WO2012060078A1 - Method and apparatus for altering oxidation reduction potential of aqueous liquid - Google Patents

Method and apparatus for altering oxidation reduction potential of aqueous liquid Download PDF

Info

Publication number
WO2012060078A1
WO2012060078A1 PCT/JP2011/006045 JP2011006045W WO2012060078A1 WO 2012060078 A1 WO2012060078 A1 WO 2012060078A1 JP 2011006045 W JP2011006045 W JP 2011006045W WO 2012060078 A1 WO2012060078 A1 WO 2012060078A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
aqueous liquid
electrode
flow path
separator
Prior art date
Application number
PCT/JP2011/006045
Other languages
French (fr)
Japanese (ja)
Inventor
正治 棚橋
宏恵 近藤
棚橋 正和
祥子 登
Original Assignee
有限会社ターナープロセス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ターナープロセス filed Critical 有限会社ターナープロセス
Priority to CN201190000848.4U priority Critical patent/CN203346132U/en
Priority to JP2012541736A priority patent/JP5311246B2/en
Publication of WO2012060078A1 publication Critical patent/WO2012060078A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the present invention relates to a method and apparatus for changing the redox potential of an aqueous liquid.
  • Water with a high oxidation-reduction potential and water with a low potential are expected to have various applications due to their characteristics. For example, they are expected to be applied to health promotion, beauty, washing, sterilization, and the like.
  • JP-A-11-57715 a method of changing the oxidation-reduction potential of water by electrolyzing water.
  • Japanese Patent Application Laid-Open No. 11-57715 describes a method for adjusting pH together with ORP.
  • an object of the present invention is to provide a novel method and apparatus for changing the redox potential of an aqueous liquid.
  • the present invention provides a method for changing the redox potential of an aqueous liquid flowing in a flow path.
  • This method is a method of changing the oxidation-reduction potential of an aqueous liquid flowing in a flow path, and (i) the first and second electrodes disposed in the first and second tanks partitioned by the separator, respectively.
  • the second tank constitutes a part of the flow path, and the first tank is connected to the flow path via the separator.
  • the present invention also provides an apparatus for changing the oxidation-reduction potential of an aqueous liquid flowing through a flow path.
  • This device is a device that changes the oxidation-reduction potential of an aqueous liquid flowing in a flow path, and a container in which the aqueous liquid is disposed, a separator that partitions the container into a first tank and a second tank, A voltage is applied between the first electrode disposed in the first tank, the second electrode disposed in the second tank, and the first electrode and the second electrode.
  • the second tank is formed with an inlet and an outlet connected to the flow path so that the second tank forms a part of the flow path, A first tank is connected to the flow path via the separator.
  • the redox potential of the aqueous liquid can be easily changed. Further, when changing the oxidation-reduction potential, the change in pH of the aqueous liquid can be controlled as necessary. Further, according to the present invention, it is possible to simplify and downsize the apparatus.
  • FIG. 1 schematically shows an example of the apparatus of the present invention.
  • FIG. 2 schematically shows another example of the apparatus of the present invention.
  • FIG. 3 schematically shows an example of the operating state of the apparatus shown in FIG.
  • FIG. 4 schematically shows another example of the operating state of the apparatus shown in FIG.
  • FIG. 5A schematically shows another example of the apparatus of the present invention.
  • FIG. 5B schematically shows an example of the operating state of the apparatus shown in FIG. 5A.
  • FIG. 6 schematically shows another example of the apparatus of the present invention.
  • FIG. 7 schematically shows an example of the operating state of the apparatus shown in FIG.
  • FIG. 8 schematically shows an example of the usage state of the apparatus of the present invention.
  • FIG. 9 schematically shows another example of the usage state of the apparatus of the present invention.
  • FIG. 1 schematically shows an example of the apparatus of the present invention.
  • FIG. 3 schematically shows an example of the operating state of the apparatus shown in FIG.
  • FIG. 4 schematically shows another example of the
  • FIG. 10 schematically shows another example of an apparatus for changing the ORP of an aqueous liquid.
  • FIG. 11 schematically shows another example of an apparatus for changing the ORP of an aqueous liquid.
  • FIG. 12A schematically shows the shape of the first electrode of the apparatus used in the example.
  • FIG. 12B schematically shows the arrangement of the first electrode and the separator in the apparatus used in the example.
  • FIG. 13 schematically shows another example of the apparatus of the present invention.
  • the present invention will be described by way of examples, but the present invention is not limited to the examples described below.
  • specific numerical values and specific materials may be exemplified, but other numerical values and other materials may be applied as long as the effect of the present invention is obtained.
  • the redox potential may be described as “ORP”.
  • the term “amount of aqueous liquid” means the volume of the aqueous liquid unless otherwise specified.
  • the method of the present invention includes steps (i) and (ii).
  • the first and second electrodes respectively disposed in the first and second tanks partitioned by the separator are immersed in the aqueous liquid.
  • the aqueous liquid may be referred to as “aqueous liquid (A)”.
  • the first electrode is disposed in the first tank, and the second electrode is disposed in the second tank.
  • the second tank constitutes a part of the flow path through which the aqueous liquid (A) flows.
  • the first tank is connected to the flow path via a separator. That is, the flow path is not directly connected to the first tank.
  • the aqueous liquid (A) in the second tank is mixed with or replaced by the aqueous liquid (A) outside the second tank as the aqueous liquid (A) flows through the flow path. It is done.
  • the aqueous liquid (A) in the first tank is the aqueous liquid (A) outside the first tank only when the aqueous liquid (A) passes through the separator (that is, the aqueous liquid in the second tank). Liquid (A)) or mixed with it.
  • This example includes a case where the aqueous liquid (A) in the first tank is discharged from the drainage passage, and the aqueous liquid (A) in the second tank is moved into the first tank accordingly. It is.
  • the second tank is provided with two connection parts connected to the flow path.
  • the second tank includes an inflow port and an outflow port.
  • the inflow port and the outflow port are connected to the flow path such that the second tank forms a part of the flow path.
  • the aqueous liquid (A) flows into the second tank from the inlet connected to the flow path.
  • the aqueous liquid (A) treated in the second tank flows out from the outlet connected to the channel to the channel.
  • the inflow port and the flow path, and the outflow port and the flow path may be fixed. Alternatively, the inflow port and the flow channel, and the outflow port and the flow channel may be connected in a detachable state.
  • the first tank may include a connection portion connected to the flow path, but usually does not include a connection portion connected to the flow path.
  • the apparatus used in the present invention may further include a water tank to which a flow path is connected.
  • the flow path may comprise the circulation path (annular path) containing a water storage tank and a 2nd tank.
  • the first and second tanks are partitioned by a separator. Examples of the first and second tanks partitioned by the separator were partitioned not only by the first and second tanks partitioned only by the separator but also by a separator and a partition wall that does not allow liquid and gas to pass through. First and second tanks are included.
  • the separator it is possible to use a separator that can suppress a short circuit between the electrodes and can suppress a gas generated on the surface of the electrode from passing therethrough.
  • the separator allows liquids and ions (both positive and negative ions) to pass through.
  • the separator suppresses and preferably prevents the passage of gas (bubbles) in the aqueous liquid (A).
  • the separator has an insulating property.
  • a part of the separator (for example, the inside) may not be insulative. That is, the separator may be insulative when viewed as a whole.
  • the separator is a diaphragm that allows both cations and anions to pass therethrough (that is, a diaphragm that does not have ion exchange capacity), and is a porous and insulating diaphragm.
  • the separator is preferably hydrophilic.
  • a separator having hydrophilicity gas permeation can be more effectively suppressed.
  • the separator include a separator made of a resin (for example, resin fiber). Resins include natural resins and synthetic resins. Examples of the form of the separator include a cloth (woven fabric or non-woven fabric) and a membrane (porous membrane). Examples of the separator having hydrophilicity include a separator containing or made of a resin containing a hydrophilic group. Examples of the separator having hydrophilicity include a separator made of or made of a hydrophilic resin.
  • the separator may be a cloth or a film formed of cotton, hemp, rayon, hair, silk, or the like. Usually, the separator does not contain an ion exchange material. That is, normally, the separator is not an ion exchange membrane, but allows both cations and anions to pass through.
  • a phenomenon such as a capillary phenomenon occurs can be cited as one of measures. Specifically, a part of the separator is immersed in water, and the remaining part is taken out of the water. At that time, if the water rises against the gravity against the remaining portion, it can be estimated that the separator is hydrophilic.
  • the separator preferably suppresses gas permeation while allowing ions to easily permeate. Therefore, an example of a preferable separator is a separator having a high air permeability resistance (Gurley) (that is, difficult to vent) and a high porosity.
  • Gurley air permeability resistance
  • first and second electrodes electrodes capable of causing an electrolysis reaction of water are used. It is preferable that a metal that easily undergoes an electrolysis reaction of water exists on the surfaces of the first and second electrodes. Examples of metals that are susceptible to electrolysis of water include platinum. Examples of the first and second electrodes include a metal electrode, and a metal electrode that can exist stably in the step (ii) is preferably used. A preferred example of the first and second electrodes is a metal electrode having platinum on the surface. Specifically, a platinum electrode or a metal electrode whose surface in contact with a liquid is coated with platinum is preferably used. Examples of metals coated with platinum include niobium, titanium, tantalum, and other metals.
  • the surface of the electrode (anode) where oxygen gas is generated is preferably coated with platinum.
  • An electrode made of a conductive material other than metal for example, a conductive carbon material
  • an electrode obtained by coating the surface of these conductive materials with a metal platinum or other metal
  • the distance between the first electrode and the second electrode may be in a range of 0.1 mm to 10 mm (for example, a range of 0.1 mm to 5 mm).
  • the shorter the distance between the first electrode and the second electrode the lower the voltage required for water electrolysis.
  • the shorter the distance between the first electrode and the second electrode the easier it is for hydrogen ions and hydroxide ions to move from one tank to the other, so the aqueous liquid in the first tank
  • the difference between the pH of the aqueous liquid and the pH of the aqueous liquid in the second tank can be reduced.
  • the first electrode and the second electrode may be in contact with the separator.
  • the distance between the first electrode and the separator and the distance between the second electrode and the separator may each be in the range of 0 mm to 5 mm (for example, in the range of 0 mm to 1 mm).
  • the first and second electrodes may each have a shape that spreads two-dimensionally.
  • the first and second electrodes may be flat electrodes.
  • a through hole may be formed in the flat electrode.
  • each of the first and second electrodes may be composed of a plurality of linear electrodes arranged on a virtual plane. An example of such an electrode is shown in FIG. 12A.
  • the first and second electrodes have a shape that expands two-dimensionally, it is preferable that the first electrode and the second electrode face each other in parallel with the separator interposed therebetween. Further, the plurality of first electrodes and the plurality of second electrodes may be opposed to each other with the separator interposed therebetween.
  • Each of the first electrode and the second electrode may include a plurality of linear electrodes arranged in a stripe shape along the vertical direction.
  • the surface of the linear electrode is preferably curved rather than flat. Therefore, the cross section of the linear electrode is preferably circular rather than rectangular.
  • the distance D between two adjacent linear electrodes may be 1.5 mm or less.
  • the distance D may be in the range of 0.1 mm to 1.5 mm, for example.
  • the smaller the distance D the smaller the influence of the voltage drop.
  • by setting the distance D to 1.5 mm or less it is possible to suppress the gas generated on the electrode surface from staying on the electrode surface.
  • first and second tanks tanks that can stably hold an aqueous liquid can be used.
  • one container is partitioned by a separator (or a separator and a partition) to form first and second tanks.
  • the first tank and the second tank include a resin tank and a tank whose inner surface is made of resin.
  • the inner surface of the tank may have hydrophilicity. Since the inner surface of the tank has hydrophilicity, the gas can easily move upward. Examples of the inner surface having hydrophilicity include an inner surface made of a hydrophilic resin and an inner surface that has been subjected to a hydrophilic treatment. Moreover, in order to prevent the gas generated on the surface of the electrode from staying on the upper surface of the tank, the upper surface of the tank may be inclined.
  • next step (ii) by applying a voltage between the first electrode and the second electrode while the first electrode and the second electrode are immersed in the aqueous liquid (A), an aqueous solution is obtained.
  • the water in the liquid (A) is electrolyzed.
  • the electrolysis is performed in a state where the aqueous liquid (A) is flowing through the flow path (including the second tank).
  • reaction at the anode and the cathode can be considered as the following formulas (3) and (4), but in this specification, they are described as the reactions of the above formulas (1) and (2).
  • aqueous liquid means a liquid containing water.
  • the aqueous liquid (A) include water such as tap water and an aqueous solution.
  • the aqueous liquid (A) may be an aqueous solution in which a salt is dissolved.
  • the aqueous liquid (A) may contain an organic solvent (for example, alcohol) other than water.
  • the proportion of water in the solvent of the aqueous liquid (A) is 50% by weight or more (for example, 80% by weight or more, 90% by weight or more, or 95% by weight or more), and 100% by weight or less.
  • the solvent of the aqueous liquid (A) is water.
  • the conductivity of the aqueous liquid (A) may be in the range of 100 ⁇ S / cm to 50 mS / cm (eg, 140 ⁇ S / cm to 2 mS / cm). In general, when the ion concentration is low, the ORP hardly changes.
  • ions may be added to the aqueous liquid (A). For example, a salt may be dissolved in the aqueous liquid (A). There is no limitation in particular in the salt to dissolve, A sulfate and phosphate may be sufficient.
  • the voltage (DC voltage) applied between the electrodes is set so that oxygen gas is generated from the anode and hydrogen gas is generated from the cathode.
  • the applied voltage may be in the range of 3 to 30 volts (eg, in the range of 6 to 20 volts).
  • Step (ii) may be performed under the condition that the gas generated on the surface of the second electrode tends to remain in the aqueous liquid (A) as compared with the gas generated on the surface of the first electrode.
  • the ORP of the aqueous liquid (A) in the second tank can be changed efficiently.
  • the path from the second tank to the use place is not open to the atmosphere and the longer one is , ORP is easily changed efficiently.
  • the length of the path connecting the second tank and the place of use may be, for example, 50 cm or more, and may be in the range of 50 cm to 500 cm.
  • the gas generated at the second electrode may be released.
  • the gas may be released periodically or irregularly.
  • the release of the gas may be performed by a valve disposed in any of the second tank, the water tank connected to the second tank, and the path connecting the second tank and the water tank.
  • Step (ii) may be performed in a state where the first tank is open to the atmosphere and no air flows into the second tank.
  • the “state in which the atmosphere does not flow into the second tank” includes a state in which the gas generated in the second electrode is released from the second tank while the air does not flow into the second tank.
  • the gas generated on the surface of the first electrode is released to the atmosphere.
  • the gas generated on the surface of the second electrode is likely to remain in the aqueous liquid (A) by releasing the gas only when the pressure of the gas generated at the second electrode becomes too high. .
  • step (ii) the amount of aqueous liquid (A) to be treated in the first tank (volume V1 (cm 3 )) and the amount of aqueous liquid (A) to be treated in the second tank (volume V2 (cm 3 )) and the pH of the aqueous liquid (A) treated in the second tank may be adjusted.
  • the larger the value of (V2 / V1) the smaller the pH change of the aqueous liquid treated in the second tank.
  • the value of (V2 / V1) may be in a range of 10 to 2 ⁇ 10 6 (for example, a range of 10 to 50000 or a range of 200 to 15000).
  • the amount (volume V1) of the aqueous liquid (A) processed in the first tank is the amount of the aqueous liquid (A) disposed in the first tank, and is usually approximated by the internal volume of the first tank. it can.
  • the amount (volume V2) of the aqueous liquid (A) processed in the second tank can be normally replaced with the internal volume of the second tank. it can.
  • the first approximation is an approximation when the flow path is not a circulation path.
  • the volume V2 in this case can be replaced with the volume of the aqueous liquid (A) processed in the second tank and discharged from the second tank.
  • the second approximation is an approximation when the second tank constitutes a part of a flow path that is a circulation path.
  • the volume V2 can be replaced with the total amount of the aqueous liquid (A) present in the circulation path.
  • the volume V2 is equal to the internal volume of the second tank. The total of the volume of the aqueous liquid (A) arranged in the flow path connecting the second tank and the water storage tank and the volume of the aqueous liquid (A) arranged in the water storage tank can be replaced.
  • the volume V2 can be replaced by the volume of the aqueous liquid (A) placed in the water tank.
  • the third approximation is another approximation in the case where the second tank constitutes a part of a flow path that is a circulation path.
  • the volume V2 can be approximated by the volume in the circulation path.
  • the circulation path is composed of a second tank, a water storage tank, and a flow path connecting them, it is possible to regard the sum of the internal volumes as the volume V2.
  • the volume V2 can be replaced with the internal volume of the water tank.
  • step (ii) the internal volume of the first tank (or the amount of the aqueous liquid (A) disposed in the first tank) and the aqueous liquid (A ), The pH of the aqueous liquid (A) treated in the second tank may be adjusted. Further, from the above third approximation, in step (ii), the ratio between the internal volume of the first tank (or the amount of the aqueous liquid (A) arranged in the first tank) and the internal volume of the water storage tank. The pH of the aqueous liquid (A) treated in the second tank may be adjusted.
  • the aqueous liquid that flows in the second tank per minute The amount of (A) is in the range of 1 to 10 6 times the amount of the aqueous liquid (A) (or the internal volume of the first tank) disposed in the first tank (for example, 10 to 10 5 times Range or 100 times to 10 5 times).
  • the second tank does not constitute a part of the circulation path (for example, when the aqueous liquid processed in the second tank is used as it is)
  • the higher this magnification is, the higher the ratio is processed in the second tank.
  • the fluctuation of the pH of the aqueous liquid (A) is reduced.
  • the aqueous liquid processed by a 2nd tank by making this magnification into the said range and shortening the distance of an electrode (1st and 2nd electrode) and a separator (it is set as the distance mentioned above, for example).
  • the change in pH of (A) can be particularly suppressed.
  • the amount of the aqueous liquid (A) present in the circulation path is the first amount.
  • the amount of the aqueous liquid (A) placed in the tank (or the internal volume of the first tank) may be in the range of 10 to 10 6 times (for example, in the range of 100 to 10 5 times). The higher this magnification, the smaller the fluctuation of the pH of the aqueous liquid (A) treated in the second tank (that is, the pH of the aqueous liquid (A) present in the circulation path).
  • the aqueous liquid processed by a 2nd tank by making this magnification into the said range and shortening the distance of an electrode (1st and 2nd electrode) and a separator (it is set as the distance mentioned above, for example).
  • the change in pH of (A) can be particularly suppressed.
  • the internal volume of the first tank is not particularly limited, and may be in a range of 1 cm 3 to 1000 cm 3 (for example, a range of 3 cm 3 to 200 cm 3 or a range of 3 cm 3 to 20 cm 3 ).
  • the internal volume of the second tank may be in these ranges.
  • the internal volume of the second tank is equal to or greater than the internal volume of the first tank.
  • step (ii) it was processed in the second tank according to the ratio of the amount of electricity flowing between the first electrode and the second electrode per unit time and the amount of ions passing through the separator per unit time.
  • the pH of the aqueous liquid (A) may be adjusted. As the amount of electricity flowing between the electrodes per unit time increases, the pH change of the aqueous liquid (A) treated in the second tank tends to increase. On the other hand, the larger the amount of ions passing through the separator per unit time, the smaller the pH change of the aqueous liquid (A) treated in the second tank.
  • the amount of electricity flowing between the electrodes per unit time can be increased as the voltage applied between the electrodes is increased.
  • the amount of ions passing through the separator per unit time can be increased as the area of the separator through which ions can pass is increased. Also, the shorter the distance between the electrode and the separator, the greater the amount of ions that pass through the separator per unit time. In addition, the smaller the internal volume of the tank, the larger the amount of ions that pass through the separator per unit time.
  • Step (ii) is performed in a state where the aqueous liquid (A) in the first tank is not in a liquid-permeable state and the aqueous liquid (A) in the second tank is in a liquid-permeable state. According to this configuration, it is possible to reduce the change in pH of the aqueous liquid (A) treated in the second tank.
  • the “liquid passing state” means a state in which liquid continuously flows into and out of the tank.
  • the pH of the aqueous liquid (A) in the first tank and the pH of the aqueous liquid (A) in the second tank are , Often very different. Therefore, in order to keep the pH of the aqueous liquid (A) in the second tank at a value immediately after the step (ii) is performed so as not to approach neutrality, after the step (ii), The aqueous liquid (A) and ions in the first tank may be prevented from moving and diffusing into the second tank. For example, the water in the first tank may be discharged after step (ii).
  • the first tank and the second tank may be partitioned by a shielding plate to prevent the movement and diffusion of the aqueous liquid (A) and ions.
  • the pH becomes a substantially constant value after voltage application.
  • the aqueous liquid (A) in the tank may be allowed to stand.
  • the pH approaches neutrality. At this time, it can accelerate
  • the pH of the aqueous liquid (A) flowing in the second tank may be controlled by discharging a part of the aqueous liquid (A) arranged in the first tank.
  • pH of aqueous liquid (A) may be adjusted.
  • pH of aqueous liquid (A) may be adjusted.
  • the aqueous liquid (A) on the anode side becomes acidic, and the aqueous liquid (A) on the cathode side becomes alkaline. Therefore, it is possible to change the pH of the entire aqueous liquid (A) by discharging the aqueous liquid (A) of either the first tank or the second tank during voltage application or after voltage application. It is.
  • a scale such as calcium may be deposited in the cathode side tank.
  • a voltage may be applied in the reverse direction while the flow of the aqueous liquid 30 is stopped.
  • the alkaline aqueous liquid can be made acidic and the scale can be dissolved.
  • the apparatus of the present invention includes a container, a separator, a first electrode, a second electrode, and a power source.
  • An aqueous liquid (namely, aqueous liquid (A)) is arrange
  • the separator partitions the container into a first tank and a second tank.
  • the first electrode is disposed in the first tank, and the second electrode is disposed in the second tank.
  • the power source applies a voltage between the first electrode and the second electrode.
  • an aqueous liquid (A) is obtained by applying a voltage between the first electrode and the second electrode in a state where the first electrode and the second electrode are immersed in the aqueous liquid (A).
  • the process of electrolyzing the water inside is performed.
  • this process may be referred to as an “electrolysis process”.
  • the electrolysis process performed in the apparatus of the present invention corresponds to step (ii) of the method of the present invention. Since the container (first and second tanks), the separator, the first and second electrodes, and the aqueous liquid (A) have been described above, overlapping descriptions may be omitted.
  • the second tank constitutes a part of the flow path. That is, the second tank is formed with an inlet and an outlet that are connected to the flow path so that the second tank forms a part of the flow path. Further, the first tank is connected to the flow path via a separator.
  • the DC power supply can be used for the power supply.
  • the power source may be an AC-DC converter that converts an AC voltage obtained from an outlet into a DC voltage.
  • the power source may be a power generation device such as a solar cell or a fuel cell, or a battery (for example, a secondary battery).
  • a power generation device or a battery as a power source, the device of the present invention can be used in regions and situations where power is not supplied.
  • the device of the present invention can be controlled manually.
  • the device of the present invention may comprise a controller.
  • the controller includes an arithmetic processing unit and storage means.
  • the storage means may be integrated with the arithmetic processing unit.
  • the storage means include an internal memory, an external memory, and a magnetic disk (for example, a hard disk drive) of the arithmetic processing unit.
  • a program for executing a necessary process is recorded in the storage means.
  • An example of the controller includes a large scale integrated circuit (LSI).
  • the apparatus of the present invention includes various devices (power supply, pump, valve, filter, etc.) and various measuring instruments (ORP meter, ammeter, pH meter, ion concentration meter, conductivity meter, dissolved oxygen meter, dissolved hydrogen meter, etc.) May be included.
  • the controller may be connected to these devices and measuring instruments.
  • the controller may perform the electrolysis process by controlling the device based on the output of the measuring instrument.
  • the device of the present invention is a conductivity meter for measuring the conductivity of an aqueous liquid or a device for confirming gas generation from a counter electrode (for example, a light emitting device such as an LED or a laser diode). And a combination of a light receiving element such as a photodiode).
  • the apparatus of this invention may be equipped with the voltmeter for measuring the voltage applied between electrodes, and the ammeter for measuring the electric current which flows between electrodes.
  • the controller may control the voltage application and / or the flow rate of the aqueous liquid (A) based on the data obtained from various measuring instruments and the ORP target value set by the user of the apparatus. Furthermore, the controller applies the voltage, the flow rate of the aqueous liquid (A), and the aqueous liquid (A) discharged from the first and second tanks based on the target value of pH set by the user of the apparatus. At least one selected from these amounts may be controlled.
  • the apparatus of the present invention may be provided with a membrane (for example, an ion exchange membrane) or an ion exchange material that selectively allows cations or anions to pass therethrough as necessary.
  • a membrane for example, an ion exchange membrane
  • an ion exchange material that selectively allows cations or anions to pass therethrough as necessary.
  • the apparatus of the present invention typically does not include such membranes (eg, ion exchange membranes) or ion exchange materials.
  • tube for the aqueous liquid (A) in a tank to move according to the raise of the pressure in a tank may be connected to the tank.
  • tube for the aqueous liquid (A) in a 1st tank to move according to the raise of the pressure in a 1st tank may be connected to the 1st tank.
  • the tube may be referred to as “tube (T)”.
  • the tube (T) extends upward from the first tank.
  • the tube (T) repeats descending and ascending alternately.
  • the pipe (T) may repeat meandering in the downward direction and the upward direction.
  • the tube (T) may be a tube wound in a coil shape.
  • the tube (T) may have a structure in which a plurality of linear tubes arranged in parallel to the vertical direction are connected in series.
  • the cross-sectional area of the inside (flow path) of the tube (T) is preferably large enough to allow bubbles to move inside the tube (T).
  • the cross-sectional area inside the tube (T) is preferably 3 cm 2 or more, for example, in the range of 3 cm 2 to 10 cm 2 or in the range of 5 cm 2 to 30 cm 2 .
  • the inside of the pipe (T) where the aqueous liquid (A) moving from the first tank to the downstream side of the pipe (T) moves upward is made hydrophilic, and the pipe (T The inside of the tube (T) where the aqueous liquid (A) moving downstream of T) moves downward may be water repellent.
  • a thin tube may be connected to the end of the tube (T).
  • the cross-sectional area of the inside (channel) of the narrow tube is smaller than the cross-sectional area of the inside (channel) of the tube (T).
  • the cross-sectional area inside the narrow tube may be in the range of 0.7 cm 2 to 3.5 cm 2 or in the range of 0.5 cm 2 to 1 cm 2 . Since the fluid resistance in the narrow tube is large, even if the pressure in the tank changes suddenly, the water level gradually changes until the pressure in the tank reaches equilibrium without greatly changing the water level in the tank. Moreover, rapid movement of the aqueous liquid (A) in the tube (T) can be suppressed by connecting the thin tube to the tube (T).
  • the phrase “cross-sectional area of the tube” means a cross-sectional area in a direction perpendicular to the direction of the flow path (the direction in which the aqueous liquid (A) flows).
  • the electrolysis step may be performed under the condition that the gas generated on the surface of the second electrode tends to remain in the aqueous liquid (A) as compared with the gas generated on the surface of the first electrode.
  • the electrolysis process may be performed in a state where the first tank is open to the atmosphere and the atmosphere does not flow into the second tank.
  • the apparatus of the present invention may further include a shielding plate that is movably disposed between the first tank and the second tank. By moving the shielding plate, it is possible to adjust the amount of ions passing through the separator per unit time.
  • the electrolysis step is performed in a state where the aqueous liquid (A) in the first tank is not in a liquid-permeable state and the aqueous liquid (A) in the second tank is in a liquid-permeable state.
  • the second tank may be connected to a water tank that holds the aqueous liquid (A).
  • the aqueous liquid (A) may be circulated between the second tank and the water storage tank.
  • a large amount of aqueous liquid (A) can be processed.
  • the value of (V2 / V1) mentioned above can be enlarged, As a result, the fluctuation
  • the water tank may be a water tank (for example, a bathtub) that is open to the atmosphere.
  • the flow path on the downstream side of the second tank may be connected to a bathtub or a shower head.
  • the aqueous liquid (A) treated in the second tank is used as water in the bathtub (for example, hot water) or shower water (for example, hot water).
  • the flow path may form a circulation path including the bathtub and the second tank.
  • hot water may be supplied to the second tank as the aqueous liquid (A) to be treated in the second tank.
  • the second tank, the water storage tank, and the path connecting them may constitute a circulation path.
  • a valve for releasing the gas existing in the circulation path may be arranged in the circulation path. By opening the valve, the gas generated in the second electrode can be released into the atmosphere. This can prevent the pressure of the gas in the circulation path from becoming too high.
  • each processing apparatus has the configuration of the apparatus of the present invention described above. That is, each processing apparatus includes a first tank, a second tank, a first electrode, a second electrode, a separator, and a power source.
  • the present invention relates to an apparatus and a method for producing an aqueous liquid in which ORP and pH are in a predetermined range.
  • water such as tap water (specifically, water having an ORP in the range of 200 mV to 780 mV and a pH in the range of 5.8 to 8.6) is treated.
  • water whose ORP is 200 mV or more higher than that before the treatment, and whose pH change before and after the treatment is 2 or less, or water whose ORP is 200 mV or more lower than that before the treatment, and whose pH change before and after the treatment is 2 or less. Is possible.
  • the configuration of the apparatus 100 of the first embodiment is schematically shown in FIG.
  • the apparatus 100 includes a container 10, a separator 13, a first electrode 21, a second electrode 22, and a power source 23.
  • the apparatus 100 may include a controller.
  • the container 10 is divided into a first tank 11 and a second tank 12 by a separator 13.
  • a flow path 14 a and a flow path 14 b are connected to the second tank 12.
  • the flow path 14 a, the flow path 14 b, and the second tank 12 form one flow path 14.
  • the second tank 12 has two inlets 12c and outlets 12d.
  • the inflow port 12c and the outflow port 12d are connected to the flow paths 14a and 14b by the connection component 12e in a state where the connection can be released.
  • illustration of the connection component 12e is omitted.
  • the inflow port 12c and the outflow port 12d may be directly connected to the flow path without using connection parts.
  • the flow path 14 a is connected to the lower side of the second tank 12
  • the flow path 14 b is connected to the upper side of the second tank
  • the aqueous liquid 30 is introduced from the flow path 14 a
  • the treatment is performed in the second tank 12.
  • the aqueous liquid 30 is discharged from the flow path 14b.
  • the aqueous liquid 30 flows into the second tank 12 through the inlet 12c, and the aqueous liquid 30 flows out into the flow path 14b through the outlet 12d.
  • the aqueous liquid flows upward from below the second tank 12, it is possible to suppress the gas generated on the surface of the second electrode 22 from staying on the surface of the second electrode 22.
  • a pump and / or a valve is installed in the flow path 14a and / or the flow path 14b as necessary. Further, in the second tank 12 and / or the flow path 14 (usually, the flow path on the downstream side of the second tank 12), measuring instruments (ORP meter, pH meter, ion concentration meter, conductivity meter, dissolved meter) An oxygen meter, a dissolved hydrogen meter, etc.) may be installed.
  • the first tank 11 is opened to the atmosphere by the opening 11a.
  • the second tank 12 is cut off from the atmosphere.
  • An aqueous liquid 30 is disposed in the tanks 11 and 12. Means for preventing the aqueous liquid 30 from leaking outside from the opening 11a may be provided in the opening 11a.
  • a gas-liquid separation membrane may be disposed in the opening 11a. A well-known thing can be used for a gas-liquid separation membrane.
  • drainage channels 15 and 16 may be connected to the tank 11 and the tank 12, respectively.
  • a valve 15a and a valve 16a are provided in each of the drainage passages 15 and 16.
  • the aqueous liquid 30 in the tank 11 can be discharged by opening the valve 15a.
  • the aqueous liquid 30 in the tank 12 can be discharged by opening the valve 16a.
  • the pH of the aqueous liquid 30 can be adjusted by discharging the aqueous liquid 30 in the tank 11 or the aqueous liquid 30 in the tank 12.
  • the apparatus of the present invention may include a water tank 24.
  • the 2nd tank 12 and the water storage tank 24 are connected by the flow path 14a and the flow path 14b.
  • the 2nd tank 12, the water storage tank 24, the flow path 14a, and the flow path 14b form one circulation path.
  • the aqueous liquid 30 in the water storage tank 24 is sent to the second tank 12 by a pump (not shown) disposed in the flow path 14a and / or the flow path 14b, and is returned to the water storage tank 24 after being processed. That is, the aqueous liquid 30 circulates in the circulation path including the second tank 12 and the water storage tank 24. This circuit is isolated from the atmosphere.
  • the water storage tank 24 is provided with a valve 24a.
  • valve 24a When the pressure of the gas in the water storage tank 24 becomes too high, the valve 24a may be opened. Thereby, the pressure of the gas in the water storage tank 24 can be lowered without causing the air to flow into the water storage tank 24. It is also possible to replace the water tank 24 with a bathtub. In this case, the aqueous liquid 30 in the bathtub is opened to the atmosphere.
  • the electrodes 21 and 22 are immersed in the liquid 30.
  • the electrolysis process is performed in a state where the aqueous liquid 30 is continuously supplied from the flow path 14a and the aqueous liquid 30 is continuously discharged from the flow path 14b. That is, in the electrolysis process, the aqueous liquid 30 in the second tank 12 is in a liquid-permeable state, while the aqueous liquid 30 in the first tank 11 is not in a liquid-permeable state.
  • the aqueous liquid 30 in the tanks 11 and 12 and the ions (cations and anions) contained therein can pass through the separator 13.
  • a voltage is applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes an anode.
  • oxygen gas and hydrogen ions are generated on the surface of the first electrode 21 (anode)
  • hydrogen gas and hydroxide ions are generated on the surface of the second electrode 22 (cathode). Will occur.
  • the separator 13 blocks gas (bubbles). That is, the separator 13 suppresses the gas generated on the surface of the electrode from moving between the tank 11 and the tank 12. Oxygen gas generated in the first electrode 21 is released into the atmosphere from the opening 11a.
  • a voltage is applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes a cathode. Apply.
  • hydrogen gas and hydroxide ions are generated on the surface of the first electrode 21 (cathode), and oxygen gas and hydrogen ions are generated on the surface of the second electrode 22 (anode). Occurs.
  • the separator 13 suppresses the gas generated on the surface of the electrode from moving between the tank 11 and the tank 12. The hydrogen gas generated at the first electrode 21 is released into the atmosphere from the opening 11a.
  • emitted from the flow path 14b increases.
  • an aqueous liquid 30 having a high ORP is obtained.
  • the pH of the aqueous liquid 30 treated in the second tank 12 depends on the amount of hydrogen ions and hydroxide ions generated per unit time by the electrolysis reaction (hydrogen ions and hydroxide ions per unit time by the electrolysis reaction). Change amount), the amount of ions passing through the separator per unit time, and the volume (volume V2) of the aqueous liquid processed in the second tank 12. As the current flowing between the electrodes (the amount of charge flowing between the electrodes per unit time) increases, the amount of hydrogen ions and hydroxide ions generated per unit time increases. Therefore, the pH of the aqueous liquid 30 treated in the second tank 12 is adjusted by changing the ratio between the current flowing between the electrode 21 and the electrode 22 and the amount of ions passing through the separator per unit time.
  • the current flowing between the electrodes 21 and 22 can be changed, for example, by changing the voltage applied between the electrodes.
  • the amount of hydrogen ions and hydroxide ions passing through the separator per unit time can be changed by the value of (volume V2) / (volume V1), the distance between the electrode and the separator, the area of the separator, and the like.
  • the value of the volume V ⁇ b> 2 can be changed by changing the amount of the aqueous liquid 30 disposed in the water tank 24.
  • the aqueous liquid 30 in the first tank 11 When the aqueous liquid 30 in the first tank 11 is discharged from the drainage path 15, the amount of hydrogen ions or hydroxide ions moving from the first tank 11 to the second tank 12 is reduced. Therefore, when it is desired to increase the change in pH in the second tank 12, the aqueous liquid 30 in the first tank 11 may be discharged. The aqueous liquid 30 in the first tank 11 is replenished from the second tank 12 via the separator 13.
  • the amount of ions that pass through the separator per unit time may be changed by changing the area through which ions can pass using a shielding plate.
  • An example of an apparatus including a shielding plate is shown in FIG. 5A.
  • the shielding plate 51 of the device 100a is movable in parallel with the separator 13.
  • the shielding plate 51 is placed at a position where the separator 13 is not shielded or hardly shielded as shown in FIG. 5A.
  • the shielding plate 51 is placed at a position where a part of the separator 13 is shielded, as shown in FIG. 5B.
  • the pH of the aqueous liquid 30 treated in the second tank 12 changes the ratio between the amount of the aqueous liquid 30 in the first tank 11 and the amount of the aqueous liquid 30 treated in the second tank 12. It is also possible to adjust by.
  • water having a pH of 7 is electrolyzed by applying a voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes an anode. think of.
  • reactions other than the above formulas (1) and (2) do not occur.
  • no ions pass through the separator 13.
  • the pH of the water in the first tank 11 is uniform, and the pH of the water treated in the second tank 12 (that is, the water in the circulation path including the second tank 12 and the water storage tank 24) is also set. Assume uniform. In this case, the water in the first tank 11 becomes acidic due to an increase in hydrogen ions due to the reaction of the formula (1).
  • the water in the second tank 12 becomes alkaline due to an increase in hydroxide ions due to the reaction of the formula (2).
  • the amount of hydrogen ions increased in the first tank 11 and the amount of hydroxide ions increased in the second tank 12 are the same. Therefore, when the amount of water treated in the second tank 12 is the same as the amount of water in the first tank 11, the amount of change in the pH of the water in the first tank 11 and the second The amount of change in pH of the water treated in the tank 12 becomes equal. For example, when the water in the first tank 11 changes from pH 7 to 4, the water in the second tank 12 changes from pH 7 to 10. On the other hand, when the amount of water to be treated in the second tank 12 is 1000 times the amount of water in the first tank 11, even if the water in the first tank 11 changes from pH 7 to 4, The pH of the water in the second tank 12 is 8 or less.
  • Embodiment 2 In Embodiment 2, another example of the apparatus of the present invention will be described.
  • the apparatus 200 according to the second embodiment is different from the apparatus 100 according to the first embodiment only in that the apparatus 200 includes the tube 210 and the thin tube 220, and therefore, a duplicate description is omitted.
  • the configuration of the apparatus 200 is schematically shown in FIG.
  • the device 200 includes a tube 210 and a thin tube 220 connected to the first tank 11 in addition to the device 100.
  • the pipe 210 is connected above the first tank 11.
  • the pipe 210 includes a plurality of linear pipes 210a and 210b arranged substantially parallel to the vertical direction, and a pipe 210c connecting them in series.
  • the pipe 210 repeats meandering in the downward direction and the upward direction.
  • the tube 210 is preferably thick enough to allow bubbles to move inside when the interior is filled with the aqueous liquid 30.
  • the inner surface of the tube 210a is water repellent and the inner surface of the tube 210b is hydrophilic.
  • the inner surface of the tube 210a is water repellent
  • the inner surface of the tube 210b is hydrophilic
  • the inner diameter of the tube 210 is in an appropriate range.
  • a state is considered in which the collected aqueous liquid (A) having a certain volume moves in the tube (T).
  • the inner surface of the tube 210a is water-repellent, so the aqueous liquid (A) moves in a state that occupies the entire cross section of the tube 210a. It is suppressed.
  • the gas generated in the first tank moves upward (downstream) in the portion of the tube 210b, since the inner surface of the tube 210b is hydrophilic, the gas moves while occupying the entire cross section of the tube 210b. Is suppressed. Therefore, as the gas moves, the aqueous liquid (A) above the gas descends inside the tube 210b. As a result, the gas generated in the first tank can be discharged from the pipe 210 while minimizing the movement of the aqueous liquid (A) to the downstream side.
  • a narrow tube 220 is connected to the end of the tube 210.
  • the thin tube 220 has an internal cross-sectional area smaller than the internal cross-sectional area of the tube 210. Since the fluid resistance inside the narrow tube 220 is large, rapid movement of the aqueous liquid 30 in the tube 210 is suppressed. Note that the thin tube 220 may be omitted, or a material having a high fluid resistance (for example, porous) may be used instead of the thin tube 220. Moreover, you may arrange
  • a drain valve may be formed in the pipe 210c that connects the lower side of the pipe 210a and the lower side of the pipe 210b.
  • the aqueous liquid 30 existing in the pipe 210 can be discharged periodically by the drain valve. This can suppress deterioration of the water quality of the aqueous liquid 30 in the pipe 210.
  • the aqueous liquid 30 in the first tank 11 When the pressure in the first tank 11 increases, the aqueous liquid 30 in the first tank 11 is pushed into the pipe 210 and moves in the pipe 210.
  • the tube 210a When the tube 210a is sufficiently thick, the aqueous liquid 30 falls in the tube 210a, while the gas below the tube 210a rises. Therefore, the siphon effect does not occur when the aqueous liquid 30 falls on the tube 210a.
  • the aqueous liquid 30 in the tube 210 stops at a position where the pressure is balanced. An example in that case is shown in FIG.
  • the aqueous liquid 30 in the tube 210a is pushed down by the pressure in the first tank 11, and the tube 210a is filled with air.
  • some of the plurality of tubes 210 b are filled with the aqueous liquid 30.
  • the tube 210 may be wound in a coil shape (for example, an elliptical shape). Further, the tube 210 may extend linearly on the first tank 11. However, the apparatus can be miniaturized by using a tube that alternates between descending and ascending alternately.
  • the apparatus of the present invention may be connected to an open water tank (for example, a bathtub).
  • an open water tank for example, a bathtub.
  • An example in that case is schematically shown in FIG. 8, and another example is schematically shown in FIG. 8 and 9, only the first and second tanks 11 and 12 of the apparatus of the present invention are shown, but the other parts are the above-described configurations (for example, the configurations described in the first and second embodiments). ) Can be applied.
  • the flow path 81 including the second tank 12 of the apparatus of the present invention is connected to the bathtub 82.
  • the aqueous liquid processed in the second tank 12 is poured into the bathtub 82.
  • the flow path 81 does not form a circulation path.
  • a pump 83 for moving the aqueous liquid is disposed on the flow path 81. In order to prevent sudden pressure fluctuations in the tank, it is preferable to start the pump 83 at a low speed.
  • the aqueous liquid treated in the second tank 12 may be used as shower water or hot water.
  • the flow path 81 and the bathtub 82 form a circulation path.
  • the second tank 12 constitutes a part of the flow path 81.
  • the aqueous liquid processed in the second tank 12 is poured into the bathtub 82, and the aqueous liquid in the bathtub 82 is introduced into the second tank 12 and processed.
  • a pump 83 and a filter 84 are disposed on the flow path 81. The filter 84 prevents dust in the bathtub 82 from being introduced into the pump 83.
  • the apparatus of the present invention has a mechanism for preventing hydrogen gas from accumulating in a certain space, a mechanism for safely burning hydrogen gas generated by electrolysis, and an atmosphere after diluting the hydrogen gas to a concentration that does not ignite spontaneously.
  • a mechanism for releasing the battery may be provided.
  • An example having such a mechanism is shown in FIG.
  • the 2nd tank 12 of the apparatus 100b of FIG. 13 is connected to the water storage tank 24 provided with an exhaust means. Since the apparatus 100b can have the same configuration as the apparatus 100 shown in FIG. 2 except that a part of the water storage tank 24 is different, description and illustration of overlapping parts may be omitted.
  • the second tank 12 of the apparatus 100b is connected to the water storage tank 24 by a flow path 14b.
  • the aqueous liquid 30 processed in the second tank 12 is stored in the water storage tank 24 through the flow path 14b.
  • the aqueous liquid 30 stored in the water storage tank 24 is taken out from the flow path 24c and used.
  • Various devices are installed in the channels (channel 14a, channel 14b, and channel 24c) as necessary.
  • the flow path 14a may be connected to the water storage tank 24 so as to constitute a circulation path.
  • the flow path 24c may be connected to another water storage tank. In that case, the flow path 14a may be connected to the other water storage tank to constitute a circulation path.
  • An exhaust pipe 24 b is provided above the water storage tank 24.
  • the exhaust pipe 24 b suppresses air from flowing into the water storage tank 24.
  • the pressure of the gas existing in the upper space in the water storage tank 24 becomes higher than the atmospheric pressure, the gas in the water storage tank 24 is released into the atmosphere through the exhaust pipe 24.
  • the exhaust pipe 24b suppresses air from flowing into the water storage tank 24 at least during electrolysis.
  • the exhaust pipe 24b may be narrowed, for example, the tip of the exhaust pipe 24b may be narrowed.
  • a valve that opens only when the pressure of the gas in the water storage tank 24 becomes higher than the atmospheric pressure is provided at the tip or middle of the exhaust pipe 24b. It may be provided.
  • the aqueous liquid 30 treated with the second electrode 22 contains hydrogen gas. Therefore, hydrogen gas is stored in the upper part of the water storage tank 24.
  • the exhaust pipe 24b prevents air from flowing into the water storage tank 24. Therefore, the upper part in the water storage tank 24 is maintained in a state where the hydrogen gas concentration is high. As long as the hydrogen gas concentration in the upper part of the water storage tank 24 is high, the dissolved hydrogen concentration of the aqueous liquid 30 in the water storage tank 24 can be increased. Therefore, it is possible to suppress the ORP of the aqueous liquid 30 from rising in the water storage tank 24.
  • the exhaust pipe 24b may be formed of a non-combustible material (for example, metal), and the tip of the exhaust pipe 24b may be narrowed. According to this configuration, even if the hydrogen gas released from the exhaust pipe 24b is spontaneously ignited when mixed with the atmosphere, the hydrogen gas can be safely burned.
  • the apparatus of the present invention may have a mechanism for reducing the concentration of hydrogen gas released from the exhaust pipe 24b to a concentration that does not spontaneously ignite.
  • an apparatus (blower) for forcibly blowing a large amount of air toward the downstream side (atmosphere side) of the exhaust pipe 24b may be connected in the middle of the exhaust pipe 24b. In that case, in order to prevent the air sent from the blower from flowing into the water storage tank 24, the exhaust pipe 24b between the connection part of the blower and the water storage tank 24 is directed downstream (atmosphere side).
  • a valve that only opens may be provided.
  • the present invention relates to a method for changing the oxidation-reduction potential of an aqueous liquid flowing in a flow path, which includes steps (I) and (II).
  • steps (I) and (II) the first and second electrodes respectively disposed in the first and second tanks partitioned by the separator are immersed in the aqueous liquid (A).
  • water in the aqueous liquid (A) is electrolyzed by applying a voltage between the first electrode and the second electrode.
  • the amount (volume V2) of the aqueous liquid (A) treated in the second tank is 10 times the amount (volume V1) of the aqueous liquid (A) treated in the first tank.
  • An apparatus for carrying out this method is an apparatus for changing the oxidation-reduction potential of the aqueous liquid (A), the container in which the aqueous liquid (A) is disposed, the container in the first tank and the second tank.
  • a power supply for applying is 10 of the quantity (volume V1) of the aqueous liquid (A) processed by the 1st tank. It is more than double.
  • This embodiment includes the above-described embodiment of the present invention in which the volume V2 is 10 times or more the volume V1. Further, this embodiment includes an embodiment shown in FIG. Moreover, the embodiment whose volume V2 is 10 times or more of the volume V1 among embodiments shown in FIG. 11 described later is included. Since the description of the volume V1 and the volume V2 and the approximation thereof have been described above, redundant description will be omitted.
  • the present invention is a method for changing the oxidation-reduction potential of an aqueous liquid flowing in a flow path, which includes steps (I) and (II), and in step (II), the first tank
  • steps (I) and (II) and in step (II), the first tank
  • This relates to a method in which the ratio of the amount (volume V1) of the aqueous liquid (A) to be treated with the amount (volume V2) of the aqueous liquid (A) to be treated in the second tank is variable.
  • An apparatus for carrying out this method is an apparatus for changing the oxidation-reduction potential of the aqueous liquid (A), the container in which the aqueous liquid (A) is disposed, the container in the first tank and the second tank.
  • the structure for making variable the quantity (volume V1) of the aqueous liquid (A) processed by a 1st tank, and the quantity (volume V2) of the aqueous liquid (A) processed by a 2nd tank. Is provided.
  • a flow path connected to the first tank and a flow path connected to the second tank are provided.
  • This embodiment includes an embodiment shown in FIG. 11 described later.
  • a side wall parallel to the flat electrode may be movable. Since the description of the volume V1 and the volume V2 and the approximation thereof have been described above, redundant description will be omitted.
  • the volume V2 may be in a range of 10 times to 2 ⁇ 10 6 times the volume V1 (for example, a range of 10 times to 50000 times or a range of 200 times to 15000 times).
  • the apparatus 300 can have the same configuration as the apparatus 100 or a variation thereof (for example, the apparatus 100a or the apparatus 200), but FIG. 10 shows the simplest configuration.
  • the apparatus 300 includes a container 10 (first tank 11 and second tank 12), a separator 13, a first electrode 21, a second electrode 22, and a power source 23.
  • the container 10 is partitioned into a first tank 11 and a second tank 12 by a separator 13 and a partition wall 301 that does not allow liquid and gas to pass through.
  • the first tank 11 and the second tank 12 are provided with openings 11a and 12a, respectively. Each of the openings 11a and 12a may include a valve.
  • the aqueous liquid 30 disposed in the container 10 is processed in a batch manner. That is, while the aqueous liquid 30 disposed in the container 10 is electrolyzed, the aqueous liquid 30 disposed in the first tank 11 and the second tank 12 does not substantially move. When the electrolysis is completed, the aqueous liquid 30 in the first tank 11 and / or the aqueous liquid 30 disposed in the second tank 12 is removed from the tank for use.
  • a voltage is applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes an anode (the second electrode 22 becomes a cathode).
  • the aqueous liquid 30 in the first tank 11 has an ORP rise and a pH drop.
  • the aqueous liquid in the second tank 12 has a lower ORP and a higher pH.
  • Part of the hydrogen ions generated by the first electrode 21 diffuses into the second tank 12 through the separator 13.
  • part of the hydroxide ions generated at the second electrode 22 diffuses into the first tank 11 through the separator 13.
  • the pH of the aqueous liquid 30 in the first tank 11 depends on the amount of hydrogen ions generated by the first electrode 21, the amount of hydrogen ions and hydroxide ions that permeate the separator 13, and the first It depends on the amount of the aqueous liquid 30 in the tank 11.
  • the pH of the aqueous liquid 30 in the second tank 12 is such that the amount of hydroxide ions generated by the second electrode 21, the amount of hydrogen ions and hydroxide ions permeating the separator 13, and the second It depends on the amount of the aqueous liquid 30 in the second tank 12.
  • a general voltage is applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes a cathode (so that the second electrode 22 becomes an anode).
  • electrolyzing water for example, tap water
  • the apparatus 300 it is possible to control the change in pH when changing the ORP of the aqueous liquid.
  • the apparatus 400 shown in FIG. 11 is different from the apparatus 100 in that the first tank 11 constitutes a part of the flow path 401 of the aqueous liquid 30. Except for this point, the apparatus 400 can have the same configuration as the apparatus 100 or a variation thereof (for example, the apparatus 100a or the apparatus 200).
  • FIG. 11 shows an example configuration.
  • the first tank 11 of the device 400 includes two connection parts (an inlet and an outlet) for connecting to the flow path 401.
  • connection parts an inlet and an outlet
  • connection parts for connecting to the flow path 401.
  • the structure demonstrated about the 2nd tank 12 is employable.
  • illustration of connection parts is omitted.
  • the 1st tank may be directly connected to the flow path, without using a connection component.
  • the first tank 11 constitutes a part of the flow path 401 of the aqueous liquid 30, and the second tank 12 constitutes a part of the flow path 14 of the aqueous liquid 30.
  • the aqueous liquid 30 flowing through the flow path 401 does not move to the flow path 14 unless it passes through the separator 13.
  • the aqueous liquid 30 flowing through the flow path 14 does not move to the flow path 401 unless it passes through the separator 13.
  • the volume V1 of the aqueous liquid (A) processed in the first tank 11 can be changed.
  • the volume V2 of the aqueous liquid (A) processed by the 2nd tank 12 can be changed by moving the aqueous liquid 30 in the 2nd tank 12 with the flow path 14.
  • FIG. 1 As described above, by increasing the ratio of (volume V2) / (volume V1), it is possible to suppress a change in pH of the aqueous liquid 30 processed in the second tank 12. Moreover, the change in pH of the aqueous liquid 30 processed in the second tank 12 can be suppressed by increasing the volume V2.
  • the change in pH of the aqueous liquid 30 treated in the second tank 12 can be increased.
  • the change of pH of the aqueous liquid 30 processed by the 2nd tank 12 can be increased by making the volume V2 small.
  • the change in pH of the aqueous liquid 30 treated in the first tank 11 can also be adjusted by the same principle.
  • the ORP of the aqueous liquid 30 can be changed, and the change in pH can be easily adjusted.
  • the ORP of the aqueous liquid 30 decreases and the pH increases, but the degree of the increase in pH can be reduced or increased.
  • the ORP of the aqueous liquid 30 increases and the pH decreases, but the degree of the decrease in pH can be reduced or increased.
  • the volume V1 and the volume V2 can be changed by changing the amount of the aqueous liquid 30 flowing through the flow path 401 and the flow path 14 per unit time, respectively. Specifically, the volumes V1 and V2 can be changed by changing the driving conditions of the pumps provided in the flow paths 401 and 14, respectively. Further, a flow rate control device may be provided in each of the flow path 401 and the flow path 14, and the volumes V1 and V2 may be changed accordingly.
  • an aqueous liquid 30 having a low ORP and a neutral pH by electrolyzing general water (for example, tap water).
  • general water for example, tap water
  • the ORP is 0 mV or less (eg, in the range of ⁇ 800 mV to 0 mV or ⁇ 500 mV to 0 mV)
  • an aqueous liquid 30 having a pH of 10 or less for example, in the range of 6 to 10 or 7 to 9).
  • the ORP is 600 mV or more (for example, in the range of 600 to 1100 mV or 600 to 900 mV). It is possible to obtain an aqueous liquid 30 having a pH of 3 or more (for example, in the range of 3-8 or 4-8).
  • Example 11 the temperature of the liquid processed in the following Examples was in the range of about 10 to 25 ° C.
  • Example 1 In Example 1, the ORP of tap water was increased.
  • the apparatus shown in FIG. 2 was used as the apparatus. However, the experiment was conducted in a state where the upper side of the tank 24 was open to the atmosphere.
  • the internal volumes of the first tank 11 and the second tank 12 were each about 3 cm 3 .
  • the amount of tap water (the amount of liquid processed in the second tank 12) disposed in the water storage tank 24 was about 1 liter (1 L).
  • FIG. 12A shows a front view of the first electrode 21 used in Example 1.
  • the first electrode 21 includes a plurality of linear electrodes 21a arranged in a stripe shape and a linear electrode 21b connecting them.
  • the linear electrode 21a is arranged in the vertical direction. As a result, the gas generated on the surface of the electrode 21a is suppressed from staying on the surface of the electrode 21a.
  • the first electrode 21 is made of titanium coated with platinum.
  • the second electrode 22 used in Example 1 is the same electrode as the first electrode 21. A cotton cloth was used for the separator 13.
  • FIG. 12B shows a front view when the separator 13 is viewed from the first electrode 21 side.
  • the second electrode 22 is disposed so as to face the first electrode 21 with the separator 13 interposed therebetween.
  • the treated tap water had a pH of 7.52, an ORP of 422 mV, and a conductivity of 165.5 ⁇ S / cm.
  • the tap water was electrolyzed while circulating the tap water in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 became a cathode. The voltage was 19V.
  • Table 1 shows changes in physical properties of tap water in the water tank 24 due to voltage application. In the table below, “-” indicates that measurement was not performed.
  • Example 1 As shown in Table 1, in Example 1, the ORP of tap water could be increased. Moreover, in Example 1, pH fell.
  • Example 2 In Example 2, the ORP of the KCl aqueous solution was increased.
  • the KCl aqueous solution was treated under the same conditions as in Example 1 except that the KCl aqueous solution was treated instead of tap water.
  • the amount of the KCl aqueous solution placed in the first tank 11 was about 3 cm 3 .
  • the amount of the KCl aqueous solution disposed in the water storage tank 24 was about 1 liter.
  • the treated KCl aqueous solution (concentration: 0.01 wt%) had a pH of 7.26, an ORP of 458 mV, and a conductivity of 365 ⁇ S / cm.
  • Table 1 shows changes in physical properties of the KCl aqueous solution in the water storage tank 24 due to voltage application.
  • Example 2 the ORP of the KCl aqueous solution could be increased to 1000 mV or more. Moreover, in Example 2, pH fell. Further, when the KCl aqueous solution treated in Example 2 was diluted 100 times with tap water, oxidized water having an ORP of 750 mV and a pH of 4.9 was obtained. Thus, changes in ORP and pH due to dilution of the treated aqueous KCl solution were relatively small.
  • Example 3 In Example 3, the ORP of tap water was reduced. In Example 3, tap water was treated under the same conditions as in Example 1 except that the magnitude of the voltage and the direction in which the voltage was applied were different.
  • Example 3 The tap water treated in Example 3 had a pH of 7.41, an ORP of 501 mV, and a conductivity of 166.7 ⁇ S / cm.
  • the tap water was electrolyzed by applying a voltage between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was 19 volts. Table 3 shows changes in physical properties of tap water in the water tank 24 due to voltage application.
  • Example 3 As shown in Table 3, in Example 3, the ORP of tap water was reduced to ⁇ 600 mV. Moreover, in Example 3, pH rose.
  • Example 4 tap water was treated so that the change in pH was small and the ORP was lowered.
  • the amount of liquid disposed in the water storage tank 24 was about 40 liters, and tap water was treated under the same conditions as in Example 1 except for the magnitude of the voltage and the application direction.
  • the value of (V2 / V1) is about 13000.
  • the treated tap water had a pH of 7.19, an ORP of 410 mV, and a conductivity of 207.0 ⁇ S / cm.
  • the tap water was electrolyzed while circulating the tap water in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was applied so that a current of 0.35 A flows between the electrodes.
  • Table 4 shows changes in physical properties of tap water in the water tank 24 due to voltage application.
  • Example 4 the change in pH could be suppressed while lowering the ORP of tap water.
  • Example 5 tap water was treated so that the change in pH was small and the ORP was lowered. In Example 5, tap water was treated under the same conditions as in Example 4 except that the applied voltage was different.
  • the treated tap water had a pH of 7.52, an ORP of 434 mV, and a conductivity of 168.3 ⁇ S / cm.
  • the tap water was electrolyzed while circulating the tap water in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was applied so that a current of 2.8 A flows between the electrodes. The voltage at that time was about 30 volts. Table 5 shows changes in physical properties of tap water in the water storage tank 24 due to voltage application.
  • Example 5 the change in pH could be suppressed while lowering the ORP of tap water. Further, the amount of decrease in ORP could be increased as compared with Example 4 by increasing the current flowing between the electrodes.
  • Example 6 In Example 6, the ORP of the alkaline aqueous solution was reduced. In Example 6, an experiment was performed using the same apparatus as in Example 1. However, the amount of liquid disposed in the water storage tank 24 was about 50 liters.
  • the aqueous solution was electrolyzed while circulating an alkaline aqueous solution having a pH of 11.06 and an ORP of 49 mV in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was applied so that a current of 2.8 A flows between the electrodes. Table 6 shows changes in physical properties of the aqueous solution in the water storage tank 24 due to voltage application.
  • Example 6 As shown in Table 6, in Example 6, the ORP of the alkaline aqueous solution could be reduced without greatly changing the pH.
  • Example 7 In Example 7, the ORP of the acidic aqueous solution was reduced. In Example 7, an experiment was performed using the same apparatus as in Example 1. However, the amount of liquid disposed in the water storage tank 24 was about 10 liters.
  • the aqueous solution was electrolyzed while circulating an acidic aqueous solution having a pH of 3.09 and an ORP of 332 mV in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was applied so that a current of 2.8 A flows between the electrodes. Table 7 shows changes in physical properties of the aqueous solution in the water storage tank 24 due to voltage application.
  • Example 7 As shown in Table 7, in Example 7, the ORP of the acidic aqueous solution could be reduced without greatly changing the pH.
  • Example 8 In Example 8, an experiment was performed to return the ORP of the acidic aqueous solution with a reduced ORP to 1000 mV or more. First, an acidic aqueous solution having a pH of 3.09 and an ORP of 332 mV was prepared by leaving an aqueous solution having a pH of about 3 and an ORP of 1000 mV or more for 1 month. Next, the experiment which makes ORP 1000 mV or more was performed by processing the acidic aqueous solution on the same conditions as Example 2. Table 8 shows changes in the ORP of the KCl aqueous solution in the water tank 24.
  • the ORP could be increased to 1000 mV or more by treating the KCl aqueous solution with a reduced ORP.
  • Example 9 the ORP of the aqueous liquid in the open state was changed in the circulation mode shown in FIG.
  • the apparatus shown in FIG. 1 was used as an apparatus for changing the ORP. Specifically, the ORP of 100 liters of tap water placed in an open container was changed. The internal volume of the first tank 11 was 4 cm 3 , and the internal volume of the second tank 12 was 4 cm 3 . A cylindrical tube extending in the vertical direction was connected to the opening 11a of the first tank 11 of the apparatus used in Example 9, and its internal volume was 53 cm 3 . A constant current of 1.0 A was passed between the electrodes. At this time, the voltage applied between the electrodes was about 40V. The aqueous liquid was passed through the second tank 12 at a flow rate of about 1.7 L / min. The results at this time are shown in Table 9.
  • the ORP could be reduced by applying a voltage between the electrodes. Moreover, pH hardly changed. The change in ORP after the voltage application was stopped was gradual. When an aqueous solution in which NaHCO 3 , Na 2 SO 4 and the like were dissolved instead of tap water was used as the aqueous liquid, the change in ORP after the voltage application was stopped was more gradual.
  • Example 10 In Example 10, the ORP of the aqueous liquid in the open state was changed with the apparatus shown in FIG. The apparatus shown in FIG. 1 was used as an apparatus for changing the ORP. In Example 10, the ORP of tap water was changed. The ORP of tap water before treatment was about 250 mV. The internal volume of the first tank 11 was 4 cm 3 , and the internal volume of the second tank 12 was 4 cm 3 . A voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 became an anode. A constant current of 2.0 A was passed between the electrodes. The aqueous liquid was passed through the second tank 12 at a flow rate of about 0.8 L / min. A steady state was reached in about 10 minutes from the start of the experiment.
  • the tap water after being treated in the second tank 12 had an ORP of about ⁇ 300 mV, a dissolved hydrogen concentration of about 750 ppb, and a pH of about 8.
  • ORP ORP of about ⁇ 300 mV
  • a dissolved hydrogen concentration of about 750 ppb a dissolved hydrogen concentration of about 750 ppb
  • pH a pH of about 8.
  • the change of ORP and the change of dissolved hydrogen concentration became large.
  • the same experiment was performed by changing the value of the current flowing between the electrodes and the flow rate of the aqueous liquid flowing in the second tank. Specifically, the current value flowing between the electrodes was set to 2A or 3A. The flow rate of the aqueous liquid flowing through the second tank was changed between 0.4 and 4.6 L / min. And 30 minutes after the experiment start, ORP of the aqueous liquid processed from the 2nd tank was measured. The results are shown in Table 10.
  • Example 11 In Example 11, the hot water arranged in the bathtub was processed with the apparatus shown in FIG. A voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 became an anode. Hot water placed in the bathtub was 180 L at 41 ° C. Since the volume of the 2nd tank 12 and a flow path is small, the quantity of the hot water which exists in the circulation path containing the 2nd tank 12 can be regarded as 180L substantially. On the other hand, the internal volume of the first tank 11 (the amount of hot water treated in the first tank) was about 4 cm 3 . A constant current of 6 A was passed between the electrodes.
  • hot water hot water obtained by heating tap water to 41 ° C as it is, or hot water obtained by heating salt water (such as NaHCO 3 or Na 2 SO 4 ) dissolved to 41 ° C, is used. Using. The results of measuring ORP are shown in Table 11.
  • the treatment of the present invention changed both the ORP of tap water and the ORP of tap water in which salt was dissolved.
  • the present invention can be used in a method and apparatus for changing the ORP of an aqueous liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

This method is a method for altering the oxidation reduction potential of an aqueous fluid (30) that flows through a flow path (14). The method comprises: (i) a step of immersing first and second electrodes ((21) and (22)), which are respectively arranged in first and second vessels ((11) and (12)) that are partitioned from each other by a separator (13), in the aqueous liquid (30); and (ii) a step of applying a voltage between the first electrode (21) and the second electrode (22) to cause the electrolysis of water contained in the aqueous liquid (30). The second vessel (12) forms a part of the flow path (14). The first vessel (11) is connected to the flow path (14) through the separator (13).

Description

水性液体の酸化還元電位を変化させる方法および装置Method and apparatus for changing the redox potential of an aqueous liquid
 本発明は、水性液体の酸化還元電位を変化させる方法および装置に関する。 The present invention relates to a method and apparatus for changing the redox potential of an aqueous liquid.
 酸化還元電位が高い水や低い水は、その特性から様々な応用が期待されており、たとえば、健康の増進、美容、洗浄、および殺菌などへの応用が期待されている。 Water with a high oxidation-reduction potential and water with a low potential are expected to have various applications due to their characteristics. For example, they are expected to be applied to health promotion, beauty, washing, sterilization, and the like.
 従来から、酸化還元電位(Oxidation-Reduction Potential(ORP))が低い液体の調製方法が提案されてきた。たとえば、水素ガスや窒素ガスを水に吹き込んで、液体中の溶存水素量や溶存酸素量を変化させ、それによって水の酸化還元電位を低減する方法が提案されている(たとえば特開2005-901号公報)。しかし、外部からガスを吹き込む従来の方法はガスの供給源が必要になり、コストや手間がかかる。 Conventionally, a method for preparing a liquid having a low oxidation-reduction potential (ORP) has been proposed. For example, a method has been proposed in which hydrogen gas or nitrogen gas is blown into water to change the amount of dissolved hydrogen or dissolved oxygen in the liquid, thereby reducing the redox potential of water (for example, JP-A-2005-901). Issue gazette). However, the conventional method of blowing gas from the outside requires a gas supply source, which is costly and troublesome.
 また、水を電気分解することによって、水の酸化還元電位を変化させる方法も提案されている(たとえば特開平11-57715号公報)。特開平11-57715号公報には、ORPとともにpHを調整するための方法が記載されている。 Also proposed is a method of changing the oxidation-reduction potential of water by electrolyzing water (for example, JP-A-11-57715). Japanese Patent Application Laid-Open No. 11-57715 describes a method for adjusting pH together with ORP.
特開2005-901号公報JP-A-2005-901 特開平11-57715号公報Japanese Patent Laid-Open No. 11-57715
 特開平11-57715号公報に記載の方法では、最初の電気分解と、次の電気分解とで電圧の印加方向を逆にする。そのため、最初の電気分解におけるORPの変化が、次の電気分解におけるORPの変化で打ち消されてしまい、効率が悪く、また、ORPを大きく変化させることができない。特開平11-57715号公報の方法でORPを大きく変化させようとすると、2段階目の電気分解の量を大きくする必要があり、そうすると結局pHが大きく変化してしまう。 In the method described in JP-A-11-57715, the voltage application direction is reversed between the first electrolysis and the next electrolysis. Therefore, the change in ORP in the first electrolysis is canceled out by the change in ORP in the next electrolysis, so that the efficiency is poor and the ORP cannot be changed greatly. If the ORP is to be changed greatly by the method disclosed in Japanese Patent Application Laid-Open No. 11-57715, it is necessary to increase the amount of electrolysis at the second stage, and eventually the pH will change greatly.
 このような状況において、本発明は、水性液体の酸化還元電位を変化させるための新規な方法および装置を提供することを目的の1つとする。 In such a situation, an object of the present invention is to provide a novel method and apparatus for changing the redox potential of an aqueous liquid.
 上記目的を達成するため、本発明は、流路を流れる水性液体の酸化還元電位を変化させるための方法を提供する。この方法は、流路を流れる水性液体の酸化還元電位を変化させる方法であって、(i)セパレータによって仕切られた第1および第2の槽にそれぞれ配置された第1および第2の電極を、前記水性液体に浸漬する工程と、(ii)前記第1の電極と前記第2の電極との間に電圧を印加することによって、前記水性液体中の水を電気分解する工程とを含み、前記第2の槽が前記流路の一部を構成しており、前記第1の槽が前記セパレータを介して前記流路と接続されている。 In order to achieve the above object, the present invention provides a method for changing the redox potential of an aqueous liquid flowing in a flow path. This method is a method of changing the oxidation-reduction potential of an aqueous liquid flowing in a flow path, and (i) the first and second electrodes disposed in the first and second tanks partitioned by the separator, respectively. Immersing in the aqueous liquid, and (ii) electrolyzing water in the aqueous liquid by applying a voltage between the first electrode and the second electrode, The second tank constitutes a part of the flow path, and the first tank is connected to the flow path via the separator.
 また、本発明は、流路を流れる水性液体の酸化還元電位を変化させるための装置を提供する。この装置は、流路を流れる水性液体の酸化還元電位を変化させる装置であって、前記水性液体が配置される容器と、前記容器を第1の槽と第2の槽とに仕切るセパレータと、前記第1の槽に配置された第1の電極と、前記第2の槽に配置された第2の電極と、前記第1の電極と第2の電極との間に電圧を印加するための電源とを備え、前記第2の槽には、前記第2の槽が前記流路の一部を構成するように前記流路に接続される流入口と流出口とが形成されており、前記第1の槽が前記セパレータを介して前記流路と接続される。 The present invention also provides an apparatus for changing the oxidation-reduction potential of an aqueous liquid flowing through a flow path. This device is a device that changes the oxidation-reduction potential of an aqueous liquid flowing in a flow path, and a container in which the aqueous liquid is disposed, a separator that partitions the container into a first tank and a second tank, A voltage is applied between the first electrode disposed in the first tank, the second electrode disposed in the second tank, and the first electrode and the second electrode. The second tank is formed with an inlet and an outlet connected to the flow path so that the second tank forms a part of the flow path, A first tank is connected to the flow path via the separator.
 本発明によれば、水性液体の酸化還元電位を容易に変化させることができる。また、酸化還元電位を変化させる際に、必要に応じて水性液体のpHの変化を制御できる。また、本発明によれば、装置を単純化および小型化することが可能である。 According to the present invention, the redox potential of the aqueous liquid can be easily changed. Further, when changing the oxidation-reduction potential, the change in pH of the aqueous liquid can be controlled as necessary. Further, according to the present invention, it is possible to simplify and downsize the apparatus.
図1は、本発明の装置の一例を模式的に示す。FIG. 1 schematically shows an example of the apparatus of the present invention. 図2は、本発明の装置の他の一例を模式的に示す。FIG. 2 schematically shows another example of the apparatus of the present invention. 図3は、図1に示した装置の動作状態の一例を模式的に示す。FIG. 3 schematically shows an example of the operating state of the apparatus shown in FIG. 図4は、図1に示した装置の動作状態の他の一例を模式的に示す。FIG. 4 schematically shows another example of the operating state of the apparatus shown in FIG. 図5Aは、本発明の装置のその他の一例を模式的に示す。FIG. 5A schematically shows another example of the apparatus of the present invention. 図5Bは、図5Aに示した装置の動作状態の一例を模式的に示す。FIG. 5B schematically shows an example of the operating state of the apparatus shown in FIG. 5A. 図6は、本発明の装置のその他の一例を模式的に示す。FIG. 6 schematically shows another example of the apparatus of the present invention. 図7は、図6に示した装置の動作状態の一例を模式的に示す。FIG. 7 schematically shows an example of the operating state of the apparatus shown in FIG. 図8は、本発明の装置の使用状態の一例を模式的に示す。FIG. 8 schematically shows an example of the usage state of the apparatus of the present invention. 図9は、本発明の装置の使用状態の他の一例を模式的に示す。FIG. 9 schematically shows another example of the usage state of the apparatus of the present invention. 図10は、水性液体のORPを変化させるための装置の他の一例を模式的に示す。FIG. 10 schematically shows another example of an apparatus for changing the ORP of an aqueous liquid. 図11は、水性液体のORPを変化させるための装置の他の一例を模式的に示す。FIG. 11 schematically shows another example of an apparatus for changing the ORP of an aqueous liquid. 図12Aは、実施例で用いた装置の第1の電極の形状を模式的に示す。FIG. 12A schematically shows the shape of the first electrode of the apparatus used in the example. 図12Bは、実施例で用いた装置における、第1の電極およびセパレータの配置を模式的に示す。FIG. 12B schematically shows the arrangement of the first electrode and the separator in the apparatus used in the example. 図13は、本発明の装置の他の一例を模式的に示す。FIG. 13 schematically shows another example of the apparatus of the present invention.
 以下、本発明の実施の形態について説明する。なお、以下の説明では、本発明の実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されない。以下の説明において特定の数値や特定の材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や他の材料を適用してもよい。以下では、酸化還元電位を「ORP」と記載する場合がある。なお、この明細書において、「水性液体の量」という場合には、特に説明がない限り、水性液体の体積を意味する。 Hereinafter, embodiments of the present invention will be described. In the following description, embodiments of the present invention will be described by way of examples, but the present invention is not limited to the examples described below. In the following description, specific numerical values and specific materials may be exemplified, but other numerical values and other materials may be applied as long as the effect of the present invention is obtained. Hereinafter, the redox potential may be described as “ORP”. In this specification, the term “amount of aqueous liquid” means the volume of the aqueous liquid unless otherwise specified.
 [水性液体のORPを変化させる方法]
 以下に、流路を流れる水性液体のORPを変化させるための本発明の方法について説明する。本発明の方法によれば、ORPを低下させることおよびORPを高めることのいずれもが可能である。
[Method of changing ORP of aqueous liquid]
Below, the method of this invention for changing ORP of the aqueous liquid which flows through a flow path is demonstrated. According to the method of the present invention, it is possible to reduce ORP and increase ORP.
 本発明の方法は、工程(i)および(ii)を含む。工程(i)では、セパレータによって仕切られた第1および第2の槽にそれぞれ配置された第1および第2の電極を、水性液体に浸漬する。当該水性液体を、以下では、「水性液体(A)」という場合がある。第1の電極は第1の槽に配置され、第2の電極は第2の槽に配置される。 The method of the present invention includes steps (i) and (ii). In the step (i), the first and second electrodes respectively disposed in the first and second tanks partitioned by the separator are immersed in the aqueous liquid. Hereinafter, the aqueous liquid may be referred to as “aqueous liquid (A)”. The first electrode is disposed in the first tank, and the second electrode is disposed in the second tank.
 第2の槽は、水性液体(A)が流れる流路の一部を構成している。一方、第1の槽は、セパレータを介して当該流路と接続されている。すなわち、当該流路は、第1の槽には直接的には接続されていない。換言すれば、第2の槽内の水性液体(A)は、水性液体(A)が流路を流れることによって第2の槽の外の水性液体(A)と混合されるか、またはそれに置き換えられる。一方、第1の槽内の水性液体(A)は、水性液体(A)がセパレータを通過することによってのみ第1の槽の外の水性液体(A)(すなわち、第2の槽内の水性液体(A))と混合されるか、またはそれに置き換えられる。この例には、第1の槽内の水性液体(A)が排液路から排出され、それに伴って第2の槽内の水性液体(A)が第1の槽内に移動する場合も含まれる。 The second tank constitutes a part of the flow path through which the aqueous liquid (A) flows. On the other hand, the first tank is connected to the flow path via a separator. That is, the flow path is not directly connected to the first tank. In other words, the aqueous liquid (A) in the second tank is mixed with or replaced by the aqueous liquid (A) outside the second tank as the aqueous liquid (A) flows through the flow path. It is done. On the other hand, the aqueous liquid (A) in the first tank is the aqueous liquid (A) outside the first tank only when the aqueous liquid (A) passes through the separator (that is, the aqueous liquid in the second tank). Liquid (A)) or mixed with it. This example includes a case where the aqueous liquid (A) in the first tank is discharged from the drainage passage, and the aqueous liquid (A) in the second tank is moved into the first tank accordingly. It is.
 第2の槽には、流路に接続される2つの接続部を備える。具体的には、第2の槽は、流入口および流出口を備える。流入口および流出口は、第2の槽が流路の一部を構成するように、流路に接続される。流路に接続された流入口から水性液体(A)が第2の槽に流入する。第2の槽で処理された水性液体(A)は、流路に接続された流出口から流路に流出する。流入口と流路、および、流出口と流路とは固定されていてもよい。あるいは、流入口と流路、および、流出口と流路とは着脱自在な状態で接続されてもよい。流入口および流出口と流路との接続の方法に限定はなく、たとえば、配管用の公知の部品を用いて行うことができる。第1の槽は、流路と接続される接続部を備えてもよいが、流路に接続される接続部を通常は備えない。 The second tank is provided with two connection parts connected to the flow path. Specifically, the second tank includes an inflow port and an outflow port. The inflow port and the outflow port are connected to the flow path such that the second tank forms a part of the flow path. The aqueous liquid (A) flows into the second tank from the inlet connected to the flow path. The aqueous liquid (A) treated in the second tank flows out from the outlet connected to the channel to the channel. The inflow port and the flow path, and the outflow port and the flow path may be fixed. Alternatively, the inflow port and the flow channel, and the outflow port and the flow channel may be connected in a detachable state. There is no limitation on the connection method between the inlet and outlet and the flow path, and for example, a known part for piping can be used. The first tank may include a connection portion connected to the flow path, but usually does not include a connection portion connected to the flow path.
 本発明で用いられる装置は、流路が接続された貯水槽をさらに備えてもよい。そして、流路が、貯水槽と第2の槽とを含む循環路(環状路)を構成していてもよい。 The apparatus used in the present invention may further include a water tank to which a flow path is connected. And the flow path may comprise the circulation path (annular path) containing a water storage tank and a 2nd tank.
 第1および第2の槽は、セパレータによって仕切られている。セパレータによって仕切られている第1および第2の槽の例には、セパレータのみによって仕切られた第1および第2の槽だけでなく、セパレータと、液体および気体を通さない隔壁とによって仕切られた第1および第2の槽が含まれる。 The first and second tanks are partitioned by a separator. Examples of the first and second tanks partitioned by the separator were partitioned not only by the first and second tanks partitioned only by the separator but also by a separator and a partition wall that does not allow liquid and gas to pass through. First and second tanks are included.
 セパレータには、電極間の短絡を抑制でき、且つ、電極の表面で発生したガスが通過することを抑制できるセパレータを用いることができる。セパレータは、液体およびイオン(陽イオンおよび陰イオンの両方)を通過させる。一方、セパレータは、水性液体(A)中のガス(気泡)の通過を抑制し、好ましくは防止する。セパレータは、絶縁性を有する。ただし、電極の短絡を防止できる限り、セパレータの一部(たとえば内部)は絶縁性でなくてもよい。すなわち、セパレータは、全体としてみたときに絶縁性であればよい。別の観点では、セパレータは、陽イオンおよび陰イオンの両方を通過させる隔膜(すなわちイオン交換能を有さない隔膜)であって、且つ、多孔性および絶縁性の隔膜である。 As the separator, it is possible to use a separator that can suppress a short circuit between the electrodes and can suppress a gas generated on the surface of the electrode from passing therethrough. The separator allows liquids and ions (both positive and negative ions) to pass through. On the other hand, the separator suppresses and preferably prevents the passage of gas (bubbles) in the aqueous liquid (A). The separator has an insulating property. However, as long as the short circuit of the electrode can be prevented, a part of the separator (for example, the inside) may not be insulative. That is, the separator may be insulative when viewed as a whole. In another aspect, the separator is a diaphragm that allows both cations and anions to pass therethrough (that is, a diaphragm that does not have ion exchange capacity), and is a porous and insulating diaphragm.
 セパレータは親水性を有することが好ましい。親水性を有するセパレータを用いることによって、ガスの透過をより効果的に抑制できる。セパレータの例には、樹脂(たとえば樹脂繊維)からなるセパレータが含まれる。樹脂には、天然樹脂および合成樹脂が含まれる。セパレータの形態の例には、布(織布または不織布)や膜(多孔質膜)が含まれる。親水性を有するセパレータの例には、親水基を含有する樹脂を含むか、またはその樹脂からなるセパレータが含まれる。また、親水性を有するセパレータの例には、親水化処理された樹脂を含むか、またはその樹脂からなるセパレータが含まれる。セパレータは、綿、麻、レーヨン、毛、および絹などで形成された布や膜であってもよい。通常、セパレータはイオン交換材料を含まない。すなわち、通常、セパレータはイオン交換膜ではなく、陽イオンおよび陰イオンを共に通過させる。 The separator is preferably hydrophilic. By using a separator having hydrophilicity, gas permeation can be more effectively suppressed. Examples of the separator include a separator made of a resin (for example, resin fiber). Resins include natural resins and synthetic resins. Examples of the form of the separator include a cloth (woven fabric or non-woven fabric) and a membrane (porous membrane). Examples of the separator having hydrophilicity include a separator containing or made of a resin containing a hydrophilic group. Examples of the separator having hydrophilicity include a separator made of or made of a hydrophilic resin. The separator may be a cloth or a film formed of cotton, hemp, rayon, hair, silk, or the like. Usually, the separator does not contain an ion exchange material. That is, normally, the separator is not an ion exchange membrane, but allows both cations and anions to pass through.
 親水性であるか否かの目安として、毛管現象のような現象が生じるか否かを目安の1つとして挙げることができる。具体的には、セパレータの一部を水に浸漬し、残りの部分は水から出しておく。その時に、水が重力に逆らって当該残りの部分を上昇するようであれば、そのセパレータは、親水性であると推定できる。 As a measure of whether or not it is hydrophilic, whether or not a phenomenon such as a capillary phenomenon occurs can be cited as one of measures. Specifically, a part of the separator is immersed in water, and the remaining part is taken out of the water. At that time, if the water rises against the gravity against the remaining portion, it can be estimated that the separator is hydrophilic.
 セパレータは、ガスの透過を抑制する一方で、イオンを容易に透過させることが好ましい。そのため、好ましいセパレータの一例は、透気抵抗度(ガーレー)が大きく(すなわち通気しにくく)、空隙率が高いセパレータである。 The separator preferably suppresses gas permeation while allowing ions to easily permeate. Therefore, an example of a preferable separator is a separator having a high air permeability resistance (Gurley) (that is, difficult to vent) and a high porosity.
 第1および第2の電極には、水の電気分解反応を生じさせることができる電極が用いられる。第1および第2の電極の表面には、水の電気分解反応が生じやすい金属が存在することが好ましい。水の電気分解反応が生じやすい金属の例には、白金が含まれる。第1および第2の電極の例には、金属電極が含まれ、工程(ii)において安定に存在できる金属電極が好ましく用いられる。第1および第2の電極の好ましい一例は、表面に白金が存在する金属電極である。具体的には、白金電極や、液体と接触する部分の表面が白金でコートされた金属電極が好ましく用いられる。白金でコートされる金属の例には、ニオブ、チタン、タンタル、およびその他の金属が挙げられる。酸素ガスが発生する電極(アノード)の表面は、白金でコートされることが好ましい。なお、金属以外の導電性材料(たとえば導電性の炭素材料)からなる電極を用いてもよい。また、それら導電性材料の表面を金属(白金その他の金属)でコートすることによって得られる電極を用いてもよい。 As the first and second electrodes, electrodes capable of causing an electrolysis reaction of water are used. It is preferable that a metal that easily undergoes an electrolysis reaction of water exists on the surfaces of the first and second electrodes. Examples of metals that are susceptible to electrolysis of water include platinum. Examples of the first and second electrodes include a metal electrode, and a metal electrode that can exist stably in the step (ii) is preferably used. A preferred example of the first and second electrodes is a metal electrode having platinum on the surface. Specifically, a platinum electrode or a metal electrode whose surface in contact with a liquid is coated with platinum is preferably used. Examples of metals coated with platinum include niobium, titanium, tantalum, and other metals. The surface of the electrode (anode) where oxygen gas is generated is preferably coated with platinum. An electrode made of a conductive material other than metal (for example, a conductive carbon material) may be used. Alternatively, an electrode obtained by coating the surface of these conductive materials with a metal (platinum or other metal) may be used.
 第1の電極と第2の電極との間の距離は、0.1mm~10mmの範囲(たとえば0.1mm~5mmの範囲)にあってもよい。第1の電極と第2の電極との間の距離が短いほど、水の電気分解に必要な電圧を低くすることができる。また、第1の電極と第2の電極との間の距離が短いほど、水素イオンおよび水酸化物イオンが一方の槽から他方の槽に移動しやすくなるため、第1の槽中の水性液体のpHと、第2の槽中の水性液体のpHとの差を小さくできる。第1の電極と第2の電極とが短絡しない限り、第1の電極および第2の電極はセパレータと接触していてもよい。第1の電極とセパレータとの間の距離、および、第2の電極とセパレータとの間の距離は、それぞれ、0mm~5mmの範囲(たとえば0mm~1mmの範囲)にあってもよい。 The distance between the first electrode and the second electrode may be in a range of 0.1 mm to 10 mm (for example, a range of 0.1 mm to 5 mm). The shorter the distance between the first electrode and the second electrode, the lower the voltage required for water electrolysis. Also, the shorter the distance between the first electrode and the second electrode, the easier it is for hydrogen ions and hydroxide ions to move from one tank to the other, so the aqueous liquid in the first tank The difference between the pH of the aqueous liquid and the pH of the aqueous liquid in the second tank can be reduced. Unless the first electrode and the second electrode are short-circuited, the first electrode and the second electrode may be in contact with the separator. The distance between the first electrode and the separator and the distance between the second electrode and the separator may each be in the range of 0 mm to 5 mm (for example, in the range of 0 mm to 1 mm).
 第1および第2の電極は、それぞれ、2次元状に広がる形状を有してもよい。たとえば、第1および第2の電極は、平板状の電極であってもよい。この平板状の電極には、貫通孔が形成されていてもよい。また、第1および第2の電極は、それぞれ、仮想の平面上に配置された複数の線状の電極で構成されていてもよい。そのような電極の一例は、図12Aに示される。第1および第2の電極が2次元状に広がる形状を有する場合、第1の電極と第2の電極とが、セパレータを挟んで互いに平行に対向することが好ましい。また、複数の第1の電極と複数の第2の電極とがセパレータを挟んで対向していてもよい。 The first and second electrodes may each have a shape that spreads two-dimensionally. For example, the first and second electrodes may be flat electrodes. A through hole may be formed in the flat electrode. Further, each of the first and second electrodes may be composed of a plurality of linear electrodes arranged on a virtual plane. An example of such an electrode is shown in FIG. 12A. When the first and second electrodes have a shape that expands two-dimensionally, it is preferable that the first electrode and the second electrode face each other in parallel with the separator interposed therebetween. Further, the plurality of first electrodes and the plurality of second electrodes may be opposed to each other with the separator interposed therebetween.
 第1の電極および第2の電極のそれぞれは、鉛直方向に沿ってストライプ状に配置された複数の線状の電極を含んでもよい。このような電極を用いることによって、電極の表面で発生したガスは、鉛直方向に上昇しやすくなり、電極の表面に滞留しにくくなる。 Each of the first electrode and the second electrode may include a plurality of linear electrodes arranged in a stripe shape along the vertical direction. By using such an electrode, the gas generated on the surface of the electrode is likely to rise in the vertical direction and is less likely to stay on the surface of the electrode.
 電極の表面で発生したガス(気泡)が電極表面に接触する面積が小さい程、気泡は電極表面に付着・滞留しにくい。そのため、線状の電極の表面は、平らであるよりも湾曲している方が好ましい。従って、線状の電極の断面は、四角形であるよりも円形である方が好ましい。 ¡The smaller the area where the gas (bubbles) generated on the electrode surface is in contact with the electrode surface, the less likely the bubbles will adhere to or stay on the electrode surface. Therefore, the surface of the linear electrode is preferably curved rather than flat. Therefore, the cross section of the linear electrode is preferably circular rather than rectangular.
 隣接する2つの線状の電極間の距離Dは、1.5mm以下であってもよい。距離Dは、たとえば、0.1mm~1.5mmの範囲にあってもよい。距離Dが小さいほど、電圧降下の影響を小さくできる。また、距離Dを1.5mm以下とすることによって、電極表面で発生したガスが電極表面に滞留することを抑制できる。 The distance D between two adjacent linear electrodes may be 1.5 mm or less. The distance D may be in the range of 0.1 mm to 1.5 mm, for example. The smaller the distance D, the smaller the influence of the voltage drop. Further, by setting the distance D to 1.5 mm or less, it is possible to suppress the gas generated on the electrode surface from staying on the electrode surface.
 第1および第2の槽には、水性液体を安定に保持できる槽を用いることができる。典型的な一例では、1つの容器がセパレータ(あるいはセパレータおよび隔壁)で仕切られて、第1および第2の槽とされる。第1の槽および第2の槽の例には、樹脂製の槽や、内面が樹脂製の槽が含まれる。 As the first and second tanks, tanks that can stably hold an aqueous liquid can be used. In a typical example, one container is partitioned by a separator (or a separator and a partition) to form first and second tanks. Examples of the first tank and the second tank include a resin tank and a tank whose inner surface is made of resin.
 槽の内面は親水性を有していてもよい。槽の内面が親水性を有することによって、ガスが上方に移動しやすくなる。親水性を有する内面の例には、親水性を有する樹脂からなる内面、および、親水化処理された内面が含まれる。また、電極の表面で発生したガスが槽の上面で滞留することを防止するため、槽の上面は傾斜していてもよい。 The inner surface of the tank may have hydrophilicity. Since the inner surface of the tank has hydrophilicity, the gas can easily move upward. Examples of the inner surface having hydrophilicity include an inner surface made of a hydrophilic resin and an inner surface that has been subjected to a hydrophilic treatment. Moreover, in order to prevent the gas generated on the surface of the electrode from staying on the upper surface of the tank, the upper surface of the tank may be inclined.
 次の工程(ii)では、第1の電極と第2の電極とを水性液体(A)に浸漬した状態で第1の電極と第2の電極との間に電圧を印加することによって、水性液体(A)中の水を電気分解する。電気分解は、水性液体(A)が流路(第2の槽が含まれる)を流れている状態で行われる。 In the next step (ii), by applying a voltage between the first electrode and the second electrode while the first electrode and the second electrode are immersed in the aqueous liquid (A), an aqueous solution is obtained. The water in the liquid (A) is electrolyzed. The electrolysis is performed in a state where the aqueous liquid (A) is flowing through the flow path (including the second tank).
 アノード(陽極)では、以下の式(1)の反応に従って水素イオン(H+)と酸素ガスとが発生する。一方、カソード(陰極)では、以下の式(2)の反応に従って水酸化物イオン(OH-)と水素ガスとが発生する。 In the anode (anode), hydrogen ions (H + ) and oxygen gas are generated according to the reaction of the following formula (1). On the other hand, at the cathode (cathode), hydroxide ions (OH ) and hydrogen gas are generated according to the reaction of the following formula (2).
(アノード)2H2O→4H++O2+4e- ・・・(1)
(カソード)4H2O+4e-→4OH-+2H2 ・・・(2)
(Anode) 2H 2 O → 4H + + O 2 + 4e (1)
(Cathode) 4H 2 O + 4e → 4OH + 2H 2 (2)
 なお、アノードおよびカソードにおける反応は以下の式(3)および(4)のように考えることも可能であるが、この明細書においては上記式(1)および(2)の反応として記載する。 The reaction at the anode and the cathode can be considered as the following formulas (3) and (4), but in this specification, they are described as the reactions of the above formulas (1) and (2).
(アノード)4OH-→2H2O+O2+4e- ・・・(3)
(カソード)4H++4e-→2H2 ・・・(4)
(Anode) 4OH → 2H 2 O + O 2 + 4e (3)
(Cathode) 4H + + 4e → 2H 2 (4)
 一方の電極がアノードとなるように(他方の電極がカソードとなるように)、第1の電極と第2の電極との間に電圧を印加して水を電気分解した場合、アノード側の電極が存在する槽内の水性液体は、溶存酸素濃度が上昇し、その結果、ORPが上昇する。一方、カソードが存在する槽内の水性液体は、溶存水素濃度が上昇し、その結果、ORPが低下する。このとき、アノードが存在する槽内の水性液体のpHは低下する。一方、カソードが存在する槽内の水性液体のpHは上昇する。 When water is electrolyzed by applying a voltage between the first electrode and the second electrode so that one electrode becomes an anode (the other electrode becomes a cathode), an electrode on the anode side The aqueous liquid in the tank in which the dissolved oxygen concentration increases, and as a result, the ORP increases. On the other hand, the aqueous liquid in the tank in which the cathode is present has an increased dissolved hydrogen concentration, and as a result, the ORP decreases. At this time, the pH of the aqueous liquid in the tank in which the anode exists is lowered. On the other hand, the pH of the aqueous liquid in the tank in which the cathode exists increases.
 この明細書において、「水性液体」とは、水を含む液体を意味する。水性液体(A)の例には、水道水などの水や、水溶液が含まれる。水性液体(A)は、塩が溶解された水溶液であってもよい。また、水性液体(A)は、水以外の有機溶媒(たとえばアルコール)を含んでもよい。通常、水性液体(A)の溶媒に占める水の割合は、50重量%以上(たとえば80重量%以上や90重量%以上や95重量%以上)であり、且つ100重量%以下である。典型的には、水性液体(A)の溶媒は水である。水性液体(A)中のイオン濃度が低すぎると、電流が流れにくくなる。一方、イオン濃度が高すぎると、効率が低下したり、pHの変化が大きくなったりする。水性液体(A)の導電率は、100μS/cm~50mS/cm(たとえば140μS/cm~2mS/cm)の範囲にあってもよい。イオンの濃度が低い場合には、一般的に、ORPは変化しにくい。必要に応じて、水性液体(A)にイオンを添加してもよい。たとえば、水性液体(A)に塩を溶解させてもよい。溶解させる塩に特に限定はなく、硫酸塩やリン酸塩であってもよい。 In this specification, “aqueous liquid” means a liquid containing water. Examples of the aqueous liquid (A) include water such as tap water and an aqueous solution. The aqueous liquid (A) may be an aqueous solution in which a salt is dissolved. Further, the aqueous liquid (A) may contain an organic solvent (for example, alcohol) other than water. Usually, the proportion of water in the solvent of the aqueous liquid (A) is 50% by weight or more (for example, 80% by weight or more, 90% by weight or more, or 95% by weight or more), and 100% by weight or less. Typically, the solvent of the aqueous liquid (A) is water. If the ion concentration in the aqueous liquid (A) is too low, it becomes difficult for current to flow. On the other hand, if the ion concentration is too high, the efficiency is lowered or the pH change is increased. The conductivity of the aqueous liquid (A) may be in the range of 100 μS / cm to 50 mS / cm (eg, 140 μS / cm to 2 mS / cm). In general, when the ion concentration is low, the ORP hardly changes. If necessary, ions may be added to the aqueous liquid (A). For example, a salt may be dissolved in the aqueous liquid (A). There is no limitation in particular in the salt to dissolve, A sulfate and phosphate may be sufficient.
 電極間に印加される電圧(直流電圧)は、アノードから酸素ガスが発生し、カソードから水素ガスが発生するように設定される。印加電圧は、3ボルト~30ボルトの範囲(たとえば6ボルト~20ボルトの範囲)にあってもよい。 The voltage (DC voltage) applied between the electrodes is set so that oxygen gas is generated from the anode and hydrogen gas is generated from the cathode. The applied voltage may be in the range of 3 to 30 volts (eg, in the range of 6 to 20 volts).
 工程(ii)は、第1の電極の表面で発生するガスに比べて第2の電極の表面で発生するガスが水性液体(A)に残留しやすい条件で行われてもよい。これによって、第2の槽中の水性液体(A)のORPを効率的に変化させることができる。ただし、この条件が満たされない場合でも、本発明の効果を得ることが可能である。第2の槽で処理された水が大気に開放されている使用場所(たとえば浴槽)で使用される場合、第2の槽から使用場所に至る経路が大気に開放されておらず且つ長い方が、ORPを効率的に変化させやすい。第2の槽と使用場所とを結ぶ経路(大気に開放されていない経路)の長さは、たとえば50cm以上であってもよく、50cm~500cmの範囲にあってもよい。 Step (ii) may be performed under the condition that the gas generated on the surface of the second electrode tends to remain in the aqueous liquid (A) as compared with the gas generated on the surface of the first electrode. Thereby, the ORP of the aqueous liquid (A) in the second tank can be changed efficiently. However, even when this condition is not satisfied, the effect of the present invention can be obtained. When the water treated in the second tank is used in a use place (for example, a bathtub) that is open to the atmosphere, the path from the second tank to the use place is not open to the atmosphere and the longer one is , ORP is easily changed efficiently. The length of the path connecting the second tank and the place of use (the path not open to the atmosphere) may be, for example, 50 cm or more, and may be in the range of 50 cm to 500 cm.
 第2の電極で発生したガスの圧力が高まることを避けるために、第2の電極で発生したガスを放出してもよい。ガスの放出は、定期的に行ってもよいし、不定期に行ってもよい。ガスの放出は、第2の槽、第2の槽に接続された貯水槽、および、第2の槽と貯水槽とを接続する経路のいずれかに配置されたバルブによって行ってもよい。 In order to avoid an increase in the pressure of the gas generated at the second electrode, the gas generated at the second electrode may be released. The gas may be released periodically or irregularly. The release of the gas may be performed by a valve disposed in any of the second tank, the water tank connected to the second tank, and the path connecting the second tank and the water tank.
 工程(ii)は、第1の槽が大気に開放されており且つ第2の槽に大気が流入しない状態で行われてもよい。「第2の槽に大気が流入しない状態」には、第2の電極で発生したガスが第2の槽から放出される一方で第2の槽に大気が流入しない状態も含まれる。第1の槽を大気に開放することによって、第1の電極の表面で発生したガスが大気に放出される。一方、第2の電極で発生したガスの圧力が高くなりすぎたときだけ、当該ガスを放出することによって、第2の電極の表面で発生したガスが水性液体(A)中に残留しやすくなる。 Step (ii) may be performed in a state where the first tank is open to the atmosphere and no air flows into the second tank. The “state in which the atmosphere does not flow into the second tank” includes a state in which the gas generated in the second electrode is released from the second tank while the air does not flow into the second tank. By opening the first tank to the atmosphere, the gas generated on the surface of the first electrode is released to the atmosphere. On the other hand, the gas generated on the surface of the second electrode is likely to remain in the aqueous liquid (A) by releasing the gas only when the pressure of the gas generated at the second electrode becomes too high. .
 工程(ii)において、第1の槽で処理される水性液体(A)の量(体積V1(cm3))と第2の槽で処理される水性液体(A)の量(体積V2(cm3))との比によって、第2の槽で処理された水性液体(A)のpHが調整されてもよい。(V2/V1)の値が大きいほど、第2の槽で処理された水性液体のpHの変化が小さくなる傾向がある。(V2/V1)の値は、10~2×106の範囲(たとえば10~50000の範囲や200~15000の範囲)にあってもよい。 In step (ii), the amount of aqueous liquid (A) to be treated in the first tank (volume V1 (cm 3 )) and the amount of aqueous liquid (A) to be treated in the second tank (volume V2 (cm 3 )) and the pH of the aqueous liquid (A) treated in the second tank may be adjusted. The larger the value of (V2 / V1), the smaller the pH change of the aqueous liquid treated in the second tank. The value of (V2 / V1) may be in a range of 10 to 2 × 10 6 (for example, a range of 10 to 50000 or a range of 200 to 15000).
 第1の槽で処理される水性液体(A)の量(体積V1)は、第1の槽に配置される水性液体(A)の量であり、通常、第1の槽の内容積で近似できる。第2の槽が流路に接続されていない場合には、第2の槽で処理される水性液体(A)の量(体積V2)は、通常、第2の槽の内容積に置き換えることができる。 The amount (volume V1) of the aqueous liquid (A) processed in the first tank is the amount of the aqueous liquid (A) disposed in the first tank, and is usually approximated by the internal volume of the first tank. it can. When the second tank is not connected to the flow path, the amount (volume V2) of the aqueous liquid (A) processed in the second tank can be normally replaced with the internal volume of the second tank. it can.
 一方、第2の槽が流路の一部を構成する場合には、以下の3つの近似が可能である。したがって、上記の(V2/V1)の好ましい値は、以下の3つの近似が行われた場合においても好ましい。第1の近似は、流路が循環路ではない場合の近似である。この場合の体積V2は、第2の槽で処理されて第2の槽から排出された水性液体(A)の体積に置き換えることができる。第2の近似は、第2の槽が、循環路である流路の一部を構成する場合の近似である。この場合において、循環路を水性液体(A)が充分に循環すると仮定すると、体積V2は、循環路に存在する水性液体(A)の総量に置き換えることができる。たとえば、第2の槽と貯水槽とが流路で接続され、第2の槽と貯水槽との間を水性液体(A)が循環する場合、体積V2は、第2の槽の内容積と、第2の槽と貯水槽とを結ぶ流路に配置された水性液体(A)の体積と、貯水槽に配置された水性液体(A)の体積との合計に置き換えることができる。第2の近似において、貯水槽に配置された水性液体(A)の体積が、第2の槽および流路に配置される水性液体(A)の体積に比べてずっと大きい場合には、体積V2は、貯水槽に配置された水性液体(A)の体積に置き換えることができる。第3の近似は、第2の槽が、循環路である流路の一部を構成する場合の別の近似である。第3の近似では、体積V2が、循環路内の容積で近似できる。たとえば、循環路が、第2の槽、貯水槽、およびそれらを結ぶ流路で構成される場合には、それらの内容積の合計を、体積V2とみなすことが可能である。第3の近似において、第2の槽および流路の内容積に比べて貯水槽の内容積がずっと大きい場合には、体積V2は、貯水槽の内容積に置き換えることができる。 On the other hand, when the second tank constitutes a part of the flow path, the following three approximations are possible. Therefore, the preferable value of (V2 / V1) is preferable even when the following three approximations are performed. The first approximation is an approximation when the flow path is not a circulation path. The volume V2 in this case can be replaced with the volume of the aqueous liquid (A) processed in the second tank and discharged from the second tank. The second approximation is an approximation when the second tank constitutes a part of a flow path that is a circulation path. In this case, assuming that the aqueous liquid (A) is sufficiently circulated in the circulation path, the volume V2 can be replaced with the total amount of the aqueous liquid (A) present in the circulation path. For example, when the second tank and the water storage tank are connected by a flow path and the aqueous liquid (A) circulates between the second tank and the water storage tank, the volume V2 is equal to the internal volume of the second tank. The total of the volume of the aqueous liquid (A) arranged in the flow path connecting the second tank and the water storage tank and the volume of the aqueous liquid (A) arranged in the water storage tank can be replaced. In the second approximation, when the volume of the aqueous liquid (A) arranged in the water storage tank is much larger than the volume of the aqueous liquid (A) arranged in the second tank and the flow path, the volume V2 Can be replaced by the volume of the aqueous liquid (A) placed in the water tank. The third approximation is another approximation in the case where the second tank constitutes a part of a flow path that is a circulation path. In the third approximation, the volume V2 can be approximated by the volume in the circulation path. For example, when the circulation path is composed of a second tank, a water storage tank, and a flow path connecting them, it is possible to regard the sum of the internal volumes as the volume V2. In the third approximation, if the internal volume of the water tank is much larger than the internal volume of the second tank and the flow path, the volume V2 can be replaced with the internal volume of the water tank.
 上記第2の近似から、工程(ii)において、第1の槽の内容積(または第1の槽に配置された水性液体(A)の量)と、貯水槽に配置される水性液体(A)の量との比によって、第2の槽で処理された水性液体(A)のpHが調整されてもよい。また、上記第3の近似から、工程(ii)において、第1の槽の内容積(または第1の槽に配置された水性液体(A)の量)と、貯水槽の内容積との比によって、第2の槽で処理された水性液体(A)のpHが調整されてもよい。 From the second approximation, in step (ii), the internal volume of the first tank (or the amount of the aqueous liquid (A) disposed in the first tank) and the aqueous liquid (A ), The pH of the aqueous liquid (A) treated in the second tank may be adjusted. Further, from the above third approximation, in step (ii), the ratio between the internal volume of the first tank (or the amount of the aqueous liquid (A) arranged in the first tank) and the internal volume of the water storage tank. The pH of the aqueous liquid (A) treated in the second tank may be adjusted.
 第2の槽が循環路の一部を構成する場合、および、第2の槽が循環路の一部を構成しない場合のいずれの場合においても、第2の槽を1分間あたりに流れる水性液体(A)の量が、第1の槽に配置される水性液体(A)の量(または第1の槽の内容積)の1倍~106倍の範囲(たとえば10倍~105倍の範囲や100倍~105倍の範囲)にあってもよい。第2の槽が循環路の一部を構成しない場合(たとえば、第2の槽で処理された水性液体がそのまま使用される場合)には、この倍率が高いほど、第2の槽で処理された水性液体(A)のpHの変動が小さくなる。なお、この倍率を上記範囲として、且つ、電極(第1および第2の電極)とセパレータとの距離を短くする(たとえば上述した距離とする)ことによって、第2の槽で処理される水性液体(A)のpHの変化を特に抑制できる。 In either case where the second tank forms part of the circulation path and when the second tank does not form part of the circulation path, the aqueous liquid that flows in the second tank per minute The amount of (A) is in the range of 1 to 10 6 times the amount of the aqueous liquid (A) (or the internal volume of the first tank) disposed in the first tank (for example, 10 to 10 5 times Range or 100 times to 10 5 times). When the second tank does not constitute a part of the circulation path (for example, when the aqueous liquid processed in the second tank is used as it is), the higher this magnification is, the higher the ratio is processed in the second tank. The fluctuation of the pH of the aqueous liquid (A) is reduced. In addition, the aqueous liquid processed by a 2nd tank by making this magnification into the said range and shortening the distance of an electrode (1st and 2nd electrode) and a separator (it is set as the distance mentioned above, for example). The change in pH of (A) can be particularly suppressed.
 流路が循環路である場合、すなわち、第2の槽が循環路の一部を構成する場合には、工程(ii)において、循環路に存在する水性液体(A)の量が、第1の槽に配置される水性液体(A)の量(または第1の槽の内容積)の10倍~106倍の範囲(たとえば100倍~105倍の範囲)にあってもよい。この倍率が高いほど、第2の槽で処理された水性液体(A)のpH(すなわち、循環路に存在する水性液体(A)のpH)の変動が小さくなる。なお、この倍率を上記範囲として、且つ、電極(第1および第2の電極)とセパレータとの距離を短くする(たとえば上述した距離とする)ことによって、第2の槽で処理される水性液体(A)のpHの変化を特に抑制できる。 When the flow path is a circulation path, that is, when the second tank constitutes a part of the circulation path, in step (ii), the amount of the aqueous liquid (A) present in the circulation path is the first amount. The amount of the aqueous liquid (A) placed in the tank (or the internal volume of the first tank) may be in the range of 10 to 10 6 times (for example, in the range of 100 to 10 5 times). The higher this magnification, the smaller the fluctuation of the pH of the aqueous liquid (A) treated in the second tank (that is, the pH of the aqueous liquid (A) present in the circulation path). In addition, the aqueous liquid processed by a 2nd tank by making this magnification into the said range and shortening the distance of an electrode (1st and 2nd electrode) and a separator (it is set as the distance mentioned above, for example). The change in pH of (A) can be particularly suppressed.
 第1の槽の内容積に特に限定はなく、1cm3~1000cm3の範囲(たとえば3cm3~200cm3の範囲や3cm3~20cm3の範囲)にあってもよい。同様に、第2の槽の内容積は、これらの範囲にあってもよい。好ましい一例では、第2の槽の内容積は、第1の槽の内容積と同じかそれよりも大きい。 The internal volume of the first tank is not particularly limited, and may be in a range of 1 cm 3 to 1000 cm 3 (for example, a range of 3 cm 3 to 200 cm 3 or a range of 3 cm 3 to 20 cm 3 ). Similarly, the internal volume of the second tank may be in these ranges. In a preferred example, the internal volume of the second tank is equal to or greater than the internal volume of the first tank.
 工程(ii)において、第1の電極と第2の電極との間を単位時間に流れる電気量と、単位時間にセパレータを通過するイオンの量との比によって、第2の槽で処理された水性液体(A)のpHが調整されてもよい。電極間を単位時間に流れる電気量が大きいほど、第2の槽で処理された水性液体(A)のpHの変化が大きくなる傾向がある。一方、単位時間にセパレータを通過するイオンの量が多いほど、第2の槽で処理された水性液体(A)のpHの変化が小さくなる傾向がある。電極間を単位時間に流れる電気量は、電極間に印加する電圧を大きくするほど、大きくできる。また、単位時間にセパレータを通過するイオンの量は、イオンが通過可能なセパレータの面積が大きいほど、大きくできる。また、電極とセパレータとの間の距離が短いほど、単位時間にセパレータを通過するイオンの量が大きくなりやすい。また、槽の内容積が小さいほど、単位時間にセパレータを通過するイオンの量が大きくなりやすい。 In the step (ii), it was processed in the second tank according to the ratio of the amount of electricity flowing between the first electrode and the second electrode per unit time and the amount of ions passing through the separator per unit time. The pH of the aqueous liquid (A) may be adjusted. As the amount of electricity flowing between the electrodes per unit time increases, the pH change of the aqueous liquid (A) treated in the second tank tends to increase. On the other hand, the larger the amount of ions passing through the separator per unit time, the smaller the pH change of the aqueous liquid (A) treated in the second tank. The amount of electricity flowing between the electrodes per unit time can be increased as the voltage applied between the electrodes is increased. Further, the amount of ions passing through the separator per unit time can be increased as the area of the separator through which ions can pass is increased. Also, the shorter the distance between the electrode and the separator, the greater the amount of ions that pass through the separator per unit time. In addition, the smaller the internal volume of the tank, the larger the amount of ions that pass through the separator per unit time.
 工程(ii)は、第1の槽の水性液体(A)が通液状態ではなく且つ第2の槽の水性液体(A)が通液状態である状態で行われる。この構成によれば、第2の槽で処理された水性液体(A)のpHの変化を小さくすることが可能である。なお、「通液状態」とは、連続的に液体が槽に流入および排出される状態をいう。 Step (ii) is performed in a state where the aqueous liquid (A) in the first tank is not in a liquid-permeable state and the aqueous liquid (A) in the second tank is in a liquid-permeable state. According to this configuration, it is possible to reduce the change in pH of the aqueous liquid (A) treated in the second tank. The “liquid passing state” means a state in which liquid continuously flows into and out of the tank.
 本発明の方法において、工程(ii)が行われた直後の状態では、第1の槽の中の水性液体(A)のpHと第2の槽の中の水性液体(A)のpHとは、大きく異なる場合が多い。そのため、第2の槽の中の水性液体(A)のpHを工程(ii)が行われた直後の値に保って中性に近づけないようにする場合には、工程(ii)の後に、第1の槽の中の水性液体(A)およびイオンが第2の槽に移動および拡散することを防止してもよい。たとえば、工程(ii)の後に第1の槽の水を排出してもよい。あるいは、工程(ii)の後に、第1の槽と第2の槽との間を遮蔽板で仕切って、水性液体(A)およびイオンの移動および拡散を防止してもよい。第2の槽中の水性液体(A)のORPを変化させた後、第2の槽中の水性液体(A)を中性に戻したい場合は、電圧印加後に、pHがほぼ一定値になるまで槽中の水性液体(A)を放置してもよい。水素イオンおよび水酸化物イオンがセパレータを透過することによって、pHが中性に近づく。このとき、電圧を印加しない状態で第2の槽中の水性液体(A)を循環させることによって、pHが中性に戻ることを促進できる。 In the method of the present invention, in the state immediately after step (ii) is performed, the pH of the aqueous liquid (A) in the first tank and the pH of the aqueous liquid (A) in the second tank are , Often very different. Therefore, in order to keep the pH of the aqueous liquid (A) in the second tank at a value immediately after the step (ii) is performed so as not to approach neutrality, after the step (ii), The aqueous liquid (A) and ions in the first tank may be prevented from moving and diffusing into the second tank. For example, the water in the first tank may be discharged after step (ii). Alternatively, after the step (ii), the first tank and the second tank may be partitioned by a shielding plate to prevent the movement and diffusion of the aqueous liquid (A) and ions. After changing the ORP of the aqueous liquid (A) in the second tank and then returning the aqueous liquid (A) in the second tank to neutral, the pH becomes a substantially constant value after voltage application. The aqueous liquid (A) in the tank may be allowed to stand. By passing hydrogen ions and hydroxide ions through the separator, the pH approaches neutrality. At this time, it can accelerate | stimulate that pH returns to neutrality by circulating the aqueous liquid (A) in a 2nd tank in the state which does not apply a voltage.
 本発明の方法では、第1の槽に配置されている水性液体(A)の一部を排出することによって、第2の槽を流れる水性液体(A)のpHを制御してもよい。 In the method of the present invention, the pH of the aqueous liquid (A) flowing in the second tank may be controlled by discharging a part of the aqueous liquid (A) arranged in the first tank.
 また、第1の槽および第2の槽の一方または両方に排液路を配置し、一方の槽から水性液体(A)を排出することによって、水性液体(A)のpHを調整してもよい。たとえば、中性の水を電気分解すると、アノード側の水性液体(A)が酸性となり、カソード側の水性液体(A)がアルカリ性となる。そのため、電圧印加中または電圧印加後において、第1の槽および第2の槽のいずれか一方の水性液体(A)を排出することによって、水性液体(A)全体のpHを変化させることが可能である。 Moreover, even if the drainage path is arrange | positioned to one or both of a 1st tank and a 2nd tank, and the aqueous liquid (A) is discharged | emitted from one tank, pH of aqueous liquid (A) may be adjusted. Good. For example, when neutral water is electrolyzed, the aqueous liquid (A) on the anode side becomes acidic, and the aqueous liquid (A) on the cathode side becomes alkaline. Therefore, it is possible to change the pH of the entire aqueous liquid (A) by discharging the aqueous liquid (A) of either the first tank or the second tank during voltage application or after voltage application. It is.
 なお、水性液体(A)のpHを変化させる方法として上述した方法は、2つ以上を組み合わせて用いてもよい。 In addition, you may use combining the method mentioned above as a method of changing pH of an aqueous liquid (A) in combination of 2 or more.
 なお、カソード側の槽の水性液体30はアルカリ性となるため、カソード側の槽には、カルシウムなどのスケール(scale)が析出する場合がある。その場合には、水性液体30の流れを止めた状態で、逆方向に電圧を印加すればよい。そうすることによって、アルカリ性であった水性液体を酸性とし、スケールを溶解させることができる。 In addition, since the aqueous liquid 30 in the cathode side tank becomes alkaline, a scale such as calcium may be deposited in the cathode side tank. In that case, a voltage may be applied in the reverse direction while the flow of the aqueous liquid 30 is stopped. By doing so, the alkaline aqueous liquid can be made acidic and the scale can be dissolved.
 [水性液体のORPを変化させる装置]
 流路を流れる水性液体のORPを変化させるための本発明の装置を以下に説明する。本発明の装置によれば、本発明の方法を容易に実施できる。なお、本発明の方法について説明した事項については本発明の装置に適用できるため、重複する説明を省略する場合がある。また、本発明の装置について説明した事項は、本発明の方法に適用できる。
[Apparatus for changing ORP of aqueous liquid]
The apparatus of the present invention for changing the ORP of the aqueous liquid flowing in the flow path will be described below. According to the apparatus of the present invention, the method of the present invention can be easily implemented. In addition, since the matter which demonstrated the method of this invention is applicable to the apparatus of this invention, the overlapping description may be abbreviate | omitted. Further, the matters described for the apparatus of the present invention can be applied to the method of the present invention.
 本発明の装置は、容器、セパレータ、第1の電極、第2の電極、および電源を備える。容器には、水性液体(すなわち水性液体(A))が配置される。セパレータは、容器を第1の槽と第2の槽とに仕切る。第1の電極は第1の槽に配置され、第2の電極は第2の槽に配置される。電源は、第1の電極と第2の電極との間に電圧を印加する。本発明の装置では、第1の電極と第2の電極とを水性液体(A)に浸漬した状態で第1の電極と第2の電極との間に電圧を印加することによって水性液体(A)中の水を電気分解する工程が行われる。以下、この工程を「電気分解工程」という場合がある。 The apparatus of the present invention includes a container, a separator, a first electrode, a second electrode, and a power source. An aqueous liquid (namely, aqueous liquid (A)) is arrange | positioned at a container. The separator partitions the container into a first tank and a second tank. The first electrode is disposed in the first tank, and the second electrode is disposed in the second tank. The power source applies a voltage between the first electrode and the second electrode. In the apparatus of the present invention, an aqueous liquid (A) is obtained by applying a voltage between the first electrode and the second electrode in a state where the first electrode and the second electrode are immersed in the aqueous liquid (A). ) The process of electrolyzing the water inside is performed. Hereinafter, this process may be referred to as an “electrolysis process”.
 本発明の装置で行われる電気分解工程は、本発明の方法の工程(ii)に該当する。容器(第1および第2の槽)、セパレータ、第1および第2の電極、水性液体(A)については、上述したため、重複する説明を省略する場合がある。上述したように、第2の槽が流路の一部を構成する。すなわち、第2の槽には、第2の槽が流路の一部を構成するように流路に接続される流入口と流出口が形成されている。また、第1の槽は、セパレータを介して流路と接続される。 The electrolysis process performed in the apparatus of the present invention corresponds to step (ii) of the method of the present invention. Since the container (first and second tanks), the separator, the first and second electrodes, and the aqueous liquid (A) have been described above, overlapping descriptions may be omitted. As described above, the second tank constitutes a part of the flow path. That is, the second tank is formed with an inlet and an outlet that are connected to the flow path so that the second tank forms a part of the flow path. Further, the first tank is connected to the flow path via a separator.
 電源には、直流電源を用いることができる。電源は、コンセントから得られる交流電圧を直流電圧に変換するAC-DCコンバータであってもよい。また、電源は、太陽電池や燃料電池などの発電装置や電池(たとえば二次電池)であってもよい。発電装置や電池を電源として用いることによって、電力が供給されていない地域や状況において本発明の装置を用いることが可能となる。 DC power supply can be used for the power supply. The power source may be an AC-DC converter that converts an AC voltage obtained from an outlet into a DC voltage. The power source may be a power generation device such as a solar cell or a fuel cell, or a battery (for example, a secondary battery). By using a power generation device or a battery as a power source, the device of the present invention can be used in regions and situations where power is not supplied.
 本発明の装置は、手動で制御することが可能である。しかし、本発明の装置は、コントローラを備えてもよい。コントローラは、演算処理装置と記憶手段とを含む。なお、記憶手段は、演算処理装置と一体化されていてもよい。記憶手段の例には、演算処理装置の内部メモリ、外部メモリ、磁気ディスク(たとえばハードディスクドライブ)などが含まれる。記憶手段には、必要な工程(たとえば電気分解工程)を実行するためのプログラムが記録される。コントローラの一例には大規模集積回路(LSI)が含まれる。本発明の装置は、各種機器(電源、ポンプ、バルブ、フィルタなど)および各種計測器(ORP計、電流計、pH計、イオン濃度計、導電率計、溶存酸素計、および溶存水素計など)を含んでもよい。そして、コントローラは、これらの機器および計測器に接続されていてもよい。コントローラは、計測器の出力に基づいて機器を制御することによって電気分解工程を実行してもよい。 The device of the present invention can be controlled manually. However, the device of the present invention may comprise a controller. The controller includes an arithmetic processing unit and storage means. Note that the storage means may be integrated with the arithmetic processing unit. Examples of the storage means include an internal memory, an external memory, and a magnetic disk (for example, a hard disk drive) of the arithmetic processing unit. A program for executing a necessary process (for example, an electrolysis process) is recorded in the storage means. An example of the controller includes a large scale integrated circuit (LSI). The apparatus of the present invention includes various devices (power supply, pump, valve, filter, etc.) and various measuring instruments (ORP meter, ammeter, pH meter, ion concentration meter, conductivity meter, dissolved oxygen meter, dissolved hydrogen meter, etc.) May be included. The controller may be connected to these devices and measuring instruments. The controller may perform the electrolysis process by controlling the device based on the output of the measuring instrument.
 本発明の装置は、電極に印加する電圧を決定するために、水性液体の導電率を測定する導電率計や、対極からのガス発生を確認するための装置(たとえばLEDやレーザダイオードなどの発光素子と、フォトダイオードなどの受光素子との組み合わせ)を備えてもよい。また、本発明の装置は、電極間に印加される電圧を測定するための電圧計や、電極間を流れる電流を測定するための電流計を備えてもよい。 In order to determine the voltage applied to the electrode, the device of the present invention is a conductivity meter for measuring the conductivity of an aqueous liquid or a device for confirming gas generation from a counter electrode (for example, a light emitting device such as an LED or a laser diode). And a combination of a light receiving element such as a photodiode). Moreover, the apparatus of this invention may be equipped with the voltmeter for measuring the voltage applied between electrodes, and the ammeter for measuring the electric current which flows between electrodes.
 コントローラは、各種の計測器から得られたデータ、および、装置の使用者によって設定されたORPの目標値に基づいて、電圧印加および/または水性液体(A)の流量を制御してもよい。さらに、コントローラは、装置の使用者によって設定されたpHの目標値に基づいて、電圧印加、水性液体(A)の流量、および、第1および第2の槽から排出される水性液体(A)の量から選ばれる少なくとも1つを制御してもよい。 The controller may control the voltage application and / or the flow rate of the aqueous liquid (A) based on the data obtained from various measuring instruments and the ORP target value set by the user of the apparatus. Furthermore, the controller applies the voltage, the flow rate of the aqueous liquid (A), and the aqueous liquid (A) discharged from the first and second tanks based on the target value of pH set by the user of the apparatus. At least one selected from these amounts may be controlled.
 本発明の装置は、陽イオンまたは陰イオンを選択的に通過させるような膜(たとえばイオン交換膜)やイオン交換材料を必要に応じて備えてもよい。しかし、本発明の装置は、通常、そのような膜(たとえばイオン交換膜)やイオン交換材料を含まない。 The apparatus of the present invention may be provided with a membrane (for example, an ion exchange membrane) or an ion exchange material that selectively allows cations or anions to pass therethrough as necessary. However, the apparatus of the present invention typically does not include such membranes (eg, ion exchange membranes) or ion exchange materials.
 槽内の圧力の上昇に応じて槽内の水性液体(A)が移動するための管が、槽に接続されていてもよい。たとえば、第1の槽内の圧力の上昇に応じて第1の槽内の水性液体(A)が移動するための管が、第1の槽に接続されていてもよい。以下では、その管を、「管(T)」という場合がある。管(T)を用いることによって、第1の槽内の圧力が高まったときでも、水性液体(A)が装置の外部に漏れることを防止できる。管(T)の形状に特に限定はなく、断面が円形であってもよいし、断面が四角形であってもよい。一例では、管(T)は、第1の槽から上方に伸びている。また、他の一例では、管(T)は、下降と上昇とを交互に繰り返している。たとえば、管(T)は、下方に向かう方向および上方に向かう方向に蛇行を繰り返していてもよい。あるいは、管(T)は、コイル状に巻かれた管であってもよい。あるいは、管(T)は、鉛直方向に平行に配置された複数の直線状の管が直列に接続された構造を有してもよい。 The pipe | tube for the aqueous liquid (A) in a tank to move according to the raise of the pressure in a tank may be connected to the tank. For example, the pipe | tube for the aqueous liquid (A) in a 1st tank to move according to the raise of the pressure in a 1st tank may be connected to the 1st tank. Hereinafter, the tube may be referred to as “tube (T)”. By using the tube (T), it is possible to prevent the aqueous liquid (A) from leaking outside the apparatus even when the pressure in the first tank is increased. There is no limitation in particular in the shape of a pipe | tube (T), A cross section may be circular and a cross section may be a square. In one example, the tube (T) extends upward from the first tank. In another example, the tube (T) repeats descending and ascending alternately. For example, the pipe (T) may repeat meandering in the downward direction and the upward direction. Alternatively, the tube (T) may be a tube wound in a coil shape. Alternatively, the tube (T) may have a structure in which a plurality of linear tubes arranged in parallel to the vertical direction are connected in series.
 管(T)が、下降と上昇とを交互に繰り返している場合には、管(T)内の気泡が管(T)内の水性液体(A)内を移動できることが好ましい。したがって、管(T)の内部(流路)の断面積は、管(T)の内部を気泡が移動できる大きさであることが好ましい。管(T)の内部の断面積は、3cm2以上であることが好ましく、たとえば3cm2~10cm2の範囲や、5cm2~30cm2の範囲にある。また、一例では、第1の槽から管(T)の下流側に移動する水性液体(A)が上方に移動する部分の管(T)の内部を親水性とし、第1の槽から管(T)の下流側に移動する水性液体(A)が下方に移動する部分の管(T)の内部を撥水性としてもよい。 When the tube (T) repeats descending and rising alternately, it is preferable that the bubbles in the tube (T) can move in the aqueous liquid (A) in the tube (T). Therefore, the cross-sectional area of the inside (flow path) of the tube (T) is preferably large enough to allow bubbles to move inside the tube (T). The cross-sectional area inside the tube (T) is preferably 3 cm 2 or more, for example, in the range of 3 cm 2 to 10 cm 2 or in the range of 5 cm 2 to 30 cm 2 . In one example, the inside of the pipe (T) where the aqueous liquid (A) moving from the first tank to the downstream side of the pipe (T) moves upward is made hydrophilic, and the pipe (T The inside of the tube (T) where the aqueous liquid (A) moving downstream of T) moves downward may be water repellent.
 管(T)の終端には細管が接続されていてもよい。細管の内部(流路)の断面積は、管(T)の内部(流路)の断面積よりも小さい。細管の内部の断面積は、0.7cm2~3.5cm2の範囲や、0.5cm2~1cm2の範囲にあってもよい。細管内は流体抵抗が大きいため、槽内の圧力が急激に変化しても、槽内の水位が大きく変化することなく、槽内の圧力が平衡に到達するまで水位は徐々に変化する。また、細管を管(T)に接続することによって、管(T)中の水性液体(A)の急激な移動を抑制できる。なお、この明細書において、「管の断面積」という語句は、流路の方向(水性液体(A)が流れる方向)に対して垂直な方向における断面の面積を意味する。 A thin tube may be connected to the end of the tube (T). The cross-sectional area of the inside (channel) of the narrow tube is smaller than the cross-sectional area of the inside (channel) of the tube (T). The cross-sectional area inside the narrow tube may be in the range of 0.7 cm 2 to 3.5 cm 2 or in the range of 0.5 cm 2 to 1 cm 2 . Since the fluid resistance in the narrow tube is large, even if the pressure in the tank changes suddenly, the water level gradually changes until the pressure in the tank reaches equilibrium without greatly changing the water level in the tank. Moreover, rapid movement of the aqueous liquid (A) in the tube (T) can be suppressed by connecting the thin tube to the tube (T). In this specification, the phrase “cross-sectional area of the tube” means a cross-sectional area in a direction perpendicular to the direction of the flow path (the direction in which the aqueous liquid (A) flows).
 電気分解工程は、第1の電極の表面で発生するガスに比べて第2の電極の表面で発生するガスが水性液体(A)中に残留しやすい条件で行われてもよい。たとえば、電気分解工程は、第1の槽が大気に開放されており且つ第2の槽に大気が流入しない状態で行われてもよい。 The electrolysis step may be performed under the condition that the gas generated on the surface of the second electrode tends to remain in the aqueous liquid (A) as compared with the gas generated on the surface of the first electrode. For example, the electrolysis process may be performed in a state where the first tank is open to the atmosphere and the atmosphere does not flow into the second tank.
 本発明の装置は、第1の槽と第2の槽との間に移動可能に配置される遮蔽板をさらに備えてもよい。遮蔽板を移動させることによって、単位時間にセパレータを通過するイオンの量を調節することが可能である。 The apparatus of the present invention may further include a shielding plate that is movably disposed between the first tank and the second tank. By moving the shielding plate, it is possible to adjust the amount of ions passing through the separator per unit time.
 電気分解工程は、第1の槽の水性液体(A)が通液状態ではなく且つ第2の槽の水性液体(A)が通液状態である状態で行われる。 The electrolysis step is performed in a state where the aqueous liquid (A) in the first tank is not in a liquid-permeable state and the aqueous liquid (A) in the second tank is in a liquid-permeable state.
 第2の槽は、水性液体(A)を保持する貯水槽に接続されていてもよい。そして、電気分解工程において、水性液体(A)が第2の槽と貯水槽との間で循環されてもよい。そのような装置によれば、多量の水性液体(A)を処理できる。また、そのような装置によれば、上述した(V2/V1)の値を大きくすることができ、その結果、第2の槽で処理された水性液体のpHの変動を抑制できる。 The second tank may be connected to a water tank that holds the aqueous liquid (A). In the electrolysis step, the aqueous liquid (A) may be circulated between the second tank and the water storage tank. According to such an apparatus, a large amount of aqueous liquid (A) can be processed. Moreover, according to such an apparatus, the value of (V2 / V1) mentioned above can be enlarged, As a result, the fluctuation | variation of pH of the aqueous liquid processed by the 2nd tank can be suppressed.
 本発明の方法および装置において、貯水槽は、大気に開放されている貯水槽(たとえば浴槽)であってもよい。たとえば、第2の槽の下流側の流路が浴槽またはシャワーヘッドに接続されていてもよい。この場合、第2の槽で処理された水性液体(A)が、浴槽内の水(たとえば湯)、またはシャワーの水(たとえば湯)として用いられる。流路が浴槽に接続されている場合、流路は、浴槽と第2の槽とを含む循環路を形成していてもよい。これらの場合、第2の槽で処理される水性液体(A)として、第2の槽に湯が供給されてもよい。 In the method and apparatus of the present invention, the water tank may be a water tank (for example, a bathtub) that is open to the atmosphere. For example, the flow path on the downstream side of the second tank may be connected to a bathtub or a shower head. In this case, the aqueous liquid (A) treated in the second tank is used as water in the bathtub (for example, hot water) or shower water (for example, hot water). When the flow path is connected to the bathtub, the flow path may form a circulation path including the bathtub and the second tank. In these cases, hot water may be supplied to the second tank as the aqueous liquid (A) to be treated in the second tank.
 第2の槽、貯水槽、およびそれらを接続する経路は循環路を構成してもよい。循環路には、循環路の中に存在するガスを放出するためのバルブが配置されていてもよい。そのバルブを開放することによって、第2の電極で発生したガスを大気中に放出できる。これによって、循環路中のガスの圧力が高くなりすぎることを防止できる。 The second tank, the water storage tank, and the path connecting them may constitute a circulation path. A valve for releasing the gas existing in the circulation path may be arranged in the circulation path. By opening the valve, the gas generated in the second electrode can be released into the atmosphere. This can prevent the pressure of the gas in the circulation path from becoming too high.
 なお、複数の本発明の装置が直列または並列に接続されていてもよい。換言すれば、本発明の装置は、直列または並列に接続された複数の処理装置を備えてもよい。それぞれの処理装置は、上述した本発明の装置の構成を備える。すなわち、それぞれの処理装置は、第1の槽、第2の槽、第1の電極、第2の電極、セパレータ、および電源を備える。 Note that a plurality of devices of the present invention may be connected in series or in parallel. In other words, the apparatus of the present invention may include a plurality of processing apparatuses connected in series or in parallel. Each processing apparatus has the configuration of the apparatus of the present invention described above. That is, each processing apparatus includes a first tank, a second tank, a first electrode, a second electrode, a separator, and a power source.
 別の観点では、本発明は、ORPおよびpHが所定の範囲にある水性液体を製造する装置、および方法に関する。本発明によれば、水道水などの一般的に得られる水(具体的にはORPが200mV~780mVの範囲にあり、pHが5.8~8.6の範囲にある水)を処理することによって、ORPが処理前よりも200mV以上高く処理前後におけるpHの変化が2以下である水や、ORPが処理前よりも200mV以上低く処理前後におけるpHの変化が2以下である水を得ることが可能である。 In another aspect, the present invention relates to an apparatus and a method for producing an aqueous liquid in which ORP and pH are in a predetermined range. According to the present invention, generally obtained water such as tap water (specifically, water having an ORP in the range of 200 mV to 780 mV and a pH in the range of 5.8 to 8.6) is treated. To obtain water whose ORP is 200 mV or more higher than that before the treatment, and whose pH change before and after the treatment is 2 or less, or water whose ORP is 200 mV or more lower than that before the treatment, and whose pH change before and after the treatment is 2 or less. Is possible.
 本発明の実施形態の例について、図面を参照しながら以下に説明する。なお、以下の説明で参照される図面は、模式的な図であり、図面を見やすくするために水性液体のハッチングを省略する場合がある。 Examples of embodiments of the present invention will be described below with reference to the drawings. Note that the drawings referred to in the following description are schematic diagrams, and the hatching of the aqueous liquid may be omitted in order to make the drawings easy to see.
 [実施形態1]
 実施形態1の装置および方法の一例について、以下に説明する。実施形態1の装置100の構成を図1に模式的に示す。装置100は、容器10、セパレータ13、第1の電極21、第2の電極22、および電源23を含む。装置100は、コントローラを備えてもよい。
[Embodiment 1]
An example of the apparatus and method of Embodiment 1 will be described below. The configuration of the apparatus 100 of the first embodiment is schematically shown in FIG. The apparatus 100 includes a container 10, a separator 13, a first electrode 21, a second electrode 22, and a power source 23. The apparatus 100 may include a controller.
 容器10は、セパレータ13によって、第1の槽11と第2の槽12とに仕切られている。第2の槽12には、流路14aと流路14bとが接続されている。流路14a、流路14b、および第2の槽12は、1つの流路14を形成している。第2の槽12は、2つの流入口12cおよび流出口12dを有する。流入口12cおよび流出口12dは、接続部品12eによって、接続の解除が可能な状態で流路14aおよび14bに接続されている。図2以降の図では、接続部品12eの図示を省略する。なお、本発明の装置では、流入口12cおよび流出口12dが、接続部品を用いることなく、流路に直接接続されていてもよい。 The container 10 is divided into a first tank 11 and a second tank 12 by a separator 13. A flow path 14 a and a flow path 14 b are connected to the second tank 12. The flow path 14 a, the flow path 14 b, and the second tank 12 form one flow path 14. The second tank 12 has two inlets 12c and outlets 12d. The inflow port 12c and the outflow port 12d are connected to the flow paths 14a and 14b by the connection component 12e in a state where the connection can be released. In FIG. 2 and subsequent figures, illustration of the connection component 12e is omitted. In the device of the present invention, the inflow port 12c and the outflow port 12d may be directly connected to the flow path without using connection parts.
 一例では、流路14aを第2の槽12の下方に接続し流路14bを第2の槽の上方に接続し、流路14aから水性液体30を導入し、第2の槽12内で処理された水性液体30を流路14bから排出する。この場合には、流入口12cを通って水性液体30が第2の槽12に流入し、流出口12dを通って水性液体30が流路14bに流出する。この場合には、第2の槽12の下方から上方に向かって水性液体が流れるため、第2の電極22の表面で発生したガスが第2の電極22の表面に滞留することを抑制できる。流路14aおよび/または流路14bには、必要に応じてポンプおよび/またはバルブが設置される。また、第2の槽12および/または流路14(通常は、第2の槽12の下流側の流路)には、計測器(ORP計、pH計、イオン濃度計、導電率計、溶存酸素計、溶存水素計など)が設置されていてもよい。第1の槽11は開口部11aによって大気に開放されている。一方、第2の槽12は大気から遮断されている。槽11および12には、水性液体30が配置される。水性液体30が開口部11aから外部に漏れることを防止するための手段が、開口部11aに設けられていてもよい。たとえば、開口部11aに気液分離膜が配置されていてもよい。気液分離膜には、公知のものを用いることができる。 In one example, the flow path 14 a is connected to the lower side of the second tank 12, the flow path 14 b is connected to the upper side of the second tank, the aqueous liquid 30 is introduced from the flow path 14 a, and the treatment is performed in the second tank 12. The aqueous liquid 30 is discharged from the flow path 14b. In this case, the aqueous liquid 30 flows into the second tank 12 through the inlet 12c, and the aqueous liquid 30 flows out into the flow path 14b through the outlet 12d. In this case, since the aqueous liquid flows upward from below the second tank 12, it is possible to suppress the gas generated on the surface of the second electrode 22 from staying on the surface of the second electrode 22. A pump and / or a valve is installed in the flow path 14a and / or the flow path 14b as necessary. Further, in the second tank 12 and / or the flow path 14 (usually, the flow path on the downstream side of the second tank 12), measuring instruments (ORP meter, pH meter, ion concentration meter, conductivity meter, dissolved meter) An oxygen meter, a dissolved hydrogen meter, etc.) may be installed. The first tank 11 is opened to the atmosphere by the opening 11a. On the other hand, the second tank 12 is cut off from the atmosphere. An aqueous liquid 30 is disposed in the tanks 11 and 12. Means for preventing the aqueous liquid 30 from leaking outside from the opening 11a may be provided in the opening 11a. For example, a gas-liquid separation membrane may be disposed in the opening 11a. A well-known thing can be used for a gas-liquid separation membrane.
 図1に示すように、槽11および槽12のそれぞれに、排液路15および16が接続されていてもよい。排液路15および16のそれぞれには、バルブ15aおよびバルブ16aが設けられている。バルブ15aを開けることによって槽11内の水性液体30を排出できる。バルブ16aを開けることによって槽12内の水性液体30を排出できる。槽11内の水性液体30または槽12内の水性液体30を排出することによって、水性液体30のpHを調整することが可能である。 As shown in FIG. 1, drainage channels 15 and 16 may be connected to the tank 11 and the tank 12, respectively. A valve 15a and a valve 16a are provided in each of the drainage passages 15 and 16. The aqueous liquid 30 in the tank 11 can be discharged by opening the valve 15a. The aqueous liquid 30 in the tank 12 can be discharged by opening the valve 16a. The pH of the aqueous liquid 30 can be adjusted by discharging the aqueous liquid 30 in the tank 11 or the aqueous liquid 30 in the tank 12.
 図2に示すように、本発明の装置は、貯水槽24を備えてもよい。第2の槽12と貯水槽24とは、流路14aおよび流路14bによって接続される。第2の槽12、貯水槽24、流路14a、および流路14bは、1つの循環路を形成する。流路14aおよび/または流路14bに配置されるポンプ(図示せず)によって、貯水槽24内の水性液体30は第2の槽12に送られ、処理された後に貯水槽24に戻される。すなわち、水性液体30は、第2の槽12と貯水槽24とを含む循環路を循環する。この循環路は、大気から遮断されている。貯水槽24には、バルブ24aが設けられている。貯水槽24内のガスの圧力が高くなりすぎたときには、バルブ24aを開放してもよい。これによって、大気を貯水槽24内に流入させることなく、貯水槽24内のガスの圧力を下げることができる。なお、貯水槽24を浴槽に置き換えることも可能である。この場合には、浴槽内の水性液体30は、大気に開放される。 As shown in FIG. 2, the apparatus of the present invention may include a water tank 24. The 2nd tank 12 and the water storage tank 24 are connected by the flow path 14a and the flow path 14b. The 2nd tank 12, the water storage tank 24, the flow path 14a, and the flow path 14b form one circulation path. The aqueous liquid 30 in the water storage tank 24 is sent to the second tank 12 by a pump (not shown) disposed in the flow path 14a and / or the flow path 14b, and is returned to the water storage tank 24 after being processed. That is, the aqueous liquid 30 circulates in the circulation path including the second tank 12 and the water storage tank 24. This circuit is isolated from the atmosphere. The water storage tank 24 is provided with a valve 24a. When the pressure of the gas in the water storage tank 24 becomes too high, the valve 24a may be opened. Thereby, the pressure of the gas in the water storage tank 24 can be lowered without causing the air to flow into the water storage tank 24. It is also possible to replace the water tank 24 with a bathtub. In this case, the aqueous liquid 30 in the bathtub is opened to the atmosphere.
 次に、装置100の動作について説明する。電極21および22は、液体30に浸漬される。電気分解工程は、流路14aから連続的に水性液体30が供給され、且つ、流路14bから連続的に水性液体30が排出される状態で行われる。すなわち、電気分解工程において、第2の槽12の水性液体30は通液状態であり、一方、第1の槽11の水性液体30は通液状態ではない。ただし、槽11および12の水性液体30、およびそれに含まれるイオン(陽イオンおよび陰イオン)は、セパレータ13を通過できる。 Next, the operation of the apparatus 100 will be described. The electrodes 21 and 22 are immersed in the liquid 30. The electrolysis process is performed in a state where the aqueous liquid 30 is continuously supplied from the flow path 14a and the aqueous liquid 30 is continuously discharged from the flow path 14b. That is, in the electrolysis process, the aqueous liquid 30 in the second tank 12 is in a liquid-permeable state, while the aqueous liquid 30 in the first tank 11 is not in a liquid-permeable state. However, the aqueous liquid 30 in the tanks 11 and 12 and the ions (cations and anions) contained therein can pass through the separator 13.
 第2の槽12における処理によって水性液体30のORPを低下させるには、第1の電極21と第2の電極22との間に、第1の電極21がアノードとなるように電圧を印加する。この電圧印加によって、図3に示すように、第1の電極21(アノード)の表面で酸素ガスおよび水素イオンが発生し、第2の電極22(カソード)の表面で水素ガスおよび水酸化物イオンが発生する。セパレータ13は、ガス(気泡)をブロックする。すなわち、セパレータ13は、電極の表面で発生したガスが槽11と槽12との間を移動することを抑制する。第1の電極21で発生した酸素ガスは、開口部11aから大気中に放出される。一方、第2の槽12内の水性液体30、および、流路14bから排出される水性液体30中の溶存水素濃度が高まる。その結果、ORPが低い水性液体30が得られる。第2の槽12を大気から遮断することによって、第2の電極22で発生した水素ガスが水性液体30に溶解する量を多くすることが可能である。 In order to reduce the ORP of the aqueous liquid 30 by the treatment in the second tank 12, a voltage is applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes an anode. . By this voltage application, as shown in FIG. 3, oxygen gas and hydrogen ions are generated on the surface of the first electrode 21 (anode), and hydrogen gas and hydroxide ions are generated on the surface of the second electrode 22 (cathode). Will occur. The separator 13 blocks gas (bubbles). That is, the separator 13 suppresses the gas generated on the surface of the electrode from moving between the tank 11 and the tank 12. Oxygen gas generated in the first electrode 21 is released into the atmosphere from the opening 11a. On the other hand, the dissolved hydrogen concentration in the aqueous liquid 30 in the 2nd tank 12 and the aqueous liquid 30 discharged | emitted from the flow path 14b increases. As a result, an aqueous liquid 30 having a low ORP is obtained. By blocking the second tank 12 from the atmosphere, it is possible to increase the amount of hydrogen gas generated in the second electrode 22 dissolved in the aqueous liquid 30.
 一方、第2の槽12における処理によって水性液体30のORPを上昇させるには、第1の電極21と第2の電極22との間に、第1の電極21がカソードとなるように電圧を印加する。この電圧印加によって、図4に示すように、第1の電極21(カソード)の表面で水素ガスおよび水酸化物イオンが発生し、第2の電極22(アノード)の表面で酸素ガスおよび水素イオンが発生する。セパレータ13は、電極の表面で発生したガスが槽11と槽12との間を移動することを抑制する。第1の電極21で発生した水素ガスは、開口部11aから大気中に放出される。一方、第2の槽12内の水性液体30、および、流路14bから排出される水性液体30中の溶存酸素濃度が高まる。その結果、ORPが高い水性液体30が得られる。第2の槽12を大気から遮断することによって、第2の電極22で発生した酸素ガスが水性液体30に溶解する量を多くすることが可能である。 On the other hand, in order to raise the ORP of the aqueous liquid 30 by the treatment in the second tank 12, a voltage is applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes a cathode. Apply. By this voltage application, as shown in FIG. 4, hydrogen gas and hydroxide ions are generated on the surface of the first electrode 21 (cathode), and oxygen gas and hydrogen ions are generated on the surface of the second electrode 22 (anode). Occurs. The separator 13 suppresses the gas generated on the surface of the electrode from moving between the tank 11 and the tank 12. The hydrogen gas generated at the first electrode 21 is released into the atmosphere from the opening 11a. On the other hand, the dissolved oxygen concentration in the aqueous liquid 30 in the 2nd tank 12 and the aqueous liquid 30 discharged | emitted from the flow path 14b increases. As a result, an aqueous liquid 30 having a high ORP is obtained. By blocking the second tank 12 from the atmosphere, it is possible to increase the amount of oxygen gas generated in the second electrode 22 dissolved in the aqueous liquid 30.
 第2の槽12で処理された水性液体30のpHは、電気分解反応による単位時間あたりの水素イオンおよび水酸化物イオンの発生量(電気分解反応による単位時間あたりの水素イオンおよび水酸化物イオンの変化量)や、それらのイオンが単位時間あたりにセパレータを通過する量や、第2の槽12で処理された水性液体の体積(体積V2)によって変化する。電極間を流れる電流(単位時間に電極間を流れる電荷量)が大きくなるほど、単位時間あたりの水素イオンおよび水酸化物イオンの発生量が多くなる。そのため、電極21と電極22との間を流れる電流と、単位時間にセパレータを通過するイオンの量との比を変えることによって、第2の槽12で処理された水性液体30のpHを調整することが可能である。電極21と電極22との間を流れる電流は、たとえば、電極間に印加する電圧を変えることによって、変化させることができる。単位時間あたりにセパレータを通過する水素イオンおよび水酸化物イオンの量は、(体積V2)/(体積V1)の値や、電極とセパレータとの距離や、セパレータの面積などによって変えることができる。体積V2の値は、貯水槽24に配置される水性液体30の量を変えることによって、変えることができる。 The pH of the aqueous liquid 30 treated in the second tank 12 depends on the amount of hydrogen ions and hydroxide ions generated per unit time by the electrolysis reaction (hydrogen ions and hydroxide ions per unit time by the electrolysis reaction). Change amount), the amount of ions passing through the separator per unit time, and the volume (volume V2) of the aqueous liquid processed in the second tank 12. As the current flowing between the electrodes (the amount of charge flowing between the electrodes per unit time) increases, the amount of hydrogen ions and hydroxide ions generated per unit time increases. Therefore, the pH of the aqueous liquid 30 treated in the second tank 12 is adjusted by changing the ratio between the current flowing between the electrode 21 and the electrode 22 and the amount of ions passing through the separator per unit time. It is possible. The current flowing between the electrodes 21 and 22 can be changed, for example, by changing the voltage applied between the electrodes. The amount of hydrogen ions and hydroxide ions passing through the separator per unit time can be changed by the value of (volume V2) / (volume V1), the distance between the electrode and the separator, the area of the separator, and the like. The value of the volume V <b> 2 can be changed by changing the amount of the aqueous liquid 30 disposed in the water tank 24.
 第1の槽11内の水性液体30を排液路15から排出した場合、第1の槽11から第2の槽12に移動する水素イオンまたは水酸化物イオンの量が減る。そのため、第2の槽12におけるpHの変化を大きくしたい場合には、第1の槽11内の水性液体30を排出すればよい。第1の槽11内の水性液体30は、セパレータ13を介して第2の槽12から補充される。 When the aqueous liquid 30 in the first tank 11 is discharged from the drainage path 15, the amount of hydrogen ions or hydroxide ions moving from the first tank 11 to the second tank 12 is reduced. Therefore, when it is desired to increase the change in pH in the second tank 12, the aqueous liquid 30 in the first tank 11 may be discharged. The aqueous liquid 30 in the first tank 11 is replenished from the second tank 12 via the separator 13.
 単位時間にセパレータを通過するイオンの量は、イオンが通過可能な面積を遮蔽板を用いて変えることによって、変化させてもよい。遮蔽板を備える装置の例を、図5Aに示す。 The amount of ions that pass through the separator per unit time may be changed by changing the area through which ions can pass using a shielding plate. An example of an apparatus including a shielding plate is shown in FIG. 5A.
 図5Aの装置100aは、遮蔽板51を備える点のみが装置100と異なるため、重複する説明は省略する。装置100aの遮蔽板51は、セパレータ13と平行に移動可能である。単位時間にセパレータ13を通過するイオンの量を多くする場合、図5Aに示すように、遮蔽板51はセパレータ13を遮蔽しないか、ほとんど遮蔽しない位置に置かれる。一方、単位時間にセパレータ13を通過するイオンの量を少なくする場合、図5Bに示すように、遮蔽板51はセパレータ13の一部を遮蔽する位置に置かれる。 5A is different from the apparatus 100 only in that the apparatus 100a includes the shielding plate 51, and thus a duplicate description is omitted. The shielding plate 51 of the device 100a is movable in parallel with the separator 13. When increasing the amount of ions passing through the separator 13 per unit time, the shielding plate 51 is placed at a position where the separator 13 is not shielded or hardly shielded as shown in FIG. 5A. On the other hand, when reducing the amount of ions passing through the separator 13 per unit time, the shielding plate 51 is placed at a position where a part of the separator 13 is shielded, as shown in FIG. 5B.
 第2の槽12で処理された水性液体30のpHは、第1の槽11内の水性液体30の量と、第2の槽12で処理される水性液体30の量との比を変えることによって調整することも可能である。 The pH of the aqueous liquid 30 treated in the second tank 12 changes the ratio between the amount of the aqueous liquid 30 in the first tank 11 and the amount of the aqueous liquid 30 treated in the second tank 12. It is also possible to adjust by.
 図2の装置において、第1の電極21と第2の電極22との間に、第1の電極21がアノードとなるように電圧を印加することによって、pHが7の水を電気分解する場合を考える。ここで、上記式(1)および(2)以外の反応は起こらないものと仮定する。また、セパレータ13をイオンが通過しないと仮定する。また、第1の槽11内の水のpHは均一であり、第2の槽12で処理された水(すなわち、第2の槽12および貯水槽24を含む循環路中の水)のpHも均一であると仮定する。この場合、第1の槽11中の水は、式(1)の反応によって水素イオンが増加し、酸性となる。一方、第2の槽12中の水は、式(2)の反応によって水酸化物イオンが増加し、アルカリ性となる。上記仮定のもとでは、第1の槽11中で増加した水素イオンの量と、第2の槽12中で増加した水酸化物イオンの量とは同じである。そのため、第2の槽12で処理される水の量が、第1の槽11中の水の量とが同じ場合には、第1の槽11の水のpHの変化量と、第2の槽12で処理された水のpHの変化量とが等しくなる。たとえば、第1の槽11の水がpH7から4に変化した場合、第2の槽12の水はpH7から10に変化する。一方、第2の槽12で処理される水の量が、第1の槽11中の水の量の1000倍である場合、第1の槽11の水がpH7から4に変化しても、第2の槽12の水のpHは8以下である。 In the apparatus of FIG. 2, water having a pH of 7 is electrolyzed by applying a voltage between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes an anode. think of. Here, it is assumed that reactions other than the above formulas (1) and (2) do not occur. It is assumed that no ions pass through the separator 13. Further, the pH of the water in the first tank 11 is uniform, and the pH of the water treated in the second tank 12 (that is, the water in the circulation path including the second tank 12 and the water storage tank 24) is also set. Assume uniform. In this case, the water in the first tank 11 becomes acidic due to an increase in hydrogen ions due to the reaction of the formula (1). On the other hand, the water in the second tank 12 becomes alkaline due to an increase in hydroxide ions due to the reaction of the formula (2). Under the above assumption, the amount of hydrogen ions increased in the first tank 11 and the amount of hydroxide ions increased in the second tank 12 are the same. Therefore, when the amount of water treated in the second tank 12 is the same as the amount of water in the first tank 11, the amount of change in the pH of the water in the first tank 11 and the second The amount of change in pH of the water treated in the tank 12 becomes equal. For example, when the water in the first tank 11 changes from pH 7 to 4, the water in the second tank 12 changes from pH 7 to 10. On the other hand, when the amount of water to be treated in the second tank 12 is 1000 times the amount of water in the first tank 11, even if the water in the first tank 11 changes from pH 7 to 4, The pH of the water in the second tank 12 is 8 or less.
 実際の装置では、セパレータ13をイオンが通過するため、上記の計算は成り立たない。しかし、イオンがセパレータ13を通過する場合でも、第2の槽12で処理される水性液体30の量を多くすることによって、第2の槽12で処理される水性液体30のpHの変動を抑制できる。また、第1の槽11の容積を小さくすることによって、第2の槽12で処理された水性液体30のpHの変動を小さくすることが可能である。逆に、第1の槽11の容積を大きくすることによって、第2の槽12で処理された水性液体30のpHの変動を大きくすることが可能である。また、第2の槽12で処理される水性液体の量を少なくすることによって、第2の槽12で処理された水性液体30のpHの変動を大きくすることが可能である。 In the actual apparatus, since the ions pass through the separator 13, the above calculation does not hold. However, even when ions pass through the separator 13, by increasing the amount of the aqueous liquid 30 processed in the second tank 12, the fluctuation of the pH of the aqueous liquid 30 processed in the second tank 12 is suppressed. it can. Further, by reducing the volume of the first tank 11, it is possible to reduce the variation in pH of the aqueous liquid 30 processed in the second tank 12. Conversely, by increasing the volume of the first tank 11, it is possible to increase the variation in pH of the aqueous liquid 30 treated in the second tank 12. Further, by reducing the amount of the aqueous liquid processed in the second tank 12, it is possible to increase the variation in pH of the aqueous liquid 30 processed in the second tank 12.
 [実施形態2]
 実施形態2では、本発明の装置の別の一例について説明する。実施形態2の装置200は、管210および細管220を備える点のみが実施形態1の装置100と異なるため、重複する説明は省略する。
[Embodiment 2]
In Embodiment 2, another example of the apparatus of the present invention will be described. The apparatus 200 according to the second embodiment is different from the apparatus 100 according to the first embodiment only in that the apparatus 200 includes the tube 210 and the thin tube 220, and therefore, a duplicate description is omitted.
 装置200の構成を図6に模式的に示す。装置200は、装置100に加えて、第1の槽11に接続された管210および細管220を備える。図6の例では、管210は、第1の槽11の上方に接続されている。管210は、鉛直方向とほぼ平行に配置される複数の直線状の管210aおよび210bと、それらを直列に接続する管210cとによって構成されている。管210は、下方に向かう方向および上方に向かう方向に蛇行を繰り返している。第1の槽11側から管210の出口に向かって水性液体30が流れる場合、管210aの部分では水性液体30は下方に向かい、管210bの部分では水性液体30は上方に向かう。管210は、その内部が水性液体30に満たされているときに、気泡が内部を移動できる太さであることが好ましい。また、管210の一例では、管210aの内面が撥水性であり、管210bの内面が親水性である。 The configuration of the apparatus 200 is schematically shown in FIG. The device 200 includes a tube 210 and a thin tube 220 connected to the first tank 11 in addition to the device 100. In the example of FIG. 6, the pipe 210 is connected above the first tank 11. The pipe 210 includes a plurality of linear pipes 210a and 210b arranged substantially parallel to the vertical direction, and a pipe 210c connecting them in series. The pipe 210 repeats meandering in the downward direction and the upward direction. When the aqueous liquid 30 flows from the first tank 11 side toward the outlet of the tube 210, the aqueous liquid 30 is directed downward in the portion of the tube 210a, and the aqueous liquid 30 is directed upward in the portion of the tube 210b. The tube 210 is preferably thick enough to allow bubbles to move inside when the interior is filled with the aqueous liquid 30. In one example of the tube 210, the inner surface of the tube 210a is water repellent and the inner surface of the tube 210b is hydrophilic.
 図6の構成において、管210aの内面が撥水性であり、管210bの内面が親水性であり、管210の内径が適切な範囲にあると仮定する。この場合において、一定の体積を有するまとまった水性液体(A)が管(T)内を移動する状態を考える。管210aの部分を水性液体(A)が下方(下流側)に移動する場合、管210aの内面が撥水性であるため、水性液体(A)が管210aの断面全体を占めた状態で移動することが抑制される。そのため、水性液体(A)の移動に伴い、水性液体(A)の下側にあるガスが管210aの内部を上昇する。その結果、管210aの部分でサイフォン効果が生じることを防止できる。一方、第1の槽で発生したガスが管210bの部分を上方(下流側)に移動する場合、管210bの内面が親水性であるため、ガスが管210bの断面全体を占めた状態で移動することが抑制される。そのため、ガスの移動に伴い、ガスの上方にある水性液体(A)が管210bの内部を下降する。その結果、水性液体(A)の下流側への移動を最小にしながら、第1の槽で発生したガスを管210から排出できる。 6, it is assumed that the inner surface of the tube 210a is water repellent, the inner surface of the tube 210b is hydrophilic, and the inner diameter of the tube 210 is in an appropriate range. In this case, a state is considered in which the collected aqueous liquid (A) having a certain volume moves in the tube (T). When the aqueous liquid (A) moves downward (downstream) through the portion of the tube 210a, the inner surface of the tube 210a is water-repellent, so the aqueous liquid (A) moves in a state that occupies the entire cross section of the tube 210a. It is suppressed. Therefore, as the aqueous liquid (A) moves, the gas below the aqueous liquid (A) rises inside the tube 210a. As a result, it is possible to prevent the siphon effect from occurring in the tube 210a. On the other hand, when the gas generated in the first tank moves upward (downstream) in the portion of the tube 210b, since the inner surface of the tube 210b is hydrophilic, the gas moves while occupying the entire cross section of the tube 210b. Is suppressed. Therefore, as the gas moves, the aqueous liquid (A) above the gas descends inside the tube 210b. As a result, the gas generated in the first tank can be discharged from the pipe 210 while minimizing the movement of the aqueous liquid (A) to the downstream side.
 管210の端部には、細管220が接続されている。細管220は、その内部の断面積が管210の内部の断面積よりも小さい。細管220の内部の流体抵抗が大きいため、管210内における水性液体30の急激な移動が抑制される。なお、細管220を省略してもよいし、細管220の代わりに流体抵抗が大きい物質(たとえば多孔質)を用いてもよい。また、管210または細管220の途中または端部に、活性炭フィルタを配置してもよい。塩素イオンを含む水性液体を電気分解することによって第2の槽でORPが低い水性液体(還元水)を生成する場合には、第1の槽で塩素ガスが生成することがある。塩素ガスが生成しても、活性炭フィルタによって塩素臭を除去することが可能である。 A narrow tube 220 is connected to the end of the tube 210. The thin tube 220 has an internal cross-sectional area smaller than the internal cross-sectional area of the tube 210. Since the fluid resistance inside the narrow tube 220 is large, rapid movement of the aqueous liquid 30 in the tube 210 is suppressed. Note that the thin tube 220 may be omitted, or a material having a high fluid resistance (for example, porous) may be used instead of the thin tube 220. Moreover, you may arrange | position an activated carbon filter in the middle of the pipe | tube 210 or the thin pipe | tube 220, or an edge part. In the case where an aqueous liquid (reduced water) having a low ORP is generated in the second tank by electrolyzing an aqueous liquid containing chlorine ions, chlorine gas may be generated in the first tank. Even if chlorine gas is generated, it is possible to remove the chlorine odor by the activated carbon filter.
 なお、管210aの下側と管210bの下側とを結ぶ管210cには、排液弁が形成されていてもよい。排液弁によって、管210内に存在する水性液体30を定期的に排出できる。これによって、管210内の水性液体30の水質が悪化することを抑制できる。 A drain valve may be formed in the pipe 210c that connects the lower side of the pipe 210a and the lower side of the pipe 210b. The aqueous liquid 30 existing in the pipe 210 can be discharged periodically by the drain valve. This can suppress deterioration of the water quality of the aqueous liquid 30 in the pipe 210.
 第1の槽11内の圧力が高まった場合、第1の槽11内の水性液体30は、管210内に押し出され、管210内を移動する。管210aが充分に太い場合、管210a内を水性液体30が落下する一方で、管210aの下方の気体が上昇する。そのため、管210aを水性液体30が落下する際に、サイフォン効果が生じない。管210の水性液体30は、圧力の均衡がとれる位置で停止する。その場合の一例を図7に示す。 When the pressure in the first tank 11 increases, the aqueous liquid 30 in the first tank 11 is pushed into the pipe 210 and moves in the pipe 210. When the tube 210a is sufficiently thick, the aqueous liquid 30 falls in the tube 210a, while the gas below the tube 210a rises. Therefore, the siphon effect does not occur when the aqueous liquid 30 falls on the tube 210a. The aqueous liquid 30 in the tube 210 stops at a position where the pressure is balanced. An example in that case is shown in FIG.
 図7の例では、第1の槽11内の圧力によって、管210a内の水性液体30が押し下げられ、管210a内は空気で満たされている。一方、複数の管210bのうちの一部は、水性液体30で満たされている。管210b内を満たす水性液体30によって生じる圧力と、第1の槽11内の圧力との間で均衡がとられている。図7に示す状態では、複数の管210bに存在する水性液体30によって生じる重力の合計が、第1の槽11内の圧力とつり合っている。 7, the aqueous liquid 30 in the tube 210a is pushed down by the pressure in the first tank 11, and the tube 210a is filled with air. On the other hand, some of the plurality of tubes 210 b are filled with the aqueous liquid 30. There is a balance between the pressure generated by the aqueous liquid 30 filling the tube 210b and the pressure in the first tank 11. In the state shown in FIG. 7, the total gravity generated by the aqueous liquid 30 present in the plurality of tubes 210 b is balanced with the pressure in the first tank 11.
 なお、管210は、コイル状(たとえば楕円状)に巻かれたものであってもよい。また、管210は、第1の槽11の上に直線状に伸びるものであってもよい。しかし、下降と上昇とを交互に繰り返す管を用いることによって、装置を小型化できる。 Note that the tube 210 may be wound in a coil shape (for example, an elliptical shape). Further, the tube 210 may extend linearly on the first tank 11. However, the apparatus can be miniaturized by using a tube that alternates between descending and ascending alternately.
 本発明の装置は、開放された貯水槽(たとえば浴槽)に接続されていてもよい。その場合の一例を図8に模式的に示し、他の一例を図9に模式的に示す。なお、図8および図9では、本発明の装置のうち、第1および第2の槽11および12のみを示すが、その他の部分は、上述した構成(たとえば実施形態1および2で説明した構成)を適用できる。 The apparatus of the present invention may be connected to an open water tank (for example, a bathtub). An example in that case is schematically shown in FIG. 8, and another example is schematically shown in FIG. 8 and 9, only the first and second tanks 11 and 12 of the apparatus of the present invention are shown, but the other parts are the above-described configurations (for example, the configurations described in the first and second embodiments). ) Can be applied.
 図8の形態では、本発明の装置の第2の槽12を含む流路81が、浴槽82に接続されている。第2の槽12で処理された水性液体は、浴槽82に注ぎ込まれる。流路81は、循環路を形成していない。流路81上には、水性液体を移動させるためのポンプ83が配置されている。なお、槽内の急激な圧力変動を防止するため、ポンプ83を起動する際には、低速で起動することが好ましい。なお、第2の槽12で処理された水性液体を、シャワーの水または湯として用いてもよい。 8, the flow path 81 including the second tank 12 of the apparatus of the present invention is connected to the bathtub 82. The aqueous liquid processed in the second tank 12 is poured into the bathtub 82. The flow path 81 does not form a circulation path. A pump 83 for moving the aqueous liquid is disposed on the flow path 81. In order to prevent sudden pressure fluctuations in the tank, it is preferable to start the pump 83 at a low speed. The aqueous liquid treated in the second tank 12 may be used as shower water or hot water.
 図9の形態では、流路81と浴槽82とが、循環路を形成している。なお、第2の槽12は、流路81の一部を構成している。図9の形態では、第2の槽12で処理された水性液体が浴槽82に注ぎ込まれるとともに、浴槽82内の水性液体が第2の槽12に導入され、処理される。流路81上には、ポンプ83と、フィルタ84とが配置されている。フィルタ84は、浴槽82内のゴミがポンプ83に導入されることを防止する。 9, the flow path 81 and the bathtub 82 form a circulation path. Note that the second tank 12 constitutes a part of the flow path 81. In the form of FIG. 9, the aqueous liquid processed in the second tank 12 is poured into the bathtub 82, and the aqueous liquid in the bathtub 82 is introduced into the second tank 12 and processed. A pump 83 and a filter 84 are disposed on the flow path 81. The filter 84 prevents dust in the bathtub 82 from being introduced into the pump 83.
 なお、本発明の装置は、水素ガスが一定の空間に貯まることを防止する機構や、電気分解で発生する水素ガスを安全に燃焼させる機構、自然発火しない濃度に水素ガスを希釈してから大気に放出する機構を備えてもよい。そのような機構を有する一例を図13に示す。図13の装置100bの第2の槽12は、排気手段を備える貯水槽24に接続されている。装置100bは、貯水槽24の一部が異なる点を除いて図2に示した装置100と同じ構成とすることができるため、重複する部分の説明および図示を省略する場合がある。 The apparatus of the present invention has a mechanism for preventing hydrogen gas from accumulating in a certain space, a mechanism for safely burning hydrogen gas generated by electrolysis, and an atmosphere after diluting the hydrogen gas to a concentration that does not ignite spontaneously. A mechanism for releasing the battery may be provided. An example having such a mechanism is shown in FIG. The 2nd tank 12 of the apparatus 100b of FIG. 13 is connected to the water storage tank 24 provided with an exhaust means. Since the apparatus 100b can have the same configuration as the apparatus 100 shown in FIG. 2 except that a part of the water storage tank 24 is different, description and illustration of overlapping parts may be omitted.
 装置100bの第2の槽12は、流路14bによって貯水槽24に接続されている。第2の槽12で処理された水性液体30は、流路14bを通って貯水槽24に貯められる。貯水槽24に貯められた水性液体30は、流路24cから取り出されて利用される。流路(流路14a、流路14bおよび流路24c)には、必要に応じて、各種の機器(ポンプ、バルブ、フィルタなど)が設置される。流路14aは、循環路を構成するように貯水槽24に接続されてもよい。また、流路24cはさらに別の貯水槽に接続されていてもよい。その場合には、流路14aを当該別の貯水槽に接続して循環路を構成してもよい。 The second tank 12 of the apparatus 100b is connected to the water storage tank 24 by a flow path 14b. The aqueous liquid 30 processed in the second tank 12 is stored in the water storage tank 24 through the flow path 14b. The aqueous liquid 30 stored in the water storage tank 24 is taken out from the flow path 24c and used. Various devices (pumps, valves, filters, etc.) are installed in the channels (channel 14a, channel 14b, and channel 24c) as necessary. The flow path 14a may be connected to the water storage tank 24 so as to constitute a circulation path. Moreover, the flow path 24c may be connected to another water storage tank. In that case, the flow path 14a may be connected to the other water storage tank to constitute a circulation path.
 貯水槽24の上方には、排気管24bが設けられている。排気管24bは、大気が貯水槽24内に流入することを抑制する。一方、貯水槽24内の上方の空間に存在するガスの圧力が大気圧よりも高くなったときには、貯水槽24内のガスは排気管24を通って大気中に放出される。排気管24bは、少なくとも電気分解を行っている間は、大気が貯水槽24内に流入することを抑制する。大気が貯水槽24内に流入することを抑制するために、排気管24bを細くしてもよく、たとえば、排気管24bの先端を細くしてもよい。また、大気が貯水槽24内に流入することを防止するために、排気管24bの先端または途中に、貯水槽24内のガスの圧力が大気圧よりも高くなったときのみに開放する弁を設けてもよい。 An exhaust pipe 24 b is provided above the water storage tank 24. The exhaust pipe 24 b suppresses air from flowing into the water storage tank 24. On the other hand, when the pressure of the gas existing in the upper space in the water storage tank 24 becomes higher than the atmospheric pressure, the gas in the water storage tank 24 is released into the atmosphere through the exhaust pipe 24. The exhaust pipe 24b suppresses air from flowing into the water storage tank 24 at least during electrolysis. In order to suppress the inflow of air into the water storage tank 24, the exhaust pipe 24b may be narrowed, for example, the tip of the exhaust pipe 24b may be narrowed. In order to prevent the atmosphere from flowing into the water storage tank 24, a valve that opens only when the pressure of the gas in the water storage tank 24 becomes higher than the atmospheric pressure is provided at the tip or middle of the exhaust pipe 24b. It may be provided.
 第2の電極22をカソードとして電気分解を行う場合、第2の電極22で処理された水性液体30は水素ガスを含む。そのため、貯水槽24の上部には水素ガスが貯まる。一方、排気管24bによって、貯水槽24内に大気が流入することが抑制される。そのため、貯水槽24内の上部は、水素ガス濃度が高い状態に維持される。貯水槽24の上部の水素ガス濃度が高い限り、貯水槽24内の水性液体30の溶存水素濃度を高くしておくことが可能である。そのため、貯水槽24内で水性液体30のORPが上昇することを抑制できる。 When electrolysis is performed using the second electrode 22 as a cathode, the aqueous liquid 30 treated with the second electrode 22 contains hydrogen gas. Therefore, hydrogen gas is stored in the upper part of the water storage tank 24. On the other hand, the exhaust pipe 24b prevents air from flowing into the water storage tank 24. Therefore, the upper part in the water storage tank 24 is maintained in a state where the hydrogen gas concentration is high. As long as the hydrogen gas concentration in the upper part of the water storage tank 24 is high, the dissolved hydrogen concentration of the aqueous liquid 30 in the water storage tank 24 can be increased. Therefore, it is possible to suppress the ORP of the aqueous liquid 30 from rising in the water storage tank 24.
 排気管24bを不燃性の材料(たとえば金属)で形成し、且つ、排気管24bの先端を細くしてもよい。この構成によれば、排気管24bから放出される水素ガスが大気と混ざりあったときに自然発火したとしても、安全に水素ガスを燃焼させることが可能である。また、排気管24bから放出される水素ガスの濃度を自然発火しない濃度にまで下げるための機構を、本発明の装置は有してもよい。たとえば、排気管24bの途中に、排気管24bの下流側(大気側)に向かって強制的に多量の大気を送風するための装置(送風機)を接続してもよい。その場合には、送風機から送られる大気が貯水槽24内に流入することを防止するために、送風機の接続部と貯水槽24との間の排気管24bに、下流側(大気側)に向かってのみ開放する弁を設けてもよい。 The exhaust pipe 24b may be formed of a non-combustible material (for example, metal), and the tip of the exhaust pipe 24b may be narrowed. According to this configuration, even if the hydrogen gas released from the exhaust pipe 24b is spontaneously ignited when mixed with the atmosphere, the hydrogen gas can be safely burned. In addition, the apparatus of the present invention may have a mechanism for reducing the concentration of hydrogen gas released from the exhaust pipe 24b to a concentration that does not spontaneously ignite. For example, an apparatus (blower) for forcibly blowing a large amount of air toward the downstream side (atmosphere side) of the exhaust pipe 24b may be connected in the middle of the exhaust pipe 24b. In that case, in order to prevent the air sent from the blower from flowing into the water storage tank 24, the exhaust pipe 24b between the connection part of the blower and the water storage tank 24 is directed downstream (atmosphere side). A valve that only opens may be provided.
 [他の方法および装置]
 また、別の観点では、本発明は、流路を流れる水性液体の酸化還元電位を変化させる方法であって、工程(I)および(II)を含む方法に関する。工程(I)では、セパレータによって仕切られた第1および第2の槽にそれぞれ配置された第1および第2の電極を、水性液体(A)に浸漬する。工程(II)では、第1の電極と第2の電極との間に電圧を印加することによって、水性液体中(A)の水を電気分解する。この工程(II)において、第2の槽で処理される水性液体(A)の量(体積V2)が、第1の槽で処理される水性液体(A)の量(体積V1)の10倍以上である。この方法を実施するための装置は、水性液体(A)の酸化還元電位を変化させる装置であって、水性液体(A)が配置される容器と、当該容器を第1の槽と第2の槽とに仕切るセパレータと、第1の槽に配置された第1の電極と、第2の槽に配置された第2の電極と、第1の電極と第2の電極との間に電圧を印加するための電源とを備える。そして、1つの実施形態では、第2の槽で処理される水性液体(A)の量(体積V2)が、第1の槽で処理される水性液体(A)の量(体積V1)の10倍以上である。この実施形態には、上述した本発明の実施形態のうち、体積V2が体積V1の10倍以上であるものが含まれる。また、この実施形態には、後述する図10に示す実施形態が含まれる。また、後述する図11に示す実施形態のうち、体積V2が体積V1の10倍以上であるものが含まれる。体積V1および体積V2の説明、ならびにそれらの近似については、上述したため重複する説明は省略する。
[Other methods and apparatuses]
In another aspect, the present invention relates to a method for changing the oxidation-reduction potential of an aqueous liquid flowing in a flow path, which includes steps (I) and (II). In the step (I), the first and second electrodes respectively disposed in the first and second tanks partitioned by the separator are immersed in the aqueous liquid (A). In the step (II), water in the aqueous liquid (A) is electrolyzed by applying a voltage between the first electrode and the second electrode. In this step (II), the amount (volume V2) of the aqueous liquid (A) treated in the second tank is 10 times the amount (volume V1) of the aqueous liquid (A) treated in the first tank. That's it. An apparatus for carrying out this method is an apparatus for changing the oxidation-reduction potential of the aqueous liquid (A), the container in which the aqueous liquid (A) is disposed, the container in the first tank and the second tank. A separator between the tank, the first electrode disposed in the first tank, the second electrode disposed in the second tank, and a voltage between the first electrode and the second electrode. And a power supply for applying. And in one embodiment, the quantity (volume V2) of the aqueous liquid (A) processed by the 2nd tank is 10 of the quantity (volume V1) of the aqueous liquid (A) processed by the 1st tank. It is more than double. This embodiment includes the above-described embodiment of the present invention in which the volume V2 is 10 times or more the volume V1. Further, this embodiment includes an embodiment shown in FIG. Moreover, the embodiment whose volume V2 is 10 times or more of the volume V1 among embodiments shown in FIG. 11 described later is included. Since the description of the volume V1 and the volume V2 and the approximation thereof have been described above, redundant description will be omitted.
 また、別の観点では、本発明は、流路を流れる水性液体の酸化還元電位を変化させる方法であって、工程(I)および(II)を含み、工程(II)において、第1の槽で処理される水性液体(A)の量(体積V1)と、第2の槽で処理される水性液体(A)の量(体積V2)との比が可変となっている方法に関する。この方法を実施するための装置は、水性液体(A)の酸化還元電位を変化させる装置であって、水性液体(A)が配置される容器と、当該容器を第1の槽と第2の槽とに仕切るセパレータと、第1の槽に配置された第1の電極と、第2の槽に配置された第2の電極と、第1の電極と第2の電極との間に電圧を印加するための電源とを備える。そして、第1の槽で処理される水性液体(A)の量(体積V1)と、第2の槽で処理される水性液体(A)の量(体積V2)とを可変とするための構成を備える。たとえば、第1の槽に接続された流路と、第2の槽に接続された流路とを備える。この実施形態には、後述する図11に示す実施形態が含まれる。また、第1の槽の内容積および/または第2の槽の内容積を可変とする構成を備えてもよい。たとえば、第1の槽の側壁のうち、平板状の電極と平行な側壁を移動可能としてもよい。体積V1および体積V2の説明、ならびにそれらの近似については、上述したため重複する説明は省略する。 In another aspect, the present invention is a method for changing the oxidation-reduction potential of an aqueous liquid flowing in a flow path, which includes steps (I) and (II), and in step (II), the first tank This relates to a method in which the ratio of the amount (volume V1) of the aqueous liquid (A) to be treated with the amount (volume V2) of the aqueous liquid (A) to be treated in the second tank is variable. An apparatus for carrying out this method is an apparatus for changing the oxidation-reduction potential of the aqueous liquid (A), the container in which the aqueous liquid (A) is disposed, the container in the first tank and the second tank. A separator between the tank, the first electrode disposed in the first tank, the second electrode disposed in the second tank, and a voltage between the first electrode and the second electrode. And a power supply for applying. And the structure for making variable the quantity (volume V1) of the aqueous liquid (A) processed by a 1st tank, and the quantity (volume V2) of the aqueous liquid (A) processed by a 2nd tank. Is provided. For example, a flow path connected to the first tank and a flow path connected to the second tank are provided. This embodiment includes an embodiment shown in FIG. 11 described later. Moreover, you may provide the structure which makes the internal volume of a 1st tank and / or the internal volume of a 2nd tank variable. For example, among the side walls of the first tank, a side wall parallel to the flat electrode may be movable. Since the description of the volume V1 and the volume V2 and the approximation thereof have been described above, redundant description will be omitted.
 体積V2を体積V1の10倍以上とすることによって、第1の槽における水性液体(A)のpHの変化を大きくすることができ、且つ、第2の槽における水性液体(A)のpHの変化を小さくすることができる。体積V2は、体積V1の10倍~2×106倍の範囲(たとえば10倍~50000倍の範囲や200倍~15000倍の範囲)にあってもよい。 By setting the volume V2 to be 10 times or more the volume V1, the change in pH of the aqueous liquid (A) in the first tank can be increased, and the pH of the aqueous liquid (A) in the second tank can be increased. Change can be reduced. The volume V2 may be in a range of 10 times to 2 × 10 6 times the volume V1 (for example, a range of 10 times to 50000 times or a range of 200 times to 15000 times).
 図10に示す装置300は、第2の槽12が水性液体(A)の流路の一部を構成しない点で、装置100および200とは異なる。この点を除き、装置300は、装置100またはそのバリエーション(たとえば装置100aまたは装置200)と同様の構成とすることが可能であるが、図10には、最も簡単な構成を示す。 10 is different from the devices 100 and 200 in that the second tank 12 does not constitute a part of the flow path of the aqueous liquid (A). Except for this point, the apparatus 300 can have the same configuration as the apparatus 100 or a variation thereof (for example, the apparatus 100a or the apparatus 200), but FIG. 10 shows the simplest configuration.
 装置300は、容器10(第1の槽11および第2の槽12)、セパレータ13、第1の電極21、第2の電極22、および電源23を備える。容器10は、セパレータ13と、液体および気体を通さない隔壁301とによって、第1の槽11および第2の槽12に仕切られている。第1の槽11および第2の槽12には、それぞれ、開口部11aおよび12aが設けられている。開口部11aおよび12aは、それぞれ、バルブを備えていてもよい。 The apparatus 300 includes a container 10 (first tank 11 and second tank 12), a separator 13, a first electrode 21, a second electrode 22, and a power source 23. The container 10 is partitioned into a first tank 11 and a second tank 12 by a separator 13 and a partition wall 301 that does not allow liquid and gas to pass through. The first tank 11 and the second tank 12 are provided with openings 11a and 12a, respectively. Each of the openings 11a and 12a may include a valve.
 装置300では、容器10に配置された水性液体30がバッチ方式で処理される。すなわち、容器10に配置された水性液体30が電気分解される間、第1の槽11および第2の槽12に配置された水性液体30は実質的に移動しない。電気分解が終了すると、第1の槽11内の水性液体30および/または第2の槽12に配置される水性液体30は、利用されるために槽から取り出される。 In the apparatus 300, the aqueous liquid 30 disposed in the container 10 is processed in a batch manner. That is, while the aqueous liquid 30 disposed in the container 10 is electrolyzed, the aqueous liquid 30 disposed in the first tank 11 and the second tank 12 does not substantially move. When the electrolysis is completed, the aqueous liquid 30 in the first tank 11 and / or the aqueous liquid 30 disposed in the second tank 12 is removed from the tank for use.
 図10の装置300において、第1の電極21がアノードとなるように(第2の電極22がカソードとなるように)、第1の電極21と第2の電極22との間に電圧を印加する場合を考える。この場合、第1の槽11内の水性液体30は、ORPが上昇しpHが低下する。また、第2の槽12内の水性液体は、ORPが低下しpHが上昇する。第1の電極21で生成された水素イオンの一部は、セパレータ13を通って第2の槽12内に拡散する。一方、第2の電極22で発生した水酸化物イオンの一部は、セパレータ13を通って第1の槽11内に拡散する。そのため、第1の槽11内の水性液体30のpHは、第1の電極21で生成される水素イオンの量、セパレータ13を透過する水素イオンおよび水酸化物イオンの量、および、第1の槽11内の水性液体30の量によって決まる。また、第2の槽12内の水性液体30のpHは、第2の電極21で生成される水酸化物イオンの量、セパレータ13を透過する水素イオンおよび水酸化物イオンの量、および、第2の槽12内の水性液体30の量によって決まる。 In the apparatus 300 of FIG. 10, a voltage is applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes an anode (the second electrode 22 becomes a cathode). Consider the case. In this case, the aqueous liquid 30 in the first tank 11 has an ORP rise and a pH drop. Further, the aqueous liquid in the second tank 12 has a lower ORP and a higher pH. Part of the hydrogen ions generated by the first electrode 21 diffuses into the second tank 12 through the separator 13. On the other hand, part of the hydroxide ions generated at the second electrode 22 diffuses into the first tank 11 through the separator 13. Therefore, the pH of the aqueous liquid 30 in the first tank 11 depends on the amount of hydrogen ions generated by the first electrode 21, the amount of hydrogen ions and hydroxide ions that permeate the separator 13, and the first It depends on the amount of the aqueous liquid 30 in the tank 11. Further, the pH of the aqueous liquid 30 in the second tank 12 is such that the amount of hydroxide ions generated by the second electrode 21, the amount of hydrogen ions and hydroxide ions permeating the separator 13, and the second It depends on the amount of the aqueous liquid 30 in the second tank 12.
 第1の槽11内の水性液体30の量が少ないほど、第1の電極21で生成した水素イオンがセパレータ13を透過する量が多くなる。また、第2の槽12内の水性液体30の量が多いほど、第2の電極22で生成した水酸化物イオンがセパレータ13を透過する量が少なくなる。また、体積V2が大きいほど、第2の槽12内の水性液体30のpHの変化は小さくなる。そのため、(体積V2)/(体積V1)の値を大きくすることによって、第2の槽12内の水性液体30のpHの変化を小さくすることが可能である。 The smaller the amount of the aqueous liquid 30 in the first tank 11, the greater the amount of hydrogen ions generated by the first electrode 21 that permeate the separator 13. Further, as the amount of the aqueous liquid 30 in the second tank 12 is increased, the amount of hydroxide ions generated by the second electrode 22 is reduced through the separator 13. Moreover, the change of pH of the aqueous liquid 30 in the 2nd tank 12 becomes so small that the volume V2 is large. Therefore, it is possible to reduce the change in pH of the aqueous liquid 30 in the second tank 12 by increasing the value of (volume V2) / (volume V1).
 一方、第1の電極21がカソードとなるように(第2の電極22がアノードとなるように)、第1の電極21と第2の電極22との間に電圧を印加して一般的な水(たとえば水道水)を電気分解することによって、ORPが高くpHが中性に近い水性液体30を得ることも可能である。 On the other hand, a general voltage is applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 becomes a cathode (so that the second electrode 22 becomes an anode). By electrolyzing water (for example, tap water), it is possible to obtain an aqueous liquid 30 having a high ORP and a pH close to neutrality.
 以上のように、装置300によれば、水性液体のORPを変化させる際のpHの変化を制御することが可能である。 As described above, according to the apparatus 300, it is possible to control the change in pH when changing the ORP of the aqueous liquid.
 図11に示す装置400は、第1の槽11が水性液体30の流路401の一部を構成する点で、装置100とは異なる。この点を除き、装置400は、装置100またはそのバリエーション(たとえば装置100aまたは装置200)と同様の構成とすることが可能である。図11には、一例の構成を示す。装置400の第1の槽11は、流路401と接続するための2つの接続部(流入口および流出口)を備える。第1の槽11の2つの接続部については、第2の槽12について説明した構成を採用できる。ただし、図11では、接続部品の図示を省略している。なお、第1の槽は、接続部品を用いることなく流路に直接接続されていてもよい。 The apparatus 400 shown in FIG. 11 is different from the apparatus 100 in that the first tank 11 constitutes a part of the flow path 401 of the aqueous liquid 30. Except for this point, the apparatus 400 can have the same configuration as the apparatus 100 or a variation thereof (for example, the apparatus 100a or the apparatus 200). FIG. 11 shows an example configuration. The first tank 11 of the device 400 includes two connection parts (an inlet and an outlet) for connecting to the flow path 401. About the two connection parts of the 1st tank 11, the structure demonstrated about the 2nd tank 12 is employable. However, in FIG. 11, illustration of connection parts is omitted. In addition, the 1st tank may be directly connected to the flow path, without using a connection component.
 装置400では、第1の槽11が水性液体30の流路401の一部を構成し、第2の槽12が、水性液体30の流路14の一部を構成する。流路401を流れる水性液体30は、セパレータ13を通過しない限り、流路14に移動しない。同様に、流路14を流れる水性液体30は、セパレータ13を通過しない限り、流路401に移動しない。 In the apparatus 400, the first tank 11 constitutes a part of the flow path 401 of the aqueous liquid 30, and the second tank 12 constitutes a part of the flow path 14 of the aqueous liquid 30. The aqueous liquid 30 flowing through the flow path 401 does not move to the flow path 14 unless it passes through the separator 13. Similarly, the aqueous liquid 30 flowing through the flow path 14 does not move to the flow path 401 unless it passes through the separator 13.
 流路401によって第1の槽11内の水性液体30を移動させることによって、第1の槽11で処理される水性液体(A)の体積V1を変化させることができる。また、流路14によって第2の槽12内の水性液体30を移動させることによって、第2の槽12で処理される水性液体(A)の体積V2を変化させることができる。上述したように、(体積V2)/(体積V1)の比を大きくすることによって、第2の槽12で処理された水性液体30のpHの変化を抑制できる。また、体積V2を大きくすることによって、第2の槽12で処理された水性液体30のpHの変化を抑制できる。逆に、(体積V2)/(体積V1)の比を小さくすることによって、第2の槽12で処理された水性液体30のpHの変化を増大できる。また、体積V2を小さくすることによって、第2の槽12で処理された水性液体30のpHの変化を増大できる。第1の槽11で処理された水性液体30のpHの変化も、同様の原理で調整することが可能である。 By moving the aqueous liquid 30 in the first tank 11 through the flow path 401, the volume V1 of the aqueous liquid (A) processed in the first tank 11 can be changed. Moreover, the volume V2 of the aqueous liquid (A) processed by the 2nd tank 12 can be changed by moving the aqueous liquid 30 in the 2nd tank 12 with the flow path 14. FIG. As described above, by increasing the ratio of (volume V2) / (volume V1), it is possible to suppress a change in pH of the aqueous liquid 30 processed in the second tank 12. Moreover, the change in pH of the aqueous liquid 30 processed in the second tank 12 can be suppressed by increasing the volume V2. Conversely, by reducing the ratio of (volume V2) / (volume V1), the change in pH of the aqueous liquid 30 treated in the second tank 12 can be increased. Moreover, the change of pH of the aqueous liquid 30 processed by the 2nd tank 12 can be increased by making the volume V2 small. The change in pH of the aqueous liquid 30 treated in the first tank 11 can also be adjusted by the same principle.
 以上のように、装置400によれば、水性液体30のORPを変化させるとともに、pHの変化を容易に調整できる。たとえば、装置400のカソード側では、水性液体30のORPが低下しpHが上昇するが、そのpHの上昇の程度を小さくすることも可能であるし、大きくすることも可能である。また、装置400のアノード側では、水性液体30のORPが上昇しpHが低下するが、そのpHの低下の程度を小さくすることも可能であるし、大きくすることも可能である。 As described above, according to the apparatus 400, the ORP of the aqueous liquid 30 can be changed, and the change in pH can be easily adjusted. For example, on the cathode side of the apparatus 400, the ORP of the aqueous liquid 30 decreases and the pH increases, but the degree of the increase in pH can be reduced or increased. In addition, on the anode side of the apparatus 400, the ORP of the aqueous liquid 30 increases and the pH decreases, but the degree of the decrease in pH can be reduced or increased.
 なお、体積V1および体積V2は、それぞれ、単位時間当たりに流路401および流路14を流れる水性液体30の量を変えることによって変えることができる。具体的には、体積V1およびV2は、流路401および流路14のそれぞれに設けられたポンプの駆動条件を変えることによって、変えることができる。また、流路401および流路14のそれぞれに流量制御装置を設け、それらによって体積V1およびV2を変えてもよい。 The volume V1 and the volume V2 can be changed by changing the amount of the aqueous liquid 30 flowing through the flow path 401 and the flow path 14 per unit time, respectively. Specifically, the volumes V1 and V2 can be changed by changing the driving conditions of the pumps provided in the flow paths 401 and 14, respectively. Further, a flow rate control device may be provided in each of the flow path 401 and the flow path 14, and the volumes V1 and V2 may be changed accordingly.
 上述した本発明の装置によれば、一般的な水(たとえば水道水)を電気分解することによって、ORPが低くpHが中性に近い水性液体30を得ることも可能である。たとえば、pHが6~8の範囲にあり、ORPが300mV~600mVの範囲にある水を電気分解することによって、ORPが0mV以下(たとえば-800mV~0mVや-500mV~0mVの範囲)であり、pHが10以下(たとえば6~10や7~9の範囲)にある水性液体30を得ることが可能である。また、装置400によれば、pHが6~8の範囲にあり、ORPが300mV~600mVの範囲にある水を電気分解することによって、ORPが600mV以上(たとえば600~1100mVや600~900mVの範囲)であり、pHが3以上(たとえば3~8や4~8の範囲)にある水性液体30を得ることが可能である。 According to the above-described apparatus of the present invention, it is possible to obtain an aqueous liquid 30 having a low ORP and a neutral pH by electrolyzing general water (for example, tap water). For example, by electrolyzing water having a pH in the range of 6 to 8 and an ORP in the range of 300 mV to 600 mV, the ORP is 0 mV or less (eg, in the range of −800 mV to 0 mV or −500 mV to 0 mV), It is possible to obtain an aqueous liquid 30 having a pH of 10 or less (for example, in the range of 6 to 10 or 7 to 9). Further, according to the apparatus 400, by electrolyzing water having a pH in the range of 6 to 8 and an ORP in the range of 300 mV to 600 mV, the ORP is 600 mV or more (for example, in the range of 600 to 1100 mV or 600 to 900 mV). It is possible to obtain an aqueous liquid 30 having a pH of 3 or more (for example, in the range of 3-8 or 4-8).
 本発明の方法および装置について、実施例を用いてより詳細に説明する。なお、実施例11を除き、以下の実施例において処理される液体の温度は、約10~25℃の範囲にあった。 The method and apparatus of the present invention will be described in more detail using examples. Except for Example 11, the temperature of the liquid processed in the following Examples was in the range of about 10 to 25 ° C.
 (実施例1)
 実施例1では、水道水のORPを上昇させた。装置には、図2に示す装置を用いた。ただし、槽24の上方が大気に開放されている状態で実験を行った。第1の槽11および第2の槽12の内容積は、それぞれ、約3cm3であった。貯水槽24内に配置される水道水の量(第2の槽12で処理される液体の量)は、約1リットル(1L)とした。
Example 1
In Example 1, the ORP of tap water was increased. The apparatus shown in FIG. 2 was used as the apparatus. However, the experiment was conducted in a state where the upper side of the tank 24 was open to the atmosphere. The internal volumes of the first tank 11 and the second tank 12 were each about 3 cm 3 . The amount of tap water (the amount of liquid processed in the second tank 12) disposed in the water storage tank 24 was about 1 liter (1 L).
 実施例1で用いた第1の電極21の正面図を図12Aに示す。第1の電極21は、ストライプ状に配置された複数の線状の電極21aと、それらを連結する線状の電極21bとを含む。線状の電極21aは、鉛直方向に配置される。その結果、電極21aの表面で発生したガスが電極21aの表面に留まることが抑制される。第1の電極21は、白金でコートされたチタンからなる。実施例1で用いた第2の電極22は、第1の電極21と同じ電極である。セパレータ13には、綿布を用いた。第1の電極21側からセパレータ13を見たときの正面図を図12Bに示す。第2の電極22は、セパレータ13を挟んで第1の電極21と対向するように配置される。 FIG. 12A shows a front view of the first electrode 21 used in Example 1. FIG. The first electrode 21 includes a plurality of linear electrodes 21a arranged in a stripe shape and a linear electrode 21b connecting them. The linear electrode 21a is arranged in the vertical direction. As a result, the gas generated on the surface of the electrode 21a is suppressed from staying on the surface of the electrode 21a. The first electrode 21 is made of titanium coated with platinum. The second electrode 22 used in Example 1 is the same electrode as the first electrode 21. A cotton cloth was used for the separator 13. FIG. 12B shows a front view when the separator 13 is viewed from the first electrode 21 side. The second electrode 22 is disposed so as to face the first electrode 21 with the separator 13 interposed therebetween.
 処理した水道水は、pHが7.52で、ORPが422mVで、導電率が165.5μS/cmであった。この水道水を、第2の槽12と貯水槽24とを含む循環路において循環させながら、水道水の電気分解を行った。具体的には、第1の電極21と第2の電極22との間に、第1の電極21がカソードとなるように、電圧を印加した。電圧は、19Vとした。電圧印加による、貯水槽24内の水道水の物性の変化について、表1に示す。なお、以下の表において、「-」は測定していないことを示す。 The treated tap water had a pH of 7.52, an ORP of 422 mV, and a conductivity of 165.5 μS / cm. The tap water was electrolyzed while circulating the tap water in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 became a cathode. The voltage was 19V. Table 1 shows changes in physical properties of tap water in the water tank 24 due to voltage application. In the table below, “-” indicates that measurement was not performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1では、水道水のORPを上昇させることができた。また、実施例1では、pHが低下した。 As shown in Table 1, in Example 1, the ORP of tap water could be increased. Moreover, in Example 1, pH fell.
 (実施例2)
 実施例2では、KCl水溶液のORPを上昇させた。水道水の代わりにKCl水溶液を処理することを除いて、実施例1と同じ条件でKCl水溶液を処理した。第1の槽11内に配置されるKCl水溶液の量は、約3cm3とした。貯水槽24内に配置されるKCl水溶液の量は、約1リットルとした。
(Example 2)
In Example 2, the ORP of the KCl aqueous solution was increased. The KCl aqueous solution was treated under the same conditions as in Example 1 except that the KCl aqueous solution was treated instead of tap water. The amount of the KCl aqueous solution placed in the first tank 11 was about 3 cm 3 . The amount of the KCl aqueous solution disposed in the water storage tank 24 was about 1 liter.
 処理したKCl水溶液(濃度:0.01wt%)は、pHが7.26で、ORPが458mVで、導電率が365μS/cmであった。電圧印加による、貯水槽24内のKCl水溶液の物性の変化について、表1に示す。 The treated KCl aqueous solution (concentration: 0.01 wt%) had a pH of 7.26, an ORP of 458 mV, and a conductivity of 365 μS / cm. Table 1 shows changes in physical properties of the KCl aqueous solution in the water storage tank 24 due to voltage application.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例2では、KCl水溶液のORPを上昇させて1000mV以上にすることができた。また、実施例2では、pHが低下した。また、実施例2で処理されたKCl水溶液を水道水で100倍に薄めると、ORPが750mVでpH4.9の酸化水が得られた。このように、処理されたKCl水溶液を希釈したことによるORPおよびpHの変化は、比較的小さかった。 As shown in Table 2, in Example 2, the ORP of the KCl aqueous solution could be increased to 1000 mV or more. Moreover, in Example 2, pH fell. Further, when the KCl aqueous solution treated in Example 2 was diluted 100 times with tap water, oxidized water having an ORP of 750 mV and a pH of 4.9 was obtained. Thus, changes in ORP and pH due to dilution of the treated aqueous KCl solution were relatively small.
 (実施例3)
 実施例3では、水道水のORPを低下させた。実施例3では、電圧の大きさおよび電圧の印加方向が異なることを除いて、実施例1と同じ条件で水道水を処理した。
(Example 3)
In Example 3, the ORP of tap water was reduced. In Example 3, tap water was treated under the same conditions as in Example 1 except that the magnitude of the voltage and the direction in which the voltage was applied were different.
 実施例3で処理した水道水は、pHが7.41で、ORPが501mVで、導電率が166.7μS/cmであった。実施例3では、第1の電極21と第2の電極22との間に、第1の電極がアノードとなるように、電圧を印加することによって、水道水を電気分解した。電圧は、19ボルトとした。電圧印加による、貯水槽24内の水道水の物性の変化について、表3に示す。 The tap water treated in Example 3 had a pH of 7.41, an ORP of 501 mV, and a conductivity of 166.7 μS / cm. In Example 3, the tap water was electrolyzed by applying a voltage between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was 19 volts. Table 3 shows changes in physical properties of tap water in the water tank 24 due to voltage application.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例3では、水道水のORPを低下させて-600mVにすることができた。また、実施例3では、pHが上昇した。 As shown in Table 3, in Example 3, the ORP of tap water was reduced to −600 mV. Moreover, in Example 3, pH rose.
 (実施例4)
 実施例4では、pHの変化が小さく且つORPが低下するように水道水を処理した。実施例4では、貯水槽24内に配置される液体の量を約40リットルとしたこと、および電圧の大きさおよび印加方向を除いて実施例1と同じ条件で水道水を処理した。実施例4では、(V2/V1)の値は、約13000である。
Example 4
In Example 4, tap water was treated so that the change in pH was small and the ORP was lowered. In Example 4, the amount of liquid disposed in the water storage tank 24 was about 40 liters, and tap water was treated under the same conditions as in Example 1 except for the magnitude of the voltage and the application direction. In Example 4, the value of (V2 / V1) is about 13000.
 処理した水道水はpHが7.19で、ORPが410mVで、導電率が207.0μS/cmであった。この水道水を、第2の槽12と貯水槽24とを含む循環路において循環させながら、水道水の電気分解を行った。具体的には、第1の電極21と第2の電極22との間に、第1の電極がアノードとなるように、電圧を印加した。電圧は、電極間に0.35Aの電流が流れるように印加した。電圧印加による、貯水槽24内の水道水の物性の変化について、表4に示す。 The treated tap water had a pH of 7.19, an ORP of 410 mV, and a conductivity of 207.0 μS / cm. The tap water was electrolyzed while circulating the tap water in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was applied so that a current of 0.35 A flows between the electrodes. Table 4 shows changes in physical properties of tap water in the water tank 24 due to voltage application.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例4では、水道水のORPを低下させる一方で、pHの変化を抑制できた。 As shown in Table 4, in Example 4, the change in pH could be suppressed while lowering the ORP of tap water.
 (実施例5)
 実施例5では、pHの変化が小さく且つORPが低下するように水道水を処理した。実施例5では、印加電圧が異なることを除いて、実施例4と同じ条件で水道水を処理した。
(Example 5)
In Example 5, tap water was treated so that the change in pH was small and the ORP was lowered. In Example 5, tap water was treated under the same conditions as in Example 4 except that the applied voltage was different.
 処理した水道水はpHが7.52で、ORPが434mVで、導電率が168.3μS/cmであった。この水道水を、第2の槽12と貯水槽24とを含む循環路において循環させながら、水道水の電気分解を行った。具体的には、第1の電極21と第2の電極22との間に、第1の電極がアノードとなるように、電圧を印加した。電圧は、電極間に2.8Aの電流が流れるように印加した。そのときの電圧は約30ボルトであった。電圧印加による、貯水槽24内の水道水の物性の変化について、表5に示す。 The treated tap water had a pH of 7.52, an ORP of 434 mV, and a conductivity of 168.3 μS / cm. The tap water was electrolyzed while circulating the tap water in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was applied so that a current of 2.8 A flows between the electrodes. The voltage at that time was about 30 volts. Table 5 shows changes in physical properties of tap water in the water storage tank 24 due to voltage application.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例5では、水道水のORPを低下させる一方で、pHの変化を抑制できた。また、電極間に流れる電流を大きくすることによって、実施例4に比べてORPの低下量を大きくすることができた。 As shown in Table 5, in Example 5, the change in pH could be suppressed while lowering the ORP of tap water. Further, the amount of decrease in ORP could be increased as compared with Example 4 by increasing the current flowing between the electrodes.
 (実施例6)
 実施例6では、アルカリ性水溶液のORPを低下させた。実施例6では、実施例1と同じ装置を用いて実験を行った。ただし、貯水槽24内に配置される液体の量は、約50リットルとした。
(Example 6)
In Example 6, the ORP of the alkaline aqueous solution was reduced. In Example 6, an experiment was performed using the same apparatus as in Example 1. However, the amount of liquid disposed in the water storage tank 24 was about 50 liters.
 pHが11.06でORPが49mVのアルカリ性水溶液を、第2の槽12と貯水槽24とを含む循環路において循環させながら、水溶液の電気分解を行った。具体的には、第1の電極21と第2の電極22との間に、第1の電極がアノードとなるように、電圧を印加した。電圧は、電極間に2.8Aの電流が流れるように印加した。電圧印加による、貯水槽24内の水溶液の物性の変化について、表6に示す。 The aqueous solution was electrolyzed while circulating an alkaline aqueous solution having a pH of 11.06 and an ORP of 49 mV in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was applied so that a current of 2.8 A flows between the electrodes. Table 6 shows changes in physical properties of the aqueous solution in the water storage tank 24 due to voltage application.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例6では、pHを大きく変化させることなくアルカリ性水溶液のORPを低下させることができた。 As shown in Table 6, in Example 6, the ORP of the alkaline aqueous solution could be reduced without greatly changing the pH.
 (実施例7)
 実施例7では、酸性水溶液のORPを低下させた。実施例7では、実施例1と同じ装置を用いて実験を行った。ただし、貯水槽24内に配置される液体の量は、約10リットルとした。
(Example 7)
In Example 7, the ORP of the acidic aqueous solution was reduced. In Example 7, an experiment was performed using the same apparatus as in Example 1. However, the amount of liquid disposed in the water storage tank 24 was about 10 liters.
 pHが3.09でORPが332mVの酸性水溶液を、第2の槽12と貯水槽24とを含む循環路において循環させながら、水溶液の電気分解を行った。具体的には、第1の電極21と第2の電極22との間に、第1の電極がアノードとなるように、電圧を印加した。電圧は、電極間に2.8Aの電流が流れるように印加した。電圧印加による、貯水槽24内の水溶液の物性の変化について、表7に示す。 The aqueous solution was electrolyzed while circulating an acidic aqueous solution having a pH of 3.09 and an ORP of 332 mV in a circulation path including the second tank 12 and the water storage tank 24. Specifically, a voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode became an anode. The voltage was applied so that a current of 2.8 A flows between the electrodes. Table 7 shows changes in physical properties of the aqueous solution in the water storage tank 24 due to voltage application.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例7では、pHを大きく変化させることなく酸性水溶液のORPを低下させることができた。 As shown in Table 7, in Example 7, the ORP of the acidic aqueous solution could be reduced without greatly changing the pH.
 (実施例8)
 実施例8では、ORPが低下した酸性水溶液のORPを、1000mV以上に戻す実験を行った。まず、pHが約3でORPが1000mV以上の水溶液を1ヶ月間放置することによって、pHが3.09でORPが332mVの酸性水溶液を作製した。次に、その酸性水溶液を実施例2と同じ条件で処理することによって、ORPを1000mV以上にする実験を10回行った。貯水槽24内のKCl水溶液のORPの変化について、表8に示す。
(Example 8)
In Example 8, an experiment was performed to return the ORP of the acidic aqueous solution with a reduced ORP to 1000 mV or more. First, an acidic aqueous solution having a pH of 3.09 and an ORP of 332 mV was prepared by leaving an aqueous solution having a pH of about 3 and an ORP of 1000 mV or more for 1 month. Next, the experiment which makes ORP 1000 mV or more was performed by processing the acidic aqueous solution on the same conditions as Example 2. Table 8 shows changes in the ORP of the KCl aqueous solution in the water tank 24.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、ORPが低下したKCl水溶液を処理することによって、ORPを1000mV以上にすることができた。 As shown in Table 8, the ORP could be increased to 1000 mV or more by treating the KCl aqueous solution with a reduced ORP.
 (実施例9)
 実施例9では、図9に示す循環形式で、開放状態にある水性液体のORPを変化させた。ORPを変化させる装置としては、図1に示す装置を用いた。具体的には、開放された容器に入れられた100リットルの水道水のORPを変化させた。第1の槽11の内容積は4cm3であり、第2の槽12の内容積は4cm3であった。実施例9で用いた装置の第1の槽11の開口部11aには、鉛直方向に伸びる円筒状の筒が接続されており、その内容積は53cm3であった。電極間には、1.0Aの定電流を流した。このとき電極間に印加された電圧は、約40Vであった。水性液体は、約1.7L/分の流量で第2の槽12を通過させた。このときの結果を、表9に示す。
Example 9
In Example 9, the ORP of the aqueous liquid in the open state was changed in the circulation mode shown in FIG. The apparatus shown in FIG. 1 was used as an apparatus for changing the ORP. Specifically, the ORP of 100 liters of tap water placed in an open container was changed. The internal volume of the first tank 11 was 4 cm 3 , and the internal volume of the second tank 12 was 4 cm 3 . A cylindrical tube extending in the vertical direction was connected to the opening 11a of the first tank 11 of the apparatus used in Example 9, and its internal volume was 53 cm 3 . A constant current of 1.0 A was passed between the electrodes. At this time, the voltage applied between the electrodes was about 40V. The aqueous liquid was passed through the second tank 12 at a flow rate of about 1.7 L / min. The results at this time are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、電極間に電圧を印加することによって、ORPを低下させることができた。また、pHはほとんど変化しなかった。電圧印加停止後のORPの変化は緩やかであった。なお、水道水ではなく、NaHCO3やNa2SO4などを溶解させた水溶液を水性液体として用いた場合には、電圧印加停止後のORPの変化が、より緩やかであった。 As shown in Table 9, the ORP could be reduced by applying a voltage between the electrodes. Moreover, pH hardly changed. The change in ORP after the voltage application was stopped was gradual. When an aqueous solution in which NaHCO 3 , Na 2 SO 4 and the like were dissolved instead of tap water was used as the aqueous liquid, the change in ORP after the voltage application was stopped was more gradual.
 (実施例10)
 実施例10では、図8に示す装置で、開放状態にある水性液体のORPを変化させた。ORPを変化させる装置としては、図1に示す装置を用いた。実施例10では、水道水のORPを変化させた。処理前の水道水のORPは、約250mVであった。第1の槽11の内容積は4cm3であり、第2の槽12の内容積は4cm3であった。第1の電極21と第2の電極22との間に、第1の電極21がアノードとなるように電圧を印加した。電極間には、2.0Aの定電流を流した。水性液体は、約0.8L/分の流量で第2の槽12を通過させた。実験開始から約10分で定常状態に達した。そのときの、第2の槽12で処理された後の水道水は、ORPが約-300mVであり、溶存水素濃度が約750ppbであり、pHが約8であった。なお、第2の槽12で処理される水道水の流速を小さくすると、ORPの変化、および、溶存水素濃度の変化が大きくなった。
(Example 10)
In Example 10, the ORP of the aqueous liquid in the open state was changed with the apparatus shown in FIG. The apparatus shown in FIG. 1 was used as an apparatus for changing the ORP. In Example 10, the ORP of tap water was changed. The ORP of tap water before treatment was about 250 mV. The internal volume of the first tank 11 was 4 cm 3 , and the internal volume of the second tank 12 was 4 cm 3 . A voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 became an anode. A constant current of 2.0 A was passed between the electrodes. The aqueous liquid was passed through the second tank 12 at a flow rate of about 0.8 L / min. A steady state was reached in about 10 minutes from the start of the experiment. At that time, the tap water after being treated in the second tank 12 had an ORP of about −300 mV, a dissolved hydrogen concentration of about 750 ppb, and a pH of about 8. In addition, when the flow rate of the tap water processed with the 2nd tank 12 was made small, the change of ORP and the change of dissolved hydrogen concentration became large.
 また、電極間を流れる電流値、および第2の槽を流れる水性液体の流速を変えて同様の実験を行った。具体的には、電極間に流れる電流値を2Aまたは3Aとした。また、第2の槽を流れる水性液体の流速を、0.4~4.6L/分の間で変化させた。そして、実験開始から30分経過後において、第2の槽から処理された水性液体のORPを測定した。結果を表10に示す。 Also, the same experiment was performed by changing the value of the current flowing between the electrodes and the flow rate of the aqueous liquid flowing in the second tank. Specifically, the current value flowing between the electrodes was set to 2A or 3A. The flow rate of the aqueous liquid flowing through the second tank was changed between 0.4 and 4.6 L / min. And 30 minutes after the experiment start, ORP of the aqueous liquid processed from the 2nd tank was measured. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、流速を小さくすると、ORPの変化が大きくなった。 As shown in Table 10, when the flow rate was decreased, the change in ORP was increased.
 (実施例11)
 実施例11では、浴槽に配置されたお湯を、図9に示す装置で処理した。第1の電極21と第2の電極22との間に、第1の電極21がアノードとなるように電圧を印加した。浴槽に配置されたお湯は41℃で180Lであった。第2の槽12および流路の体積は小さいため、第2の槽12を含む循環路に存在するお湯の量は実質的に180Lとみなせる。一方、第1の槽11の内容積(第1の槽で処理されるお湯の量)は、約4cm3であった。電極間には、6Aの定電流を流した。お湯としては、水道水をそのまま41℃に加熱して得られたお湯、または、塩(NaHCO3やNa2SO4など)を溶解させた水道水を41℃に加熱して得られたお湯を用いた。ORPを測定した結果を表11に示す。
(Example 11)
In Example 11, the hot water arranged in the bathtub was processed with the apparatus shown in FIG. A voltage was applied between the first electrode 21 and the second electrode 22 so that the first electrode 21 became an anode. Hot water placed in the bathtub was 180 L at 41 ° C. Since the volume of the 2nd tank 12 and a flow path is small, the quantity of the hot water which exists in the circulation path containing the 2nd tank 12 can be regarded as 180L substantially. On the other hand, the internal volume of the first tank 11 (the amount of hot water treated in the first tank) was about 4 cm 3 . A constant current of 6 A was passed between the electrodes. As hot water, hot water obtained by heating tap water to 41 ° C as it is, or hot water obtained by heating salt water (such as NaHCO 3 or Na 2 SO 4 ) dissolved to 41 ° C, is used. Using. The results of measuring ORP are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、本発明の処理によって、水道水のORPおよび塩を溶解させた水道水のORPが、ともに変化した。 As shown in Table 11, the treatment of the present invention changed both the ORP of tap water and the ORP of tap water in which salt was dissolved.
 本発明は、水性液体のORPを変化させる方法および装置に利用できる。 The present invention can be used in a method and apparatus for changing the ORP of an aqueous liquid.

Claims (16)

  1.  流路を流れる水性液体の酸化還元電位を変化させる方法であって、
     (i)セパレータによって仕切られた第1および第2の槽にそれぞれ配置された第1および第2の電極を、前記水性液体に浸漬する工程と、
     (ii)前記第1の電極と前記第2の電極との間に電圧を印加することによって、前記水性液体中の水を電気分解する工程とを含み、
     前記第2の槽が前記流路の一部を構成しており、
     前記第1の槽が前記セパレータを介して前記流路と接続されている、方法。
    A method of changing the oxidation-reduction potential of an aqueous liquid flowing through a flow path,
    (I) immersing the first and second electrodes respectively disposed in the first and second tanks partitioned by the separator in the aqueous liquid;
    (Ii) electrolyzing water in the aqueous liquid by applying a voltage between the first electrode and the second electrode;
    The second tank constitutes a part of the flow path;
    The method wherein the first tank is connected to the flow path via the separator.
  2.  前記(ii)の工程において、前記第2の槽を1分間あたりに流れる前記水性液体の量が、前記第1の槽に配置される前記水性液体の量の10倍~105倍の範囲にある、請求項1に記載の方法。 In the step (ii), the amount of the aqueous liquid flowing in the second tank per minute is in the range of 10 to 10 5 times the amount of the aqueous liquid disposed in the first tank. The method of claim 1, wherein:
  3.  前記流路が循環路であり、
     前記(ii)の工程において、前記循環路に存在する前記水性液体の量が、前記第1の槽に配置される前記水性液体の量の10倍~105倍の範囲にある、請求項1に記載の方法。
    The flow path is a circulation path;
    2. In the step (ii), the amount of the aqueous liquid present in the circulation path is in the range of 10 to 10 5 times the amount of the aqueous liquid disposed in the first tank. The method described in 1.
  4.  前記第1の槽に配置されている前記水性液体の一部を排出することによって、前記第2の槽を流れる前記水性液体のpHを制御する、請求項1に記載の方法。 The method according to claim 1, wherein the pH of the aqueous liquid flowing through the second tank is controlled by discharging a part of the aqueous liquid disposed in the first tank.
  5.  前記第1の槽内の圧力の上昇に応じて前記第1の槽内の前記水性液体が移動するための管が前記第1の槽に接続されている、請求項1に記載の方法。 The method according to claim 1, wherein a pipe for moving the aqueous liquid in the first tank in response to an increase in pressure in the first tank is connected to the first tank.
  6.  前記管が、下降と上昇とを交互に繰り返している、請求項5に記載の方法。 6. The method of claim 5, wherein the tube repeats descending and ascending alternately.
  7.  前記第1の槽が大気に開放されており且つ前記第2の槽に大気が流入しない状態で前記(ii)の工程が行われる、請求項1に記載の方法。 The method according to claim 1, wherein the step (ii) is performed in a state where the first tank is open to the atmosphere and no air flows into the second tank.
  8.  流路を流れる水性液体の酸化還元電位を変化させる装置であって、
     前記水性液体が配置される容器と、
     前記容器を第1の槽と第2の槽とに仕切るセパレータと、
     前記第1の槽に配置された第1の電極と、
     前記第2の槽に配置された第2の電極と、
     前記第1の電極と第2の電極との間に電圧を印加するための電源とを備え、
     前記第2の槽には、前記第2の槽が前記流路の一部を構成するように前記流路に接続される流入口と流出口とが形成されており、
     前記第1の槽が前記セパレータを介して前記流路と接続される、装置。
    An apparatus for changing the oxidation-reduction potential of an aqueous liquid flowing in a flow path,
    A container in which the aqueous liquid is disposed;
    A separator that partitions the container into a first tank and a second tank;
    A first electrode disposed in the first tank;
    A second electrode disposed in the second tank;
    A power source for applying a voltage between the first electrode and the second electrode;
    The second tank is formed with an inlet and an outlet connected to the flow path so that the second tank forms part of the flow path,
    The apparatus with which the said 1st tank is connected with the said flow path through the said separator.
  9.  前記第1の槽に、前記第1の槽内の前記水性液体を排出するための排液路が接続されている、請求項8に記載の装置。 The apparatus according to claim 8, wherein a drainage path for discharging the aqueous liquid in the first tank is connected to the first tank.
  10.  前記第1の槽内の圧力の上昇に応じて前記第1の槽内の前記水性液体が移動するための管が前記第1の槽に接続されている、請求項8に記載の装置。 The apparatus according to claim 8, wherein a pipe for moving the aqueous liquid in the first tank in response to an increase in pressure in the first tank is connected to the first tank.
  11.  前記管が、下降と上昇とを交互に繰り返している、請求項10に記載の装置。 The apparatus according to claim 10, wherein the tube repeats descending and ascending alternately.
  12.  前記管の終端に細管が接続されており、
     前記細管の内部の断面積が、前記管の内部の断面積よりも小さい、請求項11に記載の装置。
    A narrow tube is connected to the end of the tube,
    The apparatus according to claim 11, wherein a cross-sectional area inside the narrow tube is smaller than a cross-sectional area inside the tube.
  13.  前記セパレータが親水性を有する、請求項8に記載の装置。 The apparatus according to claim 8, wherein the separator has hydrophilicity.
  14.  前記流路が接続された貯水槽をさらに備え、
     前記流路が、前記貯水槽と前記第2の槽とを含む循環路を構成している、請求項8に記載の装置。
    Further comprising a water tank to which the flow path is connected,
    The device according to claim 8, wherein the flow path constitutes a circulation path including the water storage tank and the second tank.
  15.  前記第2の槽の下流側の前記流路が浴槽またはシャワーヘッドに接続されている、請求項8に記載の装置。 The apparatus according to claim 8, wherein the flow path on the downstream side of the second tank is connected to a bathtub or a shower head.
  16.  前記流路が浴槽に接続されており、
     前記流路が、前記浴槽と前記第2の槽とを含む循環路を形成している、請求項8に記載の装置。
    The flow path is connected to a bathtub;
    The apparatus according to claim 8, wherein the flow path forms a circulation path including the bathtub and the second tank.
PCT/JP2011/006045 2010-11-01 2011-10-28 Method and apparatus for altering oxidation reduction potential of aqueous liquid WO2012060078A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201190000848.4U CN203346132U (en) 2010-11-01 2011-10-28 Device for enabling ORP (oxidation reduction potential) of aqueous liquid to change
JP2012541736A JP5311246B2 (en) 2010-11-01 2011-10-28 Method and apparatus for changing the redox potential of an aqueous liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-245057 2010-11-01
JP2010245057 2010-11-01

Publications (1)

Publication Number Publication Date
WO2012060078A1 true WO2012060078A1 (en) 2012-05-10

Family

ID=46024206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006045 WO2012060078A1 (en) 2010-11-01 2011-10-28 Method and apparatus for altering oxidation reduction potential of aqueous liquid

Country Status (3)

Country Link
JP (1) JP5311246B2 (en)
CN (1) CN203346132U (en)
WO (1) WO2012060078A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014645A (en) * 2012-06-15 2014-01-30 Nippon Torimu:Kk Artificial dialysis water manufacturing installation for personal dialysis
JP2016101579A (en) * 2014-11-14 2016-06-02 有限会社ターナープロセス Apparatus for adjusting liquid quality of aqueous liquid
KR20170044744A (en) * 2014-09-01 2017-04-25 가부시키가이샤니혼트림 Agricultural electrolyzed water-generating apparatus and agricultural electrolyzed water
WO2017135209A1 (en) * 2016-02-05 2017-08-10 株式会社日本トリム Electrolyzed water generation device
JP2017136573A (en) * 2016-02-05 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water, and electrolysis water server provided with the same
JP2018034142A (en) * 2016-08-31 2018-03-08 エイゾクケイマングントウショウナノコウフンユウゲンコウシ Electrolytic nono-ion water generator
US20180111844A1 (en) * 2015-02-24 2018-04-26 Nihon Trim Co., Ltd. Electrolyzed water-generating apparatus and electrolyzed water
JP2018069189A (en) * 2016-11-01 2018-05-10 株式会社日本トリム Electrolyzed water server

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220572A (en) * 1996-02-19 1997-08-26 Matsushita Electric Ind Co Ltd Water treatment method and apparatus therefor
JPH10156363A (en) * 1996-11-27 1998-06-16 Rikizo Kobayashi Circulation type acidic ionized water and alkaline ionized water producing device
JPH11512973A (en) * 1996-07-29 1999-11-09 スウィーニ,チャールズ,チモシー Water purification device and water purification method
JP2000093962A (en) * 1998-07-21 2000-04-04 Toto Ltd Alkali water making method and electrolytic apparatus
JP2000263048A (en) * 1999-03-23 2000-09-26 Denso Corp Bath water modifying device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220572A (en) * 1996-02-19 1997-08-26 Matsushita Electric Ind Co Ltd Water treatment method and apparatus therefor
JPH11512973A (en) * 1996-07-29 1999-11-09 スウィーニ,チャールズ,チモシー Water purification device and water purification method
JPH10156363A (en) * 1996-11-27 1998-06-16 Rikizo Kobayashi Circulation type acidic ionized water and alkaline ionized water producing device
JP2000093962A (en) * 1998-07-21 2000-04-04 Toto Ltd Alkali water making method and electrolytic apparatus
JP2000263048A (en) * 1999-03-23 2000-09-26 Denso Corp Bath water modifying device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014645A (en) * 2012-06-15 2014-01-30 Nippon Torimu:Kk Artificial dialysis water manufacturing installation for personal dialysis
KR20170044744A (en) * 2014-09-01 2017-04-25 가부시키가이샤니혼트림 Agricultural electrolyzed water-generating apparatus and agricultural electrolyzed water
JPWO2016035288A1 (en) * 2014-09-01 2017-07-13 株式会社日本トリム Agricultural electrolyzed water generator and agricultural electrolyzed water
KR102408368B1 (en) * 2014-09-01 2022-06-10 가부시키가이샤니혼트림 Agricultural electrolyzed water-generating apparatus and agricultural electrolyzed water
US11279635B2 (en) 2014-09-01 2022-03-22 Nihon Trim Co., Ltd. Method of using an agricultural electrolyzed water-generating apparatus for generation of agricultural electrolyzed water useful for plant growth
US20170253501A1 (en) * 2014-09-01 2017-09-07 Nihon Trim Co., Ltd. Agricultural electrolyzed water-generating apparatus and agricultural electrolyzed water
JP2016101579A (en) * 2014-11-14 2016-06-02 有限会社ターナープロセス Apparatus for adjusting liquid quality of aqueous liquid
US20180111844A1 (en) * 2015-02-24 2018-04-26 Nihon Trim Co., Ltd. Electrolyzed water-generating apparatus and electrolyzed water
US10486986B2 (en) 2015-02-24 2019-11-26 Nihon Trim Co., Ltd. Electrolyzed water-generating apparatus and electrolyzed water
JP2017136578A (en) * 2016-02-05 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water
WO2017135208A1 (en) * 2016-02-05 2017-08-10 株式会社日本トリム Electrolyzed water generation device and electrolyzed water server comprising same
JP2017136573A (en) * 2016-02-05 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water, and electrolysis water server provided with the same
WO2017135209A1 (en) * 2016-02-05 2017-08-10 株式会社日本トリム Electrolyzed water generation device
JP2018034142A (en) * 2016-08-31 2018-03-08 エイゾクケイマングントウショウナノコウフンユウゲンコウシ Electrolytic nono-ion water generator
JP2018069189A (en) * 2016-11-01 2018-05-10 株式会社日本トリム Electrolyzed water server

Also Published As

Publication number Publication date
JPWO2012060078A1 (en) 2014-05-12
CN203346132U (en) 2013-12-18
JP5311246B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5311246B2 (en) Method and apparatus for changing the redox potential of an aqueous liquid
JP5311245B2 (en) GAS GENERATOR, GAS GENERATION METHOD, AND DEVICE AND METHOD USING THE SAME
JP2014095115A (en) Gas generation device
JP2018079442A (en) Siphon type diffuser pipe, membrane separation activated sludge device, and water treatment method
JP2010284504A (en) Bathing equipment
KR101824477B1 (en) electrolytic apparatus
JP2010088972A (en) Hydrogen-containing electrolytic water generation device and hot water supply device
JP7037515B2 (en) Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane
WO2014192476A1 (en) Filtration device, and filtration method using same
JP2016003391A (en) Acid water electrolytic bath and method of using said acid water
TW201730377A (en) Electrolyzed water generation device
JP2013067851A (en) Oxygen depletion unit and refrigerator
JP5678388B1 (en) Apparatus and method for reducing ion concentration of aqueous liquid held in system, and apparatus including the apparatus
JP3202182U (en) Gas generator
JP6554086B2 (en) Electrolyzed water server
US10507429B2 (en) Electrochemical cell, water treatment device provided with same, and operating method for water treatment device
JP2010131549A (en) Apparatus for producing electrolytic water
JP6536951B2 (en) Device for adjusting the quality of aqueous liquid
WO2018123193A1 (en) Device for manufacturing diluted liquid, and method for manufacturing diluted liquid
KR20160049380A (en) Device for combustion efficiency improvement of engine using proton exchange membrane and method for combustion efficiency improvement of engine using the same
JP2018103146A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
JP2024515414A (en) Water electrolysis equipment
JP2023031133A (en) Water electrolysis device and control method
JP2018103148A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
JP2018103147A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000848.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837732

Country of ref document: EP

Kind code of ref document: A1