WO2012052661A2 - Dispositif collecteur d'energie solaire - Google Patents

Dispositif collecteur d'energie solaire Download PDF

Info

Publication number
WO2012052661A2
WO2012052661A2 PCT/FR2011/052386 FR2011052386W WO2012052661A2 WO 2012052661 A2 WO2012052661 A2 WO 2012052661A2 FR 2011052386 W FR2011052386 W FR 2011052386W WO 2012052661 A2 WO2012052661 A2 WO 2012052661A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
suspension
receiver
fluidized
volume
Prior art date
Application number
PCT/FR2011/052386
Other languages
English (en)
Other versions
WO2012052661A3 (fr
Inventor
Gilles Flamant
Mehrdji Hemati
Original Assignee
Centre National De La Recherche Scientifique
Institut National Polytechnique De Toulouse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Institut National Polytechnique De Toulouse filed Critical Centre National De La Recherche Scientifique
Priority to US13/879,869 priority Critical patent/US9267709B2/en
Priority to EP11832109.0A priority patent/EP2630219B1/fr
Priority to ES11832109T priority patent/ES2699649T3/es
Priority to AU2011317414A priority patent/AU2011317414B2/en
Priority to CN201180050807.0A priority patent/CN103270144B/zh
Publication of WO2012052661A2 publication Critical patent/WO2012052661A2/fr
Publication of WO2012052661A3 publication Critical patent/WO2012052661A3/fr
Priority to IL225816A priority patent/IL225816B/en
Priority to ZA2013/02874A priority patent/ZA201302874B/en
Priority to MA35899A priority patent/MA34664B1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/32Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/742Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • B01J2208/00451Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00513Controlling the temperature using inert heat absorbing solids in the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1284Heating the gasifier by renewable energy, e.g. solar energy, photovoltaic cells, wind
    • C10J2300/1292Heating the gasifier by renewable energy, e.g. solar energy, photovoltaic cells, wind mSolar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a solar energy collector device. It relates in particular to a device comprising at least one dense suspension of particles fluidized by a gas.
  • heat transfer fluid for example a molten salt
  • the present invention aims to remedy these disadvantages.
  • the invention thus relates to a solar energy collector device.
  • the device according to the invention comprises at least one solar receiver comprising at least one suspension of solid particles fluidized by a gas, each suspension circulating between an input and an output of the receiver,
  • volume of the particles being between 40 and 55% of the volume of the suspension, the average particle size being between 20 and 150 pm.
  • the volume of the particles may be between 45 and 50% of the volume of the suspension.
  • the density of the suspension can be between 1250 and 2000 kg / m 3 .
  • the particles may be inert particles of sand, silicon carbide, alumina, metal particles, particles of metal oxides, carbides or nitrides or reactive particles.
  • the solar receiver may also be a reactor in which a heat treatment of the solid or a solid-gas reaction such as drying, dehydration, decomposition, decarbonation or reduction occur. .
  • the particles may be a mixture of chemically inert particles and reactive particles, and the solar receiver may also be a reactor in which a recovery reaction of organic products such as pyrolysis and gasification occurs.
  • the flow rate of the solid particles is advantageously between 18 and 200 kg. m “2. s " 1 .
  • Each suspension can be confined in one or more tubes.
  • Each tube may be an opaque tube made of metallic or ceramic material.
  • Each suspension of fluidized particles may be in upward or downward vertical flow.
  • the device may include a storage element for storing the heated particles from the solar receiver, said storage element feeding a fluidized bed heat exchanger.
  • the fluidized bed heat exchanger can supply steam to a steam turbine.
  • the fluidized bed heat exchanger can feed a gas turbine.
  • the invention also relates to the use of a device described above for hybridization between solar energy and biomass.
  • the invention also relates to a method for storing solar energy.
  • the method according to the invention comprises a step of implementing, in a solar receiver, at least one suspension of solid particles fluidized by a gas, each suspension circulating between an input and an output of the receiver, the volume of the particles being between 40 and 55% of the volume of the suspension, the average particle size being between 20 and 150 pm.
  • FIG. 1 schematically illustrates a solar energy collector device according to the invention, implementing particles as a transfer fluid and as a heat storage material,
  • FIG. 2 illustrates a device according to a first embodiment
  • FIG. 3 illustrates a device according to a second embodiment
  • the device 1 as illustrated in FIG. 1, comprises a solar receiver 2 using dense suspensions of particles in a gas in upward or downward vertical flow, in tubes which constitute the active elements of the receiver 2. These tubes, metal or ceramic, are subjected to concentrated solar radiation using concentration means 3, for example using a heliostats field.
  • This radiation absorbed by the tubes is transmitted by conduction to the suspension which heats up in contact with the hot walls.
  • This suspension circulates between the input and output of the solar receiver 2 and thus ensures the transport of the energy absorbed to a set of energy storage and conversion.
  • This set of “storage-conversion” includes a hot storage element 4 connected to the output of the solar receiver 2.
  • the hot storage element 4 is intended to store the heated particles from the solar receiver 2 and can supply a fluidized-bed heat exchanger in which the particles transfer their energy to submerged tubes in which a working fluid is heated.
  • a working fluid for example steam, this steam can be expanded in a steam turbine 6.
  • the working fluid can also be a gas, in this case we use a gas turbine.
  • a turbine is a conventional device for generating electricity.
  • the cooled particles are removed from the exchanger 5, the particles circulating continuously, and are directed to a cold storage element 7 which is connected to the input of the solar receiver 2.
  • the particle suspension used in the solar receiver 2 is set in motion by a gas in a tube or other equivalent container.
  • the average particle size of the suspension is between 20 and 150 ⁇ m.
  • Group A particles of the Geldart classification may be used.
  • the average size of the particles may for example be determined by laser granulometry.
  • the average particle size is small enough to avoid heterogeneous fluidization, and large enough to prevent aggregation and poor fluidization.
  • This average particle size also makes it possible to fluidize the suspension with low gas velocities of the order of a few cm / s. This property is an advantage over conventional solutions for suspending particles per circulating bed which require gas speeds of the order of several m / s, because the energy expenditure due to the compression of the gas is reduced.
  • the porosity is small enough to fluidize the particles and large enough to prevent the formation of a dilute bed with poor heat transfer and heat exchange with the wall.
  • the density of the suspension is advantageously between 1250 and 2000 kg / m 3 .
  • the density of the sand being 2500 kg / m 3
  • a suspension of sand particles having a porosity of 50% will have a density of 1250 kg / m 3 , a density approximately 1000 times greater than that of air at atmospheric pressure.
  • almost all of the energy is transported by the solid and the medium has the properties of a quasi-liquid.
  • the flow rate of the solid particles is advantageously between 18 and 200 kg. m “2. s " 1 . It is thus small enough to provide good conduction and to avoid pressure losses related to the power of pumping air, and large enough to prevent overheating of the tubes and thus secure the device.
  • the local exchange coefficient between the wall receiving the concentrated solar radiation and the suspension of particles may be of the order of 500 to 1000 Wm -2 0 C -1 , a coefficient approximately 10 times greater than the exchange coefficient between a gas and a wall and of the same order of magnitude as that between a liquid and a wall.
  • the solar receiver 2 can comprise one or more multitubular exchangers which are the absorber modules of the receiver 2.
  • the walls of the tubes whose diameter is for example between 30 mm and 100 mm are heated by solar radiation while inside. tubes circulates the dense suspension of solid particles.
  • the rows of the tubes may be replaced by fluidized beds of parallelepiped shape of small thickness.
  • the suspension is in downward vertical flow.
  • two flow regimes of the gas-solid suspension can be observed: a fluidized descending dense flow exchanger or a moving bed.
  • FIG. 2 This first embodiment is illustrated in FIG. 2, in which the elements identical to those of FIG. 1 bear the same references.
  • a fluidized buffer tank 8 supplies a bundle of tubes.
  • a fluidized bed recovers the solid particles
  • the buffer tank 8 is supplied with particles by a feed tank 9.
  • the feed tank 9 is also fluidized by air, so as to create a movement. particles and to homogenize the temperature of the particles.
  • the particle suspension thus flows from top to bottom, from the buffer tank 8 to the lower end of the receiver 2.
  • the flow rate of the solid particles as well as the residual flow rate of the air in the tubes are controlled by adjusting the pressure in the hot storage tank 4.
  • the operation can be carried out by:
  • the suspension is in vertical upward flow.
  • the particles circulate from the feed tray 9 towards the fluidized bed located at the lower end of the solar receiver 2, then back into the tubes of the receiver 2 towards the buffer tank 8 located at the upper end of the receiver 2.
  • the particles heated in the receiver 2 then flow from the buffer tank 8 to the hot storage tank 4 located under the receiver 2.
  • FIG. 4 shows the implementation of the device in a solar receiver, for example according to the first embodiment (it can also be adapted to the second mode).
  • the device 1 can thus comprise four solar receiver modules 2, fed by a single feed tank 9.
  • the particles heated by the solar receivers 2 are conveyed to a single hot storage tank 4.
  • the solar receivers 2 can be illuminated by a circular or north-south heliostatic field (cavity-type receiver) as shown in FIG.
  • the dense suspensions of solid particles fluidized by a gas allow high operating temperatures, greater than or equal to 600 ° C, ideal for power plants and solar reactors for generating electricity or heat, and only for solar heating of chemical reactors for the production, for example, of hydrogen.
  • the device according to the invention also makes it possible to easily hybridize solar energy and biomass through an exchanger / fluidized bed reactor used to produce steam.
  • suspensions can also be used to heat a chemical reactor in which endothermic reactions are carried out, such as thermochemical cycles of solar hydrogen production or the treatment of solids.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Cyclones (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention a pour objet un dispositif (1) collecteur d'énergie solaire, caractérisé en ce qu'il comprend au moins un récepteur solaire (2) comprenant au moins une suspension de particules solides fluidisées par un gaz, chaque suspension circulant entre une entrée et une sortie du récepteur (2), le volume des particules étant compris entre 40 et 55% du volume de la suspension, la taille moyenne des particules étant comprise entre 20 et 150 μm.

Description

DISPOSITIF COLLECTEUR D'ENERGIE SOLAIRE
La présente invention a pour objet un dispositif collecteur d'énergie solaire. Elle concerne en particulier un dispositif comprenant au moins une suspension dense de particules fluidisées par un gaz.
L'exploitation rationnelle de l'énergie solaire nécessite le stockage d'une partie de la chaleur produite aux heures d'ensoleillement pour pouvoir la restituer aux heures de consommation, ou tout au moins pour assurer la continuité du fonctionnement pendant les passages nuageux.
Pour ce stockage de la chaleur, il est connu d'utiliser le même fluide que celui mis en œuvre comme fluide de transfert thermique (par exemple un sel fondu).
On peut ainsi utiliser de la vapeur comme fluide de transfert thermique. Cette solution a toutefois pour inconvénient une température de fonctionnement limitée.
On peut également utiliser comme fluide de transfert thermique des huiles de synthèse ou des mélanges de sels fondus, et notamment les mélanges de nitrate de potassium et de nitrate de sodium. L'utilisation d'huiles de synthèses ou de sels fondus a pour inconvénient d'être dangereuse et de présenter une toxicité élevée.
On a ainsi pensé à utiliser des suspensions de particules solides pour absorber le rayonnement solaire, mais cette solution n'a pas été satisfaisante, notamment en raison de la faible densité des suspensions réalisée et des pertes d'énergie importantes liées à la compression de l'air nécessaire à la mise en suspension.
La présente invention vise à remédier à ces inconvénients.
Elle propose en particulier un dispositif collecteur d'énergie solaire utilisant un fluide non toxique et non dangereux et qui permet de transporter des quantités de chaleur élevées.
L'invention a ainsi pour objet un dispositif collecteur d'énergie solaire.
Le dispositif selon l'invention comprend au moins un récepteur solaire comprenant au moins une suspension de particules solides fluidisées par un gaz, chaque suspension circulant entre une entrée et une sortie du récepteur,
B10028WO le volume des particules étant compris entre 40 et 55% du volume de la suspension, la taille moyenne des particules étant comprise entre 20 et 150 pm.
Le volume des particules peut être compris entre 45 et 50% du volume de la suspension.
La masse volumique de la suspension peut être comprise entre 1250 et 2000 kg/m3.
Les particules peuvent être des particules inertes de sable, de carbure de silicium, d'alumine, des particules métalliques, des particules d'oxydes, de carbures ou de nitrures métalliques ou des particules réactives.
Dans le cas où les particules sont des particules réactives, le récepteur solaire peut être également un réacteur dans lequel se produit un traitement thermique du solide ou une réaction solide-gaz telle que le séchage, la déshydratation, la décomposition, la décarbonatation ou la réduction.
Les particules peuvent être un mélange de particules inertes chimiquement et de particules réactives et le récepteur solaire peut être également un réacteur dans lequel se produit une réaction de valorisation de produits organiques telle que pyrolyse et gazéification.
Le débit des particules solides est avantageusement compris entre 18 et 200 kg . m"2. s"1.
Chaque suspension peut être confinée dans un ou plusieurs tubes.
Chaque tube peut être un tube opaque en matériau métallique ou céramique.
Chaque suspension de particules fluidisées peut être en écoulement vertical ascendant ou descendant.
Le dispositif peut comprendre un élément de stockage destiné à stocker les particules chauffées issues du récepteur solaire, ledit élément de stockage alimentant un échangeur de chaleur à lit fluidisé.
L'échangeur de chaleur à lit fluidisé peut alimenter en vapeur une turbine à vapeur.
L'échangeur de chaleur à lit fluidisé peut alimenter une turbine à gaz. L'invention a également pour objet l'utilisation d'un dispositif décrit ci- dessus pour une hybridation entre énergie solaire et biomasse.
B10028WO L'invention a également pour objet un procédé de stockage d'énergie solaire.
Le procédé selon l'invention comprend une étape de mise en œuvre, dans un récepteur solaire, d'au moins une suspension de particules solides fluidisées par un gaz, chaque suspension circulant entre une entrée et une sortie du récepteur, le volume des particules étant compris entre 40 et 55% du volume de la suspension, la taille moyenne des particules étant comprise entre 20 et 150 pm.
Le procédé peut être mis en œuvre dans un dispositif décrit ci-dessus. D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux dessins annexés sur lesquels :
- la figure 1 illustre schématiquement un dispositif collecteur d'énergie solaire selon l'invention, mettant en œuvre des particules comme fluide de transfert et comme matériau de stockage de la chaleur,
- la figure 2 illustre un dispositif selon un premier mode de réalisation,
- la figure 3 illustre un dispositif selon un deuxième mode de réalisation, et
- les figures 4 et 5 illustrent les possibilités de mise en œuvre du dispositif dans un récepteur solaire.
Le dispositif 1, tel qu'illustré à la figure 1, comprend un récepteur solaire 2 utilisant des suspensions denses de particules dans un gaz en écoulement vertical, ascendant ou descendant, dans des tubes qui constituent les éléments actifs du récepteur 2. Ces tubes, métalliques ou céramiques, sont soumis à un rayonnement solaire concentré à l'aide de moyens de concentration 3, par exemple à l'aide d'un champ d'héliostats.
Le rayonnement absorbé par les tubes est transmis par conduction vers la suspension qui s'échauffe au contact des parois chaudes. Cette suspension circule entre l'entrée et la sortie du récepteur solaire 2 et assure ainsi le transport de l'énergie absorbée vers un ensemble de stockage et de conversion d'énergie. Cet ensemble de « stockage-conversion » comprend un élément 4 de stockage chaud connecté à la sortie du récepteur solaire 2.
B10028WO L'élément 4 de stockage chaud est destiné à stocker les particules chauffées issues du récepteur solaire 2 et peut alimenter un échangeur de chaleur 5 à lit fluidisé dans lequel les particules cèdent leur énergie à des tubes immergés dans lesquels est chauffé un fluide de travail, par exemple de la vapeur, cette vapeur pouvant être détendue dans une turbine à vapeur 6. Le fluide de travail peut également être un gaz, dans ce cas on utilisera une turbine à gaz. Une turbine est un dispositif classique de production d'électricité.
Les particules refroidies sont évacuées de l'échangeur 5, les particules circulant de manière continue, et sont dirigées vers un élément 7 de stockage froid qui est connecté à l'entrée du récepteur solaire 2.
La suspension de particules utilisée dans le récepteur solaire 2 est mise en mouvement par un gaz dans un tube ou tout autre contenant équivalent.
La taille moyenne des particules de la suspension est comprise entre 20 et 150 pm. On peut par exemple utiliser des particules du groupe A de la classification de Geldart. La taille moyenne des particules peut par exemple être déterminée par granulométrie laser.
La taille moyenne des particules est suffisamment petite pour éviter une fluidisation hétérogène, et suffisamment grande pour éviter la formation d'agrégats et une mauvaise fluidisation. Cette taille moyenne de particules permet en outre de réaliser la mise en fluidisation de la suspension avec des vitesses de gaz faibles, de l'ordre de quelques cm/s. Cette propriété constitue un avantage par rapport aux solutions classiques de mise en suspension des particules par lit circulant qui nécessitent des vitesses de gaz de l'ordre de plusieurs m/s, car la dépense énergétique due à la compression du gaz est réduite.
Il s'agit d'une suspension dense de particules, c'est-à-dire dont la porosité est égale à celle au minimum de fluidisation, et qui est comprise entre 40 et 55%, et de préférence entre 45 et 50%. La porosité est suffisamment petite pour fluidiser les particules et suffisamment grande pour éviter la formation d'un lit dilué avec un transport de chaleur et un échange thermique avec la paroi faibles.
B10028WO Dans ces conditions, la masse volumique de la suspension est avantageusement comprise entre 1250 et 2000 kg/m3. Par exemple, la masse volumique du sable étant de 2500 kg/m3, une suspension de particules de sable ayant une porosité de 50% aura une masse volumique de 1250 kg/m3, soit une masse volumique environ 1000 fois supérieure à celle de l'air à pression atmosphérique. En conséquence, la quasi-totalité de l'énergie est transportée par le solide et le milieu possède les propriétés d'un quasi-liquide.
Le débit des particules solides est avantageusement compris entre 18 et 200 kg. m"2. s"1. Il est ainsi suffisamment petit pour procurer une bonne conduction et pour éviter les pertes de charge liées à la puissance de pompage de l'air, et suffisamment grand pour éviter la surchauffe des tubes et ainsi sécuriser le dispositif.
Le coefficient d'échange local entre la paroi recevant le rayonnement solaire concentré et la suspension de particules peut être de l'ordre de 500 à 1000 W.m"2.0C_1 , soit un coefficient environ 10 fois supérieur au coefficient d'échange entre un gaz et une paroi et du même ordre de grandeur que celui entre un liquide et une paroi.
Le récepteur solaire 2 peut comprendre un ou plusieurs échangeurs multitubulaires qui sont les modules absorbeurs du récepteur 2. Les parois des tubes dont le diamètre est par exemple compris entre 30 mm et 100 mm sont chauffées par le rayonnement solaire alors qu'à l'intérieur des tubes circule la suspension dense de particules solides. Les rangées des tubes peuvent être remplacées par des lits fluidisés de forme parallélépipède de faible épaisseur.
Deux configurations pour la réalisation du récepteur solaire 2 sont envisageables.
Dans un premier mode de réalisation, la suspension est en écoulement vertical descendant. Suivant les conditions opératoires envisagées, deux régimes d'écoulement de la suspension gaz-solide peuvent être observés : un échangeur à écoulement dense descendant fluidisé ou un lit mobile.
Ce premier mode de réalisation est illustré à la figure 2, sur laquelle les éléments identiques à ceux de la figure 1 portent les mêmes références. A l'entrée du récepteur 2, un bac tampon fluidisé 8 alimente un faisceau de tubes. En sortie du récepteur 2, un lit fluidisé récupère les particules solides
B10028WO chaudes avant de les acheminer vers le bac de stockage chaud 4. Le bac tampon 8 est alimenté en particules par un bac d'alimentation 9. Le bac d'alimentation 9 est également fluidisé par de l'air, de manière à créer un mouvement de particules et à homogénéiser la température des particules.
La suspension de particules s'écoule ainsi de haut en bas, depuis le bac tampon 8 vers l'extrémité inférieure du récepteur 2.
Dans cette configuration, le débit des particules solides ainsi que le débit résiduel de l'air dans les tubes sont contrôlés grâce au réglage de la pression dans le bac de stockage chaud 4. Suivant la valeur de la vitesse de glissement locale, qui est la différence entre la vitesse des particules et la vitesse du gaz, on peut réaliser l'opération en :
- lit mobile (vitesse de glissement < vitesse minimale de fluidisation),
- écoulements denses descendants fluidisés homogènes (vitesse minimale de fluidisation < vitesse de glissement < vitesse minimale de bullage),
- écoulements denses descendants fluidisés à bulles (vitesse de glissement > vitesse minimale de bullage).
Dans un deuxième mode de réalisation, tel qu'illustré à la figure 3, la suspension est en écoulement vertical ascendant. Les particules circulent depuis le bac d'alimentation 9 en direction du lit fluidisé situé à l'extrémité inférieure du récepteur solaire 2, puis remontent dans les tubes du récepteur 2 en direction du bac tampon 8 situé à l'extrémité supérieure du récepteur 2. Les particules chauffées dans le récepteur 2 circulent ensuite depuis le bac tampon 8 jusqu'au bac de stockage chaud 4 situé sous le récepteur 2.
La figure 4 montre la mise en œuvre du dispositif dans un récepteur solaire, par exemple selon le premier mode de réalisation (il peut également être adapté au second mode). Le dispositif 1 peut ainsi comprendre quatre modules récepteurs solaires 2, alimentés par un unique bac d'alimentation 9. Les particules réchauffées par les récepteurs solaires 2 sont acheminées vers un unique bac de stockage chaud 4. Les récepteurs solaires 2 peuvent être éclairés par un champ d'héliostats circulaire ou nord-sud (récepteur de type cavité) comme illustré sur la figure 5.
B10028WO Ainsi, conformément à l'invention, les suspensions denses de particules solides fluidisées par un gaz permettent des températures de fonctionnement élevées, supérieures ou égales à 600°C, idéales pour les centrales et réacteurs solaires de production d'électricité ou de chaleur, ainsi que pour le chauffage solaire de réacteurs chimiques pour la production, par exemple, d'hydrogène.
Le dispositif selon l'invention présente ainsi de nombreux avantages :
- maîtriser la consommation parasite d'énergie de compression d'air nécessaire à la mise en suspension,
- opérer à des températures supérieures à celles des fluides de transfert classiques tels que les sels fondus ou la vapeur dont la température limite d'utilisation est d'environ 550°C,
- utiliser un quasi fluide non toxique et non dangereux par rapport aux fluides de transfert utilisés classiquement dans les centrales solaires, comme les huiles de synthèse et les sels fondus qui sont respectivement inflammables et comburants,
- mettre en œuvre un milieu pouvant servir à la fois de fluide de transfert et de matériau de stockage.
Le dispositif selon l'invention permet en outre de réaliser aisément une hybridation entre énergie solaire et biomasse à travers un échangeur/réacteur à lit fluidisé mis en œuvre pour produire de la vapeur.
De plus, de telles suspensions peuvent aussi servir à chauffer un réacteur chimique dans lequel sont réalisées des réactions endothermiques, tels que des cycles thermochimiques de production d'hydrogène par voie solaire ou le traitement de solides.
B10028WO

Claims

REVENDICATIONS
Dispositif (1) collecteur d'énergie solaire, caractérisé en ce qu'il comprend au moins un récepteur solaire (2) comprenant au moins une suspension de particules solides fluidisées par un gaz, chaque suspension circulant entre une entrée et une sortie du récepteur (2), le volume des particules étant compris entre 40 et 55% du volume de la suspension, la taille moyenne des particules étant comprise entre 20 et 150 pm.
Dispositif (1) selon la revendication 1, caractérisé en ce que le volume des particules est compris entre 45 et 50% du volume de la suspension.
Dispositif (1) selon la revendication 1 ou 2, caractérisé en ce que la masse volumique de la suspension est comprise entre 1250 et 2000 kg/m3.
4. Dispositif (1) selon l'une des revendications 1 à 3, caractérisé en ce que les particules sont des particules inertes de sable, de carbure de silicium, d'alumine, des particules métalliques, des particules d'oxydes, de carbures ou de nitrures métalliques ou des particules réactives.
Dispositif (1) selon la revendication 4, caractérisé en ce que les particules sont des particules réactives et en ce que le récepteur solaire (2) est également un réacteur dans lequel se produit un traitement thermique du solide ou une réaction solide-gaz telle que le séchage, la déshydratation, la décomposition, la décarbonatation ou la réduction.
Dispositif (1) selon la revendication 5, caractérisé en ce que les particules sont un mélange de particules inertes chimiquement et de particules réactives et en ce que le récepteur solaire (2) est un réacteur dans lequel se produit une réaction de valorisation de produits organiques telle que pyrolyse et gazéification.
B10028WO
7. Dispositif (1) selon l'une des revendications 1 à 6, caractérisé en ce que le débit des particules solides est compris entre 18 et 200 kg . m"2. s"1.
8. Dispositif (1) selon l'une des revendications 1 à 7, caractérisé en ce que chaque suspension est confinée dans un ou plusieurs tubes.
9. Dispositif (1) selon la revendication 8, caractérisé en ce que chaque tube est un tube opaque en matériau métallique ou céramique.
10. Dispositif (1) selon l'une des revendications 1 à 9, caractérisé en ce que chaque suspension de particules fluidisées est en écoulement vertical ascendant ou descendant.
11. Dispositif (1) selon l'une des revendications 1 à 10, caractérisé en ce qu'il comprend un élément de stockage (4) destiné à stocker les particules chauffées issues du récepteur solaire (2), ledit élément de stockage (4) alimentant un échangeur de chaleur (5) à lit fluidisé.
12. Dispositif (1) selon la revendication 11, caractérisé en ce que l'échangeur de chaleur (5) à lit fluidisé alimente en vapeur une turbine à vapeur (6).
13. Dispositif (1) selon la revendication 11, caractérisé en ce que l'échangeur de chaleur (5) à lit fluidisé alimente une turbine à gaz (6).
14. Utilisation d'un dispositif (1) selon l'une des revendications 1 à 13 pour une hybridation entre énergie solaire et biomasse.
15. Procédé de stockage d'énergie solaire, caractérisé en ce qu'il comprend une étape de mise en œuvre, dans un récepteur solaire (2), d'au moins une suspension de particules solides fluidisées par un gaz, chaque suspension circulant entre une entrée et une sortie du récepteur (2), le volume des particules étant compris entre 40 et 55% du volume de la suspension, la taille moyenne des particules étant comprise entre 20 et 150 pm.
B10028WO
PCT/FR2011/052386 2010-10-20 2011-10-13 Dispositif collecteur d'energie solaire WO2012052661A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/879,869 US9267709B2 (en) 2010-10-20 2011-10-13 Device for collecting solar energy
EP11832109.0A EP2630219B1 (fr) 2010-10-20 2011-10-13 Dispositif collecteur d'énergie solaire
ES11832109T ES2699649T3 (es) 2010-10-20 2011-10-13 Dispositivo colector de energía solar
AU2011317414A AU2011317414B2 (en) 2010-10-20 2011-10-13 Device for collecting solar energy
CN201180050807.0A CN103270144B (zh) 2010-10-20 2011-10-13 用于收集太阳能的装置
IL225816A IL225816B (en) 2010-10-20 2013-04-18 A device for collecting solar energy
ZA2013/02874A ZA201302874B (en) 2010-10-20 2013-04-19 Device for collecting solar energy
MA35899A MA34664B1 (fr) 2010-10-20 2013-05-13 Dispositif collecteur d'energie solaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1058565A FR2966567B1 (fr) 2010-10-20 2010-10-20 Dispositif collecteur d'energie solaire
FR1058565 2010-10-20

Publications (2)

Publication Number Publication Date
WO2012052661A2 true WO2012052661A2 (fr) 2012-04-26
WO2012052661A3 WO2012052661A3 (fr) 2013-02-14

Family

ID=44146555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/052386 WO2012052661A2 (fr) 2010-10-20 2011-10-13 Dispositif collecteur d'energie solaire

Country Status (9)

Country Link
US (1) US9267709B2 (fr)
EP (1) EP2630219B1 (fr)
AU (1) AU2011317414B2 (fr)
ES (1) ES2699649T3 (fr)
FR (1) FR2966567B1 (fr)
IL (1) IL225816B (fr)
MA (1) MA34664B1 (fr)
WO (1) WO2012052661A2 (fr)
ZA (1) ZA201302874B (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110197585A1 (en) * 2008-09-12 2011-08-18 Internew Electronics S.R.L. Thermal vector system for solar concentration power plant
CN103291437A (zh) * 2012-02-29 2013-09-11 顾飞舟 以固体颗粒作为流动热导体的冷却系统
US20140311479A1 (en) * 2013-04-22 2014-10-23 Babcock & Wilcox Power Generation Group, Inc. Concentrated solar power solids-based system
WO2014044254A3 (fr) * 2012-09-18 2015-03-19 Technische Universität Chemnitz Système de production d'eau chaude et/ou de vapeur comportant un accumulateur à haute température pour une utilisation dans une centrale électrique à turbine à gaz
CN104981668A (zh) * 2012-12-28 2015-10-14 阿文戈亚太阳能有限责任公司 使用经聚集的太阳能的金属再熔化和发电
EP2975263A1 (fr) * 2014-07-17 2016-01-20 The Babcock & Wilcox Company Installation de production d'énergie intégrant un récepteur d'énergie solaire concentrée et un échangeur de chaleur pressurisé
EP2862912A4 (fr) * 2013-05-07 2016-03-09 Inst Modern Physics Cas Agent d'échange thermique, système d'échange thermique et système de réacteur nucléaire
US9651313B2 (en) 2012-10-10 2017-05-16 Research Triangle Institute Particulate heat transfer fluid and related system and method
EP3434360A1 (fr) 2017-07-27 2019-01-30 Centre National De La Recherche Scientifique Dispositif de collecte d'énergie solaire

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717892A (zh) * 2011-07-05 2014-04-09 阿文戈亚太阳能有限责任公司 利用固液相变材料用于热传递的集中太阳能发电方法和系统
US9347690B2 (en) * 2012-04-02 2016-05-24 Alliance For Sustainable Energy, Llc Methods and systems for concentrated solar power
US9702348B2 (en) 2013-04-03 2017-07-11 Alliance For Sustainable Energy, Llc Chemical looping fluidized-bed concentrating solar power system and method
US9945585B2 (en) 2014-05-15 2018-04-17 Alliance For Sustainable Energy, Llc Systems and methods for direct thermal receivers using near blackbody configurations
US20150345480A1 (en) * 2014-05-28 2015-12-03 Lawrence Livermore National Security, Llc Thermally integrated concentrating solar power system with a fluidized solid particle receiver
KR101580797B1 (ko) * 2014-09-04 2015-12-30 한국에너지기술연구원 태양열 하이브리드 흡수식 냉방 시스템
US9939178B2 (en) * 2014-10-06 2018-04-10 The Babcock & Wilcox Company Solids-based concentrated solar power receiver
US10422552B2 (en) 2015-12-24 2019-09-24 Alliance For Sustainable Energy, Llc Receivers for concentrating solar power generation
HUE056103T2 (hu) * 2016-12-26 2022-01-28 Inst Modern Physics Cas Napkollektor, napkollektor-összeállítás, valamint napenergiás energiafejlesztõ eszköz
US11255575B2 (en) * 2017-03-20 2022-02-22 Gas Technology Institute Process and system for hot and/or cold energy transfer, transport and/or storage
US20220230241A1 (en) * 2017-08-08 2022-07-21 Wells Fargo Bank, N.A. Networked system for trader management and methods of use thereof
WO2019204337A1 (fr) * 2018-04-16 2019-10-24 National Technology & Engineering Solutions Of Sandia, Llc Récepteurs de particules tombantes à plusieurs étages
WO2019213355A1 (fr) * 2018-05-03 2019-11-07 National Technology & Engineering Solutions Of Sandia, Llc Systèmes et procédés de rejet de chaleur sèche amélioré par des particules et stockage thermique
AU2020332175A1 (en) * 2019-08-22 2022-04-07 Commonwealth Scientific And Industrial Research Organisation Moving-bed particle heat exchanger
CN110734787B (zh) * 2019-10-21 2020-10-23 山东理工大学 一种聚光集热型分流双管式热解气化反应器
WO2022015919A1 (fr) * 2020-07-15 2022-01-20 Alliance For Sustainable Energy, Llc Échangeur de chaleur à lit fluidisé de conversion d'énergie thermique en électricité
US20240003532A1 (en) * 2022-07-01 2024-01-04 The Babcock & Wilcox Company Green steam industrial steam generator process and system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041318A (en) * 1976-03-01 1977-08-09 Uop Inc. Solar heat-light recovery system
US4290779A (en) * 1980-05-15 1981-09-22 Nasa Solar heated fluidized bed gasification system
US4582590A (en) * 1984-07-23 1986-04-15 The Unied States Of America As Represented By The Administrator, National Aeronautics And Space Administration Solar heated oil shale pyrolysis process
US5947114A (en) * 1995-02-15 1999-09-07 Yeda Research And Development Company Ltd. Central solar receiver with a multi component working medium
IL152452A0 (en) * 2000-05-08 2003-12-23 Midwest Research Inst A method for carrying out a chemical reaction utilizing solar thermal heating to produce h2
DE10208487B4 (de) * 2002-02-27 2004-02-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Nutzung der Wärme hocherhitzter Heißluft
CN101522862A (zh) 2006-08-29 2009-09-02 科罗拉多大学评议会公司 将生物质快速太阳能-热转换为合成气
US8378151B2 (en) * 2009-06-09 2013-02-19 Sundrop Fuels, Inc. Systems and methods for an integrated solar driven chemical plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038386B2 (en) * 2008-09-12 2015-05-26 Internew Electronics S.R.L. Thermal vector system for solar concentration power plant
US20110197585A1 (en) * 2008-09-12 2011-08-18 Internew Electronics S.R.L. Thermal vector system for solar concentration power plant
CN103291437A (zh) * 2012-02-29 2013-09-11 顾飞舟 以固体颗粒作为流动热导体的冷却系统
WO2014044254A3 (fr) * 2012-09-18 2015-03-19 Technische Universität Chemnitz Système de production d'eau chaude et/ou de vapeur comportant un accumulateur à haute température pour une utilisation dans une centrale électrique à turbine à gaz
US9651313B2 (en) 2012-10-10 2017-05-16 Research Triangle Institute Particulate heat transfer fluid and related system and method
CN104981668A (zh) * 2012-12-28 2015-10-14 阿文戈亚太阳能有限责任公司 使用经聚集的太阳能的金属再熔化和发电
WO2014176098A1 (fr) * 2013-04-22 2014-10-30 Babcock & Wilcox Power Geration Group, Inc. Système à énergie solaire concentrée à base de matières solides
US20140311479A1 (en) * 2013-04-22 2014-10-23 Babcock & Wilcox Power Generation Group, Inc. Concentrated solar power solids-based system
US9829217B2 (en) * 2013-04-22 2017-11-28 The Babcock & Wilcox Company Concentrated solar power solids-based system
EP2862912A4 (fr) * 2013-05-07 2016-03-09 Inst Modern Physics Cas Agent d'échange thermique, système d'échange thermique et système de réacteur nucléaire
US10699818B2 (en) 2013-05-07 2020-06-30 Institute Of Modern Physics, Chinese Academy Of Sciences Heat exchange medium, heat exchange system, and nuclear reactor system
EP2975263A1 (fr) * 2014-07-17 2016-01-20 The Babcock & Wilcox Company Installation de production d'énergie intégrant un récepteur d'énergie solaire concentrée et un échangeur de chaleur pressurisé
EP3434360A1 (fr) 2017-07-27 2019-01-30 Centre National De La Recherche Scientifique Dispositif de collecte d'énergie solaire

Also Published As

Publication number Publication date
FR2966567B1 (fr) 2014-11-14
IL225816A0 (en) 2013-06-27
ZA201302874B (en) 2014-10-29
US9267709B2 (en) 2016-02-23
AU2011317414B2 (en) 2016-11-24
MA34664B1 (fr) 2013-11-02
EP2630219B1 (fr) 2018-08-29
CN103270144A (zh) 2013-08-28
EP2630219A2 (fr) 2013-08-28
ES2699649T3 (es) 2019-02-12
US20130284163A1 (en) 2013-10-31
WO2012052661A3 (fr) 2013-02-14
IL225816B (en) 2019-12-31
FR2966567A1 (fr) 2012-04-27
AU2011317414A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
EP2630219B1 (fr) Dispositif collecteur d&#39;énergie solaire
US9011560B2 (en) Various methods and apparatuses for an ultra-high heat flux chemical reactor
US20100247387A1 (en) Systems and methods for biomass gasifier reactor and receiver configuration
JP5606623B2 (ja) 2個の相互連結炉を介するバイオマス熱分解ガス化方法および装置
EP2454525A2 (fr) Procede et installation de combustion en boucle chimique avec controle independant de la circulation des solides
CA2850612A1 (fr) Procede de combustion en boucle chimique avec elimination des cendres et fines en sortie de la zone d&#39;oxydation et installation utilisant un tel procede
Abe et al. Internally-circulating fluidized bed reactor using thermal storage material for solar coal coke gasification
US9657723B1 (en) Carbon nanotube-based fluidized bed heat transfer media for concentrating solar power applications
EP2491306A1 (fr) Procédé et dispositif de production d&#39;énergie par oxydation d&#39;un combustible dans une boucle chimique
WO2010076499A2 (fr) Procede et dispositif de production et de purification de gaz de synthese
FR2503177A1 (fr) Procede de production de gaz contenant h2 et co, notamment a partir de charbon ou de coke
JP5990978B2 (ja) 流動層システムおよびバイオマス導入方法
WO2023040110A1 (fr) Système et méthode de production d&#39;hydrogène thermochimique à couplage photothermique
EP2984434B1 (fr) Systeme de stockage par voie thermochimique a efficacite de stockage amélioree
CN210119024U (zh) 太阳能接收器
CN107286991B (zh) 半焦气化制备合成气的方法及系统
Vossier et al. Hybrid PV–CSP Systems
CN115304029B (zh) 一种优化能量分配策略的被动热管理式太阳能高温反应器
CN103270144B (zh) 用于收集太阳能的装置
WO2023057710A1 (fr) Réacteur tubulaire à lit fixe comportant une chambre d&#39;appoint
WO2016169867A1 (fr) Centrale solaire a concentration (csp) a stockage par voie chimique
Alias et al. Design and fabrication of bench-scale flash pyrolysis reactor for bio-fuel production
Zheng et al. Design of reactive particle fluidized bed heat exchangers for gas–solid thermochemical energy storage
CN117704813A (zh) 一种适用于钙循环储能的回转式光热煅烧装置及应用
EP3828465A1 (fr) Réacteur solaire à jet, destiné à la conversion thermochimique d&#39;une charge carbonée, à évacuation des cendres améliorée, procédé de fonctionnement associé, application à la gazéification de biomasse ou au reformage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832109

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 225816

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011832109

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011317414

Country of ref document: AU

Date of ref document: 20111013

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879869

Country of ref document: US