WO2012068272A2 - Systems and methods of dry cooling - Google Patents

Systems and methods of dry cooling Download PDF

Info

Publication number
WO2012068272A2
WO2012068272A2 PCT/US2011/061025 US2011061025W WO2012068272A2 WO 2012068272 A2 WO2012068272 A2 WO 2012068272A2 US 2011061025 W US2011061025 W US 2011061025W WO 2012068272 A2 WO2012068272 A2 WO 2012068272A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
tube
heat
dry cooling
ballast
Prior art date
Application number
PCT/US2011/061025
Other languages
French (fr)
Other versions
WO2012068272A3 (en
Inventor
John D.H. King
Nicholas A. Kramer
Thomas E. Oliver
Original Assignee
Combined Power Cooperative
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/950,931 external-priority patent/US8443615B2/en
Priority claimed from PCT/US2011/052789 external-priority patent/WO2012040483A2/en
Application filed by Combined Power Cooperative filed Critical Combined Power Cooperative
Priority to AU2011328925A priority Critical patent/AU2011328925A1/en
Publication of WO2012068272A2 publication Critical patent/WO2012068272A2/en
Publication of WO2012068272A3 publication Critical patent/WO2012068272A3/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/70Waterborne solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • F24S23/745Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present disclosure relates to dry cooling systems, as well as solar energy systems.
  • Deserts have very little water available, and what little exists is strictly monitored by local governments. Increasingly few municipalities are willing to allow power plants to consume vast amounts of water when farmers and other citizens need that water to survive. The resistance to evaporative cooling is causing many proposed power plants to switch to a dry cooling mechanism.
  • solar panels formed of photovoltaic cells are used to transform light to electricity.
  • solar panels have been implemented in various applications.
  • Solar panels have been generally effective for small-scale electrical generation, such as powering small electronics, electrical generation for residential applications, and electrical generation for space-based systems.
  • current solar panel technology has been ineffective for large- scale uses, such as electrical generation sufficient for municipal applications. The costs associated with such large-scale usages have been prohibitive.
  • Current solar panels are relatively expensive and do not allow cost-effective energy storage.
  • CSP concentrated solar power
  • CSP systems typically use reflective surfaces to concentrate the sun's energy from a large surface area on to a solar collector. For example, the concentrated solar energy can be used to heat a working fluid. The heated fluid is then used to power a turbine to generate electricity. Alternatively, photovoltaic cells can be used at the solar collector, eliminating the need for numerous, expensive cells.
  • the reflective surfaces of CSP systems can be coupled to a device that tracks the sun's movement, maintaining a focus on a receiver target throughout the day. Using this approach, the CSP system can optimize the level of solar radiation directed towards the solar collector.
  • Biomass production such as algae and other microorganisms
  • the potential usage of such material is found across a wide range of applications, including biofuel feedstock production, fertilizer, nutritional supplements, pollution control, and other uses.
  • the present disclosure provides dry cooling systems and methods having various applications, including use for cooling the back end of a heat engine.
  • exemplary embodiments of a dry cooling mechanism comprise inflatable elongated tubes of flexible material that are at least partly submerged. Each tube will contain a dedicated section through which ambient or cooled air can be blown to remove heat from the system.
  • the structure and the material employed provide significant cost savings for the manufacture, shipping, and deployment of the tubes over traditional dry cooling mechanisms.
  • the dry cooling assembly is configured to be deployed on a supporting body of liquid. This liquid serves as both liquid ballast inside of the tubes and as a structural support. It is this fluid that is heated by cooling the turbine exhaust. The heat can then be removed from the system either by simply allowing it to pass to the ambient air outside of the tubes or by using cooler air blown through the dedicated segment of the tube. This will cool the supporting fluid without any evaporation.
  • Exemplary embodiments include a dry cooling assembly comprising a supporting body of liquid having a temperature higher than ambient temperature, and an inflatable elongated tube at least partially submerged in the supporting body of liquid.
  • the inflatable elongated tube has an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material.
  • the lower ballast portion defines a reservoir containing liquid facilitating ballast.
  • the liquid facilitating ballast is warmed by heat from the supporting body of liquid such that the temperature of the support body of liquid is reduced and the temperature inside the elongate tube is increased. The heat may pass out of the elongated tube to ambient air. Further, coolant air having a temperature cooler than the temperature of the supporting body of liquid may be blown through the upper portion of the elongated tube such that the coolant air absorbs at least some of the heat.
  • Exemplary embodiments of a dry cooling assembly may further comprise a flexible panel coupled to an interior wall of the elongated tube such that the upper portion and the lower ballast portion are separated by the flexible panel.
  • the flexible panel may be oriented generally parallel to the length of the elongated tube.
  • the flexible panel may be coupled to opposite interior walls of the elongated tube and pulled taut in the inflatable tube.
  • the flexible panel may be coupled to opposite interior walls of the elongated tube and may be oversized such that it hangs down in the inflatable tube. An oversized flexible panel may rest on the liquid facilitating ballast.
  • Exemplary embodiments may further comprise one or more elongated interior tubes disposed within the elongated tube.
  • the elongated interior tubes may be formed at least partially of flexible material. Coolant air having a temperature cooler than the temperature of the supporting body of liquid may be blown through the one or more elongated interior tubes such that the coolant air absorbs at least some of the heat.
  • flue gas from a power plant is pumped into the lower ballast portion of the dry cooling assembly.
  • Liquid in the supporting body of liquid may be used to cool exhaust from a heat engine.
  • Exemplary embodiments may further comprise a reflective sheet coupled to an exterior wall of the elongated tube, and the elongated tube may comprise a culture medium for photosynthetic biomass.
  • Exemplary embodiments include methods of dry cooling comprising the steps of at least partially filling a lower ballast portion of a tube with liquid facilitating ballast, partially submerging the tube in a supporting body of liquid having a temperature higher than ambient temperature such that the liquid facilitating ballast is warmed by heat from the supporting body of liquid, the temperature of the support body of liquid is reduced, and the temperature inside the tube is increased, and removing the heat from the tube.
  • the removing step comprises blowing coolant air having a temperature cooler than the temperature of the supporting body of liquid through an upper portion of the elongated tube such that the coolant air absorbs at least some of the heat.
  • Exemplary dry cooling methods further comprise coupling a flexible panel to an interior wall of the tube such that an upper portion and the lower ballast portion are separated by the flexible panel.
  • An exemplary method may further comprise the steps of disposing one or more interior tubes within the tube, the interior tubes formed at least partially of flexible material, and blowing coolant air having a temperature cooler than the temperature of the supporting body of liquid through the one or more interior tubes such that the coolant air absorbs at least some of the heat.
  • Exemplary methods may comprise drawing liquid from the supporting body of liquid to cool exhaust from a heat engine and/or pumping flue gas from a power plant into the lower ballast portion.
  • Exemplary embodiments provide a combined solar reflector and dry cooling assembly comprising a supporting body of liquid having a temperature higher than ambient temperature, an inflatable elongated tube at least partially submerged in the supporting body of liquid, and a reflective sheet coupled to a wall of the elongated tube to reflect solar radiation.
  • the inflatable elongated tube has an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material.
  • the lower ballast portion defines a reservoir containing liquid facilitating ballast. The liquid facilitating ballast is warmed by heat from the supporting body of liquid such that the temperature of the support body of liquid is reduced and the temperature inside the elongate tube is increased.
  • the present disclosure also provides a solar reflector assembly useable for generating energy from solar radiation.
  • Embodiments of the solar reflector assemblies are inflatable elongated tubes of flexible material with each tube including a reflective sheet to reflect solar radiation to a solar collector. This structure and the materials employed provide significant cost savings for manufacture, shipping and deployment of the solar reflector assemblies.
  • the solar reflector assembly is configured to be deployed on a supporting body of liquid. This provides both liquid ballasting capability and structural support. Beneficially, the solar reflector assemblies are inexpensive to manufacture, deploy and operate, providing a cost effective solution for energy generation.
  • Exemplary embodiments of a solar reflector assembly includes an inflatable elongated tube having an upper portion formed at least partially of a flexible material and a lower ballast portion formed at least partially of a flexible material.
  • the lower ballast portion may define a reservoir containing fluid facilitating ballast.
  • the elongated tube has an axis of rotation oriented generally parallel to a surface of a supporting body of liquid and a reflective sheet coupled to a wall of the tube to reflect solar radiation towards the solar collector.
  • the reflective sheet may be coupled to either an interior wall or an exterior wall of the elongated tube.
  • the fluid facilitating ballast has a top surface that is generally parallel to a surface of a supporting body of liquid.
  • the reflective sheet can be configured to reflect substantially all solar radiation towards the solar collector.
  • the reflective sheet can be configured to substantially reflect a first prescribed wavelength range towards a solar collector and to substantially transmit a second prescribed wavelength range therethrough.
  • the reflective sheet may also facilitate equilibrium of pressure on its opposing sides.
  • One end cap assembly may be coupled to the elongated tube, or a pair of end cap assemblies can be coupled to the elongated tube, in which at least one of the end cap assemblies is configured to facilitate the flow of gas and/or liquid into and out of the elongated tube to maintain pressure within the tube.
  • the upper portion formed of thin-gauge, flexible material allows solar radiation to pass through for reflection by the reflective sheet.
  • Inflatable supports can be disposed on the exterior wall of the tube to maintain the reflective sheet in a prescribed orientation.
  • the reflective sheet can be disposed to have various cross sectional shapes, including flat, v-shaped, u-shaped, or parabolic, among others, as desired.
  • a pair of supports can be used, coupled to longitudinal sides of the reflective sheet.
  • the reflective sheet is formed as a hot mirror, configured to reflect infrared (IR) radiation (e.g., heat reflective) while allowing visible light to pass through (e.g., visibly transparent), across wide angles of incidence.
  • IR infrared
  • the reflective sheet allows transmittance of at least 50 percent of incident energy in the wavelength band between about 400 nm and 700 nm at normal incidence.
  • the reflective sheet allows transmittance of at least 90 percent of incident energy in the wavelength band between about 400 nm and 700 nm at normal incidence.
  • the reflective sheet can have a high percentage of reflection for substantially all incident solar IR radiation above about 700 nm or, in other embodiments, above about 750 nm.
  • the reflective sheet can be configured to have a high percentage of reflection within a bounded range of IR wavelengths. Exemplary ranges include 700 - 1200 nm, 700 - 2000 nm, 750 - 1200 nm, and 750 - 2000 nm, among others. It should be appreciated that other ranges can be used.
  • a system for generating energy from solar radiation comprising a pool housing a supporting body of liquid and one or more solar reflector assemblies disposed on the supporting body of liquid.
  • Each solar reflector assembly includes an inflatable elongated tube having an upper portion formed at least partially of flexible material, a lower ballast portion formed at least partially of flexible material and an axis of rotation oriented generally parallel to a surface of the supporting body of liquid, and a reflective sheet coupled to a wall of the tube to reflect solar radiation towards a solar collector.
  • the reflective sheet may be coupled to an interior wall of the elongated tube such that the upper portion and the lower ballast portion are separated by the reflective sheet.
  • the reflective sheet may be coupled to an exterior wall of the elongated tube.
  • the reflective sheet may be coupled to the elongated tube in a manner to provide a pressure differential between opposing sides of the reflective sheet such that the reflective sheet can be given a prescribed shape to facilitate reflection of solar radiation towards the solar collector.
  • the solar reflector assembly may facilitate equilibrium of pressure on opposing sides of the reflective sheet.
  • the lower ballast portion of the elongated tube contains liquid facilitating ballast.
  • the liquid facilitating ballast has a top surface that is generally parallel to the surface of the supporting body of liquid.
  • the system further includes a solar collector positioned to receive reflected solar radiation from the reflective sheet.
  • Embodiments of the system for generating energy from solar radiation may further comprise an electrical generator assembly operatively coupled to the solar collector to convert the reflected solar radiation to electricity.
  • At least one end cap assembly can be coupled to an elongated tube, and a pair of end cap assemblies can be coupled to opposing ends of the one or more elongated tubes, in which at least one of the end cap assemblies is configured to facilitate the flow of gas and/or liquid into and out of the elongated tube to maintain pressure within the tube.
  • a rotation assembly may be coupled to an elongated tube at any location on the tube.
  • a rotation assembly is coupled to at least one of the end cap assemblies to induce controlled rotation of the elongated tubes to direct the reflected solar radiation to the solar collector.
  • the reflective sheet is coupled to the elongated tube in a manner to provide a pressure differential between opposing sides of the reflective sheet such that the reflective sheet can be given a prescribed shape to facilitate reflection of solar radiation towards the solar collector.
  • the reflective sheet can be configured to be taut when the elongated tube is inflated to form a generally planar shape.
  • the reflective sheet can be configured to hang between spaced-apart portions of the internal wall of the tube to form a generally catenary shape.
  • the elongated tube defines an elongated reservoir extending the length of the tube for passing a heat-transfer fluid therethrough, the elongated reservoir positioned above the reflective sheet such that solar radiation reflected by the reflective sheet is directed towards the elongated reservoir.
  • the elongated tube can further define a plurality of elongated reservoirs positioned above the reflective sheet, defining multiple focal areas of reflected radiation present at different angles of incident solar radiation.
  • the solar collector can be coupled to the tube, through which a heat-transfer fluid can pass to absorb the reflected radiation, and then be used to power electricity generation.
  • the solar reflector assembly may comprise one or more pass-through fittings coupled to the elongated tube to facilitate the flow of gas and liquid into and out of the elongated tube.
  • the solar reflector assembly or system can include a rotation assembly coupled to at least one end of the elongate tube and configured to rotate the elongated tube such that the reflective sheet directs solar radiation towards the solar collector throughout the day.
  • the rotation assembly can include a plurality of gas bladders coupled to the elongated tube, in which the rotation assembly is configured to adjust the content of gas bladders to rotate the elongated tube.
  • the rotation assembly is coupled to at least one end of the elongated tube to induce controlled rotation of the elongated tube to direct the reflected solar radiation towards the solar collector.
  • a plurality of elongated tubes are coupled together along longitudinal sides, forming a raft, in which a reflective sheet is disposed either within or atop each tube.
  • the tubes can further include one or more reservoirs for passing heat- transfer fluid through.
  • an external solar collector can be disposed in a prescribed location, spaced apart from an elongated tube or from the raft of elongated tubes to receive reflected solar radiation from the reflective sheets.
  • the elongated tube may further comprise a culture medium for photosynthetic biomass, thus forming a combined solar reflector and photobioreactor assembly ("CSP/PBR").
  • the culture medium housed in the tube can be used, e.g., to facilitate photosynthetic biomass growth, such as algal biomass.
  • the reflective sheet may be configured to substantially reflect a first prescribed wavelength range towards a solar collector and to substantially transmit a second prescribed wavelength range therethrough to the culture medium within the elongated tube. In this manner, a portion of solar energy is directed towards the solar collector, while another portion is utilized by the culture medium, e.g., to facilitate photosynthetic biomass growth, such as algal biomass.
  • the CSP PBR assemblies may be disposed on a supporting body of liquid and include a solar collector positioned to receive reflected solar radiation from the reflective sheet. Beneficially, this embodiment serves to reduce the heat input, and therefore the cooling load for the biomass production component of such an embodiment.
  • FIG. 1 is cross-sectional view of an embodiment of a solar energy collection system in accordance with the present disclosure
  • FIG. 2 is a perspective view of an embodiment of an array of solar reflector assemblies of a solar energy collection system in accordance with the present disclosure
  • FIG. 3 is a perspective view of an embodiment of an end cap assembly coupled to a solar reflector assembly in accordance with the present disclosure
  • FIG. 4 is a cross-sectional view of an embodiment of a solar energy collection system in accordance with the present disclosure
  • FIG. 5 is a cross-sectional, perspective view of an embodiment of an array of solar reflector assemblies in accordance with the present disclosure
  • FIG. 6 is a cross-sectional view of an embodiment of an array of solar reflector assemblies in accordance with the present disclosure
  • FIGS. 7a-c are cross-sectional views of an embodiment of a solar reflector assembly in accordance the present disclosure
  • FIGS. 8a-c are cross-sectional views of embodiments of solar reflector assemblies in accordance with the present disclosure
  • FIGS. 9a-b are cross-sectional views of embodiments of solar reflector assemblies in accordance with the present disclosure.
  • FIG. 10 is a cross-sectional view of an embodiment of a solar reflector assembly in accordance with the present disclosure.
  • FIG. 11 is a perspective view of an embodiment of a solar reflector assembly in accordance with the present disclosure.
  • FIG. 12 is a cross-sectional view of an embodiment of a solar reflector assembly having an external reflector in accordance with the present disclosure
  • FIG. 13 is a cross-sectional view of an embodiment of a solar reflector assembly having an external reflector in accordance with the present disclosure
  • FIG. 14 is a cross-sectional view of an embodiment of a solar reflector assembly having an external reflector in accordance with the present disclosure
  • FIG. 15 is an embodiment of a solar energy collection system in accordance with the present disclosure.
  • FIG. 16 is a cross-sectional view of a solar energy collection system in accordance with the present disclosure.
  • FIG. 17 is a cross-sectional view of an embodiment of a concentrated solar power/photobioreactor assembly in accordance with the present disclosure
  • FIG. 18 is a perspective view of an embodiment of an array of concentrated solar power/photobioreactor assemblies in accordance with the present disclosure
  • FIG. 19a is a perspective view of an embodiment of an end cap assembly coupled to a concentrated solar power/photobioreactor assembly in accordance with the present disclosure
  • FIG. 19b is a perspective view of an embodiment of an end cap assembly having pass-throughs and coupled to a concentrated solar power/photobioreactor assembly in accordance with the present disclosure
  • FIG. 20 is a graph depicting percent transmittance at zero degrees incidence, as a function of wavelength, for an exemplary embodiment of a reflective sheet for a
  • FIG. 21 is a cross-sectional view of an embodiment of a solar reflector assembly in accordance with the present disclosure.
  • FIG. 22 is a cross-sectional view of an embodiment of a solar reflector assembly in accordance with the present disclosure.
  • FIG. 23 is a perspective view of an embodiment of an array of solar reflector assemblies of a solar energy collection system in accordance with the present disclosure
  • FIG. 24 is a perspective view of an embodiment of an array of solar reflector assemblies of a solar energy collection system in accordance with the present disclosure
  • FIG. 25 is a cross-sectional view of an embodiment of a solar reflector assembly in accordance with the present disclosure.
  • FIG. 26 is a perspective view of an embodiment of an array of solar reflector assemblies of a solar energy collection system in accordance with the present disclosure
  • FIG. 27a is a perspective view of an embodiment of a solar reflector assembly in accordance with the present disclosure.
  • FIG. 27b view of an embodiment of a solar reflector assembly having pass- throughs in accordance with the present disclosure
  • FIG. 28 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure
  • FIG. 29 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure
  • FIG. 30 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure.
  • FIG. 31 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure.
  • FIG. 32 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure.
  • FIG. 33 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure.
  • FIG. 34 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure
  • FIG. 35 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure
  • FIG. 36 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure
  • FIG. 37 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure
  • FIG. 38 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure
  • FIG. 39 is a cross-sectional view of an embodiment of a combination dry cooling and photobioreactor assembly in accordance with the present disclosure.
  • FIG. 40 is a cross-sectional view of an embodiment of a combination dry cooling and photobioreactor assembly in accordance with the present disclosure
  • FIG. 41 is a cross-sectional view of an embodiment of a combination dry cooling and photobioreactor assembly in accordance with the present disclosure
  • FIG. 42 is a cross-sectional view of an embodiment of a combination dry cooling, solar reflector and photobioreactor assembly in accordance with the present disclosure
  • FIG. 43 is a cross-section view of an embodiment of an array of dry cooling assemblies in accordance with the present disclosure.
  • FIG. 44 is a perspective view of an embodiment of an array of dry cooling assemblies in accordance with the present disclosure.
  • FIG. 45 is schematic view of an embodiment of a dry cooling assembly in accordance with the present disclosure shown in conjunction with a power plant;
  • FIG. 46 is a plot showing temperature data of a simulation modeling
  • FIG. 47 is a plot showing temperature data of a simulation modeling
  • FIG. 48 is a plot showing temperature data of a simulation modeling
  • FIG. 49 is a plot showing temperature data of a simulation modeling
  • FIG. 50 is a plot showing temperature data of a simulation modeling
  • FIG. 51 is a plot showing temperature data of a simulation modeling
  • Each solar reflector includes an inflated elongated tube 12 having a reflective sheet 14 coupled along opposed sides of the sheet to a wall of the tube.
  • reflective sheet 14 is coupled to an interior wall 15 of the elongated tube 12 so that the reflective sheet 14 divides the elongated tube 12 into two portions, an upper portion or chamber 21 and a lower ballast portion or chamber 23.
  • the elongated tube 12 is a unitary structure that includes lower ballast portion 23, which provides ballast for the solar reflector assembly 10.
  • lower ballast portion 23 is the lower section of the elongated tube itself and, as such, is integrally formed with the elongated tube 12. This structure is
  • the elongated tubes may include a gas in the upper chamber 21 and a reservoir liquid 20 in the lower chamber 23 to facilitate ballast.
  • the reflective sheet could also be coupled to an exterior wall of the tube.
  • the solar reflectors are supported by a body of liquid 16 and are configured to rotate to direct reflected solar radiation towards a solar collector 18.
  • the solar reflectors are used to reflect solar radiation towards a solar collector 18 configured to transform the solar energy to electricity or process heat.
  • the solar reflector assemblies are inexpensive to manufacture and operate, providing a cost effective solution for electrical generation or process heat from solar energy.
  • Each tube 12 is formed of transparent, lightweight flexible plastic optionally coupled at each end to rigid end cap assemblies 24, which facilitate the flow of liquid and gas into and out of the tubes. Positive pressure within the tube keeps them rigid and maintains the tube in a generally cylindrical configuration having a substantially constant cross section along the length of the tube.
  • the tube is set on an expanse of liquid 16 in a pool 19 and includes a reservoir of fluid 20 to facilitate ballast of the tube and maintain buoyancy in a prescribed manner to best track the sun, as described herein.
  • the tubes 12 will float at a level such that the liquid level within the tube is generally even or parallel with the level of liquid 16 on which the tube is floating. More specifically, in operation the top surface of the ballast liquid is
  • the level of liquid within the tube can vary, from empty to full with liquid, as desired.
  • the tubes 12 are configured in an elongated cylindrical configuration.
  • the tubes are formed of a single sheet of a thin gauge, flexible material, which can be various plastics such as polyethylene, having a thickness between about 50 microns (2 mil) and 300 microns (12 mil).
  • tubes can be formed of multiple layers and multiple sections of material.
  • Tubes of various sizes can be used, to include tube diameter and tube length, without departing from the disclosure.
  • the entire tube is formed of transparent material; however, it is sufficient if an upper portion of the tube is transparent to enable solar radiation to be directed towards the reflective sheet.
  • the tubes can be susceptible to deterioration over time as result of exposure to solar radiation.
  • polyethylene can be susceptible to UV-B radiation, and other materials may be susceptible to other ranges of radiation.
  • the tubes can be protected from premature deterioration using systems and methods as disclosed in the present inventor's copending application, U.S. Appl. No. 12/253,962, filed Oct. 18, 2008, entitled “System and Method for Protecting Enclosure from Solar Radiation,” which is incorporated by reference herein for all purposes.
  • the reflective sheet 14 is disposed within the elongated tube 12, having opposing longitudinal sides attached to the interior wall of the tube.
  • the reflective sheet is formed of lightweight flexible reflective material, such as PET polyester film sold under the brand name Mylar ® , available from E. I. Du Pont De Nemours & Co.
  • Other examples of usable materials include reflective polyester film, metalized polymer film, metallic film, or other material having sufficient reflective traits while being sufficiently lightweight.
  • the reflective sheet is formed of one layer of material configured to reflect a broad wavelength spectrum.
  • the substrate film is also a polymer sheet with a reflective sheet laminated, adhesively applied, or otherwise disposed on top.
  • multiple layers can be used, and the reflective sheet can be configured to allow prescribed wavelengths of solar radiation to pass through, while reflecting other wavelengths of solar radiation towards the solar collector.
  • the reflective sheet 14 can be coupled to the elongated tube 12 to enable a pressure differential to be maintained on opposing sides of the sheet.
  • the pressure differential can be used to form the reflective sheet to a prescribed shape. For example, a higher pressure can be maintained on the upper surface of the reflective sheet such that the reflective sheet has a curved or, more preferably, a generally parabolic shape.
  • the solar reflector assembly can be configured to maintain pressure equilibrium on both sides of the reflective sheet to facilitate other desired shapes for the reflective sheet.
  • the one or more end caps can be configured to allow gas to move between the upper portion and lower ballast portion of the tubes by coupling a pass-through to the upper chamber with a pass-through to the lower chamber.
  • the reflective sheet can be configured to assume any number of different shapes without departing from the disclosure.
  • a sheet of reflective material is attached along longitudinal side edges to a first side of a sheet of tube material at a prescribed distance from each other. Opposing longitudinal side edges of the tube material are attached to each other forming a cylinder with the reflective material disposed within the interior of the tube. The distance between the edges of the reflective material is selected to form a prescribed shape for the reflective sheet, when in use.
  • end cap assemblies 24 are disposed at opposing ends of the tube 12, and a rotation assembly 26 is configured to enable rotation of the tubes about a longitudinal axis oriented generally parallel to the surface of the supporting body of liquid 16.
  • Rotation assembly 26 includes a motor 28 and a transmission system 30.
  • the motor 28 is connected to at least one end cap assembly 24 by the transmission system 30.
  • the motor 28 provides power to turn the tube 12 either way. It is possible to drive both ends of the tube 12 by installing motors and transmission systems at both ends.
  • the tubes can be turned to track the sun to optimize reflection of solar radiation onto the solar collector.
  • longitudinal bladders can be built into the tubing material or otherwise used to support the tubes. Air pressure varied within said bladders can be used to change the buoyancy of one side of the tube, causing rotation until equilibrium is reached.
  • Each end cap assembly 24 is configured to facilitate flow of gas and liquid to and from the interior of the elongated tube 12.
  • end cap assembly 26 may include liquid transfer tubes 32 and gas transfer tubes 34 that extend from the end caps. Liquid can be injected or withdrawn through liquid transfer tubes to regulate how high the elongated tubes 12 float in the support liquid 16. Similarly, gas can be injected or withdrawn through gas transfer tubes.
  • the inlets and outlets pass through pipes 36, which also serve as axles on which end-caps rotate. By passing through the axis of rotation of the end-caps, the liquid and gas transfer tubes can thus be permanently interfaced to the elongated tube 12 and can allow fluid and gas transfer while the elongated tube is turning.
  • other inlets and outlets passing through both, eccentrically mounted control valves on the end-cap, or valves mounted on the plastic tubing itself are possible in other embodiments without departing from this disclosure.
  • the liquid transfer tubes 32 are submerged within the liquid 20 within the tube.
  • Gas transfer tubes 34 are disposed above the liquid.
  • various other configurations can be used.
  • One liquid and one gas transfer tube passing through each end-cap are used. It is also possible to have more than two transfer tubes passing through each end-cap.
  • the rotation element includes sealed ball bearings, which enable long life of the assembly despite potential prolonged exposure to moisture. There are multiple methods possible for sealing the ends of the tubes.
  • the solar energy collection system can include an array of solar reflector assemblies configured to reflect solar radiation towards multiple solar collectors.
  • the system can include groupings of solar reflectors disposed on opposing sides of linear solar collectors, and the solar reflectors can be directed to the closest solar collector.
  • a solar reflector assembly 110 having a heat-transfer reservoir 142 positioned above a reflective sheet 114 such that solar radiation reflected by the sheet is directed towards the reservoir. More particularly, the reservoir is in an upper portion of the elongated tube 112, extending the entire length of the tube. Heat- transfer fluid enters a heat-transfer reservoir 142 at a first end cap, and it absorbs the reflected solar radiation from the reflective sheet 114 of the solar reflector assembly 110 as it passes through the heat-transfer reservoir 142 to a second end cap assembly. The heated fluid is then directed to power an electrical generator (not shown) or is used for process heat.
  • Reflective sheet 114 is coupled to an interior wall of the elongated tube 112 so that the reflective sheet 114 divides the elongated tube 112 into two portions, an upper portion or chamber 121 and a lower ballast portion or chamber 123.
  • An array of solar reflectors 110 can be configured to rotate to track the sun to ensure that the reflective solar radiation is directed towards the reservoir, as in FIG. 5.
  • the solar reflector assemblies 110 are supported by a body of liquid 116 in a pool 119.
  • the heat-transfer reservoir 142 is attached to or formed in the wall of the elongated tube from the same polymer material.
  • an exterior and an interior sheet of polymer material can be used together by spaced apart, generally parallel seams to form the heat-transfer reservoir.
  • the material for the heat-transfer reservoir should have sufficient strength and durability characteristics to handle the anticipated pressure, heat, and so on, when the heat-transfer fluid is heated.
  • the heat-transfer reservoir can include additional structure and/or other materials, to facilitate the use of selected heat-transfer fluids that achieve high pressures and high temperatures.
  • the heat-transfer reservoir as discussed above can further include a rigid tube installed at tube deployment, sandwiched between the exterior and interior sheets and extending between the end cap assemblies.
  • Each solar reflector assembly 210 includes a tube 212 having a plurality of heat-transfer reservoirs 242a-c, similar to the heat-transfer reservoir depicted in FIG. 4.
  • a reflective sheet 214 is disposed within each tube 212.
  • the elongated tubes 212 are coupled together along longitudinal sides 270, forming a raft.
  • a raft configuration can be used in other embodiments, such as with an external solar collector that can be disposed in a prescribed location, spaced apart from the raft to receive reflected solar radiation from the reflective sheets.
  • Use of a plurality of heat transfer reservoirs can be effective in embodiments in which the solar reflector assembly does not rotate to track the sun. Rather, as the sun progresses across the sky, the reflected focal area of the reflective sheet will track across the plurality of heat transfer reservoirs.
  • the system can be configured to pass the heat-transfer fluid through the appropriate reservoir at prescribed times to coincide with the location of the reflected focal area.
  • the system passes heat-transfer fluid through the first reservoir 242a in the morning.
  • the system passes heat transfer fluid through the center reservoir 242b (FIG. 7b).
  • the system passes heat transfer fluid through the third reservoir 242c (FIG. 7c).
  • the system can be designed with any number of heat-transfer reservoirs, and the size and configuration of each reservoir of the plurality of reservoirs can vary from each other, as requirements dictate.
  • the reflective sheet 14 can be configured to achieve various different shapes.
  • the reflective sheet 14 can be configured to be held taut when the tube is inflated, forming a generally planar shape.
  • a curved shape for the reflective sheet 14a, 14b can also be used.
  • the reflective sheet 14a can be configured to drape between the attachment seams of the opposing longitudinal edges of the reflective sheet, forming a generally catenary shape (FIG. 8b).
  • the curved shape can be formed by maintaining a pressure differential on opposing sides of the sheet 14b, forming a generally parabolic shape.
  • the elongated tube 312 of the solar reflector assembly 310 can be configured to achieve various different cross-sectional shapes.
  • the tube 312 has a generally constant cross-section profile.
  • the cross-section profile can vary across the length of the tube.
  • FIG. 9a depicts an elongated tube 312 having an oval shaped cross section, used with a curved reflective sheet 314a.
  • FIG. 9b depicts an elongated tube 312 having an oval shaped cross section, used with a planar reflective sheet 314b. It should be appreciated that variations of these shapes and others having different parameters can be used.
  • other cross-sectional shapes for the tube can be used, such as an ellipse, superellipse, vesica piscis, lens, and polygon, to name a few, without departing from the disclosure.
  • the tube can be formed by an upper panel and a lower panel, along opposing seams, and the reflective material is disposed therebetween attached at the seam.
  • the tube can also be formed by a single sheet of material to which the reflective sheet is attached. The opposing ends of the sheet can be coupled together forming the tube, having the reflective sheet disposed in the interior. Due to the flexibility of the material it can be rolled up into a compact format for shipping and deployment.
  • a solar reflector assembly 410 is shown having gas bladders 482 that extend the length of the tube 412. Each gas bladder is
  • An array of solar reflectors 410 can be used together, in which a subset of the tubes can be inflated with the other tubes partially or completely deflated to control the angle at which the tubes float in the supporting body of liquid (not shown).
  • the assembly can incorporate similar features as discussed with reference to other embodiments, including end cap assemblies 424, reflective sheet 414, gas and liquid pass-through tubes 432, 434, a rotation assembly 426 including a motor (not shown) and a transmission system 430 and so on.
  • FIGS. 12-14 exemplary embodiments of a solar reflector assembly with an externally mounted reflector will be described.
  • a solar reflector assembly 510 including an inflated elongated tube 512 and a reflective sheet 514 coupled to an exterior wall 517 of the tube, usable as a solar reflector and/or a photobioreactor, in which the tube is disposed on a supporting body of liquid (not shown).
  • the reflective sheet 514 is disposed along the top of the tube 512.
  • Supports 525 are disposed on an exterior side 517 of the tube 512.
  • the longitudinal sides of the reflective sheet 514 are coupled to the supports 525 and an intermediate section of the reflector sheet 514 can be coupled to the tube 512, such that the reflective sheet 514 is generally flat.
  • the elongated tube 512 has an upper portion 521 and a lower ballast portion 523 containing reservoir liquid 520, though the upper and lower ballast portions are not physically separated because of the external location of the reflective sheet 514.
  • the elongated tube 512 is a unitary structure that includes lower ballast portion 523, which provides ballast for the solar reflector assembly 510.
  • lower ballast portion 523 is the lower section of the elongated tube itself and, as such, is integrally formed with the elongated tube 512.
  • This structure is advantageous because it obviates the need for additional components or structural elements to facilitate ballast.
  • the elongated tube 512 is made of a thin-gauge, flexible material, as described in more detail above, and, in contrast to other embodiments, need not be transparent because the reflective sheet 514 is externally mounted.
  • FIG. 13 a second embodiment is shown in which the reflector sheet 514 is positioned and attached in a similar manner as in FIG. 12.
  • the longitudinal sides 527a, 527b of the reflector sheet 514 are raised relative to the intermediate section 529 of the sheet 514, such that the reflected solar radiation can be focused.
  • the reflective sheet 514 is mounted to have a generally v-shaped cross section.
  • the reflective sheet 514 can be mounted to have various other cross-sectional shapes such as u-shaped or parabolic, among others.
  • the supports 525 are formed as inflatable tubes similar to the primary tube 512.
  • the supports 525 are formed of a single sheet of plastic such as polyethylene, having a thickness between about 50 microns (2 mil) and 300 microns (12 mil).
  • the supports 525 can be formed of multiple layers and multiple sections of material.
  • other lightweight, flexible materials or combinations of materials can be used for the supports.
  • the supports 525 of the exemplary embodiments are independently inflatable relative to each other and the primary tube 512.
  • the supports 525 can be operatively coupled to each other and/or to primary tube 512 to enable air to pass between the components to maintain air pressure therein.
  • the supports 525 have a generally circular cross section. In other embodiments, the supports 525 can have other cross- sectional shapes, to facilitate other shapes for the reflective sheet 514 such as a parabolic shape. In addition, the supports 525 run substantially the entire length of the tube 512. In other embodiments, multiple supports 525 can be used and can be intermittently spaced along the length of the tube 512. Moreover, the supports 525 need not be inflatable. Rather, other structure can be used to maintain the reflective sheet 514 in the proper position.
  • a rigid reflector sheet 514 is disposed tangentially along the top of the tube 512.
  • the rigid reflector 514 is supported by its connection to the tube 512 and its rigidity.
  • the reflector 514 can be formed of reflective material mounted on a rigid base sheet.
  • the base sheet is formed of rigid polyvinyl chloride (RPVC) having a thickness between about 200 and 300 microns.
  • RPVC rigid polyvinyl chloride
  • Other exemplary materials that can be used include thermoplastic polymers and other materials having rigidity sufficient to maintain a prescribed cross-sectional geometry independent of lateral supports 525.
  • the rigid reflector 514 can be rolled up for storage or transport, and yet configured to remain relative flat when deployed.
  • An externally mounted reflector sheet can also be used in embodiments described above in which a plurality of elongated tubes are coupled together along longitudinal sides, forming a raft, as well as with embodiments having gas bladders that extend the length of the tube(s).
  • FIGS. 15 and 16 a system 5 of generating energy from solar radiation is shown, having a solar collector 92 that includes solar PV cells 94 disposed below heat-transfer pipes 96.
  • the PV cells are configured to receive energy from reflected radiation within a prescribed wavelength, such as the visible light spectrum.
  • the solar reflectors concentrate reflected radiation on the PV cells, thereby optimizing efficiency.
  • the heat-transfer pipes are used to pass heat-transfer fluid as discussed above. Beneficially, the pipes are positioned to absorb reflected radiation from the solar reflectors as well as serving as a heat sink for the PV cells, cooling the PV cells and keeping them in an optimal heat range to minimize risk of overheating.
  • thermoelectric modules using, e.g., the Seebek effect
  • the heat- transfer fluid can capture the IR portion of the reflected radiation, thereby collecting heat for use in a generator. Once heated, the heat- transfer fluid can be used to generate energy as known in the art, such as electricity or process heat (as discussed above).
  • the solar reflector assemblies 10 includes an elongated tube 12 having an upper portion 21 and a lower ballast portion 23 containing a reservoir liquid 20, a reflective sheet 14, end cap assemblies 24 and rotation assembly 26. The solar reflector assemblies 10 are supported by a body of liquid 16 in a pool 19 and rotate to direct reflected solar radiation to solar collector 92.
  • the reflective sheet can be fully reflective, such as when used for embodiments configured only as a solar reflector.
  • the reflective sheet can be configured as a hot mirror, as disclosed in the U.S. Patent Application Serial No. 61/233,667, filed August 13, 2009, which is incorporated by reference herein in its entirety, and described herein, for embodiments configured for biomass generation or for a combined solar reflector and photobioreactor assembly ("CSP/PBR assembly").
  • CSP/PBR assembly combined solar reflector and photobioreactor assembly
  • the tube material is at least partially translucent such that biomass may grow in the ballast fluid in the lower ballast portion of the tube.
  • biomass may grow in the pools of support liquid. This biomass could be harvested and processed into a useful product
  • the reservoir of liquid within the tubes can also be used to grow biomass using systems and methods as disclosed in U.S. Patent Application Serial No. 61/152,949, filed February 16, 2009 ("'949 Application”), which is incorporated by reference herein in its entirety.
  • CSP/PBR assemblies concentrated solar power/photobioreactor assemblies 610
  • Each CSP/PBR assembly 610 includes an inflated elongated tube 612 having a reflective sheet 614 coupled along opposed sides of the sheet to an interior wall 615 of the tube.
  • the tube 612 is divided into an upper portion 621 and a lower ballast portion 623.
  • the reflective sheet is configured to reflect IR radiation towards a solar collector 618, while allowing visible light to pass through to a culture medium 620 within the lower ballast portion 623 of the tube 612.
  • the array is supported by a body of liquid 616 in a pool 619.
  • the reflective sheet 614 is formed of lightweight flexible reflective material configured to allow prescribed wavelengths of solar radiation to pass through, while reflecting other wavelengths of solar radiation towards the solar collector 618.
  • the reflective sheet is formed as a hot mirror, configured to reflect IR radiation (e.g., heat reflective) while allowing visible light to pass through (e.g., visibly transparent), across wide angles of incidence.
  • IR radiation e.g., heat reflective
  • visible light e.g., visibly transparent
  • IR radiation is reflected towards the solar collector, while the visible light passes through to the culture medium 620 to facilitate growth of the biomass, e.g., algal biomass.
  • minimizing penetration of IR radiation into the culture medium reduces the heat load of culture, allowing the culture to be maintained at a temperature conducive to optimal biomass growth.
  • some tubes could be deployed with hot mirrors and some with full spectrum reflectors, in order to finely tune the percentage of insolation that makes it into culture to generate biomass, and how much insolation is reflected to the receiver for power generation.
  • the term "visibly transparent,” unless otherwise specified, is intended to refer to an attribute of the reflective sheet of transmitting a large fraction (e.g., an average of at least 50%) of visible radiation (e.g., at least between about 400 nm to about 700 nm) therethrough.
  • the term "heat reflective,” unless otherwise specified, is an attribute of the reflective sheet of reflecting a large fraction (e.g., an average of at least 50%) of IR radiation (e.g., above 750 nm).
  • the reflective sheet 614 comprises a dielectric thin film disposed on a flexible substrate, such as a flexible polymeric sheet.
  • the reflective sheet 614 can include flexible films such as IR reflective films sold under the brand name PrestigeTM Series, available from 3M Company.
  • the reflective sheet 614 is further configured to endure a high moisture environment, without significant deterioration.
  • the dielectric film can comprise one or more layers (or stacks) disposed on the substrate. In multilayer configurations, the thickness of each of the layers can be selected to optimize the properties of the reflective sheet. Moreover, intervening layers having varying properties can be used to optimize performance of the reflective sheet.
  • the reflective sheet can comprise other materials, known in the art, having sufficient characteristics for use in the intended purposes, such as metal oxides disposed on a substrate. Suitable substrates can include standard contractor-grade low-density polyethylene (LDPE), polyethylene terephthalate (PET) (e.g., uniaxial, biaxial), polyester, polyterephthalate esters, polyethylene naphthalate, polypropylene, and others.
  • LDPE low-density polyethylene
  • PET polyethylene terephthalate
  • polyester e.g., uniaxial, biaxial
  • polyester e.g., uniaxial, biaxial
  • polyester e.g., uniaxial, biaxial
  • polyester e.g., uniaxial, biaxial
  • polyester e.g., uniaxial, biaxial
  • polyester e.g., uniaxial, biaxial
  • polyester e.g., uniaxial, biaxial
  • polyester e.g., uniaxial, biaxial
  • polyester e.
  • end cap assembly 624 may include liquid transfer tubes 632 and gas transfer tubes 634 that extend from the end caps. Liquid can be injected or withdrawn through liquid transfer tubes to regulate how high the elongated tubes 612 float in the support liquid 616. Similarly, gas can be injected or withdrawn through gas transfer tubes. The inlets and outlets pass through pipes 636, which also serve as axles on which end-caps rotate.
  • the end cap assembly 624 may also comprise eccentrically mounted pass-through fittings 639 instead of transfer tubes, as shown in FIG. 19b.
  • Pass-through fittings 639 provide access to the inside of the tube 612 to facilitate flow of gas and/or liquid into and out of the tubes through fluid lines 637.
  • the reflective sheet is configured to allow substantial transmission of wavelengths between about 400 nm and 700 nm and to substantially reflect wavelengths between above 750 nm. More particularly, the reflective sheet allows transmittance of at least 50 percent of incident energy in the wavelength band between about 400 nm and 700 nm at normal incidence.
  • the reflective sheet becomes highly reflective, even at normal incidence.
  • the reflective sheet can be configured to varied parameters for reflection and transmission performance.
  • the reflective sheet can be configured to achieve higher levels of transmittance within the visible spectrum, particularly within wavelengths to optimize photosynthesis (e.g., between about 380 nm - 420 nm, at the lower end, and about 690 nm - 750 nm, at the upper end).
  • the reflective sheet can be configured for high transmission (e.g., above 50 percent) for a range (or ranges) within the visible spectrum, such as, between about 400 - 500 nm and/or about 600 - 700 nm. Such ranges can be selected based on the needs of an algal culture of a prescribed embodiment.
  • the reflective sheet's performance parameters as a heat reflector can also be varied across embodiments without departing from the disclosure. For example, it is
  • the reflective sheet can be configured to have high percentage of reflection within a bounded range of IR wavelengths. Exemplary ranges include 700 - 1200 nm, 700 - 2000 nm, 750 - 1200 nm, and 750 - 2000 nm, among others. It should be appreciated that other ranges can be used, to account for performance, location, cost, and other considerations.
  • each tube 612 is formed of transparent, lightweight flexible plastic coupled at each end to rigid end cap assemblies 624, which facilitate the flow of liquid and gas into and out of the tubes.
  • each CSP/PBR assembly 610 may comprise an end cap assembly 624 coupled to an end of the elongated tube 612, or two end cap assemblies 624, with one coupled to each end.
  • End cap assemblies 624 include liquid transfer tube 632 and gas transfer tube 634.
  • Liquid transfer tube 632 provides access to the culture medium 620 and may facilitate addition of nutrients and harvesting of biomass.
  • the CSP/PBR array 601 may further include a rotation assembly 626 operatively connected to one or both ends of the elongated tubes 612.
  • the rotation assembly may include a motor 628 coupled to end caps 624 by a transmission system 630 to turn the tubes 612 to track the sun.
  • Positive pressure within the tube maintains the tube in a substantially rigid, cylindrical configuration.
  • the culture medium within the tube facilitates ballast of the tube on the supporting liquid 616 in pool 619.
  • the tube will float such that the top surface of the liquid within the tube is generally parallel with the surface of liquid on which the tube is floating.
  • the level of liquid within the tube can vary, from empty to fully filled with liquid, as desired.
  • the system may be further configured to extract biomass from within the CSP/PBR assemblies for processing.
  • Various approaches can be used for this purpose. For example, the present inventor's co-pending '949 application, entitled “System for Concentrating Biological Culture and Circulating Biological Culture and Process Fluid," which is incorporated by reference herein for all purposes, discloses effective approaches towards that end.
  • any of the above-described solar reflector assembly and system embodiments could be modified to incoiporate a culture medium to provide different embodiments of a CSP/PBR assembly.
  • the elongated tube of the CSP/PBR assembly can be configured to achieve various different cross-sectional shapes, as depicted in FIGS. 9a-b with reference to the solar reflector assembly.
  • a CSP/PBR assembly could also have gas bladders to optimize the stability of the system, like the solar reflector assembly depicted in FIGS. 10-11.
  • the system can include an array of CSP/PBR assemblies configured to reflect solar radiation towards multiple solar collectors.
  • the system can include groupings of CSP PBR assemblies disposed on opposing sides of linear solar collectors, and the CSP PBR assemblies can be directed to the closest solar collector.
  • an array of CSP/PBR assemblies can be configured to rotate to track the sun to ensure that the reflective solar radiation is directed towards the reservoir.
  • Systems of generating energy from solar radiation including PV cells, such as those discussed above with reference to FIGS. 15 and 16, could also incorporate a culture medium for growing biomass to provide CSP/PBR assemblies.
  • FIGS. 21-26 exemplary embodiments of a solar reflector assembly having additional shapes and cross-sections are illustrated.
  • FIG. 21 shows an embodiment of a solar reflector assembly 710 comprising an elongated flexible tube 712 having an upper portion 721, a lower ballast portion 723 and an "egg shaped" cross section.
  • the tube 712 contains ballast liquid 720 and sits on an expanse of liquid 716.
  • This configuration is made by coupling the reflective panel or sheet 714 to the inner walls 715 of the tube 712 in two places that would normally form a chord of the circular cross section of a certain length.
  • the reflective sheet 714 is slightly shorter than the characteristic chord length, thus pulling in the sides of the circles at the attachment points A.
  • the lower ballast portion 723 remains largely (but not exactly) cylindrical, and the upper portion's protruding "egg" shaped dome 735 does not materially impact the performance of the system. It should be noted in this regard that various exaggerated geometries are possible, with very large egg domes having no adverse impact on performance.
  • FIGS. 22-23 illustrate exemplary embodiments of solar reflector assemblies 810 with each assembly comprising an elongated flexible tube 812 having an upper portion 821, lower ballast portions 823a, 823b and a "triple panel” cross section.
  • This configuration is made by attaching a second sheet or panel 845 to the reflective sheet or panel 814 either in the middle B or at some other point between the two ends of the reflective sheet 814 and connecting the bottom of the second panel 845 to the bottom of the tube 812 at some middle point C or at some other point.
  • This allows the reflective sheet 814 to be pulled into a "V” formation.
  • There are other ways to create a "V” formation for example, with a weight attached at the middle of reflective sheet 814.
  • the "V" formation provides the advantage of a tighter focus on the target.
  • the tube 812 contains ballast liquid 820 and sits on an expanse of liquid 816.
  • FIG. 23 illustrates an array of CSP/PBR assemblies 910 having a triple-panel configuration.
  • Each CSP/PBR assembly includes an inflated elongated tube 912 having a reflective sheet 914 coupled along opposed sides of the sheet to an interior wall 915 of the tube.
  • a second sheet or panel 945 is attached to the reflective sheet or panel 914 either in the middle or at some other point between the two ends of the reflective sheet 914 and connecting the bottom of the second panel 945 to the bottom of the tube 912 at some point in the middle or at some other point.
  • the tube 912 is divided into an upper portion 921 and two lower ballast portions 923a, 923b.
  • the reflective sheet is configured to reflect IR radiation towards a solar collector (not shown), while allowing visible light to pass through to a culture medium 920 within the lower ballast portions 923a, 923b of the tube 912.
  • the array is supported by a body of liquid 916 in a pool 919. Holes 947 defined in the second panel 945 facilitate the equalization of the level of ballast within the tube during rotation.
  • Each solar reflector assembly 1010 comprises an elongated flexible tube 1012 having an upper portion 1021, lower ballast portions 1023a, 1023b and an "egg shaped, triple panel” cross section.
  • This configuration is made by attaching a second sheet or panel 1045 to the reflective sheet or panel 1014 either at a middle point B or at some other point between the two ends of the reflective sheet 1014 and connecting the bottom of the second panel 1045 to the bottom of the tube 1012 at some middle point C or at some other point.
  • This allows the reflective sheet 1014 to be pulled into a "V" formation.
  • the second panel 1045 is shorter than otherwise necessary which leads to the deformation at C. Laying this reflector assembly on an expanse of liquid 1016 and using internal ballast provides a stable, level reflector array that is easily turned by actuators at each end.
  • the reflective sheet 1014 is slightly shorter than the characteristic chord length, thus pulling in the sides of the circles at the attachment points A. In the case of modest internal pressure that is equal on both sides of the panel, this advantageously guarantees that the panel is flat, even in the case of modest irregularities introduced in manufacturing.
  • the lower ballast portions 1023a, 1023b together remain largely cylindrical. Holes 1047 defined in the second panel 1045 facilitate the equalization of the level of ballast within the tube during rotation.
  • the "egg shaped, triple panel" solar reflector assemblies can be arranged in an array configuration. The array of solar reflector assemblies is supported by a body of liquid 1016 in a pool 1019.
  • FIGS. 27 a- 27b illustrate further exemplary embodiments of solar reflector assemblies having simplified end designs.
  • FIG. 27a shows an embodiment of a solar reflector assembly utilizing direct coupling to a rotation axle.
  • Solar reflector assembly 1 110 comprises an elongated flexible tube 1 112 having an upper portion 1121 and a lower ballast portion 1123.
  • the elongated tube 1112 is directly coupled to a rotation axle 1136 without an end cap component. It can be seen that the tube 1112 develops folds 1157 where it is bunched up and locked onto the axle 1 136.
  • a retaining ring 1153 facilitates locking of the tube 1112 onto the axle 1136.
  • Axle 1 136 includes liquid transfer tube 1132 and gas transfer tube 1134.
  • the axle 1136 may also be coupled to a transmission system 1130 that serves to turn the tube 1112 to track the sun.
  • FIG. 27b shows an embodiment of a solar reflector assembly without an end cap or a rotation axle, but instead is heat-sealed at its ends and employs pass-through fittings for ingress and egress of fluids.
  • Solar reflector assembly 1110 comprises an elongated flexible tube 11 12 having an upper portion 1121 and a lower ballast portion 1123.
  • solar reflector assembly 11 10 employs a heat-seal 1159 at the end.
  • Pass-through fittings 1139 provide access to the inside of the tube 1112 to facilitate flow of gas and/or liquid into and out of the tubes through fluid lines 1137.
  • Rotation of the tube 1112 is accomplished by a rotation assembly that includes a strap 1149 and a stabilizer 1151.
  • the strap is coupled to the tube 1112 by being wrapped 1147 around the tube, but other means of coupling a rotation assembly to the tube are possible.
  • the tube 1112 is rotated by pulling the strap 1149 in the direction corresponding to the desired turning direction for the tube 1112.
  • Stabilizer 1151 with stabilizer rods 1143 prevents lateral movement of the tube when strap 1149 is pulled, thereby inducing rotation as opposed to translation.
  • a rotation assembly can be placed anywhere along the length of the tube, and that multiple different means, including end-caps, axles, straps and other means can be employed simultaneously to impart rotation on the tube.
  • exemplary embodiments described herein can be controlled by a computer.
  • Either an open loop system that is pre-programmed with the position of the sun in the sky or a closed loop system that has a sensor or sensors that detect the position of the sun in the sky or a combination of these two strategies can be used to control the position of the tubes.
  • dry cooling system 1210 comprises tube 1212, which may be an elongated inflatable tube having an upper portion or chamber 1221 and a lower ballast portion or chamber 1223, which provides ballast for the dry cooling assembly.
  • tube 1212 may be a unitary structure such that upper portion 1221 and lower ballast portion 1223 are the upper and lower sections, respectively, integrally formed with the tube 1212. Alternatively, separate upper and lower portions could be separately manufactured and connected.
  • the tubes are formed of a single sheet of a thin gauge, flexible material, which can be various plastics such as polyethylene, having a thickness between about 50 microns (2 mil) and 300 microns (12 mil).
  • tubes can be formed of multiple layers and multiple sections of material.
  • the lower ballast portion 1223 defines a reservoir 1225 containing liquid 1220 facilitating ballast.
  • the lower ballast portion 1223 may be partially or completely filled with ballast liquid 1220.
  • the elongated tube 1212 is at least partially submerged in a support body of liquid 1216 in a support basin 1219 so as to support one or more elongated tubes 1212.
  • the support liquid 1216 and ballast liquid 1220 may be the same type of liquid, and could be nonpotable, brackish water.
  • dry cooling assemblies 1210 can be grouped together into an array 1201 of such assemblies.
  • the array is supported by a body of liquid 1216 in a pool or basin 1219.
  • a body of liquid 1216 in a pool or basin 1219.
  • the supporting body of liquid 1216 may be divided into multiple basins or reservoirs, each of which would hold an array of dry cooling assemblies.
  • the support liquid 1216 and ballast liquid 1220 can be used to cool exhaust from a boiler or heat engine.
  • the support liquid 1216 will typically have a temperature higher than ambient temperature due to heat 1227 from the heat engine exhaust.
  • the ballast liquid 1220 is warmed by heat 1227 from the supporting body of liquid 1216.
  • the ballast liquid 1220 thus transfers the heat 1227 from the supporting body of liquid 1216 in the support basin 1219 to the interior of the tube 1212 without the need for evaporation.
  • heat 1227 from the basin 1219 passes through the tube 1212, into the ballast liquid 1220, into the air in the upper chamber 1221, through the wall of the tube 1212 again, and then out into the ambient conditions.
  • Exemplary dry cooling assemblies are structured so that at least some of the heat passes from the ballast liquid 1220 to the upper portion 1221 of the tube 1212. Some of the heat 1227 passes out of tube 1212 to the ambient air from the ballast liquid 1220, and some of it passes out from the upper portion 1221 of the tube 1212. Alternatively, or in addition, coolant air 1229 may be blown through the upper portion 1221 of the tube 1212 such that the coolant air 1229 absorbs at least some of the heat 1227.
  • the coolant air 1229 should have a temperature cooler than the temperature of the supporting body of liquid 1216 to facilitate heat transfer, in particular, removal of heat 1227 from the tube 1212.
  • exemplary embodiments include a panel 1222 coupled to an interior wall 1215 of the tube 1212.
  • the panel 1222 is made of a flexible material.
  • the flexible panel 1222 divides the tube 1212 into an upper air- filled portion 1221 that serves as a dedicated section of the tube 1212 through which ambient or coolant air can be blown to remove heat from the dry cooling system 1210, and a separate lower portion 1223.
  • the ballast portion 1223 is completely filled with ballast liquid 1220, this allows the maximum amount of contact between the ballast liquid 1220 and the panel 1222.
  • the separation of upper and lower portions 1221 and 1223 by panel 1222 allows not only for passive cooling by also a method to actively cool the support basin 1219.
  • the ballast chamber 1223 is not fully filled with ballast liquid 1220.
  • One advantage of this embodiment is that the tube 1212 is free to rotate until the edge of the panel 1222 comes into contact with the surface of the ballast liquid 1220. The tube 1212 cannot rotate further than this without submerging the air-filled top chamber of the tube 1212, which requires a large amount of force.
  • the panel 1222 may have a width substantially equal to the diameter of the tube 1212 so that when the tube 1212 is fully inflated, the panel 1222 is pulled taut and becomes a rigid chord across the tube 1212.
  • the panel 1222 may be oversized, i.e., its width is greater than the diameter of the tube 1212, so that when the tube 1212 is inflated the panel 1222 is not pulled taut, but hangs down in the inflatable tube.
  • panel 1222 may be sufficiently oversized to that it hangs low enough to rest on the ballast fluid 1220.
  • exemplary embodiments of a dry cooling assembly 1210 have one or more elongated interior tubes 1231 disposed within the tube 1212.
  • Exemplary embodiments have two interior tubes 1231a, 1231b placed within the body of the main tube 1212 such that the interior tubes 1231a, 1231b may float on ballast fluid 1220.
  • the interior tubes 1231 may be made of a flexible material that is the same or similar to that of the main tube 1212.
  • Coolant air 1229 may be pumped through the interior tubes 1231a, 1231b to facilitate heat transfer, in particular, removal or extraction of heat 1227 from the tube 1212.
  • the heat 1227 will thus move from the basin 1219 into the ballast fluid 1220, across the tube 1212 in the coolant air 1229, where it will be blown out of the tube 1212.
  • Exemplary embodiments further include combined solar reflector and dry cooling assemblies 1210.
  • one such combination system may include an oversized panel 1222 that hangs down in the inflatable tube 1212 and rests on the ballast fluid 1220. This creates small portions of the lower chamber 1225a, 1225b on opposite sides of the tube 1212.
  • an internally mounted reflective sheet 1214 is disposed within the elongated tube 1212, having opposing longitudinal sides attached to the interior wall 1215 of the tube 1212.
  • the assembly 1210 is partially submerged in a support body of liquid 1216 in a basin 1219.
  • the reflective sheet 1214 is used to reflect solar radiation towards a solar collector configured to transform the solar energy to electricity or process heat. This also prevents the heat from solar energy from entering the tubes 1212 and causing them to become warmer.
  • combined solar reflector and dry cooling assemblies 1210 can generate electricity or heat while simultaneously cooling associated heat engines or power plant equipment.
  • a combined solar reflector and dry cooling assembly 1210 includes both interior tubes 1231 and an internally mounted reflective sheet 1214 to reflect solar radiation.
  • Two interior tubes 1231a, 1231b may be placed within the body of the main tube 1212 such that the interior tubes 1231a, 1231b float on ballast fluid 1220.
  • Coolant air 1229 may be pumped through the interior tubes 123 la, 1231b to facilitate heat transfer, particularly removal of heat 1227 from the tube 1212.
  • One such embodiment of a combined assembly 1310 includes an inflated elongated tube 1312, a panel 1322 coupled to an interior wall 1315 of the tube 1312, and a reflective sheet 1314 coupled to an exterior wall 1317 of the tube 1312, in which the tube is disposed on a supporting body of liquid 1316.
  • the reflective sheet 1314 is disposed along the top of the tube 1312.
  • Supports 1337a, 1337b are disposed on an exterior side 1317 of the tube 1312.
  • the longitudinal sides of the reflective sheet 1314 are coupled to the supports 1337a, 1337b.
  • Panel 1322 is coupled to an interior wall 1315 of the tube 1312.
  • the panel 1322 is made of a flexible material.
  • the flexible panel 1322 divides the tube 1312 into an upper portion 1321 that serves as a dedicated section of the tube 1312 through which ambient or coolant air 1329 can be blown to remove heat 1327 from the combined solar reflector and dry cooling system 1310, and a separate lower ballast portion 1323.
  • the panel 1320 can be pulled taut, as shown in FIG. 36, or can be oversized and hang down to touch the ballast liquid 1320, as shown in FIG. 37.
  • FIG. 38 illustrates another exemplary embodiment of a combined solar reflector and dry cooling system 1310 that employs an interior tube 1331 together with an externally mounted reflective sheet 1314 to reflect solar radiation.
  • the interior tube 1331 is disposed within the body of the main tube 1312 such that the interior tube 1331 floats on ballast fluid 1320.
  • Supports 1337a, 1337b disposed on an exterior side 1317 of the tube 1312 serve to mount the reflective sheet 1314.
  • Coolant air 1329 may be pumped through the interior tube 1331 and or upper chamber 1321 to facilitate heat transfer, in particular, removal of heat 1327 from the tube 1312.
  • Embodiments of a dry cooling / photobioreactor assembly 1410 include an inflated elongated tube 1412 having a panel 1422 coupled to interior walls 1415 of the tube 1412 that divides the tube 1412 into an upper portion 1421 that serves as a dedicated section of the tube 1412 through which ambient or coolant air 1429 can be blown to remove heat 1427 from the system 1410, and a separate lower ballast portion 1423.
  • the lower ballast portion 1423 may include culture medium 1420 to grow photosynthetic biomass.
  • the assembly 1410 is supported by a body of liquid 1416 in a basin 1419.
  • the panel 1422 can be pulled taut, as shown in FIG. 39, or be oversized and hang down to touch the culture medium 1420, as shown in FIG. 41.
  • FIG. 40 shows an exemplary embodiment of a dry cooling / photobioreactor assembly 1410 in which interior tubes 1431a, 1431b are disposed within the body of the main tube 1412 such that the interior tubes 1431 float on culture medium 1420.
  • Tube 1412 has an upper portion or chamber 1421 and a lower ballast portion or chamber 1423, which provides ballast for the dry cooling / photobioreactor assembly 1410.
  • the assembly 1410 is supported by a body of liquid 1416 in a basin 1419.
  • Coolant air 1429 may be pumped through the interior tubes 1431a, 1431b and or upper chamber 1421 to facilitate heat transfer, in particular, removal of heat 1427 from the tube 1412.
  • dry cooling / solar reflector / photobioreactor assembly 1510 may combine some of the major components of each aspect into one system.
  • dry cooling / solar reflector / photobioreactor assembly 1510 includes an inflated elongated tube 1512 having an internally mounted reflective sheet 1514 coupled to the interior walls 1515 of the tube 1512 that divides the tube 1512 into an upper portion 1521 and a lower ballast portion 1523, which includes culture medium 1520 to grow photosynthetic biomass.
  • the reflective sheet 1514 is configured to reflect IR radiation towards a solar collector, while allowing visible light to pass through to culture medium 1520 within the lower ballast portion 1523 of the tube 1512.
  • the assembly 1510 is supported by a body of liquid 1516 in a basin 1519.
  • Interior tubes 1531a, 1531b are disposed within the body of the main tube 1512 such that the interior tubes 1531 float on culture medium 1520.
  • Coolant air 1529 may be pumped through the interior tubes 1531a, 1531b and or upper chamber 1521 to facilitate heat transfer, in particular, removal of heat 1527 from the tube 1512.
  • dry cooling assemblies may be employed to cool exhaust, as well as steam, from a heat engine or other power plant equipment.
  • an array 1201 of dry cooling assemblies 1210 may be used in conjunction with a power plant 1260.
  • the support liquid 1216 and ballast liquid 1220 can be used to cool this flue gas 1250 from the boiler or heat engine 1252.
  • the dry cooling assemblies 1210 may be fluidly connected via pipes or other fluid conducting members to the boiler or heat engine 1252.
  • the flue gas 1250 exits the boiler or heat engine 1252 and is directed to the lower ballast portions 1223 of the tubes 1212.
  • Coolant air 1229 may be pumped through the upper chamber 1221 to facilitate heat transfer, in particular, removal of heat 1227 from the tubes 1212.
  • Power plant 1260 combusts fuel 1262 and air 1261 in boiler 1252 to boil water in order to drive a steam turbine 1268 to make electricity 1274. After exiting the turbine 1268, the steam 1271 is cooled down and condensed in order to increase the turbine's efficiency.
  • the support basin 1219 may be fluidly connected to a pipe 1254 or other fluid conducting member that allows flow of waste heat in the form of steam 1271 via feed pump 1256 to a feed tank 1273 containing hot water.
  • Cold support water 1216 is drawn from the support basin 1219 and run through a heat exchanger with the turbine exhaust inside of the condenser 1269. The heated support water 1216a then returns to the support basins 1219 to be cooled by the dry cooling assemblies 1210.
  • the support liquid 1216 will typically have a temperature higher than ambient temperature due to heat 1227 from the heat engine exhaust 1250.
  • the ballast liquid 1220 is warmed by heat 1227 from the supporting body of liquid 1216.
  • the ballast liquid 1220 thus transfers the heat 1227 from the supporting body of liquid 1216 in the support basin 1219 to the interior of the tube 1212 without the need for evaporation.
  • Coolant air 1229 may be pumped through the upper chamber 1221 to facilitate heat transfer, in particular, removal of heat 1227 from the tube 1212.
  • supporting liquid 1216 may be drawn out of multiple basins 1219 simultaneously and used to cool the exhaust or flue gas 1250 from the heat engine or boiler, after which it would be pumped back into the basins 1219 in roughly equal amounts so as to cause each basin 1219 to increase in temperature by about the same amount.
  • the support liquid would be drawn from one or more basins until a maximum temperature is reached, at which point the cooling fluid would then be taken from a different basin or different set of basins.
  • the flue gas 1250 can be pumped into culture medium 1220 inside of the dry cooling assembly 1210 to stimulate growth of photosynthetic organisms, as C02 is a key component of that process.
  • C02 is a key component of that process.
  • a renewable power plant that does not use combustion such as a solar thermal plant
  • there would be no flue gas to feed a culture but the condensing fluid is still needed to cool the turbine exhaust, so the dry cooling mechanism is still useful.
  • Basin #1 was once again cool enough to be used to cool the exhaust, at which point the plant would start over heating Basin #1, then Basin #2, etc.
  • ambient air was pumped through the cooling assembly while the temperature of the support basin was above a certain temperature, in this case 20 C. The air was pumped at 1 m/s.
  • the tubes were assumed to run lengthwise on the top of the basin. There are 70 tubes in the simulation, therefore each tube has a diameter of 15.5 cm and is 200m long.
  • the contact area between the panel and the ballast was taken to be the diameter of the tubes, as they are half full of ballast fluid. Measurements were taken every hour for one year, using NREL's TMY 3 for Imperial, CA as the input weather data.
  • FIG. 46 shows the temperature results for Basin #1 throughout the year.
  • the plant heats Basin #1 most often in order to maintain the highest possible temperature gradient with the ambient air. This allows the basin to cool more quickly and efficiently without the need for evaporation.
  • FIG. 47 shows the temperature results for Basin #10 throughout the year. Basin #10 receives less heat input from the plant throughout the year, but is still frequently too hot to be used to cool a heat engine.
  • FIG. 48 shows the temperature results for Basin #100 throughout the year. Basin
  • FIG. 49 shows the temperature results for Basin #300 throughout the year. Basin #300 is only heated by the engine exhaust eight times during the year, and as such is generally cool enough to cool the engine.
  • FIG. 50 shows the temperature results for Basin #500 throughout the year. Basin #500 is only heated twice, and is cool enough to be the cooling fluid for the engine almost the entire year.
  • FIG. 51 shows the temperature results for Basins #721 - 1000 throughout the year. These basins are never heated by the plant, and are therefore unnecessary. Only 720 basins are needed to adequately cool the heat engine under these conditions. Fewer than this number will work, but it will result in a corresponding reduction in efficiency.

Abstract

A dry cooling assembly is provided comprising a supporting body of liquid having a temperature higher than ambient temperature, and an inflatable elongated tube at least partially submerged in the supporting body of liquid. The inflatable elongated tube has an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material. The lower ballast portion defines a reservoir containing liquid facilitating ballast. The liquid facilitating ballast is warmed by heat from the supporting body of liquid such that the temperature of the support body of liquid is reduced.

Description

SYSTEMS AND METHODS OF DRY COOLING
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Patent Application Serial No. 12/950,931, filed November 19, 2010, which is incorporated by reference herein in its entirety and which is a continuation-in-part of U.S. Patent Application Serial No. 12/849,761, filed August 3, 2010, which is incorporated by reference herein in its entirety and which claims priority to U.S. Patent Application Serial Nos. 61/231,081, filed August 4, 2009, 61/233,667, filed August 13, 2009, and 61/244,349, filed September 21, 2009, each of which is incorporated by reference herein in its entirety.
FIELD OF THE DISCLOSURE
[0002] The present disclosure relates to dry cooling systems, as well as solar energy systems.
BACKGROUND OF THE DISCLOSURE
[0003] There has been a longstanding need to provide a means of efficiently cooling a utility- scale heat engine without using evaporation as the cooling mechanism. Though there are many different sources of energy in the world today, the overwhelming majority all boil water to extract work from a steam turbine. Coal, oil, solar thermal, geothermal, and biomass all generate power in this way. Natural gas power plants either use the gas to boil water for a steam turbine or else simply run the gas through a gas turbine. In either case, however, the exhaust from the turbine needs to be cooled to the lowest reasonably achievable temperature so as to maximize the turbine's efficiency.
[0004] The conventional method for cooling the exhaust from a turbine is to run it through a heat exchanger with liquid water at ambient conditions. This drastically raises the temperature of the water, causing it to either boil outright or have a dramatically increased vapor pressure, increasing evaporation. In either case the cooling body of water is kept at ambient temperature by allowing evaporation. While this is an effective method for increasing turbine efficiency, it raises the significant problem of water usage. [0005] In both traditional and renewable power plants, water usage is becoming an increasingly large barrier to permitting and construction of new power plants. This is a particularly severe problem for solar thermal power plants. Solar thermal plants require vast amounts of land and a large daily irradiance to maximize their return. They are therefore generally constructed in desert environments, where land is very inexpensive and the sun shines brightly for most of the year. These are the advantages of a desert environment, but there is an associated price. Deserts have very little water available, and what little exists is strictly monitored by local governments. Increasingly few municipalities are willing to allow power plants to consume vast amounts of water when farmers and other citizens need that water to survive. The resistance to evaporative cooling is causing many proposed power plants to switch to a dry cooling mechanism.
[0006] In general, dry cooling causes a plant to reduce its energy output by
approximately 10%. This decrease in efficiency is caused by both the increase in the
temperature of the cooling water from not allowing it to evaporate and by the power required to run blowers for air cooling. The current dry cooling systems use heat fins and blowers to extract the energy from the water. The blowers must run constantly to cool the water, causing efficiency losses because the water must be cooled during the day, rather than at night, when the ambient temperature is significantly lower. Thus, there is a need for a dry cooling system that ameliorates the efficiency loss from the lack of evaporative cooling.
[0007] There has also been a long-standing need to provide energy generation from renewable sources. Various renewable energy sources have been pursued, such as solar energy, wind, geothermal, and biomass for biofuels as well as others.
[0008] Solar radiation has long been a prime candidate for fulfilling this need. Various approaches have been taken to achieve energy generation from solar radiation. To that end, much focus has been directed to creating a low cost solar energy conversion system that functions with high efficiency and requires little maintenance.
[0009] For example, solar panels formed of photovoltaic cells (solar cells) are used to transform light to electricity. Such systems have been implemented in various applications. Solar panels have been generally effective for small-scale electrical generation, such as powering small electronics, electrical generation for residential applications, and electrical generation for space-based systems. However, current solar panel technology has been ineffective for large- scale uses, such as electrical generation sufficient for municipal applications. The costs associated with such large-scale usages have been prohibitive. Current solar panels are relatively expensive and do not allow cost-effective energy storage.
[0010] Other approaches include concentrating solar radiation on solar collectors for energy generation, commonly referred to as concentrated solar power (CSP). CSP systems typically use reflective surfaces to concentrate the sun's energy from a large surface area on to a solar collector. For example, the concentrated solar energy can be used to heat a working fluid. The heated fluid is then used to power a turbine to generate electricity. Alternatively, photovoltaic cells can be used at the solar collector, eliminating the need for numerous, expensive cells. In an effort to maximize efficiency, the reflective surfaces of CSP systems can be coupled to a device that tracks the sun's movement, maintaining a focus on a receiver target throughout the day. Using this approach, the CSP system can optimize the level of solar radiation directed towards the solar collector.
[0011] Although such CSP systems are better than traditional flat-panel photovoltaic cells for large-scale applications, shortfalls exist. For example, glass and metal reflector assemblies are expensive to manufacture, ship and install. Further, current tracking devices used with CSP can be relatively expensive and complicated. As a result, current approaches have yet to achieve significant market penetration because of cost issues.
[0012] Biomass production, such as algae and other microorganisms, has increasingly been of interest. The potential usage of such material is found across a wide range of applications, including biofuel feedstock production, fertilizer, nutritional supplements, pollution control, and other uses.
[0013] Current approaches for biomass production include "closed-air" systems that contain biomass production within a controlled environment, limiting exposure to outside air. Examples of such systems include closed photo-bioreactor structures forming a closed container for housing a culture medium for generating biomass. Having a controlled environment helps maximize the generation of algal material by limiting exposure to invasive species as well as controlling other environmental factors that promote algal growth. Closed-air systems significantly reduce evaporation and therefore significantly reduce demands on water resources. In addition, closed-air systems facilitate the sequestration of carbon dioxide gas, which promotes algal growth, eases compliance with environmental regulations, and, according to a large number of scientists, benefits the environment generally. However, such systems can be expensive and, in many instances, cost prohibitive.
[0014] It should be appreciated that there remains a need for a system and method of generating energy from solar radiation in a low-cost, large-scale manner. There also exists a need for a closed-air photo-bioreactor to promote algal growth in a low-cost, large-scale manner. The present disclosure fulfills these needs and others.
SUMMARY OF THE DISCLOSURE
[0015] In general terms, the present disclosure provides dry cooling systems and methods having various applications, including use for cooling the back end of a heat engine. Exemplary embodiments of a dry cooling mechanism comprise inflatable elongated tubes of flexible material that are at least partly submerged. Each tube will contain a dedicated section through which ambient or cooled air can be blown to remove heat from the system. The structure and the material employed provide significant cost savings for the manufacture, shipping, and deployment of the tubes over traditional dry cooling mechanisms. The dry cooling assembly is configured to be deployed on a supporting body of liquid. This liquid serves as both liquid ballast inside of the tubes and as a structural support. It is this fluid that is heated by cooling the turbine exhaust. The heat can then be removed from the system either by simply allowing it to pass to the ambient air outside of the tubes or by using cooler air blown through the dedicated segment of the tube. This will cool the supporting fluid without any evaporation.
[0016] Exemplary embodiments include a dry cooling assembly comprising a supporting body of liquid having a temperature higher than ambient temperature, and an inflatable elongated tube at least partially submerged in the supporting body of liquid. The inflatable elongated tube has an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material. The lower ballast portion defines a reservoir containing liquid facilitating ballast. The liquid facilitating ballast is warmed by heat from the supporting body of liquid such that the temperature of the support body of liquid is reduced and the temperature inside the elongate tube is increased. The heat may pass out of the elongated tube to ambient air. Further, coolant air having a temperature cooler than the temperature of the supporting body of liquid may be blown through the upper portion of the elongated tube such that the coolant air absorbs at least some of the heat.
[0017] Exemplary embodiments of a dry cooling assembly may further comprise a flexible panel coupled to an interior wall of the elongated tube such that the upper portion and the lower ballast portion are separated by the flexible panel. The flexible panel may be oriented generally parallel to the length of the elongated tube. The flexible panel may be coupled to opposite interior walls of the elongated tube and pulled taut in the inflatable tube. Alternatively, the flexible panel may be coupled to opposite interior walls of the elongated tube and may be oversized such that it hangs down in the inflatable tube. An oversized flexible panel may rest on the liquid facilitating ballast.
[0018] Exemplary embodiments may further comprise one or more elongated interior tubes disposed within the elongated tube. The elongated interior tubes may be formed at least partially of flexible material. Coolant air having a temperature cooler than the temperature of the supporting body of liquid may be blown through the one or more elongated interior tubes such that the coolant air absorbs at least some of the heat.
[0019] In exemplary embodiments, flue gas from a power plant is pumped into the lower ballast portion of the dry cooling assembly. Liquid in the supporting body of liquid may be used to cool exhaust from a heat engine. Exemplary embodiments may further comprise a reflective sheet coupled to an exterior wall of the elongated tube, and the elongated tube may comprise a culture medium for photosynthetic biomass.
[0020] Exemplary embodiments include methods of dry cooling comprising the steps of at least partially filling a lower ballast portion of a tube with liquid facilitating ballast, partially submerging the tube in a supporting body of liquid having a temperature higher than ambient temperature such that the liquid facilitating ballast is warmed by heat from the supporting body of liquid, the temperature of the support body of liquid is reduced, and the temperature inside the tube is increased, and removing the heat from the tube. In exemplary embodiments, the removing step comprises blowing coolant air having a temperature cooler than the temperature of the supporting body of liquid through an upper portion of the elongated tube such that the coolant air absorbs at least some of the heat.
[0021] Exemplary dry cooling methods further comprise coupling a flexible panel to an interior wall of the tube such that an upper portion and the lower ballast portion are separated by the flexible panel. An exemplary method may further comprise the steps of disposing one or more interior tubes within the tube, the interior tubes formed at least partially of flexible material, and blowing coolant air having a temperature cooler than the temperature of the supporting body of liquid through the one or more interior tubes such that the coolant air absorbs at least some of the heat. Exemplary methods may comprise drawing liquid from the supporting body of liquid to cool exhaust from a heat engine and/or pumping flue gas from a power plant into the lower ballast portion.
[0022] Exemplary embodiments provide a combined solar reflector and dry cooling assembly comprising a supporting body of liquid having a temperature higher than ambient temperature, an inflatable elongated tube at least partially submerged in the supporting body of liquid, and a reflective sheet coupled to a wall of the elongated tube to reflect solar radiation. The inflatable elongated tube has an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material. The lower ballast portion defines a reservoir containing liquid facilitating ballast. The liquid facilitating ballast is warmed by heat from the supporting body of liquid such that the temperature of the support body of liquid is reduced and the temperature inside the elongate tube is increased.
[0023] The present disclosure also provides a solar reflector assembly useable for generating energy from solar radiation. Embodiments of the solar reflector assemblies are inflatable elongated tubes of flexible material with each tube including a reflective sheet to reflect solar radiation to a solar collector. This structure and the materials employed provide significant cost savings for manufacture, shipping and deployment of the solar reflector assemblies. The solar reflector assembly is configured to be deployed on a supporting body of liquid. This provides both liquid ballasting capability and structural support. Beneficially, the solar reflector assemblies are inexpensive to manufacture, deploy and operate, providing a cost effective solution for energy generation. [0024] Exemplary embodiments of a solar reflector assembly includes an inflatable elongated tube having an upper portion formed at least partially of a flexible material and a lower ballast portion formed at least partially of a flexible material. The lower ballast portion may define a reservoir containing fluid facilitating ballast. The elongated tube has an axis of rotation oriented generally parallel to a surface of a supporting body of liquid and a reflective sheet coupled to a wall of the tube to reflect solar radiation towards the solar collector. The reflective sheet may be coupled to either an interior wall or an exterior wall of the elongated tube. The fluid facilitating ballast has a top surface that is generally parallel to a surface of a supporting body of liquid.
[0025] In exemplary embodiments, the reflective sheet can be configured to reflect substantially all solar radiation towards the solar collector. In another exemplary embodiment, the reflective sheet can be configured to substantially reflect a first prescribed wavelength range towards a solar collector and to substantially transmit a second prescribed wavelength range therethrough. In the case of an interior reflective sheet, the reflective sheet may also facilitate equilibrium of pressure on its opposing sides. One end cap assembly may be coupled to the elongated tube, or a pair of end cap assemblies can be coupled to the elongated tube, in which at least one of the end cap assemblies is configured to facilitate the flow of gas and/or liquid into and out of the elongated tube to maintain pressure within the tube. The upper portion formed of thin-gauge, flexible material allows solar radiation to pass through for reflection by the reflective sheet.
[0026] Inflatable supports can be disposed on the exterior wall of the tube to maintain the reflective sheet in a prescribed orientation. For example, the reflective sheet can be disposed to have various cross sectional shapes, including flat, v-shaped, u-shaped, or parabolic, among others, as desired. A pair of supports can be used, coupled to longitudinal sides of the reflective sheet.
[0027] In a detailed aspect of an exemplary embodiment, the reflective sheet is formed as a hot mirror, configured to reflect infrared (IR) radiation (e.g., heat reflective) while allowing visible light to pass through (e.g., visibly transparent), across wide angles of incidence. For example, the reflective sheet allows transmittance of at least 50 percent of incident energy in the wavelength band between about 400 nm and 700 nm at normal incidence. In a detailed aspect of an exemplary embodiment, the reflective sheet allows transmittance of at least 90 percent of incident energy in the wavelength band between about 400 nm and 700 nm at normal incidence.
[0028] In another detailed aspect of selected exemplary embodiments, the reflective sheet can have a high percentage of reflection for substantially all incident solar IR radiation above about 700 nm or, in other embodiments, above about 750 nm. In yet other embodiments, the reflective sheet can be configured to have a high percentage of reflection within a bounded range of IR wavelengths. Exemplary ranges include 700 - 1200 nm, 700 - 2000 nm, 750 - 1200 nm, and 750 - 2000 nm, among others. It should be appreciated that other ranges can be used.
[0029] More particularly, by example and not limitation, a system for generating energy from solar radiation is provided, comprising a pool housing a supporting body of liquid and one or more solar reflector assemblies disposed on the supporting body of liquid. Each solar reflector assembly includes an inflatable elongated tube having an upper portion formed at least partially of flexible material, a lower ballast portion formed at least partially of flexible material and an axis of rotation oriented generally parallel to a surface of the supporting body of liquid, and a reflective sheet coupled to a wall of the tube to reflect solar radiation towards a solar collector. The reflective sheet may be coupled to an interior wall of the elongated tube such that the upper portion and the lower ballast portion are separated by the reflective sheet.
Alternatively, the reflective sheet may be coupled to an exterior wall of the elongated tube.
[0030] The reflective sheet may be coupled to the elongated tube in a manner to provide a pressure differential between opposing sides of the reflective sheet such that the reflective sheet can be given a prescribed shape to facilitate reflection of solar radiation towards the solar collector. The solar reflector assembly may facilitate equilibrium of pressure on opposing sides of the reflective sheet. The lower ballast portion of the elongated tube contains liquid facilitating ballast. The liquid facilitating ballast has a top surface that is generally parallel to the surface of the supporting body of liquid. The system further includes a solar collector positioned to receive reflected solar radiation from the reflective sheet.
[0031] Embodiments of the system for generating energy from solar radiation may further comprise an electrical generator assembly operatively coupled to the solar collector to convert the reflected solar radiation to electricity. At least one end cap assembly can be coupled to an elongated tube, and a pair of end cap assemblies can be coupled to opposing ends of the one or more elongated tubes, in which at least one of the end cap assemblies is configured to facilitate the flow of gas and/or liquid into and out of the elongated tube to maintain pressure within the tube. A rotation assembly may be coupled to an elongated tube at any location on the tube. In exemplary embodiments, a rotation assembly is coupled to at least one of the end cap assemblies to induce controlled rotation of the elongated tubes to direct the reflected solar radiation to the solar collector.
[0032] In an exemplary embodiment, the reflective sheet is coupled to the elongated tube in a manner to provide a pressure differential between opposing sides of the reflective sheet such that the reflective sheet can be given a prescribed shape to facilitate reflection of solar radiation towards the solar collector. Alternatively, the reflective sheet can be configured to be taut when the elongated tube is inflated to form a generally planar shape. In yet another embodiment, the reflective sheet can be configured to hang between spaced-apart portions of the internal wall of the tube to form a generally catenary shape.
[0033] In an exemplary embodiment, the elongated tube defines an elongated reservoir extending the length of the tube for passing a heat-transfer fluid therethrough, the elongated reservoir positioned above the reflective sheet such that solar radiation reflected by the reflective sheet is directed towards the elongated reservoir. The elongated tube can further define a plurality of elongated reservoirs positioned above the reflective sheet, defining multiple focal areas of reflected radiation present at different angles of incident solar radiation. In this manner, the solar collector can be coupled to the tube, through which a heat-transfer fluid can pass to absorb the reflected radiation, and then be used to power electricity generation.
[0034] In exemplary embodiments, the solar reflector assembly may comprise one or more pass-through fittings coupled to the elongated tube to facilitate the flow of gas and liquid into and out of the elongated tube.
[0035] In a detailed example of an exemplary embodiment, the solar reflector assembly or system can include a rotation assembly coupled to at least one end of the elongate tube and configured to rotate the elongated tube such that the reflective sheet directs solar radiation towards the solar collector throughout the day. In one approach, the rotation assembly can include a plurality of gas bladders coupled to the elongated tube, in which the rotation assembly is configured to adjust the content of gas bladders to rotate the elongated tube. In another approach, the rotation assembly is coupled to at least one end of the elongated tube to induce controlled rotation of the elongated tube to direct the reflected solar radiation towards the solar collector.
[0036] In another exemplary embodiment, a plurality of elongated tubes are coupled together along longitudinal sides, forming a raft, in which a reflective sheet is disposed either within or atop each tube. The tubes can further include one or more reservoirs for passing heat- transfer fluid through. Alternatively, an external solar collector can be disposed in a prescribed location, spaced apart from an elongated tube or from the raft of elongated tubes to receive reflected solar radiation from the reflective sheets.
[0037] The elongated tube may further comprise a culture medium for photosynthetic biomass, thus forming a combined solar reflector and photobioreactor assembly ("CSP/PBR"). The culture medium housed in the tube can be used, e.g., to facilitate photosynthetic biomass growth, such as algal biomass. The reflective sheet may be configured to substantially reflect a first prescribed wavelength range towards a solar collector and to substantially transmit a second prescribed wavelength range therethrough to the culture medium within the elongated tube. In this manner, a portion of solar energy is directed towards the solar collector, while another portion is utilized by the culture medium, e.g., to facilitate photosynthetic biomass growth, such as algal biomass. The CSP PBR assemblies may be disposed on a supporting body of liquid and include a solar collector positioned to receive reflected solar radiation from the reflective sheet. Beneficially, this embodiment serves to reduce the heat input, and therefore the cooling load for the biomass production component of such an embodiment.
[0038] For purposes of summarizing the disclosure and the advantages achieved over the prior art, certain advantages of the disclosure have been described herein. Of course, it is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the disclosure. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
[0039] All of these embodiments are intended to be within the scope of the disclosure herein disclosed. These and other embodiments of the present disclosure will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the disclosure not being limited to any particular preferred embodiment disclosed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0040] Embodiments of the present disclosure will now be described, by way of example only, with reference to the following drawings in which:
[0041] FIG. 1 is cross-sectional view of an embodiment of a solar energy collection system in accordance with the present disclosure;
[0042] FIG. 2 is a perspective view of an embodiment of an array of solar reflector assemblies of a solar energy collection system in accordance with the present disclosure;
[0043] FIG. 3 is a perspective view of an embodiment of an end cap assembly coupled to a solar reflector assembly in accordance with the present disclosure;
[0044] FIG. 4 is a cross-sectional view of an embodiment of a solar energy collection system in accordance with the present disclosure;
[0045] FIG. 5 is a cross-sectional, perspective view of an embodiment of an array of solar reflector assemblies in accordance with the present disclosure;
[0046] FIG. 6 is a cross-sectional view of an embodiment of an array of solar reflector assemblies in accordance with the present disclosure;
[0047] FIGS. 7a-c are cross-sectional views of an embodiment of a solar reflector assembly in accordance the present disclosure; [0048] FIGS. 8a-c are cross-sectional views of embodiments of solar reflector assemblies in accordance with the present disclosure;
[0049] FIGS. 9a-b are cross-sectional views of embodiments of solar reflector assemblies in accordance with the present disclosure;
[0050] FIG. 10 is a cross-sectional view of an embodiment of a solar reflector assembly in accordance with the present disclosure;
[0051] FIG. 11 is a perspective view of an embodiment of a solar reflector assembly in accordance with the present disclosure;
[0052] FIG. 12 is a cross-sectional view of an embodiment of a solar reflector assembly having an external reflector in accordance with the present disclosure;
[0053] FIG. 13 is a cross-sectional view of an embodiment of a solar reflector assembly having an external reflector in accordance with the present disclosure;
[0054] FIG. 14 is a cross-sectional view of an embodiment of a solar reflector assembly having an external reflector in accordance with the present disclosure;
[0055] FIG. 15 is an embodiment of a solar energy collection system in accordance with the present disclosure;
[0056] FIG. 16 is a cross-sectional view of a solar energy collection system in accordance with the present disclosure;
[0057] FIG. 17 is a cross-sectional view of an embodiment of a concentrated solar power/photobioreactor assembly in accordance with the present disclosure;
[0058] FIG. 18 is a perspective view of an embodiment of an array of concentrated solar power/photobioreactor assemblies in accordance with the present disclosure;
[0059] FIG. 19a is a perspective view of an embodiment of an end cap assembly coupled to a concentrated solar power/photobioreactor assembly in accordance with the present disclosure; [0060] FIG. 19b is a perspective view of an embodiment of an end cap assembly having pass-throughs and coupled to a concentrated solar power/photobioreactor assembly in accordance with the present disclosure;
[0061] FIG. 20 is a graph depicting percent transmittance at zero degrees incidence, as a function of wavelength, for an exemplary embodiment of a reflective sheet for a
reflector/photobioreactor assembly in accordance with the present disclosure;
[0062] FIG. 21 is a cross-sectional view of an embodiment of a solar reflector assembly in accordance with the present disclosure;
[0063] FIG. 22 is a cross-sectional view of an embodiment of a solar reflector assembly in accordance with the present disclosure;
[0064] FIG. 23 is a perspective view of an embodiment of an array of solar reflector assemblies of a solar energy collection system in accordance with the present disclosure;
[0065] FIG. 24 is a perspective view of an embodiment of an array of solar reflector assemblies of a solar energy collection system in accordance with the present disclosure;
[0066] FIG. 25 is a cross-sectional view of an embodiment of a solar reflector assembly in accordance with the present disclosure;
[0067] FIG. 26 is a perspective view of an embodiment of an array of solar reflector assemblies of a solar energy collection system in accordance with the present disclosure;
[0068] FIG. 27a is a perspective view of an embodiment of a solar reflector assembly in accordance with the present disclosure;
[0069] FIG. 27b view of an embodiment of a solar reflector assembly having pass- throughs in accordance with the present disclosure;
[0070] FIG. 28 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure; [0071] FIG. 29 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure;
[0072] FIG. 30 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure;
[0073] FIG. 31 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure;
[0074] FIG. 32 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure;
[0075] FIG. 33 is a cross-sectional view of an embodiment of a dry cooling assembly in accordance with the present disclosure;
[0076] FIG. 34 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure;
[0077] FIG. 35 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure;
[0078] FIG. 36 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure;
[0079] FIG. 37 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure;
[0080] FIG. 38 is a cross-sectional view of an embodiment of a combination solar reflector and dry cooling assembly in accordance with the present disclosure;
[0081] FIG. 39 is a cross-sectional view of an embodiment of a combination dry cooling and photobioreactor assembly in accordance with the present disclosure;
[0082] FIG. 40 is a cross-sectional view of an embodiment of a combination dry cooling and photobioreactor assembly in accordance with the present disclosure; [0083] FIG. 41 is a cross-sectional view of an embodiment of a combination dry cooling and photobioreactor assembly in accordance with the present disclosure;
[0084] FIG. 42 is a cross-sectional view of an embodiment of a combination dry cooling, solar reflector and photobioreactor assembly in accordance with the present disclosure;
[0085] FIG. 43 is a cross-section view of an embodiment of an array of dry cooling assemblies in accordance with the present disclosure;
[0086] FIG. 44 is a perspective view of an embodiment of an array of dry cooling assemblies in accordance with the present disclosure;
[0087] FIG. 45 is schematic view of an embodiment of a dry cooling assembly in accordance with the present disclosure shown in conjunction with a power plant;
[0088] FIG. 46 is a plot showing temperature data of a simulation modeling
embodiments of dry cooling assemblies in accordance with the present disclosure;
[0089] FIG. 47 is a plot showing temperature data of a simulation modeling
embodiments of dry cooling assemblies in accordance with the present disclosure;
[0090] FIG. 48 is a plot showing temperature data of a simulation modeling
embodiments of dry cooling assemblies in accordance with the present disclosure;
[0091] FIG. 49 is a plot showing temperature data of a simulation modeling
embodiments of dry cooling assemblies in accordance with the present disclosure;
[0092] FIG. 50 is a plot showing temperature data of a simulation modeling
embodiments of dry cooling assemblies in accordance with the present disclosure; and
[0093] FIG. 51 is a plot showing temperature data of a simulation modeling
embodiments of dry cooling assemblies in accordance with the present disclosure. DETAILED DESCRIPTION
[0094] With reference now to the drawings, and particularly FIGS. 1 and 2, there is shown an array 1 of solar reflector assemblies 10. Each solar reflector includes an inflated elongated tube 12 having a reflective sheet 14 coupled along opposed sides of the sheet to a wall of the tube. In exemplary embodiments, reflective sheet 14 is coupled to an interior wall 15 of the elongated tube 12 so that the reflective sheet 14 divides the elongated tube 12 into two portions, an upper portion or chamber 21 and a lower ballast portion or chamber 23.
[0095] More particularly, in exemplary embodiments the elongated tube 12 is a unitary structure that includes lower ballast portion 23, which provides ballast for the solar reflector assembly 10. In other words, lower ballast portion 23 is the lower section of the elongated tube itself and, as such, is integrally formed with the elongated tube 12. This structure is
advantageous because it obviates the need for additional components or structural elements to facilitate ballast. It also enables pressure differential or pressure equilibrium between the chambers 21, 23 on either side of the reflective sheet 14, as described in more detail herein. The elongated tubes may include a gas in the upper chamber 21 and a reservoir liquid 20 in the lower chamber 23 to facilitate ballast. As discussed in more detail herein, the reflective sheet could also be coupled to an exterior wall of the tube.
[0096] The solar reflectors are supported by a body of liquid 16 and are configured to rotate to direct reflected solar radiation towards a solar collector 18. The solar reflectors are used to reflect solar radiation towards a solar collector 18 configured to transform the solar energy to electricity or process heat. Beneficially, the solar reflector assemblies are inexpensive to manufacture and operate, providing a cost effective solution for electrical generation or process heat from solar energy.
[0097] Each tube 12 is formed of transparent, lightweight flexible plastic optionally coupled at each end to rigid end cap assemblies 24, which facilitate the flow of liquid and gas into and out of the tubes. Positive pressure within the tube keeps them rigid and maintains the tube in a generally cylindrical configuration having a substantially constant cross section along the length of the tube. The tube is set on an expanse of liquid 16 in a pool 19 and includes a reservoir of fluid 20 to facilitate ballast of the tube and maintain buoyancy in a prescribed manner to best track the sun, as described herein. The tubes 12 will float at a level such that the liquid level within the tube is generally even or parallel with the level of liquid 16 on which the tube is floating. More specifically, in operation the top surface of the ballast liquid is
substantially parallel to the top surface of the supporting body of liquid. However, the level of liquid within the tube can vary, from empty to full with liquid, as desired.
[0098] The tubes 12 are configured in an elongated cylindrical configuration. In exemplary embodiments, the tubes are formed of a single sheet of a thin gauge, flexible material, which can be various plastics such as polyethylene, having a thickness between about 50 microns (2 mil) and 300 microns (12 mil). In other embodiments, tubes can be formed of multiple layers and multiple sections of material. In addition, other lightweight, flexible materials or
combinations of materials can be used. Tubes of various sizes can be used, to include tube diameter and tube length, without departing from the disclosure. In the present embodiment, the entire tube is formed of transparent material; however, it is sufficient if an upper portion of the tube is transparent to enable solar radiation to be directed towards the reflective sheet.
[0099] The tubes can be susceptible to deterioration over time as result of exposure to solar radiation. For example, polyethylene can be susceptible to UV-B radiation, and other materials may be susceptible to other ranges of radiation. The tubes can be protected from premature deterioration using systems and methods as disclosed in the present inventor's copending application, U.S. Appl. No. 12/253,962, filed Oct. 18, 2008, entitled "System and Method for Protecting Enclosure from Solar Radiation," which is incorporated by reference herein for all purposes.
[00100] With reference now to FIG. 2, the reflective sheet 14 is disposed within the elongated tube 12, having opposing longitudinal sides attached to the interior wall of the tube. The reflective sheet is formed of lightweight flexible reflective material, such as PET polyester film sold under the brand name Mylar®, available from E. I. Du Pont De Nemours & Co. Other examples of usable materials include reflective polyester film, metalized polymer film, metallic film, or other material having sufficient reflective traits while being sufficiently lightweight. In the exemplary embodiment, the reflective sheet is formed of one layer of material configured to reflect a broad wavelength spectrum. In other embodiments, the substrate film is also a polymer sheet with a reflective sheet laminated, adhesively applied, or otherwise disposed on top. In addition, multiple layers can be used, and the reflective sheet can be configured to allow prescribed wavelengths of solar radiation to pass through, while reflecting other wavelengths of solar radiation towards the solar collector.
[00101] The reflective sheet 14 can be coupled to the elongated tube 12 to enable a pressure differential to be maintained on opposing sides of the sheet. The pressure differential can be used to form the reflective sheet to a prescribed shape. For example, a higher pressure can be maintained on the upper surface of the reflective sheet such that the reflective sheet has a curved or, more preferably, a generally parabolic shape. Alternatively, the solar reflector assembly can be configured to maintain pressure equilibrium on both sides of the reflective sheet to facilitate other desired shapes for the reflective sheet. For example, the one or more end caps can be configured to allow gas to move between the upper portion and lower ballast portion of the tubes by coupling a pass-through to the upper chamber with a pass-through to the lower chamber. As discussed in more detail below, the reflective sheet can be configured to assume any number of different shapes without departing from the disclosure.
[00102] In an exemplary method of manufacture, a sheet of reflective material is attached along longitudinal side edges to a first side of a sheet of tube material at a prescribed distance from each other. Opposing longitudinal side edges of the tube material are attached to each other forming a cylinder with the reflective material disposed within the interior of the tube. The distance between the edges of the reflective material is selected to form a prescribed shape for the reflective sheet, when in use.
[00103] With reference again to FIGS. 2 and 3, end cap assemblies 24 are disposed at opposing ends of the tube 12, and a rotation assembly 26 is configured to enable rotation of the tubes about a longitudinal axis oriented generally parallel to the surface of the supporting body of liquid 16. Rotation assembly 26 includes a motor 28 and a transmission system 30. The motor 28 is connected to at least one end cap assembly 24 by the transmission system 30. The motor 28 provides power to turn the tube 12 either way. It is possible to drive both ends of the tube 12 by installing motors and transmission systems at both ends. The tubes can be turned to track the sun to optimize reflection of solar radiation onto the solar collector. In other embodiments, longitudinal bladders can be built into the tubing material or otherwise used to support the tubes. Air pressure varied within said bladders can be used to change the buoyancy of one side of the tube, causing rotation until equilibrium is reached.
[00104] Each end cap assembly 24 is configured to facilitate flow of gas and liquid to and from the interior of the elongated tube 12. To that end, end cap assembly 26 may include liquid transfer tubes 32 and gas transfer tubes 34 that extend from the end caps. Liquid can be injected or withdrawn through liquid transfer tubes to regulate how high the elongated tubes 12 float in the support liquid 16. Similarly, gas can be injected or withdrawn through gas transfer tubes. The inlets and outlets pass through pipes 36, which also serve as axles on which end-caps rotate. By passing through the axis of rotation of the end-caps, the liquid and gas transfer tubes can thus be permanently interfaced to the elongated tube 12 and can allow fluid and gas transfer while the elongated tube is turning. However, other inlets and outlets passing through both, eccentrically mounted control valves on the end-cap, or valves mounted on the plastic tubing itself are possible in other embodiments without departing from this disclosure.
[00105] In exemplary embodiments, the liquid transfer tubes 32 are submerged within the liquid 20 within the tube. Gas transfer tubes 34 are disposed above the liquid. In other embodiments, various other configurations can be used. One liquid and one gas transfer tube passing through each end-cap are used. It is also possible to have more than two transfer tubes passing through each end-cap. In exemplary embodiments, the rotation element includes sealed ball bearings, which enable long life of the assembly despite potential prolonged exposure to moisture. There are multiple methods possible for sealing the ends of the tubes.
[00106] The solar energy collection system can include an array of solar reflector assemblies configured to reflect solar radiation towards multiple solar collectors. For example, the system can include groupings of solar reflectors disposed on opposing sides of linear solar collectors, and the solar reflectors can be directed to the closest solar collector.
[00107] With reference now to FIGS. 4 and 5, a solar reflector assembly 110 is shown having a heat-transfer reservoir 142 positioned above a reflective sheet 114 such that solar radiation reflected by the sheet is directed towards the reservoir. More particularly, the reservoir is in an upper portion of the elongated tube 112, extending the entire length of the tube. Heat- transfer fluid enters a heat-transfer reservoir 142 at a first end cap, and it absorbs the reflected solar radiation from the reflective sheet 114 of the solar reflector assembly 110 as it passes through the heat-transfer reservoir 142 to a second end cap assembly. The heated fluid is then directed to power an electrical generator (not shown) or is used for process heat. Reflective sheet 114 is coupled to an interior wall of the elongated tube 112 so that the reflective sheet 114 divides the elongated tube 112 into two portions, an upper portion or chamber 121 and a lower ballast portion or chamber 123. An array of solar reflectors 110 can be configured to rotate to track the sun to ensure that the reflective solar radiation is directed towards the reservoir, as in FIG. 5. The solar reflector assemblies 110 are supported by a body of liquid 116 in a pool 119.
[00108] In exemplary embodiments, the heat-transfer reservoir 142 is attached to or formed in the wall of the elongated tube from the same polymer material. For example, an exterior and an interior sheet of polymer material can be used together by spaced apart, generally parallel seams to form the heat-transfer reservoir. The material for the heat-transfer reservoir should have sufficient strength and durability characteristics to handle the anticipated pressure, heat, and so on, when the heat-transfer fluid is heated.
[00109] In other embodiments, the heat-transfer reservoir can include additional structure and/or other materials, to facilitate the use of selected heat-transfer fluids that achieve high pressures and high temperatures. For example, the heat-transfer reservoir as discussed above can further include a rigid tube installed at tube deployment, sandwiched between the exterior and interior sheets and extending between the end cap assemblies.
[00110] With reference now to FIGS. 6 and 7a-c, an array 200 of solar reflector assemblies 210 is shown. Each solar reflector assembly 210 includes a tube 212 having a plurality of heat-transfer reservoirs 242a-c, similar to the heat-transfer reservoir depicted in FIG. 4. A reflective sheet 214 is disposed within each tube 212. The elongated tubes 212 are coupled together along longitudinal sides 270, forming a raft. A raft configuration can be used in other embodiments, such as with an external solar collector that can be disposed in a prescribed location, spaced apart from the raft to receive reflected solar radiation from the reflective sheets. [00111] Use of a plurality of heat transfer reservoirs can be effective in embodiments in which the solar reflector assembly does not rotate to track the sun. Rather, as the sun progresses across the sky, the reflected focal area of the reflective sheet will track across the plurality of heat transfer reservoirs. The system can be configured to pass the heat-transfer fluid through the appropriate reservoir at prescribed times to coincide with the location of the reflected focal area.
[00112] For example, as shown in FIG. 7a, the system passes heat-transfer fluid through the first reservoir 242a in the morning. During midday, the system passes heat transfer fluid through the center reservoir 242b (FIG. 7b). In the afternoon, the system passes heat transfer fluid through the third reservoir 242c (FIG. 7c). In other embodiments, the system can be designed with any number of heat-transfer reservoirs, and the size and configuration of each reservoir of the plurality of reservoirs can vary from each other, as requirements dictate.
[00113] With reference now to FIGS. 8a-c, the reflective sheet 14 can be configured to achieve various different shapes. For example, as in FIG. 8a, the reflective sheet 14 can be configured to be held taut when the tube is inflated, forming a generally planar shape.
Alternatively, as in FIGS. 8b, c, a curved shape for the reflective sheet 14a, 14b can also be used. The reflective sheet 14a can be configured to drape between the attachment seams of the opposing longitudinal edges of the reflective sheet, forming a generally catenary shape (FIG. 8b). Alternatively, as in FIG. 8c, the curved shape can be formed by maintaining a pressure differential on opposing sides of the sheet 14b, forming a generally parabolic shape.
Nonetheless, other shapes for the reflective sheet can be used without departing from the disclosure.
[00114] With reference now to FIGS. 9a-b, the elongated tube 312 of the solar reflector assembly 310 can be configured to achieve various different cross-sectional shapes. In each example depicted, the tube 312 has a generally constant cross-section profile. In other embodiments, the cross-section profile can vary across the length of the tube. FIG. 9a depicts an elongated tube 312 having an oval shaped cross section, used with a curved reflective sheet 314a. FIG. 9b depicts an elongated tube 312 having an oval shaped cross section, used with a planar reflective sheet 314b. It should be appreciated that variations of these shapes and others having different parameters can be used. In addition, other cross-sectional shapes for the tube can be used, such as an ellipse, superellipse, vesica piscis, lens, and polygon, to name a few, without departing from the disclosure.
[00115] Various approaches for manufacture can be used. For example, the tube can be formed by an upper panel and a lower panel, along opposing seams, and the reflective material is disposed therebetween attached at the seam. The tube can also be formed by a single sheet of material to which the reflective sheet is attached. The opposing ends of the sheet can be coupled together forming the tube, having the reflective sheet disposed in the interior. Due to the flexibility of the material it can be rolled up into a compact format for shipping and deployment.
[00116] With reference now to FIGS. 10 and 11, a solar reflector assembly 410 is shown having gas bladders 482 that extend the length of the tube 412. Each gas bladder is
independently controlled with a regulator valve manifold assembly 486, to optimize the stability of the system. An array of solar reflectors 410 can be used together, in which a subset of the tubes can be inflated with the other tubes partially or completely deflated to control the angle at which the tubes float in the supporting body of liquid (not shown). The assembly can incorporate similar features as discussed with reference to other embodiments, including end cap assemblies 424, reflective sheet 414, gas and liquid pass-through tubes 432, 434, a rotation assembly 426 including a motor (not shown) and a transmission system 430 and so on.
[00117] Turning to FIGS. 12-14, exemplary embodiments of a solar reflector assembly with an externally mounted reflector will be described. With reference now to the drawings, and particularly FIG. 12, there is shown a solar reflector assembly 510 including an inflated elongated tube 512 and a reflective sheet 514 coupled to an exterior wall 517 of the tube, usable as a solar reflector and/or a photobioreactor, in which the tube is disposed on a supporting body of liquid (not shown). The reflective sheet 514 is disposed along the top of the tube 512.
[00118] Supports 525 are disposed on an exterior side 517 of the tube 512. The longitudinal sides of the reflective sheet 514 are coupled to the supports 525 and an intermediate section of the reflector sheet 514 can be coupled to the tube 512, such that the reflective sheet 514 is generally flat. The elongated tube 512 has an upper portion 521 and a lower ballast portion 523 containing reservoir liquid 520, though the upper and lower ballast portions are not physically separated because of the external location of the reflective sheet 514. In exemplary embodiments, the elongated tube 512 is a unitary structure that includes lower ballast portion 523, which provides ballast for the solar reflector assembly 510. In other words, lower ballast portion 523 is the lower section of the elongated tube itself and, as such, is integrally formed with the elongated tube 512. This structure is advantageous because it obviates the need for additional components or structural elements to facilitate ballast. The elongated tube 512 is made of a thin-gauge, flexible material, as described in more detail above, and, in contrast to other embodiments, need not be transparent because the reflective sheet 514 is externally mounted.
[00119] With reference now to FIG. 13, a second embodiment is shown in which the reflector sheet 514 is positioned and attached in a similar manner as in FIG. 12. However, the longitudinal sides 527a, 527b of the reflector sheet 514 are raised relative to the intermediate section 529 of the sheet 514, such that the reflected solar radiation can be focused. More particularly, the reflective sheet 514 is mounted to have a generally v-shaped cross section. In other embodiments, the reflective sheet 514 can be mounted to have various other cross-sectional shapes such as u-shaped or parabolic, among others.
[00120] In the exemplary embodiments of FIGS. 12 and 13, the supports 525 are formed as inflatable tubes similar to the primary tube 512. The supports 525 are formed of a single sheet of plastic such as polyethylene, having a thickness between about 50 microns (2 mil) and 300 microns (12 mil). In other embodiments, the supports 525 can be formed of multiple layers and multiple sections of material. In addition, other lightweight, flexible materials or combinations of materials can be used for the supports.
[00121] The supports 525 of the exemplary embodiments are independently inflatable relative to each other and the primary tube 512. Alternatively, the supports 525 can be operatively coupled to each other and/or to primary tube 512 to enable air to pass between the components to maintain air pressure therein.
[00122] In the exemplary embodiments of FIGS. 12 and 13, the supports 525 have a generally circular cross section. In other embodiments, the supports 525 can have other cross- sectional shapes, to facilitate other shapes for the reflective sheet 514 such as a parabolic shape. In addition, the supports 525 run substantially the entire length of the tube 512. In other embodiments, multiple supports 525 can be used and can be intermittently spaced along the length of the tube 512. Moreover, the supports 525 need not be inflatable. Rather, other structure can be used to maintain the reflective sheet 514 in the proper position.
[00123] With reference now to FIG. 14, a rigid reflector sheet 514 is disposed tangentially along the top of the tube 512. The rigid reflector 514 is supported by its connection to the tube 512 and its rigidity. The reflector 514 can be formed of reflective material mounted on a rigid base sheet. In the present embodiment, the base sheet is formed of rigid polyvinyl chloride (RPVC) having a thickness between about 200 and 300 microns. Other exemplary materials that can be used include thermoplastic polymers and other materials having rigidity sufficient to maintain a prescribed cross-sectional geometry independent of lateral supports 525. The rigid reflector 514 can be rolled up for storage or transport, and yet configured to remain relative flat when deployed.
[00124] An externally mounted reflector sheet can also be used in embodiments described above in which a plurality of elongated tubes are coupled together along longitudinal sides, forming a raft, as well as with embodiments having gas bladders that extend the length of the tube(s).
[00125] Turning to FIGS. 15 and 16, a system 5 of generating energy from solar radiation is shown, having a solar collector 92 that includes solar PV cells 94 disposed below heat-transfer pipes 96. The PV cells are configured to receive energy from reflected radiation within a prescribed wavelength, such as the visible light spectrum. The solar reflectors concentrate reflected radiation on the PV cells, thereby optimizing efficiency. The heat-transfer pipes are used to pass heat-transfer fluid as discussed above. Beneficially, the pipes are positioned to absorb reflected radiation from the solar reflectors as well as serving as a heat sink for the PV cells, cooling the PV cells and keeping them in an optimal heat range to minimize risk of overheating. In an alternate embodiment, thermoelectric modules (using, e.g., the Seebek effect) could be substituted for the PV cells. The heat- transfer fluid can capture the IR portion of the reflected radiation, thereby collecting heat for use in a generator. Once heated, the heat- transfer fluid can be used to generate energy as known in the art, such as electricity or process heat (as discussed above). As in previously discussed embodiments, the solar reflector assemblies 10 includes an elongated tube 12 having an upper portion 21 and a lower ballast portion 23 containing a reservoir liquid 20, a reflective sheet 14, end cap assemblies 24 and rotation assembly 26. The solar reflector assemblies 10 are supported by a body of liquid 16 in a pool 19 and rotate to direct reflected solar radiation to solar collector 92.
[00126] In each of the forgoing configurations, the reflective sheet can be fully reflective, such as when used for embodiments configured only as a solar reflector. Alternatively, the reflective sheet can be configured as a hot mirror, as disclosed in the U.S. Patent Application Serial No. 61/233,667, filed August 13, 2009, which is incorporated by reference herein in its entirety, and described herein, for embodiments configured for biomass generation or for a combined solar reflector and photobioreactor assembly ("CSP/PBR assembly"). It should be noted that in exemplary embodiments employing both internal and exterior mounting of the reflective sheet, the tube material is at least partially translucent such that biomass may grow in the ballast fluid in the lower ballast portion of the tube. In addition, biomass may grow in the pools of support liquid. This biomass could be harvested and processed into a useful product
[00127] In exemplary embodiments the reservoir of liquid within the tubes can also be used to grow biomass using systems and methods as disclosed in U.S. Patent Application Serial No. 61/152,949, filed February 16, 2009 ("'949 Application"), which is incorporated by reference herein in its entirety. With reference now to the drawings, and particularly FIGS. 17 and 18, there is shown an array 601 of concentrated solar power/photobioreactor assemblies 610 ("CSP/PBR assemblies"). Each CSP/PBR assembly 610 includes an inflated elongated tube 612 having a reflective sheet 614 coupled along opposed sides of the sheet to an interior wall 615 of the tube. Thus, the tube 612 is divided into an upper portion 621 and a lower ballast portion 623.
[00128] The reflective sheet is configured to reflect IR radiation towards a solar collector 618, while allowing visible light to pass through to a culture medium 620 within the lower ballast portion 623 of the tube 612. The array is supported by a body of liquid 616 in a pool 619.
[00129] The reflective sheet 614 is formed of lightweight flexible reflective material configured to allow prescribed wavelengths of solar radiation to pass through, while reflecting other wavelengths of solar radiation towards the solar collector 618. In exemplary embodiments, the reflective sheet is formed as a hot mirror, configured to reflect IR radiation (e.g., heat reflective) while allowing visible light to pass through (e.g., visibly transparent), across wide angles of incidence. Thus, IR radiation is reflected towards the solar collector, while the visible light passes through to the culture medium 620 to facilitate growth of the biomass, e.g., algal biomass. Moreover, minimizing penetration of IR radiation into the culture medium reduces the heat load of culture, allowing the culture to be maintained at a temperature conducive to optimal biomass growth. It should be noted that in this and other exemplary embodiments some tubes could be deployed with hot mirrors and some with full spectrum reflectors, in order to finely tune the percentage of insolation that makes it into culture to generate biomass, and how much insolation is reflected to the receiver for power generation.
[00130] The term "visibly transparent," unless otherwise specified, is intended to refer to an attribute of the reflective sheet of transmitting a large fraction (e.g., an average of at least 50%) of visible radiation (e.g., at least between about 400 nm to about 700 nm) therethrough. The term "heat reflective," unless otherwise specified, is an attribute of the reflective sheet of reflecting a large fraction (e.g., an average of at least 50%) of IR radiation (e.g., above 750 nm).
[00131] In exemplary embodiments, the reflective sheet 614 comprises a dielectric thin film disposed on a flexible substrate, such as a flexible polymeric sheet. For example, the reflective sheet 614 can include flexible films such as IR reflective films sold under the brand name Prestige™ Series, available from 3M Company. The reflective sheet 614 is further configured to endure a high moisture environment, without significant deterioration. The dielectric film can comprise one or more layers (or stacks) disposed on the substrate. In multilayer configurations, the thickness of each of the layers can be selected to optimize the properties of the reflective sheet. Moreover, intervening layers having varying properties can be used to optimize performance of the reflective sheet. In other embodiments, the reflective sheet can comprise other materials, known in the art, having sufficient characteristics for use in the intended purposes, such as metal oxides disposed on a substrate. Suitable substrates can include standard contractor-grade low-density polyethylene (LDPE), polyethylene terephthalate (PET) (e.g., uniaxial, biaxial), polyester, polyterephthalate esters, polyethylene naphthalate, polypropylene, and others. [00132] In exemplary embodiments, the reflective sheet 614 is configured to be visibly transparent and heat reflective across a wide range for the angle of incidence of solar radiation, (e.g., 0 degrees to at least 60 degrees). At very high angles of incidence, the reflective sheet may behave more like a full spectrum reflector. As discussed below, the assembly can be configured to rotate to track the sun such that the reflective sheet 614 can be optimized for operation with a tight range for the angle of incidence of solar radiation (e.g., ±20 degrees).
[00133] As shown in FIG. 19a, end cap assembly 624 may include liquid transfer tubes 632 and gas transfer tubes 634 that extend from the end caps. Liquid can be injected or withdrawn through liquid transfer tubes to regulate how high the elongated tubes 612 float in the support liquid 616. Similarly, gas can be injected or withdrawn through gas transfer tubes. The inlets and outlets pass through pipes 636, which also serve as axles on which end-caps rotate.
[00134] The end cap assembly 624 may also comprise eccentrically mounted pass-through fittings 639 instead of transfer tubes, as shown in FIG. 19b. Pass-through fittings 639 provide access to the inside of the tube 612 to facilitate flow of gas and/or liquid into and out of the tubes through fluid lines 637.
[00135] With reference now to FIG. 20, a chart is shown, depicting the transmission percentage across a wavelength spectrum for an exemplary embodiment of a reflective sheet at a normal angle of incidence. In this chart, the x-axis shows wavelength in nanometers (nm), and the y-axis shows percent of incident energy reflected or transmitted. The solid line represents the percent transmission, while the dashed line represents the percent reflection. In this exemplary configuration, the reflective sheet is configured to allow substantial transmission of wavelengths between about 400 nm and 700 nm and to substantially reflect wavelengths between above 750 nm. More particularly, the reflective sheet allows transmittance of at least 50 percent of incident energy in the wavelength band between about 400 nm and 700 nm at normal incidence.
Moreover, over 80 percent of the solar radiation between 500 nm and 600 nm passes through the reflective sheet to radiate the culture medium. Meanwhile, above 700 nm, the reflective sheet becomes highly reflective, even at normal incidence.
[00136] In other embodiments, the reflective sheet can be configured to varied parameters for reflection and transmission performance. For example, the reflective sheet can be configured to achieve higher levels of transmittance within the visible spectrum, particularly within wavelengths to optimize photosynthesis (e.g., between about 380 nm - 420 nm, at the lower end, and about 690 nm - 750 nm, at the upper end). In yet other embodiments, the reflective sheet can be configured for high transmission (e.g., above 50 percent) for a range (or ranges) within the visible spectrum, such as, between about 400 - 500 nm and/or about 600 - 700 nm. Such ranges can be selected based on the needs of an algal culture of a prescribed embodiment.
[00137] The reflective sheet's performance parameters as a heat reflector can also be varied across embodiments without departing from the disclosure. For example, it is
contemplated to configure the reflective sheet to have a high percentage of reflection for substantially all incident solar IR radiation above about 700 nm or, in other embodiments, above about 750 nm. More particularly, the reflective sheet reflects at least 50 percent of incident energy at wavelengths above about 750 nm at normal incidence, and in some instances reflects at least 90 percent of incident energy at wavelengths above about 750 nm at normal incidence. In yet other embodiments, the reflective sheet can be configured to have high percentage of reflection within a bounded range of IR wavelengths. Exemplary ranges include 700 - 1200 nm, 700 - 2000 nm, 750 - 1200 nm, and 750 - 2000 nm, among others. It should be appreciated that other ranges can be used, to account for performance, location, cost, and other considerations.
[00138] With reference again to FIGS. 17-19, each tube 612 is formed of transparent, lightweight flexible plastic coupled at each end to rigid end cap assemblies 624, which facilitate the flow of liquid and gas into and out of the tubes. More particularly, each CSP/PBR assembly 610 may comprise an end cap assembly 624 coupled to an end of the elongated tube 612, or two end cap assemblies 624, with one coupled to each end. End cap assemblies 624 include liquid transfer tube 632 and gas transfer tube 634. Liquid transfer tube 632 provides access to the culture medium 620 and may facilitate addition of nutrients and harvesting of biomass. The CSP/PBR array 601 may further include a rotation assembly 626 operatively connected to one or both ends of the elongated tubes 612. In particular, the rotation assembly may include a motor 628 coupled to end caps 624 by a transmission system 630 to turn the tubes 612 to track the sun.
[00139] Positive pressure within the tube maintains the tube in a substantially rigid, cylindrical configuration. In addition to growing biomass, the culture medium within the tube facilitates ballast of the tube on the supporting liquid 616 in pool 619. The tube will float such that the top surface of the liquid within the tube is generally parallel with the surface of liquid on which the tube is floating. The level of liquid within the tube can vary, from empty to fully filled with liquid, as desired. The system may be further configured to extract biomass from within the CSP/PBR assemblies for processing. Various approaches can be used for this purpose. For example, the present inventor's co-pending '949 application, entitled "System for Concentrating Biological Culture and Circulating Biological Culture and Process Fluid," which is incorporated by reference herein for all purposes, discloses effective approaches towards that end.
[00140] It should be noted that any of the above-described solar reflector assembly and system embodiments could be modified to incoiporate a culture medium to provide different embodiments of a CSP/PBR assembly. For instance, the elongated tube of the CSP/PBR assembly can be configured to achieve various different cross-sectional shapes, as depicted in FIGS. 9a-b with reference to the solar reflector assembly. A CSP/PBR assembly could also have gas bladders to optimize the stability of the system, like the solar reflector assembly depicted in FIGS. 10-11.
[00141] In addition, as with the solar reflector assemblies discussed above with reference to FIGS. 1 and 2, the system can include an array of CSP/PBR assemblies configured to reflect solar radiation towards multiple solar collectors. For example, the system can include groupings of CSP PBR assemblies disposed on opposing sides of linear solar collectors, and the CSP PBR assemblies can be directed to the closest solar collector. As with the solar reflector assemblies discussed above with reference to FIGS. 2, 4 and 5, an array of CSP/PBR assemblies can be configured to rotate to track the sun to ensure that the reflective solar radiation is directed towards the reservoir. Systems of generating energy from solar radiation including PV cells, such as those discussed above with reference to FIGS. 15 and 16, could also incorporate a culture medium for growing biomass to provide CSP/PBR assemblies. As discussed above, such CSP/PBR systems optimize efficiency by reflecting radiation on the PV cells, and heat-transfer pipes both absorb radiation and serve as a heat sink for the PV cell. Thermo-electric modules employing, e.g., the Seebek effect could also be used, as discussed above. [00142] Turning to FIGS. 21-26, exemplary embodiments of a solar reflector assembly having additional shapes and cross-sections are illustrated. FIG. 21 shows an embodiment of a solar reflector assembly 710 comprising an elongated flexible tube 712 having an upper portion 721, a lower ballast portion 723 and an "egg shaped" cross section. The tube 712 contains ballast liquid 720 and sits on an expanse of liquid 716. This configuration is made by coupling the reflective panel or sheet 714 to the inner walls 715 of the tube 712 in two places that would normally form a chord of the circular cross section of a certain length. The reflective sheet 714, however, is slightly shorter than the characteristic chord length, thus pulling in the sides of the circles at the attachment points A. In the case of modest internal pressure that is equal on both sides of the panel, this advantageously guarantees that the panel is flat, even in the case of modest irregularities introduced in manufacturing. The lower ballast portion 723 remains largely (but not exactly) cylindrical, and the upper portion's protruding "egg" shaped dome 735 does not materially impact the performance of the system. It should be noted in this regard that various exaggerated geometries are possible, with very large egg domes having no adverse impact on performance.
[00143] FIGS. 22-23 illustrate exemplary embodiments of solar reflector assemblies 810 with each assembly comprising an elongated flexible tube 812 having an upper portion 821, lower ballast portions 823a, 823b and a "triple panel" cross section. This configuration is made by attaching a second sheet or panel 845 to the reflective sheet or panel 814 either in the middle B or at some other point between the two ends of the reflective sheet 814 and connecting the bottom of the second panel 845 to the bottom of the tube 812 at some middle point C or at some other point. This allows the reflective sheet 814 to be pulled into a "V" formation. There are other ways to create a "V" formation, for example, with a weight attached at the middle of reflective sheet 814. The "V" formation provides the advantage of a tighter focus on the target. The tube 812 contains ballast liquid 820 and sits on an expanse of liquid 816.
[00144] The "triple panel" solar reflector assemblies can be arranged in an array configuration, as shown in FIG. 23. This view shows that there are holes 847 defined in the second panel 845. This facilitates the passage of liquid between the two lower ballast portions 823a, 823b created by the second panel 845. Holes 847 facilitate the equalization of the level of ballast within the tube during rotation. [00145] FIG. 24 illustrates an array of CSP/PBR assemblies 910 having a triple-panel configuration. Each CSP/PBR assembly includes an inflated elongated tube 912 having a reflective sheet 914 coupled along opposed sides of the sheet to an interior wall 915 of the tube. A second sheet or panel 945 is attached to the reflective sheet or panel 914 either in the middle or at some other point between the two ends of the reflective sheet 914 and connecting the bottom of the second panel 945 to the bottom of the tube 912 at some point in the middle or at some other point. Thus, the tube 912 is divided into an upper portion 921 and two lower ballast portions 923a, 923b. The reflective sheet is configured to reflect IR radiation towards a solar collector (not shown), while allowing visible light to pass through to a culture medium 920 within the lower ballast portions 923a, 923b of the tube 912. The array is supported by a body of liquid 916 in a pool 919. Holes 947 defined in the second panel 945 facilitate the equalization of the level of ballast within the tube during rotation.
[00146] Turning to FIGS. 25-26, an embodiment of a solar reflector assembly having an "Egg shaped, triple panel" cross section will be described. Each solar reflector assembly 1010 comprises an elongated flexible tube 1012 having an upper portion 1021, lower ballast portions 1023a, 1023b and an "egg shaped, triple panel" cross section. This configuration is made by attaching a second sheet or panel 1045 to the reflective sheet or panel 1014 either at a middle point B or at some other point between the two ends of the reflective sheet 1014 and connecting the bottom of the second panel 1045 to the bottom of the tube 1012 at some middle point C or at some other point. This allows the reflective sheet 1014 to be pulled into a "V" formation. The second panel 1045, is shorter than otherwise necessary which leads to the deformation at C. Laying this reflector assembly on an expanse of liquid 1016 and using internal ballast provides a stable, level reflector array that is easily turned by actuators at each end.
[00147] The reflective sheet 1014 is slightly shorter than the characteristic chord length, thus pulling in the sides of the circles at the attachment points A. In the case of modest internal pressure that is equal on both sides of the panel, this advantageously guarantees that the panel is flat, even in the case of modest irregularities introduced in manufacturing. The lower ballast portions 1023a, 1023b together remain largely cylindrical. Holes 1047 defined in the second panel 1045 facilitate the equalization of the level of ballast within the tube during rotation. As shown in FIG. 26, the "egg shaped, triple panel" solar reflector assemblies can be arranged in an array configuration. The array of solar reflector assemblies is supported by a body of liquid 1016 in a pool 1019.
[00148] FIGS. 27 a- 27b illustrate further exemplary embodiments of solar reflector assemblies having simplified end designs. FIG. 27a shows an embodiment of a solar reflector assembly utilizing direct coupling to a rotation axle. Solar reflector assembly 1 110 comprises an elongated flexible tube 1 112 having an upper portion 1121 and a lower ballast portion 1123. The elongated tube 1112 is directly coupled to a rotation axle 1136 without an end cap component. It can be seen that the tube 1112 develops folds 1157 where it is bunched up and locked onto the axle 1 136. A retaining ring 1153 facilitates locking of the tube 1112 onto the axle 1136. Axle 1 136 includes liquid transfer tube 1132 and gas transfer tube 1134. The axle 1136 may also be coupled to a transmission system 1130 that serves to turn the tube 1112 to track the sun.
[00149] FIG. 27b shows an embodiment of a solar reflector assembly without an end cap or a rotation axle, but instead is heat-sealed at its ends and employs pass-through fittings for ingress and egress of fluids. Solar reflector assembly 1110 comprises an elongated flexible tube 11 12 having an upper portion 1121 and a lower ballast portion 1123. In this exemplary embodiment, solar reflector assembly 11 10 employs a heat-seal 1159 at the end. Pass-through fittings 1139 provide access to the inside of the tube 1112 to facilitate flow of gas and/or liquid into and out of the tubes through fluid lines 1137. [00150] Rotation of the tube 1112 is accomplished by a rotation assembly that includes a strap 1149 and a stabilizer 1151. In this embodiment, the strap is coupled to the tube 1112 by being wrapped 1147 around the tube, but other means of coupling a rotation assembly to the tube are possible. The tube 1112 is rotated by pulling the strap 1149 in the direction corresponding to the desired turning direction for the tube 1112. Stabilizer 1151 with stabilizer rods 1143 prevents lateral movement of the tube when strap 1149 is pulled, thereby inducing rotation as opposed to translation. It will be appreciated that a rotation assembly can be placed anywhere along the length of the tube, and that multiple different means, including end-caps, axles, straps and other means can be employed simultaneously to impart rotation on the tube.
[00151] It should be noted that exemplary embodiments described herein can be controlled by a computer. Either an open loop system that is pre-programmed with the position of the sun in the sky or a closed loop system that has a sensor or sensors that detect the position of the sun in the sky or a combination of these two strategies can be used to control the position of the tubes.
[00152] Exemplary embodiments of a dry cooling system will now be described with reference to FIGS. 28-51. As seen in FIG. 28, dry cooling system 1210 comprises tube 1212, which may be an elongated inflatable tube having an upper portion or chamber 1221 and a lower ballast portion or chamber 1223, which provides ballast for the dry cooling assembly. It should be noted that tube 1212 may be a unitary structure such that upper portion 1221 and lower ballast portion 1223 are the upper and lower sections, respectively, integrally formed with the tube 1212. Alternatively, separate upper and lower portions could be separately manufactured and connected.
[00153] The structure and material employed advantageously provide significant cost savings for the manufacture, shipping and deployment over traditional dry cooling systems. In exemplary embodiments, the tubes are formed of a single sheet of a thin gauge, flexible material, which can be various plastics such as polyethylene, having a thickness between about 50 microns (2 mil) and 300 microns (12 mil). In other embodiments, tubes can be formed of multiple layers and multiple sections of material. In addition, other lightweight, flexible materials or
combinations of materials can be used. [00154] The lower ballast portion 1223 defines a reservoir 1225 containing liquid 1220 facilitating ballast. The lower ballast portion 1223 may be partially or completely filled with ballast liquid 1220. The elongated tube 1212 is at least partially submerged in a support body of liquid 1216 in a support basin 1219 so as to support one or more elongated tubes 1212. The support liquid 1216 and ballast liquid 1220 may be the same type of liquid, and could be nonpotable, brackish water.
[00155] As shown in FIGS. 43 and 44, dry cooling assemblies 1210 can be grouped together into an array 1201 of such assemblies. The array is supported by a body of liquid 1216 in a pool or basin 1219. It should be noted that any of the embodiments discussed herein could be grouped into an array of various numbers of assemblies. In addition, the supporting body of liquid 1216 may be divided into multiple basins or reservoirs, each of which would hold an array of dry cooling assemblies.
[00156] As discussed in more detail herein, the support liquid 1216 and ballast liquid 1220 can be used to cool exhaust from a boiler or heat engine. The support liquid 1216 will typically have a temperature higher than ambient temperature due to heat 1227 from the heat engine exhaust. The ballast liquid 1220, in turn, is warmed by heat 1227 from the supporting body of liquid 1216. The ballast liquid 1220 thus transfers the heat 1227 from the supporting body of liquid 1216 in the support basin 1219 to the interior of the tube 1212 without the need for evaporation. In other words, heat 1227 from the basin 1219 passes through the tube 1212, into the ballast liquid 1220, into the air in the upper chamber 1221, through the wall of the tube 1212 again, and then out into the ambient conditions.
[00157] Exemplary dry cooling assemblies are structured so that at least some of the heat passes from the ballast liquid 1220 to the upper portion 1221 of the tube 1212. Some of the heat 1227 passes out of tube 1212 to the ambient air from the ballast liquid 1220, and some of it passes out from the upper portion 1221 of the tube 1212. Alternatively, or in addition, coolant air 1229 may be blown through the upper portion 1221 of the tube 1212 such that the coolant air 1229 absorbs at least some of the heat 1227. The coolant air 1229 should have a temperature cooler than the temperature of the supporting body of liquid 1216 to facilitate heat transfer, in particular, removal of heat 1227 from the tube 1212. [00158] As shown in FIGS. 29-32, exemplary embodiments include a panel 1222 coupled to an interior wall 1215 of the tube 1212. In exemplary embodiments, the panel 1222 is made of a flexible material. The flexible panel 1222 divides the tube 1212 into an upper air- filled portion 1221 that serves as a dedicated section of the tube 1212 through which ambient or coolant air can be blown to remove heat from the dry cooling system 1210, and a separate lower portion 1223. When the ballast portion 1223 is completely filled with ballast liquid 1220, this allows the maximum amount of contact between the ballast liquid 1220 and the panel 1222. The separation of upper and lower portions 1221 and 1223 by panel 1222 allows not only for passive cooling by also a method to actively cool the support basin 1219.
[00159] As seen in FIG. 30, the ballast chamber 1223 is not fully filled with ballast liquid 1220. This causes panel 1222 to not be in complete contact with the ballast liquid 1220, thereby decreasing the efficiency of the active cooling system because the heat 1227 must pass from the ballast liquid 1220 through the air-filled portion of the ballast chamber 1223, then through the panel 1222 and into the air-filled upper chamber 1221, rather than avoiding the air-filled portion of the ballast chamber 1223, as shown in FIG. 29. One advantage of this embodiment, however, is that the tube 1212 is free to rotate until the edge of the panel 1222 comes into contact with the surface of the ballast liquid 1220. The tube 1212 cannot rotate further than this without submerging the air-filled top chamber of the tube 1212, which requires a large amount of force.
[00160] As seen in FIGS. 29 and 30, the panel 1222 may have a width substantially equal to the diameter of the tube 1212 so that when the tube 1212 is fully inflated, the panel 1222 is pulled taut and becomes a rigid chord across the tube 1212. Alternatively, as best seen in FIGS. 31 and 32, the panel 1222 may be oversized, i.e., its width is greater than the diameter of the tube 1212, so that when the tube 1212 is inflated the panel 1222 is not pulled taut, but hangs down in the inflatable tube. In exemplary embodiments, panel 1222 may be sufficiently oversized to that it hangs low enough to rest on the ballast fluid 1220. This creates small portions of a reservoir 1225a, 1225b in the lower chamber on opposite sides of the tube 1212 and advantageously allows for increased thermal conductance into the upper chamber 1221. [00161] Turning to FIGS. 33 and 35, exemplary embodiments of a dry cooling assembly 1210 have one or more elongated interior tubes 1231 disposed within the tube 1212. Exemplary embodiments have two interior tubes 1231a, 1231b placed within the body of the main tube 1212 such that the interior tubes 1231a, 1231b may float on ballast fluid 1220. The interior tubes 1231 may be made of a flexible material that is the same or similar to that of the main tube 1212.
Coolant air 1229 may be pumped through the interior tubes 1231a, 1231b to facilitate heat transfer, in particular, removal or extraction of heat 1227 from the tube 1212. The heat 1227 will thus move from the basin 1219 into the ballast fluid 1220, across the tube 1212 in the coolant air 1229, where it will be blown out of the tube 1212.
[00162] Exemplary embodiments further include combined solar reflector and dry cooling assemblies 1210. As shown in FIG. 34, one such combination system may include an oversized panel 1222 that hangs down in the inflatable tube 1212 and rests on the ballast fluid 1220. This creates small portions of the lower chamber 1225a, 1225b on opposite sides of the tube 1212. Above panel 1222, an internally mounted reflective sheet 1214 is disposed within the elongated tube 1212, having opposing longitudinal sides attached to the interior wall 1215 of the tube 1212. The assembly 1210 is partially submerged in a support body of liquid 1216 in a basin 1219. As described in detail above, the reflective sheet 1214 is used to reflect solar radiation towards a solar collector configured to transform the solar energy to electricity or process heat. This also prevents the heat from solar energy from entering the tubes 1212 and causing them to become warmer. Advantageously, combined solar reflector and dry cooling assemblies 1210 can generate electricity or heat while simultaneously cooling associated heat engines or power plant equipment.
[00163] In another exemplary embodiment, shown in FIG. 35, a combined solar reflector and dry cooling assembly 1210 includes both interior tubes 1231 and an internally mounted reflective sheet 1214 to reflect solar radiation. Two interior tubes 1231a, 1231b may be placed within the body of the main tube 1212 such that the interior tubes 1231a, 1231b float on ballast fluid 1220. Coolant air 1229 may be pumped through the interior tubes 123 la, 1231b to facilitate heat transfer, particularly removal of heat 1227 from the tube 1212. [00164] Referring to FIGS. 36-38, exemplary embodiments of a combined solar reflector and dry cooling assembly will be described. One such embodiment of a combined assembly 1310 includes an inflated elongated tube 1312, a panel 1322 coupled to an interior wall 1315 of the tube 1312, and a reflective sheet 1314 coupled to an exterior wall 1317 of the tube 1312, in which the tube is disposed on a supporting body of liquid 1316. The reflective sheet 1314 is disposed along the top of the tube 1312. These embodiments have the advantage of preventing solar radiation from entering the tubes 1312 without reducing the available space within the tubes for cooling.
[00165] Supports 1337a, 1337b are disposed on an exterior side 1317 of the tube 1312. The longitudinal sides of the reflective sheet 1314 are coupled to the supports 1337a, 1337b. Panel 1322 is coupled to an interior wall 1315 of the tube 1312. In exemplary embodiments, the panel 1322 is made of a flexible material. The flexible panel 1322 divides the tube 1312 into an upper portion 1321 that serves as a dedicated section of the tube 1312 through which ambient or coolant air 1329 can be blown to remove heat 1327 from the combined solar reflector and dry cooling system 1310, and a separate lower ballast portion 1323. The panel 1320 can be pulled taut, as shown in FIG. 36, or can be oversized and hang down to touch the ballast liquid 1320, as shown in FIG. 37.
[00166] FIG. 38 illustrates another exemplary embodiment of a combined solar reflector and dry cooling system 1310 that employs an interior tube 1331 together with an externally mounted reflective sheet 1314 to reflect solar radiation. The interior tube 1331 is disposed within the body of the main tube 1312 such that the interior tube 1331 floats on ballast fluid 1320. Supports 1337a, 1337b disposed on an exterior side 1317 of the tube 1312 serve to mount the reflective sheet 1314. Coolant air 1329 may be pumped through the interior tube 1331 and or upper chamber 1321 to facilitate heat transfer, in particular, removal of heat 1327 from the tube 1312.
[00167] In exemplary embodiments the reservoir of liquid within the tubes can also be used to grow biomass. It should be noted that any of the embodiments discussed herein could include culture medium for growing photosynthetic biomass. With reference now to FIGS. 39- 41, there are shown exemplary embodiments of dry cooling / photobioreactor assemblies 1410. Embodiments of a dry cooling / photobioreactor assembly 1410 include an inflated elongated tube 1412 having a panel 1422 coupled to interior walls 1415 of the tube 1412 that divides the tube 1412 into an upper portion 1421 that serves as a dedicated section of the tube 1412 through which ambient or coolant air 1429 can be blown to remove heat 1427 from the system 1410, and a separate lower ballast portion 1423. The lower ballast portion 1423 may include culture medium 1420 to grow photosynthetic biomass. The assembly 1410 is supported by a body of liquid 1416 in a basin 1419. The panel 1422 can be pulled taut, as shown in FIG. 39, or be oversized and hang down to touch the culture medium 1420, as shown in FIG. 41.
[00168] FIG. 40 shows an exemplary embodiment of a dry cooling / photobioreactor assembly 1410 in which interior tubes 1431a, 1431b are disposed within the body of the main tube 1412 such that the interior tubes 1431 float on culture medium 1420. Tube 1412 has an upper portion or chamber 1421 and a lower ballast portion or chamber 1423, which provides ballast for the dry cooling / photobioreactor assembly 1410. The assembly 1410 is supported by a body of liquid 1416 in a basin 1419. Coolant air 1429 may be pumped through the interior tubes 1431a, 1431b and or upper chamber 1421 to facilitate heat transfer, in particular, removal of heat 1427 from the tube 1412.
[00169] As shown in FIG. 42, exemplary embodiments of a dry cooling / solar reflector / photobioreactor assembly 1510 may combine some of the major components of each aspect into one system. For example, dry cooling / solar reflector / photobioreactor assembly 1510 includes an inflated elongated tube 1512 having an internally mounted reflective sheet 1514 coupled to the interior walls 1515 of the tube 1512 that divides the tube 1512 into an upper portion 1521 and a lower ballast portion 1523, which includes culture medium 1520 to grow photosynthetic biomass. The reflective sheet 1514 is configured to reflect IR radiation towards a solar collector, while allowing visible light to pass through to culture medium 1520 within the lower ballast portion 1523 of the tube 1512. The assembly 1510 is supported by a body of liquid 1516 in a basin 1519. Interior tubes 1531a, 1531b are disposed within the body of the main tube 1512 such that the interior tubes 1531 float on culture medium 1520. Coolant air 1529 may be pumped through the interior tubes 1531a, 1531b and or upper chamber 1521 to facilitate heat transfer, in particular, removal of heat 1527 from the tube 1512. [00170] In operation, dry cooling assemblies may be employed to cool exhaust, as well as steam, from a heat engine or other power plant equipment. As best seen in FIG. 45, in exemplary embodiments, an array 1201 of dry cooling assemblies 1210 may be used in conjunction with a power plant 1260. More particularly, in a traditional fuel burning plant, there is exhaust from the boiler 1252 in the form of C02 containing flue gas 1250, and the support liquid 1216 and ballast liquid 1220 can be used to cool this flue gas 1250 from the boiler or heat engine 1252. The dry cooling assemblies 1210 may be fluidly connected via pipes or other fluid conducting members to the boiler or heat engine 1252. The flue gas 1250 exits the boiler or heat engine 1252 and is directed to the lower ballast portions 1223 of the tubes 1212. Coolant air 1229 may be pumped through the upper chamber 1221 to facilitate heat transfer, in particular, removal of heat 1227 from the tubes 1212.
[00171] Power plant 1260 combusts fuel 1262 and air 1261 in boiler 1252 to boil water in order to drive a steam turbine 1268 to make electricity 1274. After exiting the turbine 1268, the steam 1271 is cooled down and condensed in order to increase the turbine's efficiency. The support basin 1219 may be fluidly connected to a pipe 1254 or other fluid conducting member that allows flow of waste heat in the form of steam 1271 via feed pump 1256 to a feed tank 1273 containing hot water. Cold support water 1216 is drawn from the support basin 1219 and run through a heat exchanger with the turbine exhaust inside of the condenser 1269. The heated support water 1216a then returns to the support basins 1219 to be cooled by the dry cooling assemblies 1210.
[00172] The support liquid 1216 will typically have a temperature higher than ambient temperature due to heat 1227 from the heat engine exhaust 1250. The ballast liquid 1220, in turn, is warmed by heat 1227 from the supporting body of liquid 1216. The ballast liquid 1220 thus transfers the heat 1227 from the supporting body of liquid 1216 in the support basin 1219 to the interior of the tube 1212 without the need for evaporation. Coolant air 1229 may be pumped through the upper chamber 1221 to facilitate heat transfer, in particular, removal of heat 1227 from the tube 1212.
[00173] It should be noted that supporting liquid 1216 may be drawn out of multiple basins 1219 simultaneously and used to cool the exhaust or flue gas 1250 from the heat engine or boiler, after which it would be pumped back into the basins 1219 in roughly equal amounts so as to cause each basin 1219 to increase in temperature by about the same amount. Furthermore, in exemplary embodiments, the support liquid would be drawn from one or more basins until a maximum temperature is reached, at which point the cooling fluid would then be taken from a different basin or different set of basins.
[00174] In exemplary embodiments, the flue gas 1250 can be pumped into culture medium 1220 inside of the dry cooling assembly 1210 to stimulate growth of photosynthetic organisms, as C02 is a key component of that process. In a renewable power plant that does not use combustion, such as a solar thermal plant, there would be no flue gas to feed a culture, but the condensing fluid is still needed to cool the turbine exhaust, so the dry cooling mechanism is still useful.
[00175] In an effort to model the efficacy of the dry cooling assembly at cooling a heat engine, a computational model was created. In this model, a 100 MWe power plant was cooled by the water from many basins covered in the dry cooling assembly shown in FIG 32. There were 1000 support basins in the simulation, with each basin being 200m long, 10.85m wide, and lm deep. The simulation would add the heat absorbed from the exhaust from the power plant to Basin #1. When Basin #1 reached a prescribed maximum temperature, in this case 50 C, the plant would stop heating that basin and begin to heat Basin #2.
[00176] This process would continue until Basin #1 was once again cool enough to be used to cool the exhaust, at which point the plant would start over heating Basin #1, then Basin #2, etc. For each basin, ambient air was pumped through the cooling assembly while the temperature of the support basin was above a certain temperature, in this case 20 C. The air was pumped at 1 m/s. The tubes were assumed to run lengthwise on the top of the basin. There are 70 tubes in the simulation, therefore each tube has a diameter of 15.5 cm and is 200m long. The contact area between the panel and the ballast was taken to be the diameter of the tubes, as they are half full of ballast fluid. Measurements were taken every hour for one year, using NREL's TMY 3 for Imperial, CA as the input weather data.
[00177] FIG. 46 shows the temperature results for Basin #1 throughout the year. The plant heats Basin #1 most often in order to maintain the highest possible temperature gradient with the ambient air. This allows the basin to cool more quickly and efficiently without the need for evaporation. FIG. 47 shows the temperature results for Basin #10 throughout the year. Basin #10 receives less heat input from the plant throughout the year, but is still frequently too hot to be used to cool a heat engine.
[00178] FIG. 48 shows the temperature results for Basin #100 throughout the year. Basin
#100 receives far less heat input from the plant than does Basin #1, and is cool enough to cool a heat engine roughly half of the time. FIG. 49 shows the temperature results for Basin #300 throughout the year. Basin #300 is only heated by the engine exhaust eight times during the year, and as such is generally cool enough to cool the engine. FIG. 50 shows the temperature results for Basin #500 throughout the year. Basin #500 is only heated twice, and is cool enough to be the cooling fluid for the engine almost the entire year. FIG. 51 shows the temperature results for Basins #721 - 1000 throughout the year. These basins are never heated by the plant, and are therefore unnecessary. Only 720 basins are needed to adequately cool the heat engine under these conditions. Fewer than this number will work, but it will result in a corresponding reduction in efficiency.
[00179] Thus, it is seen that systems and methods of dry cooling and generating energy from solar radiation are provided. It should be understood that any of the foregoing
configurations and specialized components or chemical compounds may be interchangeably used with any of the systems of the preceding embodiments. Although exemplary embodiments of the present disclosure are described hereinabove, it will be evident to one skilled in the art that various changes and modifications may be made therein without departing from the disclosure. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the disclosure.

Claims

WHAT IS CLAIMED IS:
1. A dry cooling assembly comprising:
a supporting body of liquid having a temperature higher than ambient temperature; and an inflatable elongated tube at least partially submerged in the supporting body of liquid, the inflatable elongated tube having an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material;
the lower ballast portion defining a reservoir containing liquid facilitating ballast;
wherein the liquid facilitating ballast is warmed by heat from the supporting body of liquid such that the temperature of the support body of liquid is reduced.
2. The dry cooling assembly of claim 1 wherein the heat passes out of the elongated tube to ambient air.
3. The dry cooling assembly of claim 1 wherein coolant air having a temperature cooler than the temperature of the supporting body of liquid is blown through the upper portion of the elongated tube such that the coolant air absorbs at least some of the heat.
4. The dry cooling assembly of claim 1 further comprising a flexible panel coupled to an interior wall of the elongated tube such that the upper portion and the lower ballast portion are separated by the flexible panel, the flexible panel being oriented generally parallel to a longitudinal axis of the elongated tube.
5. The dry cooling assembly of claim 4 wherein the flexible panel is coupled to opposite interior walls of the elongated tube and is pulled taut in the inflatable tube.
6. The dry cooling assembly of claim 4 wherein the flexible panel is coupled to opposite interior walls of the elongated tube and is oversized such that it hangs down in the inflatable tube.
7. The dry cooling assembly of claim 6 wherein the flexible panel rests on the liquid facilitating ballast.
8. The dry cooling assembly of claim 1 further comprising one or more elongated interior tubes, disposed within the elongated tube, the elongated interior tubes formed at least partially of flexible material.
9. The dry cooling assembly of claim 8 wherein coolant air having a temperature cooler than the temperature of the supporting body of liquid is blown through the one or more elongated interior tubes such that the coolant air absorbs at least some of the heat.
10. The dry cooling assembly of claim 1 wherein flue gas from a power plant is pumped into the lower ballast portion.
11. The dry cooling assembly of claim 1 wherein liquid in the supporting body of liquid is used to cool exhaust from a heat engine.
12. The dry cooling assembly of claim 1 further comprising a reflective sheet coupled to an exterior wall of the elongated tube.
13. The dry cooling assembly of claim 1 wherein the elongated tube further comprises a culture medium for photosynthetic biomass.
14. A method of dry cooling, comprising:
at least partially filling a lower ballast portion of a tube with liquid facilitating ballast; partially submerging the tube in a supporting body of liquid having a temperature higher than ambient temperature such that the liquid facilitating ballast is warmed by heat from the supporting body of liquid, the temperature of the support body of liquid is reduced; and
removing the heat from the tube.
15. The method of claim 14 wherein the removing step comprises blowing coolant air having a temperature cooler than the temperature of the supporting body of liquid through an upper portion of the elongated tube such that the coolant air absorbs at least some of the heat.
16. The method of claim 14 further comprising coupling a flexible panel to an interior wall of the tube such that an upper portion and the lower ballast portion are separated by the flexible panel.
17. The method of claim 14 further comprising the steps of:
disposing one or more interior tubes within the tube, the interior tubes formed at least partially of flexible material; and blowing coolant air having a temperature cooler than the temperature of the supporting body of liquid through the one or more interior tubes such that the coolant air absorbs at least some of the heat.
18. The method of claim 14 further comprising drawing liquid from the supporting body of liquid to cool exhaust from a heat engine.
19. The method of claim 14 further comprising pumping flue gas from a power plant into the lower ballast portion.
20. A combined solar reflector and dry cooling assembly, comprising:
a supporting body of liquid having a temperature higher than ambient temperature;
an inflatable elongated tube at least partially submerged in the supporting body of liquid, the inflatable elongated tube having an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material; and
a reflective sheet coupled to a wall of the elongated tube to reflect solar radiation;
the lower ballast portion defining a reservoir containing liquid facilitating ballast;
wherein the liquid facilitating ballast is warmed by heat from the supporting body of liquid such that the temperature of the support body of liquid is reduced.
PCT/US2011/061025 2010-11-19 2011-11-16 Systems and methods of dry cooling WO2012068272A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011328925A AU2011328925A1 (en) 2010-11-19 2011-11-16 Systems and methods of dry cooling

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/950,931 US8443615B2 (en) 2009-08-04 2010-11-19 Systems and methods of dry cooling
US12/950,931 2010-11-19
PCT/US2011/052789 WO2012040483A2 (en) 2010-09-23 2011-09-22 Systems and methods of generating energy and fresh water from solar radiation
USPCT/US2011/052789 2011-09-22

Publications (2)

Publication Number Publication Date
WO2012068272A2 true WO2012068272A2 (en) 2012-05-24
WO2012068272A3 WO2012068272A3 (en) 2012-07-05

Family

ID=46084623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/061025 WO2012068272A2 (en) 2010-11-19 2011-11-16 Systems and methods of dry cooling

Country Status (2)

Country Link
AU (1) AU2011328925A1 (en)
WO (1) WO2012068272A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014131782A1 (en) * 2013-02-26 2014-09-04 Danmarks Tekniske Universitet Off-shore photovoltaic installation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182307A (en) * 1977-07-21 1980-01-08 Donald Shanfelt Inflatable solar energy collector
US4233958A (en) * 1977-07-07 1980-11-18 Heden Carl Goeran Climate-controlled building construction
US6223743B1 (en) * 1999-05-18 2001-05-01 Melvin L. Prueitt Solar power generation and energy storage system
US6877507B2 (en) * 2000-06-23 2005-04-12 Richard Braun Mounting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233958A (en) * 1977-07-07 1980-11-18 Heden Carl Goeran Climate-controlled building construction
US4182307A (en) * 1977-07-21 1980-01-08 Donald Shanfelt Inflatable solar energy collector
US6223743B1 (en) * 1999-05-18 2001-05-01 Melvin L. Prueitt Solar power generation and energy storage system
US6877507B2 (en) * 2000-06-23 2005-04-12 Richard Braun Mounting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014131782A1 (en) * 2013-02-26 2014-09-04 Danmarks Tekniske Universitet Off-shore photovoltaic installation

Also Published As

Publication number Publication date
WO2012068272A3 (en) 2012-07-05
AU2011328925A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
US8307820B2 (en) Systems and methods of generating energy from solar radiation
US8443615B2 (en) Systems and methods of dry cooling
US4210121A (en) Solar energy collection
US4194949A (en) Solar distillation apparatus
US4249516A (en) Solar energy collection
Chafidz et al. Design and fabrication of a portable and hybrid solar-powered membrane distillation system
US20110070635A1 (en) Systems and methods of generating energy and fresh water from solar radiation
US4312709A (en) Solar energy collection still
EP2174070A2 (en) System and methods of utilizing solar energy
Good et al. Towards a commercial parabolic trough CSP system using air as heat transfer fluid
WO2013141683A1 (en) Flexible system of small-scale linear parabolic solar concentrators for power generation and dehydration
US20120234668A1 (en) Systems and methods of generating energy from solar radiation using photocatalytic particles
IL172215A (en) Collector for solar radiation
JPS587147B2 (en) The current energy level is low.
US20100294266A1 (en) Concentrated solar thermal energy collection device
US4191594A (en) Solar energy conversion
Morciano et al. Installation of a concentrated solar power system for the thermal needs of buildings or industrial processes
GB1590841A (en) Apparatus for converting concentrated solar energy into heat energy
MX2014006740A (en) Hybrid solar energy recovery system.
WO2014144996A1 (en) Radiant energy collectors and methods therefor
WO2012068272A2 (en) Systems and methods of dry cooling
US20160233829A1 (en) Solar water-collecting, air-conditioning, light-transmitting and power generating house
US20170204838A1 (en) Concentrated Photovoltaic and Thermal Solar Energy Collector
US10253286B2 (en) Systems and methods of generating energy from solar radiation
Mortazavi et al. Thermal behaviour of water inside an absorber tube in a solar parabolic trough collector (PTC) systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841760

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011328925

Country of ref document: AU

Date of ref document: 20111116

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11841760

Country of ref document: EP

Kind code of ref document: A2