WO2012053279A1 - ディーゼルエンジンの排気浄化装置 - Google Patents

ディーゼルエンジンの排気浄化装置 Download PDF

Info

Publication number
WO2012053279A1
WO2012053279A1 PCT/JP2011/068862 JP2011068862W WO2012053279A1 WO 2012053279 A1 WO2012053279 A1 WO 2012053279A1 JP 2011068862 W JP2011068862 W JP 2011068862W WO 2012053279 A1 WO2012053279 A1 WO 2012053279A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
dpf
target
change rate
rate
Prior art date
Application number
PCT/JP2011/068862
Other languages
English (en)
French (fr)
Inventor
芳克 井川
遠藤 浩之
和成 井手
恒 高柳
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11834121.3A priority Critical patent/EP2631442B1/en
Priority to CN201180031662.XA priority patent/CN102959189B/zh
Priority to US13/807,191 priority patent/US8893474B2/en
Publication of WO2012053279A1 publication Critical patent/WO2012053279A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust emission control device for a diesel engine, and in particular, regeneration of a diesel particulate filter (hereinafter abbreviated as DPF) that collects particulate matter (particulate matter, hereinafter abbreviated as PM) contained in exhaust gas. It is about control.
  • DPF diesel particulate filter
  • the DPF is a PM collection device using a filter, and in an engine operating state where the exhaust gas temperature is low, PM continues to accumulate in the DPF, so that forced regeneration is performed in which the temperature is forcibly increased and the PM is burned.
  • the DPF inlet temperature target value is determined from any one of soot deposition amount, soot deposition amount change rate, DPF temperature, DPF temperature change rate, and the like. It has been shown.
  • Patent Document 2 when the DPF inlet target temperature is continued for a preset time or longer, the target DPF inlet temperature is set step by step so as to rise to the target temperature of the next step.
  • the changing technology is shown.
  • the DPF inlet temperature target value is measured by measuring the elapsed time from the start of forced regeneration of the DPF, and the target temperature is set lower as the measured time is shorter. Then, it is shown that the forced regeneration means performs the auxiliary fuel injection by setting the injection amount of the auxiliary fuel injection according to the target temperature.
  • JP 2007-239740 A Japanese Patent No. 3951619 JP 2009-138702 A
  • An object of the present invention is to provide an exhaust emission control device for a diesel engine capable of suppressing the risk of temperature rise.
  • the present invention comprises a diesel particulate filter (DPF) that collects an oxidation catalyst (DOC) and exhaust particulates (PM) in an exhaust passage, and regenerates the PM collected in the DPF.
  • DPF diesel particulate filter
  • DOC oxidation catalyst
  • PM exhaust particulates
  • a regeneration control means for controlling the temperature raising means to raise the DPF to near a predetermined target set temperature and incinerating and removing the accumulated PM
  • the regeneration control means has a late post fuel injection control means for injecting fuel into the combustion chamber at a timing that does not contribute to combustion, and the late post fuel injection control means includes the DPF inlet temperature, outlet temperature, or internal temperature.
  • DPF target temperature setting means for setting a DPF temperature target value, and a late post injection amount command value is calculated based on a deviation between the DPF temperature target value set by the DPF target temperature setting means and the actual DPF temperature.
  • an arithmetic unit that The DPF target temperature setting means sets the temperature rise so that the temperature rise change rate decreases to a target set temperature at which PM burns after the start of late post-injection, as time elapses after the start of late post-injection.
  • a rate setting unit; and a target temperature of the DPF temperature is calculated based on a temperature increase rate from the temperature increase rate setting unit.
  • the DPF target temperature setting means changes the temperature rise to the target set temperature at which PM burns after the start of late post injection, with the passage of time after the start of late post injection, or with the rise of the DPF temperature.
  • a target temperature of the DPF temperature is calculated based on the temperature increase rate from the temperature increase rate calculation unit, so that the DPF temperature, for example, the DPF inlet When the temperature is low (for example, about 300 ° C.), the target temperature is increased quickly, and when the DPF inlet temperature is high (for example, about 570 ° C.), the target temperature is increased slowly.
  • the target set temperature (610 to 650 ° C.), which is the combustion temperature of the DPF, can be quickly reached and the excessive temperature rise can be prevented, and the amount of oil dilution is reduced while suppressing the risk of excessive temperature rise of the DPF. Can be reduced.
  • the target set temperature is obtained in order to obtain the target temperature change rate obtained from the temperature rise rate setting unit and obtain the target temperature from the change rate. Can be stably performed, and temperature rise control can be stably performed.
  • the temperature increase rate setting unit of the DPF target temperature setting means sets the temperature increase change rate of the target temperature to be decreased stepwise or continuously as the temperature increases. It is good to have a temperature increase rate setting part.
  • the stepwise temperature rise change rate in the first temperature rise rate setting unit is determined by two steps: a first step change rate and a second step change rate that is smaller than the first step change rate. It is preferable that the target set temperature is 610 to 650 ° C. at the DPF inlet temperature, and the switching temperature of the both change rates is 500 to 600 ° C. at the DPF inlet temperature.
  • the target temperature is rapidly increased at the first stage change rate until the DPF inlet temperature reaches this temperature, and this temperature is exceeded.
  • the temperature increase rate calculating means of the DPF target temperature setting means increases the target temperature stepwise or continuously to the target set temperature as time elapses after the start of the late post injection. It is good to have the 2nd temperature increase rate setting part set so that change rate may become small.
  • the stepwise temperature rise change rate in the second temperature rise setting unit is configured by two stages: a first stage change rate and a second stage change rate that is smaller than the first stage change rate.
  • the target set temperature is preferably 610 to 650 ° C. at the DPF inlet temperature, and the switching time of both the change rates may be set a predetermined time after the start of the late post injection.
  • the switching between the first stage change rate and the second stage change rate is set a predetermined time after the start of the late post injection, so that the regeneration behavior of the DPF can be managed by time and the regeneration behavior can be made constant. Management becomes easy.
  • a feedforward control unit that calculates a basic command value of a late post-injection amount command value according to an operating state of the engine is provided, and the feedforward control unit according to the calculated target temperature of the DPF temperature. It is preferable to provide feedforward correction means for correcting a command value from the control unit.
  • the required feedforward amount that is, the basic command value changes, so that stable late post fuel injection can be performed by correcting the basic command value.
  • the late post fuel injection amount when approaching the target set temperature can be accurately controlled, the risk of excessive temperature rise of the DPF can be suppressed.
  • the temperature rise rate setting unit of the DPF target temperature setting means causes the target temperature to rise to the target set temperature at which PM burns after the start of late post injection, or as the time elapses after the start of late post injection. Since the rate of change in temperature rise is set to be small, it is possible to quickly reach the target set temperature (610 to 650 ° C.) of the DPF combustion temperature and to prevent excessive temperature rise. The amount of oil dilution can be reduced while reducing the risk of
  • 1 is a schematic configuration diagram of an exhaust emission control device for a diesel engine according to an embodiment of the present invention. It is a block diagram showing the first embodiment of the DPF target temperature setting means. It is explanatory drawing which shows the change of the DPF inlet_port
  • an exhaust gas aftertreatment device 11 including a DOC 7 and a DPF 9 that collects PM is provided on a downstream side of the DOC 7 in an exhaust passage 3 of a diesel engine (hereinafter referred to as an engine) 1.
  • the exhaust passage 3 is provided with an exhaust turbocharger 17 having an exhaust turbine 13 and a compressor 15 driven coaxially thereto, and the air discharged from the compressor 15 of the exhaust turbocharger 17 is supplied to the exhaust passage 3.
  • the intake air flow rate is controlled by the intake throttle valve 23, and then passes through the intake port from the intake manifold 25 through the intake valve of the engine 1. It flows into the combustion chamber.
  • a fuel injection device (not shown) that controls the fuel injection timing, the injection amount, and the injection pressure and injects the fuel into the combustion chamber is connected to the regeneration control means (ECU) 29 via the connection terminal 27.
  • ECU regeneration control means
  • an EGR (exhaust gas recirculation) passage 33 is branched from the middle of the exhaust passage 3 or the exhaust manifold 31, and a part of the exhaust gas is introduced into the downstream portion of the intake throttle valve 23 via the EGR valve 35. It is like that.
  • signals from the DPF inlet temperature sensor 39 and the DPF outlet temperature sensor 41 are input to the regeneration control means 29 of the DPF 9.
  • an engine speed sensor 43 and a fuel injection amount signal 44 from the fuel injection device are respectively input to the regeneration control means (ECU) 29.
  • ECU regeneration control means
  • a storage unit for storing various map data, a timer for measuring an elapsed time from the start of the late post fuel injection, and the like are provided.
  • This regeneration control means 29 controls the temperature raising means to raise the inlet temperature of the DPF 9 to the vicinity of the target set temperature (610 to 650 ° C.) when the amount of PM deposited on the DPF 9 exceeds a predetermined value.
  • the accumulated PM is removed by incineration.
  • DOC temperature rise for activating the DOC 7 is determined based on conditions for starting the forced regeneration, for example, if the vehicle is a mileage, engine operating time, total fuel consumption, etc. Control is executed. In the DOC temperature raising control, the opening degree of the intake throttle valve 23 is reduced, the amount of air flowing into the combustion chamber is reduced, and the unburned fuel in the exhaust gas is increased.
  • the first post-injection in which a small amount of fuel is injected from the main injection while the pressure in the cylinder is still high immediately after the main injection, is affected by the early post-injection, and this early post-injection affects the engine output.
  • the DOC 7 When the exhaust gas temperature is raised without giving any air and the heated exhaust gas flows into the DOC 7, the DOC 7 is activated, and the unburned fuel in the exhaust gas is oxidized and oxidized as the DOC 7 is activated.
  • the exhaust gas temperature is raised by the oxidation heat generated in the gas.
  • This late post-injection refers to the second post-injection in which the crank angle after the early post-injection has advanced to the vicinity of the bottom dead center, and this late post-injection causes the combustion chamber when the exhaust valve is open.
  • the fuel flows out from the exhaust passage 3 to the exhaust passage 3 and the discharged fuel reacts in the already activated DOC 7, and the exhaust gas temperature is further increased by the generated oxidation heat, so that the temperature required for regeneration of the DPF 9, for example, 610 to The combustion of PM is promoted at 650 ° C.
  • the regeneration control means 29 includes a late post fuel injection control means 50 that injects fuel into the combustion chamber at a timing that does not contribute to combustion.
  • the late post fuel injection control means 50 includes an engine speed and a fuel injection amount (engine load).
  • a feedforward control means 53 for instructing a basic injection amount (basic operation amount) of the late post injection amount
  • Feedback control means 55 for instructing a late post correction injection amount (correction operation amount) based on a deviation between the target inlet temperature and the actual DPF inlet temperature.
  • This feedback control means 55 is provided with a DPF target temperature setting means 52 for setting a target value of the DPF inlet temperature.
  • the actual DPF inlet temperature and the target inlet temperature are input to the adder / subtractor 57, and the deviation is controlled by the control amount. And the deviation is subjected to a feedback calculation by a PID calculation unit (calculation unit) 59 to calculate a corrected injection amount which is a feedback control command value. Then, the basic injection amount from the feedforward control means 53 and the corrected injection amount from the feedback control means 55 are added by an adder 61 and output as a late post fuel injection amount command signal.
  • the present invention increases the target temperature set by the DPF target temperature setting means 52 of the feedback control means 55, shortens the regeneration time, enables the regeneration process in a short time, and reduces the amount of oil dilution.
  • the target temperature is set such that the risk of excessive temperature rise can be suppressed.
  • a first embodiment of the DPF target temperature setting means 52 will be described with reference to FIGS.
  • the actual measured value of the DPF inlet temperature is input from the DPF inlet temperature sensor 39.
  • a target change rate (increase rate) of the DPF inlet temperature is calculated using a first target change rate map (first temperature increase rate setting unit) 101.
  • the first target change rate map 101 is constant at an increase rate of 5 ° C./sec when the temperature is lower than 600 ° C., and changes at an increase rate of 0.5 ° C./sec when the temperature is 600 ° C. or higher.
  • the temperature input to the first target change rate map 101 may be the target temperature calculated from the previous calculation cycle instead of the actual measurement value input from the DPF inlet temperature sensor 39. This is because it can be treated as having substantially the same temperature as the target temperature.
  • the target value calculation unit 103 calculates the target temperature based on the measured value of the DPF inlet temperature and the calculated target change rate.
  • the target temperature is input to the selection unit 105, and a signal from the target temperature upper limit value setting unit 107 that sets the upper limit value of the target temperature is also input to the selection unit 105.
  • This target temperature upper limit value is an upper limit value of the target temperature that is set based on the temperature at which catalyst degradation of the DPF 9 occurs. For example, 630 ° C. is set as the target temperature upper limit value.
  • the selection unit 105 selects the smaller one of the calculated value of the target value calculation unit 103 and the target temperature upper limit value, and outputs it as the target temperature of the DPF inlet temperature.
  • the change state of the DPF inlet target temperature is shown in FIG.
  • the first stage temperature rise is performed at a constant rate of the first stage change rate (first stage temperature rise rate) of 5 ° C./sec. . That is, it is a portion with a constant slope A.
  • the second stage change rate (second stage temperature increase rate) is constant at 0.5 ° C./sec.
  • the temperature rise of the second stage is performed at a rate. That is, it is a portion with a constant slope B.
  • the control is performed so as to end the constant ramp temperature increase control and maintain the 630 ° C. (610 to 650 ° C.).
  • a dotted line C indicates a case where the DPF inlet target set temperature is constant at 600 ° C. as a conventional technique.
  • the temperature increase rate of the inlet target temperature of the DPF 9 is changed in two stages.
  • the switching temperature of the temperature increase rate of the target temperature is set to 500 to 600 ° C at the DPF inlet temperature, and the target temperature is rapidly increased at the first stage change rate of 5 ° C / sec until the DPF inlet temperature reaches this temperature.
  • the target temperature is increased slowly by changing at a second stage change rate of 0.5 ° C./sec, which is smaller than the first stage change rate. Therefore, the target set temperature can be reached quickly, and excessive temperature rise can be prevented.
  • the DPF inlet target set temperature T (610 to 650 ° C.), which is the combustion temperature of the DPF 9, and to prevent an excessive temperature rise, while reducing the risk of an excessive temperature rise of the DPF. Can reduce the amount of action.
  • the target temperature upper limit value by inputting the target temperature upper limit value to the selection unit 105 so as not to exceed the target temperature upper limit value set from the deterioration temperature of the DPF catalyst, it is possible to suppress problems due to excessive temperature rise of the DPF 9.
  • the target temperature upper limit value as the inlet temperature target set value T
  • the target set temperature (610 to 650 ° C.) is raised to the limit of the upper limit value to increase the target set value. This makes it possible to improve the regeneration efficiency and reduce the amount of oil dilution.
  • a second embodiment of the DPF target temperature setting means 52 will be described with reference to FIGS.
  • the temperature increase rate is changed in two stages, but this second embodiment is characterized in that the temperature increase rate is continuously changed to the target set temperature T.
  • Other configurations are the same as those in the first embodiment.
  • a second target change rate map (first temperature increase rate setting unit) 201 is used in the second embodiment.
  • the second target change rate map 201 has a characteristic that the change rate (increase rate) of the DPF inlet temperature continuously decreases and becomes smaller as the DPF inlet temperature increases. Therefore, since the DPF inlet temperature target value is calculated based on the rate of change of the target temperature that changes continuously, the inlet temperature target value can be calculated in detail, so that the calculation accuracy of the inlet temperature target value can be improved. Therefore, even if the target set temperature T is just below or equal to the target upper limit value, control of the target temperature is stabilized, so that excessive temperature rise can be reliably prevented.
  • the change state of this DPF inlet target temperature is shown in FIG. From the start of the late post injection to the target set temperature T continuously, the rate of increase changes continuously and as it increases.
  • a third embodiment of the DPF target temperature setting means 52 will be described with reference to FIGS.
  • the temperature increase rate is changed with respect to the DPF temperature or the DPF target temperature.
  • the target change rate is the elapsed time from the start of the late post fuel injection. Change by.
  • a third target change rate map (second temperature rise rate setting unit) 301 is further provided.
  • the target change rate is constant at m1 when t1 is the boundary or less, depending on the elapsed regeneration time, for example, the elapsed time after the start of late post fuel injection. Yes, in the case of t1 or more, it changes at a constant increase rate of m2.
  • the output from the second target change rate map 201 and the output from the third target change rate map 301 are input to the selection unit 303, and the smaller one is selected and input to the target value calculation unit 103.
  • the second stage temperature rise is performed at a constant rate of the second stage change rate m2. That is, it is a portion with a constant slope B1.
  • the control is performed so as to end the constant ramp temperature increase control and maintain the 630 ° C. (610 to 650 ° C.).
  • the time t1 is calculated by a timer built in the playback control device 29.
  • the temperature increase rate of the inlet target temperature of the DPF 9 is changed in two stages.
  • the first stage change rate m1 and exceeds 1 minute the first stage change is made.
  • the target temperature is increased slowly by changing at the second stage change rate m2 of the change rate smaller than the rate. Therefore, the target set temperature can be reached quickly, and excessive temperature rise can be prevented.
  • switching between the first stage change rate and the second stage change rate is set a predetermined time after the start of late post injection, so that the regeneration behavior of the DPF can be managed by time, and the regeneration behavior is made constant and stabilized. it can.
  • a fourth embodiment of the DPF target temperature setting means 52 will be described with reference to FIGS.
  • a fourth target change rate map (second temperature increase rate setting) having characteristics that are continuously changed with respect to the two-step change of the third target change rate map 301 of the third embodiment. Part) 401 is characterized.
  • the fourth target change rate map 401 has a characteristic that the change rate (increase rate) of the DPF inlet temperature continuously decreases and decreases with the elapsed regeneration time. Therefore, since the DPF inlet temperature target value is calculated based on the rate of change of the target temperature that changes with the elapsed regeneration time, the inlet temperature target value can be calculated in detail. As a result, the calculation accuracy of the inlet temperature target value can be increased. Therefore, even if the target set temperature T is just below or equal to the target upper limit value, control of the target temperature is stabilized, so that excessive temperature rise can be reliably prevented.
  • the change state of this DPF inlet target temperature is shown in FIG. From the start of the late post injection to the target set temperature T continuously, the rate of increase changes continuously and as it increases.
  • a fifth embodiment of the DPF target temperature setting means 52 will be described with reference to FIGS.
  • the fifth embodiment is characterized in that a target temperature map 501 in which the target temperature is set according to the elapsed time from the start of the late post fuel injection is further provided with respect to the third and fourth embodiments.
  • the second target change rate is set.
  • the target change rate is set using the map 201 and the fourth target change rate map 401.
  • DPF temperature measurement data of DPF inlet temperature
  • the target temperature map Since the target temperature is surely set by 501, the late post fuel injection amount control is stabilized.
  • the change state of this DPF inlet target temperature is shown in FIG. From the start of the late post injection to the target set temperature T continuously, the rate of increase changes continuously and as it increases.
  • the regeneration control unit 29 includes the feedforward control unit 53 that calculates the basic command value of the late post-injection command value according to the operating state of the engine, and the deviation between the target inlet temperature of the DPF 9 and the actual DPF inlet temperature. And a feedback control means 55 for instructing a late post correction injection amount (correction operation amount).
  • a feedback control means 55 for instructing a late post correction injection amount (correction operation amount).
  • the target inlet temperature of the feedback control means 55 changes, it is necessary to change the feedforward amount so as to correspond to it. For this reason, it is characterized in that an FF factor map (feed forward correction means) 503 for correcting the feed forward amount is provided.
  • the setting of the target temperature in the DPF target temperature setting means 52 of FIG. 12 is as described in the first to fifth embodiments, and FIG. 12 shows the setting of the first embodiment as an example.
  • DPF inlet target temperature set value T (° C), switching temperature (° C), first stage rise rate (° C / sec), second stage rise rate (° C / sec) are input, respectively, and DPF inlet target temperature is calculated Is done.
  • the actually measured DPF inlet temperature and the target DPF inlet target temperature are input to the adder / subtractor 57, the deviation is calculated as a control amount, the deviation is subjected to feedback calculation by the PID calculation unit 59, and the feedback control command value is calculated. Is calculated and output to the adder 61.
  • the late post injection amount for maintaining the switching temperature (for example, 600 ° C.) is set in the FF (feedforward) amount map 51.
  • the FF amount correction base map 505 includes a late post injection amount for maintaining the DPF inlet temperature target set value T (for example, 630 ° C.) and a late post injection amount for maintaining the switching temperature. Difference is set. Further, the FF amount factor map 503 shows a ratio between (inlet temperature target set value T-switching temperature) and the inlet target temperature after reaching the switching temperature, that is, after reaching the switching temperature, the inlet temperature target. A control coefficient is set in accordance with the temperature position between the set value T and the switching temperature.
  • the target temperature set by the DPF target temperature setting unit 52 is input to the adder / subtractor 57, and a control coefficient corresponding to the target temperature is calculated using the FF amount factor map 503.
  • the control coefficient is integrated by the integrator 507 into the correction-based late post injection amount calculated by the FF amount correction base map 505.
  • the accumulator 507 calculates a correction amount of the late post injection amount suitable for the target temperature, is input to the adder 509, is added to the control amount from the FF amount map 51, and is output as a feedforward command value.
  • an adder 61 adds the command value from the feedback control means 55.
  • the second stage change (second stage temperature increase rate) This control is performed only in Therefore, no correction is made at the time of the first stage change (the first stage temperature rise rate). That is, in the region at the time of the second stage change, since the switching temperature has already reached 600 ° C., there is a possibility of overshooting depending on the subsequent temperature increase control, resulting in excessive temperature increase. Must be performed accurately. For this reason, the late post fuel injection amount is corrected in a stable and reliable manner by correcting the late post fuel injection amount corresponding to the target temperature as in the present embodiment.
  • the feedforward control means 53 is based on the target temperature set by the DPF target temperature setting means 52. The feedforward amount has not been corrected.
  • the DPF target temperature changes, stable late post fuel injection can be performed by correcting the necessary feedforward amount, that is, the basic command value.
  • the inlet temperature target set value T (for example, 630 ° C.) is increased from the conventional value of about 600 ° C., the DPF temperature is increased to shorten the regeneration time, increase the regeneration efficiency, and reduce the amount of oil dilution. However, the danger of excessive temperature rise of the DPF can be suppressed.
  • the DPF 9 has been described with respect to the inlet temperature, but the same applies even if the outlet temperature or the internal temperature is controlled.
  • the DPF temperature in order to reduce the amount of oil dilution, can be increased to shorten the regeneration time, and the risk of overheating of the DPF can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

DPF目標温度設定手段は、レイトポスト噴射開始後PMが燃焼する目標設定温度まで、温度上昇またはレイトポスト噴射開始後の時間経過に伴って、昇温変化率が小さくなるように設定する昇温率設定部を有し、該昇温率設定部における段階的な昇温変化率は、1段目変化率Aと該1段目変化率より小さい変化率の2段目変化率Bとの2段階によって構成されるとともに、該昇温率設定部の昇温率を用いてDPF温度の目標温度が算出されることを特徴とする。

Description

ディーゼルエンジンの排気浄化装置
 本発明は、ディーゼルエンジンの排気浄化装置に関するもので、特に、排ガス中に含まれるパティキュレートマター(粒子状物質、以下PMと略す)を捕集するディーゼルパティキュレートフィルター(以下DPFと略す)の再生制御に関するものである。
 ディーゼルエンジンの排ガス規制において、NOx低減と同様に重要なのが、PMの低減である。これに対する有効な技術として、DPFが知られている。
 DPFは、フィルターを用いたPM捕集装置であり、排ガス温度が低いエンジン運転状態では、このDPFにPMが堆積し続けるので、強制的に温度を上げてPMを燃焼する強制再生が行われる。
 DPFの強制再生では、PMを筒内噴射したレイトポスト噴射(噴射タイミングが遅く、筒内燃焼しない)を行い、DPF前段に配置された酸化触媒(以下DOCと略す)で酸化反応をさせ、この反応熱でDPF部分の温度を高温にして、DPFに堆積したPMを燃焼させている。
 従って、その高温まで昇温させる必要があるが、DPFの強制再生時間を短くする観点からは、DPFを通過するガス温度をなるべく高温に保つことが必要であるが、DPFにPMが多量に堆積した状態でDPFを通過する排ガス温度を高温にすると多量のPMが一気に燃焼して過昇温する危険性がある。
 一方、ガス温度を低く設定した場合には、再生時間が長くなり、レイトポスト噴射燃料が、シリンダ内壁面からオイルパン内に落ち、オイル希釈(オイルダイリューション)量が増大する危険性が高まる。
 このため、DPFの入口温度を目標入口温度に一定に保つ制御や、DPFの再生状態に応じて目標入口温度を変化させる制御等、種々の改良提案がなされている。
 例えば、特開2007-239470号公報(特許文献1)には、DPFの入口温度目標値を、スート堆積量、スート堆積量変化速度、DPF温度、DPF温度変化速度等の何れかから決定されることが示されている。
 また、特許3951619号公報(特許文献2)には、予め設定した時間以上、DPFの入口目標温度を継続した場合には次のステップの目標温度へ上昇するようにステップ的に目標DPF入口温度を変化させる技術が示されている。
 さらに、特開2009-138702号公報(特許文献3)には、DPF入口温度目標値を、DPFの強制再生の開始からの経過時間を計測して、該計測時間が短いほど目標温度を低く設定し、強制再生手段は、この目標温度に応じて副燃料噴射の噴射量を設定して副燃料噴射を行うことが示されている。
特開2007-239740号公報 特許3951619号公報 特開2009-138702号公報
 しかしながら、再生経過時間で目標温度を設定すると運転条件の違いにより実際のDPF温度が目標温度とかけ離れた状態を生じる場合があるため安定的な制御が困難である。また、PM堆積量を用いる方法では、PM堆積量を推定する必要があり、その推定精度に大きく依存するため、制御ロジックが煩雑化する問題がある。
 そこで、本発明はこれら問題点に鑑みてなされたものであり、DPFの強制再生において、オイルダイリューション量を減らすために、DPF温度を高温化して再生時間を短縮化できるとともに、DPFの過昇温の危険性を抑えることができるディーゼルエンジンの排気浄化装置を提供することを目的とする。
 前記課題を解決するために、本発明は、排気通路に酸化触媒(DOC)および排気微粒子(PM)を捕集するディーゼルパティキュレートフィルター(DPF)を備え、前記DPFに捕集されたPMを再生処理するディーゼルエンジンの排気浄化装置において、
 前記PMの堆積量が所定値を超えた時に、昇温手段を制御して前記DPFを所定の目標設定温度近傍まで昇温して堆積したPMを焼却除去する再生制御手段を備え、
 該再生制御手段は、燃焼室内に燃焼に寄与しないタイミングで燃料を噴射するレイトポスト燃料噴射制御手段を有し、該レイトポスト燃料噴射制御手段は、DPFの入口温度または出口温度または内部温度を含むDPF温度の目標値を設定するDPF目標温度設定手段と、該DPF目標温度設定手段で設定された前記DPF温度の目標値と実際のDPF温度との偏差を基にレイトポスト噴射量指令値を算出する演算部とを備え、
 前記DPF目標温度設定手段は、レイトポスト噴射開始後PMが燃焼する目標設定温度まで、温度上昇またはレイトポスト噴射開始後の時間経過に伴って、昇温変化率が小さくなるように設定する昇温率設定部を有し、該昇温率設定部からの昇温率に基づいて前記DPF温度の目標温度が算出されることを特徴とする。
 かかる発明によれば、DPF目標温度設定手段によって、レイトポスト噴射開始後PMが燃焼する目標設定温度まで、レイトポスト噴射開始後の時間経過に伴ってまたはDPF温度の上昇に伴って、昇温変化率が小さくなるように設定する昇温率算出部を有し、該昇温率算出部からの昇温率に基づいて前記DPF温度の目標温度が算出されるので、DPF温度、例えば、DPF入口温度が低いとき(例えば300℃程度)は、目標温度を早く増加させて、DPF入口温度が高いとき(例えば570℃程度)は、目標温度を遅く増加させる。
 これによって、DPFの燃焼温度である目標設定温度(610~650℃)に早く到達させ、かつ過昇温を防止することができ、DPFの過昇温の危険性を抑えつつオイルダイリューション量を減らすことができる。
 また、運転条件が変化して昇温特性が変化しても、昇温率設定部から求めた目標温度の変化率を求めて、該変化率より目標温度を求めるようにするため、目標設定温度への到達を安定して行うことができ、昇温制御を安定的に行うことができる。
 また、かかる発明において好ましくは、前記DPF目標温度設定手段の昇温率設定部は、温度上昇に伴って段階的にまたは連続的に目標温度の昇温変化率が小さくなるように設定する第1昇温率設定部を有するとよい。
 具体的には、前記第1昇温率設定部における段階的な昇温変化率は、1段目変化率と該1段目変化率より小さい変化率の2段目変化率との2段階によって構成され、前記目標設定温度がDPF入口温度で610~650℃であり、前記両変化率の切替温度がDPF入口温度で500~600℃であるとよい。
 このように、変化率の切替温度をDPF入口温度で500~600℃として、DPF入口温度がこの温度に達するまでは1段目変化率で目標温度を早く増加させて、この温度を超える場合には、1段目変化率より小さい変化率の2段目変化率で変化させて目標温度を遅く増加させる。従って、目標設定温度に早く到達させ、かつ過昇温を防止することができる。
 また、かかる発明において好ましくは、前記DPF目標温度設定手段の昇温率算出手段は、レイトポスト噴射開始後の時間経過に伴って、目標設定温度まで段階的にまたは連続的に目標温度の昇温変化率が小さくなるように設定する第2昇温率設定部を有するとよい。
 具体的には、前記第2昇温設定部における段階的な昇温変化率は、1段目変化率と該1段目変化率より小さい変化率の2段目変化率との2段階によって構成され、前記目標設定温度がDPF入口温度で610~650℃であり、前記両変化率の切替え時間をレイトポスト噴射開始後所定時間後に設定されるとよい。
 このように、1段目変化率と2段目変化率との切替えを、レイトポスト噴射開始後所定時間後に設定されるので、DPFの再生挙動を時間で管理可能になり再生挙動を一定化でき管理が容易になる。
 また、かかる発明において好ましくは、エンジンの運転状態に応じてレイトポスト噴射量指令値の基本指令値を算出するフィードフォワード制御部を備え、前記算出されたDPF温度の目標温度に応じて前記フィードフォワード制御部からの指令値を補正するフィードフォワード補正手段を備えるとよい。
 すなわち、DPF目標温度が変化するため、必要なフィードフォワード量、すなわち、基本指令値が変わってくるので、その基本指令値を補正することによって、安定的なレイトポスト燃料噴射を行うことができる。特に、目標設定温度に近づいた際のレイトポスト燃料噴射量を精度よく制御できるようになるため、DPFの過昇温の危険性を抑えることができる。
 本発明によれば、DPF目標温度設定手段の昇温率設定部によって、レイトポスト噴射開始後PMが燃焼する目標設定温度まで、温度上昇またはレイトポスト噴射開始後の時間経過に伴って、目標温度の昇温変化率が小さくなるように設定されるため、DPFの燃焼温度の目標設定温度(610~650℃)に早く到達させ、かつ過昇温を防止することができ、DPFの過昇温の危険性を抑えつつオイルダイリューション量を減らすことができる。
本発明の実施形態に係るディーゼルエンジンの排気浄化装置の概要構成図である。 DPF目標温度設定手段の第1実施形態を示す構成ブロック図である。 第1実施形態のDPF入口温度目標値の変化を示す説明図である。 第2実施形態を示す構成ブロック図である。 第2実施形態のDPF入口温度目標値の変化を示す説明図である。 第3実施形態を示す構成ブロック図である。 第3実施形態のDPF入口温度目標値の変化を示す説明図である。 第4実施形態を示す構成ブロック図である。 第4実施形態のDPF入口温度目標値の変化を示す説明図である。 第5実施形態を示す構成ブロック図である。 第5実施形態のDPF入口温度目標値の変化示す説明図である。 第6実施形態を示す構成ブロック図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
 図1を参照して、本発明に係るディーゼルエンジンの排ガス浄化装置の全体構成について説明する。
 図1に示すように、ディーゼルエンジン(以下エンジンという)1の排気通路3には、DOC7と該DOC7の下流側にPMを捕集するDPF9とからなる排ガス後処理装置11が設けられている。
 また、排気通路3には排気タービン13とこれに同軸駆動されるコンプレッサ15を有する排気ターボ過給機17を備えており、該排気ターボ過給機17のコンプレッサ15から吐出された空気は給気通路19を通って、インタークーラ21に入り給気が冷却された後、吸気スロットルバルブ23で給気流量が制御され、その後、インテークマニホールド25から吸気ポートを通ってエンジン1の吸気弁を介して燃焼室内に流入するようになっている。
 また、エンジン1においては、図示しない、燃料の噴射時期、噴射量、噴射圧力を制御して燃焼室内に燃料を噴射する燃料噴射装置が接続端子27を介して再生制御手段(ECU)29と連結されている。
 また、排気通路3、または排気マニホールド31の途中から、EGR(排ガス再循環)通路33が分岐されて、排ガスの一部が吸気スロットルバルブ23の下流側部位にEGRバルブ35を介して投入されるようになっている。
 エンジン1の燃焼室で燃焼された燃焼ガス、即ち排ガス37は、排気マニホールド31及び排気通路3を通って、排気ターボ過給機17の排気タービン13を駆動してコンプレッサ15の動力源となった後、排気通路3を通って排ガス後処理装置11に流入する。
 また、DPF9の再生制御手段29には、DPF入口温度センサ39、DPF出口温度センサ41からの信号が入力されている。さらに、エンジン回転数センサ43、燃料噴射装置からの燃料噴射量信号44がそれぞれ再生制御手段(ECU)29に入力されている。また、再生制御装置29内には、各種マップデータを記憶する記憶部、さらにレイトポスト燃料噴射開始時からの経過時間を計測するタイマー等が設けられている。
 この再生制御手段29は、DPF9に堆積したPMの堆積量が所定値を超えた時に、昇温手段を制御してDPF9の入口温度を目標設定温度近傍(610~650℃)まで昇温して堆積したPMを焼却除去する。
 再生制御手段29によるPMの燃焼除去についての制御概要をまず説明する。
 強制再生を開始する条件、例えば、車両であれば走行距離、エンジンの運転時間、トータル燃料消費量等を基に判定されて、強制再生が開始されるとDOC7を活性化するためのDOC昇温制御が実行される。このDOC昇温制御は、吸気スロットルバルブ23の開度が絞られ、燃焼室内に流入する空気量を絞って、排ガス中の未燃燃料を増加させる。さらに、アーリーポスト噴射によって、主噴射の直後にシリンダ内の圧力がまだ高い状態で主噴射より少量の燃料を噴射する1回目のポスト噴射を行い、このアーリーポスト噴射によって、エンジンの出力には影響を与えずに排ガス温度を高め、この高温化された排ガスがDOC7に流入することで、DOC7を活性化させ、そしてDOC7の活性化に伴い排ガス中の未燃燃料を酸化し、酸化される際に発生する酸化熱で排ガス温度を上昇させる。
 そして、次に、DOC入口温度が所定温度に達したか、またはDPF入口温度が所定温度に達したかを判定し、超えている場合には、レイトポスト噴射によってDPF9の入口温度をさらに上昇させる。このレイトポスト噴射とは、アーリーポスト噴射後のクランク角度が下死点近傍まで進んだ状態で噴射する2回目のポスト噴射のことをいい、このレイトポスト噴射によって、排気弁の開状態時に燃焼室から排気通路3へ燃料を流出させて、排出された燃料は既に活性化されたDOC7において反応して、発生した酸化熱により排ガス温度をさらに上昇させてDPF9の再生に必要な温度、例えば610~650℃にしてPMの燃焼を促進する。
 次に、前述したレイトポスト噴射について、再生制御手段29におけるレイトポスト噴射量制御の概要について説明する、後述する第5実施形態において説明する図12を参照して説明する。
 再生制御手段29には、燃焼室内に燃焼に寄与しないタイミングで燃料を噴射するレイトポスト燃料噴射制御手段50を備え、このレイトポスト燃料噴射制御手段50は、エンジン回転数と燃料噴射量(エンジン負荷)を基に基本噴射量が設定されたフィードフォワード量マップ(FFマップ)51等に基づいて、レイトポスト噴射量の基本噴射量(基本操作量)を指令するフィードフォワード制御手段53と、DPF9の目標入口温度と実DPF入口温度との偏差を基にレイトポスト補正噴射量(補正操作量)を指令するフィードバック制御手段55と、を有している。
 このフィードバック制御手段55には、DPFの入口温度の目標値を設定するDPF目標温度設定手段52を備え、実DPF入口温度と目標入口温度とを加減算器57に入力して、その偏差を制御量として算出して、その偏差をPID演算部(演算部)59でフィードバック演算を行ってフィードバック制御指令値である補正噴射量を算出する。
 そして、フィードフォワード制御手段53からの基本噴射量と前記フィードバック制御手段55からの補正噴射量とを加算器61で加算してレイトポスト燃料噴射量指令信号として出力する。
 本発明は前記フィードバック制御手段55のDPF目標温度設定手段52によって設定する目標温度を高温化して、再生時間を短縮化し短時間で再生処理を可能としてオイルダイリューション量を低減するとともに、DPFの過昇温の危険性を抑えることができるような目標温度を設定するものである。
(第1実施形態)
 図2、3を参照して、DPF目標温度設定手段52の第1実施形態について説明する。
 図2において、DPF入口温度の実測値がDPF入口温度センサ39から入力される。その温度を基に、第1目標変化率マップ(第1昇温率設定部)101を用いて、DPF入口温度の目標変化率(上昇率)を算出する。第1目標変化率マップ101は、600℃を境にそれ以下の場合には5℃/secの上昇率で一定であり、600℃以上の場合には0.5℃/secの上昇率で変化する。
 なお、第1目標変化率マップ101に入力される温度は、DPF入口温度センサ39から入力され実測値でなく、前回の演算周期において算出した目標温度を用いてもよい。実質的に目標温度と同一温度になっているものとして扱えるからである。
 そして、目標値演算部103では、DPF入口温度の実測値と算出された目標変化率とを基に目標温度が算出される。その目標温度が、選択部105に入力され、また、選択部105には目標温度の上限値を設定する目標温度上限値設定部107からの信号も入力される。この目標温度上限値とは、DPF9の触媒劣化を生じる温度に基づいて設定される目標温度の上限値である。この目標温度上限値としては、例えば630℃が設定される。
 そして、選択部105で、目標値演算部103の算出値と目標温度上限値との小さい方を選択して、DPF入口温度の目標温度として出力する。
 このDPF入口目標温度の変化状態を図3に示す。例えば、DPF入口温度280℃でレイトポスト燃料噴射が開始されると、1段目変化率(1段目の温度上昇率)5℃/secの一定の割合で1段目の温度上昇が行われる。すなわち、一定傾斜Aの部分である。
 次に、変化率の切替温度600℃(500~600℃)に達した場合には、その後においては、2段目変化率(2段目の温度上昇率)0.5℃/secの一定の割合で2段目の温度上昇が行われる。すなわち、一定傾斜Bの部分である。
 そして、DPF9の入口目標設定温度、例えば、630℃(610~650℃)に到達したら、一定傾斜昇温制御を終了してその630℃(610~650℃)を保持するように制御する。なお、点線Cは従来技術としてDPF入口目標設定温度として600℃一定の場合を示す。
 このように、DPF9の入口目標温度の温度上昇率を2段階に変化させる。目標温度の温度上昇率の切替温度をDPF入口温度で500~600℃として、DPF入口温度がこの温度に達するまでは1段目変化率5℃/secで目標温度を早く増加させて、この切替温度を超える場合には、1段目変化率より小さい変化率の2段目変化率0.5℃/secで変化させて目標温度を遅く増加させる。従って、目標設定温度に早く到達させ、かつ過昇温を防止することができる。
 従って、DPF9の燃焼温度であるDPF入口目標設定温度T(610~650℃)に早く到達させ、かつ過昇温を防止することができ、DPFの過昇温の危険性を抑えつつオイルダイリューション量を減らすことができる。
 また、DPF触媒の劣化温度から設定される目標温度上限値を超えないように選択部105に目標温度上限値を入力することで、DPF9の過昇温による問題を抑制することができる。
 また、例えば、この目標温度上限値を入口温度目標設定値Tとすることによって、目標設定温度(610~650℃)を上限値ぎりぎりまで引き上げて目標設定値をより高めることによって、高温による再生が可能になり再生効率が向上して、且つオイルダイリューション量を低減できる。
(第2実施形態)
 図4、5を参照して、DPF目標温度設定手段52の第2実施形態について説明する。
 第1実施形態においては2段階に温度上昇率を変化させるものであるが、この第2実施形態は、温度上昇率を目標設定温度Tまで連続的に変化させることに特徴がある。その他構成については第1実施形態と同様である。
 第1実施形態の第1目標変化率マップ101に代えて、第2実施形態では図4に示すような第2目標変化率マップ(第1昇温率設定部)201を用いる。この第2目標変化率マップ201は、DPF入口温度の増大とともに、DPF入口温度の変化率(上昇率)が連続的に減少して小さくなる特性を有している。
 従って、連続に変化する目標温度の変化率に基づいてDPF入口温度目標値を算出するため、入口温度目標値をきめ細かく算出できるので、入口温度目標値の算出精度を高めることができる。したがって、目標設定温度Tを目標上限値ぎりぎりまたは同等にしても、目標温度のコントロールが安定化するため、過昇温を確実に防止することができる。
 このDPF入口目標温度の変化状態を図5に示す。レイトポスト噴射開始時から連続的に目標設定温度Tまで、連続的に且つ上昇に伴って上昇率が小さくなるように変化する。
(第3実施形態)
 図6、7を参照して、DPF目標温度設定手段52の第3実施形態について説明する。
 第1、2実施形態においては、DPF温度もしくはDPF目標温度対して、温度上昇率を変化させたものであったが、第3実施形態においては目標変化率をレイトポスト燃料噴射開始からの経過時間によって変化させる。そのために第3目標変化率マップ(第2昇温率設定部)301をさらに設けることに特徴がある。
 図6の第3目標変化率マップ301においては、再生経過時間、例えばレイトポスト燃料噴射開始後の経過時間に応じて、t1を境にしてそれ以下の場合には目標変化率はm1で一定であり、t1以上の場合にはm2の一定の上昇率で変化する。第2目標変化率マップ201からの出力と、第3目標変化率マップ301からの出力とは選択部303に入力し、その小さい方を選択して目標値演算部に103に入力される。
 DPF入口目標温度の変化状態を図7に示す。例えば、t1=1分とすると、DPF入口温度280℃でレイトポスト燃料噴射が開始されると、1段目変化率m1の一定の割合で1段目の温度上昇が行われる。すなわち、一定傾斜A1の部分である。
 次に、経過時間が1分に達した場合には、その後においては、2段目変化率m2の一定の割合で2段目の温度上昇が行われる。すなわち、一定傾斜B1の部分である。
 そして、DPF9の入口目標設定温度、例えば、630℃(610~650℃)に到達したら、一定傾斜昇温制御を終了してその630℃(610~650℃)を保持するように制御する。なお時間t1は、再生制御装置29に内蔵されたタイマーによって算出されるようになっている
 このように、DPF9の入口目標温度の温度上昇率を2段階に変化させるものであり、1段目変化率m1で目標温度を早く増加させて、1分を超える場合には、1段目変化率より小さい変化率の2段目変化率m2で変化させて目標温度を遅く増加させる。従って、目標設定温度に早く到達させ、かつ過昇温を防止することができる。
 さらに、1段目変化率と2段目変化率との切替えを、レイトポスト噴射開始後所定時間後に設定されるので、DPFの再生挙動を時間で管理可能になり再生挙動を一定化して安定化できる。
(第4実施形態)
 図8、9を参照して、DPF目標温度設定手段52の第4実施形態について説明する。
 第4実施形態は、第3実施形態の第3目標変化率マップ301の2段階的な変化に対して、連続的に変化される特性を有する第4目標変化率マップ(第2昇温率設定部)401を備える点に特徴がある。
 この第4目標変化率マップ401は、再生経過時間とともに、DPF入口温度の変化率(上昇率)が連続的に減少して小さくなる特性を有している。
 従って、再生経過時間に伴って変化する目標温度の変化率に基づいてDPF入口温度目標値を算出するため、入口温度目標値をきめ細かく算出できる。
 その結果、入口温度目標値の算出精度を高めることができる。したがって、目標設定温度Tを目標上限値ぎりぎりまたは同等にしても、目標温度のコントロールが安定化するため、過昇温を確実に防止することができる。
 このDPF入口目標温度の変化状態を図9に示す。レイトポスト噴射開始時から連続的に目標設定温度Tまで、連続的に且つ上昇に伴って上昇率が小さくなるように変化する。
(第5実施形態)
 図10、11を参照して、DPF目標温度設定手段52の第5実施形態について説明する。
 第5実施形態は、第3、4実施形態に対して、目標温度をレイトポスト燃料噴射開始からの経過時間によって設定した目標温度マップ501をさらに設けることに特徴がある。
 この目標温度を直接的に、レイトポスト燃料噴射開始からの経過時間によって設定した目標温度マップ501から算出された目標温度を選択部105に入力して最小値を算出するため、第2目標変化率マップ201および第4目標変化率マップ401を用いて目標変化率から算出する際に、経過時間やDPF温度(DPF入口温度の計測データ)等にばらつきの誤差を有していても、目標温度マップ501によって、確実に目標温度が設定されようになるため、レイトポスト燃料噴射量制御が安定化する。
 また、このDPF入口目標温度の変化状態を図11に示す。レイトポスト噴射開始時から連続的に目標設定温度Tまで、連続的に且つ上昇に伴って上昇率が小さくなるように変化する。
(第6実施形態)
 図12を参照して、第6実施形態について説明する。
 前述したように再生制御手段29は、エンジンの運転状態に応じてレイトポスト噴射量指令値の基本指令値を算出するフィードフォワード制御部53と、DPF9の目標入口温度と実DPF入口温度との偏差を基にレイトポスト補正噴射量(補正操作量)を指令するフィードバック制御手段55とを備えている。
 第6実施形態は、フィードバック制御手段55の目標入口温度が変化するので、それに対応するようにフィードフォワード量を変える必要がある。このため、フィードフォワード量を補正するFFファクターマップ(フィードフォワード補正手段)503を備えることに特徴がある。
 図12のDPF目標温度設定手段52における目標温度の設定については、第1~第5実施形態で説明した通りであり、図12においては、例として、第1実施形態の設定について示している。
 DPF入口目標温度設定値T(℃)、切替温度(℃)、1段目上昇率(℃/sec)、2段目上昇率(℃/sec)がそれぞれ入力されて、DPF入口目標温度が演算される。
 実測したDPF入口温度と前記した目DPF入口目標温度とを加減算器57に入力して、その偏差を制御量として算出して、その偏差をPID演算部59でフィードバック演算を行ない、フィードバック制御指令値を算出して加算器61に出力する。
 一方、フィードフォワード制御手段53においては、FF(フィードフォワード)量マップ51には、切替温度(例えば600℃)を維持するためのレイトポスト噴射量が設定されている。
 また、FF量補正ベースマップ505には、DPFの入口温度目標設定値T(例えば630℃)を維持するためのレイトポスト噴射量と、前記の切替温度を維持するためのレイトポスト噴射量との差分が設定されている。
 また、FF量ファクターマップ503には、切替温度に達した以降において、(入口温度目標設定値T-切替温度)と、入口目標温度との割合、すなわち切替温度に達した後において、入口温度目標設定値T-切替温度との間のどこの温度位置にあるかに応じた制御係数が設定されている。
 このように構成されることによって、DPF目標温度設定手段52によって設定された目標温度は、加減算器57に入力されると共に、FF量ファクターマップ503を用いて目標温度に応じた制御係数が算出される。
 そして、該制御係数を積算器507にてFF量補正ベースマップ505によって算出された補正ベースのレイトポスト噴射量に積算する。積算器507で、目標温度に適したレイトポスト噴射量の補正量が算出されて、加算器509に入力されてFF量マップ51からの制御量に加算されてフィードフォワード指令値として出力される。そして、加算器61で、フィードバック制御手段55からの指令値と加算される。
 なお、FF量ファクターマップ503を用いて目標温度に応じた制御係数を算出して、該制御係数を積算器507に掛ける補正制御については、2段目変化(2段目の温度上昇率)時においてだけ行われる制御である。
 従って、1段目変化(1段目の温度上昇率)時においては補正されない。すなわち、2段目変化時の領域では、既に切替温度の600℃に達しているため、その後の昇温制御によってはオーバーシュートして過昇温してしまう恐れがあるため、レイトポスト燃料噴射量を精度よく行う必要がある。このために、本実施例のように目標温度に対応してレイトポスト燃料噴射量に補正を掛けて、安定且つ確実にレイトポスト燃料噴射量を制御している。一方、1段目変化時においては、燃焼可能な約600℃程度の温度まで早く上昇させることが狙いのため、DPF目標温度設定手段52によって設定された目標温度に基づいてフィードフォワード制御手段53のフィードフォワード量を補正することまでは行っていない。
 第6実施形態によれば、DPF目標温度が変化するため、必要なフィードフォワード量、すなわち、基本指令値を補正することによって、安定的なレイトポスト燃料噴射を行うことができ、特に、DPFの入口温度目標設定値T(例えば630℃)を従来の約600℃より高めて、DPF温度を高温化して再生時間を短縮化して、再生効率を高めるとともに、オイルダイリューション量を減らすようにしても、DPFの過昇温の危険性を抑えることができる。
 以上の第1実施形態~第6実施形態までの説明においては、DPF9に入口温度を対象に説明をしたが、出口温度または内部温度を対象に制御しても同様である。
 本発明によれば、DPFの強制再生において、オイルダイリューション量を減らすために、DPF温度を高温化して再生時間を短縮化できるとともに、DPFの過昇温の危険性を抑えることができるので、ディーゼルエンジンの排気浄化装置への利用に適している。
 
 

Claims (7)

  1.  排気通路に酸化触媒(DOC)および排気微粒子(PM)を捕集するディーゼルパティキュレートフィルター(DPF)を備え、前記DPFに捕集されたPMを再生処理するディーゼルエンジンの排気浄化装置において、
     前記PMの堆積量が所定値を超えた時に、昇温手段を制御して前記DPFを所定の目標設定温度近傍まで昇温して堆積したPMを焼却除去する再生制御手段を備え、
     該再生制御手段は、燃焼室内に燃焼に寄与しないタイミングで燃料を噴射するレイトポスト燃料噴射制御手段を有し、該レイトポスト燃料噴射制御手段は、DPFの入口温度または出口温度または内部温度を含むDPF温度の目標値を設定するDPF目標温度設定手段と、該DPF目標温度設定手段で設定された前記DPF温度の目標値と実際のDPF温度との偏差を基にレイトポスト噴射量指令値を算出する演算部とを備え、
     前記DPF目標温度設定手段は、レイトポスト噴射開始後PMが燃焼する目標設定温度まで、温度上昇またはレイトポスト噴射開始後の時間経過に伴って、昇温変化率が小さくなるように設定する昇温率設定部を有し、該昇温率設定部からの昇温率に基づいて前記DPF温度の目標温度が算出されることを特徴とするディーゼルエンジンの排気浄化装置。
  2.  前記DPF目標温度設定手段の昇温率設定部は、温度上昇に伴って段階的にまたは連続的に目標温度の昇温変化率が小さくなるように設定する第1昇温率設定部を有することを特徴とする請求項1記載のディーゼルエンジンの排気浄化装置。
  3.  前記第1昇温率設定部における段階的な昇温変化率は、1段目変化率と該1段目変化率より小さい変化率の2段目変化率との2段階によって構成され、前記目標設定温度がDPF入口温度で610~650℃であり、前記両変化率の切替温度がDPF入口温度で500~600℃であることを特徴する請求項2記載のディーゼルエンジンの排気浄化装置。
  4.  前記DPF目標温度設定手段の昇温率算出手段は、レイトポスト噴射開始後の時間経過に伴って、目標設定温度まで段階的にまたは連続的に目標温度の昇温変化率が小さくなるように設定する第2昇温率設定部を有することを特徴とする請求項1記載のディーゼルエンジン排気浄化装置。
  5.  前記第2昇温設定部における段階的な昇温変化率は、1段目変化率と該1段目変化率より小さい変化率の2段目変化率との2段階によって構成され、前記目標設定温度がDPF入口温度で610~650℃であり、前記両変化率の切替時間をレイトポスト噴射開始後所定時間後に設定されることを特徴する請求項4記載のディーゼルエンジンの排気浄化装置。
  6.  エンジンの運転状態に応じてレイトポスト噴射量指令値の基本指令値を算出するフィードフォワード制御部を備え、前記算出されたDPF温度の目標温度に応じて前記フィードフォワード制御部からの指令値を補正するフィードフォワード補正手段を備えたことを特徴とする請求項1記載のディーゼルエンジンの排気浄化装置。
  7.  目標設定温度の上限値が、前記DPFの触媒劣化を生じる温度に基づいて設定される上限値であることを特徴とする請求項1~6の何れか1項に記載のディーゼルエンジンの排気浄化装置。
PCT/JP2011/068862 2010-10-20 2011-08-22 ディーゼルエンジンの排気浄化装置 WO2012053279A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11834121.3A EP2631442B1 (en) 2010-10-20 2011-08-22 Exhaust emission control device of diesel engine
CN201180031662.XA CN102959189B (zh) 2010-10-20 2011-08-22 柴油发动机的排气净化装置
US13/807,191 US8893474B2 (en) 2010-10-20 2011-08-22 Exhaust emission control device of diesel engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-235966 2010-10-20
JP2010235966A JP5660847B2 (ja) 2010-10-20 2010-10-20 ディーゼルエンジンの排気浄化装置

Publications (1)

Publication Number Publication Date
WO2012053279A1 true WO2012053279A1 (ja) 2012-04-26

Family

ID=45975002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068862 WO2012053279A1 (ja) 2010-10-20 2011-08-22 ディーゼルエンジンの排気浄化装置

Country Status (5)

Country Link
US (1) US8893474B2 (ja)
EP (1) EP2631442B1 (ja)
JP (1) JP5660847B2 (ja)
CN (1) CN102959189B (ja)
WO (1) WO2012053279A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382873A (zh) * 2012-05-04 2013-11-06 通用汽车环球科技运作有限责任公司 用于控制排气再生的系统和方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118945B2 (ja) * 2013-04-03 2017-04-19 ルノー・トラックス 排気後処理装置を再生する方法及び内燃エンジン装置
US9046021B2 (en) * 2013-06-05 2015-06-02 Tenneco Automotive Operating Company Inc. Exhaust treatment regeneration control system
JP6153793B2 (ja) * 2013-07-10 2017-06-28 日野自動車株式会社 パティキュレートフィルタの再生異常判定装置
US9599005B2 (en) * 2013-10-01 2017-03-21 Cummins Inc. Systems and methods for on-board diagnostics of a particulate matter filter
KR20150071156A (ko) * 2013-12-18 2015-06-26 현대자동차주식회사 배기정화장치의 재생 제어방법 및 장치
JP6203658B2 (ja) * 2014-02-18 2017-09-27 ヤンマー株式会社 排気ガス浄化システム
JP2015169105A (ja) * 2014-03-05 2015-09-28 トヨタ自動車株式会社 内燃機関の制御装置
CN108350812A (zh) 2015-09-25 2018-07-31 伊顿智能动力有限公司 汽缸停用控制和方法
US11326533B2 (en) * 2016-01-19 2022-05-10 Eaton Intelligent Power Limited Cylinder deactivation and engine braking for thermal management
CN105736091B (zh) * 2016-03-15 2018-06-15 清华大学 柴油机颗粒捕集器分阶段再生控制方法、装置及系统
CN107654301B (zh) * 2016-07-25 2019-12-24 上海汽车集团股份有限公司 一种发动机排气歧管的温度控制方法及装置
US10794251B2 (en) 2016-09-22 2020-10-06 Caterpillar Inc. Fuel apportionment strategy for in-cylinder dosing
JP6349426B2 (ja) * 2017-03-03 2018-06-27 ルノー・トラックス 排気後処理装置を再生する方法及び内燃エンジン装置
US11434797B2 (en) * 2017-04-28 2022-09-06 Cummins Inc. Methods and systems for removing deposits in an aftertreatment system to minimize visible smoke emissions
US11131260B2 (en) 2017-08-14 2021-09-28 Carrier Corporation Transport refrigeration system and method of regenerating a diesel particulate filter
JP7132797B2 (ja) 2018-08-31 2022-09-07 三菱重工エンジン&ターボチャージャ株式会社 Dpf再生制御装置及びdpf再生制御方法
CN113719366B (zh) * 2021-09-22 2022-08-23 潍柴动力股份有限公司 一种车辆的dpf驻车再生控制方法及装置
CN115075968B (zh) * 2022-06-13 2024-02-20 潍柴动力股份有限公司 一种发动机dpf再生方法及装置、电子设备
CN118008599B (zh) * 2024-04-08 2024-07-19 潍柴动力股份有限公司 一种dpf控制方法、装置、系统以及汽车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293339A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp 排ガス浄化装置
JP2005090359A (ja) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd Dpfの再生制御装置
JP2005240672A (ja) * 2003-05-16 2005-09-08 Denso Corp 内燃機関の排気浄化装置
JP3951619B2 (ja) 2001-02-22 2007-08-01 いすゞ自動車株式会社 連続再生型ディーゼルパティキュレートフィルタ装置及びその再生制御方法
JP2007239470A (ja) 2006-03-06 2007-09-20 Hitachi Ltd 内燃機関の可変動弁装置
JP2007239740A (ja) 2006-03-03 2007-09-20 Robert Bosch Gmbh 内燃機関の排気ガス領域に配置された粒子フィルタの作動方法及び装置
JP2009138702A (ja) 2007-12-10 2009-06-25 Mitsubishi Fuso Truck & Bus Corp 排気後処理装置
JP2010071203A (ja) * 2008-09-18 2010-04-02 Mitsubishi Heavy Ind Ltd Dpfの再生制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3558017B2 (ja) * 2000-07-21 2004-08-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4140371B2 (ja) 2002-12-16 2008-08-27 日産自動車株式会社 パティキュレートフィルタの再生装置及びエンジンの排気ガス浄化装置
JP4103813B2 (ja) 2004-02-02 2008-06-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7412822B2 (en) * 2005-01-27 2008-08-19 Southwest Research Institute Regeneration control for diesel particulate filter for treating diesel engine exhaust
JP2006316744A (ja) * 2005-05-13 2006-11-24 Honda Motor Co Ltd 内燃機関の排気処理装置
US8261535B2 (en) * 2005-06-30 2012-09-11 GM Global Technology Operations LLC Enhanced post injection control system for diesel particulate filters
WO2007053367A2 (en) * 2005-10-28 2007-05-10 Corning Incorporated Regeneration of diesel particulate filters
US7677028B2 (en) * 2006-02-28 2010-03-16 Caterpillar Inc. Particulate trap regeneration temperature control system
EP1918541B1 (en) * 2006-11-06 2009-02-25 GM Global Technology Operations, Inc. Operating method for a particulate filter, data processor program product and control apparatus therefore
US8020372B2 (en) 2008-10-03 2011-09-20 GM Global Technology Operations LLC Apparatus and method for optimizing exhaust temperature control in a vehicle during particulate filter regneration
US8474247B2 (en) * 2009-03-18 2013-07-02 GM Global Technology Operations LLC Particulate filter regeneration post-injection fuel rate control
US8418441B2 (en) * 2009-05-29 2013-04-16 Corning Incorporated Systems and methods for controlling temperature and total hydrocarbon slip
JP5404460B2 (ja) * 2010-02-09 2014-01-29 三菱重工業株式会社 エンジンの排気浄化装置及び方法、並びにエンジンの排気浄化装置に係るフィルタの再生システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951619B2 (ja) 2001-02-22 2007-08-01 いすゞ自動車株式会社 連続再生型ディーゼルパティキュレートフィルタ装置及びその再生制御方法
JP2004293339A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp 排ガス浄化装置
JP2005240672A (ja) * 2003-05-16 2005-09-08 Denso Corp 内燃機関の排気浄化装置
JP2005090359A (ja) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd Dpfの再生制御装置
JP2007239740A (ja) 2006-03-03 2007-09-20 Robert Bosch Gmbh 内燃機関の排気ガス領域に配置された粒子フィルタの作動方法及び装置
JP2007239470A (ja) 2006-03-06 2007-09-20 Hitachi Ltd 内燃機関の可変動弁装置
JP2009138702A (ja) 2007-12-10 2009-06-25 Mitsubishi Fuso Truck & Bus Corp 排気後処理装置
JP2010071203A (ja) * 2008-09-18 2010-04-02 Mitsubishi Heavy Ind Ltd Dpfの再生制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631442A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382873A (zh) * 2012-05-04 2013-11-06 通用汽车环球科技运作有限责任公司 用于控制排气再生的系统和方法
CN103382873B (zh) * 2012-05-04 2016-04-13 通用汽车环球科技运作有限责任公司 用于控制排气再生的系统和方法

Also Published As

Publication number Publication date
CN102959189B (zh) 2015-08-12
EP2631442A1 (en) 2013-08-28
EP2631442B1 (en) 2023-03-01
JP2012087705A (ja) 2012-05-10
US8893474B2 (en) 2014-11-25
CN102959189A (zh) 2013-03-06
JP5660847B2 (ja) 2015-01-28
US20130177482A1 (en) 2013-07-11
EP2631442A4 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP5660847B2 (ja) ディーゼルエンジンの排気浄化装置
KR100504422B1 (ko) 엔진의 배기 정화 장치
JP5645571B2 (ja) 内燃機関の排気浄化装置
US8984869B2 (en) Exhaust gas emission control system for diesel engine
JP5573391B2 (ja) 排気ガス浄化システム
JP5614996B2 (ja) 内燃機関の排気ガス処理方法及び装置
JP4848406B2 (ja) Dpfの再生制御装置
JP5709451B2 (ja) ディーゼルエンジンの排気浄化装置
WO2012081460A1 (ja) Dpfシステム
JP2011163250A (ja) 内燃機関の排気ガス処理方法及び装置
JP4995117B2 (ja) Dpf堆積量推定装置
US8978365B2 (en) Exhaust gas purification system
JP7132797B2 (ja) Dpf再生制御装置及びdpf再生制御方法
JP2011132906A (ja) Dpfの再生制御装置
JP2022044234A (ja) 再生制御装置
JP2008232073A (ja) 排気浄化装置
JP5544758B2 (ja) ディーゼル機関の制御システム
JP6198007B2 (ja) エンジンの制御装置
JP2004278405A (ja) 内燃機関の排気浄化装置
JP2007071153A (ja) 内燃機関の排気浄化装置
JP2006274911A (ja) 後処理装置の昇温制御装置
JP5464059B2 (ja) エンジンの制御方法及び制御装置
JP2010209899A (ja) ディーゼルエンジンの排気ガス浄化システムおよび排気ガスフィルタの再生方法
JP2016169720A (ja) 排気浄化システム
JP2016153619A (ja) 排気浄化システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031662.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011834121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13807191

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE