WO2012059988A1 - Charging device and vehicle employing same - Google Patents

Charging device and vehicle employing same Download PDF

Info

Publication number
WO2012059988A1
WO2012059988A1 PCT/JP2010/069554 JP2010069554W WO2012059988A1 WO 2012059988 A1 WO2012059988 A1 WO 2012059988A1 JP 2010069554 W JP2010069554 W JP 2010069554W WO 2012059988 A1 WO2012059988 A1 WO 2012059988A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output unit
voltage
circuit
storage device
Prior art date
Application number
PCT/JP2010/069554
Other languages
French (fr)
Japanese (ja)
Inventor
英聖 坂本
遠齢 洪
義信 杉山
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/069554 priority Critical patent/WO2012059988A1/en
Publication of WO2012059988A1 publication Critical patent/WO2012059988A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging device and a vehicle including the same, and more particularly to a charging device for charging a power storage device mounted on the vehicle with a power source external to the vehicle and a vehicle including the same.
  • Electric vehicles such as electric vehicles and hybrid vehicles that run by driving an electric motor with electric power stored in a power storage device are known.
  • a configuration in which the power storage device is charged by a power source outside the vehicle (hereinafter also referred to as “external power source”) has been proposed (hereinafter, the charging of the power storage device by the external power source is also referred to as “external charging”). Called).
  • Patent Document 1 discloses a power supply device capable of charging a main battery and an auxiliary battery having a lower voltage than the main battery with a system power supply.
  • this publication discloses a configuration capable of outputting the power of the main battery or the auxiliary battery from an on-vehicle outlet using a bidirectional inverter for charging the main battery or the auxiliary battery with a system power supply. (See Patent Document 1).
  • the voltage of the external power supply varies depending on the country and region, and the voltage to be output from the outlet varies depending on the device connected to the outlet. Therefore, from the viewpoint of improving convenience, it is also important to adopt a configuration that can handle a plurality of external power supply voltages and a plurality of output voltages.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a charging device that realizes high-efficiency power feeding to an in-vehicle outlet and a vehicle including the same.
  • Another object of the present invention is to provide a charging device that can efficiently supply power to a vehicle-mounted outlet and that can handle a plurality of external power supply voltages and a plurality of output voltages, and a vehicle including the same. is there.
  • Another object of the present invention is to provide a charging device that realizes power supply to a vehicle-mounted outlet with high efficiency and a vehicle including the charging device at low cost.
  • the charging device is a charging device for charging the power storage device mounted on the vehicle by the external power source, and includes a power receiving unit, a power converter, a power output unit, a switching circuit, and a control. Device.
  • the power receiving unit receives power supplied from an external power source.
  • the power converter is provided between the power receiving unit and the power storage device, and is configured to convert power supplied from an external power source into charging power for the power storage device.
  • the power output unit has an outlet for taking out power from the power converter.
  • the switching circuit is provided between the plurality of power extraction points of the power converter and the power output unit, and is configured to electrically connect any of the plurality of power extraction points to the power output unit.
  • the control device switches the power feeding path from the power receiving unit to the power output unit by controlling the switching circuit based on the voltage of the power supplied from the external power supply and the output voltage of the power output unit.
  • the power converter includes a first conversion circuit, a second conversion circuit, an insulating transformer, and a third conversion circuit.
  • the first conversion circuit is configured to be able to convert power supplied from an external power source into DC power.
  • the second conversion circuit is configured to be able to convert DC power into AC power.
  • the isolation transformer includes a primary coil connected to the second conversion circuit and a secondary coil corresponding to the primary coil.
  • the third conversion circuit is configured to convert AC power received from the secondary coil into DC power and output the DC power to the power storage device.
  • the switching circuit is electrically connected to a first electric circuit between the power receiving unit and the first conversion circuit and a second electric circuit between the second conversion circuit and the insulating transformer.
  • the control device includes: a first power supply path that supplies power from the first electric circuit to the power output unit based on a voltage of power supplied from the external power supply and an output voltage of the power output unit; and a power output from the second electric circuit.
  • the second power supply path for supplying power to the unit is switched.
  • the control device controls the switching circuit to select the first power feeding path.
  • the control device controls the switching circuit to select the second power feeding path.
  • the power converter is configured to be able to output the power stored in the power storage device to the power output unit.
  • the control device is configured to be able to further switch the power feeding path from the power storage device to the power output unit by controlling the switching circuit based on the voltage of the power storage device and the output voltage of the power output unit.
  • the power converter includes a first conversion circuit, a second conversion circuit, an insulating transformer, and a third conversion circuit.
  • the first conversion circuit is configured to be able to convert power supplied from an external power source into DC power.
  • the second conversion circuit is configured to be able to convert DC power into AC power.
  • the isolation transformer includes a primary coil connected to the second conversion circuit and a secondary coil corresponding to the primary coil.
  • the third conversion circuit is configured to convert AC power received from the secondary coil into DC power and output the DC power to the power storage device.
  • Each of the first to third conversion circuits is configured to be capable of power conversion in both directions.
  • the switching circuit includes a first electric circuit between the power reception unit and the first conversion circuit, a second electric circuit between the second conversion circuit and the insulation transformer, and between the insulation transformer and the third conversion circuit. Is electrically connected to the third electric circuit.
  • the control device supplies the power from the first electric circuit to the power output unit based on the voltage of the power supplied from the external power source and the output voltage of the power output unit. And a second power supply path for supplying power from the second electric circuit to the power output unit.
  • the control device supplies the stored power stored in the power storage device from the third power path to the power output unit based on the voltage of the power storage device and the output voltage of the power output unit
  • the third power feeding path to be switched and the fourth power feeding path for supplying the stored power from the first power path to the power output unit are switched.
  • the control device selects the first energization path. Control the switching circuit.
  • the control device controls the switching circuit to select the second energization path To do.
  • the control device selects the third energization path. To control.
  • the control device controls the switching circuit to select the fourth energization path.
  • the power output unit includes a plurality of outlets corresponding to the output voltage.
  • the switching circuit is configured to electrically connect any of the plurality of power extraction points to any of the plurality of outlets.
  • the control device controls the switching circuit so as to electrically connect the outlet corresponding to the output voltage of the power output unit.
  • a vehicle includes any of the above-described charging devices and a power storage device that is charged by the charging device.
  • a switching circuit is provided between a plurality of power extraction points and a power output unit of the power converter, and any one of the plurality of power extraction points can be electrically connected to the power output unit. Since the power supply path from the power receiving unit to the power output unit can be switched by controlling the switching circuit based on the voltage of the power supplied from the external power supply and the output voltage of the power output unit, the most efficient power supply A route can be selected. Therefore, according to the present invention, it is possible to realize power supply to the power output unit with high efficiency. It is also possible to deal with a plurality of external power supply voltages and a plurality of output voltages.
  • the power converter for converting the power supplied from the external power source to the charging power of the power storage device is diverted to supply power to the power output unit. Therefore, the dedicated power converter for supplying power to the power output unit Need not be provided separately. Therefore, according to this invention, the charging device which implement
  • the power converter is configured to be able to output the power stored in the power storage device to the power output unit. Then, the power supply path from the power storage device to the power output unit can be further switched by controlling the switching circuit based on the voltage of the power storage device and the output voltage of the power output unit. Therefore, according to the present invention, even when power is supplied from the power storage device to the power output unit, power supply to the power output unit can be realized with high efficiency, and moreover, a plurality of output voltages can be handled. Is also possible.
  • FIG. 1 is an overall block diagram of a vehicle equipped with a charging device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a charger, a switching circuit, and a power output unit shown in FIG. 1. It is the figure which showed the electric power feeding path
  • FIG. 2 is a functional block diagram of the PM-ECU shown in FIG. It is a flowchart for demonstrating the procedure of the process performed by the switching control part shown in FIG.
  • FIG. 1 is an overall block diagram of a vehicle equipped with a charging device according to an embodiment of the present invention.
  • vehicle 100 includes a power storage device 10, a system main relay (hereinafter referred to as “SMR (System Main Relay)") 15, a power control unit (hereinafter referred to as “PCU (Power Control Unit)”). 20), a motor generator 25, drive wheels 30, and an MG-ECU 35.
  • Vehicle 100 further includes a charging inlet 40, a charger 45, a charging relay 47, a switching circuit 50, a power output unit 60, and a PM-ECU 65.
  • SMR System Main Relay
  • PCU Power Control Unit
  • the power storage device 10 is a direct current power source that stores electric power for traveling, and is constituted by a secondary battery such as nickel metal hydride or lithium ion.
  • the power storage device 10 is charged by the external power supply 85 using the charger 45.
  • the power storage device 10 is also charged with power generated by the motor generator 25 from the PCU 20 when the vehicle 100 is braked or when acceleration is reduced on a downward slope. Then, power storage device 10 outputs the stored power to PCU 20. Note that a large-capacity capacitor can be used as the power storage device 10 instead of the secondary battery.
  • the SMR 15 is provided between the power storage device 10 and the PCU 20.
  • the SMR 15 is turned on when the vehicle system is activated in order to drive the vehicle 100, and is turned off when the power storage device 10 is charged by the charger 45.
  • the PCU 20 is supplied with electric power from the power storage device 10 and drives the motor generator 25 based on a control signal from the MG-ECU 35.
  • the PCU 20 converts the electric power generated by the motor generator 25 by receiving kinetic energy from the drive wheels 30 and outputs the voltage to the power storage device 10.
  • the PCU 20 is configured by, for example, a three-phase PWM inverter including switching elements for three phases. Note that a boost converter may be provided between the three-phase PWM inverter and the power storage device 10.
  • the motor generator 25 is a motor generator that can perform a power running operation and a regenerative operation, and includes, for example, a three-phase AC synchronous motor generator in which a permanent magnet is embedded in a rotor.
  • the motor generator 25 is driven by the PCU 20 and generates driving torque for traveling to drive the driving wheels 30.
  • the motor generator 25 receives the kinetic energy of the vehicle 100 from the drive wheels 30 and generates electric power.
  • the MG-ECU 35 is composed of an electronic control unit (ECU), and performs software processing by executing a program stored in advance by a CPU (Central Processing Unit) and / or hardware processing by a dedicated electronic circuit. The operation of the PCU 20 is controlled. Specifically, MG-ECU 35 generates a control signal (for example, a PWM (Pulse Width Modulation) signal) for driving motor generator 25 by PCU 20, and outputs the generated control signal to PCU 20.
  • a control signal for example, a PWM (Pulse Width Modulation) signal
  • the charging inlet 40 is configured to be matable with a connector 80 connected to an external power supply 85.
  • the charging inlet 40 receives the supply power supplied from the external power supply 85 and outputs it to the charger 45.
  • a charging plug configured to be connectable to an outlet of the external power supply 85 may be provided.
  • the charger 45 is configured to receive power from the external power source 85 and charge the power storage device 10. Specifically, charger 45 converts electric power supplied from external power supply 85 into charging electric power for power storage device 10 based on a control signal from PM-ECU 65.
  • a switching circuit 50 is connected to the charger 45, and the charger 45 is configured to be able to output power supplied from the external power supply 85 to the power output unit 60 via the switching circuit 50.
  • the charger 45 is configured to be able to output the power stored in the power storage device 10 to the power output unit 60 via the switching circuit 50. The configuration of the charger 45 will be described in detail later.
  • the charging relay 47 is provided between the power supply lines PL ⁇ b> 1 and NL ⁇ b> 1 wired between the power storage device 10 and the SMR 15 and the charger 45.
  • the charging relay 47 is turned on during external charging, and is turned off when the external charging is finished.
  • the switching circuit 50 is provided between a plurality of power extraction points (not shown) of the charger 45 and the power output unit 60.
  • the switching circuit 50 is configured to electrically connect any of the plurality of power extraction points of the charger 45 to the power output unit 60, and based on a switching signal from the PM-ECU 65, the plurality of power extraction points. Is electrically connected to the power output unit 60.
  • the configuration of the switching circuit 50 will be described later in detail together with the configuration of the charger 45.
  • the power output unit 60 has an outlet for taking out electric power from the charger 45, and is configured to be able to fit a power plug such as a home appliance.
  • PM-ECU 65 is configured by ECU and controls the operation of charger 45 and switching circuit 50 by software processing by executing a program stored in advance by CPU and / or hardware processing by a dedicated electronic circuit. Specifically, the PM-ECU 65 generates a control signal for operating the charger 45 so as to convert the power supplied from the external power supply 85 into the charging power of the power storage device 10 during external charging. The control signal is output to the charger 45.
  • the PM-ECU 65 supplies a power supply path from the charging inlet 40 to the power output unit 60 based on the voltage of the external power supply 85 and the output voltage of the power output unit 60. A switching signal for switching is generated and output to the switching circuit 50. Then, when a power plug such as a home appliance is connected to the power output unit 60, the PM-ECU 65 operates the charger 45 so as to convert the power supplied from the external power source 85 into the output voltage of the power output unit 60. Control signal is generated, and the generated control signal is output to the charger 45.
  • PM-ECU 65 supplies power from power storage device 10 to power output unit 60 based on the voltage of power storage device 10 and the output voltage of power output unit 60 when charging inlet 40 is not connected to external power supply 85.
  • a switching signal for switching the path is generated and output to the switching circuit 50.
  • the PM-ECU 65 operates the charger 45 so as to convert the power supplied from the power storage device 10 into the output voltage of the power output unit 60. Control signal is generated, and the generated control signal is output to the charger 45.
  • FIG. 2 is a circuit diagram of the charger 45, the switching circuit 50, and the power output unit 60 shown in FIG.
  • charger 45 includes AC / DC conversion units 110 and 140, DC / AC conversion unit 120, and insulating transformer 130.
  • Each of AC / DC conversion units 110 and 140 and DC / AC conversion unit 120 includes a single-phase bridge circuit capable of bidirectional power conversion.
  • AC / DC conversion unit 110 converts AC power supplied from external power supply 85 into DC power based on a control signal from PM-ECU 65 and outputs the DC power to DC / AC conversion unit 120.
  • the AC / DC conversion unit 110 can also convert the DC power received from the DC / AC conversion unit 120 into AC power and output the AC power to the switching circuit 50.
  • the DC / AC conversion unit 120 converts the DC power from the AC / DC conversion unit 110 into AC power based on the control signal from the PM-ECU 65, and outputs the AC power to the insulation transformer 130. Further, the DC / AC conversion unit 120 can convert AC power from the insulation transformer 130 into DC power and output it to the AC / DC conversion unit 110.
  • the insulation transformer 130 includes a core made of a magnetic material, and a primary coil 132 and a secondary coil 134 wound around the core.
  • the primary coil 132 and the secondary coil 134 are electrically insulated and connected to the DC / AC converter 120 and the AC / DC converter 140, respectively.
  • Insulation transformer 130 converts AC power from DC / AC converter 120 into a voltage corresponding to the turn ratio of primary coil 132 and secondary coil 134 and outputs the voltage to AC / DC converter 140. Further, the insulation transformer 130 can convert the AC power from the AC / DC conversion unit 140 into a voltage corresponding to the turn ratio of the secondary coil 134 and the primary coil 132 and output the voltage to the DC / AC conversion unit 120.
  • AC / DC converter 140 converts AC power from insulation transformer 130 into DC power based on a control signal from PM-ECU 65 and outputs the DC power to power storage device 10.
  • the AC / DC conversion unit 140 can also convert the DC power supplied from the power storage device 10 into AC power and output the AC power to the switching circuit 50.
  • the voltage sensor 70 detects the voltage VI of the power supplied from the external power source 85 and outputs the detected value to the PM-ECU 65.
  • Voltage sensor 75 detects voltage VB of power storage device 10 and outputs the detected value to PM-ECU 65.
  • the switching circuit 50 includes relays 52, 54 and 56 and a switch 58.
  • Relay 52 is provided on an electric circuit disposed between electric circuit between charging inlet 40 and AC / DC converter 110 and nodes ND1 and ND2 in switching circuit 50.
  • Relay 54 is provided on an electric circuit arranged between DC / AC converter 120 and insulating transformer 130 and nodes ND1 and ND2.
  • the relay 56 is provided on an electric circuit disposed between the insulating transformer 130 and an outlet 62 (described later) of the power output unit 60.
  • Each of relays 52, 54, and 56 is turned on / off in response to a switching signal from PM-ECU 65.
  • the switch 58 is disposed between the nodes ND1 and ND2 and an outlet 62 and an outlet 64 (described later) of the power output unit 60.
  • Switch 58 electrically connects nodes ND 1 and ND 2 to either outlet 62 or outlet 64 based on a switching signal from PM-ECU 65.
  • the power output unit 60 includes an outlet 62 and an outlet 64.
  • Outlet 62 is connected to relay 56 and switch 58.
  • the outlet 64 is connected to the switch 58.
  • the outlet 62 is an outlet for outputting an AC voltage V1 (for example, AC 100V).
  • the outlet 64 is an outlet for outputting an AC voltage V2 (for example, AC200V) different from the AC voltage V1.
  • the PM-ECU 65 controls the switching circuit 50 based on the voltage of the power supplied from the external power supply 85 and the output voltage of the power output unit 60, so that the power output unit from the charging inlet 40 The power supply path to 60 is switched.
  • the PM-ECU 65 controls the switching circuit 50 based on the voltage of the power storage device 10 and the output voltage of the power output unit 60, thereby supplying power from the power storage device 10 to the power output unit 60. The route is switched.
  • FIG. 3 is a diagram showing a power supply path to the power output unit 60.
  • the switching circuit 50 turns on the relay 52 and turns off the relays 54 and 56, thereby turning off the charging inlet 40.
  • the power supply path A to the power output unit 60 is selected.
  • the power supply path B from the charging inlet 40 to the power output unit 60 is selected by turning off the relays 52 and 56 and turning on the relay 54.
  • the switch 58 is switched according to the output voltage of the power output unit 60.
  • the switching circuit 50 turns on the relay 56 and turns off the relays 52 and 54 to supply power from the power storage device 10 to the power output unit 60.
  • Path C is selected.
  • power supply path D from power storage device 10 to power output unit 60 is selected by turning off relays 54 and 56 and turning on relay 52. Also in this case, the switch 58 is switched according to the output voltage of the power output unit 60.
  • FIG. 4 is a diagram for explaining an example of selection of a power feeding path to the power output unit 60.
  • the switching circuit 50 is controlled to select.
  • the switching circuit is selected so as to select the power supply path B shown in FIG. 50 is controlled.
  • the switching circuit 50 is controlled so as to select the power supply path C shown in FIG.
  • voltage V1 is assumed to be lower than the maximum voltage (determined by voltage VB of power storage device 10) that can be supplied to power output unit 60 via power feeding path C.
  • the switching circuit 50 is controlled so as to select the power feeding path D shown in FIG. .
  • the voltage V2 is higher than the maximum voltage that can be output via the power feeding path C.
  • the efficiency can be improved by making it possible to switch the power supply path from the external power supply 85 to the power output unit 60.
  • the power feeding path A since the power feeding path A does not pass through the AC / DC converting unit 110 and the DC / AC converting unit 120, the power feeding path A is more efficient than the power feeding path B.
  • the voltage of the external power supply 85 and the output voltage of the power output unit 60 are different, it is necessary to select the power supply path B, but when the voltage of the external power supply 85 and the output voltage of the power output unit 60 are equal, the power supply path By selecting A, the total efficiency can be improved.
  • the power feeding path C does not pass through the insulating transformer 130, the DC / AC conversion unit 120, and the AC / DC conversion unit 110, the power feeding path C is more efficient than the power feeding path D.
  • the output voltage of the power output unit 60 is higher than the maximum voltage that can be output via the power supply path C, it is necessary to select the power supply path D, but the power is higher than the maximum voltage that can be output via the power supply path C.
  • FIG. 5 is a functional block diagram of the PM-ECU 65 shown in FIG. Referring to FIG. 5, PM-ECU 65 includes a charger control unit 150 and a switching control unit 152.
  • Charger control unit 150 generates a control signal for converting power supplied from external power supply 85 into charging power for power storage device 10 by charger 45 during external charging, and uses the generated control signal as charger 45. Output to.
  • the charger control unit 150 when the charger control unit 150 receives a command from the switching control unit 152 instructing the power supply path to the power output unit 60 and the output voltage, the charger control unit 150 generates a control signal for operating the charger 45 according to the received command. Then, the generated control signal is output to the charger 45.
  • the switching control unit 152 receives a connection signal indicating whether or not the connector 80 of the external power supply 85 is connected to the charging inlet 40.
  • the connection signal is generated using, for example, a proximity switch that changes its signal state when the connector 80 is connected to the charging inlet 40.
  • the switching control unit 152 receives the detected values of the voltages VI and VB from the voltage sensors 70 and 75 (FIG. 2), respectively.
  • the switching control unit 152 receives an AC output selection signal indicating which of the outlets 62 and 64 of the power output unit 60 has been selected.
  • the AC output selection signal may be generated by, for example, a switch that can be operated by the user, or may be generated based on whether or not an electrical device is connected to the outlets 62 and 64.
  • the switching control unit 152 generates and switches a relay signal for instructing on / off of the relays 52, 54, and 56 (FIG. 2) and a switching signal for controlling the switch 58 in accordance with a processing procedure described later. Output to the circuit 50. In addition, switching control unit 152 outputs a command that instructs the selected power supply path and the output voltage of power output unit 60 to charger control unit 150.
  • FIG. 6 is a flowchart for explaining a procedure of processing executed by the switching control unit 152 shown in FIG. Referring to FIG. 6, switching control unit 152 determines whether charging inlet 40 is connected to external power supply 85 based on a connection signal indicating whether or not connector 80 of external power supply 85 is connected to charging inlet 40. It is determined whether or not (step S10).
  • switching control unit 152 determines the voltage of external power supply 85 based on the detected value of voltage VI from voltage sensor 70. It is determined whether or not it is equal to the AC output voltage of the power output unit 60 (step S20). When the AC frequency of the external power supply 85 is different from the frequency of the AC output voltage, it is determined that the voltages are different. When it is determined that the voltage of external power supply 85 is different from the AC output voltage (NO in step S20), switching control unit 152 determines whether or not the AC output voltage is V1 (for example, AC 100V) (step S30). .
  • V1 for example, AC 100V
  • switching control unit 152 When it is determined that the AC output voltage is V1 (YES in step S30), switching control unit 152 provides a relay signal for turning off, on, and off relays 52, 54, and 56, and switch 58, respectively. Is generated and output to the switching circuit 50 (step S40).
  • switching control unit 152 When it is determined in step S30 that the AC output voltage is not V1 (for example, AC 200V) (NO in step S30), switching control unit 152 performs relay signals for turning off, on, and off relays 52, 54, and 56, respectively. , And a switch signal for switching the switch 58 to the outlet 64 side is generated and output to the switching circuit 50 (step S50).
  • V1 for example, AC 200V
  • switching control unit 152 determines whether or not the AC output voltage is V1 (step S20). S60). When it is determined that the AC output voltage is V1 (YES in step S60), switching control unit 152 performs relay signal for turning on, off, and off relays 52, 54, and 56, and switch 58, respectively. Is generated and output to the switching circuit 50 (step S65). If it is determined in step S60 that the AC output voltage is not V1 (NO in step S60), switching control unit 152 proceeds to step S90 (described later).
  • switching control unit 152 displays an SOC indicating the remaining capacity of power storage device 10 (for example, power storage device 10 It is determined whether or not (expressed as a percentage of capacity) is higher than a predetermined threshold value (step S70).
  • the SOC can be calculated using various known methods based on the voltage VB of the power storage device 10, the input / output current, and the like.
  • switching control unit 152 determines whether or not the AC output voltage is V1 (step S80). When it is determined that the AC output voltage is not V1 (NO in step S80), switching control unit 152 turns on relay signal for turning on, off, and off relays 52, 54, and 56, and switch 58, respectively. A switching signal for switching to the outlet 64 side is generated and output to the switching circuit 50 (step S90).
  • switching control unit 152 uses a relay signal and a switch for turning off, off, and on relays 52, 54, and 56, respectively.
  • a switching signal for switching 58 to the outlet 62 side is generated and output to the switching circuit 50 (step S100).
  • step S70 If it is determined in step S70 that the SOC of power storage device 10 is equal to or lower than the threshold value (NO in step S70), AC output from power output unit 60 is disabled (step S110).
  • the power output unit 60 since power is supplied to the power output unit 60 by using the charger 45 that converts power supplied from the external power supply 85 to the charging power of the power storage device 10, the power output unit 60 is supplied with power. There is no need to provide a separate dedicated power converter. Therefore, according to this embodiment, it is possible to provide a charging device that realizes power feeding to the power output unit 60 with high efficiency at a low cost.
  • charger 45 is configured to be able to output power stored in power storage device 10 to power output unit 60.
  • the power supply path from the power storage device 10 to the power output unit 60 can be further switched by controlling the switching circuit 50 based on the voltage of the power storage device 10 and the output voltage of the power output unit 60. It is also possible to select an efficient power supply path. Specifically, when the output voltage of the power output unit 60 is low, the power supply path C that does not pass through the DC / AC conversion unit 120 and the AC / DC conversion unit 110 is selected. Therefore, according to this embodiment, even when power supply from power storage device 10 to power output unit 60 is performed, power supply to power output unit 60 can be realized with high efficiency, and a plurality of outputs It is also possible to cope with the voltage.
  • the circuit configuration of the switching circuit 50 is not limited to the configuration shown in FIG. 2, and any circuit configuration may be used as long as it has the same function as the switching circuit 50. Good.
  • the power output unit 60 includes the outlet 62 for the voltage V1 (for example, AC100V) and the outlet 64 for the voltage V2 (for example, AC200V). It may be realized with an outlet.
  • V1 for example, AC100V
  • V2 for example, AC200V
  • vehicle 100 is an electric vehicle that uses motor generator 25 as a power source.
  • vehicle 100 may be an electric vehicle that uses only motor generator 25 as a power source. It may be a hybrid vehicle further equipped with an engine (not shown) in addition to the motor generator 25.
  • charging inlet 40 corresponds to an embodiment of “power receiving unit” in the present invention
  • charger 45 corresponds to an embodiment of “power converter” in the present invention
  • PM-ECU 65 corresponds to an embodiment of “control device” in the present invention
  • AC / DC converter 110 corresponds to an embodiment of “first conversion circuit” in the present invention
  • DC / AC conversion section 120 corresponds to an embodiment of “second conversion circuit” in the present invention
  • AC / DC conversion section 140 corresponds to an embodiment of “third conversion circuit” in the present invention.
  • 10 power storage device 15 SMR, 20 PCU, 25 motor generator, 30 drive wheels, 35 MG-ECU, 40 charging inlet, 45 charger, 47 charging relay, 50 switching circuit, 52, 54, 56 relay, 58 switch, 60 Power output unit, 62, 64 outlet, 65 PM-ECU, 70, 75 voltage sensor, 80 connector, 85 external power supply, 100 vehicle, 110, 140 AC / DC conversion unit, 120 DC / AC conversion unit, 130 insulation transformer, 132 primary coil, 134 secondary coil, 150 charger control unit, 152 switching control unit.

Abstract

A switching circuit (50) is disposed between a plurality of electricity extraction points of a charging apparatus (45) and an electricity output unit (60), and is configured to electrically connect some of the plurality of electricity extraction points to the electricity output unit (60). A PM-ECU (65) switches an electricity supply path from a charging inlet (40) to the electricity output unit (60) by controlling the switching circuit (50), on the basis of the voltage of electricity supplied from an external power supply (85) and the output voltage of the electricity output unit (60). Additionally, the PM-ECU (65) switches an electricity supply path from an electricity storage device (10) to the electricity output unit (60) by controlling the switching circuit (50), on the basis of the voltage of the electricity storage device (10) and the output voltage of the electricity output unit (60).

Description

充電装置およびそれを備える車両Charging device and vehicle including the same
 この発明は、充電装置およびそれを備える車両に関し、特に、車両に搭載された蓄電装置を車両外部の電源によって充電するための充電装置およびそれを備える車両に関する。 The present invention relates to a charging device and a vehicle including the same, and more particularly to a charging device for charging a power storage device mounted on the vehicle with a power source external to the vehicle and a vehicle including the same.
 蓄電装置に蓄えられた電力によって電動機を駆動して走行する電気自動車やハイブリッド自動車等の電動車両が知られている。このような電動車両においては、車両外部の電源(以下「外部電源」とも称する。)によって蓄電装置を充電する構成が提案されている(以下、外部電源による蓄電装置の充電を「外部充電」とも称する。)。 2. Description of the Related Art Electric vehicles such as electric vehicles and hybrid vehicles that run by driving an electric motor with electric power stored in a power storage device are known. In such an electric vehicle, a configuration in which the power storage device is charged by a power source outside the vehicle (hereinafter also referred to as “external power source”) has been proposed (hereinafter, the charging of the power storage device by the external power source is also referred to as “external charging”). Called).
 たとえば、特開2008-312395号公報(特許文献1)には、主バッテリと主バッテリより低圧の補助バッテリとを系統電源によって充電可能な電源装置が開示されている。また、この公報には、系統電源により主バッテリまたは補助バッテリを充電するための双方向インバータを用いて、主バッテリまたは補助バッテリの電力を車載コンセント(outlet)から出力可能な構成が開示されている(特許文献1参照)。 For example, Japanese Patent Laying-Open No. 2008-31395 (Patent Document 1) discloses a power supply device capable of charging a main battery and an auxiliary battery having a lower voltage than the main battery with a system power supply. In addition, this publication discloses a configuration capable of outputting the power of the main battery or the auxiliary battery from an on-vehicle outlet using a bidirectional inverter for charging the main battery or the auxiliary battery with a system power supply. (See Patent Document 1).
特開2008-312395号公報JP 2008-312395 A 特開2009-225587号公報JP 2009-225587 A 特開2001-163041号公報JP 2001-163041 A
 車載コンセントへの電力供給は、できるだけ効率よく行なう必要がある。外部充電可能な車両において外部電源が接続されている場合には、外部電源から車載コンセントへ電力を供給できれば効率面から望ましい。また、その場合においても、さらに効率のよい給電を目指すことは重要である。 It is necessary to supply power to the vehicle outlet as efficiently as possible. When an external power source is connected to an externally chargeable vehicle, it is desirable from the viewpoint of efficiency if electric power can be supplied from the external power source to the in-vehicle outlet. Even in that case, it is important to aim for more efficient power feeding.
 また、国や地域によって外部電源の電圧は異なり、さらに、コンセントに接続される機器によってコンセントから出力すべき電圧も異なる。したがって、利便性向上の面から、複数の外部電源電圧および複数の出力電圧に対応可能な構成とすることも重要である。 In addition, the voltage of the external power supply varies depending on the country and region, and the voltage to be output from the outlet varies depending on the device connected to the outlet. Therefore, from the viewpoint of improving convenience, it is also important to adopt a configuration that can handle a plurality of external power supply voltages and a plurality of output voltages.
 さらに、上記の課題を低コストで実現することも必要である。すなわち、上記課題を実現するために専用の電力変換器を別途設けることは、大きなコスト増加となり望ましくない。既存の構成を流用してできるだけ低コストで実現することが重要である。上記公報では、これらの課題については特に検討されていない。 Furthermore, it is necessary to realize the above problems at low cost. That is, it is not desirable to separately provide a dedicated power converter in order to realize the above-mentioned problem because the cost increases greatly. It is important to realize the lowest possible cost by diverting the existing configuration. In the above publication, these problems are not particularly examined.
 この発明は、かかる課題を解決するためになされたものであり、その目的は、車載コンセントへの給電を高効率に実現する充電装置およびそれを備える車両を提供することである。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a charging device that realizes high-efficiency power feeding to an in-vehicle outlet and a vehicle including the same.
 また、この発明の別の目的は、車載コンセントへの給電を高効率に実現し、かつ、複数の外部電源電圧および複数の出力電圧に対応可能な充電装置およびそれを備える車両を提供することである。 Another object of the present invention is to provide a charging device that can efficiently supply power to a vehicle-mounted outlet and that can handle a plurality of external power supply voltages and a plurality of output voltages, and a vehicle including the same. is there.
 また、この発明の別の目的は、車載コンセントへの給電を高効率に実現する充電装置およびそれを備える車両を低コストで提供することである。 Another object of the present invention is to provide a charging device that realizes power supply to a vehicle-mounted outlet with high efficiency and a vehicle including the charging device at low cost.
 この発明によれば、充電装置は、車両に搭載された蓄電装置を外部電源によって充電するための充電装置であって、受電部と、電力変換器と、電力出力部と、切替回路と、制御装置とを備える。受電部は、外部電源から供給される供給電力を受ける。電力変換器は、受電部と蓄電装置との間に設けられ、外部電源からの供給電力を蓄電装置の充電電力に変換するように構成される。電力出力部は、電力変換器から電力を取り出すためのコンセントを有する。切替回路は、電力変換器の複数の電力取出点と電力出力部との間に設けられ、複数の電力取出点のいずれかを電力出力部に電気的に接続するように構成される。制御装置は、外部電源からの供給電力の電圧および電力出力部の出力電圧に基づいて、切替回路を制御することによって受電部から電力出力部への給電経路を切替える。 According to the present invention, the charging device is a charging device for charging the power storage device mounted on the vehicle by the external power source, and includes a power receiving unit, a power converter, a power output unit, a switching circuit, and a control. Device. The power receiving unit receives power supplied from an external power source. The power converter is provided between the power receiving unit and the power storage device, and is configured to convert power supplied from an external power source into charging power for the power storage device. The power output unit has an outlet for taking out power from the power converter. The switching circuit is provided between the plurality of power extraction points of the power converter and the power output unit, and is configured to electrically connect any of the plurality of power extraction points to the power output unit. The control device switches the power feeding path from the power receiving unit to the power output unit by controlling the switching circuit based on the voltage of the power supplied from the external power supply and the output voltage of the power output unit.
 好ましくは、電力変換器は、第1の変換回路、第2の変換回路、絶縁トランスおよび第3の変換回路を含む。第1の変換回路は、外部電源からの供給電力を直流電力に変換可能に構成される。第2の変換回路は、直流電力を交流電力に変換可能に構成される。絶縁トランスは、第2の変換回路に接続される一次コイルと、一次コイルに対応する二次コイルとを含む。第3の変換回路は、二次コイルから受ける交流電力を直流電力に変換して蓄電装置へ出力可能に構成される。切替回路は、受電部と第1の変換回路との間の第1の電路、および第2の変換回路と絶縁トランスとの間の第2の電路に電気的に接続される。制御装置は、外部電源からの供給電力の電圧および電力出力部の出力電圧に基づいて、第1の電路から電力出力部へ電力を供給する第1の給電経路と、第2の電路から電力出力部へ電力を供給する第2の給電経路とを切替える。 Preferably, the power converter includes a first conversion circuit, a second conversion circuit, an insulating transformer, and a third conversion circuit. The first conversion circuit is configured to be able to convert power supplied from an external power source into DC power. The second conversion circuit is configured to be able to convert DC power into AC power. The isolation transformer includes a primary coil connected to the second conversion circuit and a secondary coil corresponding to the primary coil. The third conversion circuit is configured to convert AC power received from the secondary coil into DC power and output the DC power to the power storage device. The switching circuit is electrically connected to a first electric circuit between the power receiving unit and the first conversion circuit and a second electric circuit between the second conversion circuit and the insulating transformer. The control device includes: a first power supply path that supplies power from the first electric circuit to the power output unit based on a voltage of power supplied from the external power supply and an output voltage of the power output unit; and a power output from the second electric circuit. The second power supply path for supplying power to the unit is switched.
 さらに好ましくは、外部電源からの供給電力の電圧が電力出力部の出力電圧と等しいとき、制御装置は、第1の給電経路を選択するように切替回路を制御する。外部電源からの供給電力の電圧が電力出力部の出力電圧と異なるとき、制御装置は、第2の給電経路を選択するように切替回路を制御する。 More preferably, when the voltage of the power supplied from the external power source is equal to the output voltage of the power output unit, the control device controls the switching circuit to select the first power feeding path. When the voltage of the power supplied from the external power supply is different from the output voltage of the power output unit, the control device controls the switching circuit to select the second power feeding path.
 好ましくは、電力変換器は、蓄電装置に蓄えられた電力を電力出力部へ出力可能に構成される。制御装置は、蓄電装置の電圧および電力出力部の出力電圧に基づいて、切替回路を制御することによって蓄電装置から電力出力部への給電経路をさらに切替可能に構成される。 Preferably, the power converter is configured to be able to output the power stored in the power storage device to the power output unit. The control device is configured to be able to further switch the power feeding path from the power storage device to the power output unit by controlling the switching circuit based on the voltage of the power storage device and the output voltage of the power output unit.
 さらに好ましくは、電力変換器は、第1の変換回路、第2の変換回路、絶縁トランスおよび第3の変換回路を含む。第1の変換回路は、外部電源からの供給電力を直流電力に変換可能に構成される。第2の変換回路は、直流電力を交流電力に変換可能に構成される。絶縁トランスは、第2の変換回路に接続される一次コイルと、一次コイルに対応する二次コイルとを含む。第3の変換回路は、二次コイルから受ける交流電力を直流電力に変換して蓄電装置へ出力可能に構成される。第1から第3の変換回路の各々は、双方向に電力変換可能に構成される。切替回路は、受電部と第1の変換回路との間の第1の電路、第2の変換回路と絶縁トランスとの間の第2の電路、および絶縁トランスと第3の変換回路との間の第3の電路に電気的に接続される。受電部が外部電源に接続されているとき、制御装置は、外部電源からの供給電力の電圧および電力出力部の出力電圧に基づいて、第1の電路から電力出力部へ電力を供給する第1の給電経路と、第2の電路から電力出力部へ電力を供給する第2の給電経路とを切替える。受電部が外部電源に接続されていないとき、制御装置は、蓄電装置の電圧および電力出力部の出力電圧に基づいて、蓄電装置に蓄えられた蓄電電力を第3の電路から電力出力部へ供給する第3の給電経路と、第1の電路から電力出力部へ蓄電電力を供給する第4の給電経路とを切替える。 More preferably, the power converter includes a first conversion circuit, a second conversion circuit, an insulating transformer, and a third conversion circuit. The first conversion circuit is configured to be able to convert power supplied from an external power source into DC power. The second conversion circuit is configured to be able to convert DC power into AC power. The isolation transformer includes a primary coil connected to the second conversion circuit and a secondary coil corresponding to the primary coil. The third conversion circuit is configured to convert AC power received from the secondary coil into DC power and output the DC power to the power storage device. Each of the first to third conversion circuits is configured to be capable of power conversion in both directions. The switching circuit includes a first electric circuit between the power reception unit and the first conversion circuit, a second electric circuit between the second conversion circuit and the insulation transformer, and between the insulation transformer and the third conversion circuit. Is electrically connected to the third electric circuit. When the power receiving unit is connected to the external power source, the control device supplies the power from the first electric circuit to the power output unit based on the voltage of the power supplied from the external power source and the output voltage of the power output unit. And a second power supply path for supplying power from the second electric circuit to the power output unit. When the power receiving unit is not connected to an external power source, the control device supplies the stored power stored in the power storage device from the third power path to the power output unit based on the voltage of the power storage device and the output voltage of the power output unit The third power feeding path to be switched and the fourth power feeding path for supplying the stored power from the first power path to the power output unit are switched.
 さらに好ましくは、受電部が外部電源に接続されており、かつ、外部電源からの供給電力の電圧が電力出力部の出力電圧と等しいとき、制御装置は、第1の通電経路を選択するように切替回路を制御する。受電部が外部電源に接続されており、かつ、外部電源からの供給電力の電圧が電力出力部の出力電圧と異なるとき、制御装置は、第2の通電経路を選択するように切替回路を制御する。受電部が外部電源に接続されておらず、かつ、蓄電装置の電圧により定まる所定電圧よりも電力出力部の出力電圧が低いとき、制御装置は、第3の通電経路を選択するように切替回路を制御する。受電部が外部電源に接続されておらず、かつ、電力出力部の出力電圧が所定電圧以上のとき、制御装置は、第4の通電経路を選択するように切替回路を制御する。 More preferably, when the power receiving unit is connected to an external power source and the voltage of power supplied from the external power source is equal to the output voltage of the power output unit, the control device selects the first energization path. Control the switching circuit. When the power receiving unit is connected to the external power source and the voltage of the power supplied from the external power source is different from the output voltage of the power output unit, the control device controls the switching circuit to select the second energization path To do. When the power receiving unit is not connected to an external power source and the output voltage of the power output unit is lower than a predetermined voltage determined by the voltage of the power storage device, the control device selects the third energization path. To control. When the power receiving unit is not connected to the external power source and the output voltage of the power output unit is equal to or higher than the predetermined voltage, the control device controls the switching circuit to select the fourth energization path.
 好ましくは、電力出力部は、出力電圧に対応して複数のコンセントを含む。切替回路は、複数の電力取出点のいずれかを複数のコンセントのいずれかに電気的に接続するように構成される。制御装置は、電力出力部の出力電圧に対応するコンセントを電気的に接続するように切替回路を制御する。 Preferably, the power output unit includes a plurality of outlets corresponding to the output voltage. The switching circuit is configured to electrically connect any of the plurality of power extraction points to any of the plurality of outlets. The control device controls the switching circuit so as to electrically connect the outlet corresponding to the output voltage of the power output unit.
 また、この発明によれば、車両は、上述したいずれかの充電装置と、充電装置によって充電される蓄電装置とを備える。 Further, according to the present invention, a vehicle includes any of the above-described charging devices and a power storage device that is charged by the charging device.
 この発明においては、電力変換器の複数の電力取出点と電力出力部との間に切替回路が設けられ、複数の電力取出点のいずれかを電力出力部に電気的に接続可能である。そして、外部電源からの供給電力の電圧および電力出力部の出力電圧に基づいて、切替回路を制御することによって受電部から電力出力部への給電経路を切替可能であるので、最も効率のよい給電経路を選択可能である。したがって、この発明によれば、電力出力部への給電を高効率に実現することが可能となる。また、複数の外部電源電圧および複数の出力電圧に対応することが可能となる。 In the present invention, a switching circuit is provided between a plurality of power extraction points and a power output unit of the power converter, and any one of the plurality of power extraction points can be electrically connected to the power output unit. Since the power supply path from the power receiving unit to the power output unit can be switched by controlling the switching circuit based on the voltage of the power supplied from the external power supply and the output voltage of the power output unit, the most efficient power supply A route can be selected. Therefore, according to the present invention, it is possible to realize power supply to the power output unit with high efficiency. It is also possible to deal with a plurality of external power supply voltages and a plurality of output voltages.
 また、この発明においては、外部電源からの供給電力を蓄電装置の充電電力に変換する電力変換器を流用して電力出力部へ給電するので、電力出力部へ給電するための専用の電力変換器を別途設ける必要はない。したがって、この発明によれば、電力出力部への給電を高効率に実現する充電装置を低コストで提供することができる。 Further, in the present invention, the power converter for converting the power supplied from the external power source to the charging power of the power storage device is diverted to supply power to the power output unit. Therefore, the dedicated power converter for supplying power to the power output unit Need not be provided separately. Therefore, according to this invention, the charging device which implement | achieves the electric power feeding to an electric power output part highly efficiently can be provided at low cost.
 また、この発明においては、電力変換器は、蓄電装置に蓄えられた電力を電力出力部へ出力可能に構成される。そして、蓄電装置の電圧および電力出力部の出力電圧に基づいて、切替回路を制御することによって蓄電装置から電力出力部への給電経路をさらに切替可能である。したがって、この発明によれば、蓄電装置から電力出力部への給電が行なわれる場合においても、電力出力部への給電を高効率に実現することができ、さらに、複数の出力電圧に対応することも可能となる。 Moreover, in the present invention, the power converter is configured to be able to output the power stored in the power storage device to the power output unit. Then, the power supply path from the power storage device to the power output unit can be further switched by controlling the switching circuit based on the voltage of the power storage device and the output voltage of the power output unit. Therefore, according to the present invention, even when power is supplied from the power storage device to the power output unit, power supply to the power output unit can be realized with high efficiency, and moreover, a plurality of output voltages can be handled. Is also possible.
この発明の実施の形態による充電装置を搭載した車両の全体ブロック図である。1 is an overall block diagram of a vehicle equipped with a charging device according to an embodiment of the present invention. 図1に示す充電器、切替回路および電力出力部の回路図である。FIG. 2 is a circuit diagram of a charger, a switching circuit, and a power output unit shown in FIG. 1. 電力出力部への給電経路を示した図である。It is the figure which showed the electric power feeding path | route to an electric power output part. 電力出力部への給電経路の選択例を説明するための図である。It is a figure for demonstrating the example of selection of the electric power feeding path | route to an electric power output part. 図1に示すPM-ECUの機能ブロック図である。FIG. 2 is a functional block diagram of the PM-ECU shown in FIG. 図5に示す切替制御部により実行される処理の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of the process performed by the switching control part shown in FIG.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、この発明の実施の形態による充電装置を搭載した車両の全体ブロック図である。図1を参照して、車両100は、蓄電装置10と、システムメインリレー(以下「SMR(System Main Relay)」と称する。)15と、パワーコントロールユニット(以下「PCU(Power Control Unit)」と称する。)20と、モータジェネレータ25と、駆動輪30と、MG-ECU35とを備える。また、車両100は、充電インレット40と、充電器45と、充電リレー47と、切替回路50と、電力出力部60と、PM-ECU65とをさらに備える。 FIG. 1 is an overall block diagram of a vehicle equipped with a charging device according to an embodiment of the present invention. Referring to FIG. 1, vehicle 100 includes a power storage device 10, a system main relay (hereinafter referred to as "SMR (System Main Relay)") 15, a power control unit (hereinafter referred to as "PCU (Power Control Unit)"). 20), a motor generator 25, drive wheels 30, and an MG-ECU 35. Vehicle 100 further includes a charging inlet 40, a charger 45, a charging relay 47, a switching circuit 50, a power output unit 60, and a PM-ECU 65.
 蓄電装置10は、走行用の電力を蓄える直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池によって構成される。蓄電装置10は、充電器45を用いて外部電源85により充電される。また、車両100の制動時や下り斜面での加速度低減時にも、蓄電装置10は、モータジェネレータ25によって発電される電力をPCU20から受けて充電される。そして、蓄電装置10は、蓄えられた電力をPCU20へ出力する。なお、蓄電装置10として、二次電池に代えて大容量のキャパシタも採用可能である。 The power storage device 10 is a direct current power source that stores electric power for traveling, and is constituted by a secondary battery such as nickel metal hydride or lithium ion. The power storage device 10 is charged by the external power supply 85 using the charger 45. The power storage device 10 is also charged with power generated by the motor generator 25 from the PCU 20 when the vehicle 100 is braked or when acceleration is reduced on a downward slope. Then, power storage device 10 outputs the stored power to PCU 20. Note that a large-capacity capacitor can be used as the power storage device 10 instead of the secondary battery.
 SMR15は、蓄電装置10とPCU20との間に設けられる。SMR15は、車両100を走行させるために車両システムが起動するとオン状態となり、充電器45による蓄電装置10の充電時はオフ状態となる。 The SMR 15 is provided between the power storage device 10 and the PCU 20. The SMR 15 is turned on when the vehicle system is activated in order to drive the vehicle 100, and is turned off when the power storage device 10 is charged by the charger 45.
 PCU20は、蓄電装置10から電力の供給を受け、MG-ECU35からの制御信号に基づいてモータジェネレータ25を駆動する。また、車両100の制動時等には、PCU20は、駆動輪30から運動エネルギーを受けてモータジェネレータ25が発電した電力を電圧変換して蓄電装置10へ出力する。PCU20は、たとえば、三相分のスイッチング素子を含む三相PWMインバータによって構成される。なお、三相PWMインバータと蓄電装置10との間に昇圧コンバータを設けてもよい。 The PCU 20 is supplied with electric power from the power storage device 10 and drives the motor generator 25 based on a control signal from the MG-ECU 35. When the vehicle 100 is braked or the like, the PCU 20 converts the electric power generated by the motor generator 25 by receiving kinetic energy from the drive wheels 30 and outputs the voltage to the power storage device 10. The PCU 20 is configured by, for example, a three-phase PWM inverter including switching elements for three phases. Note that a boost converter may be provided between the three-phase PWM inverter and the power storage device 10.
 モータジェネレータ25は、力行動作および回生動作可能な電動発電機であり、たとえば、ロータに永久磁石が埋設された三相交流同期電動発電機によって構成される。モータジェネレータ25は、PCU20によって駆動され、走行用の駆動トルクを発生して駆動輪30を駆動する。また、車両100の制動時等には、モータジェネレータ25は、車両100の有する運動エネルギーを駆動輪30から受けて発電する。 The motor generator 25 is a motor generator that can perform a power running operation and a regenerative operation, and includes, for example, a three-phase AC synchronous motor generator in which a permanent magnet is embedded in a rotor. The motor generator 25 is driven by the PCU 20 and generates driving torque for traveling to drive the driving wheels 30. In addition, when the vehicle 100 is braked, the motor generator 25 receives the kinetic energy of the vehicle 100 from the drive wheels 30 and generates electric power.
 MG-ECU35は、電子制御ユニット(ECU:Electronic Control Unit)により構成され、予め記憶されたプログラムをCPU(Central Processing Unit)で実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、PCU20の動作を制御する。具体的には、MG-ECU35は、PCU20によりモータジェネレータ25を駆動するための制御信号(たとえば、PWM(Pulse Width Modulation)信号)を生成し、その生成された制御信号をPCU20へ出力する。 The MG-ECU 35 is composed of an electronic control unit (ECU), and performs software processing by executing a program stored in advance by a CPU (Central Processing Unit) and / or hardware processing by a dedicated electronic circuit. The operation of the PCU 20 is controlled. Specifically, MG-ECU 35 generates a control signal (for example, a PWM (Pulse Width Modulation) signal) for driving motor generator 25 by PCU 20, and outputs the generated control signal to PCU 20.
 充電インレット40は、外部電源85に接続されるコネクタ80と嵌合可能に構成される。そして、充電インレット40は、外部電源85から供給される供給電力を受けて充電器45へ出力する。なお、充電インレット40に代えて、外部電源85のコンセントに接続可能に構成された充電プラグを設けてもよい。 The charging inlet 40 is configured to be matable with a connector 80 connected to an external power supply 85. The charging inlet 40 receives the supply power supplied from the external power supply 85 and outputs it to the charger 45. Instead of the charging inlet 40, a charging plug configured to be connectable to an outlet of the external power supply 85 may be provided.
 充電器45は、外部電源85から電力を受けて蓄電装置10を充電するように構成される。詳しくは、充電器45は、外部電源85から供給される電力をPM-ECU65からの制御信号に基づいて蓄電装置10の充電電力に変換する。また、充電器45には切替回路50が接続され、充電器45は、外部電源85から供給される電力を切替回路50を介して電力出力部60へ出力可能に構成される。さらに、充電器45は、蓄電装置10に蓄えられた電力を切替回路50を介して電力出力部60へ出力可能に構成される。なお、充電器45の構成については、後ほど詳しく説明する。 The charger 45 is configured to receive power from the external power source 85 and charge the power storage device 10. Specifically, charger 45 converts electric power supplied from external power supply 85 into charging electric power for power storage device 10 based on a control signal from PM-ECU 65. In addition, a switching circuit 50 is connected to the charger 45, and the charger 45 is configured to be able to output power supplied from the external power supply 85 to the power output unit 60 via the switching circuit 50. Furthermore, the charger 45 is configured to be able to output the power stored in the power storage device 10 to the power output unit 60 via the switching circuit 50. The configuration of the charger 45 will be described in detail later.
 充電リレー47は、蓄電装置10およびSMR15間に配線される電源線PL1,NL1と充電器45との間に設けられる。充電リレー47は、外部充電時にオン状態となり、外部充電が終了するとオフ状態となる。 The charging relay 47 is provided between the power supply lines PL <b> 1 and NL <b> 1 wired between the power storage device 10 and the SMR 15 and the charger 45. The charging relay 47 is turned on during external charging, and is turned off when the external charging is finished.
 切替回路50は、充電器45の複数の電力取出点(図示せず)と電力出力部60との間に設けられる。この切替回路50は、充電器45の複数の電力取出点のいずれかを電力出力部60に電気的に接続するように構成され、PM-ECU65からの切替信号に基づいて上記複数の電力取出点の一つを電力出力部60に電気的に接続する。なお、切替回路50の構成については、充電器45の構成とともに後ほど詳しく説明する。電力出力部60は、充電器45から電力を取り出すためのコンセントを有し、家電製品等の電源プラグを嵌合可能に構成される。 The switching circuit 50 is provided between a plurality of power extraction points (not shown) of the charger 45 and the power output unit 60. The switching circuit 50 is configured to electrically connect any of the plurality of power extraction points of the charger 45 to the power output unit 60, and based on a switching signal from the PM-ECU 65, the plurality of power extraction points. Is electrically connected to the power output unit 60. The configuration of the switching circuit 50 will be described later in detail together with the configuration of the charger 45. The power output unit 60 has an outlet for taking out electric power from the charger 45, and is configured to be able to fit a power plug such as a home appliance.
 PM-ECU65は、ECUにより構成され、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、充電器45および切替回路50の動作を制御する。具体的には、PM-ECU65は、外部充電時、外部電源85からの供給電力を蓄電装置10の充電電力に変換するように充電器45を動作させるための制御信号を生成し、その生成された制御信号を充電器45へ出力する。 PM-ECU 65 is configured by ECU and controls the operation of charger 45 and switching circuit 50 by software processing by executing a program stored in advance by CPU and / or hardware processing by a dedicated electronic circuit. Specifically, the PM-ECU 65 generates a control signal for operating the charger 45 so as to convert the power supplied from the external power supply 85 into the charging power of the power storage device 10 during external charging. The control signal is output to the charger 45.
 また、PM-ECU65は、充電インレット40が外部電源85に接続されているとき、外部電源85の電圧および電力出力部60の出力電圧に基づいて、充電インレット40から電力出力部60への給電経路を切替えるための切替信号を生成して切替回路50へ出力する。そして、家電製品等の電源プラグが電力出力部60に接続されると、PM-ECU65は、外部電源85からの供給電力を電力出力部60の出力電圧に変換するように充電器45を動作させるための制御信号を生成し、その生成された制御信号を充電器45へ出力する。 In addition, when the charging inlet 40 is connected to the external power supply 85, the PM-ECU 65 supplies a power supply path from the charging inlet 40 to the power output unit 60 based on the voltage of the external power supply 85 and the output voltage of the power output unit 60. A switching signal for switching is generated and output to the switching circuit 50. Then, when a power plug such as a home appliance is connected to the power output unit 60, the PM-ECU 65 operates the charger 45 so as to convert the power supplied from the external power source 85 into the output voltage of the power output unit 60. Control signal is generated, and the generated control signal is output to the charger 45.
 さらに、PM-ECU65は、充電インレット40が外部電源85に接続されていないときは、蓄電装置10の電圧および電力出力部60の出力電圧に基づいて、蓄電装置10から電力出力部60への給電経路を切替えるための切替信号を生成して切替回路50へ出力する。そして、家電製品等の電源プラグが電力出力部60に接続されると、PM-ECU65は、蓄電装置10からの供給電力を電力出力部60の出力電圧に変換するように充電器45を動作させるための制御信号を生成し、その生成された制御信号を充電器45へ出力する。 Furthermore, PM-ECU 65 supplies power from power storage device 10 to power output unit 60 based on the voltage of power storage device 10 and the output voltage of power output unit 60 when charging inlet 40 is not connected to external power supply 85. A switching signal for switching the path is generated and output to the switching circuit 50. Then, when a power plug such as a home appliance is connected to the power output unit 60, the PM-ECU 65 operates the charger 45 so as to convert the power supplied from the power storage device 10 into the output voltage of the power output unit 60. Control signal is generated, and the generated control signal is output to the charger 45.
 図2は、図1に示した充電器45、切替回路50および電力出力部60の回路図である。図2を参照して、充電器45は、AC/DC変換部110,140と、DC/AC変換部120と、絶縁トランス130とを含む。AC/DC変換部110,140およびDC/AC変換部120の各々は、双方向に電力変換可能な単相ブリッジ回路から成る。 FIG. 2 is a circuit diagram of the charger 45, the switching circuit 50, and the power output unit 60 shown in FIG. Referring to FIG. 2, charger 45 includes AC / DC conversion units 110 and 140, DC / AC conversion unit 120, and insulating transformer 130. Each of AC / DC conversion units 110 and 140 and DC / AC conversion unit 120 includes a single-phase bridge circuit capable of bidirectional power conversion.
 AC/DC変換部110は、PM-ECU65からの制御信号に基づいて、外部電源85から供給される交流電力を直流電力に変換してDC/AC変換部120へ出力する。また、AC/DC変換部110は、DC/AC変換部120から受ける直流電力を交流電力に変換して切替回路50へも出力可能である。 AC / DC conversion unit 110 converts AC power supplied from external power supply 85 into DC power based on a control signal from PM-ECU 65 and outputs the DC power to DC / AC conversion unit 120. The AC / DC conversion unit 110 can also convert the DC power received from the DC / AC conversion unit 120 into AC power and output the AC power to the switching circuit 50.
 DC/AC変換部120は、PM-ECU65からの制御信号に基づいて、AC/DC変換部110からの直流電力を交流電力に変換して絶縁トランス130へ出力する。また、DC/AC変換部120は、絶縁トランス130からの交流電力を直流電力に変換してAC/DC変換部110へも出力可能である。 The DC / AC conversion unit 120 converts the DC power from the AC / DC conversion unit 110 into AC power based on the control signal from the PM-ECU 65, and outputs the AC power to the insulation transformer 130. Further, the DC / AC conversion unit 120 can convert AC power from the insulation transformer 130 into DC power and output it to the AC / DC conversion unit 110.
 絶縁トランス130は、磁性材から成るコアと、コアに巻回された一次コイル132および二次コイル134を含む。一次コイル132および二次コイル134は、電気的に絶縁されており、それぞれDC/AC変換部120およびAC/DC変換部140に接続される。そして、絶縁トランス130は、DC/AC変換部120からの交流電力を一次コイル132および二次コイル134の巻数比に応じた電圧に変換してAC/DC変換部140へ出力する。また、絶縁トランス130は、AC/DC変換部140からの交流電力を二次コイル134および一次コイル132の巻数比に応じた電圧に変換してDC/AC変換部120へも出力可能である。 The insulation transformer 130 includes a core made of a magnetic material, and a primary coil 132 and a secondary coil 134 wound around the core. The primary coil 132 and the secondary coil 134 are electrically insulated and connected to the DC / AC converter 120 and the AC / DC converter 140, respectively. Insulation transformer 130 converts AC power from DC / AC converter 120 into a voltage corresponding to the turn ratio of primary coil 132 and secondary coil 134 and outputs the voltage to AC / DC converter 140. Further, the insulation transformer 130 can convert the AC power from the AC / DC conversion unit 140 into a voltage corresponding to the turn ratio of the secondary coil 134 and the primary coil 132 and output the voltage to the DC / AC conversion unit 120.
 AC/DC変換部140は、PM-ECU65からの制御信号に基づいて、絶縁トランス130からの交流電力を直流電力に変換して蓄電装置10へ出力する。また、AC/DC変換部140は、蓄電装置10から供給される直流電力を交流電力に変換して切替回路50へも出力可能である。 AC / DC converter 140 converts AC power from insulation transformer 130 into DC power based on a control signal from PM-ECU 65 and outputs the DC power to power storage device 10. The AC / DC conversion unit 140 can also convert the DC power supplied from the power storage device 10 into AC power and output the AC power to the switching circuit 50.
 電圧センサ70は、外部電源85からの供給電力の電圧VIを検出し、その検出値をPM-ECU65へ出力する。電圧センサ75は、蓄電装置10の電圧VBを検出し、その検出値をPM-ECU65へ出力する。 The voltage sensor 70 detects the voltage VI of the power supplied from the external power source 85 and outputs the detected value to the PM-ECU 65. Voltage sensor 75 detects voltage VB of power storage device 10 and outputs the detected value to PM-ECU 65.
 切替回路50は、リレー52,54,56と、スイッチ58とを含む。リレー52は、充電インレット40およびAC/DC変換部110間の電路と切替回路50内のノードND1,ND2との間に配設される電路上に設けられる。リレー54は、DC/AC変換部120および絶縁トランス130間の電路とノードND1,ND2との間に配設される電路上に設けられる。リレー56は、絶縁トランス130と電力出力部60のコンセント62(後述)との間に配設される電路上に設けられる。リレー52,54,56の各々は、PM-ECU65からの切替信号に応じてオン/オフされる。 The switching circuit 50 includes relays 52, 54 and 56 and a switch 58. Relay 52 is provided on an electric circuit disposed between electric circuit between charging inlet 40 and AC / DC converter 110 and nodes ND1 and ND2 in switching circuit 50. Relay 54 is provided on an electric circuit arranged between DC / AC converter 120 and insulating transformer 130 and nodes ND1 and ND2. The relay 56 is provided on an electric circuit disposed between the insulating transformer 130 and an outlet 62 (described later) of the power output unit 60. Each of relays 52, 54, and 56 is turned on / off in response to a switching signal from PM-ECU 65.
 スイッチ58は、ノードND1,ND2と、電力出力部60のコンセント62およびコンセント64(後述)との間に配設される。スイッチ58は、PM-ECU65からの切替信号に基づいて、ノードND1,ND2をコンセント62およびコンセント64のいずれかと電気的に接続する。 The switch 58 is disposed between the nodes ND1 and ND2 and an outlet 62 and an outlet 64 (described later) of the power output unit 60. Switch 58 electrically connects nodes ND 1 and ND 2 to either outlet 62 or outlet 64 based on a switching signal from PM-ECU 65.
 電力出力部60は、コンセント62と、コンセント64とを含む。コンセント62は、リレー56とスイッチ58とに接続される。コンセント64は、スイッチ58に接続される。コンセント62は、交流電圧V1(たとえばAC100V)を出力するためのコンセントである。コンセント64は、交流電圧V1と異なる交流電圧V2(たとえばAC200V)を出力するためのコンセントである。 The power output unit 60 includes an outlet 62 and an outlet 64. Outlet 62 is connected to relay 56 and switch 58. The outlet 64 is connected to the switch 58. The outlet 62 is an outlet for outputting an AC voltage V1 (for example, AC 100V). The outlet 64 is an outlet for outputting an AC voltage V2 (for example, AC200V) different from the AC voltage V1.
 この実施の形態においては、充電インレット40にコネクタ80が接続されているとき、外部電源85から供給される電力を充電器45から電力出力部60へ取り出すことができる。ここで、この実施の形態においては、外部電源85からの供給電力の電圧および電力出力部60の出力電圧に基づいてPM-ECU65により切替回路50を制御することによって、充電インレット40から電力出力部60への給電経路が切替えられる。 In this embodiment, when the connector 80 is connected to the charging inlet 40, the power supplied from the external power source 85 can be taken out from the charger 45 to the power output unit 60. Here, in this embodiment, the PM-ECU 65 controls the switching circuit 50 based on the voltage of the power supplied from the external power supply 85 and the output voltage of the power output unit 60, so that the power output unit from the charging inlet 40 The power supply path to 60 is switched.
 また、この実施の形態においては、充電インレット40に外部電源85のコネクタ80が接続されていないときは、蓄電装置10に蓄えられた電力を充電器45から電力出力部60へ取り出すことができる。ここで、この実施の形態においては、蓄電装置10の電圧および電力出力部60の出力電圧に基づいてPM-ECU65により切替回路50を制御することによって、蓄電装置10から電力出力部60への給電経路が切替えられる。 Further, in this embodiment, when the connector 80 of the external power source 85 is not connected to the charging inlet 40, the power stored in the power storage device 10 can be taken out from the charger 45 to the power output unit 60. Here, in this embodiment, the PM-ECU 65 controls the switching circuit 50 based on the voltage of the power storage device 10 and the output voltage of the power output unit 60, thereby supplying power from the power storage device 10 to the power output unit 60. The route is switched.
 図3は、電力出力部60への給電経路を示した図である。図3とともに図2も参照して、充電インレット40に外部電源85が接続されているとき、切替回路50において、リレー52をオンにし、リレー54,56をオフにすることによって、充電インレット40から電力出力部60への給電経路Aが選択される。また、切替回路50において、リレー52,56をオフにし、リレー54をオンにすることによって、充電インレット40から電力出力部60への給電経路Bが選択される。なお、スイッチ58は、電力出力部60の出力電圧に応じて切替えられる。 FIG. 3 is a diagram showing a power supply path to the power output unit 60. Referring to FIG. 2 together with FIG. 3, when the external power supply 85 is connected to the charging inlet 40, the switching circuit 50 turns on the relay 52 and turns off the relays 54 and 56, thereby turning off the charging inlet 40. The power supply path A to the power output unit 60 is selected. In the switching circuit 50, the power supply path B from the charging inlet 40 to the power output unit 60 is selected by turning off the relays 52 and 56 and turning on the relay 54. The switch 58 is switched according to the output voltage of the power output unit 60.
 また、充電インレット40に外部電源85が接続されていないときは、切替回路50において、リレー56をオンにし、リレー52,54をオフにすることによって、蓄電装置10から電力出力部60への給電経路Cが選択される。また、切替回路50において、リレー54,56をオフにし、リレー52をオンにすることによって、蓄電装置10から電力出力部60への給電経路Dが選択される。なお、この場合も、スイッチ58は、電力出力部60の出力電圧に応じて切替えられる。 Further, when the external power supply 85 is not connected to the charging inlet 40, the switching circuit 50 turns on the relay 56 and turns off the relays 52 and 54 to supply power from the power storage device 10 to the power output unit 60. Path C is selected. In switching circuit 50, power supply path D from power storage device 10 to power output unit 60 is selected by turning off relays 54 and 56 and turning on relay 52. Also in this case, the switch 58 is switched according to the output voltage of the power output unit 60.
 図4は、電力出力部60への給電経路の選択例を説明するための図である。図4とともに図3も参照して、充電インレット40に外部電源85が接続されている場合に、外部電源85の電圧が電力出力部60の出力電圧と等しいとき、図3に示した給電経路Aを選択するように切替回路50が制御される。また、充電インレット40に外部電源85が接続されている場合に、外部電源85の電圧が電力出力部60の出力電圧と異なるときは、図3に示した給電経路Bを選択するように切替回路50が制御される。 FIG. 4 is a diagram for explaining an example of selection of a power feeding path to the power output unit 60. Referring to FIG. 3 together with FIG. 4, when the external power supply 85 is connected to the charging inlet 40 and the voltage of the external power supply 85 is equal to the output voltage of the power output unit 60, the power supply path A shown in FIG. The switching circuit 50 is controlled to select. When the external power supply 85 is connected to the charging inlet 40 and the voltage of the external power supply 85 is different from the output voltage of the power output unit 60, the switching circuit is selected so as to select the power supply path B shown in FIG. 50 is controlled.
 一方、充電インレット40に外部電源85が接続されていない場合に、電力出力部60の出力電圧がV1のとき、図3に示した給電経路Cを選択するように切替回路50が制御される。ここで、電圧V1は、給電経路Cを介して電力出力部60へ供給可能な最大電圧(蓄電装置10の電圧VBにより定まる。)よりも低いものとする。また、充電インレット40に外部電源85が接続されていない場合に、電力出力部60の出力電圧がV2のときは、図3に示した給電経路Dを選択するように切替回路50が制御される。ここで、電圧V2は、給電経路Cを介して出力可能な最大電圧よりも高いものとする。 On the other hand, when the external power supply 85 is not connected to the charging inlet 40, when the output voltage of the power output unit 60 is V1, the switching circuit 50 is controlled so as to select the power supply path C shown in FIG. Here, voltage V1 is assumed to be lower than the maximum voltage (determined by voltage VB of power storage device 10) that can be supplied to power output unit 60 via power feeding path C. When the external power supply 85 is not connected to the charging inlet 40 and the output voltage of the power output unit 60 is V2, the switching circuit 50 is controlled so as to select the power feeding path D shown in FIG. . Here, it is assumed that the voltage V2 is higher than the maximum voltage that can be output via the power feeding path C.
 このように、外部電源85から電力出力部60への給電経路を切替可能とすることで効率向上を図ることができる。具体的には、給電経路AはAC/DC変換部110およびDC/AC変換部120を介さないので、給電経路Aは給電経路Bよりも効率がよい。外部電源85の電圧と電力出力部60の出力電圧とが異なる場合には給電経路Bを選択する必要があるが、外部電源85の電圧と電力出力部60の出力電圧とが等しい場合に給電経路Aが選択されることにより、トータルで効率の向上を図ることができる。 Thus, the efficiency can be improved by making it possible to switch the power supply path from the external power supply 85 to the power output unit 60. Specifically, since the power feeding path A does not pass through the AC / DC converting unit 110 and the DC / AC converting unit 120, the power feeding path A is more efficient than the power feeding path B. When the voltage of the external power supply 85 and the output voltage of the power output unit 60 are different, it is necessary to select the power supply path B, but when the voltage of the external power supply 85 and the output voltage of the power output unit 60 are equal, the power supply path By selecting A, the total efficiency can be improved.
 また、充電インレット40に外部電源85が接続されていない場合は、蓄電装置10から電力出力部60へ給電可能であるが、この場合も、蓄電装置10から電力出力部60への給電経路を切替可能とすることで効率向上を図ることができる。具体的には、給電経路Cは絶縁トランス130、DC/AC変換部120およびAC/DC変換部110を介さないので、給電経路Cは給電経路Dよりも効率がよい。給電経路Cを介して出力可能な最大電圧よりも電力出力部60の出力電圧が高い場合には給電経路Dを選択する必要があるが、給電経路Cを介して出力可能な最大電圧よりも電力出力部60の出力電圧が低い場合に給電経路Cが選択されることにより、トータルで効率の向上を図ることができる。 In addition, when the external power supply 85 is not connected to the charging inlet 40, power can be supplied from the power storage device 10 to the power output unit 60. In this case also, the power supply path from the power storage device 10 to the power output unit 60 is switched. The efficiency can be improved by making it possible. Specifically, since the power feeding path C does not pass through the insulating transformer 130, the DC / AC conversion unit 120, and the AC / DC conversion unit 110, the power feeding path C is more efficient than the power feeding path D. When the output voltage of the power output unit 60 is higher than the maximum voltage that can be output via the power supply path C, it is necessary to select the power supply path D, but the power is higher than the maximum voltage that can be output via the power supply path C. By selecting the power supply path C when the output voltage of the output unit 60 is low, the efficiency can be improved in total.
 図5は、図1に示したPM-ECU65の機能ブロック図である。図5を参照して、PM-ECU65は、充電器制御部150と、切替制御部152とを含む。充電器制御部150は、外部充電時、外部電源85からの供給電力を充電器45により蓄電装置10の充電電力に変換するための制御信号を生成し、その生成された制御信号を充電器45へ出力する。 FIG. 5 is a functional block diagram of the PM-ECU 65 shown in FIG. Referring to FIG. 5, PM-ECU 65 includes a charger control unit 150 and a switching control unit 152. Charger control unit 150 generates a control signal for converting power supplied from external power supply 85 into charging power for power storage device 10 by charger 45 during external charging, and uses the generated control signal as charger 45. Output to.
 また、充電器制御部150は、電力出力部60への給電経路および出力電圧を指示する指令を切替制御部152から受けると、その受けた指令に従って充電器45を動作させるための制御信号を生成し、その生成された制御信号を充電器45へ出力する。 In addition, when the charger control unit 150 receives a command from the switching control unit 152 instructing the power supply path to the power output unit 60 and the output voltage, the charger control unit 150 generates a control signal for operating the charger 45 according to the received command. Then, the generated control signal is output to the charger 45.
 切替制御部152は、充電インレット40に外部電源85のコネクタ80が接続されているか否かを示す接続信号を受ける。なお、この接続信号は、たとえば、充電インレット40にコネクタ80が接続されると信号状態が変化する近接スイッチ等を用いて生成される。また、切替制御部152は、電圧センサ70,75(図2)からそれぞれ電圧VI,VBの検出値を受ける。さらに、切替制御部152は、電力出力部60のコンセント62,64のどちらが選択されたかを示すAC出力選択信号を受ける。なお、このAC出力選択信号は、たとえば、利用者が操作可能なスイッチ等によって生成してもよいし、コンセント62,64への電気機器の接続有無に基づいて生成してもよい。 The switching control unit 152 receives a connection signal indicating whether or not the connector 80 of the external power supply 85 is connected to the charging inlet 40. The connection signal is generated using, for example, a proximity switch that changes its signal state when the connector 80 is connected to the charging inlet 40. Further, the switching control unit 152 receives the detected values of the voltages VI and VB from the voltage sensors 70 and 75 (FIG. 2), respectively. Further, the switching control unit 152 receives an AC output selection signal indicating which of the outlets 62 and 64 of the power output unit 60 has been selected. The AC output selection signal may be generated by, for example, a switch that can be operated by the user, or may be generated based on whether or not an electrical device is connected to the outlets 62 and 64.
 そして、切替制御部152は、後述の処理手順に従って、リレー52,54,56(図2)のオン/オフを指示するためのリレー信号およびスイッチ58を制御するための切替信号を生成して切替回路50へ出力する。また、切替制御部152は、選択された給電経路および電力出力部60の出力電圧を指示する指令を充電器制御部150へ出力する。 Then, the switching control unit 152 generates and switches a relay signal for instructing on / off of the relays 52, 54, and 56 (FIG. 2) and a switching signal for controlling the switch 58 in accordance with a processing procedure described later. Output to the circuit 50. In addition, switching control unit 152 outputs a command that instructs the selected power supply path and the output voltage of power output unit 60 to charger control unit 150.
 図6は、図5に示した切替制御部152により実行される処理の手順を説明するためのフローチャートである。図6を参照して、切替制御部152は、充電インレット40に外部電源85のコネクタ80が接続されているか否かを示す接続信号に基づいて、充電インレット40が外部電源85に接続されているか否かを判定する(ステップS10)。 FIG. 6 is a flowchart for explaining a procedure of processing executed by the switching control unit 152 shown in FIG. Referring to FIG. 6, switching control unit 152 determines whether charging inlet 40 is connected to external power supply 85 based on a connection signal indicating whether or not connector 80 of external power supply 85 is connected to charging inlet 40. It is determined whether or not (step S10).
 充電インレット40が外部電源85に接続されていると判定されると(ステップS10においてYES)、切替制御部152は、電圧センサ70からの電圧VIの検出値に基づいて、外部電源85の電圧が電力出力部60のAC出力電圧と等しいか否かを判定する(ステップS20)。なお、外部電源85の交流周波数がAC出力電圧の周波数と異なるときは、電圧は異なるものと判定される。外部電源85の電圧はAC出力電圧と異なると判定されると(ステップS20においてNO)、切替制御部152は、AC出力電圧がV1(たとえばAC100V)であるか否かを判定する(ステップS30)。 When it is determined that charging inlet 40 is connected to external power supply 85 (YES in step S10), switching control unit 152 determines the voltage of external power supply 85 based on the detected value of voltage VI from voltage sensor 70. It is determined whether or not it is equal to the AC output voltage of the power output unit 60 (step S20). When the AC frequency of the external power supply 85 is different from the frequency of the AC output voltage, it is determined that the voltages are different. When it is determined that the voltage of external power supply 85 is different from the AC output voltage (NO in step S20), switching control unit 152 determines whether or not the AC output voltage is V1 (for example, AC 100V) (step S30). .
 そして、AC出力電圧がV1であると判定されると(ステップS30においてYES)、切替制御部152は、リレー52,54,56をそれぞれオフ,オン,オフにするためのリレー信号、およびスイッチ58をコンセント62側に切替えるための切替信号を生成して切替回路50へ出力する(ステップS40)。 When it is determined that the AC output voltage is V1 (YES in step S30), switching control unit 152 provides a relay signal for turning off, on, and off relays 52, 54, and 56, and switch 58, respectively. Is generated and output to the switching circuit 50 (step S40).
 ステップS30においてAC出力電圧がV1でない(たとえばAC200V)と判定されると(ステップS30においてNO)、切替制御部152は、リレー52,54,56をそれぞれオフ,オン,オフにするためのリレー信号、およびスイッチ58をコンセント64側に切替えるための切替信号を生成して切替回路50へ出力する(ステップS50)。 When it is determined in step S30 that the AC output voltage is not V1 (for example, AC 200V) (NO in step S30), switching control unit 152 performs relay signals for turning off, on, and off relays 52, 54, and 56, respectively. , And a switch signal for switching the switch 58 to the outlet 64 side is generated and output to the switching circuit 50 (step S50).
 一方、ステップS20において、外部電源85の電圧はAC出力電圧と等しいと判定されると(ステップS20においてYES)、切替制御部152は、AC出力電圧がV1であるか否かを判定する(ステップS60)。そして、AC出力電圧がV1であると判定されると(ステップS60においてYES)、切替制御部152は、リレー52,54,56をそれぞれオン,オフ,オフにするためのリレー信号、およびスイッチ58をコンセント62側に切替えるための切替信号を生成して切替回路50へ出力する(ステップS65)。ステップS60においてAC出力電圧がV1でないと判定されると(ステップS60においてNO)、切替制御部152は、ステップS90(後述)へ処理を移行する。 On the other hand, when it is determined in step S20 that the voltage of external power supply 85 is equal to the AC output voltage (YES in step S20), switching control unit 152 determines whether or not the AC output voltage is V1 (step S20). S60). When it is determined that the AC output voltage is V1 (YES in step S60), switching control unit 152 performs relay signal for turning on, off, and off relays 52, 54, and 56, and switch 58, respectively. Is generated and output to the switching circuit 50 (step S65). If it is determined in step S60 that the AC output voltage is not V1 (NO in step S60), switching control unit 152 proceeds to step S90 (described later).
 ステップS10において、充電インレット40が外部電源85に接続されていないと判定されると(ステップS10においてNO)、切替制御部152は、蓄電装置10の残存容量を示すSOC(たとえば、蓄電装置10の容量に対する百分率で表される。)が予め定められたしきい値よりも高いか否かを判定する(ステップS70)。なお、このSOCは、蓄電装置10の電圧VBおよび入出力電流等に基づいて、種々の公知の手法を用いて算出することができる。 When it is determined in step S10 that charging inlet 40 is not connected to external power supply 85 (NO in step S10), switching control unit 152 displays an SOC indicating the remaining capacity of power storage device 10 (for example, power storage device 10 It is determined whether or not (expressed as a percentage of capacity) is higher than a predetermined threshold value (step S70). The SOC can be calculated using various known methods based on the voltage VB of the power storage device 10, the input / output current, and the like.
 蓄電装置10のSOCがしきい値よりも高いと判定されると(ステップS70においてYES)、切替制御部152は、AC出力電圧がV1であるか否かを判定する(ステップS80)。そして、AC出力電圧がV1でないと判定されると(ステップS80においてNO)、切替制御部152は、リレー52,54,56をそれぞれオン,オフ,オフにするためのリレー信号、およびスイッチ58をコンセント64側に切替えるための切替信号を生成して切替回路50へ出力する(ステップS90)。 If it is determined that the SOC of power storage device 10 is higher than the threshold value (YES in step S70), switching control unit 152 determines whether or not the AC output voltage is V1 (step S80). When it is determined that the AC output voltage is not V1 (NO in step S80), switching control unit 152 turns on relay signal for turning on, off, and off relays 52, 54, and 56, and switch 58, respectively. A switching signal for switching to the outlet 64 side is generated and output to the switching circuit 50 (step S90).
 ステップS80においてAC出力電圧がV1であると判定されると(ステップS80においてYES)、切替制御部152は、リレー52,54,56をそれぞれオフ,オフ,オンにするためのリレー信号、およびスイッチ58をコンセント62側に切替えるための切替信号を生成して切替回路50へ出力する(ステップS100)。 When it is determined in step S80 that the AC output voltage is V1 (YES in step S80), switching control unit 152 uses a relay signal and a switch for turning off, off, and on relays 52, 54, and 56, respectively. A switching signal for switching 58 to the outlet 62 side is generated and output to the switching circuit 50 (step S100).
 なお、ステップS70において蓄電装置10のSOCがしきい値以下であると判定されると(ステップS70においてNO)、電力出力部60からのAC出力は不可とされる(ステップS110)。 If it is determined in step S70 that the SOC of power storage device 10 is equal to or lower than the threshold value (NO in step S70), AC output from power output unit 60 is disabled (step S110).
 以上のように、この実施の形態においては、充電器45の複数の電力取出点と電力出力部60との間に切替回路50が設けられ、複数の電力取出点のいずれかを電力出力部60に電気的に接続可能である。そして、外部電源85からの供給電力の電圧および電力出力部60の出力電圧に基づいて、切替回路50を制御することによって充電インレット40から電力出力部60への給電経路を切替可能であるので、効率のよい給電経路を選択可能である。具体的には、外部電源85からの供給電力の電圧と電力出力部60の出力電圧とが等しいとき、AC/DC変換部110およびDC/AC変換部120を介さない給電経路Aが選択される。したがって、この実施の形態によれば、電力出力部60への給電を高効率に実現することが可能となる。また、複数の外部電源電圧および複数のAC出力電圧に対応することが可能となる。 As described above, in this embodiment, the switching circuit 50 is provided between the plurality of power extraction points of the charger 45 and the power output unit 60, and any one of the plurality of power extraction points is connected to the power output unit 60. Can be electrically connected. Since the power supply path from the charging inlet 40 to the power output unit 60 can be switched by controlling the switching circuit 50 based on the voltage of the power supplied from the external power supply 85 and the output voltage of the power output unit 60, An efficient power supply path can be selected. Specifically, when the voltage of power supplied from the external power supply 85 is equal to the output voltage of the power output unit 60, the power supply path A that does not pass through the AC / DC conversion unit 110 and the DC / AC conversion unit 120 is selected. . Therefore, according to this embodiment, power supply to the power output unit 60 can be realized with high efficiency. Further, it is possible to cope with a plurality of external power supply voltages and a plurality of AC output voltages.
 また、この実施の形態においては、外部電源85からの供給電力を蓄電装置10の充電電力に変換する充電器45を流用して電力出力部60へ給電するので、電力出力部60へ給電するための専用の電力変換器を別途設ける必要はない。したがって、この実施の形態によれば、電力出力部60への給電を高効率に実現する充電装置を低コストで提供することができる。 In this embodiment, since power is supplied to the power output unit 60 by using the charger 45 that converts power supplied from the external power supply 85 to the charging power of the power storage device 10, the power output unit 60 is supplied with power. There is no need to provide a separate dedicated power converter. Therefore, according to this embodiment, it is possible to provide a charging device that realizes power feeding to the power output unit 60 with high efficiency at a low cost.
 また、この実施の形態においては、充電器45は、蓄電装置10に蓄えられた電力を電力出力部60へ出力可能に構成される。そして、蓄電装置10の電圧および電力出力部60の出力電圧に基づいて、切替回路50を制御することによって蓄電装置10から電力出力部60への給電経路をさらに切替可能であるので、この場合にも効率のよい給電経路を選択可能である。具体的には、電力出力部60の出力電圧が低い場合には、DC/AC変換部120およびAC/DC変換部110を介さない給電経路Cが選択される。したがって、この実施の形態によれば、蓄電装置10から電力出力部60への給電が行なわれる場合においても、電力出力部60への給電を高効率に実現することができ、さらに、複数の出力電圧に対応することも可能となる。 In this embodiment, charger 45 is configured to be able to output power stored in power storage device 10 to power output unit 60. In this case, the power supply path from the power storage device 10 to the power output unit 60 can be further switched by controlling the switching circuit 50 based on the voltage of the power storage device 10 and the output voltage of the power output unit 60. It is also possible to select an efficient power supply path. Specifically, when the output voltage of the power output unit 60 is low, the power supply path C that does not pass through the DC / AC conversion unit 120 and the AC / DC conversion unit 110 is selected. Therefore, according to this embodiment, even when power supply from power storage device 10 to power output unit 60 is performed, power supply to power output unit 60 can be realized with high efficiency, and a plurality of outputs It is also possible to cope with the voltage.
 なお、上記の実施の形態において、切替回路50の回路構成は、図2に示した構成に限定されるものではなく、切替回路50と同様の機能を有すれば、如何なる回路構成であってもよい。 In the above embodiment, the circuit configuration of the switching circuit 50 is not limited to the configuration shown in FIG. 2, and any circuit configuration may be used as long as it has the same function as the switching circuit 50. Good.
 また、上記においては、電力出力部60は、電圧V1(たとえばAC100V)用のコンセント62および電圧V2(たとえばAC200V)用のコンセント64を含むものとしたが、電圧V1,V2に対応可能な一つのコンセントで実現してもよい。 In the above description, the power output unit 60 includes the outlet 62 for the voltage V1 (for example, AC100V) and the outlet 64 for the voltage V2 (for example, AC200V). It may be realized with an outlet.
 また、上記の実施の形態においては、車両100は、モータジェネレータ25を動力源とする電動車両としたが、車両100は、モータジェネレータ25のみを動力源とする電気自動車であってもよいし、モータジェネレータ25に加えてエンジン(図示せず)をさらに搭載したハイブリッド自動車であってもよい。 In the above embodiment, vehicle 100 is an electric vehicle that uses motor generator 25 as a power source. However, vehicle 100 may be an electric vehicle that uses only motor generator 25 as a power source. It may be a hybrid vehicle further equipped with an engine (not shown) in addition to the motor generator 25.
 なお、上記において、充電インレット40は、この発明における「受電部」の一実施例に対応し、充電器45は、この発明における「電力変換器」の一実施例に対応する。また、PM-ECU65は、この発明における「制御装置」の一実施例に対応し、AC/DC変換部110は、この発明における「第1の変換回路」の一実施例に対応する。さらに、DC/AC変換部120は、この発明における「第2の変換回路」の一実施例に対応し、AC/DC変換部140は、この発明における「第3の変換回路」の一実施例に対応する。 In the above, charging inlet 40 corresponds to an embodiment of “power receiving unit” in the present invention, and charger 45 corresponds to an embodiment of “power converter” in the present invention. PM-ECU 65 corresponds to an embodiment of “control device” in the present invention, and AC / DC converter 110 corresponds to an embodiment of “first conversion circuit” in the present invention. Further, DC / AC conversion section 120 corresponds to an embodiment of “second conversion circuit” in the present invention, and AC / DC conversion section 140 corresponds to an embodiment of “third conversion circuit” in the present invention. Corresponding to.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 蓄電装置、15 SMR、20 PCU、25 モータジェネレータ、30 駆動輪、35 MG-ECU、40 充電インレット、45 充電器、47 充電リレー、50 切替回路、52,54,56 リレー、58 スイッチ、60 電力出力部、62,64 コンセント、65 PM-ECU、70,75 電圧センサ、80 コネクタ、85 外部電源、100 車両、110,140 AC/DC変換部、120 DC/AC変換部、130 絶縁トランス、132 一次コイル、134 二次コイル、150 充電器制御部、152 切替制御部。 10 power storage device, 15 SMR, 20 PCU, 25 motor generator, 30 drive wheels, 35 MG-ECU, 40 charging inlet, 45 charger, 47 charging relay, 50 switching circuit, 52, 54, 56 relay, 58 switch, 60 Power output unit, 62, 64 outlet, 65 PM-ECU, 70, 75 voltage sensor, 80 connector, 85 external power supply, 100 vehicle, 110, 140 AC / DC conversion unit, 120 DC / AC conversion unit, 130 insulation transformer, 132 primary coil, 134 secondary coil, 150 charger control unit, 152 switching control unit.

