WO2012068250A1 - Thin film evaporator - Google Patents

Thin film evaporator Download PDF

Info

Publication number
WO2012068250A1
WO2012068250A1 PCT/US2011/060994 US2011060994W WO2012068250A1 WO 2012068250 A1 WO2012068250 A1 WO 2012068250A1 US 2011060994 W US2011060994 W US 2011060994W WO 2012068250 A1 WO2012068250 A1 WO 2012068250A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
shell
tubes
thin film
film evaporator
Prior art date
Application number
PCT/US2011/060994
Other languages
French (fr)
Other versions
WO2012068250A8 (en
Inventor
Zahid Hussain Ayub
Adnan Hussian Ayub
Original Assignee
Zahid Hussain Ayub
Adnan Hussian Ayub
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zahid Hussain Ayub, Adnan Hussian Ayub filed Critical Zahid Hussain Ayub
Priority to EP11841861.5A priority Critical patent/EP2641036A4/en
Priority to CN201180029134.0A priority patent/CN102959346B/en
Publication of WO2012068250A1 publication Critical patent/WO2012068250A1/en
Publication of WO2012068250A8 publication Critical patent/WO2012068250A8/en
Priority to HK13107748.5A priority patent/HK1180388A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the distributor openings are sized so as to produce a spray of refrigerant.
  • Fig. 5 is a side view of the distribution pipes of Fig. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compressor (AREA)

Abstract

A thin film evaporator (11) has a shell (13) with tubes (15) extending through the shell in at least one pass. The shell has a top and a bottom. Process fluid flows through the tubes. A suction from a compressor is applied to the top of the shell at a refrigerant outlet (49). Refrigerant (70) is introduced into the shell at the bottom and is distributed (33, 45) across the bottom region of the shell. The refrigerant flows up and contacts the tubes, exchanging heat therewith before flowing out of the shell top. Oil in the refrigerant contacts the shell wall and drains into a sump (51).

Description

THIN FILM EVAPORATOR
SPECIFICATION
Field of the Invention
The present invention relates to heat exchangers and refrigeration systems and in particular to evaporators.
Background of the Invention
In a typical refrigeration cycle there is an evaporator or chiller that cools the process fluid at the expense of boiling the refrigerant that is at lower saturation temperature and pressure, a compressor that compresses the vaporized refrigerant to an elevated pressure and temperature, a condenser that condenses the high pressure refrigerant to liquid phase at the expense of heating the cooling medium, and an expansion device that reduces the pressure of the condensed refrigerant back to the low side, thus entering the evaporator or chiller to repeat the above cycle again. This cycle is called the reverse Rankine cycle.
Such refrigeration systems are found in a variety of installations, such as food processing plants.
Refrigerants are typically synthetic and/or natural, such as ammonia, carbon dioxide, or hydrocarbons such as propane. Synthetic refrigerants are falling out of favor due to environmental concerns. However, even natural refrigerants have drawbacks; for example, ammonia is toxic and propane is flammable. It is desirable to design an evaporator that would use a reduced amount of refrigerant, thus minimizing any danger from an accidental refrigerant release. In addition, a more efficient evaporator would be physically smaller, thus saving money.
Summary of the Invention
A thin film evaporator comprises a shell having two ends, a top and a bottom. A plurality of tubes is located in the shell and extends between the two ends. The tubes form a path through the shell. The path comprises at least one pass through the shell. There is at least one refrigerant inlet which is located in the bottom of the shell. A refrigerant distributor is connected to the refrigerant inlet and is located between the shell bottom and the tubes. The distributor has openings facing the shell bottom. A perforated plate is between the distributor and the tubes. There is at least one refrigerant outlet located in the shell top. A suction is applied to the refrigerant outlet.
In accordance with one aspect, the distributor openings are sized so as to produce a spray of refrigerant.
In accordance with still another aspect, the evaporator further comprises a thin film of liquid refrigerant on the tubes, with vapor refrigerant between the tubes.
In accordance with one aspect, the thin film evaporator further comprises a demister located in the shell between the tubes and the refrigerant outlet.
In accordance with another aspect, the tubes comprise a main body of tubes. They further comprise a super heat body of tubes located between the demister and the refrigerant outlet. In accordance with another aspect, a sump is located in the bottom of the shell.
There is also provided a method of heat exchange using a thin film evaporator having a shell with two ends, a top and a bottom, and a plurality of tubes in the shell and extending between the ends. A process fluid flows through the tubes. Refrigerant is flowed into the bottom of the shell. The refrigerant is distributed across a bottom region of the shell. A film of refrigerant is provided around the tubes and affects heat transfer between the process fluid and the refrigerant. The refrigerant is allowed to exit through a refrigerant outlet in the top of the shell. A suction is applied at the refrigerant outlet.
In accordance with one aspect, the step of distributing the refrigerant across a bottom region of the shell further comprises spraying the refrigerant against the shell.
In accordance with another aspect, the step of distributing the refrigerant across a bottom region of the shell further comprises passing the refrigerant spray through a perforated member before flowing the refrigerant around the tubes.
In accordance with one aspect, a resistance to flow in the shell is provided between the tubes and the refrigerant outlet.
In accordance with another aspect, the method further comprises the step of coalescing liquid at the top of the shell before exiting through the refrigerant outlet.
In accordance with another aspect, the tubes comprise a main body of tubes. A super heat body of tubes is provided between the resistance and the refrigerant outlet. In accordance with another aspect, the refrigerant comprises oil. The step of flowing refrigerant into the shell further comprises spraying the refrigerant against the shell before flowing the refrigerant to the tubes. The oil is drained into a sump in the shell.
Brief Description of the Drawings
Fig. 1 is a side cross-sectional view of the proposed thin film evaporator, in accordance with a preferred embodiment.
Fig. 2 is a top cross-sectional view showing the distribution pipes and baffles.
Fig. 3 is a cross-sectional view, taken along lines III-III of Fig. 2. Fig. 4 is a bottom view of one of the distribution pipes.
Fig. 5 is a side view of the distribution pipes of Fig. 4.
Fig. 6 is a block diagram of a refrigeration system with the evaporator.
Fig. 7 is a cross-sectional view of some of the tubes, showing a thin film of refrigerant.
Description of the Preferred Embodiment
Referring to the Figs., the evaporator 11 has a cylindrical shell 13. Tubes 15, which carry the process fluid, are located in the shell. The evaporator shown in the drawings has two passes of tubes 15, with a lower pass 15L of tubes and an upper pass 15U of tubes. The tubes are not touching one another and are spaced apart to allow the refrigerant to flow around each tube. Baffle plates 17 support the tubes inside of the shell. The ends of the tubes are coupled to tube sheets 19, located at the ends of the shell. Thus, the tubes 15 extend between the tube sheets 19 inside of the shell 13. (The tubes 15 are not shown in Figs. 1 and 2 so that other details can be shown; however the location of the tube passes 15U, 15L are shown in Fig. 1.)
At one end of the shell, an end bonnet 20 (see Fig. 1) has an inlet chamber 21 communicating with the upper pass 15U of tubes and an outlet chamber 23 that communicates with the lower pass 15L of tubes. A respective inlet 25 and outlet 27 are connected to the inlet and outlet chambers. A divider plate 29 separates the inlet and outlet chambers.
At the opposite end of the shell is another end bonnet 31 with a single chamber so that fluid exiting the upper pass 15U of tubes enters the lower pass 15L of tubes.
The chiller can have a single pass of tubes or more than two passes of tubes. Fig. 3 shows an imaginary horizontal center line which visually separates the upper pass 15U from the lower pass 15L.
The process fluid 30, such as water, brine, gas, etc., flows through the inlet 25 (see Fig. 1) into the inlet chamber 21 and then flows through the upper pass 15U of tubes into the opposite end bonnet 31 and then enters the lower pass 15L of tubes where it then flows into the outlet chamber 23 and through the outlet 27.
The refrigerant enters the shell at the bottom and moves up, where it exits at the top of the shell. The refrigerant flows into the shell by way of distribution pipes 37. The distribution pipes 37 are arranged in assemblies 33. In the preferred embodiment, there are two distribution pipe assemblies 33, arranged end-to-end along the bottom portion of the shell. Each distribution pipe assembly 33 is shaped like an elongated "H" (see Fig. 4). Each distribution pipe assembly has a center feed section 35 that is transverse to parallel outlet distribution pipes 37. Each distribution pipe 37 has openings 39 along the bottom of the pipes. The openings 39 are located along the length of the outlet pipes 37. The openings 39 are oriented straight down. However, the openings could be oriented at some angle relative to straight down. The openings 39 are sized so that the refrigerant exits the distribution pipes 37 as a spray. As shown in Figs. 3 and 5, a vertical riser pipe 41 depends from each center feed section 35. The riser pipes 41 are the refrigerant inlets. The distribution pipes 33 are located in the bottom portion in the shell 13 and are spaced above the bottom by the vertical riser pipe 41 so that a gap 43 is formed between the distribution pipes and the shell bottom. A perforated plate 45 is located above the distribution pipes. If need be, the distribution pipes 33 can be secured to the perforated plate 45 for support. The perforated plate is located below the lower pass 15L of tubes.
The distribution pipe assemblies 33 can be in various configurations. If the shell is short enough, only a single distribution pipe assembly 33 need be used. Conversely, a longer shell may require more than two distribution pipe assemblies. Likewise, each distribution pipe assembly can have one or more pipes 37. For example, a single pipe can be used, which pipe can be of a larger inside diameter than the pipes 37 shown in Fig. 3. With such a single pipe, some of the openings can be oriented to spray vertically down, while other of the openings can be oriented to spray at an angle to vertical. Alternatively, more than one or two pipes 37 can be used. The number and size of pipes 37 will depend somewhat on the size of the shell. The distribution pipe assemblies 33 are designed so as to provide a distribution of the refrigerant across the bottom of the shell, so that the refrigerant contacts all of the tubes 15. The perforated plate 45 assists in evenly distributing the refrigerant among the tubes 15.
A demister pad 47 is located above the upper pass 15U of tubes. The demister pad is, in one embodiment, a 1" thick pad of stainless steel wool wire. One or more refrigerant outlets 49 are at the top of the shell, located above the demister pad 47. Between the demister pad 47 and the outlets 49 a single or multiple rows of tubes 15D are located. These tubes 15D are part of the upper pass 15U. The tubes in this section could be the same diameter or type as the tubes in the other sections or passes, or the tubes could be different. For example, the tubes 15D could be of a smaller diameter so as to provide more tubes above the demister 47. The tubes 15D impart super heat to the refrigerant. These tubes 15D act as the final barrier to stop any liquid refrigerant carry-over into the compressor 63 (Fig. 6).
The shell 13 is provided with a sump 51 in its bottom. The bottom wall of the shell at the sump periphery is curved into the sump so as to facilitate drainage into the sump.
The evaporator is installed in a refrigerant system 61 as shown in Fig. 6. The refrigerant outlets 49 are connected to the inlet of the compressor 63. The compressor is connected to a condenser 65. The condenser outlet is connected to an expansion device or valve 67, which in turn is connected to the refrigerant inlets 41 of the evaporator 11. No refrigerant pump is needed to provide refrigerant for the evaporator 11.
The expansion device 67 is provided at the refrigerant inlets to control the flow of refrigerant into the evaporator. Sensors 69 are located at the refrigerant outlets 49. The sensors can be pressure transducers or temperature sensors. As the demand for refrigerant increases, as sensed at the outlets 49, the expansion device 67 can allow more refrigerant into the evaporator, and vice versa.
In operation, the process fluid 30 (Fig. 1) is circulated through the tubes 15 while the refrigerant 70 is circulated through the shell, although exterior to the tubes. The liquid-vapor refrigerant mixture enters by way of the inlets 41, flows into the distribution pipes 37 and passes through the openings 39 as a spray 70 (in Fig. 3, only one side of the distribution pipe assembly 33 is shown as spraying for illustrative purposes). The refrigerant is distributed evenly by the distribution pipes 33 into the bottom shell at the shell wall. The refrigerant impacts the shell wall below the distribution pipe assemblies 33. This action serves to create a homogeneous two-phase (liquid and vapor) refrigerant mixture, which mixture is then evenly distributed across the bottom region of the shell. The perforated plate 45 further helps to evenly distribute the refrigerant mixture across the bottom region of the shell. The compressor 63 suction as applied to the outlets 49 draws the refrigerant up inside of the shell into the tube regions (Fig. 3). The refrigerant forms a thin liquid film 71 on the outside of the tubes 15 (Fig. 7). The refrigerant film has excellent heat transfer characteristics, particularly when compared to a flooded evaporator. As the refrigerant is boiled off of the tubes, the process fluid 75 cools and the refrigerant flows up as a vapor 73. The spaces between the tubes 15 contain the refrigerant in both liquid and vapor phases, with the liquid refrigerant being the size of droplets. This is in contrast with a flooded evaporator where the spacing between the tubes is filled with a pool of refrigerant. The refrigerant vapor first passes through the demister pad 47, then the last batch of tubes 15D and finally out through the refrigerant outlets 49. At the upper end of the shell, the refrigerant in the spaces between the tubes 15 is mostly vapor and may contain some liquid. The demister pad 47 coalesces any liquid refrigerant and thereby prevents liquid from entering the compressor 63. The coalesced liquid drops back down onto the tubes 15 below the demister 47. The demister pad also applies a back pressure across the refrigerant outlets 49, which serve to evenly distribute the refrigerant across the tube bundle.
As the refrigerant vapor exits the evaporator 11 (Fig. 6), it is super heated. Thus, it will not return to a liquid state prior to being compressed by the compressor. The interaction between the sensor 69 and the expansion device 67 maintains a fixed superheat level.
The sump 51 (Fig. 1) captures oil in the refrigerant and keeps the tubes 15 clean. The refrigerant picks up oil from the compressor. As the refrigerant is sprayed out of the distribution pipes, the oil adheres to the shell wall more readily than does the refrigerant. The oil drains into the sump 51, where it collects and can be removed. Removal of the oil is discussed in U.S. Patent No. 7,082,774, the entire disclosure of which is incorporated herein by reference.
The thin film evaporator has advantages over other types of heat exchangers. Where a flooded evaporator requires the shell to be flooded with refrigerant, the thin film evaporator requires a much smaller charge of refrigerant. For example, for a 130 Ton-Refrigeration capacity system, a flooded evaporator would require approximately 1200 pounds of ammonia, while the thin film evaporator would require only about 35 pounds. Thus, there is less toxic refrigerant to potentially leak into the atmosphere. On the other hand, conventional spray evaporators require a pump to spray the refrigerant down onto the tubes. Refrigerant pumps are expensive as they must have special seals and maintenance costs are high due to moving parts in a system. Furthermore, in order to ensure reliability of the refrigeration system, typically a backup pump is called for. The use of two special pumps significantly increases the cost of the refrigeration system. Furthermore, the refrigerant charge is still higher in the spray evaporator as compared to thin film evaporator. However, with the thin film evaporator described herein, no pump is needed as the compressor suction is used to draw the refrigerant up through the evaporator.
The foregoing disclosure and showings made in the drawings are merely illustrative of the principles of this invention and are not to be interpreted in a limiting sense.

Claims

THIN FILM EVAPORATOR CLAIMS
A thin film evaporator, comprising:
a) a shell having two ends, a top and a bottom;
b) a plurality of tubes located in the shell and extending between the two ends, the tubes forming a path through the shell, the path comprising at least one pass through the shell;
c) at least one refrigerant inlet located in the bottom of the shell;
d) a refrigerant distributor connected to the refrigerant inlet and located between the shell bottom and the tubes, the distributor having openings facing the shell bottom;
e) a perforated plate between the distributor and the tubes;
f) at least one refrigerant outlet located in the shell top; g) a suction applied to the refrigerant outlet.
The thin film evaporator of claim 1, wherein the distributor openings are sized so as to produce a spray of refrigerant.
The thin film evaporator of claim 1, further comprising a thin film of liquid refrigerant on the tubes, with vapor refrigerant in between the tubes.
The thin film evaporator of claim 1, further comprising a demister located in the shell between the tubes and the refrigerant outlet.
The thin film evaporator of claim 4, wherein the tubes comprise a main body of tubes, further comprising a super heat body of tubes located between the demister and the refrigerant outlet.
The thin film evaporator of claim 1, further comprising a sump located in the bottom of the shell.
A method of heat exchange using a thin film evaporator having a shell with two ends, a top and a bottom, a plurality of tubes in the shell and extending between the ends, comprising the steps of: a) flowing a process fluid through the tubes;
b) flowing refrigerant into the bottom of the shell;
c) distributing the refrigerant across a bottom region of the shell;
d) providing a film of refrigerant around the tubes and affecting heat transfer between the process fluid and the refrigerant;
e) allowing the refrigerant to exit the top of the shell through a refrigerant outlet;
f) applying a suction at the refrigerant outlet.
The method of claim 7, wherein the step of distributing the refrigerant across a bottom region of the shell further comprising spraying the refrigerant against the shell.
9. The method of claim 8, wherein the step of distributing the refrigerant across a bottom region of the shell further comprising passing the refrigerant spray through a perforated member before flowing the refrigerant around the tube.
10. The method of claim 7, further comprising the step of providing a resistance to flow in the shell between the tubes and the refrigerant outlet.
11. The method of claim 10, further comprising the step of coalescing liquid at the top of the shell before exiting through the refrigerant outlet.
12. The method of claim 10, wherein the tubes comprise a main body of tubes, further comprising the step of providing a super heat body of tubes between the resistance and the refrigerant outlet.
13. The method of claim 7, wherein the refrigerant comprises oil, wherein:
a) the step of flowing refrigerant into the shell further comprises spraying the refrigerant against the shell before flowing the refrigerant to the tubes;
b) draining the oil into a sump in the shell.
PCT/US2011/060994 2010-11-16 2011-11-16 Thin film evaporator WO2012068250A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11841861.5A EP2641036A4 (en) 2010-11-16 2011-11-16 Thin film evaporator
CN201180029134.0A CN102959346B (en) 2010-11-16 2011-11-16 Thin film evaporator
HK13107748.5A HK1180388A1 (en) 2010-11-16 2013-07-03 Thin film evaporator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41405910P 2010-11-16 2010-11-16
US61/414,059 2010-11-16
US13/297,481 2011-11-16
US13/297,481 US20120118545A1 (en) 2010-11-16 2011-11-16 Thin film evaporator

Publications (2)

Publication Number Publication Date
WO2012068250A1 true WO2012068250A1 (en) 2012-05-24
WO2012068250A8 WO2012068250A8 (en) 2012-12-27

Family

ID=46046746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/060994 WO2012068250A1 (en) 2010-11-16 2011-11-16 Thin film evaporator

Country Status (5)

Country Link
US (1) US20120118545A1 (en)
EP (1) EP2641036A4 (en)
CN (1) CN102959346B (en)
HK (1) HK1180388A1 (en)
WO (1) WO2012068250A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8495973B2 (en) * 2009-11-03 2013-07-30 Protonex Technology Corporation Thin film vaporizer
US8925345B2 (en) 2011-05-17 2015-01-06 Hill Phoenix, Inc. Secondary coolant finned coil
WO2013186277A1 (en) 2012-06-12 2013-12-19 Shell Internationale Research Maatschappij B.V. Apparatus and method for heating a liquefied stream
KR20150018594A (en) * 2012-06-12 2015-02-23 쉘 인터내셔날 리써취 마트샤피지 비.브이. Method and apparatus for heating a liquefied stream
US10126066B2 (en) 2013-03-15 2018-11-13 Trane International Inc. Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
US9915452B2 (en) 2013-04-23 2018-03-13 Carrier Corporation Support sheet arrangement for falling film evaporator
WO2014179576A2 (en) * 2013-05-01 2014-11-06 United Technologies Corporation Falling film evaporator for mixed refrigerants
EP2994623A4 (en) * 2013-05-01 2016-08-10 United Technologies Corp Falling film evaporator for power generation systems
JP6563484B2 (en) * 2014-08-14 2019-08-21 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Apparatus and method for evaporating liquids containing potentially explosive impurities
JP6525606B2 (en) * 2015-01-28 2019-06-05 住友精密工業株式会社 Low temperature liquefied gas vaporizer
CN106705500A (en) * 2015-11-12 2017-05-24 浙江万享科技股份有限公司 Evaporator
US10267547B2 (en) 2016-02-18 2019-04-23 Johnson Controls Technology Company Falling-film evaporator suitable for low pressure refrigerant
TWI589010B (en) * 2016-06-22 2017-06-21 上銀光電股份有限公司 Reactive heat treatment apparatus
CN108662812B (en) 2017-03-31 2022-02-18 开利公司 Flow balancer and evaporator having the same
CN114516669B (en) * 2020-11-19 2024-05-31 山东大学 Solar sea water desalting device
CN114538551B (en) * 2020-11-19 2023-12-26 山东大学 Thin film evaporation unit and solar sea water desalination device
US20230392837A1 (en) * 2022-06-03 2023-12-07 Trane International Inc. Evaporator charge management and method for controlling the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822567A (en) * 1972-02-21 1974-07-09 Maekawa Seisakusho Kk Refrigerating apparatus
US4799542A (en) * 1983-07-06 1989-01-24 Hans Sladky Heat exchanger with thin-film evaporator
US6532763B1 (en) * 2002-05-06 2003-03-18 Carrier Corporation Evaporator with mist eliminator
US20040256088A1 (en) * 2003-06-18 2004-12-23 Ayub Zahid Hussain Flooded evaporator with various kinds of tubes
US20080163637A1 (en) * 2007-01-04 2008-07-10 American Standard International Inc. Gas trap distributor for an evaporator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125161A (en) * 1964-03-17 Tube manifold for a steam genera-tor
US2535996A (en) * 1946-02-27 1950-12-26 Lummus Co Evaporator
US2964926A (en) * 1958-10-17 1960-12-20 Trane Co Flooded water chiller
US3096630A (en) * 1960-03-30 1963-07-09 American Radiator & Standard Refrigeration machine including compressor, condenser and evaporator
US4336046A (en) * 1980-09-12 1982-06-22 Tenneco Oil Company C4 Separation process
JPS61195251A (en) * 1985-02-25 1986-08-29 株式会社荏原製作所 Refrigerator
CN1116566C (en) * 1996-07-19 2003-07-30 美国标准公司 Evaporator refrigerant distributor
CN1214227C (en) * 2000-11-24 2005-08-10 三菱重工业株式会社 Evaporator for refrigerating machine and refrigeration apparatus
KR20110104667A (en) * 2010-03-17 2011-09-23 엘지전자 주식회사 Distributor, evaporator and refrigerating machine with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822567A (en) * 1972-02-21 1974-07-09 Maekawa Seisakusho Kk Refrigerating apparatus
US4799542A (en) * 1983-07-06 1989-01-24 Hans Sladky Heat exchanger with thin-film evaporator
US6532763B1 (en) * 2002-05-06 2003-03-18 Carrier Corporation Evaporator with mist eliminator
US20040256088A1 (en) * 2003-06-18 2004-12-23 Ayub Zahid Hussain Flooded evaporator with various kinds of tubes
US20080163637A1 (en) * 2007-01-04 2008-07-10 American Standard International Inc. Gas trap distributor for an evaporator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2641036A4 *

Also Published As

Publication number Publication date
US20120118545A1 (en) 2012-05-17
EP2641036A1 (en) 2013-09-25
EP2641036A4 (en) 2016-08-17
WO2012068250A8 (en) 2012-12-27
CN102959346A (en) 2013-03-06
HK1180388A1 (en) 2013-10-18
CN102959346B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
US20120118545A1 (en) Thin film evaporator
JP6701372B2 (en) Heat exchanger
EP2541172B1 (en) Method of conveying a mixture of liquid refrigerant and gaseous refrigerant through an evaporator.
CN101052854B (en) Falling film evaporator
JP6002316B2 (en) Heat exchanger
CN101903714B (en) Vapor compression system
CN104272056B (en) Heat exchanger
CN107850359B (en) Evaporator and turbo refrigeration device provided with same
EP3087335B1 (en) Distributor for falling film evaporator
US20080190591A1 (en) Low charge refrigerant flooded evaporator
JP2022515614A (en) Heat exchanger
JP2022517728A (en) Heat exchanger
JP2000179975A (en) Multistage evaporating and absorption type absorption cold and hot water machine and large temperature difference air conditioning system provided with same
CN101539386B (en) Vapor-liquid separation method of evaporator and evaporator
US20140165641A1 (en) Distributor for evaporative condenser header or cooler header
JP2006234347A (en) Refrigerant flow divider and refrigerating device using the same
BR112012030597B1 (en) heat exchanger
JP6630613B2 (en) Condenser
JP2022521365A (en) Heat exchanger
CN201425434Y (en) Vapor-liquid separation evaporator
JP2000337732A (en) Ammonia absorption type refrigerating device
KR200323236Y1 (en) Cooling Pipe Block for Condenser
WO2009026370A2 (en) Heat exchanger with sloped baffles
CN207674750U (en) A kind of liquid refrigeration system including spiral coil evaporator
RU2159906C1 (en) Sectional intermediate reservoir for industrial ammonia refrigerating plants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029134.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841861

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011841861

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE