factor IX and staphylokinase, hormones such as insulin and growth hormone, cytokines and growth factors such as interferon-alpha, interferon-beta, interferon-gamma, GM-CSF and G-CSF, antibodies for the modulation of immune responses, including anti-IgE antibodies in allergic diseases, anti-CD3, anti-CD4 and anti-CD20 antibodies in graft rejection and in a variety of auto-immune diseases, anti-TNF-alpha antibodies in rheumatoid arthritis, and erythropoietin in renal insufficiency.
- factor VIII factor IX and staphylokinase
- hormones such as insulin and growth hormone
- cytokines and growth factors such as interferon-alpha, interferon-beta, interferon-gamma, GM-CSF and
- said allergen being airborne allergen such as those derived from house dust mite, from pollens or from domestic animals, food allergens such as peanut, ovalbumin, cereals, fruits and legumes, and contact antigens such as latex.
- Diseases characterizing allergen sensitization include allergic asthma, allergic rhino-sinusitis, anaphylactic shock, urticaria, atopic dermatitis and contact dermatitis.
- said tumor-associated antigens being an oncogene, a proto-oncogene, a virus-derived protein, a surviving factor or a clonotypic determinant such as an idiotypic determinant derived from a B cell receptor.
- said alloantigens being major histocompatibility antigens, minor histocompatibility antigens or tissue specific antigens. Said antigens are involved in cellular and tissue graft rejection.
- said viral vectors being derived from adenovirus, adeno-associated virus, retrovirus or lentivirus.
- said thioredox motif may be adjacent to said NKT cell epitope or be separated from said NKT cell epitope by a linker.
- the linker consists of at most 7 amino acids.
- said thioredox motif does not occur naturally within a region of 8 amino acids N- or C-terminally adj acent to the NKT-cell epitope in said pathogen-associated antigen, auto-antigen, allofactor, allergen, tumor-associated antigen, alloantigen or viral vector antigen.
- said thioredox motif is positioned N-terminally of the NKT-cell epitope.
- the immunogenic peptide further comprises and endosomal targeting sequence.
- Any of the above immunogenic peptides may be produced by chemical synthesis or by recombinant expression.
- a further method of the invention aims at obtaining a population of NKT cells, said method comprising the steps of:
- an immunogenic peptide comprising a NKT cell epitope derived from an intracellular pathogen-associated antigen, an autoantigen, an allofactor, an allergen, a tumor-associated antigen, an alloantigen or a viral vector antigen, and (ii) a thioredox motif;
- CD4+ NKT cells obtainable by the above methods are also part of the invention, as well as their use as a medicament for preventing or treating, in a subj ect, infection with said intracellular pathogen, preventing or treating an autoimmune disease, an immune response to an allofactor, preventing or treating allergic diseases, treating tumors, preventing graft rej ection, and preventing an immune response to a viral vector used for gene therapy or gene vaccination.
- a further aspect of the invention relates to isolated immunogenic peptides comprising a
- NKT-cell epitope derived from an intracellular pathogen-associated antigen, or from an autoantigen, an allofactor, an allergen, a tumor-associated antigen, an alloantigen or a viral vector antigen, and, adjacent to the KT-cell epitope or separated from the KT-cell epitope by a linker, a thioredox motif.
- isolated peptide comprising a NKT-cell epitope derived from an intracellular pathogen-associated antigen, or from an autoantigen, an allofactor, an allergen, a tumor-associated antigen, an alloantigen or a viral vector antigen, and, adjacent to the NKT-cell epitope or separated from the NKT-cell epitope by a linker, a thioredox motif, for the detection, preparation or depletion of NKT cells.
- the invention further encompasses isolated viral vectors characterized in that they comprise at least one pathogen-associated antigen, or at least one autoantigen, or at least one allofactor, or at least one allergen, or at least one tumor-associated antigen, or at least one alloantigen, or at least one viral vector antigen comprising a NKT-cell epitope and adjacent to said NKT-cell epitope or separated from the NKT-cell epitope by a linker, a thioredox motif.
- the invention provides isolated viral vectors characterized in that at least one NKT-cell epitope present in at least one of the pathogen-associated antigens, or of the autoantigen, or of allofactor, or of allergen, or of a tumor-associated antigen, or of an alloantigen, or of a viral vector antigen is modified by insertion in said pathogen-associated antigen, said autoantigen, said allofactor, said allergen, said tumor-associated antigen, said alloantigen, or said viral vector antigen, adjacent to said NKT-cell epitope or separated from said NKT-cell epitope by a linker, of a thioredox motif.
- peptide when used herein refers to a molecule comprising an amino acid sequence of between 2 and 200 amino acids, connected by peptide bonds, but which can in a particular embodiment comprise non-amino acid structures (like for example a linking organic compound).
- Peptides according to the invention can contain any of the conventional 20 amino acids or modified versions thereof, or can contain non-naturally occurring amino acids incorporated by chemical peptide synthesis or by chemical or enzymatic modification.
- peptide or “immunogenic peptide” are used indifferently, but “immunogenic peptide” is usually preferred for peptide used for therapeutic purposes, whilst “peptide” is preferrred for the detection, preparation and depletion of KT cells.
- epitope when used herein refers to one or several portions (which may define a conformational epitope) of a protein which is/are specifically recognized and bound by an antibody or a portion thereof (Fab 1 , Fab2', etc.) or a receptor presented at the cell surface of a B or T cell lymphocyte, and which is able, by said binding, to induce an immune response.
- antigen when used herein refers to a structure of a macromolecule comprising one or more hapten(s) and/or comprising one or more T cell epitopes.
- said macromolecule is a protein or peptide (with or without polysaccharides) or made of proteic composition and comprises one or more epitopes; said macromolecule can herein alternatively be referred to as "antigenic protein” or “antigenic peptide”.
- T cell epitope or "T-cell epitope” in the context of the present invention refers to a dominant, sub-dominant or minor T cell epitope, i.e., a part of an antigenic protein that is specifically recognized and bound by a receptor at the cell surface of a T lymphocyte. Whether an epitope is dominant, sub-dominant or minor depends on the immune reaction elicited against the epitope. Dominance depends on the frequency at which such epitopes are recognized by T cells and able to activate them, among all the possible T cell epitopes of a protein. In particular, a T cell epitope is an epitope bound by MHC class I or MHC class II molecules.
- NKT cell epitope refers to a part of an antigenic protein that is specifically recognized and bound by a receptor at the cell surface of a T lymphocyte.
- a NKT cell epitope is an epitope bound by CD Id molecules.
- CD4+ effector cells refers to cells belonging to the CD4-positive subset of T- cells whose function is to provide help to other cells, such as, for example B-cells. These effector cells are conventionally reported as Th cells (for T helper cells), with different subsets such as ThO, Thl, Th2, and Thl7 cells.
- NKT cells refers to cells of the innate immune system characterized by the fact that they carry receptors such as NK1.1 and NKG2D, and recognize epitopes presented by the CDld molecule.
- NKT cells can belong to either the type 1 (invariant) or the type 2 subset, or to any of the less characterized NKT cells with more polymorphic T cell receptors than type 1 or type 2 NKT cells.
- CDld molecule refers to a non-MHC derived molecule made of 3 alpha chains and an anti -parallel set of beta chains arranged into a deep hydrophobic groove opened on both sides and capable of presenting lipids, glycolipids or hydrophobic peptides to NKT cells.
- immune disorders or “immune diseases” refers to diseases wherein a reaction of the immune system is responsible for or sustains a malfunction or non- physiological situation in an organism.
- Immune disorders in the context of the present invention refer to pathology induced by infectious agents and tumor surveillance.
- allofactor refers to a protein, peptide or factor (i.e. any molecule) displaying polymorphism when compared between two individuals of the same species, and, more in general, any protein, peptide or factor that induces an (alloreactive) immune response in the subject receiving the allofactor.
- alloantigen or "allograft antigen” when used herein refer to an antigen derived from (shed from and/or present in) a cell or tissue which, when transferred from a donor to a recipient, can be recognized and bound by an antibody of B or T-cell receptor of the recipient. Alloantigens are typically products of polymorphic genes. An alloantigen is a protein or peptide which, when compared between donor and recipient (belonging to the same species), displays slight structural differences. The presence of such a donor antigen in the body of a recipient can elicit an immune response in the recipient. Such alloreactive immune response is specific for the alloantigen.
- thiol-oxidoreductase motif refers to a motif of general sequence made of [CST]-XX-[CST], in which C stands for cysteine, S for serine, T for threonine and X for any aminoacid except tyrosine, phenylalanine or tryptophan.
- the present invention provides ways to prevent or treat, in a subject, infection with an intracellular pathogen. It further provides ways to prevent and treat autoimmune diseases, immune responses following administration of an allofactor or to allergens. It further provides ways to treat tumors, to prevent graft rejection and to prevent immune response against viral vectors.
- the invention provides ways to augment the expansion and functional activity of CD4+ NKT cells. Such cells are usually classified into two distinct subsets, namely type 1 for NKT cells carrying an invariant TCR alpha chain (Valphal4 in the mouse, Valpha24 in humans), or type 2 NKT cells which have a diverse alpha chain repertoire. However, recent evidence has suggested that alternative subsets of NKT cells which do not fit in the type 1 or type 2 category.
- NKT cells are rapidly activated and secrete a number of cytokines thought to be determinant to influence other cells from both the innate and adaptive immune system, and to exert a potent killing activity of CDld+ antigen-presenting cell.
- This mechanism is deemed to be crucial for the defense against infection with intracellular agents, but also in tumor cell surveillance and tumor elimination. The same mechanism is at play for the control of unwanted immune responses as it occurs in auto-immune diseases, immune responses against allofactors or against allergens.
- alloantigens shed from graft are presented to the immune system of the recipient subject by the indirect pathway. This means that shed allograft antigens are taken up by the host antigen-presenting cells, which present said alloantigen to the host T cells in a CD ld-restricted manner. A mechanism by which said host antigen-presenting cells are destroyed by killing after cognate recognition by CD4+ NKT cells is therefore beneficial for the graft recipient.
- antigens shed from transduced cells are taken up by the host antigen-presenting cells, with subsequent indirect presentation as in the case of graft rej ection.
- NKT cells When NKT cells are activated by a peptide modified as to contain a thioreductase activity, the latter increases significantly the properties of NKT cells and thereby increases the killing of cells carrying intracellular microorganisms as well as tumor cells. Killing of cells presenting autoantigens, allofactors or allergens by antigen-specific CD4+ NKT cells suppresses the immune response against said autoantigens, allofactors or allergens. Killing of host cells presenting antigens derived from a graft or from transduced cells aborts the rej ection or the response to the viral vector antigen, respectively.
- NKT cells include infections with mycobacteria (including mycobacterium tuberculosis), parasites such as Leishmania, bacteria such as Listeria monocytogenes, salmonella, pseudomonas aeruginosa, streptococcus pneumoniae and Borrelia, and viruses such as herpes simplex virus (Chiba et al Journal of Immunology 181 : 2292-2302, 2008; Mattner et al Nature 434: 525529, 2005; Tupin et al Nature Reviews. Microbiology 5 : 405- 417, 2007).
- mycobacteria including mycobacterium tuberculosis
- parasites such as Leishmania
- bacteria such as Listeria monocytogenes, salmonella, pseudomonas aeruginosa
- viruses such as herpes simplex virus (Chiba et al Journal of Immunology 181 : 2292-2302, 2008; Mattner et al Nature 4
- NKT cells In addition to direct killing of infected cells, NKT cells, by virtue of their capacity to produce high concentrations of cytokines, and in particular IFN-gamma, can trigger non-specific killing mechanisms within the infected cells. These mechanisms include the induction of indoleamine oxidase, nitric oxide synthase and the production of reactive oxygen species.
- CDld molecule A characteristic of the CDld molecule is to be made of 2 anti-parallel alpha chains forming a cleft sitting atop of a platform made of two anti- parallel beta chains. The cleft is narrow and deep and accept only hydrophobic residues, classically deemed to be only lipids.
- peptides with hydrophobic residues have the capacity to bind to the CDld cleft. Besides, as the cleft is open both sides, peptides longer than 7 aminoacids can be accommodated. Hydrophobic peptides carrying the CDld motif are found in autoantigens, allofactors and allergens, thereby endowing said autoantigen, allofactor or allergen with the capacity to activate CD4+ NKT cells. Direct elimination by killing of cells presenting said autoantigen, allofactor or allergen eliminates the capacity to mount an immune response against these antigens/factors.
- NKT cells have been demonstrated to participate to the defense against tumors, either indirectly by producing cytokines able to boost both innate and adaptive response to tumor cells or directly by killing tumor cells presenting lipid epitopes recognized by NKT cells (Crowe et al, Journal of experimental Medicine 196: 1 19-127, 2002; Tachibana et al, Clinical Cancer Research 1 1 : 7322-7327, 2005; Dhodapkar et al, Journal of experimental Medicine 197: 1667-1676, 2003; Song et al, Journal of clinical Investigation 1 19: 15241536, 2009 ). Direct killing involves granzyme and perforin production.
- Tumors susceptible to be treated by the present invention include those expressing oncogenes, such as the MAGE identified in some melanomas or tyrosine kinases, such as ALK (anaplastic lymphoma kinase) identified in carcinomas of ectodermal origin, proto-oncogens, such as cyclin Dl expressed on soft tissues carcinomas, such as those of the kidney or parathyroid as well as in multiple myeloma, virus-derived proteins, such as those of the Epstein-Barr virus in some carcinomas and in some Hodgkin-type lymphomas, surviving factors, such as surviving or bcl2, and clonotypic determinants, such as idiotypic determinants derived from B cell receptor in follicular lymphomas
- Cells being part of a graft either tissue graft or cellular graft, do not, or only minimally, carry the CDld molecule.
- unwanted immune responses leading to either graft rej ection or immunization towards the viral vector the response is elicited by indirect antigen presentation by host antigen-presenting cells to host T cells.
- Direct elimination by killing of host antigen-presenting cells after cognate interaction with NKT cells eliminates the capacity to mount an immune response against alloantigens or viral vector antigens.
- the present invention relates to the production of peptides containing hydrophobic residues that confer the capacity to bind to the CDld molecule.
- peptides containing hydrophobic residues that confer the capacity to bind to the CDld molecule.
- APC Upon administration, such peptides are taken up by APC, directed to the late endosome where they are loaded onto CDld and presented at the surface of the APC.
- Said hydrophobic peptides being characterized by a motif corresponding to the general sequence [FW]-xx-[ILM]-xx- [FWTH] or [FWTH]-xx-[ILM]-xx-[FW,] in which positions PI and P7 are occupied by hydrophobic residues such as phenylalanine (F) or tryptophan (W).
- P7 is however permissive in the sense that it accepts alternative hydrophobic residues to phenylalanine or tryptophan, such as threonine (T) or histidine (H).
- the P4 position is occupied by an aliphatic residue such as isoleucine (I), leucine (L) or methionine (M).
- International application WO 2009/101206 discloses immunogenic peptides able to elicit the activation of major histocompatibility class II-restricted CD4+ cells, including peptide CGHCGGFT MFATWSPSK. It is not known from WO 2009/101206 that peptides have the capacity to bind to the CD Id molecule.
- the present invention therefore relates to peptides binding to CDld and activating NKT cells, with the proviso that the peptide is not CGHCGGFTNMFATWSPSK.
- the present invention relates to peptides made of hydrophobic residues which naturally constitute a CDld binding motif.
- aminoacid residues of said motif are modified, usually by substitution with residues which increase the capacity to bind to CDld.
- motifs are modified to fit more closely with the general motif [FW]-xx-[ILM]-xx-[FWTH]. More particularly, peptides are produced to contain a F or W at position 7.
- the peptides of the present invention also contain a thioreductase motif adjacent to the hydrophobic residues or separated from such residues by a linker.
- the thioreductase motif enhances the capacity to activate NKT cells, thereby increasing their anti-infectious and/or anti-tumor activity, their capacity to suppress immune responses towards autoantigens, allofactors, allergens, allograft antigens and antigens from viral vectors used in gene therapy or gene vaccination.
- a general description of the full motif could therefore be [CST]-XX-[CST]-linker-[FW]- xx-[ILM]-xx-[FWTH] or [FW]-xx-[ILM]-xx-[FWTH]-linker-[CST]-XX-[CST], according to the fact that the thioreductase motif can be added in either amino-terminal or carboxy- terminal end. Addition of a linker is optional. When present such linker can be in between 1 and up to 7 aminoacids. It should be clear to the one skilled in the art that this general description is provided only for a general understanding of the invention.
- the present invention also relates to NKT cells obtained and activated in vitro for passive re-administration to a host in order to increase its capacity to eliminate cells infected with a pathogen, cells presenting peptides derived from autoantigens, allofactors or allergens, tumor cells, cells presenting alloantigens shed from grafts or from viral proteins used in gene therapy/gene vaccination.
- the invention also applies to methods of transfection or transduction of APC using a genetic construct capable of driving expression of the immunogenic peptide into the late endosome for loading onto CD Id molecule.
- the invention provides ways to expand specific NKT cells, with as a consequence increased activity comprising, but not limited to:
- the present invention also relates to the identification of NKT cells with required properties in body fluids or organs.
- the method comprises identification of NKT cells by virtue of their surface phenotype, including expression of NK1.1, CD4, NKG2D and CD244.
- Cells are then contacted with NKT cell epitopes defined as peptides able to be presented by the CD Id molecule.
- Cells are then expanded in vitro in the presence of IL-2 or IL-15 or IL-7.
- the present invention therefore provides peptides containing a CD Id binding motif and a thioreductase motif for the detection, preparation and depletion of NKT cells.
- such peptides are loaded on isolated CD Id molecule, either monomeric or, preferably multimeric.
- the CD Id molecule can be in a soluble form or bound to a solid support.
- the present invention should be regarded as a curative therapy administered when either the infection is contracted or the tumor already present. This is due to the fact that NKT cells are not thought to enter into a cycle of memorization. When NKT cells are activated, they expand over a period of a few days, and then the population enters into a contraction phase and possible short-term unresponsiveness. However, under some circumstances, it may become advisable to administer the therapy by active immunization with peptides of the invention in a preventive setting. Examples of these are patients at high risk of contracting an infectious disease, as for instance immediately after contact with an infected individual. The present invention therefore covers also the preventive usage of the therapy, either by active vaccination or by passive transfer of cells.
- the present invention relates in one aspect to the use of at least one isolated hydrophobic immunogenic peptide comprising (i) a KT cell epitope derived from a pathogen- associated antigen and (ii) a thio-oxidoreductase motif (thioredox motif in short) as a medicament for preventing and/or treating, in a subj ect, infection with said pathogen.
- at least one isolated hydrophobic immunogenic peptide comprising (i) a KT cell epitope derived from a pathogen- associated antigen and (ii) a thio-oxidoreductase motif (thioredox motif in short) as a medicament for preventing and/or treating, in a subj ect, infection with said pathogen.
- the invention also covers the use of at least one isolated hydrophobic immunogenic peptide comprising (i) a NKT cell epitope derived from an autoantigen, an allofactor or and allergen and (ii) a thioredox motif as a medicament for preventing and/or treating, in a subject, immune responses against autoantigens, allofactors and/or allergens.
- the invention also covers the use of at least one isolated hydrophobic immunogenic peptide comprising (i) a NKT cell epitope derived from a tumor-associated antigen and (ii) a thioredox motif as a medicament for treating, in a subject, a tumor.
- the invention also covers the use of at least one isolated hydrophobic immunogenic peptide comprising (i) a NKT cell epitope derived from an alloantigen and (ii) a thioredox motif as a medicament for preventing, in a subj ect, rej ection of a graft.
- the invention also covers the use of at least one isolated hydrophobic immunogenic peptide comprising (i) a NKT cell epitope derived from a viral vector for gene therapy or gene vaccination and (ii) a thioredox motif as a medicament for preventing, in a subject, an immune response against the viral vector.
- the invention also covers the use of at least one isolated immunogenic peptide comprising (i) a NKT cell epitope derived from a pathogen-associated antigen, an autoantigen, allofactor, allergen, a tumor-associated antigen, an alloantigen or a viral vector antigen, and (ii) a thioredox motif, as a medicament for increasing the activation, cytokine production and cytolytic activity of CD4+ NKT cells in said subject.
- An additional advantage of the present invention is related to the very limited degree of polymorphism of the CD Id molecule. This allows the use of single or of a limited number of peptides for the therapy of outbred populations such as human beings or animals. Moreover, NKT cells elicited from one donor could be used for passive transfer in multiple recipients. This very much contrasts with the situation in which peptides are presented by MHC class I or class II molecules, the polymorphism of which precluding the use of single peptides for multiple recipients.
- the general structure of NKT cell epitopes contains a hydrophobic residue in positions PI and P7, with position P4 occupied by an aliphatic chain.
- the general structure can eventually be defined as [FWHY]-xx-[ILMV]-xx-[FWHY] in which x stands for any amino acid.
- x stands for any amino acid.
- Aminoacids can be natural amino acids or non-natural amino acids. Examples of non- natural aminoacids include D-aminoacids
- the organic compound with reducing activity is a peptide sequence.
- Peptide fragments with reducing activity are encountered in thioreductases which are small disulfide reducing enzymes including glutaredoxins, nucleoredoxins, thioredoxins and other thiol/disulfide oxidoreductases They exert reducing activity for disulfide bonds on proteins (such as enzymes) through redox active cysteines within conserved active domain consensus sequences: C-XX-C, C-XX-S, C-XX-T, S-XX-C, T-XX-C (Fomenko et al. (2003) Biochemistry 42, 1 1214-1 1225), in which X stands for any amino acid.
- the immunogenic peptides comprise as redox motif the thioreductase sequence motif [CST]-XX-[CST], in a further embodiment thereto, said [CST]-XX-[CST] motif is positioned N-terminally of the T-cell epitope. More specifically, in said redox motif at least one of the [CST] positions is occupied by a Cys; thus the motif is either [C]-XX-[CST] or [CST]-XX-[C].
- the immunogenic peptides can contain the sequence motif [C]-XX-[CS] or [CS]-XX-[C]. Even more particularly, the immunogenic peptides contain the sequence motif C-XX-S, S-XX-C or C-XX-C.
- the motif in the above immunogenic peptides is placed either immediately adjacent to the epitope sequence within the peptide, or is separated from the T cell epitope by a linker.
- the linker comprises an amino acid sequence of 7 amino acids or less.
- the linker comprises 1, 2, 3, or 4 amino acids.
- Typical amino acids used in linkers are serine and threonine.
- Examples of peptides with linkers in accordance with the present invention are C-XX-C-G-epitope, C-XX-C-GG-epitope C-XX-C-SSS-epitope C-XX-C-SGSG-epitope and the like.
- the linker sequence encompasses aminoacids naturally present in the polypeptide sequence from which the CD ld-binding motif is derived. Variable numbers of such natural aminoacids can be included on either the amino- or carboxyterminal ends of the peptide or on both ends.
- the immunogenic peptides can comprise additional short amino acid sequences N or C- terminally of the (artificial) sequence comprising the KT cell epitope and the reducing compound (motif). Such an amino acid sequence is generally referred to herein as a 'flanking sequence' .
- a flanking sequence can be positioned N- and/or C-terminally of the redox motif and/or of the T-cell epitope in the immunogenic peptide.
- a flanking sequence can be present between the epitope and an endosomal targeting sequence and/or between the reducing compound (e.g. motif) and an endosomal targeting sequence.
- flanking sequence is a sequence of up to 10 amino acids, or of in between 1 and 7 amino acids, such as a sequence of 2 amino acids. More particularly, the flanking sequence contains bulky aminoacid residues which are useful to stabilize the peptide into the CD Id molecule.
- the redox motif in the immunogenic peptide is located N-terminally from the epitope.
- the immunogenic peptides comprise a reducing motif as described herein linked to a KT cell epitope sequence.
- the NKT-cell epitopes are derived from proteins which do not comprise within their native natural sequence an amino acid sequence with redox properties within a sequence of 11 amino acids N- or C- terminally adjacent to the NKT-cell epitope of interest.
- the NKT-cell epitope is derived from an intracellular pathogen.
- pathogens can be viruses, bacteria or parasites.
- Viruses include ssDNA, dsDNA and RNA viruses, with as examples Herpesviridae, Flaviviridae and Picornaviridae, influenza, measles and immunodeficiency viruses.
- Bacteria and mycobacteria include mycobacterium tuberculosis, other mycobacteria pathogenic for humans or animals, Yersiniosis, Brucella, Chlamydiae, Mycoplasma, Rickettsiae, Salmonellae and Shigellae.
- Parasites include Plasmodiums, Leishmanias, Trypanosomas, Toxoplasma gondii, Listeria, Histoplasma.
- the NKT-cell epitope is derived from autoantigens, including thyroglobulin, thyroid peroxidase, TSH receptor in thyroid diseases; insulin (proinsulin), glutamic acid decarboxylase (GAD), tyrosine phosphatase IA-2, heat-shock protein HSP65, islet-specific glucose6-phosphatase catalytic subunit related protein (IGRP) in type 1 diabetes; 21-OH hydroxylase in autoimmune adrenalitis; 17-alpha hydroxylase, histidine decarboxylase, tryptophan hydroxylase, tyrosine hydroxylase, in autoimmune polyendocrine syndromes; H+/K+ ATPase intrinsic factor in autoimmune gastritis and pernicious anemia; myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), proteolipid protein (PLP) in multiple sclerosis; acetyl-choline receptor in myasthenia gravis
- insulin pro
- the NKT-cell epitope is derived from allofactors, including any peptide or polypeptide used: (1) for replacement therapy for coagulation defects or fibrinolytic defects, including factor VIII, factor IX and staphylokinase; (2) hormones such as growth hormone or insulin; (3) cytokines and growth factors, such as interferon-alpha, interferon-gamma, GM-CSF and G-CSF; (4) antibodies for the modulation of immune responses, including anti-IgE antibodies in allergic diseases, anti-CD3 and anti-CD4 antibodies in graft rej ection and a variety of autoimmune diseases, anti-CD20 antibodies in non-Hodgkin lymphomas; (5) erythropoietin in renal insufficiency and; (6) genetically modified antigens.
- allofactors including any peptide or polypeptide used: (1) for replacement therapy for coagulation defects or fibrinolytic defects, including factor VIII, factor IX and staphylokinase;
- the NKT-cell epitope is derived from allergens, including airborne allergens such as those derived from house dust mite, from pollens or from domestic animals, food allergens such as peanut, ovalbumin, cereals, fruits and legumes, and contact allergens such as latex.
- allergens including airborne allergens such as those derived from house dust mite, from pollens or from domestic animals, food allergens such as peanut, ovalbumin, cereals, fruits and legumes, and contact allergens such as latex.
- Diseases characterizing allergen sensitization include allergic asthma, allergic rhino-sinusitis, anaphylactic shock, urticaria, atopic dermatitis and contact dermatitis.
- the NKT-cell epitope is derived from tumor, including any peptide or polypeptide derived from: (1) oncogenes, such as the MAGE identified in some melanomas; (2) proto-oncogenes, such as cyclin Dl expressed on soft tissues carcinomas such as those of the kidney or parathyroid, as well as in multiple myeloma; (3) virus- derived proteins, such as those from the Epstein-Barr virus in some carcinomas and in some Hodgkin-type lymphomas; (4) surviving factors, which are anti-apoptotic factors such as survivin or bcl2; (5) clonotypic determinants, such as idiotypic determinants derived from B cell receptor in follicular lymphomas or multiple myelomas or T cell receptor determinants in T cell malignancies
- the NKT-cell epitope is derived from alloantigen, including any peptide or polypeptide derived from major histocompatibility class I or
- Said peptides or polypeptides can be involved in the rejection of cellular or solid organs.
- Cellular grafts include cord blood cell graft, stem cell graft, or pancreatic islet cell graft.
- Solid organ grafts include kidneys, lungs, hearts, livers, pancreas, bones, skin, or soft tissues.
- the NKT-cell epitope is derived from a viral vector used for gene therapy or gene vaccination, including any peptide or polypeptide of RNA viruses (gamma-retroviruses and lentiviruses) or DNA viruses (adenoviruses, adeno-associated viruses, herpes viruses and poxviruses).
- RNA viruses gamma-retroviruses and lentiviruses
- DNA viruses adenoviruses, adeno-associated viruses, herpes viruses and poxviruses.
- KT cells elicited and activated by immunogenic peptides of the present invention can suppress pathogenesis due to even complex antigens.
- a minimum requirement for such cells to be activated is to recognize a cognate peptide presented by the CD Id molecule, leading to killing of the pathogen-loaded cell, or killing of the APC presenting the autoantigen, the allofactor or the allergen, or killing of tumor cells, or killing of APC presenting the alloantigen, or APC presenting the antigen derived from a viral vector.
- said immunogenic peptides activate the production of cytokine, such as IFN-gamma, which will activate other effector cells including CD4+ T cells and CD8+ T cells.
- cytokine such as IFN-gamma
- Both CD4+ and CD8+ T cells can participate in the elimination of the cell presenting the intracellular pathogen, autoantigen, allofactor, allergen, tumor antigen, alloantigen or antigen derived from viral vector.
- the same APC may not present all relevant antigens, as such antigens may be taken up by potentially different APC. It is therefore anticipated that combination of two or more immunogenic peptides may be used for the prevention or treatment of disease. It should be clear for the one skilled in the art that any combination of said immunogenic peptides is envisioned. Examples of such combination include peptides to suppress the production of antibodies to an allofactor such as factor VIII of the coagulation pathway and peptides for the suppression of immune responses to viral vectors used for gene therapy of hemophilia A (absence of functional factor VIII). Other examples include combination of infections with pathogens such as HIV and mycobacterial infections.
- Immunogenic peptides for use in the context of the present invention are identified by methods known from the person skilled in the art.
- peptides comprising the general sequence [FWHY]-xx-[ILMV]-xx-[FWHY] can be identified.
- Said peptides are identified by methods known by those skilled in the art using algorithms accessible on line. For instance, peptides can be identified by entering a sequence on the following website: http ://www. expasy . ch/tool s/ scanprosite/
- Peptides can then be produced by synthesis using for instance the fmoc solid phase synthesis well known in the art.
- CDld+ APC are prepared from either an animal or human source. The cells are then incubated with the peptide of interest and a source of NKT cells. Activation of the later can be identified by proliferation, production of cytokines such as IFN-gamma and IL-4 and surface markers. These methods are well described in the art.
- tetramers of the CD Id molecule can be used after loading with the peptide of the invention to detect NKT cells specific for such peptide.
- fluorescence-labeled tetramers and detection using a fluorescence sorting system (facs).
- the immunogenic peptides of the invention can be produced by recombinant technology using expression systems such as bacterial cells, yeast cells, insect cells, plant cells or mammalian cells.
- medicaments are envisaged for the treatment of infection with intracellular pathogens, for the treatment of autoimmune diseases, of immune responses to allofactors or to allergens, for the treatment of tumors, the treatment of graft rejection, or the treatment of immune responses to viral vectors used for gene therapy or gene vaccination.
- the treatment can be envisioned as a preventive therapy.
- the medicament of the invention is usually, though not necessarily, a (pharmaceutical) formulation comprising as active ingredient at least one of the immunogenic peptides of the invention, a population of NKT cells for said immunogenic peptides or a gene therapeutic vector capable of expressing said immunogenic peptide.
- a (pharmaceutical) formulation comprising as active ingredient at least one of the immunogenic peptides of the invention, a population of NKT cells for said immunogenic peptides or a gene therapeutic vector capable of expressing said immunogenic peptide.
- such formulation will comprise at least one of a
- the pharmaceutical composition of the invention is vaccines for prophylactic or therapeutic application.
- medicaments are envisaged for the treatment of autoimmune diseases, the treatment of immune responses to allofactors, the treatment of allergic diseases, the treatment of tumors, the treatment of graft rejection and the treatment of immune responses elicited against viral vectors used for gene therapy and for gene vaccination.
- the invention relates to immunogenic peptides, which comprise at least one KT-cell epitope of a pathogen-associated antigen, an autoantigen, an allergen, an allofactor, a tumor antigen, an antigen shed from a graft or derived from a viral vector used in gene therapy or gene vaccination, coupled to a thioreductase motif of sequence [CST]- XX-[CST].
- the aminoterminal cysteine in the motif exerts a nucleophilic attack on a disulfide bridge on a target protein.
- the disulfide bridge is reduced and an electron exchange with the second cysteine of the motif releases the target protein in a reduced form, which is followed by isomerization and/or homodimerization of the target protein.
- heterodimerization can occur by electron exchange with a different protein.
- the end result is either a change in target protein configuration (isomerization) or formation of dimers or higher order polymers. This mechanism is provided here as an example without any limiting intention.
- the KT cell epitope and the thioreductase motif are optionally separated by a linker sequence.
- the immunogenic peptide additionally comprises an endosome targeting sequence (e.g. late endosomal targeting sequence) and/or additional "flanking" sequences.
- the immunogenic peptides of the present invention can be made by chemical synthesis, which allows the incorporation of non-natural amino acids. Accordingly, the cysteine residues of the thioreductase motif can be replaced by another amino acid with a thiol group such as mercaptovaline, homocysteine or other natural or non-natural amino acids with a thiol function. In order to have reducing activity, cysteine residues should not occur as part of a cysteine disulfide bridge. Nevertheless, cysteine residues can be modified such as through methylation, as methylated cysteine is converted into cysteine with free thiol groups in vivo.
- said motif is located such that, when the epitope fits into the CD Id groove, said motif remains outside of the CD Id binding groove.
- Said motif is placed either immediately adjacent to the epitope sequence within the peptide, or is separated from the T cell epitope by a linker. More particularly, the linker comprises an amino acid sequence of 7 amino acids or less. Most particularly, the linker comprises 1, 2, 3, or 4 amino acids. In those particular embodiments of the peptides of the invention where the said motif is adjacent to the epitope sequence this is indicated as position P-4 to P-l or P+l to P+4 compared to the epitope sequence.
- thioreductase motif in the immunogenic peptide is located N-terminally from the epitope.
- the immunogenic peptides according to the invention comprise, in addition to a thioreductase motif, a NKT cell epitope derived from a pathogen-associated antigen, an auto- or allofactor, an allergen, a tumor-derived antigen, an antigen shed by a graft or an antigen derived from viral vectors used in gene therapy or gene vaccination.
- a NKT cell epitope in a protein sequence can be identified by functional assays and/or one or more in silico prediction assays. The amino acids in a NKT cell epitope sequence are numbered according to their position in the binding groove of the CD Id proteins.
- the NKT-cell epitope present within the peptides of the invention consists of between 7 and 25 amino acids, yet more particularly of between 7 and 16 amino acids, yet most particularly consists of 7, 8, 9, 10, 1 1, 12, 13, 14, 15 or 16 amino acids.
- the NKT cell epitope consists of a sequence of 7 amino acids.
- the NKT-cell epitope is an epitope, which is presented to NKT cells by CDld molecules.
- NKT cell epitope sequence is an epitope sequence which fits into the cleft of a CDld protein, more particularly a 7 aminoacid peptide fitting into the CDld cleft.
- the NKT cell epitope of the immunogenic peptides of the invention can correspond either to a natural epitope sequence of a protein or can be a modified version thereof, provided the modified NKT cell epitope retains its ability to bind within the CDld cleft, similar to the natural NKT cell epitope sequence.
- the modified NKT cell epitope can have the same binding affinity for the CDld protein as the natural epitope, but can also have a lowered affinity.
- the binding affinity of the modified peptide is no less than 10-fold less than the original peptide, more particularly no less than 5 times less. It is a finding of the present invention that the peptides of the present invention have a stabilizing effect on protein complexes. Accordingly, the stabilizing effect of the peptide-CDld complex compensates for the lowered affinity of the modified epitope for the CDld molecule.
- the immunogenic peptides of the invention further comprise an amino acid sequence (or another organic compound) facilitating uptake of the peptide into (late) endosomes for processing and presentation within CDld determinants.
- the late endosome targeting is mediated by signals present in the cytoplasmic tail of proteins and correspond to well-identified peptide motifs such as the dileucine-based [DE]XXXL[LI] or DXXLL motif (e.g. DXXXLL), the tyrosine-based ⁇ 0 motif or the so-called acidic cluster motif.
- the symbol 0 represents amino acid residues with a bulky hydrophobic side chains such as Phe, Tyr and Tip.
- the late endosome targeting sequences allow for processing and efficient presentation of the antigen-derived T cell epitope by CDld molecules.
- Such endosomal targeting sequences are contained, for example, within the gp75 protein (Vijayasaradhi et al. (1995) J Cell Biol 130, 807-820), the human CD3 gamma protein, the HLA-BM ⁇ (Copier et al. (1996) J. Immunol. 157, 1017-1027), the cytoplasmic tail of the DEC205 receptor (Mahnke et al. (2000) J Cell Biol 151, 673-683).
- Other examples of peptides which function as sorting signals to the endosome are disclosed in the review of Bonifacio and Traub (2003) Annu. Rev. Biochem. 72, 395-447.
- the sequence can be that of a subdominant or minor T cell epitope from a protein, which facilitates uptake in late endosome without overcoming the NKT cell response towards the pathogen-associated derived NKT cell epitope.
- the immunogenic peptides of the invention are peptides comprising NKT cell epitopes which do not comprise a thioreductase motif within their natural sequence.
- a NKT cell epitope binding to the CD Id cleft may comprise a thio-oxidoreductase motif such as described herein within its epitope sequence; the immunogenic peptides according to the invention comprising such NKT-cell epitope must further comprise another free thio-oxidoreductase motif coupled (adj acent of separated by a linker) N- or C-terminally to the epitope such that the attached residue can ensure the reducing activity (contrary to the thio-oxidoreductase motif present in the epitope, which is buried within the cleft).
- Another aspect of the present invention relates to methods for generating immunogenic peptides of the present invention described herein.
- Such methods include the identification of NKT-cell epitopes from pathogen-associated antigens, from autoantigens or allofactors of interest, allergens, tumor-related antigens, alloantigens shed from grafts or antigens derived from viral vectors used in gene therapy or gene vaccination.
- Ways for in vitro and in silico identification NKT-cell epitopes are amply known in the art and some aspects are elaborated upon hereafter.
- Such methods further include the generation of immunogenic peptides of the invention including the identified NKT-cell epitope and a thioreductase motif (with or without linker(s), flanking sequence(s) or endosomal targeting sequence.
- the generated immunogenic peptides are next assessed for the capability to induce CD4+ NKT cells to pathogen-associated antigen, autoantigens, allofactors, allergens, tumor- derived antigens, alloantigens shed from grafts or antigens derived from viral vectors used for gene therapy or gene vaccination.
- Immunogenic peptides according to the invention are generated starting from NKT cell epitope(s) of pathogen-associated antigens, or of autoantigens, or of allofactors, or of allergens, or of tumors, or of alloantigens, or of viral vectors used for gene therapy or gene vaccination.
- the NKT-cell epitope used may be a dominant NKT-cell epitope.
- NKT-cell epitope from a pathogen-associated antigen, from an autoantigen, allofactor, an allergen, a tumor-derived antigen, an alloantigen shed by graft or antigens derived from viral vectors used in gene therapy or gene vaccination for use in the context of the present invention is known to a person skilled in the art.
- peptide sequences isolated from a pathogen-associated antigen, from an autoantigen or allofactor, an allergen, a tumor-derived antigen, an alloantigen shed by a graft or antigens derived from viral vectors used in gene therapy or gene vaccination are tested by, for example, T cell biology techniques, to determine whether the peptide sequences elicit a KT cell response. Those peptide sequences found to elicit a NKT cell response are defined as having NKT cell stimulating activity.
- Human NKT cell stimulating activity can further be tested by culturing NKT cells obtained from an individual sensitized to a pathogen-associated antigen, an autoantigen or allofactor, an allergen, a tumor-derived antigen, an alloantigen shed by graft or antigens derived from viral vectors used in gene therapy or gene vaccination with a peptide/epitope derived from said antigens, and determining whether proliferation of NKT cells occurs in response to the peptide/epitope as measured, e.g., by cellular uptake of tritiated thymidine.
- Stimulation indices for responses by NKT cells to peptides/epitopes can be calculated as the maximum CPM in response to a peptide/epitope divided by the control CPM.
- a NKT cell stimulation index (S.I.) equal to or greater than two times the background level is considered "positive. " Positive results are used to calculate the mean stimulation index for each peptide/epitope for the group of peptides/epitopes tested.
- Non-natural (or modified) NKT-cell epitopes can further optionally be tested for their binding affinity to CDld molecules. The binding of non-natural (or modified) NKT-cell epitopes to CDld molecules can be performed in different ways.
- soluble CDld molecules are obtained and made tetrameric by synthesis or chemical coupling.
- the CDld molecule is purified by affinity chromatography. Soluble CDld molecules are incubated with a biotin-labeled reference peptide produced according to its strong binding affinity for that CDld molecule. Peptides to be assessed for CDld binding are then incubated at different concentrations and their capacity to displace the reference peptide from its CDld binding is calculated by addition of neutravidin. Methods can be found in for instance Texier et al., (2000)J. Immunology 164, 3177-3184).
- the immunogenic peptides of the invention have a mean NKT cell stimulation index of greater than or equal to 2.0.
- immunogenic peptide having a NKT cell stimulation index of greater than or equal to 2.0 is considered useful as a prophylactic or therapeutic agent. More particularly, immunogenic peptides according to the invention have a mean NKT cell stimulation index of at least 2.5, at least 3.5, at least 4.0, or even at least 5.0. In addition, such peptides typically have a positivity index (P.I.) of at least about 100, at least 150, at least about 200 or at least about 250. The positivity index for a peptide is determined by multiplying the mean NKT cell stimulation index by the percent of individuals, in a population of individuals sensitive to a viral vector antigen (e.
- the positivity index represents both the strength of a NKT cell response to a peptide (S.I.) and the frequency of a NKT cell response to a peptide in a population of individuals sensitive to a viral vector antigen.
- a peptide having T cell stimulating activity and thus comprising at least one T cell epitope as determined by T cell biology techniques is modified by addition or deletion of amino acid residues at either the N- or C-terminus of the peptide and tested to determine a change in NKT cell reactivity to the modified peptide. If two or more peptides which share an area of overlap in the native protein sequence are found to have human NKT cell stimulating activity, as determined by T cell biology techniques, additional peptides can be produced comprising all or a portion of such peptides and these additional peptides can be tested by a similar procedure.
- NKT cell epitopes or peptides are selected and produced recombinantly or synthetically.
- NKT cell epitopes or peptides are selected based on various factors, including the strength of the NKT cell response to the peptide/epitope (e.g., stimulation index) and the frequency of the NKT cell response to the peptide in a population of individuals.
- positional cloning or expression cloning strategies can be used to identify candidate antigens.
- peptides actually presented by APC in CDld molecules can be eluted and separated by various chromatography methods. Full description of such methodology will be found in Scott et al, Immunity, 12: 71 1-720, 2000.
- Candidate antigens can be screened by one or more in vitro algorithms to identify a NKT cell epitope sequence within an antigenic protein. Suitable algorithms include, but are not limited to those found on the following website: http ://www. expasy . ch/tool s/ scanprosite/
- Such algorithms allow the prediction within an antigenic protein of one or more peptide sequences which will fit into the groove of a CD Id molecule.
- the immunogenic peptides of the invention can be produced by recombinant expression in, e.g., bacterial cells (e.g. Escherichia coli), yeast cells (e.g., Pichia species, Hansenula species, Saccharomyces or Schizosaccharomyces species), insect cells (e.g. from Spodoptera frugiperda or Trichoplusia ni), plant cells or mammalian cells (e.g., CHO, COS cells).
- bacterial cells e.g. Escherichia coli
- yeast cells e.g., Pichia species, Hansenula species, Saccharomyces or Schizosaccharomyces species
- insect cells e.g. from Spodoptera frugiperda or Trichoplusia ni
- plant cells or mammalian cells e.g., CHO, COS cells.
- mammalian cells e.g., CHO, COS cells
- Recombinantly produced immunogenic peptides of the invention can be derived from a larger precursor protein, e.g., via enzymatic cleavage of enzyme cleavage sites inserted adjacent to the N- and/or C-terminus of the immunogenic peptide, followed by suitable purification.
- the immunogenic peptides of the invention can be prepared by chemical peptide synthesis, wherein peptides are prepared by coupling the different amino acids to each other.
- Chemical synthesis is particularly suitable for the inclusion of e.g. D-amino acids, amino acids with non-naturally occurring side chains or natural amino acids with modified side chains such as methylated cysteine.
- Chemical peptide synthesis methods are well described and peptides can be ordered from companies such as Applied Biosystems and other companies.
- Peptide synthesis can be performed as either solid phase peptide synthesis (SPPS) or contrary to solution phase peptide synthesis.
- SPPS solid phase peptide synthesis
- SPPS The best-known SPPS methods are t-Boc and Fmoc solid phase chemistry which is amply known to the skilled person.
- peptides can be linked to each other to form longer peptides using a ligation strategy (chemoselective coupling of two unprotected peptide fragments) as originally described by Kent (Schnolzer & Kent (1992) Int. J. Pept. Protein Res. 40, 180-193) and reviewed for example in Tarn et al. (2001) Biopolymers 60, 194-205.
- Kent Schonolzer & Kent (1992) Int. J. Pept. Protein Res. 40, 180-193
- This provides the tremendous potential to achieve protein synthesis which is beyond the scope of SPPS.
- Many proteins with the size of 100-300 residues have been synthesized successfully by this method.
- Synthetic peptides have continued to play an ever-increasing crucial role in the research fields of biochemistry, pharmacology, neurobiology,
- an immunogenic peptide of interest e.g. solubility, stability
- a peptide is/would be suitable for use in therapeutic compositions. Typically this is optimized by adjusting the sequence of the peptide.
- the peptide can be modified after synthesis (chemical modifications e.g. adding/deleting functional groups) using techniques known in the art.
- the present invention provides methods for generating pathogen-associated antigen-specific CD4+ NKT cells, or autoantigen- or allofactor- specific CD4+ NKT cells, or allergen-specific CD4+ NKT cells, or tumor antigen-specific CD4+ NKT cells, or CD4+ NKT cells specific for alloantigens shed from grafts, or CD4+ NKT cells specific for antigens from viral proteins used in gene therapy or gene vaccination, either in vivo or in vitro (ex vivo).
- said NKT cells respond with strong proliferative properties towards any cell presenting said antigens and are obtainable as a cell population.
- NKT cells respond with strong suppressive properties towards any cell presenting an auto- or alloantigen, an allergen, antigens shed from graft or derived from viral proteins used in gene therapy or gene vaccination, and are obtainable as a cell population.
- the invention extends to such (populations of) antigen-specific CD4+ NKT cells obtainable by the herein described methods.
- methods which comprise the isolation of peripheral blood cells, the stimulation of the cell population in vitro by contacting an immunogenic peptide according to the invention with the isolated peripheral blood cells, and the expansion of the stimulated cell population, more particularly in the presence of IL-2 or IL-15 and IL-7.
- the methods according to the invention have the advantage that higher numbers of CD4+ NKT cells are produced and that said cells can be generated which are specific for the pathogen-associated antigen, or for the auto- or allo-antigen, the allergen, the tumor-related antigen, the antigens shed from grafts or the antigens from viral proteins used in gene therapy or gene vaccination (by using a peptide comprising an antigen- specific epitope).
- CD4+ NKT cells can be generated in vivo, i.e. by the administration of an immunogenic peptide provided herein to a subj ect, and collection of CD4+ NKT cells generated in vivo.
- the pathogen-associated antigen-specific CD4+ NKT cells obtainable by the above methods are of particular interest for use as a medicament for preventing in a subj ect morbidity and/or mortality associated with infection with viruses, bacteria or parasites.
- the autoantigen or allofactor-specific CD4+ NKT cells obtainable by the above methods are of particular interest for use as a medicament for suppressing morbidity and/or mortality associated with auto-immune diseases or reaction against allofactors.
- the allergen-specific CD4+ NKT cells obtainable by the above methods are of particular interest for use as a medicament for suppressing morbidity and/or mortality associated with allergic diseases.
- the tumor antigen-specific CD4+ NKT cells obtainable by the above methods are of particular interest for use as a medicament for suppressing morbidity and/or mortality associated with tumors.
- the graft alloantigen-specific CD4+ NKT cells obtainable by the above methods are of particular interest for preventing graft rej ection.
- the viral protein- specific CD4+ NKT cells obtainable by the above methods are of particular interest for use as a medicament for suppressing morbidity and/or mortality associated with gene therapy or gene vaccination.
- said peptides can be replaced by said CD4+ NKT cells.
- said peptides can be replaced by said CD4+ NKT cells.
- Any method comprising the administration of said antigen- specific CD4+ NKT cells to a subject in need (i.e., for preventing morbidity associated to infection with an intracellular pathogen, preventing or treating morbidity associated with auto-immune diseases, reaction to allofactor, allergen exposure, tumor, graft rej ection and reaction against viral vector antigens) is part of the present invention.
- the present invention also relates to nucleic acid sequences encoding the immunogenic peptides of the present invention and methods for their use, e.g., for recombinant expression or in gene therapy.
- said nucleic acid sequences are capable of expressing an immunogenic peptides of the invention.
- the immunogenic peptides of the invention may be administered to a subj ect in need by using any suitable gene therapy method.
- immunization with an immunogenic peptide of the invention may be combined with adoptive cell transfer. When combined, said immunization, adoptive cell transfer and gene therapy can be used concurrently, or sequentially in any possible combination.
- recombinant nucleic acid molecules encoding the immunogenic peptides can be used as naked DNA or in liposomes or other lipid systems for delivery to target cells.
- Other methods for the direct transfer of plasmid DNA into cells are well known to those skilled in the art for use in human gene therapy and involve targeting the DNA to receptors on cells by complexing the plasmid DNA to proteins.
- gene transfer can be performed by simply injecting minute amounts of DNA into the nucleus of a cell, through a process of microinjection. Once recombinant genes are introduced into a cell, they can be recognized by the cell normal mechanisms for transcription and translation, and a gene product will be expressed. Other methods have also been attempted for introducing DNA into larger numbers of cells.
- transfection wherein DNA is precipitated with calcium phosphate and taken into cells by pinocytosis
- electroporation wherein cells are exposed to large voltage pulses to introduce holes into the membrane
- lipofection/liposome fusion wherein DNA is packed into lipophilic vesicles which fuse with a target cell
- particle bombardment using DNA bound to small projectiles.
- Another method for introducing DNA into cells is to couple the DNA to chemically modified proteins. Adenovirus proteins are capable of destabilizing endosomes and enhancing the uptake of DNA into cells.
- Adeno-associated virus vectors may also be used for gene delivery into vascular cells.
- gene transfer means the process of introducing a foreign nucleic acid molecule into a cell, which is commonly performed to enable the expression of a particular product encoded by the gene.
- the said product may include a protein, polypeptide, anti-sense DNA or RNA, or enzymatically active RNA. Gene transfer can be performed in cultured cells or by direct administration into mammals.
- a vector comprising a nucleic acid molecule sequence encoding an immunogenic peptide according to the invention.
- the vector is generated such that the nucleic acid molecule sequence is expressed only in a specific tissue. Methods of achieving tissue-specific gene expression are well known in the art, e.g., by placing the sequence encoding an immunogenic peptide of the invention under control of a promoter, which directs expression of the peptide specifically in one or more tissue(s) or organ(s).
- Expression vectors derived from viruses such as retroviruses, vaccinia virus, adenovirus, adeno-associated virus, herpes viruses, RNA viruses or bovine papilloma virus may be used for delivery of nucleotide sequences (e.g., cDNA) encoding peptides, homologues or derivatives thereof according to the invention into the targeted tissues or cell population. Methods which are well known to those skilled in the art can be used to construct recombinant viral vectors containing such coding sequences. Alternatively, engineered cells containing a nucleic acid molecule coding for an immunogenic peptide according to the invention may be used in gene therapy.
- viruses such as retroviruses, vaccinia virus, adenovirus, adeno-associated virus, herpes viruses, RNA viruses or bovine papilloma virus.
- peptide or polypeptide used in gene therapy may be part of the full antigen from which the peptide or polypeptide is derived.
- the appropriate dosage of the nucleic acid can be determined based on the amount of peptide expressed as a result of the introduced nucleic acid.
- the medicament of the invention is usually, but not necessarily, a (pharmaceutical) formulation comprising as active ingredient at least one of the immunogenic peptides of the invention, a (population of) CD4+ NKT cells immunogenic peptide or a gene therapeutic vector capable of expressing said immunogenic peptide.
- a (pharmaceutically acceptable) diluent, carrier or adjuvant Apart from the active ingredient(s), such formulation will comprise at least one of a (pharmaceutically acceptable) diluent, carrier or adjuvant.
- pharmaceutically acceptable compounds can be found in, e.g., a Pharmacopeia handbook (e.g. US-, European- or International Pharmacopeia).
- the medicament or pharmaceutical composition of the invention normally comprises a (prophylactically or therapeutically) effective amount of the active ingredient(s) wherein the effectiveness is relative to the condition or disorder to be prevented or treated.
- the pharmaceutical compositions of the invention are vaccines for prophylactic or therapeutic application.
- the medicament or pharmaceutical composition of the invention may need to be administered to a subj ect in need as part of a prophylactic or therapeutic regimen comprising multiple administrations of said medicament or composition. Said multiple administrations usual occur sequentially and the time-interval between two administrations can vary and will be adjusted to the nature of the active ingredient and the nature of the condition to be prevented or treated.
- the amount of active ingredient given to a subject in need in a single administration can also vary and will depend on factors such as the physical status of the subject (e.g.,weight, age), the status of the condition to be prevented or treated, and the experience of the treating doctor, physician or nurse.
- adjuvants refers for instance to physiological saline solutions.
- adjuvant usually refers to a pharmacological or immunological agent that modifies (preferably increases) the effect of other agents (e.g., drugs, vaccines) while having few if any direct effects when given by themselves.
- agents e.g., drugs, vaccines
- an adjuvant aluminum hydroxide (alum) is given, to which an immunogenic peptide of the invention can be adsorbed.
- alum aluminum hydroxide
- many other adjuvants are known in the art and can be used provided they facilitate peptide presentation in CD Id and KT cell activation.
- pharmaceutically acceptable carrier means any material or substance with which the active ingredient is formulated in order to facilitate its application or dissemination to the locus to be treated, for instance by dissolving, dispersing or diffusing the said composition, and/or to facilitate its storage, transport or handling without impairing its effectiveness. They include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents (for example phenol, sorbic acid, chlorobutanol), isotonic agents (such as sugars or sodium chloride) and the like. Additional ingredients may be included in order to control the duration of action of the active ingredient in the composition.
- the pharmaceutically acceptable carrier may be a solid or a liquid or a gas which has been compressed to form a liquid, i.e.
- compositions of this invention can suitably be used as concentrates, emulsions, solutions, granulates, dusts, sprays, aerosols, suspensions, ointments, creams, tablets, pellets or powders.
- Suitable pharmaceutical carriers for use in said pharmaceutical compositions and their formulation are well known to those skilled in the art, and there is no particular restriction to their selection within the present invention. They may also include additives such as wetting agents, dispersing agents, stickers, adhesives, emulsifying agents, solvents, coatings, antibacterial and antifungal agents (for example phenol, sorbic acid, chlorobutanol), isotonic agents (such as sugars or sodium chloride) and the like, provided the same are consistent with pharmaceutical practice, i.e.
- compositions of the present invention may be prepared in any known manner, for instance by homogeneously mixing, coating and/or grinding the active ingredients, in a one-step or multi-steps procedure, with the selected carrier material and, where appropriate, the other additives such as surface-active agents. They may also be prepared by micronisation, for instance in view to obtain them in the form of microspheres usually having a diameter of about 1 to 10 ⁇ , namely for the manufacture of microcapsules for controlled or sustained release of the active ingredients.
- Immunogenic peptides, homologues or derivatives thereof according to the invention may be administered by any route appropriate to the condition to be prevented or treated and appropriate for the compounds, here the immunogenic proteins to be administered.
- Possible routes include regional, systemic, oral (solid form or inhalation), rectal, nasal, topical (including ocular, buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intraarterial, intrathecal and epidural).
- the preferred route of administration may vary with for example the condition of the recipient or with the condition to be prevented or treated.
- formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
- the active ingredient may also be presented as a bolus, electuary or paste.
- a tablet may be made by compression or moulding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent.
- Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein.
- a further aspect of the invention relates to isolated immunogenic peptides comprising a KT-cell epitope from a pathogen-associated antigen, from an autoantigen or allofactor, from an allergen, a tumor-associated antigen, an alloantigen shed from a graft, or antigens from virus used for gene therapy or gene vaccination and, adj acent to said NKT-cell epitope or separated from said NKT-cell epitope by a linker, a thioreductase motif.
- Viral vectors for the purpose of gene therapy or gene vaccination are highly amenable to modifications by means of recombinant nucleic acid technology.
- modification to the viral vector NKT- cell epitope as applied in the immunogenic peptides and their uses according to the invention can be introduced immediately in the viral vector itself.
- vaccination with the immunogenic peptides comprising a NKT cell epitope of a pathogen-associated antigen, an autoantigen or allofactor, an allergen, an antigen associated with tumor, an alloantigen from a graft, or antigens of viral vectors used for gene therapy or gene vaccination and a thioreductase motif (and/or the corresponding gene vaccination and/or the corresponding adoptive cell transfer) may become redundant as the same beneficial effects can be obtained with a modified viral vector.
- the invention further encompasses modified viral vectors defined as isolated viral vectors characterized in that at least one NKT-cell epitope present in at least one of the viral vector proteins is modified by insertion in said viral vector protein, adjacent to said NKT-cell epitope or separated from said NKT-cell epitope by a linker, of a thioreductase motif.
- said viral vector is further characterized in that said modified NKT-cell epitope is capable of being presented by a CD Id molecule.
- said isolated viral vectors are further characterized in that their cell transducing properties are not significantly altered compared to the same viral vector not carrying the KT-cell epitope modification.
- BALB/c Factor VIII KO mice (group A) were immunized 4 times at 1 week interval with 50 ⁇ g of peptide 2196, which contains a CD ld-restricted KT cell epitope and a C-XX-C thioreductase motif within flanking residues (SEQ IDl).
- Human factor VIII was then injected by the subcutaneous route using 10 IU per injection on 5 occasions separated by one week. Ten days after the last immunization the mice were sacrificed and spleen CD4+ T cells were prepared by magnetic cell sorting. Such cells were stimulated twice with the immunizing peptide and FVIII in vitro before assessing their activation state as measured by the production of IL-4 and IFN-gamma. A control group (B) was treated according to the same protocol but did not receive peptide vaccination.
- Figure 1 show a 10-fold reduction of IL-4 production by Factor VIII specific CD4+ T cells obtained from mice immunized with the peptide as compared to the control group, and a 7-fold reduction in the production of IFN-gamma.
- Example 2 Suppression of anti-Ad5 IgG antibody response by immunization with a peptide containing a CD ld-restricted KT cell epitope and a thioreductase motif
- Such peptide contains a CD ld-restricted NKT cell epitope of hexon protein of adenovirus 5 (Ad5) and a thioreductase motif in flanking residues.
- mice pretreated with peptide did not produce significant amounts of antibodies, whilst non- immunized mice (open histogram) produce a brisk response after the second Ad5 injection. Results are given in arbitrary units as means + SEM.
- Such peptide contains a CD ld-restricted NKT cell epitope derived from ovalbumin and a thioreductase motif in flanking residues.
- CD4+ NKT cell lines were then assayed in vitro for their capacity to kill EG7 tumor cells.
- EG7 tumor cells H-2b are derived from a thymoma transduced with an ova construct.
- a CD Id restricted ova epitope is presented by such cells, which is known to be insufficient to trigger NKT activation and tumor cell killing.
- EG7 cells were labeled at membrane level with ⁇ ⁇ DiOCi 8 (3,3'- dioctadecycloxacarbocyanine perchlorate from Invitrogen). EG7 cells (lxlO 5 per well) were then cultured for 18 h at 37°C in the presence of NKT cell lines at ratios of 1/1 to 1/5 (EG7 cells versus NKT cells). The NKT cell lines had first been stimulated for 4 h in vitro with antigen-presenting cells loaded with peptide of SEQ ID3.
- Results show that EG7 cells incubated with NKT cell lines obtained from mice immunized with peptide of SEQ ID3 are induced into apoptosis, while NKT cells obtained from control mice which have received physiological serum instead of peptide did not induce a significant degree of tumor cell apoptosis.
- Multiple sclerosis is a chronic demyelination disease wherein CD4+ NKT cells towards auto antigens such as the myelin oligodendrocytic glycoprotein (MOG) are likely to play a key role.
- MOG myelin oligodendrocytic glycoprotein
- EAE experimental autoimmune encephalomyelitis
- CD Id binding epitope is identified in the mouse MOG protein by combination of algorithms and functional assay as described above, corresponding to sequence 200 to 206.
- CD4+ NKT cells are prepared from the spleen of C57BL/6 mice in which EAE has been induced.
- CD4(-) cells are first removed from the spleen cell suspension using magnetic beads.
- Tetramers of CD Id molecules are made as known in the art, including a fluorescent label such as phicoerythrin.
- a synthetic peptide is produced, which encompasses a CDld-restricted MOG NKT cell epitope and a thioreductase motif by incubation overnight:
- CGPCGGFLRVPCWKI SEQ ID 4
- CGPC thioreductase motif
- Tetramers are loaded with peptide of SEQ ID 4 overnight at room temperature. Loaded tetramers are then washed and incubated with CD4+ T cells for 2 h at 37°C. The suspension is then read with a fluorescence-activated cell sorting system and the proportion of NKT cells specific to the MOG peptide is evaluated.
- Example 5
- the anaplastic lymphoma kinase is a transmembrane receptor tyrosine kinase that is expressed on many cells during ontogeny, but only on tumors of ectodermal origin in adult life. It is therefore considered as an oncogen directly related to all tumors of ectodermal origin as shown in both animal models and human tumors. For example, up to 60% of human breast cancers express ALK. ALK+ tumor cell lines of mouse origin are available and can be used to evaluate whether ALK-specific cytolytic CD4+ T cells of the invention are able to kill tumor cells.
- CD4 T cells (C57BL/6, H-2b background) obtained from the spleen of naive mice were stimulated four times with autologous dendritic cells loaded with a CDld-restricted NKT cell epitope of ALK, to which a thioreductase motif of the CxxC format was added within flanking residues.
- NKT cells have per se a cytolytic activity, we included cells which were stimulated in parallel experiments by exposure to the same CDld-trestricted NKT epitope in natural sequence, without thioredox motif (WLQIVTWWGPGS).
- CD4 T cells were washed and added to cell culture microplates containing 10 4 Rl 13 tumor cells at a 2 to 1 ratio (CD4 to tumor cells).
- Rl 13 is a tumor B cell line obtained from C57BL/6 mice, which constitutively expresses ALK.
- R113 tumor cells were evaluated for Annexin V binding used as marker of cell apoptosis.
- Figure 3 shows that in the presence of NKT cells cultured with peptide of sequence 1, there is a 4.5-fold increase in tumor cell death (18%; middle histogram) as compared to tumor cells cultured alone (3.8%; left histogram).
- NKT cells activated by cognate interaction with CD Id and the peptide in natural sequence show an intermediate % of cell death (11%, right histogram). mean ⁇ SD of triplicates.
- peptides can be presented within the context of CDld determinants
- BALB/c mice, H-2d background were obtained from the spleen of naive mice and were stimulated four times with autologous dendritic cells loaded with peptide of SEQ ID5.
- Co-culture with a BALB/c-derived ALK+ tumor cell line (VAC) was carried out as described above.
- Apoptosis of tumor cells was measured by evaluating Annexin-V binding by faces.
- Figure 4 shows that in the presence of NKT cells cultured with peptide of sequence 1, there is a significant increase in tumor cell death (25%; middle histogram) as compared to tumor cells cultured alone (5.6%; left histogram) or in the presence of peptide in natural sequence (15%; right histogram). mean ⁇ SD of triplicates
- EAE experimental autoimmune encephalomyelitis
- a model disease in which central nervous system demyelination occurs and which is considered as the experimental equivalent of multiple sclerosis.
- a small number of autoantigens are considered to be implicated in the elicitation and maintenance of disease, among which the MOG (myelin oligodendrocyte glycoprotein).
- MOG myelin oligodendrocyte glycoprotein
- Disease can be elicited in the C57BL/6 mice by MOG immunization, using a CD4+ T cell epitope encompassing MOG aminoacids 35-55.
- MOG contains a sequence which binds to CD Id and activates NKT cells.
- peptide of sequence PFIFLRVPCWKI is produced by synthesis and a thioreductase-containing peptide of sequence CHGCGGFLRVPCWKI (peptide of SEQ ID6, in which the thioreductase motif is underlined and a linker of 2 glycines between the motif and the
- mice Groups of C57BL/6 mice are immunized four times subcutaneously (50 ⁇ g) with peptide of SEQ ID6 or, as a control, with peptide in natural sequence. Ten days after the last immunization, all mice, including a group of naive, non-immunized animals, are induced into disease by subcutaneous injection of lOC ⁇ g MOG 35-55 peptide/40C ⁇ g
- mice pre-immunized with peptide of SEQ ID6 do not develop EAE, whilst the control naive mice and the group pre- immunized with peptide in natural sequence develop significant disease signs.
- Non-obese diabetes (NOD) mice constitute a suitable animal model for spontaneous insulin-dependent diabetes.
- NOD autoantigen glutamic acid decarboxylase
- GAD65 autoantigen glutamic acid decarboxylase
- GAD65 contains aminoacid sequences with the capacity to bind to CD Id.
- sequence PQHTNVCFWFV corresponding to aminoacids 501 to 507 of GAD65, is produced by synthesis, as well as its counterpart encompassing a thioreductase motif within flanking residues: peptide of SEQ ID7: CHGCGGHTNVCFWFV (with the thioreductase motif underlined and a linker of 2 glycines between the motif and the CD ld- binding motif).
- NOD mice Female NOD mice are immunized from the age of 4 weeks by 4 subcutaneous injections of peptides of either SEQ ID7 or natural sequence, and glycaemia is followed in each of these groups, by comparison to a non-immunized group. It is observed that NOD mice pre- immunized with peptide of SEQ ID7 are prevented from hyperglycaemia, whilst mice treated with peptide of natural sequence and non-immunized animals develop
- Der p 1 is the main allergen of D. pteronyssinus.
- the sequence of Der p 1 contains a CD Id binding motif corresponding to aminoacid sequence 38 to 44.
- a peptide of sequence WAFSGVAATES is produced by synthesis as well as its counterpart containing a thioreductase motif.
- peptide of SEQ ID8 CGPCGGFSGVAATES contains a thioreductase motif (underlined) and a linker of 2 glycines between the motif and the CD ld-binding motif.
- Allergic asthma can be induced in BALB/c mice by nasal instillations of 100 ⁇ g Der p 1 administered on 3 consecutive days. Asthma is characterized by bronchial hyperreactivity and attraction of eosinophil infiltrates into the lung.
- mice are immunized by 4 injections of 50 ⁇ g of peptides of either SEQ ID8 or peptide in natural sequence as a control. Der p 1 is administered by nasal instillation 10 days after the last immunization. It can be observed that mice preimmunized with peptide of SEQ ID8 do not develop airway reactivity to inhalation of methacholine and do not show lung infiltration with eosinophils.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Rheumatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Communicable Diseases (AREA)
- Pulmonology (AREA)
- Transplantation (AREA)
- Toxicology (AREA)
Abstract
Description
Claims
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2011333749A AU2011333749B2 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
US13/988,925 US10023847B2 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
CA2820617A CA2820617C (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
DK11787873.6T DK2643345T5 (en) | 2010-11-25 | 2011-11-24 | IMMUNOGENIC PEPTIDES FOR USE FOR PREVENTION AND / OR TREATMENT OF INFECTIOUS DISEASES, AUTOIMMUNE DISEASES, immune responses to ALLOFAKTORER, ALLERGY DISEASES, TUMORS, transplant rejection and immune responses to viral vectors USED FOR GENE THERAPY OR gene vaccination |
EP20190526.2A EP3763729B1 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
CN201180056725.7A CN103261218B (en) | 2010-11-25 | 2011-11-24 | Use of immunogenic peptides for the prevention and/or treatment of diseases |
BR112013012555A BR112013012555B8 (en) | 2010-11-25 | 2011-11-24 | ISOLATED IMMUNOGENIC PEPTIDE DERIVED FROM AN ANTIGEN PROTEIN, ITS USES, METHOD FOR THE PREPARATION OF A PEPTIDE WITH THE CAPACITY OF PROVOKING THE ACTIVATION OF NKT CELLS AND IN VITRO METHOD FOR OBTAINING A SPECIFIC ANTIGEN CD4+ NKT CELL POPULATION |
EP11787873.6A EP2643345B1 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
PL11787873T PL2643345T3 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
ES11787873T ES2869155T3 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
RU2013128866A RU2615460C2 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for application for prevention and/or treatment of infectious diseases, autoimmune diseases, the immune responses to allogeneic factors, allergic diseases, tumour, transplant rejection and immune responses against viral vectors used for genetic therapy or genetic vaccination |
KR1020137016345A KR101902029B1 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
JP2013540353A JP6173915B2 (en) | 2010-11-25 | 2011-11-24 | In the prevention and / or treatment of infectious diseases, autoimmune diseases, immune responses to allogeneic factors, allergic diseases, tumors, graft rejection, and immune responses to viral vectors used for gene therapy or gene vaccination Immunogenic peptides for use |
AU2017200307A AU2017200307B2 (en) | 2010-11-25 | 2017-01-17 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
US16/008,399 US11193114B2 (en) | 2010-11-25 | 2018-06-14 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
US17/517,805 US20220119778A1 (en) | 2010-11-25 | 2021-11-03 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10192559.2 | 2010-11-25 | ||
EP10192559 | 2010-11-25 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/988,925 A-371-Of-International US10023847B2 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
EP20190526.2A Previously-Filed-Application EP3763729B1 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
US16/008,399 Division US11193114B2 (en) | 2010-11-25 | 2018-06-14 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012069568A2 true WO2012069568A2 (en) | 2012-05-31 |
WO2012069568A3 WO2012069568A3 (en) | 2012-09-20 |
Family
ID=44025644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/070898 WO2012069568A2 (en) | 2010-11-25 | 2011-11-24 | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
Country Status (16)
Country | Link |
---|---|
US (3) | US10023847B2 (en) |
EP (2) | EP3763729B1 (en) |
JP (2) | JP6173915B2 (en) |
KR (1) | KR101902029B1 (en) |
CN (1) | CN103261218B (en) |
AU (2) | AU2011333749B2 (en) |
BR (1) | BR112013012555B8 (en) |
CA (1) | CA2820617C (en) |
DE (1) | DE11787873T1 (en) |
DK (1) | DK2643345T5 (en) |
ES (2) | ES2869155T3 (en) |
HU (1) | HUE055070T2 (en) |
PL (1) | PL2643345T3 (en) |
PT (1) | PT2643345T (en) |
RU (1) | RU2615460C2 (en) |
WO (1) | WO2012069568A2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015063176A1 (en) * | 2013-10-30 | 2015-05-07 | Imcyse Sa | Methods for induction of antigen-specific regulatory t cells |
EP3096138A1 (en) | 2015-05-18 | 2016-11-23 | ImCyse SA | Novel animal models for evaluating pharmaceutical compounds |
CN107109362A (en) * | 2014-10-31 | 2017-08-29 | 麻省理工学院 | Biomolecule is delivered to immunocyte |
WO2017182528A1 (en) | 2016-04-19 | 2017-10-26 | Imcyse Sa | Novel immunogenic cd1d binding peptides |
EP3388447A1 (en) | 2017-04-14 | 2018-10-17 | Imnate Sarl | Methods to produce peptides, polypeptides or cells for modulating immunity |
RU2709711C2 (en) * | 2014-10-17 | 2019-12-19 | Имсиз Са | New immunogenic peptides |
US10617748B2 (en) | 2008-02-14 | 2020-04-14 | Life Sciences Research Partners Vzw | Immunogenic control of tumours and tumour cells |
WO2020099352A2 (en) | 2018-11-12 | 2020-05-22 | Imcyse Sa | Immunogenic peptides with new oxidoreductase motifs |
US10662232B2 (en) | 2006-08-11 | 2020-05-26 | Life Sciences Research Partners Vzw | Immunogenic peptides and their use in immune disorders |
WO2020229703A1 (en) | 2019-05-16 | 2020-11-19 | Imcyse Sa | Immunogenic peptides with an oxidoreductase motif comprising a modified cysteine |
US10870112B2 (en) | 2013-08-16 | 2020-12-22 | Massachusetts Institute Of Technology | Selective delivery of material to cells |
US10982196B2 (en) | 2008-02-14 | 2021-04-20 | Life Sciences Research Partners Vzw | Immunotherapy targeting intracellular pathogens |
WO2021144478A2 (en) | 2020-05-06 | 2021-07-22 | Imcyse Sa | Combination treatment for fumarate-related diseases |
WO2021148683A2 (en) | 2020-05-06 | 2021-07-29 | Imcyse Sa | Peptides and methods for the treatment of multiple sclerosis |
US11125739B2 (en) | 2015-01-12 | 2021-09-21 | Massachusetts Institute Of Technology | Gene editing through microfluidic delivery |
WO2021224403A1 (en) | 2020-05-06 | 2021-11-11 | Imcyse Sa | Immunogenic peptides with new oxidoreductase motifs |
WO2021224397A1 (en) | 2020-05-06 | 2021-11-11 | Imcyse Sa | Immunogenic peptides with extended oxidoreductase motifs |
US11226332B2 (en) | 2013-05-28 | 2022-01-18 | Imcyse Sa | Method for the detection, preparation and depletion of CD4+ t lymphocytes |
US11299698B2 (en) | 2015-07-09 | 2022-04-12 | Massachusetts Institute Of Technology | Delivery of materials to anucleate cells |
WO2022248525A1 (en) | 2021-05-26 | 2022-12-01 | Imcyse Sa | Methods of treating or preventing autoimmune diseases |
WO2023275108A1 (en) | 2021-06-29 | 2023-01-05 | Imcyse Sa | Peptides and methods for the treatment of neuromyelitis optica |
US11613759B2 (en) | 2015-09-04 | 2023-03-28 | Sqz Biotechnologies Company | Intracellular delivery of biomolecules to cells comprising a cell wall |
US11692168B2 (en) | 2019-02-28 | 2023-07-04 | Sqz Biotechnologies Company | Delivery of biomolecules to PBMCs to modify an immune response |
US11787849B2 (en) | 2015-09-25 | 2023-10-17 | Imcyse Sa | Methods and compounds for eliminating immune responses to therapeutic agents |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3763729B1 (en) | 2010-11-25 | 2022-07-06 | Imcyse SA | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
GB201201511D0 (en) | 2012-01-30 | 2012-03-14 | Univ Leuven Kath | Modified epitopes for boosting CD4+ T-cell responses |
EP3715374A1 (en) | 2019-03-23 | 2020-09-30 | Ablevia biotech GmbH | Compound for the sequestration of undesirable antibodies in a patient |
US11986536B2 (en) | 2019-03-23 | 2024-05-21 | Ablevia Biotech Gmbh | Compound for the sequestration of undesirable antibodies in a patient |
AU2020290969A1 (en) * | 2019-06-14 | 2022-02-03 | G Tech Bio Llc | Activated lymphocytic cells and methods of using the same to treat cancer and infectious conditions |
IL301336A (en) | 2020-09-23 | 2023-05-01 | Ablevia Biotech Gmbh | Compound for increasing efficacy of viral vectors |
WO2023180502A1 (en) | 2022-03-24 | 2023-09-28 | Ablevia Biotech Gmbh | Compound for increasing efficacy of oncolytic viruses |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008017517A1 (en) | 2006-08-11 | 2008-02-14 | Life Sciences Research Partners Vzw | Immunogenic peptides and their use in immune disorders |
WO2009101206A2 (en) | 2008-02-14 | 2009-08-20 | Life Sciences Research Partners Vzw | Strategies to prevent and/or treat immune responses to soluble allofactors |
WO2009100505A1 (en) | 2008-02-14 | 2009-08-20 | Life Sciences Research Partners Vzw | Immunogenic peptides and their use in transplantati |
WO2009101205A2 (en) | 2008-02-14 | 2009-08-20 | Life Sciences Research Partners Vzw | Immunogenic control of tumours and tumour cells |
WO2009101204A2 (en) | 2008-02-14 | 2009-08-20 | Life Sciences Research Partners Vzw | Elimination of immune responses to viral vectors |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60185799A (en) * | 1984-03-06 | 1985-09-21 | Dainippon Pharmaceut Co Ltd | Human cancer necrotic factor |
WO1985004103A1 (en) | 1984-03-09 | 1985-09-26 | Scripps Clinic And Research Foundation | Synthetic hepatitis b virus vaccine including both t cell anc b cell determinants |
US4599231A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
US4886782A (en) | 1987-02-26 | 1989-12-12 | The United States Of America As Represented By The Department Of Health And Human Services | Malarial immunogen |
JPH03112486A (en) * | 1989-09-22 | 1991-05-14 | Olympus Optical Co Ltd | Hla-b35 gene and dna probe, and transformant cell |
US5433948A (en) | 1990-02-13 | 1995-07-18 | Thomas; Wayne R. | Cloning and sequencing of allergens of dermatophagoides (house dust mite) |
AU650911B2 (en) | 1990-09-27 | 1994-07-07 | Syntello Vaccine Development Kb | Peptides for use in vaccination and induction of neutralizing antibodies against human immunodeficiency virus |
EP0623168B1 (en) | 1991-10-16 | 2009-09-30 | Merck Patent GmbH | T cell epitopes of the major allergens from dermatophagoides (house dust mite) |
US7252829B1 (en) | 1998-06-17 | 2007-08-07 | Idm Pharma, Inc. | HLA binding peptides and their uses |
US5589582A (en) | 1992-10-27 | 1996-12-31 | Biotransplant, Inc. | Polynucleotides en coding porcine cytokines |
US5633234A (en) | 1993-01-22 | 1997-05-27 | The Johns Hopkins University | Lysosomal targeting of immunogens |
US5824315A (en) | 1993-10-25 | 1998-10-20 | Anergen, Inc. | Binding affinity of antigenic peptides for MHC molecules |
US8791237B2 (en) | 1994-11-08 | 2014-07-29 | The Trustees Of The University Of Pennsylvania | Compositions and methods for treatment of non-hodgkins lymphoma |
US7157089B1 (en) | 1996-11-26 | 2007-01-02 | Stressgen Biotechnologies Corporation | Immune responses using compositions containing stress proteins |
US6399383B1 (en) | 1997-10-28 | 2002-06-04 | Maxygen, Inc. | Human papilloma virus vectors |
NO315238B1 (en) | 1998-05-08 | 2003-08-04 | Gemvax As | Peptides derived from reading frame shift mutations in the TBF <beta> II or BAX gene, and pharmaceutical compositions containing them, nucleic acid sequences encoding such peptides, plasmids, and virus vector-encompassing such nucleic acid |
AR020102A1 (en) | 1998-07-30 | 2002-04-10 | Ucb Sa | COMPOSITE FOR THE PREVENTION AND / OR TREATMENT OF ALLERGY; PHARMACEUTICAL COMPOSITION, COSMETIC COMPOSITION, COMPOSITION IN THE FORM OF DRINK, FOOD AND / OR FOOD FOR DOMESTIC ANIMALS THAT INCLUDES IT AND USE OF SUCH COMPOUND OR SUCH PHARMACEUTICAL COMPOSITION FOR THE MANUFACTURE OF A FOOD |
US20030152581A1 (en) | 1998-07-30 | 2003-08-14 | Jean-Marie Saint-Remy | Compound and method for the prevention and/or the treatment of allergy |
WO2000029008A2 (en) | 1998-11-16 | 2000-05-25 | Board Of Regents, The University Of Texas System | Hiv-specific t-cell induction |
WO2000078334A1 (en) * | 1999-06-17 | 2000-12-28 | University Of Maryland Biotechnology Institute | Chimeric chemokine-antigen polypeptides and uses therefor |
WO2001055393A2 (en) | 2000-01-28 | 2001-08-02 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Mhc class ii restricted t cell epitopes from the cancer antigen ny-eso-1 |
GB0006437D0 (en) | 2000-03-17 | 2000-05-10 | Leuven Res & Dev Vzw | Compounds for the modulation of allergen sensitivity by antigens sharing T cell epitopes with allergens |
AU2001272491A1 (en) | 2000-06-26 | 2002-01-08 | Smithkline Beecham Biologicals (S.A.) | Triple fusion proteins comprising ubiquitin fused between thioredoxin and a polypeptide of interest |
US7049413B2 (en) | 2001-05-18 | 2006-05-23 | Ludwig Institute For Cancer Research | MAGE-A3 peptides presented by HLA class II molecules |
DE60210623T2 (en) | 2001-05-30 | 2007-02-15 | Fondazione Téléthon | EX-VIVO ISOLATED CD25 + CD4 + T CELLS WITH IMMUNOSUPPRESSIVE ACTIVITY AND ITS APPLICATIONS |
JP4537060B2 (en) | 2001-10-03 | 2010-09-01 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Carbohydrate binding domain-containing fusion proteins for delivery of therapeutic and other agents, and compositions containing them |
AU2003215395A1 (en) | 2002-02-21 | 2003-09-09 | Apovia, Inc. | STABILIZED HBc CHIMER PARTICLES HAVING MENINGOCCOCAL IMMUNOGENS |
US20100183652A1 (en) | 2002-02-21 | 2010-07-22 | Mark Page | STABILIZED HBc CHIMER PARTICLES AS THERAPEUTIC VACCINE FOR CHRONIC HEPATITIS |
WO2004018667A1 (en) | 2002-08-26 | 2004-03-04 | Kirin Beer Kabushiki Kaisha | Peptides and drugs containing the same |
DK2261249T3 (en) | 2002-09-12 | 2015-02-16 | Oncotherapy Science Inc | KDR peptides and vaccines comprising the same |
JP2004147649A (en) | 2002-10-11 | 2004-05-27 | Kumamoto Technology & Industry Foundation | Antigen to head and neck cancer |
US20070054262A1 (en) | 2003-03-28 | 2007-03-08 | Baker Denise M | Methods of identifying optimal variants of peptide epitopes |
US7651855B2 (en) | 2003-04-17 | 2010-01-26 | The Trustees Of The University Of Pennsylvania | Regulatory T cells and their use in immunotherapy and suppression of autoimmune responses |
GB0324265D0 (en) | 2003-10-16 | 2003-11-19 | Medical Res Council | Peptide |
US20070184023A1 (en) | 2003-10-30 | 2007-08-09 | Pharmexa A/S | Method for down-regulation of vegf |
KR20100092031A (en) | 2004-06-17 | 2010-08-19 | 맨카인드 코포레이션 | Epitope analogs |
JP2008044848A (en) | 2004-11-30 | 2008-02-28 | Univ Kurume | Hla-a24-restricted tumor antigen peptide |
US8252893B2 (en) * | 2005-01-31 | 2012-08-28 | Board Of Trustees Of The University Of Arkansas | CD8 T cell epitopes in HPV 16 E6 and E7 proteins and uses thereof |
WO2007027954A2 (en) | 2005-08-30 | 2007-03-08 | Children's Hospital & Research Center At Oakland | Methods for identifying an epitope of a polypeptide, chlamydial antigenic polypeptides identified thereby, and methods of use thereof |
US10183986B2 (en) | 2005-12-15 | 2019-01-22 | Industrial Technology Research Institute | Trimeric collagen scaffold antibodies |
GB0603081D0 (en) | 2006-02-15 | 2006-03-29 | Dynal Biotech Asa Oslo | Method |
FR2898275B1 (en) | 2006-03-10 | 2012-12-14 | Genethon | CD4 + CD25 + REGULATORY T CELLS SPECIFIC FOR HEMATOPOIETIC CELL TRANSPLANT AND IMMUNE TOLERANCE |
GB0605247D0 (en) * | 2006-03-15 | 2006-04-26 | Chiron Srl | Compositions and methods for immunisation |
WO2007135684A2 (en) * | 2006-05-22 | 2007-11-29 | Hadasit Medical Research Services & Development Limited | Method of treatment of anti-cd4 autoimmunity |
US20100203083A1 (en) | 2007-05-31 | 2010-08-12 | Medigene Ag | Mutated structural protein of a parvovirus |
US8546137B2 (en) | 2007-09-27 | 2013-10-01 | The Board Of Trustees Of The University Of Arkansas | Inhibition of dendritic cell-driven regulatory T cell activation and potentiation of tumor antigen-specific T cell responses by interleukin-15 and MAP kinase inhibitor |
ES2650236T3 (en) | 2008-02-14 | 2018-01-17 | Life Sciences Research Partners Vzw | CD4 + T lymphocytes with cytolytic properties |
ES2637812T3 (en) * | 2008-02-14 | 2017-10-17 | Life Sciences Research Partners Vzw | Immunotherapy for intracellular pathogens |
EP2254592B1 (en) | 2008-02-28 | 2019-06-05 | Dako Denmark A/S | Mhc multimers in borrelia diagnostics and disease |
EP2337795A2 (en) * | 2008-10-01 | 2011-06-29 | Dako Denmark A/S | Mhc multimers in cancer vaccines and immune monitoring |
CN103002909B (en) | 2010-03-29 | 2016-06-29 | 国家科学研究中心 | Comprise the medical composition and its use of the polypeptide containing at least one CXXC motif and heterologous antigen |
EP3763729B1 (en) | 2010-11-25 | 2022-07-06 | Imcyse SA | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination |
GB201201511D0 (en) | 2012-01-30 | 2012-03-14 | Univ Leuven Kath | Modified epitopes for boosting CD4+ T-cell responses |
CA2864432A1 (en) | 2012-02-15 | 2013-08-22 | Ecole Polytechnique Federale De Lausanne | Erythrocyte-binding therapeutics |
GB201309469D0 (en) | 2013-05-28 | 2013-07-10 | Imcyse Sa | Detection of CD4+ T lymphocytes |
GB201319160D0 (en) | 2013-10-30 | 2013-12-11 | Imcyse Sa | Methods for induction of antigen-specific regulatory t cells |
GB201418433D0 (en) | 2014-10-17 | 2014-12-03 | Imcyse Sa | Novel immunogenic peptides |
EP3352782B1 (en) | 2015-09-25 | 2021-03-31 | ImCyse SA | Improved methods and compounds for eliminating immune responses to therapeutic agents |
-
2011
- 2011-11-24 EP EP20190526.2A patent/EP3763729B1/en active Active
- 2011-11-24 HU HUE11787873A patent/HUE055070T2/en unknown
- 2011-11-24 ES ES11787873T patent/ES2869155T3/en active Active
- 2011-11-24 DK DK11787873.6T patent/DK2643345T5/en active
- 2011-11-24 KR KR1020137016345A patent/KR101902029B1/en active IP Right Grant
- 2011-11-24 PL PL11787873T patent/PL2643345T3/en unknown
- 2011-11-24 ES ES20190526T patent/ES2924027T3/en active Active
- 2011-11-24 CA CA2820617A patent/CA2820617C/en active Active
- 2011-11-24 EP EP11787873.6A patent/EP2643345B1/en active Active
- 2011-11-24 RU RU2013128866A patent/RU2615460C2/en active
- 2011-11-24 DE DE11787873T patent/DE11787873T1/en active Pending
- 2011-11-24 PT PT117878736T patent/PT2643345T/en unknown
- 2011-11-24 CN CN201180056725.7A patent/CN103261218B/en active Active
- 2011-11-24 WO PCT/EP2011/070898 patent/WO2012069568A2/en active Application Filing
- 2011-11-24 US US13/988,925 patent/US10023847B2/en active Active
- 2011-11-24 JP JP2013540353A patent/JP6173915B2/en active Active
- 2011-11-24 BR BR112013012555A patent/BR112013012555B8/en active IP Right Grant
- 2011-11-24 AU AU2011333749A patent/AU2011333749B2/en active Active
-
2017
- 2017-01-17 AU AU2017200307A patent/AU2017200307B2/en active Active
- 2017-07-05 JP JP2017131861A patent/JP6763832B2/en active Active
-
2018
- 2018-06-14 US US16/008,399 patent/US11193114B2/en active Active
-
2021
- 2021-11-03 US US17/517,805 patent/US20220119778A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008017517A1 (en) | 2006-08-11 | 2008-02-14 | Life Sciences Research Partners Vzw | Immunogenic peptides and their use in immune disorders |
EP2059256A1 (en) | 2006-08-11 | 2009-05-20 | Désiré Collen Research Foundation VZW | Immunogenic peptides and their use in immune disorders |
WO2009101206A2 (en) | 2008-02-14 | 2009-08-20 | Life Sciences Research Partners Vzw | Strategies to prevent and/or treat immune responses to soluble allofactors |
WO2009100505A1 (en) | 2008-02-14 | 2009-08-20 | Life Sciences Research Partners Vzw | Immunogenic peptides and their use in transplantati |
WO2009101205A2 (en) | 2008-02-14 | 2009-08-20 | Life Sciences Research Partners Vzw | Immunogenic control of tumours and tumour cells |
WO2009101204A2 (en) | 2008-02-14 | 2009-08-20 | Life Sciences Research Partners Vzw | Elimination of immune responses to viral vectors |
Non-Patent Citations (26)
Title |
---|
BONIFACIO; TRAUB, ANNU. REV. BIOCHEM., vol. 72, 2003, pages 395 - 447 |
BRUTKIEWICZ, JOURNAL OF IMMUNOLOGY, vol. 177, 2006, pages 769 - 775 |
CASTANO ET AL., SCIENCE, vol. 269, 1995, pages 223 |
CASTANO ET AL., SCIENCE, vol. 269, 1995, pages 223 - 226 |
CHIBA ET AL., JOURNAL OF IMMUNOLOGY, vol. 181, 2008, pages 2292 - 2302 |
COPIER ET AL., J IMMUNOL., vol. 157, 1996, pages 1017 - 1027 |
CROWE ET AL., JOURNAL OF EXPERIMENTAL MEDICINE, vol. 196, 2002, pages 119 - 127 |
DHODAPKAR ET AL., JOURNAL OF EXPERIMENTAL MEDICINE, vol. 197, 2003, pages 1667 - 1676 |
FOMENKO ET AL., BIOCHEMISTRY, vol. 42, 2003, pages 11214 - 11225 |
GODFREY ET AL., NATURE REVIEWS IMMUNOLOGY, vol. 11, 2010, pages 197 - 206 |
JAHNG ET AL., JOURNAL OF EXPERIMENTAL MEDICINE, vol. 199, 2004, pages 947 - 957 |
LEE ET AL., JOURNAL OF EXPERIMENTAL MEDICINE, vol. 187, 1998, pages 433 - 438 |
MAHNKE ET AL., J CELL BIOL, vol. 151, 2000, pages 673 - 683 |
MATSUDA ET AL., CURRENT OPINION IN IMMUNOLOGY, vol. 20, 2008, pages 358 - 368 |
MATTNER ET AL., NATURE, vol. 434, 2005, pages 525529 |
MENDOZA ET AL., IMMUNITY, vol. 7, 1997, pages 461 - 472 |
SCHNOLZER; KENT, INT. J PEPT. PROTEIN RES, vol. 40, 1992, pages 180 - 193 |
SCOTT ET AL., IMMUNITY, vol. 12, 2000, pages 711 - 720 |
SONG ET AL., JOURNAL OF CLINICAL INVESTIGATION, vol. 119, 2009, pages 15241536 |
TACHIBANA ET AL., CLINICAL CANCER RESEARCH, vol. 11, 2005, pages 7322 - 7327 |
TAM ET AL., BIOPOLYMERS, vol. 60, 2001, pages 194 - 205 |
TEXIER ET AL., J. IMMUNOLOGY, vol. 164, 2000, pages 3177 - 3184 |
THEDREZ ET AL., BLOOD, vol. 110, 2007, pages 251 - 258 |
TUPIN ET AL., NATURE REVIEWS. MICROBIOLOGY, vol. 5, 2007, pages 405 - 417 |
VAN BELLE; VON HERRATH, MOLECULAR IMMUNOLOGY, vol. 47, 2009, pages 8 - 11 |
VIJAYASARADHI ET AL., J CELL BIOL, vol. 130, 1995, pages 807 - 820 |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10662232B2 (en) | 2006-08-11 | 2020-05-26 | Life Sciences Research Partners Vzw | Immunogenic peptides and their use in immune disorders |
US11718650B2 (en) | 2006-08-11 | 2023-08-08 | Imcyse Sa | Immunogenic peptides and their use in immune disorders |
US10982196B2 (en) | 2008-02-14 | 2021-04-20 | Life Sciences Research Partners Vzw | Immunotherapy targeting intracellular pathogens |
US10617748B2 (en) | 2008-02-14 | 2020-04-14 | Life Sciences Research Partners Vzw | Immunogenic control of tumours and tumour cells |
US11226332B2 (en) | 2013-05-28 | 2022-01-18 | Imcyse Sa | Method for the detection, preparation and depletion of CD4+ t lymphocytes |
US11806714B2 (en) | 2013-08-16 | 2023-11-07 | Massachusetts Institute Of Technology | Selective delivery of material to cells |
US10870112B2 (en) | 2013-08-16 | 2020-12-22 | Massachusetts Institute Of Technology | Selective delivery of material to cells |
WO2015063176A1 (en) * | 2013-10-30 | 2015-05-07 | Imcyse Sa | Methods for induction of antigen-specific regulatory t cells |
RU2709711C2 (en) * | 2014-10-17 | 2019-12-19 | Имсиз Са | New immunogenic peptides |
US12023384B2 (en) | 2014-10-17 | 2024-07-02 | Imcyse Sa | Immunogenic peptides comprising an MHC class II T cell epitope and a redox motif |
US11111472B2 (en) | 2014-10-31 | 2021-09-07 | Massachusetts Institute Of Technology | Delivery of biomolecules to immune cells |
CN107109362A (en) * | 2014-10-31 | 2017-08-29 | 麻省理工学院 | Biomolecule is delivered to immunocyte |
US11125739B2 (en) | 2015-01-12 | 2021-09-21 | Massachusetts Institute Of Technology | Gene editing through microfluidic delivery |
US12130281B2 (en) | 2015-01-12 | 2024-10-29 | Massachusetts Institute Of Technology | Gene editing through microfluidic delivery |
EP3096138A1 (en) | 2015-05-18 | 2016-11-23 | ImCyse SA | Novel animal models for evaluating pharmaceutical compounds |
US10729791B2 (en) | 2015-05-18 | 2020-08-04 | Imcyse Sa | Animal models for evaluating pharmaceutical compounds |
US11299698B2 (en) | 2015-07-09 | 2022-04-12 | Massachusetts Institute Of Technology | Delivery of materials to anucleate cells |
US11613759B2 (en) | 2015-09-04 | 2023-03-28 | Sqz Biotechnologies Company | Intracellular delivery of biomolecules to cells comprising a cell wall |
US11787849B2 (en) | 2015-09-25 | 2023-10-17 | Imcyse Sa | Methods and compounds for eliminating immune responses to therapeutic agents |
WO2017182528A1 (en) | 2016-04-19 | 2017-10-26 | Imcyse Sa | Novel immunogenic cd1d binding peptides |
IL262286B2 (en) * | 2016-04-19 | 2023-12-01 | Imcyse Sa | Novel immunogenic cd1d binding peptides |
IL262286B1 (en) * | 2016-04-19 | 2023-08-01 | Imcyse Sa | Novel immunogenic cd1d binding peptides |
AU2017252192C1 (en) * | 2016-04-19 | 2023-06-08 | Imcyse Sa | Novel immunogenic CD1d binding peptides |
AU2017252192B2 (en) * | 2016-04-19 | 2022-03-03 | Imcyse Sa | Novel immunogenic CD1d binding peptides |
US11485768B2 (en) | 2016-04-19 | 2022-11-01 | Imcyse Sa | Immunogenic CD1d binding peptides |
EP3388447A1 (en) | 2017-04-14 | 2018-10-17 | Imnate Sarl | Methods to produce peptides, polypeptides or cells for modulating immunity |
WO2018189405A1 (en) | 2017-04-14 | 2018-10-18 | Imnate Sarl | Methods to produce peptides, polypeptides or cells for modulating immunity |
WO2020099356A2 (en) | 2018-11-12 | 2020-05-22 | Imcyse Sa | Immunogenic peptides with improved oxidoreductase motifs |
WO2020099352A3 (en) * | 2018-11-12 | 2020-07-09 | Imcyse Sa | Immunogenic peptides with new oxidoreductase motifs |
WO2020099352A2 (en) | 2018-11-12 | 2020-05-22 | Imcyse Sa | Immunogenic peptides with new oxidoreductase motifs |
US11692168B2 (en) | 2019-02-28 | 2023-07-04 | Sqz Biotechnologies Company | Delivery of biomolecules to PBMCs to modify an immune response |
WO2020229703A1 (en) | 2019-05-16 | 2020-11-19 | Imcyse Sa | Immunogenic peptides with an oxidoreductase motif comprising a modified cysteine |
WO2021224397A1 (en) | 2020-05-06 | 2021-11-11 | Imcyse Sa | Immunogenic peptides with extended oxidoreductase motifs |
WO2021224403A1 (en) | 2020-05-06 | 2021-11-11 | Imcyse Sa | Immunogenic peptides with new oxidoreductase motifs |
WO2021148683A3 (en) * | 2020-05-06 | 2021-09-23 | Imcyse Sa | Peptides and methods for the treatment of multiple sclerosis |
WO2021148683A2 (en) | 2020-05-06 | 2021-07-29 | Imcyse Sa | Peptides and methods for the treatment of multiple sclerosis |
WO2021144478A2 (en) | 2020-05-06 | 2021-07-22 | Imcyse Sa | Combination treatment for fumarate-related diseases |
WO2022248525A1 (en) | 2021-05-26 | 2022-12-01 | Imcyse Sa | Methods of treating or preventing autoimmune diseases |
WO2023275108A1 (en) | 2021-06-29 | 2023-01-05 | Imcyse Sa | Peptides and methods for the treatment of neuromyelitis optica |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220119778A1 (en) | Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination | |
US20210188913A1 (en) | Modified epitopes for boosting cd4+ t-cell responses | |
CN109069605B (en) | Novel immunogenic CD1d binding peptides | |
AU2008350785B2 (en) | Immunogenic peptides and their use in transplantation | |
CA2818536C (en) | Modulation of antigen immunogenicity by addition of epitopes recognized by nkt cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11787873 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2013540353 Country of ref document: JP Kind code of ref document: A Ref document number: 2820617 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011333749 Country of ref document: AU Date of ref document: 20111124 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13988925 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011787873 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137016345 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013128866 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013012555 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013012555 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130521 |