Claims (8)

  1.  車両に搭載された蓄電装置(10)を車両外部の外部電源(85)によって充電するための充電装置であって、
     前記外部電源から供給される供給電力を受ける受電部(40)と、
     前記受電部と前記蓄電装置との間に設けられ、前記供給電力を前記蓄電装置の充電電力に変換するように構成された電力変換器(45)と、
     前記電力変換器から電力を取り出すためのコンセントを有する電力出力部(60)と、
     前記電力変換器の複数の電力取出点と前記電力出力部との間に設けられ、前記複数の電力取出点のいずれかを前記電力出力部に電気的に接続するように構成された切替回路(50)と、
     前記供給電力の電圧および前記電力出力部の出力電圧に基づいて、前記切替回路を制御することによって前記受電部から前記電力出力部への給電経路を切替える制御装置(65)とを備える充電装置。
    A charging device for charging a power storage device (10) mounted on a vehicle with an external power source (85) outside the vehicle,
    A power receiving unit (40) for receiving power supplied from the external power source;
    A power converter (45) provided between the power receiving unit and the power storage device and configured to convert the supplied power into charging power of the power storage device;
    A power output unit (60) having an outlet for extracting power from the power converter;
    A switching circuit provided between a plurality of power extraction points of the power converter and the power output unit, and configured to electrically connect any of the plurality of power extraction points to the power output unit ( 50),
    A charging device comprising: a control device (65) for switching a power feeding path from the power receiving unit to the power output unit by controlling the switching circuit based on the voltage of the supplied power and the output voltage of the power output unit.
  2.  前記電力変換器は、第1の変換回路(110)、第2の変換回路(120)、絶縁トランス(130)および第3の変換回路(140)を含み、
     前記第1の変換回路は、前記供給電力を直流電力に変換可能に構成され、
     前記第2の変換回路は、前記直流電力を交流電力に変換可能に構成され、
     前記絶縁トランスは、
     前記第2の変換回路に接続される一次コイル(132)と、
     前記一次コイルに対応する二次コイル(134)とを含み、
     前記第3の変換回路は、前記二次コイルから受ける交流電力を直流電力に変換して前記蓄電装置へ出力可能に構成され、
     前記切替回路は、前記受電部と前記第1の変換回路との間の第1の電路、および前記第2の変換回路と前記絶縁トランスとの間の第2の電路に電気的に接続され、
     前記制御装置は、前記供給電力の電圧および前記電力出力部の出力電圧に基づいて、前記第1の電路から前記電力出力部へ電力を供給する第1の給電経路と、前記第2の電路から前記電力出力部へ電力を供給する第2の給電経路とを切替える、請求の範囲第1項に記載の充電装置。
    The power converter includes a first conversion circuit (110), a second conversion circuit (120), an isolation transformer (130), and a third conversion circuit (140),
    The first conversion circuit is configured to be capable of converting the supplied power into DC power,
    The second conversion circuit is configured to be capable of converting the DC power into AC power,
    The insulating transformer is
    A primary coil (132) connected to the second converter circuit;
    A secondary coil (134) corresponding to the primary coil,
    The third conversion circuit is configured to convert AC power received from the secondary coil into DC power and output the DC power to the power storage device,
    The switching circuit is electrically connected to a first electric circuit between the power reception unit and the first conversion circuit, and a second electric circuit between the second conversion circuit and the insulating transformer,
    The control device includes a first power supply path for supplying power from the first electric circuit to the power output unit based on the voltage of the supplied power and the output voltage of the power output unit, and the second electric circuit. The charging device according to claim 1, wherein the second power supply path for supplying power to the power output unit is switched.
  3.  前記供給電力の電圧が前記電力出力部の出力電圧と等しいとき、前記制御装置は、前記第1の給電経路を選択するように前記切替回路を制御し、
     前記供給電力の電圧が前記電力出力部の出力電圧と異なるとき、前記制御装置は、前記第2の給電経路を選択するように前記切替回路を制御する、請求の範囲第2項に記載の充電装置。
    When the voltage of the supplied power is equal to the output voltage of the power output unit, the control device controls the switching circuit to select the first power supply path,
    3. The charging according to claim 2, wherein when the voltage of the supplied power is different from the output voltage of the power output unit, the control device controls the switching circuit to select the second power feeding path. apparatus.
  4.  前記電力変換器は、前記蓄電装置に蓄えられた電力を前記電力出力部へ出力可能に構成され、
     前記制御装置は、前記蓄電装置の電圧および前記電力出力部の出力電圧に基づいて、前記切替回路を制御することによって前記蓄電装置から前記電力出力部への給電経路をさらに切替可能に構成される、請求の範囲第1項に記載の充電装置。
    The power converter is configured to be able to output the power stored in the power storage device to the power output unit,
    The control device is configured to further switch a power feeding path from the power storage device to the power output unit by controlling the switching circuit based on a voltage of the power storage device and an output voltage of the power output unit. The charging device according to claim 1.
  5.  前記電力変換器は、第1の変換回路(110)、第2の変換回路(120)、絶縁トランス(130)および第3の変換回路(140)を含み、
     前記第1の変換回路は、前記供給電力を直流電力に変換可能に構成され、
     前記第2の変換回路は、前記直流電力を交流電力に変換可能に構成され、
     前記絶縁トランスは、
     前記第2の変換回路に接続される一次コイル(132)と、
     前記一次コイルに対応する二次コイル(134)とを含み、
     前記第3の変換回路は、前記二次コイルから受ける交流電力を直流電力に変換して前記蓄電装置へ出力可能に構成され、
     前記第1から第3の変換回路の各々は、双方向に電力変換可能に構成され、
     前記切替回路は、前記受電部と前記第1の変換回路との間の第1の電路、前記第2の変換回路と前記絶縁トランスとの間の第2の電路、および前記絶縁トランスと前記第3の変換回路との間の第3の電路に電気的に接続され、
     前記受電部が前記外部電源に接続されているとき、前記制御装置は、前記供給電力の電圧および前記電力出力部の出力電圧に基づいて、前記第1の電路から前記電力出力部へ電力を供給する第1の給電経路と、前記第2の電路から前記電力出力部へ電力を供給する第2の給電経路とを切替え、
     前記受電部が前記外部電源に接続されていないとき、前記制御装置は、前記蓄電装置の電圧および前記電力出力部の出力電圧に基づいて、前記蓄電装置に蓄えられた蓄電電力を前記第3の電路から前記電力出力部へ供給する第3の給電経路と、前記第1の電路から前記電力出力部へ前記蓄電電力を供給する第4の給電経路とを切替える、請求の範囲第4項に記載の充電装置。
    The power converter includes a first conversion circuit (110), a second conversion circuit (120), an isolation transformer (130), and a third conversion circuit (140),
    The first conversion circuit is configured to be capable of converting the supplied power into DC power,
    The second conversion circuit is configured to be capable of converting the DC power into AC power,
    The insulating transformer is
    A primary coil (132) connected to the second converter circuit;
    A secondary coil (134) corresponding to the primary coil,
    The third conversion circuit is configured to convert AC power received from the secondary coil into DC power and output the DC power to the power storage device,
    Each of the first to third conversion circuits is configured to be capable of power conversion in both directions,
    The switching circuit includes a first electric circuit between the power reception unit and the first conversion circuit, a second electric circuit between the second conversion circuit and the insulation transformer, and the insulation transformer and the first circuit. Electrically connected to a third circuit between the three converter circuits,
    When the power receiving unit is connected to the external power supply, the control device supplies power from the first electric circuit to the power output unit based on the voltage of the supplied power and the output voltage of the power output unit. Switching between a first power supply path that performs power supply and a second power supply path that supplies power to the power output unit from the second power circuit
    When the power receiving unit is not connected to the external power source, the control device uses the third power to store the stored power stored in the power storage device based on the voltage of the power storage device and the output voltage of the power output unit. The third power supply path for supplying power from the electric circuit to the power output unit and a fourth power supply path for supplying the stored power from the first electric circuit to the power output unit are switched. Charging device.
  6.  前記受電部が前記外部電源に接続されており、かつ、前記供給電力の電圧が前記電力出力部の出力電圧と等しいとき、前記制御装置は、前記第1の通電経路を選択するように前記切替回路を制御し、
     前記受電部が前記外部電源に接続されており、かつ、前記供給電力の電圧が前記電力出力部の出力電圧と異なるとき、前記制御装置は、前記第2の通電経路を選択するように前記切替回路を制御し、
     前記受電部が前記外部電源に接続されておらず、かつ、前記蓄電装置の電圧により定まる所定電圧よりも前記電力出力部の出力電圧が低いとき、前記制御装置は、前記第3の通電経路を選択するように前記切替回路を制御し、
     前記受電部が前記外部電源に接続されておらず、かつ、前記電力出力部の出力電圧が前記所定電圧以上のとき、前記制御装置は、前記第4の通電経路を選択するように前記切替回路を制御する、請求の範囲第5項に記載の充電装置。
    When the power receiving unit is connected to the external power source and the voltage of the supplied power is equal to the output voltage of the power output unit, the control device switches the switching to select the first energization path. Control the circuit,
    When the power receiving unit is connected to the external power source and the voltage of the supplied power is different from the output voltage of the power output unit, the control device switches the switching so as to select the second energization path. Control the circuit,
    When the power receiving unit is not connected to the external power source and the output voltage of the power output unit is lower than a predetermined voltage determined by the voltage of the power storage device, the control device causes the third energization path to Controlling the switching circuit to select,
    When the power receiving unit is not connected to the external power source and the output voltage of the power output unit is equal to or higher than the predetermined voltage, the control device selects the fourth energization path. The charging device according to claim 5, wherein the charging device is controlled.
  7.  前記電力出力部は、出力電圧に対応して複数のコンセント(62,64)を含み、
     前記切替回路は、前記複数の電力取出点のいずれかを前記複数のコンセントのいずれかに電気的に接続するように構成され、
     前記制御装置は、前記電力出力部の出力電圧に対応するコンセントを電気的に接続するように前記切替回路を制御する、請求の範囲第1項から第6項のいずれかに記載の充電装置。
    The power output unit includes a plurality of outlets (62, 64) corresponding to the output voltage,
    The switching circuit is configured to electrically connect any of the plurality of power extraction points to any of the plurality of outlets,
    The charging device according to any one of claims 1 to 6, wherein the control device controls the switching circuit to electrically connect an outlet corresponding to an output voltage of the power output unit.
  8.  請求の範囲第1項から第6項のいずれかに記載の充電装置と、
     前記充電装置によって充電される蓄電装置(10)とを備える車両。
    The charging device according to any one of claims 1 to 6,
    A vehicle comprising a power storage device (10) charged by the charging device.
PCT/JP2010/069554 2010-11-04 2010-11-04 Charging device and vehicle employing same WO2012059988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069554 WO2012059988A1 (en) 2010-11-04 2010-11-04 Charging device and vehicle employing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069554 WO2012059988A1 (en) 2010-11-04 2010-11-04 Charging device and vehicle employing same

Publications (1)

Publication Number Publication Date
WO2012059988A1 true WO2012059988A1 (en) 2012-05-10

Family

ID=46024118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069554 WO2012059988A1 (en) 2010-11-04 2010-11-04 Charging device and vehicle employing same

Country Status (1)

Country Link
WO (1) WO2012059988A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143788A (en) * 2012-01-06 2013-07-22 Nippon Soken Inc Vehicle
JP2013240241A (en) * 2012-05-17 2013-11-28 Toyota Motor Corp Electric power supply device, vehicle with the same, and control method for electric power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534281A (en) * 2003-07-09 2007-11-22 アロイス・ヴォベン Car
JP2009033800A (en) * 2007-07-24 2009-02-12 Toyota Industries Corp Bidirectional dc/ac inverter
JP2010093891A (en) * 2008-10-06 2010-04-22 Fujitsu Ten Ltd Electronic control device, plug-in vehicle, and power feeding path switching method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534281A (en) * 2003-07-09 2007-11-22 アロイス・ヴォベン Car
JP2009033800A (en) * 2007-07-24 2009-02-12 Toyota Industries Corp Bidirectional dc/ac inverter
JP2010093891A (en) * 2008-10-06 2010-04-22 Fujitsu Ten Ltd Electronic control device, plug-in vehicle, and power feeding path switching method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143788A (en) * 2012-01-06 2013-07-22 Nippon Soken Inc Vehicle
JP2013240241A (en) * 2012-05-17 2013-11-28 Toyota Motor Corp Electric power supply device, vehicle with the same, and control method for electric power supply device

Similar Documents

Publication Publication Date Title
US8963482B2 (en) Power supply apparatus for electrically powered vehicle and method for controlling the same
US9172252B2 (en) Power supply apparatus for electrically powered vehicle and method for controlling the same
JP5348334B2 (en) Power supply device for electric vehicle and control method thereof
JP5493441B2 (en) Inter-vehicle charging method, inter-vehicle charging cable, and electric vehicle
JP5348326B2 (en) Electric vehicle and charging control method thereof
US9493081B2 (en) Power supply system, vehicle equipped with the same, and control method for power supply system
JP6044460B2 (en) Vehicle power supply
JP5454700B2 (en) Power supply apparatus, vehicle including the same, and power supply method
KR20160021442A (en) On-vehicle power supply system and electric vehicle
JP2010273427A (en) Power supply device for electric vehicles and battery pack
JP5679054B2 (en) Power supply equipment for vehicles
WO2012049755A1 (en) Vehicle power supply apparatus, vehicle having same, and method for controlling vehicle-mounted charger
WO2012029101A1 (en) Charging device and charging method for capacitor device
WO2015071721A1 (en) Charging and discharging system and vehicle used therein
WO2015071712A1 (en) Charging and discharging system with connector lock
JP2015096017A (en) Vehicle, and charge/discharge system using the same
WO2012059988A1 (en) Charging device and vehicle employing same
JP2014187774A (en) Vehicle
JP2013240241A (en) Electric power supply device, vehicle with the same, and control method for electric power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP