WO2012043297A1 - 給湯システム - Google Patents

給湯システム Download PDF

Info

Publication number
WO2012043297A1
WO2012043297A1 PCT/JP2011/071326 JP2011071326W WO2012043297A1 WO 2012043297 A1 WO2012043297 A1 WO 2012043297A1 JP 2011071326 W JP2011071326 W JP 2011071326W WO 2012043297 A1 WO2012043297 A1 WO 2012043297A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature side
refrigeration cycle
high temperature
heat exchanger
low
Prior art date
Application number
PCT/JP2011/071326
Other languages
English (en)
French (fr)
Inventor
貴宏 図司
峻 浅利
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to KR1020127028591A priority Critical patent/KR20130006495A/ko
Priority to EP11828854.7A priority patent/EP2623898A4/en
Priority to JP2012536353A priority patent/JPWO2012043297A1/ja
Priority to CN2011800229814A priority patent/CN102884384A/zh
Publication of WO2012043297A1 publication Critical patent/WO2012043297A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • Embodiment of the present invention relates to a hot water supply system that supplies hot water using a two-way refrigeration cycle.
  • the high temperature side refrigeration cycle and the low temperature side refrigeration cycle are connected via an intermediate heat exchanger, and the intermediate heat exchanger exchanges heat between the refrigerant circulating in the high temperature side refrigeration cycle and the refrigerant circulating in the low temperature side refrigeration cycle.
  • a binary refrigeration cycle for obtaining a high compression ratio is frequently used (for example, Japanese Unexamined Patent Publication No. 2000-320914).
  • a water heat exchanger is provided as a condenser constituting the high temperature side refrigeration cycle, and water or hot water is led through a hot water pipe here.
  • the water or hot water is supplied to the use side of the hot water piping destination instead of hot water. Therefore, efficient hot water supply operation is possible even in cold regions.
  • the air heat exchanger that constitutes the low temperature side refrigeration cycle acts as an evaporator during hot water supply operation, so that the air heat exchanger can be frosted especially during operation under low outside air temperature conditions. Is inevitable. If it passes in this state, since the heat exchange efficiency of an air heat exchanger will fall, it is necessary to perform a defrost operation.
  • the four-way switching valve of the high-temperature side refrigeration cycle and the four-way switching valve of the low-temperature side refrigeration cycle are switched to reverse the refrigerant circulation direction. Since the heat source at the time of defrosting is the hot water led to the water heat exchanger of the high temperature side refrigeration cycle, it is possible to maintain the high pressure and the discharge temperature during the defrosting operation. Since the high-temperature gas refrigerant is directly guided to the air heat exchanger of the low-temperature refrigeration cycle, the air heat exchanger is efficiently defrosted.
  • the four-way switching valve is expensive. If possible, the four-way switching valve and piping connected to the four-way switching valve should be deleted to reduce the cost by reducing the parts cost. At the same time, there is a demand to improve the workability of piping work by eliminating the four-way switching valve and the space for connecting piping.
  • This embodiment is based on the above circumstances, and is provided with a dual refrigeration cycle, and performs specific control during the defrosting operation for the evaporator of the low temperature side refrigeration cycle, thereby reducing the component cost and improving the efficiency.
  • a hot water supply system capable of good defrosting operation is provided.
  • the hot water supply system in the present invention includes a low-temperature side compressor, a four-way switching valve, an intermediate heat exchanger, a low-temperature side expansion device, a low-temperature side refrigeration cycle that communicates an evaporator via a refrigerant pipe, and a high-temperature side.
  • a high-temperature side refrigeration cycle configured to communicate a compressor, a water heat exchanger, a high-temperature side expansion device, and an intermediate heat exchanger via a refrigerant pipe, the refrigerant guided to the low-temperature side refrigeration cycle, and the high-temperature side refrigeration cycle
  • the refrigerant led to the refrigerant is led to the binary refrigeration cycle for exchanging heat with the intermediate heat exchanger and the water heat exchanger of the high temperature side refrigeration cycle, and is introduced into the circulating water or hot water and the high temperature side refrigeration cycle.
  • a hot water pipe for supplying heat to the user side one end of which is connected to the refrigerant pipe between the high temperature side compressor and the water heat exchanger of the high temperature side refrigeration cycle, and the other end of the high temperature side refrigeration cycle.
  • High A bypass circuit connected to a refrigerant pipe between the side expansion device and the intermediate heat exchanger and having a fluid control valve in the middle, and fluid control of the bypass circuit during defrosting operation for the evaporator of the low temperature side refrigeration cycle And a control means for controlling to open the valve and close the high temperature side expansion device of the high temperature refrigeration cycle.
  • FIG. 1 is a configuration diagram of a refrigeration cycle of a hot water supply system according to the present embodiment.
  • FIG. 1 is a refrigeration cycle configuration diagram of a hot water supply system, and particularly shows a refrigeration cycle switching state during a defrosting operation.
  • This hot water supply system includes a high temperature side refrigeration cycle Ra, a hot water pipe H, a low temperature side refrigeration cycle Rb, and a control unit (control means) S.
  • the discharge part a of the high temperature side compressor 1, the water heat exchanger 2, the liquid receiver 3, the high temperature side expansion apparatus 4, and the heat absorption part 5a of the intermediate heat exchanger 5 will be described.
  • the gas-liquid separator 6 is sequentially connected via the refrigerant pipe P, and the gas-liquid separator 6 communicates with the suction part b of the high-temperature side compressor 1.
  • the refrigerant compressed and discharged by the high temperature side compressor 1 is as follows:-water heat exchanger 2-liquid receiver 3-high temperature side expansion device 4-intermediate heat exchanger 5 Endothermic part 5a-gas-liquid separator 6-high temperature side compressor 1-. Therefore, the water heat exchanger 2 acts as a condenser, and the heat absorption part 5a of the intermediate heat exchanger 5 acts as an evaporator.
  • the bypass circuit B is provided in such a high temperature side refrigeration cycle Ra.
  • One end of the bypass circuit B is connected to the refrigerant pipe P between the discharge part a of the high temperature side compressor 1 and the water heat exchanger 2, and the other end is the heat absorption of the high temperature side expansion device 4 and the intermediate heat exchanger 5.
  • It consists of a bypass pipe 9 connected to the refrigerant pipe P between the part 5a and having a fluid control valve 8 in the middle.
  • Hot water pipe H One end of the hot water pipe H is connected to a hot water return pipe or a condensate side buffer tank, and the other end is connected to a hot water outlet pipe or an outgoing side buffer tank (both not shown).
  • the middle part of the hot water pipe H is piped to the water heat exchanger 2 constituting the high temperature side refrigeration cycle Ra, and water or hot water led to the hot water pipe H and refrigerant led to the water heat exchanger 2 are connected. Heat exchange is possible.
  • the discharge part c of the low temperature side compressor 10 and the first port d1 of the four-way switching valve 11 are connected via the refrigerant pipe P, and the second port d2 of the four-way switching valve 11 is in the middle.
  • the heat radiating part 5b of the heat exchanger 5 is connected via the refrigerant pipe P.
  • the third port d3 of the four-way switching valve 11 is connected to the two air heat exchangers 12 and 12 here through a refrigerant pipe P branched from the middle part into two.
  • the fourth port d4 of the four-way switching valve 11 is connected to the suction part e of the low temperature side compressor 10 via the gas-liquid separator 13 via the refrigerant pipe P.
  • the heat radiating part 5b of the intermediate heat exchanger 5 is connected to the liquid receiver 14 via the refrigerant pipe P, and the liquid receiver 14 and the two air heat exchangers 12 are branched from the middle part into two. Each is connected via a refrigerant pipe P provided with a low temperature side expansion device 15.
  • the refrigerant compressed and discharged by the low temperature side compressor 10 is as follows:-four-way switching valve 11-heat radiation part 5b of the intermediate heat exchanger 5-low temperature of the receiver 14-2
  • the side expansion device 15-2 is guided in the order of the air heat exchanger 12-four-way switching valve 11-gas-liquid separator 13-low temperature side compressor 10-.
  • the heat radiation part 5b of the intermediate heat exchanger 5 acts as a condenser, and the air heat exchanger 12 acts as an evaporator.
  • the four-way switching valve 11 is switched in the direction shown in the figure, and the refrigerant compressed and discharged by the low-temperature side compressor 10 is: Air heat exchanger 12-2 low temperature side expansion device 15-liquid receiver 14-heat radiation part 5b of intermediate heat exchanger 5-four-way switching valve 11-gas-liquid separator 13-low temperature side compressor 10- It is burned. At this time, the air heat exchanger 12 acts as a condenser, and the heat radiating portion of the intermediate heat exchanger 5 acts as an evaporator.
  • the controller S includes temperature sensors provided at the discharge portions a and c and the suction portions b and e of the high-temperature side compressor 1 and the low-temperature side compressor 10, and pressures provided at the discharge portions a and c and the suction portions b and e. Detected from a sensor, a temperature sensor provided in the water heat exchanger 2, a temperature sensor provided in the heat absorbing part 5a and the heat radiating part 5b of the intermediate heat exchanger 5, a temperature sensor provided in the air heat exchanger 12 (all not shown), etc. Receive a signal.
  • control unit S receives the instruction signal from the remote controller (remote controller), performs calculation, and compares it with the reference value (heating capacity or temperature at the intermediate heat exchanger 5) to be stored with the high-temperature side compressor 1.
  • the operating frequency of the low temperature side compressor 10 is controlled.
  • the superheat amount (hereinafter referred to as “SH amount”) of the heat exchanger is calculated from the difference between the refrigerant temperature of the heat exchanger and the suction side refrigerant temperature of the compressor, and the high temperature side expansion device 4 and the low temperature
  • the throttle amount of the side expansion device 15 is controlled.
  • the fluid control valve 8 of the bypass circuit B is controlled to open and close.
  • the control unit S controls the high temperature side refrigeration cycle Ra and the low temperature side refrigeration cycle Rb to guide and circulate the refrigerant as described above.
  • the refrigerant condenses in the heat radiating part 5b on the low temperature side refrigeration cycle Rb side to release condensation heat, and the refrigerant evaporates while absorbing the heat of condensation in the heat absorbing part 5a on the high temperature side refrigeration cycle Ra side. To do.
  • the temperature difference between the evaporation temperature in the air heat exchanger 12 and the condensation temperature in the water heat exchanger 2 becomes large, and a high compression ratio can be obtained.
  • the water or hot water led to the hot water pipe H absorbs the hot heat of condensation and the temperature rises efficiently.
  • the water or hot water is changed to hot water, and circulates between the water heat exchanger 2 -the buffer tank on the warm water supply side, the buffer tank on the load side, and the water heat exchanger 2.
  • the air heat exchanger 12 in the low temperature side refrigeration cycle Rb performs the evaporation of the refrigerant, so that the condensed water generated here freezes and becomes frost. Adhere as it is. As time elapses, the thickness of the frost increases, and the heat exchange efficiency in the air heat exchanger 12 decreases.
  • Control part S receives the detection signal from the temperature sensor attached to the air heat exchanger 12, and receives the detection signal from other sensors, and judges the necessity for the defrost operation with respect to the air heat exchanger 12.
  • FIG. As a result, the defrosting operation is performed, but the control unit S actually performs the control described below immediately before the start of the defrosting operation.
  • control unit S performs control to throttle the high temperature side expansion device 4 provided in the high temperature side refrigeration cycle Ra at a timing immediately before the start of the defrosting operation. Therefore, in the high temperature side refrigeration cycle Ra, the flow rate of the refrigerant guided from the high temperature side expansion device 4 to the heat absorption part 5a of the intermediate heat exchanger 5 decreases.
  • the amount of heat absorbed by the heat absorption part 5a of the intermediate heat exchanger 5 decreases, the temperature of the heat absorption part 5a and the heat dissipation part 5b rises, and the temperature of the intermediate heat exchanger 5 as a whole also rises. At this time, it is not necessary to change the operating frequencies of the high temperature side compressor 1 in the high temperature side refrigeration cycle Ra and the low temperature side compressor 10 in the low temperature side refrigeration cycle Rb.
  • the suction temperature and suction pressure of the high-temperature compressor 1 communicating with the heat-absorbing part 5a of the intermediate heat exchanger 5 via the refrigerant pipe P also rise, but the refrigerant circulation rate decreases in the high-temperature refrigeration cycle Ra, so that the discharge There is almost no increase in pressure, and the compression ratio of the high temperature side compressor 1 decreases.
  • the controller S controls the expansion of the high temperature side expansion device 4 of the high temperature side refrigeration cycle Ra at the timing immediately before the start of the defrosting operation for the air heat exchanger 12. Therefore, without changing the operating frequency of the high temperature side compressor 1 and the low temperature side compressor 10, the evaporation temperature rise of the heat absorption part 5a and the condensation temperature rise of the heat radiating part 5b of the intermediate heat exchanger 5 can be increased in a short time. The discharge temperature rise of the compressor 1 and the low temperature side compressor 10 can be obtained.
  • the temperature of the low pressure side piping components from the high temperature side expansion device 4 via the intermediate heat exchanger 5 to the high temperature side compressor 1 rises, and the compressor body of the high temperature side compressor 1 and the high temperature side
  • the high-pressure side piping parts from the side compressor 1 to the water heat exchanger 2 also rise in temperature, and heat storage can be achieved.
  • the controller S controls the actual start of the defrosting operation for the air heat exchanger 12.
  • the fluid control valve 8 of the bypass circuit B is opened, and the four-way switching valve 11 of the low-temperature side refrigeration cycle Rb is switched to supply the refrigerant in the direction opposite to the refrigerant circulation direction in the low-temperature side refrigeration cycle Rb. Circulate.
  • control unit S temporarily stops the operation of the low temperature side compressor 10 (several tens of seconds to several minutes) and performs necessary control such as opening the pressure equalizing pipe so that the high pressure side in the low temperature side refrigeration cycle Rb. Balance the pressure on the low pressure side in a short time.
  • the four-way switching valve 11 the refrigerant flow inside the switching valve is lowered, the collision is calmed down, and switching noise can be suppressed.
  • the control unit S fully closes the high temperature side expansion device 4 while continuing the operation of the high temperature side compressor 1 in the high temperature side refrigeration cycle Ra. Therefore, the high pressure of the high temperature side refrigeration cycle Ra is maintained, the refrigerant recovered from the heat absorption part 5a of the intermediate heat exchanger 5 and discharged from the high temperature side compressor 1 is the water heat exchanger 2 and the receiver that are condensers. 3 is stored as a high-temperature liquid refrigerant. Further, since the refrigerant is not supplied to the intermediate heat exchanger 5, the amount of heat absorbed from the heat absorbing portion 5a can be suppressed, and the heat storage effect is maintained.
  • the pump-down (refrigerant recovery) operation is performed in the high-temperature side refrigeration cycle Ra, the operation is performed by reducing the operation frequency of the high-temperature side compressor 1 as necessary so that the operation is not stopped due to a decrease in the low pressure. It is desirable to extend the duration.
  • the control unit S controls the opening of the fluid control valve 8 of the bypass circuit B while continuing the operation of the high temperature side compressor 1 of the high temperature side refrigeration cycle Ra. Further, the four-way switching valve 11 of the low temperature side refrigeration cycle Rb is switched, and the operation of the low temperature side compressor 10 is restarted. At this time, in the low temperature side refrigeration cycle Rb, since the pressures on the high pressure side and the low pressure side are balanced, the switching sound of the four-way switching valve 11 hardly occurs.
  • Hot gas which is a high-temperature and high-pressure refrigerant gas discharged from the high-temperature side compressor 1, is led to the bypass circuit B, and is led to the heat absorption part 5a of the intermediate heat exchanger 5 via the fluid control valve 8 to release high heat. Further, in the process in which the high pressure of the high temperature side refrigeration cycle Ra is decreasing, the liquid heat refrigerant 2 in the hydrothermal exchanger 2 as a condenser and the liquid receiver 3 is boiled under reduced pressure, gasified, and flows backward in the refrigeration cycle.
  • the gasified refrigerant is led to the bypass circuit B and led to the intermediate heat exchanger 5 via the fluid control valve 8.
  • heat is absorbed from the hot water on the use side, and a part of the heat source necessary for the defrosting operation can be covered.
  • the refrigerant circulates in the direction opposite to that during hot water supply operation, and the refrigerant is condensed in each air heat exchanger 12 to release the condensation heat. Therefore, the frost adhering to the air heat exchanger 12 is gradually melted and dripped as drain water. The thickness of the frost decreases immediately, and the background of the air heat exchanger 12 is exposed.
  • the low-pressure side piping component extending from the high-temperature side expansion device 4 of the high-temperature side refrigeration cycle Ra to the high-temperature side compressor 1 via the intermediate heat exchanger 5.
  • the heat stored in the high-pressure side piping components extending from to the low-temperature side expansion device 15 via the intermediate heat exchanger 5 is released at this time. Since all of these heat storages are spent for defrosting the air heat exchanger 12, the defrosting action is further promoted.
  • control unit S controls the fluid control valve 8 of the bypass circuit B to be fully closed while detecting that the high pressure of the high temperature side refrigeration cycle Ra has dropped below a predetermined pressure, and the high temperature side expansion device 4 Control to fully open or optimal opening.
  • the low temperature discharge gas of the high temperature side refrigeration cycle Ra can be heated by the heat of the hot water led to the water heat exchanger 2, and a heat source for the defrosting operation for the air heat exchanger 12 is secured.
  • the temperature drop of the hot water led to the water heat exchanger 2 at this time is less than 1 ° C.
  • the high pressure of the high temperature side refrigeration cycle Ra can be slightly increased, so that the heat quantity is secured by the input of the high temperature side compressor 1 and intermediate heat exchange is performed. It is possible to adjust the amount of hot gas supplied to the vessel 5.
  • the four-way switching valve in the high-temperature side refrigeration cycle Ra is not required, and the piping parts to be connected to the four-way switching valve are not required, thereby reducing component costs.
  • bypass pipe 9 and the fluid control valve 8 constituting the bypass circuit B are required, but both ends of the bypass pipe 9 constitute the high temperature side refrigeration cycle Ra. Since the fluid control valve 8 can be a simple on-off valve, it is possible to suppress the influence on the cost to a minimum.
  • the discharge temperature rises as the low-pressure rise of the high-temperature side refrigeration cycle Ra and the SH amount increase by the relatively simple control that only throttles the high-temperature side expansion device 4.
  • Rb high pressure rise and discharge temperature rise can be obtained.
  • the low pressure side piping component, the high temperature side compressor 1 and the high pressure side piping component in the high temperature side refrigeration cycle Ra, and the low pressure side compressor 10 and the high pressure side piping component in the low temperature side refrigeration cycle Rb are required during the defrosting operation.
  • the amount of heat that becomes can be stored internally, and the defrosting efficiency can be improved.
  • the operation of the low temperature side compressor 10 in the low temperature side refrigeration cycle Rb is stopped for a predetermined time to balance the pressure on the high pressure side and the low pressure side, and then the four-way switching valve 11 Since the switching is made, the switching noise can be reduced and the silent operation can be performed.
  • the fluid control valve 8 of the bypass circuit B is opened while the operation of the high temperature side compressor 1 is continued, and the high temperature side expansion device 4 is closed. Therefore, almost no hot water is used as a heat source at the time of defrosting, and the temperature drop of the hot water led to the hot water pipe H can be suppressed.
  • the high pressure of the high temperature side refrigeration cycle Ra can be maintained to maintain the heat storage state, which helps shorten the defrosting time.
  • the fluid control valve 8 of the bypass circuit B is closed, and the high temperature side expansion device 4 is fully opened or controlled to an optimal opening. Therefore, even if the internal heat storage is exhausted and the inputs of the high temperature side compressor 1 and the low temperature side compressor 10 become extremely small, the discharge gas of the high temperature side compressor 1 can be warmed by the hot water of the hot water pipe H, and the heat source Therefore, the risk that defrosting is not completed can be reduced.

Abstract

 四方切換え弁(11)を必要とする低温側冷凍サイクル(Rb)と、四方切換え弁(11)を不要とする高温側冷凍サイクル(Ra)とから2元冷凍サイクルを構成し、各冷凍サイクルに備えた中間熱交換器(5)で熱交換させる。高温側冷凍サイクル(Ra)の水熱交換器(2)に温水配管(H)を配管し、水または温水を高温の温水にして利用側へ供給する。バイパス回路(B)は、一端を高温側冷凍サイクル(Ra)の高温側圧縮機(1)と水熱交換器との間の冷媒配管(P)に接続し、他端を高温側膨張装置(4)と中間熱交換器との間の冷媒配管に接続し、中途部に流体制御弁(8)を設ける。制御部(S)は、低温側冷凍サイクル(Rb)の空気熱交換器(12)に対する除霜運転時に、流体制御弁(8)を開放し、高温側膨張装置を閉成するよう制御することで、低温側冷凍サイクル(Rb)の蒸発器に対する除霜運転時に特有の制御をなし、部品費の低減と、効率の良い除霜運転を可能とする。

Description

給湯システム
 本発明の実施態様は、2元冷凍サイクルを用いて温水を供給する給湯システムに関する。
 高温側冷凍サイクルと低温側冷凍サイクルとを中間熱交換器を介して接続し、高温側冷凍サイクルに循環する冷媒と、低温側冷凍サイクルに循環する冷媒とを、中間熱交換器で熱交換させ、高圧縮比を得る2元冷凍サイクルが多用される傾向にある(例えば、日本国特開2000-320914号公報)。
 そして、高温側冷凍サイクルを構成する凝縮器として水熱交換器を備え、ここに温水配管を介して水もしくは温水を導く。水または温水は高温の温水に換って、温水配管先の利用側へ供給される。したがって、寒冷地においても効率の良い給湯運転が可能である。
 ところで、この給湯システムでは、給湯運転時に低温側冷凍サイクルを構成する空気熱交換器を蒸発器として作用させることで、特に低外気温条件下による運転にともなって空気熱交換器に着霜することは避けられない。この状態のまま経過すると、空気熱交換器の熱交換効率が低下するので除霜運転を行う必要がある。
 除霜運転時は、高温側冷凍サイクルの四方切換え弁および低温側冷凍サイクルの四方切換え弁を逆に切換えて、冷媒の循環方向を逆にする。除霜時の熱源を高温側冷凍サイクルの水熱交換器に導かれた温水としていることから、除霜運転中の高圧維持と吐出温度維持を図れる。低温側冷凍サイクルの空気熱交換器に高温のガス冷媒が直接導かれるから、効率良く空気熱交換器の除霜をなす。
 その一方で、水熱交換器に導かれた温水から吸熱されることになり、温水の温度が低下するというデメリットも生じる。
 また、四方切換え弁は高価であり、可能であれば四方切換え弁および、四方切換え弁に接続する配管類を削除し、部品費の低減によるコストの低減を図りたい。併せて、四方切換え弁と接続配管用の配置スペースを不要として、配管工事の作業性の向上を得ることの要望がある。
 ただし、低温側冷凍サイクルと高温側冷凍サイクルの両方の四方切換え弁を削除した場合は、除霜のための熱源不足から、除霜運転中の高圧維持と吐出温度維持を図れなくなり、そのままでは効率の良い除霜運転を行うことができなかったり、除霜を完了することができない虞れがある。したがって、除霜運転中の熱源の確保とあわせて、四方切換え弁の削除を検討する必要がある。
 本実施形態は上記事情にもとづきなされたものであり、2元冷凍サイクルを備えたうえで、低温側冷凍サイクルの蒸発器に対する除霜運転時に特有の制御をなし、部品費の低減と、効率の良い除霜運転を可能とした給湯システムを提供する。
 上記目的を満足するため本発明における給湯システムは、低温側圧縮機、四方切換え弁、中間熱交換器、低温側膨張装置、蒸発器を冷媒配管を介して連通する低温側冷凍サイクルと、高温側圧縮機、水熱交換器、高温側膨張装置、中間熱交換器を冷媒配管を介して連通する高温側冷凍サイクルとから構成され、上記低温側冷凍サイクルに導かれる冷媒と、上記高温側冷凍サイクルに導かれる冷媒とを、上記中間熱交換器で熱交換させる2元冷凍サイクルと、上記高温側冷凍サイクルの水熱交換器に配管され、流通する水または温水と高温側冷凍サイクルに導かれる冷媒とを熱交換させて利用側へ供給する温水配管と、一端が上記高温側冷凍サイクルの高温側圧縮機と水熱交換器との間の冷媒配管に接続され、他端が高温側冷凍サイクルの高温側膨張装置と中間熱交換器との間の冷媒配管に接続され、中途部に流体制御弁を有するバイパス回路と、上記低温側冷凍サイクルの蒸発器に対する除霜運転時に、上記バイパス回路の流体制御弁を開放し、上記高温冷凍サイクルの高温側膨張装置を閉成するよう制御する制御手段とを具備する。
図1は、本実施形態に係る、給湯システムの冷凍サイクル構成図である。
 図1は、給湯システムの冷凍サイクル構成図であり、特に除霜運転時の冷凍サイクル切換え状態を示している。
 この給湯システムは、高温側冷凍サイクルRaと、温水配管Hと、低温側冷凍サイクルRbおよび制御部(制御手段)Sとから構成される。
 上記高温側冷凍サイクルRaから説明すると、高温側圧縮機1の吐出部aと、水熱交換器2と、受液器3と、高温側膨張装置4と、中間熱交換器5の吸熱部5aと、気液分離器6が順次、冷媒配管Pを介して接続されていて、気液分離器6は高温側圧縮機1の吸込み部bに連通する。
 後述する給湯運転時と除霜運転時に係らず、高温側圧縮機1で圧縮され吐出される冷媒は、 -水熱交換器2-受液器3-高温側膨張装置4-中間熱交換器5の吸熱部5a-気液分離器6-高温側圧縮機1- の順に導かれる。したがって、水熱交換器2が凝縮器として作用し、中間熱交換器5の吸熱部5aが蒸発器として作用することになる。
 このような高温側冷凍サイクルRaに、バイパス回路Bが設けられる。このバイパス回路Bは、一端が高温側圧縮機1の吐出部aと水熱交換器2との間の冷媒配管Pに接続され、他端が高温側膨張装置4と中間熱交換器5の吸熱部5aとの間の冷媒配管Pに接続され、中途部に流体制御弁8を有するバイパス管9からなる。
 上記温水配管Hは、一端部が温水戻り配管もしくは復水側バッファタンクに接続され、他端部が温水出口配管もしくは往水側のバッファタンク(以上、いずれも図示しない)に接続される。 
 温水配管Hの中途部は、上記高温側冷凍サイクルRaを構成する水熱交換器2に配管されていて、温水配管Hに導かれる水もしくは温水と、水熱交換器2に導かれる冷媒とが熱交換できる。
 上記低温側冷凍サイクルRbは、低温側圧縮機10の吐出部cと四方切換え弁11の第1のポートd1が冷媒配管Pを介して接続され、四方切換え弁11の第2のポートd2に中間熱交換器5の放熱部5bが冷媒配管Pを介して接続される。また、四方切換え弁11の第3のポートd3は、ここでは2基の空気熱交換器12,12に中途部から2本に分岐した冷媒配管Pを介して接続される。
 四方切換え弁11の第4のポートd4は、気液分離器13を介して低温側圧縮機10の吸込み部eに冷媒配管Pを介して接続される。一方、中間熱交換器5の放熱部5bは受液器14に冷媒配管Pを介して接続され、受液器14と2基の空気熱交換器12とは中途部から2本に分岐され、それぞれ低温側膨張装置15を備えた冷媒配管Pを介して接続される。
 上記低温側冷凍サイクルにおいて、給湯運転時に、低温側圧縮機10で圧縮され吐出される冷媒は、 -四方切換え弁11-中間熱交換器5の放熱部5b-受液器14-2個の低温側膨張装置15-2基の空気熱交換器12-四方切換え弁11-気液分離器13-低温側圧縮機10- の順に導かれるようになっている。
 したがって、中間熱交換器5の放熱部5bが凝縮器として作用し、空気熱交換器12が蒸発器として作用する。
 後述する空気熱交換器12に対する除霜運転時は、四方切換え弁11が図に示す方向に切換えられ、低温側圧縮機10で圧縮され吐出される冷媒は、 -四方切換え弁11-2基の空気熱交換器12-2個の低温側膨張装置15-受液器14-中間熱交換器5の放熱部5b-四方切換え弁11-気液分離器13-低温側圧縮機10- の順に導かれる。 
 このときは、空気熱交換器12が凝縮器として作用し、中間熱交換器5の放熱部が蒸発器として作用する。
 上記制御部Sは、高温側圧縮機1と低温側圧縮機10の吐出部a,cと吸込み部b,eに設けられる温度センサ、吐出部a,cと吸込み部b,eに設けられる圧力センサ、水熱交換器2に設けられる温度センサ、中間熱交換器5の吸熱部5aと放熱部5bに設けられる温度センサ、空気熱交換器12に設けられる温度センサ(全て図示しない)等から検知信号を受ける。
 さらに制御部Sは、リモートコントローラ(リモコン)からの指示信号を受けて演算をなし、記憶する基準値(加熱能力や中間熱交換器5での温度)と比較して、高温側圧縮機1と低温側圧縮機10の運転周波数を制御する。 
 さらに、熱交換器の冷媒温度と圧縮機の吸込み側冷媒温度との差から、熱交換器のスーパーヒート量(以下、「SH量」と呼ぶ)を算出して、高温側膨張装置4と低温側膨張装置15の絞り量を制御する。そして、バイパス回路Bの流体制御弁8を開閉制御する。
 このようにして構成される給湯システムであり、給湯運転時に制御部Sは、高温側冷凍サイクルRaと低温側冷凍サイクルRbに対し、上述したように冷媒を導き循環するよう制御する。 
 上記中間熱交換器5では、低温側冷凍サイクルRb側の放熱部5bで冷媒が凝縮して凝縮熱を放出し、高温側冷凍サイクルRa側の吸熱部5aで冷媒が凝縮熱を吸熱しながら蒸発する。
 したがって、給湯システム全体として、空気熱交換器12での蒸発温度と水熱交換器2での凝縮温度との温度差が大となり、高圧縮比を得られる。高温側冷凍サイクルRaにおいて凝縮作用をなす水熱交換器2では、温水配管Hに導かれる水もしくは温水が高熱の凝縮熱を吸熱し、効率良く温度上昇する。 
 水熱交換器2において水もしくは温水は高温化した温水と変り、 水熱交換器2-温水往水側のバッファタンク-負荷側復水側バッファタンク-水熱交換器2 と循環する。
 特に、外気温が低温の条件下で給湯運転を継続すると、低温側冷凍サイクルRbにおける空気熱交換器12が冷媒の蒸発作用をなすことから、ここで生成される凝縮水が凍結して霜となり、そのまま付着する。時間の経過とともに霜の厚さが厚くなり、空気熱交換器12での熱交換効率が低下する。
 制御部Sは、空気熱交換器12に取付けた温度センサからの検知信号を受けるとともに、その他のセンサ類からの検知信号を受けて、空気熱交換器12に対する除霜運転の必要を判断する。その結果で除霜運転が行われるのだが、実際に制御部Sは、除霜運転の開始直前から以下に述べる制御を行う。
 すなわち、制御部Sは除霜運転の開始直前のタイミングで、高温側冷凍サイクルRaに設けられる高温側膨張装置4を絞る制御をなす。したがって、高温側冷凍サイクルRaにおいて、高温側膨張装置4から中間熱交換器5の吸熱部5aに導かれる冷媒の流量が低下する。
 そのため、中間熱交換器5の吸熱部5aによる吸熱量が減少し、吸熱部5aと放熱部5bの温度が上昇して中間熱交換器5全体の温度も上昇する。なお、このときには高温側冷凍サイクルRaにおける高温側圧縮機1と、低温側冷凍サイクルRbにおける低温側圧縮機10の運転周波数は、変更する必要はない。
 中間熱交換器5の吸熱部5aと冷媒配管Pを介して連通する高温側圧縮機1の吸込み温度と吸込み圧力も上昇するが、高温側冷凍サイクルRaにおいて冷媒循環量の低下があるので、吐出圧力の上昇はほとんどなく、高温側圧縮機1の圧縮比が低下する。
 しかしながら、高温側圧縮機1の吸込み温度の上昇があり、蒸発作用をなす中間熱交換器吸熱部5aの蒸発温度との差が大になって、いわゆるSH量が過大となり、高温側圧縮機1の吐出温度が上昇する。低温側冷凍サイクルRbにおいては、中間熱交換器放熱部5bの温度上昇にともない、圧縮比が増加して低温側圧縮機10の吐出温度が上昇する。
 このように、上記制御部Sは空気熱交換器12に対する除霜運転開始直前のタイミングで、高温側冷凍サイクルRaの高温側膨張装置4を絞り制御する。したがって、高温側圧縮機1と低温側圧縮機10の運転周波数を変更することなく、短時間で中間熱交換器5の吸熱部5aの蒸発温度上昇および放熱部5bの凝縮温度上昇と、高温側圧縮機1および低温側圧縮機10の吐出温度上昇を得られる。
 高温側冷凍サイクルRaにおいて、高温側膨張装置4から中間熱交換器5を介して高温側圧縮機1に至る低圧側配管部品が温度上昇するとともに、高温側圧縮機1の圧縮機本体と、高温側圧縮機1から水熱交換器2に至る高圧側配管部品も温度上昇して、蓄熱化を図れる。
 同時に、低温側冷凍サイクルRbにおいては、低温側圧縮機1および低温側圧縮機10から四方切換え弁11と中間熱交換器5を介して低温側膨張装置15に至る高圧側配管部品が温度上昇し、蓄熱化を図れる。
 以上の蓄熱作用を所定時間継続してから、制御部Sは空気熱交換器12に対する実際の除霜運転開始を制御する。このときは、バイパス回路Bの流体制御弁8を開放するとともに、低温側冷凍サイクルRbの四方切換え弁11を切換えて、低温側冷凍サイクルRbにおけるそれまでの冷媒循環方向とは逆方向に冷媒を循環させる。
 ただし、低温側冷凍サイクルRbにおいて、低温側圧縮機10の駆動を継続したまま四方切換え弁11を瞬時に切換えると、四方切換え弁11内で冷媒が衝突して騒音化する。このような四方切換え弁11の切換え騒音が大になって外部に漏れると、静粛運転が損なわれてしまう。
 そのため、制御部Sは、低温側圧縮機10の運転を一旦(数十秒~数分間)は停止するとともに、均圧管を開くなどの必要な制御をなして、低温側冷凍サイクルRbにおける高圧側と低圧側との圧力を短時間でバランスさせる。そのうえで、四方切換え弁11を切換えことで、切換え弁内部での冷媒の流れが低下し、衝突が沈静化して切換え音の抑制を得られる。
 さらに必要な制御として制御部Sは、高温側冷凍サイクルRaにおける高温側圧縮機1の運転を継続したまま、高温側膨張装置4を全閉にする。そのため、高温側冷凍サイクルRaの高圧が維持され、中間熱交換器5の吸熱部5aから回収され、高温側圧縮機1から吐出された冷媒は凝縮器である水熱交換器2および受液器3に高温の液冷媒として溜ることにより蓄熱される。 
 また、中間熱交換器5へ冷媒が供給されなくなることにより、吸熱部5aからの吸熱量を抑制することができ、蓄熱効果が維持されることとなる。
 なお、高温側冷凍サイクルRaにおいてはポンプダウン(冷媒回収)運転となるので、低圧圧力の低下による運転停止が生じないように、必要に応じて高温側圧縮機1の運転周波数を低減させて運転継続時間を延長することが望ましい。
 制御部Sは、以上の制御を所定時間継続した後、高温側冷凍サイクルRaの高温側圧縮機1の運転を継続したままバイパス回路Bの流体制御弁8を開放制御する。さらに、低温側冷凍サイクルRbの四方切換え弁11を切換えるとともに、低温側圧縮機10の運転を再開する。 
 このとき、低温側冷凍サイクルRbにおいては、高圧側と低圧側の圧力がバランスしているので、四方切換え弁11の切換え音はほとんど発生しない。
 高温側圧縮機1から吐出される高温高圧の冷媒ガスであるホットガスがバイパス回路Bに導かれ、流体制御弁8を介して中間熱交換器5の吸熱部5aに導かれ高熱を放出する。また、高温側冷凍サイクルRaの高圧が低下していく過程で、凝縮器としての水熱交換器2と、受液器3にある液冷媒が減圧沸騰し、ガス化して冷凍サイクルを逆流する。
 そして、このガス化した冷媒はバイパス回路Bに導かれ、流体制御弁8を介して中間熱交換器5に導かれる。このことで、利用側の温水からの吸熱もなされて、除霜運転に必要な熱源の一部を賄うことができる。
 低温側冷凍サイクルRbでは、中間熱交換器5を熱源として、給湯運転時とは逆方向に冷媒が循環し、各空気熱交換器12で冷媒が凝縮して凝縮熱を放出する。そのため、空気熱交換器12に付着していた霜が徐々に溶融し、ドレン水となって滴下する。早急に霜の厚みが減少し、空気熱交換器12の地肌が露出していく。
 先に説明した除霜運転開始直前のタイミングで行われた制御の結果、高温側冷凍サイクルRaの高温側膨張装置4から中間熱交換器5を介して高温側圧縮機1に至る低圧側配管部品と、高温側冷凍サイクルRaの高温側圧縮機1および高温側圧縮機1から水熱交換器2に至る高圧側配管部品と、低温側冷凍サイクルRbの低温側圧縮機10および低温側圧縮機10から中間熱交換器5を介して低温側膨張装置15に至る高圧側配管部品に蓄熱されていた熱が、このとき放出する。 
 これらの蓄熱は全て、空気熱交換器12に対する除霜のために費やされるので、さらに除霜作用が促進される。
 なお、空気熱交換器12に対する除霜運転に長時間を要して蓄熱源を使い果たしてしまった場合、高温側冷凍サイクルRaと低温側冷凍サイクルRbの高圧が低下し、高温側圧縮機1と低温側圧縮機10の入力が極少となり、圧縮機入力を熱源として利用できない状況が生じることがある。
 そこで、高温側冷凍サイクルRaの高圧が所定の圧力以下に低下したことを検知した状態で制御部Sは、バイパス回路Bの流体制御弁8を全閉に制御するとともに、高温側膨張装置4を全開もしくは最適な開度に制御する。 
 これにより、高温側冷凍サイクルRaの低温の吐出ガスを水熱交換器2に導かれる温水の熱で暖めることができ、空気熱交換器12に対する除霜運転の熱源を確保する。このときの水熱交換器2に導かれる温水の温度低下は1℃未満で済む。
 高温側膨張装置4を全開ではなく最適な開度に調整した場合には、高温側冷凍サイクルRaの高圧を若干上昇させることができるため、高温側圧縮機1の入力による熱量確保と中間熱交換器5へのホットガス供給量の調整を行うことが可能である。 
 このようにして、空気熱交換器12に対する除霜運転を行うので、高温側冷凍サイクルRaでの四方切換え弁を不要とするとともに、四方切換え弁に接続すべき配管部品を不要として、部品費低減と、配管手間不要による作業性の向上およびコストの削減化を得るとともに、これらの設置スペースの低減から装置の小型化に寄与する。
 高温側冷凍サイクルRaにおける四方切換え弁を不要とする代りに、バイパス回路Bを構成するバイパス管9と流体制御弁8を必要とするが、バイパス管9の両端部は高温側冷凍サイクルRaを構成する冷媒配管Pの中途部に接続すればよく、流体制御弁8は単なる開閉弁とすることもできるので、コストへの影響を最小限に抑制できる。
 除霜運転開始の直前に、高温側膨張装置4を絞るだけの比較的簡単な制御で、高温側冷凍サイクルRaの低圧上昇とSH量の増大にともなう吐出温度上昇、さらには、低温側冷凍サイクルRbの高圧上昇と吐出温度上昇を得られる。 
 結果として、高温側冷凍サイクルRaにおける低圧側配管部品、高温側圧縮機1および高圧側配管部品と、低温側冷凍サイクルRbにおける低圧側圧縮機10および高圧側配管部品に、除霜運転時に必要となる熱量を内部蓄熱でき、除霜効率の向上化を図れる。
 内部蓄熱が完了し実際に除霜運転を開始するにあたって、低温側冷凍サイクルRbにおける低温側圧縮機10の運転を所定時間停止して高圧側と低圧側の圧力バランスをとってから四方切換え弁11を切換えるようにしたから、切換え音の低減を得られて静粛運転が行える。
 そして、高温側圧縮機1の運転を継続したままバイパス回路Bの流体制御弁8を開放し、高温側膨張装置4を閉成制御する。したがって、除霜時の熱源として温水をほとんど使用せずに済み、温水配管Hに導かれる温水の温度低下を抑制できる。高温側冷凍サイクルRaの高圧を維持して蓄熱状態の維持を図れ、除霜時間の短縮化に役立つ。
 除霜運転を継続して高温側冷凍サイクルRaの高圧が閾値を下回ったら、バイパス回路Bの流体制御弁8を閉成し、高温側膨張装置4を全開もしくは最適な開度に制御する。したがって、内部蓄熱を使い果たして高温側圧縮機1と低温側圧縮機10の入力が極小の状態になっても、高温側圧縮機1の吐出ガスを温水配管Hの温水で暖めることができ、熱源を確保するので、除霜が完了しないというリスクを低減できる。
 以上、本実施形態を説明したが、上述の実施形態は、例として提示したものであり、実施形態の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (4)

  1.  低温側圧縮機、四方切換え弁、中間熱交換器、低温側膨張装置、蒸発器を冷媒配管を介して連通する低温側冷凍サイクルと、高温側圧縮機、水熱交換器、高温側膨張装置、中間熱交換器を冷媒配管を介して連通する高温側冷凍サイクルとから構成され、上記低温側冷凍サイクルに導かれる冷媒と、上記高温側冷凍サイクルに導かれる冷媒とを、上記中間熱交換器で熱交換させる2元冷凍サイクルと、
     上記高温側冷凍サイクルの水熱交換器に配管され、流通する水または温水と高温側冷凍サイクルに導かれる冷媒とを熱交換させて利用側へ供給する温水配管と、
     一端が上記高温側冷凍サイクルの高温側圧縮機と水熱交換器との間の冷媒配管に接続され、他端が高温側冷凍サイクルの高温側膨張装置と中間熱交換器との間の冷媒配管に接続され、中途部に流体制御弁を有するバイパス回路と、
     上記低温側冷凍サイクルの蒸発器に対する除霜運転時に、上記バイパス回路の流体制御弁を開放し、上記高温冷凍サイクルの高温側膨張装置を閉成するよう制御する制御手段と、
    を具備することを特徴とする給湯システム。
  2.  上記制御手段は、
     給湯運転時に、上記低温側冷凍サイクルにおいて、低温側圧縮機-四方切換え弁-中間熱交換器-低温側膨張装置-蒸発器-低温側圧縮機-の順に冷媒を循環制御するとともに、上記高温側冷凍サイクルにおいて、高温側圧縮機-水熱交換器-高温側膨張装置-中間熱交換器の順に冷媒を循環制御し、
     上記蒸発器に対する除霜運転の開始前に、高温側冷凍サイクルの高温側膨張装置を絞って冷媒循環量を低下させて運転を行う制御をなし、
     上記蒸発器に対する除霜運転時は、上記低温側冷凍サイクルの四方切換え弁を切換えて、低温側圧縮機-四方切換え弁-蒸発器-低温側膨張装置-中間熱交換器-低温側圧縮機- の順に冷媒を循環制御することを特徴とする請求項1記載の給湯システム。
  3.  上記制御手段は、
     上記蒸発器に対する除霜運転の開始にあたって低温側冷凍サイクルの四方切換え弁を切換える際に、高温側冷凍サイクルの高温側圧縮機の運転を継続したまま高温側膨張装置を全閉に制御し、かつ低温側冷凍サイクルの低温側圧縮機の運転を一旦停止する制御をなす
    ことを特徴とする請求項2記載の給湯システム。
  4.  上記制御手段は、
     上記蒸発器に対する除霜運転中に、高温側冷凍サイクルの高圧が所定圧力以下になったときに、上記バイパス回路の流体制御弁を閉成するとともに、高温側冷凍サイクルの高温側膨張装置を開くように制御する
    ことを特徴とする請求項2記載の給湯システム。
PCT/JP2011/071326 2010-09-27 2011-09-20 給湯システム WO2012043297A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127028591A KR20130006495A (ko) 2010-09-27 2011-09-20 급탕 시스템
EP11828854.7A EP2623898A4 (en) 2010-09-27 2011-09-20 Hot water supply system
JP2012536353A JPWO2012043297A1 (ja) 2010-09-27 2011-09-20 給湯システム
CN2011800229814A CN102884384A (zh) 2010-09-27 2011-09-20 供热水系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010215911 2010-09-27
JP2010-215911 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012043297A1 true WO2012043297A1 (ja) 2012-04-05

Family

ID=45892761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071326 WO2012043297A1 (ja) 2010-09-27 2011-09-20 給湯システム

Country Status (5)

Country Link
EP (1) EP2623898A4 (ja)
JP (1) JPWO2012043297A1 (ja)
KR (1) KR20130006495A (ja)
CN (1) CN102884384A (ja)
WO (1) WO2012043297A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083932A1 (ja) * 2012-11-30 2014-06-05 ダイキン工業株式会社 水加熱システム
JP2014105891A (ja) * 2012-11-26 2014-06-09 Panasonic Corp 冷凍サイクル装置及びそれを備えた温水生成装置
EP2990737A4 (en) * 2013-04-26 2016-12-07 Toshiba Carrier Corp HOT WATER SUPPLY DEVICE
WO2022118842A1 (ja) * 2020-12-01 2022-06-09 ダイキン工業株式会社 冷凍サイクルシステム
WO2023190233A1 (ja) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル ヒートポンプ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341569B (zh) * 2019-09-30 2023-04-28 大金工业株式会社 热源机组及制冷装置
WO2022118841A1 (ja) * 2020-12-01 2022-06-09 ダイキン工業株式会社 冷凍サイクルシステム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175430A (ja) * 1985-01-31 1986-08-07 Tohoku Electric Power Co Inc 冷凍サイクル
JPH0424478A (ja) * 1990-05-17 1992-01-28 Daikin Ind Ltd 冷凍装置
JPH04288463A (ja) * 1991-02-25 1992-10-13 Mitsubishi Electric Corp 空気調和機
JPH1096573A (ja) * 1996-09-24 1998-04-14 Daikin Ind Ltd 空気調和機
JPH1130461A (ja) * 1997-03-12 1999-02-02 Matsushita Electric Ind Co Ltd 冷凍サイクル制御装置
JP2000320914A (ja) 1999-05-14 2000-11-24 Daikin Ind Ltd 冷凍装置
JP2002243276A (ja) * 2001-02-20 2002-08-28 Toshiba Kyaria Kk ヒートポンプ給湯器
JP2003074998A (ja) * 2001-09-04 2003-03-12 Sanyo Electric Co Ltd 冷凍サイクル装置
JP2010196950A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164157A (ja) * 1984-02-07 1985-08-27 Matsushita Electric Ind Co Ltd ヒ−トポンプ給湯機
JPS61101771A (ja) * 1984-10-23 1986-05-20 三菱電機株式会社 ヒ−トポンプ式冷暖房給湯機
JPS63286676A (ja) * 1987-05-18 1988-11-24 三菱電機株式会社 空気調和装置
JPH01144770U (ja) * 1988-03-30 1989-10-04
JPH06123527A (ja) * 1992-10-12 1994-05-06 Hitachi Ltd 冷凍・冷蔵ユニットの冷凍サイクル
JPH09119754A (ja) * 1995-10-27 1997-05-06 Hitachi Ltd 空気調和機
JP3909311B2 (ja) * 2003-06-24 2007-04-25 日立アプライアンス株式会社 ヒートポンプ給湯機
JP2009109069A (ja) * 2007-10-30 2009-05-21 Panasonic Corp ヒートポンプ給湯機
JP5551882B2 (ja) * 2009-02-24 2014-07-16 ダイキン工業株式会社 ヒートポンプシステム
JP5711448B2 (ja) * 2009-02-24 2015-04-30 ダイキン工業株式会社 ヒートポンプシステム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175430A (ja) * 1985-01-31 1986-08-07 Tohoku Electric Power Co Inc 冷凍サイクル
JPH0424478A (ja) * 1990-05-17 1992-01-28 Daikin Ind Ltd 冷凍装置
JPH04288463A (ja) * 1991-02-25 1992-10-13 Mitsubishi Electric Corp 空気調和機
JPH1096573A (ja) * 1996-09-24 1998-04-14 Daikin Ind Ltd 空気調和機
JPH1130461A (ja) * 1997-03-12 1999-02-02 Matsushita Electric Ind Co Ltd 冷凍サイクル制御装置
JP2000320914A (ja) 1999-05-14 2000-11-24 Daikin Ind Ltd 冷凍装置
JP2002243276A (ja) * 2001-02-20 2002-08-28 Toshiba Kyaria Kk ヒートポンプ給湯器
JP2003074998A (ja) * 2001-09-04 2003-03-12 Sanyo Electric Co Ltd 冷凍サイクル装置
JP2010196950A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623898A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105891A (ja) * 2012-11-26 2014-06-09 Panasonic Corp 冷凍サイクル装置及びそれを備えた温水生成装置
WO2014083932A1 (ja) * 2012-11-30 2014-06-05 ダイキン工業株式会社 水加熱システム
JP2014109405A (ja) * 2012-11-30 2014-06-12 Daikin Ind Ltd 水加熱システム
EP2990737A4 (en) * 2013-04-26 2016-12-07 Toshiba Carrier Corp HOT WATER SUPPLY DEVICE
WO2022118842A1 (ja) * 2020-12-01 2022-06-09 ダイキン工業株式会社 冷凍サイクルシステム
JP7436933B2 (ja) 2020-12-01 2024-02-22 ダイキン工業株式会社 冷凍サイクルシステム
WO2023190233A1 (ja) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル ヒートポンプ装置
JP2023147886A (ja) * 2022-03-30 2023-10-13 株式会社富士通ゼネラル ヒートポンプ装置
JP7380739B2 (ja) 2022-03-30 2023-11-15 株式会社富士通ゼネラル ヒートポンプ装置

Also Published As

Publication number Publication date
JPWO2012043297A1 (ja) 2014-02-06
EP2623898A4 (en) 2018-01-17
KR20130006495A (ko) 2013-01-16
CN102884384A (zh) 2013-01-16
EP2623898A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5659292B2 (ja) 二元冷凍サイクル装置
WO2012043297A1 (ja) 給湯システム
JP4974714B2 (ja) 給湯器
WO2009098751A1 (ja) 空調給湯複合システム
US8950202B2 (en) Heat pump system
WO2010113372A1 (ja) 空調給湯複合システム
US20110289950A1 (en) Hot water supply apparatus associated with heat pump
JP5094942B2 (ja) ヒートポンプ装置
JPWO2011092802A1 (ja) ヒートポンプ装置及び冷媒バイパス方法
WO2014024837A1 (ja) 二元冷凍装置
JP2012112617A (ja) 冷凍装置
US20220011014A1 (en) Air conditioning system
JP2008185229A (ja) 冷凍装置
CN102032699A (zh) 冷冻循环装置以及水暖装置
JP2008096033A (ja) 冷凍装置
JP6057871B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP5904628B2 (ja) デフロスト運転用の冷媒管を備えた冷凍サイクル
KR20140123384A (ko) 공기열 이원 사이클 히트펌프 냉난방 장치
US20210207834A1 (en) Air-conditioning system
JP2017026171A (ja) 空気調和装置
JP2014081180A (ja) ヒートポンプ装置
JP4898025B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
JP5150300B2 (ja) ヒートポンプ式給湯装置
JP3993540B2 (ja) 冷凍装置
JP2017161159A (ja) 空気調和機の室外ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022981.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536353

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127028591

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011828854

Country of ref document: EP