WO2012062211A1 - 片状铌钛酸锂(Li-Nb-Ti-O)模板晶粒、包含其的织构化铌钛酸锂(Li-Nb-Ti-O)微波介质陶瓷、及其制备方法 - Google Patents

片状铌钛酸锂(Li-Nb-Ti-O)模板晶粒、包含其的织构化铌钛酸锂(Li-Nb-Ti-O)微波介质陶瓷、及其制备方法 Download PDF

Info

Publication number
WO2012062211A1
WO2012062211A1 PCT/CN2011/082014 CN2011082014W WO2012062211A1 WO 2012062211 A1 WO2012062211 A1 WO 2012062211A1 CN 2011082014 W CN2011082014 W CN 2011082014W WO 2012062211 A1 WO2012062211 A1 WO 2012062211A1
Authority
WO
WIPO (PCT)
Prior art keywords
template
grain
sheet
powder
grains
Prior art date
Application number
PCT/CN2011/082014
Other languages
English (en)
French (fr)
Inventor
李永祥
卢志远
王依琳
吴文骏
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010537668 external-priority patent/CN102211932B/zh
Priority claimed from CN 201010537689 external-priority patent/CN102211933B/zh
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Priority to JP2013538053A priority Critical patent/JP6097219B2/ja
Priority to DE112011103734.1T priority patent/DE112011103734T5/de
Publication of WO2012062211A1 publication Critical patent/WO2012062211A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Definitions

  • the invention belongs to the field of textured micro-memory ceramic template crystal grains and the preparation of the textured microwave dielectric ceramics therewith, and provides a lithium niobate titanate (Li-Nb-Ti-O) having a flaky crystal morphology. a powder, a textured lithium niobate (Li-Nb-Ti-O) microwave dielectric ceramic comprising the same, and a preparation method thereof. Background technique
  • Microwave media refers to ceramics used as a dielectric material in a microwave frequency band (300-3000 GHZ) circuit and performing one or more functions. It has low loss, small temperature coefficient of temperature, high dielectric constant, etc.
  • LTCC Low Temperature Co-fired Ceramics
  • dielectric resonators dielectric filters, duplexers, microwave dielectric antennas, dielectric frequency stabilization oscillators, dielectric waveguide transmission lines and other components. These devices are widely used in many fields such as mobile communications, satellite TV, broadcast communications, radar, satellite positioning and navigation systems. With the continuous development of high-frequency and digitalization of communications, computers and their peripheral products, electronic components are becoming increasingly smaller, integrated and modular.
  • Li 2 O-Nb 2 O 5 -TiO 2 system (LNT) microwave dielectric ceramics are characterized by their dielectric constant series (20-78), high quality factor and near zero resonance frequency temperature coefficient. extensive attention. High-performance microwave dielectric ceramics have attracted worldwide attention in the fields of modern communication and military technology, and are a material with great application value and development potential.
  • the texturing technique refers to the process of controlling the orientation of the randomly oriented ceramic grains to have a property close to a single crystal.
  • the template grain growth technique (TGG) is a single crystal particle with anisotropy of morphology as a seed template, which is developed by template grain growth followed by heat treatment. Construction method. It generally uses the molten salt method to prepare anisotropic template grains, and then uses casting or extrusion to make the anisotropic particles under the action of shear force, relying on the interaction between particles to achieve the grain alignment. . Since the template grain growth method firstly prepares anisotropic template grains, the preparation of the template grains requires a long-term exploration process, which is time consuming and complicated in process.
  • the invention provides a novel flaky lithium niobate (Li-Nb-Ti-O) template crystal grain, a textured lithium niobate (Li-Nb-Ti-O) microwave dielectric ceramic containing the same, And a preparation method thereof, thereby solving the problems existing in the prior art.
  • the present invention provides a flaky Li-Nb-Ti-O template crystal having a chemical formula of LiNbo.6Tio.5O3 - having a grain morphology in the form of a sheet, the composition of which is M-phase Li-Nb- Ti-O powder.
  • the grain morphology of the flaky Li-Nb-Ti-O template grains is a plate-like triangle or a polygon.
  • the radial length of the flaky Li-Nb-Ti-O template grains is
  • the present invention provides a method of preparing the above-described flaky Li-Nb-Ti-O template grains, the method comprising:
  • LiNb Q. 6 Tio. 5 O 3 powder of the resulting sheet was subjected to ultrasonic dispersion, washed with hot deionized water, filtration, to obtain purified M- phase LiNb-Ti-O powder, thereby preparing sheet Li-Nb-Ti-O template grains.
  • the starting materials Li 2 CO 3 , Nb 2 O 5 and TiO 2 are compounded in a weight ratio of 0.5:0.3:0.5.
  • a molten salt ratio of 1:1 to 1:3 is employed in the molten salt system of LiCl.
  • the temperature is maintained at 850 ° C - 1000 ° C for 3-9 hours in a molten salt system of LiCl.
  • the present invention provides a textured Li-Nb-Ti-O microwave dielectric ceramic comprising the above-described sheet-like Li-Nb-Ti-O template grains.
  • the present invention provides a method for preparing the above-described textured Li-Nb-Ti-O microwave dielectric ceramic.
  • the method includes:
  • the binder and the solvent are heated and stirred to form a transparent solution
  • the flake LiNbo.6Tio.5O3 template crystal grains and the pre-synthesized LiNbo.6Tio.5O3 powder are added to the transparent solution, and uniformly mixed to obtain a slurry;
  • the slurry is screen printed onto a substrate and dried to obtain a slurry film, which is cut, laminated and pressed, and placed at 600-800 ° C to remove organic matter, and then subjected to cold isostatic pressing treatment. , sintering, to obtain a textured Li-Nb-Ti-O microwave dielectric ceramic.
  • the LiNbo.6Tio.5O3 powder is pre-synthesized at 850 ° C for 2 hours.
  • binder: solvent: slurry 1 : 12-25 : 5-15, flaky LiNb Q . 6 Tio. 5 O 3 template crystal in the slurry The proportion of the particles is 5-15%.
  • the binder is selected from the group consisting of: ethyl cellulose, methyl cellulose, and nitrocellulose; and the solvent is selected from the group consisting of: terpineol and ethylene glycol.
  • the mixing is by ball milling; the screen printing is performed using a 300 mesh screen.
  • the sintering is sintered at a temperature elevation rate of 3-6 ° C / min, at 1000-1150 ° C, and held for 2-5 hours.
  • XRD 1 is an XRD of M-phase LiNb Q. 6 Ti Q . 5 O 3 template grains synthesized at different temperatures with a molten salt ratio of 1:2 and a holding time of 3 hours according to an embodiment of the present invention.
  • X-ray diffraction where (a) XRD pattern of template crystals synthesized at 850 ° C; (b) XRD pattern of template crystals synthesized at 950 ° C; (c) synthesized at 1000 ° C XRD pattern of template grains; (d) XRD pattern of template grains synthesized at 1050 °C.
  • a is a SEM photograph of the template crystals synthesized at 850 ° C
  • b is a SEM photograph of the template crystals synthesized at 950 ° C
  • c is a SEM photograph of the template crystals synthesized at 1000 ° C
  • d is 1050 ° C SEM photograph of the synthesized template grains.
  • Figure 3 is a different insulation at a temperature of 1000 ° C with a molten salt ratio of 1:2 according to an embodiment of the present invention.
  • the XRD pattern of the time-synthesized M-phase LiNbo.6Tio.5O3 template crystal wherein (e) is the XRD pattern of the template crystals synthesized for 3 hours; (f) XRD of the template crystals synthesized for 6 hours of incubation Map; (g) XRD pattern of template crystals synthesized for 9 hours incubation.
  • e is SEM photograph of template crystals synthesized at 3 hours of incubation
  • f is a SEM photograph of template crystals synthesized at 6 hours of incubation
  • g is a SEM photograph of template crystals synthesized for 9 hours incubation.
  • FIG 5 is an embodiment of the present invention in holding time at a temperature of 1000 ° C for 6 hours and different than the molten salt phase synthesis M- LiNb Q. 6 XRD pattern of Ti Q. 5 O 3 template grains, wherein (h) is an XRD pattern of template crystals synthesized at a molten salt ratio of 1:1; (i) an XRD pattern of template crystals synthesized at a molten salt ratio of 1:2; (j) a molten salt The XRD pattern of the template crystals synthesized at a ratio of 1:3.
  • FIG 6 is an embodiment of the present invention in holding time at a temperature of 1000 ° C for 6 hours and different than the molten salt phase synthesis M- LiNb Q. 6 SEM photograph Ti Q. 5 O 3 template grains, wherein, h is a SEM photograph of the template crystallite synthesized at a molten salt ratio of 1:1; (i) a SEM photograph of the template crystallite synthesized at a molten salt ratio of 1:2; j is a molten salt ratio of 1: SEM photograph of the template crystals synthesized at 3 o'clock.
  • Figure 7 is an XRD (X-ray diffraction) diffraction pattern of a conventionally prepared LNT ceramic.
  • Figure 8 is an XRD diffractogram of a textured LNT ceramic prepared according to the method of the present invention, wherein b is an XRD diffraction pattern of a textured LNT ceramic perpendicular to the screen printing surface, c is a weave parallel to the screen printing surface XRD diffraction pattern of the structured LNT ceramic. It can be seen from Fig. 8 that the parallel and vertical diffraction peaks of the textured LNT ceramics have the same position, but the strength is significantly different, and the (202) peak intensity parallel to the screen printing surface is remarkably enhanced, and has a strong texture. Characteristics.
  • Figure 9 is a SEM (Scanning Electron Microscope) image of a template crystal used in the present invention.
  • SEM analysis shows that the LNT grains are in the form of flakes with a radial length of 5-30 ⁇ and a thickness of 0.5-2.0 ⁇ , which have a large aspect ratio and are ideal for TGG and Template granules for the application of template grain growth (; RTGG) technology.
  • Figure 10 is an SEM image (1100 ° C, 2 hour sintering) of a textured LNT ceramic parallel to the screen printing surface in accordance with one embodiment of the present invention.
  • the sheet-like ceramic template has a significant increase in direction, and its crystal grain diameter can reach 50-60 ⁇ m.
  • Figure 11 is an SEM image (1100 ° C, 2 hour sintering) of a textured LNT ceramic perpendicular to the screen printing surface, in accordance with one embodiment of the present invention.
  • the sheet-like ceramic template is oriented in the radial direction.
  • the grain diameter can reach 60-80 ⁇
  • the average length is about 40 ⁇
  • the thickness is 2-6.0 ⁇
  • the arrangement is very neat, with obvious texture characteristics.
  • a is perpendicular to the grain arrangement direction, b, according to an embodiment of the present invention. It is parallel to the direction in which the grains are arranged.
  • ⁇ f - ⁇ ll ⁇ ⁇ - is generally 6-9 ppm / ° C, so it can be pushed perpendicular to the grain
  • the alignment direction has a negative near zero resonance frequency temperature coefficient, and has a positive near zero resonance frequency temperature coefficient in a direction parallel to the grain arrangement.
  • LiNbO 3 type structure belonging to class trigonal system, similar to the structure of the powder [Ti 2 O 3] 2+ by corundum LiNbO 3 (LN layer) and the intermediate spacer layer one component n Type structure together, with sheet Polygonal grain morphology with triangular or triangular combination, with large aspect ratio and strong orientation, is an ideal template grain for LNT microwave dielectric ceramics; and, template grain growth
  • the technology can improve the microstructure of the ceramics, control the growth direction of the grains, and form ceramics with high degree of orientation and texture. Therefore, the sheet-like LiNb Q. 6 Ti Q . 5 synthesized by the molten salt microscopic reaction method is used.
  • O 3 is a template, and then mixed with calcined Li 2 CO 3 , Nb 2 O 5 , TiO 2 , and then added with a sintering aid to prepare a slurry.
  • the ceramic thick film obtained by screen printing is cut and stacked.
  • Textured Li-Nb-Ti-O ceramics can be obtained after pressing, plasticizing and sintering, and can increase the density and orientation of the textured microwave dielectric ceramics, ceramic dielectric constant, dielectric constant temperature coefficient, resonance
  • the frequency temperature coefficient shows obvious anisotropy.
  • Microwave dielectric ceramics with series dielectric constant and excellent performance can be obtained by cutting in different directions. Based on the above findings, the present invention is completed to make.
  • a Li-Nb-Ti-O powder having the chemical formula LiNb Q . 6 Ti Q . 5 O 3 , having a grain morphology in the form of a sheet having a radial length of 5 -80 ⁇ , thickness 0.5-6.0 ⁇ , with large aspect ratio and strong orientation, is an ideal template grain suitable for TGG and RTGG technology.
  • anhydrous ethanol: ZrO 2 ball 1: 2: 3 ratio ball mill mixing, after drying, sieving, adding LiCl in a weight ratio of 1:1 to 1:3, grinding and mixing evenly, to 5
  • the heating rate of °C/min is raised to 850-1100 ° C, and the temperature is maintained for 3-9 hours to synthesize a sheet of LiNbo.6Tio.5O3 powder;
  • Synthesized LiNb Q . 6 Tio. 5 O 3 powder after ultrasonic dispersion, hot deionized water washing, suction filtration several times, filter out the LiCl molten salt in the system, and dry in an oven to obtain the desired Sheet-like LiNb Q . 6 Ti Q . 5 O 3 template grains.
  • SEM analysis shows that the LNT grains are flake-shaped, with a radial length of 5-30 ⁇ , a thickness of 0.5-2.0 ⁇ , and a large aspect ratio. It is an ideal template grain suitable for TGG and RTGG applications. .
  • the lithium niobium titanate powder prepared by the method of the invention can be used as a template crystal grain of a textured Li-Nb-Ti-O microwave dielectric ceramic of various compositions, for improving the density and mechanical of the textured microwave dielectric ceramic.
  • the strength has a positive effect, and a microwave dielectric ceramic having excellent dielectric properties with excellent anisotropy and low loss can be obtained.
  • a Li-Nb-Ti-O microwave dielectric ceramic having the chemical formula LiNbo.6Tio.5O3 - the grain morphology is lamellar, and the radial length is up to 80 ⁇ m. It has an average length of about 40 ⁇ and a thickness of 2-6.0 ⁇ , which has strong orientation and texture characteristics.
  • the invention can produce a high-density, high-orientation Li-Nb-Ti-O microwave dielectric ceramic material under the condition of adding a template, thereby simplifying the texture preparation process of the ceramic.
  • the LiNbo.6Tio.5O3 is composed of an n-layer LiNbO 3 (LN) and a corundum structure in which a component is similar to [Ti 2 O 3 ] 2+ .
  • the Li-Nb-Ti-O microwave dielectric ceramic prepared by the invention has a dielectric property with significant anisotropy in the vertical and parallel directions.
  • the chips were cut in vertical and parallel directions, silver paste on both sides, and silver-plated electrodes were fired at 700-750 ° C for 30 minutes.
  • a method of preparing the above Li-Nb-Ti-O microwave dielectric ceramic comprising:
  • the sintering process is: sintering the sample at a rate of 5-10 ° C / min to 1100-1140 ° C, and holding for 2-10 hours.
  • the invention successfully prepares the textured Li-Nb-Ti-O microwave dielectric ceramic, and through the XRD analysis of the parallel grain boundary and the vertical direction of the ceramic, it is shown that the ceramic material along the (202) plane (see Fig. 2) is obvious. Texture phenomenon. At the same time, SEM analysis showed that the grain morphology was lamellar, the radial length was up to 80 ⁇ , the average length was about 40 ⁇ , and the thickness was 2-6.0 ⁇ , which had strong orientation and texture characteristics.
  • the main advantages of the invention are:
  • the present invention firstly prepares a bismuth-phase LiNbo.6Tio.5O3 template crystallite having a LiNbO 3 structure, and the crystal grain thereof has It has strong orientation and large aspect ratio and can be used to prepare textured LiNb Q. 6 Tio. 5 O 3 microwave dielectric ceramics to improve the density and orientation of textured microwave dielectric ceramics.
  • microwave dielectric ceramics with small loss, near zero resonance frequency temperature coefficient and dielectric constant can be controlled within a certain range, suitable for making multilayer microwave frequency devices such as filters, chip dielectric resonators and antennas. , has a wide range of application prospects.
  • the raw materials selected in the invention are low in price, simple in preparation method, and easy to promote.
  • the thickness of the Li-Nb-Ti-O microwave ceramic film layer prepared by the invention can be controlled within a few micrometers, and the crystal grains can be well oriented under the shearing force of the brush plate in a single film layer.
  • the Li-Nb-Ti-O microwave ceramic prepared by the invention has larger crystal grain size, more anisotropy, high orientation degree and superiority than the Li-Nb-Ti-O microwave ceramic prepared by the traditional method. Electrical performance.
  • the slurry of the invention is simple in preparation, simple in process, easy to control, and low in cost.
  • the method of the invention can improve the density and orientation degree of the textured microwave dielectric ceramic, and the ceramic dielectric constant, the dielectric constant temperature coefficient and the temperature coefficient of the resonant frequency all exhibit obvious anisotropy, and can be cut through different directions.
  • a microwave dielectric ceramic with a series of dielectric constants and excellent performance is suitable for multilayer microwave frequency devices such as filters, chip dielectric resonators and antennas. It is expected to be used in many fields such as mobile communication and satellite positioning navigation systems. Development potential and application prospects. Example
  • FIG. 1 is an XRD pattern of the prepared LiNb Q . 6 Tio. 5 O 3 template crystal. It can be seen from Fig. 1 that in addition to some impurity peaks in the 850 ° C grain XRD pattern, other temperature synthesized crystal grains are It is a single M-phase. The SEM photograph is shown in Fig. 2. As can be seen from Fig.
  • the crystal grains of LiNb Q . 6 Ti Q . 5 O 3 are in the form of a sheet, and the crystal faces are triangular or triangular combined polygonal shape, which is also due to LiNb.
  • Q . 6 Ti Q . 5 O 3 is a factor of the trigonal structure belonging to the class LiNbO 3 .
  • the grains increase in the radial direction and the thickness direction.
  • a proportional mixing ball mill for 24 hours, it was transferred to a glass vessel and dried at 90 °C. After the dried raw material powder was sieved, LiCl salt was added in a ratio of 1:2, and ground for 10 minutes until it was uniformly mixed.
  • Figure 3 is an XRD pattern of the LiNbo.6Tio.5O3 template grains obtained at different holding times. As can be seen from Figure 3, the synthesized grains are all single M-phases. The SEM photograph is shown in Fig. 4. The crystal grains grow in a step-like manner. As the holding time increases, the crystal grains increase in the radial direction and the thickness direction.
  • Example 3
  • a proportional mixing ball mill for 24 hours, it was transferred to a glass vessel and dried at 90 °C. After the dried raw material powder was sieved, LiCl salt was added in a ratio of 1:1, 1:2, 1:3, respectively, and ground for 10 minutes until the mixture was homogeneous.
  • FIG. 5 is an XRD pattern different than the molten salt obtained LiNb Q. 6 Ti Q. 5 O 3 template grains
  • Figure 3 shows, is a single crystal synthetic M- phase.
  • the SEM photograph is shown in Fig. 6.
  • the grain grows in a stepped manner. As the ratio of molten salt increases, the grain increases in the radial direction and the thickness direction, especially in the thickness direction. When the molten salt ratio is 1:3, the obtained LNT template crystal grains reach 2-3 ⁇ m.
  • the LiNb ⁇ Ti ⁇ Og powder crystal is very complete, the molten salt ratio is 1:2, and the crystal grains obtained by holding at 1000 ° C for 6 hours have a sheet-like polygonal shape with a radial length of 5-30 ⁇ and a thickness of 0.5. -2.0 ⁇ , a large width and height, is an ideal template grain.
  • the ceramic grains are aligned to exhibit good anisotropy.
  • Different dielectric constant ceramics can be obtained by cutting in different directions, and it is expected to obtain microwave dielectric ceramics with zero resonance temperature coefficient, low loss and excellent electrical properties (see Figure 8-12).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

片状铌钛酸锂(Li-Nb-Ti-O)模板晶粒、 包含其的织构化铌钛酸锂 OJ-Nb-Ti-O)微波 介质陶瓷、 及其制备方法 技术领域
本发明属于织构化微波介质陶瓷模板晶粒和包含其的织构化微波介质陶瓷制备 领域, 提供了一种具有片状晶粒形貌的铌钛酸锂 (Li-Nb-Ti-O) 粉体、 包含其的织构 化铌钛酸锂 (Li-Nb-Ti-O)微波介质陶瓷、 及其制备方法。 背景技术
低温共烧陶瓷 (LTCC ) 微波介质是指应用于微波频段 (300-3000GHZ) 电路 中作为介质材料并完成一种或多种功能的陶瓷, 其具有损耗低、 频率温度系数小、 介电常数高等特点,可用于制造介质谐振器、介质滤波器、双工器、微波介质天线、 介质稳频振荡器、 介质波导传输线等元器件。 这些器件广泛应用于移动通讯、 卫星 电视、 广播通信、 雷达、 卫星定位导航系统等众多领域。 随着通信、 电脑及其周边 产品不断向高频化、数字化方向发展, 电子元器件日趋小型化、集成化以至模块化。 LTCC以其优异的电学、 机械、 热学及工艺特性, 将成为未来电子器件集成化、 模 块化的首选方式。 Li2O-Nb2O5-TiO2系 (LNT) 微波介质陶瓷以其介电常数系列可 调 (20-78 ) , 品质因数较高以及近零的谐振频率温度系数等特点受到研究者的广 泛关注。 高性能微波介质陶瓷在现代通信、 军事技术等领域倍受世人瞩目, 是一种 极具应用价值和发展潜力的材料。
织构化技术是指通过工艺控制, 使原本无规则取向的陶瓷晶粒定向排列, 使 之具有接近单晶的性能。 目前, 最常用的陶瓷织构化技术有模板晶粒生长 (TGG) 技术和反应模板晶粒生长 (RTGG)技术, 其中一个关键性步骤是制作模板晶粒。 模 板晶粒生长技术(TGG)是利用形貌各向异性的单晶颗粒作为晶种模板(Template) , 在模板晶粒生长法继热处理技术之后发展起来的一种以模板晶粒引导定向的织构 化方法。 它一般采用熔盐法制备各向异性的模板晶粒, 再利用流延或挤压的方法, 使各向异性粒子在剪切力作用下, 依靠粒子间的相互作用来实现晶粒的定向排列。 由于模板晶粒生长法首先要制备出各向异性的模板晶粒,而对模板晶粒的制备需要 一个长期的摸索过程, 因此耗时长、 工艺也较复杂。
然而, 迄今为止, 本领域尚未开发出一种具有较强的取向性和较大的高宽比, 能很好地用于制备织构化微波介质陶瓷的模板晶粒, 也尚未开发出一种能够制备出 具有很强的取向性和织构化特征的织构化微波介质陶瓷, 且工艺简单的方法。
因此, 本领域迫切需要开发出一种具有较强的取向性和较大的高宽比, 能很好 地用于制备织构化微波介质陶瓷的模板晶粒, 以及能够制备出具有很强的取向性和 织构化特征的织构化微波介质陶瓷, 且工艺简单的方法。 发明内容
本发明提供了一种新颖的片状铌钛酸锂 (Li-Nb-Ti-O) 模板晶粒、 包含其的织 构化铌钛酸锂 (Li-Nb-Ti-O)微波介质陶瓷、及其制备方法, 从而解决了现有技术中存 在的问题。
一方面, 本发明提供了一种片状 Li-Nb-Ti-O 模板晶粒, 其化学式为 LiNbo.6Tio.5O3 - 其晶粒形貌呈片状, 其组成为 M-相 Li-Nb-Ti-O粉体。
在一个优选的实施方式中, 所述片状 Li-Nb-Ti-O模板晶粒的晶粒形貌呈片状 三角形或多边形。
在另一个优选的实施方式中, 所述片状 Li-Nb-Ti-O 模板晶粒的径向长度为
5-80μηι, 平均长度为 40μηι, 厚度为 0.5-6.0μηι。
另一方面, 本发明提供了一种制备上述片状 Li-Nb-Ti-O模板晶粒的方法, 该方 法包括:
以 Li2CO3、 Nb2O5和 TiO2为原料, 在 LiCl 的熔盐体系中, 合成片状的 LiNbo.6Tio.5O3粉体;
对所得的片状的 LiNbQ.6Tio.5O3粉体进行超声分散、 热去离子水洗涤、 抽滤, 得到纯净的 M-相 Li-Nb-Ti-O粉体, 从而制得片状 Li-Nb-Ti-O模板晶粒。
在一个优选的实施方式中, 原料 Li2CO3、 Nb2O5和 TiO2以重量比 0.5:0.3:0.5 配料。
在另一个优选的实施方式中, 在 LiCl的熔盐体系中采用 1: 1至 1:3的熔盐比。 在另一个优选的实施方式中, 在 LiCl 的熔盐体系中于 850°C -1000°C保温 3-9 小时。
再一方面, 本发明提供了一种织构化 Li-Nb-Ti-O微波介质陶瓷, 它包含上述片 状 Li-Nb-Ti-O模板晶粒。
再一方面, 本发明提供了一种制备上述织构化 Li-Nb-Ti-O 微波介质陶瓷的方 法, 该方法包括:
按上述方法制备片状 Li-Nb-Ti-O模板晶粒;
以 Li2CO3、 Nb2O5、 TiO2为基体粉料, 预合成 LiNbo.6Tio.5O3粉料;
将粘结剂和溶剂加热搅拌以形成透明溶液;
将片状 LiNbo.6Tio.5O3模板晶粒和预合成的 LiNbo.6Tio.5O3粉料加入所述透明溶 液中, 混合均匀得到浆料;
将所述浆料丝网印刷到衬底上并烘干,得到浆料膜,将其裁切、层叠压制成型, 并置于 600-800 °C下以排除有机物, 再进行冷等静压处理, 烧结, 得到织构化 Li-Nb-Ti-O微波介质陶瓷。
在一个优选的实施方式中, 在 850°C下保温 2小时预合成 LiNbo.6Tio.5O3粉料。 在另一个优选的实施方式中, 以重量计, 粘结剂:溶剂:浆料 = 1 : 12-25 : 5-15, 所述浆料中片状 LiNbQ.6Tio.5O3模板晶粒所占的比例为 5- 15 %。
在另一个优选的实施方式中, 所述粘结剂选自: 乙基纤维素、 甲基纤维素和硝 化纤维素; 所述溶剂选自: 松油醇和乙二醇。
在另一个优选的实施方式中, 所述混合采用球磨混合; 所述丝网印刷采用 300 目丝网印刷。
在另一个优选的实施方式中, 所述烧结以 3-6 °C /分钟的升温速度, 在 1000-1150°C下烧结, 并保温 2-5小时。 附图说明
图 1是根据本发明的一个实施方式的以熔盐比为 1:2, 保温时间为 3小时, 不同 温度下合成的 M-相 LiNbQ.6TiQ.5O3模板晶粒的 XRD (X-射线衍射) 图谱, 其中, (a) 为 850°C合成的模板晶粒的 XRD图谱; (b) 为 950°C合成的模板晶粒的 XRD图谱; (c)为 1000°C合成的模板晶粒的 XRD图谱; (d)为 1050°C合成的模板晶粒的 XRD 图谱。
图 2是根据本发明的一个实施方式的以熔盐比为 1:2, 保温时间为 3小时, 不同 温度下合成的 M-相 LiNbo.6Tio.5O3模板晶粒的 SEM (扫描电子显微镜)照片, 其中, a 为 850°C合成的模板晶粒的 SEM照片; b为 950°C合成的模板晶粒的 SEM照片; c为 1000°C合成的模板晶粒的 SEM照片; d为 1050°C合成的模板晶粒的 SEM照片。
图 3是根据本发明的一个实施方式的以熔盐比为 1:2, 1000°C温度下不同的保温 时间合成的 M-相 LiNbo.6Tio.5O3模板晶粒的 XRD图谱, 其中, (e) 为保温 3小时合 成的模板晶粒的 XRD图谱; (f) 为保温 6小时合成的模板晶粒的 XRD图谱; (g) 为保温 9小时合成的模板晶粒的 XRD图谱。
图 4是根据本发明的一个实施方式的以熔盐比为 1:2, 1000°C温度下不同的保温 时间合成的 M-相 LiNbo.6Tio.5O3模板晶粒的 SEM照片, 其中, e为保温 3小时合成的 模板晶粒的 SEM照片; f为保温 6小时合成的模板晶粒的 SEM照片; g为保温 9小时 合成的模板晶粒的 SEM照片。
图 5是根据本发明的一个实施方式的以 1000°C温度下保温时间为 6小时, 不同 的熔盐比合成的 M-相 LiNbQ.6TiQ.5O3模板晶粒的 XRD图谱, 其中, (h) 为熔盐比为 1: 1时合成的模板晶粒的 XRD图谱; (i) 为熔盐比为 1:2时合成的模板晶粒的 XRD 图谱; (j ) 为熔盐比为 1:3时合成的模板晶粒的 XRD图谱。
图 6是根据本发明的一个实施方式的以 1000°C温度下保温时间为 6小时, 不同 的熔盐比合成的 M-相 LiNbQ.6TiQ.5O3模板晶粒的 SEM照片, 其中, h为熔盐比为 1: 1 时合成的模板晶粒的 SEM照片; (i)为熔盐比为 1:2时合成的模板晶粒的 SEM照片; j为熔盐比为 1:3时合成的模板晶粒的 SEM照片。
图 7是传统法制备的 LNT陶瓷的 XRD (X-射线衍射) 衍射图。
图 8是根据本发明方法制备的织构化 LNT陶瓷的 XRD衍射图, 其中, b为垂直 于丝网印刷表面的织构化 LNT陶瓷的 XRD衍射图, c为平行于丝网印刷表面的织构 化 LNT陶瓷的 XRD衍射图。 从图 8中可以看到, 织构化 LNT陶瓷的平行和垂直的 衍射峰虽然位置相同, 但是强度明显不同, 平行于丝网印刷表面的 (202) 峰强显著 增强, 具有很强的织构化特征。
图 9是本发明中使用的模板晶粒的 SEM (扫描电子显微镜) 图。 从图 9中可以 看到, SEM分析表明, LNT晶粒呈片状, 径向长度为 5-30μηι, 厚度为 0.5-2.0μηι, 具 有大的宽高比,是一种理想的适合于 TGG和反应模板晶粒生长 (; RTGG)技术应用的模 板晶粒。
图 10是根据本发明的一个实施方式的平行于丝网印刷表面的织构化 LNT陶瓷的 SEM图 (1100°C, 2小时烧结) 。 从图 10中可以看到, 片状的陶瓷模板在方向上有 明显的增大, 其晶粒直径可以达到 50-60μηι。
图 11是根据本发明的一个实施方式的垂直于丝网印刷表面的织构化 LNT陶瓷的 SEM图 (1100°C, 2小时烧结) 。 从图 11中可以看到, 片状的陶瓷模板在方向径向 和厚度方向上都有明显的增大, 其晶粒直径可以达到 60-80μηι, 平均长度约为 40μηι, 厚度为 2-6.0μηι, 且排列非常整齐, 具有明显的织构化特征。
图 12是根据本发明的一个实施方式的将烧结后的微波介质陶瓷沿垂直和平行 方向分别切片, 镀银电极后测得的介温谱图, 其中, a 为垂直于晶粒排列方向, b 为平行于晶粒排列方向。 从图 12中可以看到, 在 1MHz频率下, 垂直于晶粒排列 方向, 介电常数 ε=55.75, 具有正的介电常数温度系数; 在平行于晶粒排列的方向, 介电常数 ε=84.40, 具有负的介电常数温度系数。 由于谐振频率温度系数 ^与材料 的介电常数温度系数 ^以及热膨胀系数 " 存在以下关系: τ f:- \ll τ ε- 般为 6-9 ppm/°C, 故可推之垂直于晶粒排列方向具有负的近零谐振频率温度系数, 在平行于晶粒排列的方向具有正的近零谐振频率温度系数。 具体实施方式
本发明的发明人在经过了广泛而深入的研究之后发现, M-相 LiNb^Ti^O^LNT) 微波介质陶瓷具有高的介电常数 (约为 70), 烧结温度较低, 约为 1100°C, 同时具有较 高的品质因子和近零的谐振频率温度系数 (约为 8ppm/°C ) ; 通过织构化技术, 陶瓷 晶粒定向排列, 展示出良好的各向异性; 在 1MHZ频率下, 垂直于晶粒排列方向, 介 电常数 ε =55.8, 在平行晶粒排列的方向, 介电常数 ε =84.4; 通过不同方向的裁剪, 可获得不同介电常数的陶瓷, 并有望获得谐振频率温度系数为零、 损耗小、 电学性能 优异的微波介质陶瓷; LNT微波介质陶瓷使用模板材料是具有片状形貌的 LNT粉体; 而使用熔盐法制备的 Μ-相 LiNbQ.6TiQ.5O3粉体具有类 LiNbO3结构, 属于类三方晶系, 该粉体结构由 n层 LiNbO3 (LN层) 及中间间隔一种成分近似于 [Ti2O3]2+的刚玉型结 构共同构成, 具有片状由三角形或三角形组合而成的多边形晶粒形貌, 具有较大的宽 高比和较强的取向性, 是一种理想的用于 LNT微波介质陶瓷的模板晶粒; 并且, 模 板晶粒定向生长技术可以通过改善陶瓷的显微结构, 控制晶粒的生长方向, 形成具有 高的取向度和织构度的陶瓷, 因此, 采用熔盐微观反应方法合成的片状 LiNbQ.6TiQ.5O3 为模板, 然后和预烧后的 Li2CO3、 Nb2O5、 TiO2混合, 再加入助烧剂, 配制成浆料, 经丝网印刷所得到的陶瓷厚膜经过裁切、 叠压、 排塑、 烧结后可得到织构化的 Li-Nb-Ti-O陶瓷, 并可以提高织构化微波介质陶瓷的致密度、取向度, 陶瓷介电常数、 介电常数温度系数、 谐振频率温度系数均表现出明显的各向异性, 通过不同方向的裁 剪可获得介电常数系列化、 性能优异的微波介质陶瓷。 基于上述发现, 本发明得以完 成。
在本发明的第一方面,提供了一种 Li-Nb-Ti-O粉体,其化学式为 LiNbQ.6TiQ.5O3, 其晶粒形貌呈片状, 径向长度为 5-80μηι, 厚度为 0.5-6.0μηι, 具有大的高宽比及很 强的取向性, 是一种理想的适合于 TGG和 RTGG技术的模板晶粒。
在本发明的第二方面, 提供了一种制备上述 Li-Nb-Ti-O粉体的方法, 该方法包 括:
以 Li2CO3、 Nb2O5和 TiO2为原料粉体, 按如下反应方程式配料:
0.5 Li2CO3+0.3 Nb2O5+0.5 TiO2 LiNb0 6Ti0 5O3
按混合料:无水乙醇: ZrO2球 =1:2:3的比例球磨混合, 经烘干、 筛分后, 加入重 量比为 1: 1至 1:3的 LiCl,研磨混合均匀,以 5°C/分钟的升温速率升温至 850-1100°C, 保温 3-9小时以合成片状的 LiNbo.6Tio.5O3粉体;
合成的 LiNbQ.6Tio.5O3粉体, 经超声分散、 热去离子水洗涤、 抽滤数次后, 滤 去体系中的 LiCl熔盐, 于烘箱中烘干, 即可得到所需的片状 LiNbQ.6TiQ.5O3模板晶 粒。
在本发明中, 采用 XRD分析不同条件下的 LiNbQ.6Tio.5O3模板的晶相结构, 并 采用 SEM对这些粉体的显微结构进行分析。 结果发现, 采用本发明的制备方法可 成功地制备具有片状晶粒形貌特点的 LiNbo.6Tio.5O3模板晶粒。 SEM分析表明, LNT 晶粒呈片状, 径向长度为 5-30 μηι, 厚度为 0.5-2.0 μηι, 具有大的宽高比, 是一种 理想的适合于 TGG和 RTGG技术应用的模板晶粒。
采用本发明方法所制备的铌钛酸锂粉体,可作为各种组成的织构化 Li-Nb-Ti-O 微波介质陶瓷的模板晶粒,对于提高织构化微波介质陶瓷的密度、机械强度都有积 极的作用,可获得具有明显各向异性、损耗小的具有优良介电性能的微波介质陶瓷。
在本发明的第三方面, 提供了一种 Li-Nb-Ti-O 微波介质陶瓷, 其化学式为 LiNbo.6Tio.5O3 - 其晶粒形貌呈层片状, 径向长度最长可达到 80μηι, 平均长度约为 40μηι, 厚度为 2-6.0μηι, 具有很强的取向性和织构化特征。
本发明可在添加模板的条件下, 制得高密度、 高取向度的 Li-Nb-Ti-O微波介 质陶瓷材料, 从而简化了此类陶瓷的织构化制备工艺。 本发明以预合成的 LNT粉 体中添加一定比例的 LiNbQ.6TiQ.5O3模板晶粒, 制备出具有高取向度和各向异性的 纯净的 M-相 LiNbo.6Tio.5O3微波介质陶瓷。所述 LiNbo.6Tio.5O3是由 n层 LiNbO3(LN) 及中间间隔一种成分近似于 [Ti2O3]2+的刚玉型结构共同构成。 本发明制得的 Li-Nb-Ti-O微波介质陶瓷,其介电性能在垂直和平行方向上具 有明显的各向异性。将其在垂直和平行方向分别切薄片,两面涂银浆,在 700-750°C 温度下烧 30分钟镀银电极。 利用网络分析仪测得, 在 1 MHz频率下, 垂直于晶粒 排列方向, 介电常数 ε=55.75, 具有正的介电常数温度系数; 在平行于晶粒排列的 方向, 介电常数 ε=84.40, 具有负的介电常数温度系数。
在本发明的第四方面, 提供了一种制备上述 Li-Nb-Ti-O微波介质陶瓷的方法, 该方法包括:
以 Li2CO3、 Nb2O5和 TiO2为原料粉体, 按如下反应方程式配料:
0.5 Li2CO3+0.3 Nb2O5+0.5 TiO2 LiNb0 6Ti0 5O3
按混合料:无水乙醇: ZrO2球 =1:2:3的比例球磨混合,经烘干、筛分后, 700-900°C 预合成;
根据 LiNbo.6Tio.5O3的反应方程式计算, 按摩尔比为 Li2CO3:Nb2O5:TiO2=5:3:5 称取原料, 在 LiCl熔盐环境中采用熔盐法合成的 M-相片状 LiNbo.6Tio.5O3模板; 选用乙基纤维素为粘结剂, 松油醇为溶剂, 在 80°C加热搅拌直至形成透明溶 液, 预合成的粉体加入上述溶液中, 球磨 2-4小时混合均匀, 最后加入一定比例的 模板晶粒, 继续球磨 2小时, 得到所需浆料; 浆料通过 300目丝网直接印刷到衬底 上, 于 80-100°C的烘箱中烘干; 重复上述步骤 50-80次, 得到厚度在 0.5-lmm的 混合料厚膜(因为丝网剪切力的作用, 晶种沿平行衬底的方向排列) , 最后将陶瓷 厚膜于 80-100°C的烘箱中烘干 10-20 小时; 将陶瓷膜片裁切为所需尺寸的陶瓷膜 片, 从衬底上取下, 层叠于磨具中压制成型, 成型后的素坯置于热处理炉内于 600-800°C排除有机物。
在本发明中, 烧结工艺为: 以速率 5-10°C/分钟升温至 1100-1140°C烧结试样, 并保温 2-10小时。
本发明成功地制备了织构化 Li-Nb-Ti-O微波介质陶瓷, 通过对陶瓷的平行晶 界和垂直方向的 XRD分析, 表明了陶瓷材料沿 (202) 面 (参见图 2) 有明显的织 构现象。同时 SEM分析观察到,其晶粒形貌呈层片状,径向长度最长可达到 80μηι, 平均长度约为 40μηι, 厚度为 2-6.0μηι, 具有很强的取向性和织构化特征。 本发明的主要优点在于:
1、 本发明首次制备出类 LiNbO3结构的 Μ-相 LiNbo.6Tio.5O3模板晶粒, 其晶粒具 有较强的取向性和较大的宽高比, 可用于制备织构化 LiNbQ.6Tio.5O3微波介质陶瓷, 从 而提高织构化微波介质陶瓷的密度、 取向度, 制备的陶瓷通过裁剪, 可获得具有较小 损耗、 近零谐振频率温度系数、 介电常数可在一定范围内调控的微波介质陶瓷, 适用 于制作滤波器、片式介质谐振器以及天线等多层微波频率器件,具有广泛的应用前景。
2、 本发明所选原料价格低廉、 制备方法简单, 易于推广。
3、 本发明制备的 Li-Nb-Ti-O微波陶瓷膜层厚度可控制在几个微米之内, 在单个 膜层中晶粒可以在刷板的剪切力作用下很好的定向。
4、本发明制备的 Li-Nb-Ti-O微波陶瓷较传统方法制备的 Li-Nb-Ti-O微波陶瓷晶 粒尺寸更大, 各向异性明显, 具有很高的取向度, 同时具有优良的电学性能。
5、 较之流延工艺, 本发明浆料的配制简单, 工艺简单、 易于控制, 成本低廉。
6、本发明方法可以提高织构化微波介质陶瓷的致密度、 取向度, 陶瓷介电常数、 介电常数温度系数、 谐振频率温度系数均表现出明显的各向异性, 通过不同方向的裁 剪可获得介电常数系列化、 性能优异的微波介质陶瓷, 适用于制作滤波器、 片式介质 谐振器以及天线等多层微波频率器件, 有望应用于移动通信、 卫星定位导航系统等众 多领域, 具有广阔的发展潜力和应用前景。 实施例
下面结合具体的实施例进一步阐述本发明。但是, 应该明白, 这些实施例仅用于 说明本发明而不构成对本发明范围的限制。 下列实施例中未注明具体条件的试验方 法, 通常按照常规条件, 或按照制造厂商所建议的条件。 除非另有说明, 所有的百分 比和份数按重量计。 实施例 1 :
( i ) 模板晶粒的合成: 根据 LiNbQ.6Tio.5O3的反应方程式计算, 按摩尔比为 Li2CO3:Nb2O5:TiO2=5:3:5称取原料, 与乙醇、 ZrO2球按 1:2:3的比例混合球磨 24小时 后, 转移至玻璃容器中于 90°C烘干。 干燥后的原料粉体经筛分后, 按 1:2的比例加入 LiCl 盐, 研磨 10 分钟至混合均匀。 将混合料盛入 Α12Ο3坩埚、 加盖, 于高温炉中 850-1050°C合成 3小时, 升温速率为 3 °C/分钟。
(ii)模板晶粒的过滤: 将合成的 LiNbQ.6TiQ.5O3晶粒粉碎, 经超声分散、 10次热 的去离子水洗涤, 以除去其中的 LiCl熔盐。 其间, 用 AgNO3溶液测试滤液中的 C1— 离子含量, 以判断过滤是否彻底。 图 1是所制得的 LiNbQ.6Tio.5O3模板晶粒的 XRD图 谱, 由图 1可见, 除了 850°C晶粒 XRD图谱中有一些杂峰外, 其它温度合成的晶粒都 是单一的 M-相。 其 SEM照片如图 2所示, 从图 2中可以看出, LiNbQ.6TiQ.5O3的晶粒 呈片状, 晶面呈三角或三角组合起来的多边形形状, 这也是由于 LiNbQ.6TiQ.5O3随属于 类 LiNbO3的三方结构的原因。 随着合成温度的升高, 晶粒在径向、 厚度方向都有所 增大。 实施例 2:
根据 LiNbo.6Tio.5O3的反应方程式计算, 按摩尔比为 Li2CO3:Nb2O5:TiO2=5:3:5称 取原料, 与乙醇、 ZrO2球按 1:2:3 的比例混合球磨 24小时后, 转移至玻璃容器中于 90°C烘干。 干燥后的原料粉体经筛分后, 按 1:2的比例加入 LiCl盐, 研磨 10分钟至 混合均匀。 将混合料盛入 Α12Ο3坩埚、 加盖, 于高温炉中以升温速率为 3 °C/分钟至 1000°C, 分别保温 3小时、 6小时、 9小时, 取出后按实施例 1的方法过滤。 图 3是 不同保温时间得到的 LiNbo.6Tio.5O3模板晶粒的 XRD图谱, 由图 3可见, 合成的晶粒 都是单一的 M-相。 其 SEM照片如图 4所示, 晶粒呈阶梯状生长的趋势, 随着保温时 间的增加, 晶粒在径向、 厚度方向都有所增大。 实施例 3 :
根据 LiNbo.6Tio.5O3的反应方程式计算, 按摩尔比为 Li2CO3:Nb2O5:TiO2=5:3:5称 取原料, 与乙醇、 ZrO2球按 1:2:3 的比例混合球磨 24小时后, 转移至玻璃容器中于 90°C烘干。 干燥后的原料粉体经筛分后, 分别按 1: 1、 1:2、 1:3的比例加入 LiCl盐, 研磨 10分钟至混合均匀。将混合料盛入 Α12Ο3坩埚、 加盖, 于高温炉中以升温速率为 3 °C/分钟至 1000°C, 6小时, 取出后按实施例 1的方法过滤。 图 5是不同熔盐比得到 的 LiNbQ.6TiQ.5O3模板晶粒的 XRD图谱, 由图 3可见, 合成的晶粒都是单一的 M-相。 其 SEM照片如图 6所示, 晶粒呈阶梯状生长的趋势, 随着熔盐比的增加, 晶粒在径 向、厚度方向都有所增大,特别在厚度方向增大明显。当熔盐比为 1:3时,得到的 LNT 模板晶粒达到 2-3μηι。 该 LiNb^Ti^Og粉体结晶十分完全, 熔盐比为 1:2, 1000°C保 温 6小时得到的晶粒呈现片状多边形形貌,其径向长度为 5-30 μηι,厚度为 0.5-2.0 μηι, 宽高比较大, 是一种理想的模板晶粒。
实施例 4: 传统法制备 LiNbo.6Tio.5O3微波介质陶瓷: 根据 LiNbo.6Tio.5O3的反应方程式计算, 按摩尔比为 Li2CO3:Nb2O5:TiO2=5:3:5称取原料, 与乙醇、 ZrO2球按 1:2:3的比例混合 球磨 24小时后, 转移至玻璃容器中于 90°C烘干; 干燥后的原料粉体经筛分后, 装入 坩埚, 在 700-1000°C预烧 5-7小时, 合成主晶相; 按混合料与酒精的重量比为 1:2加 入酒精, 湿法球磨 24小时, 100-120°C烘干, 采用 8-12%PVB (聚乙烯醇缩丁醛) 造 粒, 在 100-200MPa 的压力下压制成 Φ 16X8 mm 的小圆柱, 在 600-700°C排胶, 在 860-960°C烧结 1-3 小时, 自然冷却得到 LiNb^Ti^Og微波介质陶瓷。 采用 Hakki-Coleman圆柱介质谐振法测试陶瓷样品的介电性能, 得到介电常数为 71, 谐振 频率温度系数为 10.5ppm/°C (参看图 7) 。 实施例 5:
丝网印刷制备 LNT织构化微波介质陶瓷:
(1) 浆料配制: 将 3.43g乙基纤维素溶于 76.54 g的松油醇中, 于 80°C加热 搅拌, 直至乙基纤维素完全溶解形成透明溶液。 称取 31.59g于 850°C预合成的 LiNbo.6Tio.5O3粉体, 加入上述溶液中, 球磨 4小时混合均匀。 再将 3.51g层片状 LiNbo.6Tio.5O3模板晶粒加入浆料中, 继续球磨 2小时。
(2) 丝网印刷: 将配置好的浆料通过 300目的丝网印刷在涤纶薄膜上, 放入 100°C的烘箱烘干, 重复上述步骤 50-80次, 最后形成约 lmm的陶瓷膜。
(3) 成型: 将得到陶瓷膜裁切为 llmmX 11mm的方片, 从衬底上取下膜片, 重叠约 50层, 压制成型。
(4) 排塑烧结: 将上述陶瓷素坯放入热处理炉内于 650°C排除有机物。 排塑 后的样品再经冷等静压处理,然后放入高温炉,以 10°C/分钟的速度升温至 1135°C, 保温 2小时。
通过织构化技术, 陶瓷晶粒定向排列, 展示出良好的各向异性。 在 1MHz频 率下, 垂直于晶粒排列方向, 介电常数 ε=55.75, 具有正的介电常数温度系数和负 的谐振频率温度系数; 在平行于晶粒排列的方向, 介电常数 ε =84.40, 具有负的 介电常数温度系数和正的谐振频率温度系数。通过不同方向的裁剪, 可获得不同介 电常数陶瓷, 并有望获得谐振频率温度系数为零、损耗小、 电学性能优异的微波介 质陶瓷 (参看图 8-12) 。
在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被 单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领 域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权 利要求书所限定的范围。

Claims

权 利 要 求
1. 一种片状 Li-Nb-Ti-O模板晶粒, 其化学式为 LiNbo.6Tio.5O3, 其晶粒形貌呈 片状, 其组成为 M-相 Li-Nb-Ti-O粉体。
2. 如权利要求 1 所述的片状 Li-Nb-Ti-O 模板晶粒, 其特征在于, 所述片状
Li-Nb-Ti-O模板晶粒的晶粒形貌呈片状三角形或多边形。
3. 如权利要求 1或 2所述的片状 Li-Nb-Ti-O模板晶粒, 其特征在于, 所述片 状 Li-Nb-Ti-O模板晶粒的径向长度为 5-80μηι,平均长度为 40μηι,厚度为 0.5-6.0μηι。
4. 一种制备权利要求 1-3中任一项所述的片状 Li-Nb-Ti-O模板晶粒的方法, 该方法包括:
以 Li2CO3、 Nb2O5和 TiO2为原料, 在 LiCl 的熔盐体系中, 合成片状的 LiNbo.6Tio.5O3粉体;
对所得的片状的 LiNbQ.6Tio.5O3粉体进行超声分散、 热去离子水洗涤、 抽滤, 得到纯净的 M-相 Li-Nb-Ti-O粉体, 从而制得片状 Li-Nb-Ti-O模板晶粒。
5. 如权利要求 4所述的方法, 其特征在于, 原料 Li2CO3、 Nb2O5和 TiO2以摩 尔比 5:3:5配料。
6. 如权利要求 4所述的方法, 其特征在于, 在 LiCl的熔盐体系中采用 1: 1至 1:3的熔盐比。
7. 如权利要求 4 所述的方法, 其特征在于, 在 LiCl 的熔盐体系中于 850°C - 1000 °C保温 3-9小时。
8. 一种织构化 Li-Nb-Ti-O微波介质陶瓷, 它包含权利要求 1-3中任一项所述 的片状 Li-Nb-Ti-O模板晶粒。
9. 一种制备权利要求 8所述的织构化 Li-Nb-Ti-O微波介质陶瓷的方法, 该方 法包括:
按权利要求 4-7中任一项所述的方法制备片状 Li-Nb-Ti-O模板晶粒; 以 Li2CO3、 Nb2O5、 TiO2为基体粉料, 预合成 LiNbo.6Tio.5O3粉料;
将粘结剂和溶剂加热搅拌以形成透明溶液;
将片状 LiNbo.6Tio.5O3模板晶粒和预合成的 LiNbo.6Tio.5O3粉料加入所述透明溶 液中, 混合均匀得到浆料;
将所述浆料丝网印刷到衬底上并烘干,得到浆料膜,将其裁切、层叠压制成型, 并置于 600-800 °C下以排除有机物, 再进行冷等静压处理, 烧结, 得到织构化 Li-Nb-Ti-O微波介质陶瓷。
10. 如权利要求 9所述的方法, 其特征在于, 在 850°C下保温 2 小时预合成 LiNbo.6Tio.5O3粉料。
11. 如权利要求 9所述的方法,其特征在于, 以重量计,粘结剂:溶剂:浆料 = 1: 12-25: 5-15, 所述浆料中片状 LiNbQ.6TiQ.5O3模板晶粒所占的比例为 5-15 %。
12. 如权利要求 9-11 中任一项所述的方法, 其特征在于, 所述粘结剂选自: 乙基纤维素、 甲基纤维素和硝化纤维素; 所述溶剂选自: 松油醇和乙二醇。
13. 如权利要求 9-11 中任一项所述的方法, 其特征在于, 所述混合采用球磨 混合; 所述丝网印刷采用 300目丝网印刷。
14. 如权利要求 9-11 中任一项所述的方法, 其特征在于, 所述烧结以 3-6°C/ 分钟的升温速度, 在 1000-1150°C下烧结, 并保温 2-5小时。
PCT/CN2011/082014 2010-11-10 2011-11-10 片状铌钛酸锂(Li-Nb-Ti-O)模板晶粒、包含其的织构化铌钛酸锂(Li-Nb-Ti-O)微波介质陶瓷、及其制备方法 WO2012062211A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013538053A JP6097219B2 (ja) 2010-11-10 2011-11-10 シート状ニオブ酸チタン酸リチウム(Li−Nb−Ti−O)のテンプレート結晶粒、それを含む組織化ニオブ酸チタン酸リチウム(Li−Nb−Ti−O)のマイクロ波媒質セラミックス、及びその製造方法
DE112011103734.1T DE112011103734T5 (de) 2010-11-10 2011-11-10 flockiges niob-lithium-titanat (Li-Nb-Ti-O) Vorlagenkorn, und texturierte niob-lithium-titanat (Li-Nb-Ti-O) Mirkrowellendielelektrizitätskeramik und sowie Herstllungsverfahren des Vorlagenkorns

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 201010537668 CN102211932B (zh) 2010-11-10 2010-11-10 织构化锂铌钛(Li-Nb-Ti-O)微波介质陶瓷及其制备方法
CN201010537668.1 2010-11-10
CN 201010537689 CN102211933B (zh) 2010-11-10 2010-11-10 片状锂-铌-钛(Li-Nb-Ti-O)模板晶粒及其制备方法
CN201010537689.3 2010-11-10

Publications (1)

Publication Number Publication Date
WO2012062211A1 true WO2012062211A1 (zh) 2012-05-18

Family

ID=46050414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082014 WO2012062211A1 (zh) 2010-11-10 2011-11-10 片状铌钛酸锂(Li-Nb-Ti-O)模板晶粒、包含其的织构化铌钛酸锂(Li-Nb-Ti-O)微波介质陶瓷、及其制备方法

Country Status (3)

Country Link
JP (1) JP6097219B2 (zh)
DE (1) DE112011103734T5 (zh)
WO (1) WO2012062211A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768616A (zh) * 2023-05-11 2023-09-19 电子科技大学 一种高Q值Li6Zn7Ti11O32基微波介质陶瓷材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712081C1 (ru) * 2019-07-24 2020-01-24 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Высокотемпературный пьезоэлектрический керамический материал на основе метаниобата лития

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1915904A (zh) * 2006-08-29 2007-02-21 中国科学院上海硅酸盐研究所 一种低温烧结的锂铌钛系复合微波介质陶瓷及其制备方法
CN101244933A (zh) * 2008-03-18 2008-08-20 中国科学院上海硅酸盐研究所 一种片状钛酸铋钠模板晶粒及其制备方法
CN101654367A (zh) * 2009-08-27 2010-02-24 华南师范大学 一种锂铌钛微波介质陶瓷材料的低温反应烧结方法
CN102211933A (zh) * 2010-11-10 2011-10-12 中国科学院上海硅酸盐研究所 片状锂-铌-钛(Li-Nb-Ti-O)模板晶粒及其制备方法
CN102211932A (zh) * 2010-11-10 2011-10-12 中国科学院上海硅酸盐研究所 织构化锂铌钛(Li-Nb-Ti-O)微波介质陶瓷及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221360A (ja) * 1996-02-16 1997-08-26 Ube Ind Ltd 誘電体磁器組成物
JP4259660B2 (ja) * 1999-01-19 2009-04-30 株式会社豊田中央研究所 板状粒子及びその製造方法
US6514476B1 (en) * 1999-04-27 2003-02-04 Penn State Research Foundation Anisotropically shaped SrTiO3 single crystal particles
JP2003026473A (ja) * 2001-05-08 2003-01-29 Murata Mfg Co Ltd セラミックの製造方法
CN101360695B (zh) * 2006-01-12 2012-08-22 株式会社村田制作所 形状各向异性陶瓷粒子及其制造方法
JP4943043B2 (ja) * 2006-03-31 2012-05-30 富士フイルム株式会社 圧電セラミックスの製造方法
JP2009185202A (ja) * 2008-02-07 2009-08-20 Kri Inc 波長変換蛍光体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1915904A (zh) * 2006-08-29 2007-02-21 中国科学院上海硅酸盐研究所 一种低温烧结的锂铌钛系复合微波介质陶瓷及其制备方法
CN101244933A (zh) * 2008-03-18 2008-08-20 中国科学院上海硅酸盐研究所 一种片状钛酸铋钠模板晶粒及其制备方法
CN101654367A (zh) * 2009-08-27 2010-02-24 华南师范大学 一种锂铌钛微波介质陶瓷材料的低温反应烧结方法
CN102211933A (zh) * 2010-11-10 2011-10-12 中国科学院上海硅酸盐研究所 片状锂-铌-钛(Li-Nb-Ti-O)模板晶粒及其制备方法
CN102211932A (zh) * 2010-11-10 2011-10-12 中国科学院上海硅酸盐研究所 织构化锂铌钛(Li-Nb-Ti-O)微波介质陶瓷及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768616A (zh) * 2023-05-11 2023-09-19 电子科技大学 一种高Q值Li6Zn7Ti11O32基微波介质陶瓷材料及其制备方法
CN116768616B (zh) * 2023-05-11 2024-04-12 电子科技大学 一种高Q值Li6Zn7Ti11O32基微波介质陶瓷材料及其制备方法

Also Published As

Publication number Publication date
DE112011103734T5 (de) 2014-01-09
JP2014504246A (ja) 2014-02-20
JP6097219B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
JP7412019B2 (ja) 低融点酸化物による腐食を防止する希土類タンタル酸塩セラミックス及びその製造方法
Peng et al. The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment
Peng et al. Improved microwave dielectric properties and sintering behavior of LiZnPO4 ceramic by Ni2+-ion doping based on first-principle calculation and experiment
CN105645958A (zh) 一种铌酸钠无铅反铁电压电陶瓷的制备方法
CN109111229A (zh) 一种高温烧结微波介质陶瓷材料及其制备方法
CN104860672A (zh) 一种高介微波陶瓷介质材料及其制备方法
CN111848145B (zh) 无机瓷粉及其制备方法、ltcc生瓷带
CN113213911A (zh) 一种微波介质陶瓷材料及其制备方法
WO2019126969A1 (zh) 一种介质陶瓷材料及其制备方法
CN102815941A (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
WO2012062211A1 (zh) 片状铌钛酸锂(Li-Nb-Ti-O)模板晶粒、包含其的织构化铌钛酸锂(Li-Nb-Ti-O)微波介质陶瓷、及其制备方法
CN111925207B (zh) 一种Mg3B2O6-Ba3(VO4)2复合陶瓷材料及制备方法
CN102211932B (zh) 织构化锂铌钛(Li-Nb-Ti-O)微波介质陶瓷及其制备方法
CN108455986A (zh) 一种复合微波介质陶瓷材料及其制备方法
CN105777116B (zh) 一种微波介质陶瓷及其制备方法
CN104710175B (zh) 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN113024249B (zh) 微波介质陶瓷复合材料及制备方法
CN112079631B (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN102211933B (zh) 片状锂-铌-钛(Li-Nb-Ti-O)模板晶粒及其制备方法
CN111943670B (zh) LiWVO6-K2MoO4基复合陶瓷微波材料及其制备方法
Wang et al. Effect of cation occupancy on crystal structure and microwave dielectric characteristics of spinel-structured (1-x) Zn2TiO4-xli2MgTi3O8 ceramics
CN114262219B (zh) 一种具备超高温度稳定性的微波介质陶瓷材料及其制备方法和应用
CN109650886A (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN115433008B (zh) 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法
CN102817068A (zh) 一种钛酸铋钠-钛酸铅压电单晶的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538053

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111037341

Country of ref document: DE

Ref document number: 112011103734

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840419

Country of ref document: EP

Kind code of ref document: A1