WO2012042824A1 - 薄膜トランジスタ基板及びその製造方法、表示装置 - Google Patents

薄膜トランジスタ基板及びその製造方法、表示装置 Download PDF

Info

Publication number
WO2012042824A1
WO2012042824A1 PCT/JP2011/005392 JP2011005392W WO2012042824A1 WO 2012042824 A1 WO2012042824 A1 WO 2012042824A1 JP 2011005392 W JP2011005392 W JP 2011005392W WO 2012042824 A1 WO2012042824 A1 WO 2012042824A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
auxiliary capacitance
thin film
film transistor
film
Prior art date
Application number
PCT/JP2011/005392
Other languages
English (en)
French (fr)
Inventor
松原 邦夫
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012042824A1 publication Critical patent/WO2012042824A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes

Definitions

  • the present invention relates to a thin film transistor substrate on which an auxiliary capacitor is formed, a method for manufacturing the same, and a display device.
  • Such an active matrix type liquid crystal display device includes a thin film transistor substrate (hereinafter referred to as “TFT substrate”) having a thin film transistor (hereinafter referred to as “TFT: Thin Film Transistor”) as a switching element, and a colored layer. And a counter substrate bonded to the TFT substrate. A liquid crystal layer is disposed between the TFT substrate and the counter substrate.
  • TFT substrate thin film transistor substrate
  • TFT: Thin Film Transistor Thin Film Transistor
  • a liquid crystal capacitor is configured by sandwiching the above liquid crystal layer between a pixel electrode provided on a TFT substrate and a common electrode provided on a counter substrate.
  • An auxiliary capacitor is provided in parallel with the liquid crystal capacitor in order to lengthen the decay time of the charge charged in the liquid crystal capacitor due to a leak current or the like.
  • the TFT substrate is formed above the semiconductor layer of the TFT.
  • An auxiliary capacitance line includes an auxiliary capacitance line, an auxiliary capacitance electrode formed above the auxiliary capacitance line and below the pixel electrode, and an insulating film provided between the auxiliary capacitance line and the auxiliary capacitance electrode.
  • a TFT substrate is disclosed (for example, see Patent Document 1).
  • the auxiliary capacitor wiring constituting the auxiliary capacitor is formed of a light-shielding metal such as titanium, and the auxiliary capacitor wiring transmits light in the pixel. Since it is arranged in the region, there is a problem that the aperture ratio of the pixel of the TFT substrate is lowered.
  • the auxiliary capacitance wiring is formed of a translucent metal film such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the auxiliary capacitance wiring is formed of a translucent metal film, the auxiliary capacitance is formed.
  • the resistance value of the wiring increases (for example, the volume resistivity of ITO is 2.5 ⁇ m). Therefore, the CR product (the product of the junction capacitance C and the on-resistance R for 10 ⁇ sec. Also referred to as “time constant”) increases, and as a result, the time required to apply the voltage to the auxiliary capacitance wiring is increased. There was a problem that it would be a long time.
  • the present invention has been made in view of the above-described problem, and while preventing a decrease in the aperture ratio, a thin film transistor substrate capable of applying a voltage to the auxiliary capacitance wiring in a short time, and a method for manufacturing the same,
  • An object is to provide a display device.
  • a thin film transistor substrate of the present invention includes an insulating substrate, a gate wiring provided over the insulating substrate, a thin film transistor including a semiconductor layer provided over the gate wiring and having a channel region, and a semiconductor layer. And an auxiliary capacitance wiring formed of a metal having a volume resistivity of 20 ⁇ 10 ⁇ 8 [ ⁇ m] or less is provided on the flattening film. The wiring is arranged to face the gate wiring in a plan view.
  • the auxiliary capacitance wiring is arranged opposite to the gate wiring in plan view, the auxiliary capacitance wiring is arranged so as to overlap the light shielding region (that is, the thin film transistor portion provided with the gate wiring). can do. Accordingly, since it is not necessary to provide the auxiliary capacitance wiring in the transmission region where light is transmitted, it is possible to prevent the aperture ratio from being lowered due to the provision of the auxiliary capacitance wiring in the transmission region.
  • the auxiliary capacitance wiring is not formed of a light-transmitting metal film such as ITO, but is formed of a metal having a low resistance with a volume resistivity of 20 ⁇ 10 ⁇ 8 [ ⁇ m] or less. Accordingly, since the resistance value of the auxiliary capacitor wiring can be reduced as compared with the conventional technique in which the auxiliary capacitor wiring is formed of ITO or the like, the CR product is reduced and the voltage can be applied to the auxiliary capacitor wiring in a short time. It becomes possible to do enough.
  • the metal has a light-shielding property and the auxiliary capacitance wiring is arranged so as to cover the channel region in plan view.
  • the metal is made of aluminum, titanium, tungsten, nickel, gold, platinum, silver, magnesium, calcium, lithium, molybdenum, tantalum, niobium, copper, chromium, neodymium, yttrium, and alloys thereof. It is preferably at least one selected from the group.
  • an auxiliary capacitance electrode may be provided on the planarizing film, and the auxiliary capacitance wiring and the auxiliary capacitance electrode may be provided in the same layer.
  • the thin film transistor substrate of the present invention further includes an insulating film provided on the planarizing film so as to cover the auxiliary capacitance electrode, and a pixel electrode provided on the insulating film, and the auxiliary capacitance electrode, the insulating film, and the pixel are provided.
  • the thin film transistor substrate of the present invention is excellent in that a decrease in the aperture ratio due to the provision of the auxiliary capacity wiring in the transmission region can be prevented and voltage can be sufficiently applied to the auxiliary capacity wiring in a short time. It has special characteristics. Therefore, the present invention is suitable for a display device comprising a thin film transistor substrate, a counter substrate disposed opposite to the thin film transistor substrate, and a display medium layer provided between the thin film transistor substrate and the counter substrate. used. Moreover, this invention is used suitably when a display medium layer is a liquid crystal layer.
  • a method of manufacturing a thin film transistor substrate of the present invention includes forming a gate wiring on an insulating substrate, forming a semiconductor layer having a channel region on the gate wiring, and forming a thin film transistor including the gate wiring and the semiconductor layer.
  • a step of forming a storage capacitor wiring comprising:
  • the auxiliary capacitance line is arranged to face the gate line, the auxiliary capacitance line is arranged so as to overlap the light shielding region (that is, the portion of the thin film transistor provided with the gate line). Can do. Accordingly, since it is not necessary to provide the auxiliary capacitance wiring in the transmission region where light is transmitted, it is possible to manufacture a thin film transistor substrate that can prevent a decrease in the aperture ratio due to the provision of the auxiliary capacitance wiring in the transmission region. .
  • the auxiliary capacitance wiring is not formed of a light-transmitting metal film such as ITO, but is formed of a metal having a low resistance with a volume resistivity of 20 ⁇ 10 ⁇ 8 [ ⁇ m] or less. Accordingly, since the resistance value of the auxiliary capacitor wiring can be reduced as compared with the conventional technique in which the auxiliary capacitor wiring is formed of ITO or the like, the CR product is reduced and the voltage can be applied to the auxiliary capacitor wiring in a short time. A thin film transistor substrate that can be satisfactorily performed can be manufactured.
  • the metal in the step of forming the auxiliary capacitance wiring, has a light shielding property, and the auxiliary capacitance wiring is formed so as to cover the channel region in plan view.
  • the present invention it is possible to prevent the aperture ratio from being lowered due to the provision of the auxiliary capacity wiring in the transmission region, and to sufficiently apply the voltage to the auxiliary capacity wiring in a short time.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. It is explanatory drawing which shows the manufacturing process of TFT and a TFT substrate in a cross section. It is explanatory drawing which shows the manufacturing process of TFT and a TFT substrate in a cross section. It is explanatory drawing which shows the manufacturing process of a counter substrate in a cross section. It is sectional drawing which shows the modification of the TFT substrate of the liquid crystal display device which concerns on embodiment of this invention.
  • FIG. 1 is a plan view showing an overall configuration of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the liquid crystal display device according to an embodiment of the present invention
  • 3 is a plan view showing a pixel in the liquid crystal display device according to the embodiment of the present invention
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the liquid crystal display device 1 is provided by being sandwiched between a TFT substrate 2, a counter substrate 3 disposed to face the TFT substrate 2, and the TFT substrate 2 and the counter substrate 3. And a liquid crystal layer 4 as a display medium layer. Further, the liquid crystal display device 1 is sandwiched between the TFT substrate 2 and the counter substrate 3, and a seal provided in a frame shape for adhering the TFT substrate 2 and the counter substrate 3 to each other and enclosing the liquid crystal layer 4.
  • the material 40 is provided.
  • the liquid crystal layer 4 is made of, for example, a nematic liquid crystal material having electro-optical characteristics.
  • the sealing material 40 is formed so as to go around the liquid crystal layer 4, and the TFT substrate 2 and the counter substrate 3 are bonded to each other through the sealing material 40.
  • the liquid crystal display device 1 includes a plurality of photo spacers (not shown) for regulating the thickness of the liquid crystal layer 4 (that is, the cell gap).
  • the liquid crystal display device 1 is formed in a rectangular shape, and in the side direction of the liquid crystal display device 1, the TFT substrate 2 protrudes from the counter substrate 3.
  • a plurality of display wirings such as gate wirings and source wirings, which will be described later, are drawn out to form a terminal region T.
  • a display area D for displaying an image is defined in an area where the TFT substrate 2 and the counter substrate 3 overlap.
  • the display area D is configured by arranging a plurality of pixels 30 as a minimum unit of an image in a matrix.
  • the sealing material 40 is provided in a rectangular frame shape surrounding the entire periphery of the display area D.
  • the source wiring 17 and the gate wiring 11 are provided so as to cross each other. Further, as shown in FIG. 3, a plurality of source lines 17 and gate lines 11 are provided, and a plurality of source lines 17 and a plurality of gate lines 11 are provided corresponding to each of the intersections of the plurality of source lines 17 and the plurality of gate lines 11. Pixels 30 are arranged in a matrix. That is, one pixel 30 corresponds to each of the intersections of the plurality of source lines 17 and the gate lines 11, and each pixel 30 is provided for each area surrounded by the gate lines 11 and the source lines 17. Yes.
  • the gate wiring 11 near the intersection of both signal lines also serves as the gate electrode
  • the source electrode 6 is connected to the source wiring 17 near the intersection of both signal lines
  • the drain electrode A thin film transistor (TFT) 5 is provided as a switching element 8 connected to the pixel electrode 14.
  • the TFT 5 is turned on when the gate wiring 11 is in a selected state, and is turned off when the gate wiring 11 is in a non-selected state. Further, as shown in FIG. 3, the TFT 5 is provided at each intersection of each gate line 11 and each source line 17.
  • the pixel electrode 14 is formed of a transparent conductor such as indium tin oxide (ITO), for example.
  • ITO indium tin oxide
  • the TFT substrate 2 includes the insulating substrate 20, the above-described gate wiring 11 provided to extend in parallel with each other on the insulating substrate 20 in the display region D, and each gate wiring 11. And the above-described source wiring 17 provided so as to extend in parallel to each other in a direction orthogonal to the above. Further, the TFT substrate 2 includes the above-described TFT 5 provided for each intersection of each gate wiring 11 and each source wiring 17, that is, for each pixel. Further, the TFT substrate 2 is provided on the protective film 21 provided so as to cover each TFT 5, an insulating planarizing film 35 provided so as to cover the protective film 21, and the planarizing film 35. And an auxiliary capacitance electrode 22.
  • the TFT substrate 2 is provided with an insulating film 23 provided on the planarizing film 35 so as to cover the auxiliary capacitance electrode 22, and a plurality of pixels provided in a matrix on the insulating film 23 and connected to each TFT 5.
  • An electrode 14 and an alignment film (not shown) provided so as to cover each pixel electrode 14 are provided.
  • the auxiliary capacitance electrode 22 is formed of a transparent conductor such as indium tin oxide (ITO), for example, like the pixel electrode 14 described above.
  • ITO indium tin oxide
  • the TFT 5 has a bottom gate structure. As shown in FIGS. 3 and 4, the TFT 5 is provided so as to cover the gate wiring 11 and the gate wiring 11 also serving as the gate electrode provided on the insulating substrate 20. And a gate insulating film 12.
  • the TFT 5 includes a semiconductor layer 13 having a channel region C provided in an island shape so as to overlap the gate wiring 11 on the gate insulating film 12, and the gate wiring 11 and the channel region C sandwiched between the semiconductor layer 13 and the semiconductor layer 13.
  • the source electrode 6 and the drain electrode 8 are provided so as to face each other.
  • the semiconductor layer 13 is formed of a silicon layer, and includes, for example, a lower intrinsic amorphous silicon layer and an upper n + amorphous silicon layer doped with phosphorus.
  • the above-described protective film 21 that covers the source electrode 6 and the drain electrode 8 (that is, the TFT 5) is provided.
  • the source electrode 6 is a portion where the source wiring 17 protrudes to the side, and as shown in FIG. 4, the source electrode 6 is composed of a laminated film of the first conductive layer 6a and the second conductive layer 6b. Has been.
  • the drain electrode 8 is constituted by a laminated film of a first conductive layer 8 a and a second conductive layer 8 b, and a laminated film of a protective film 21, a planarizing film 35, and an insulating film 23. It is connected to the pixel electrode 14 through a contact hole Ca formed in the film.
  • the counter substrate 3 includes an insulating substrate 31, a black matrix 32 provided in a lattice shape on the insulating substrate 31, and a red color provided between each lattice of the black matrix 32.
  • Layer a color filter layer having a colored layer 33 such as a green layer and a blue layer, a common electrode 34 provided to cover the color filter layer, a photo spacer 36 provided on the common electrode 34, and a common electrode
  • an alignment film (not shown) provided so as to cover 34.
  • the source driver (not shown) supplies the source.
  • a signal is sent to the source electrode 6 through the source wiring 17, and a predetermined charge is written into the pixel electrode 14 through the semiconductor layer 13 and the drain electrode 8.
  • a predetermined voltage is applied to the auxiliary capacitor.
  • an image is displayed by adjusting the light transmittance of the liquid crystal layer 4 by changing the alignment state of the liquid crystal layer 4 according to the magnitude of the voltage applied to the liquid crystal layer 4 in each pixel.
  • a liquid crystal capacitor is formed by the pixel electrode 14 and the common electrode 34.
  • the auxiliary capacitance electrode 22, the insulating film 23, and the pixel electrode 14 form an auxiliary capacitance. That is, the auxiliary capacitance electrode 22 forms an auxiliary capacitance by overlapping with the pixel electrode 14 via the insulating film 23.
  • the present embodiment is characterized in that the auxiliary capacitance line 27 is arranged to face the gate line 11 in a plan view.
  • the auxiliary capacitance line 27 is provided on the planarizing film 35 similarly to the auxiliary capacitance electrode 22, and the insulating film 23 is formed on the planarizing film 35 so as to cover the auxiliary capacitance line 27. Is provided.
  • Such a configuration makes it possible to improve the aperture ratio of the pixel 30 of the TFT substrate 2 unlike the above-described conventional technology.
  • the auxiliary capacitance wiring 27 by arranging the auxiliary capacitance wiring 27 so as to overlap the light shielding region (that is, the portion of the TFT 5 provided with the gate wiring 11) A, the light transmitted through each pixel 30 is transmitted.
  • the region B it is not necessary to provide the auxiliary capacity wiring 27.
  • the auxiliary capacitance wiring 27 is not a transparent conductive film such as ITO, but aluminum, titanium, tungsten, nickel, gold, platinum, silver, magnesium, calcium, lithium, molybdenum, tantalum, niobium, copper , Chromium, neodymium, yttrium, and alloys thereof, and the like. Accordingly, since the resistance value of the auxiliary capacitance wiring 27 can be reduced as compared with the conventional technique in which the auxiliary capacitance wiring is formed of a transparent conductive film such as ITO, the CR product is reduced and the voltage to the auxiliary capacitance wiring 27 is reduced. Can be sufficiently applied in a short time.
  • the “metal having low resistance” means a metal having a volume resistivity of 20 ⁇ 10 ⁇ 8 [ ⁇ m] or less.
  • the auxiliary capacitor wiring 27 formed of the metal is connected to the channel region of the semiconductor layer 13 in a plan view as shown in FIGS.
  • an opening for connecting the auxiliary capacitance line 27 and the auxiliary capacitance electrode 22 is used to form the auxiliary capacitance line 27 and the auxiliary capacitance electrode 22 in the same layer. An extra process such as formation becomes unnecessary.
  • FIGS. 5 and 6 are explanatory views showing the manufacturing process of the TFT and the TFT substrate in cross section
  • FIG. 7 is an explanatory view showing the manufacturing process of the counter substrate in cross section.
  • the manufacturing method of this embodiment includes a TFT substrate manufacturing process, a counter substrate manufacturing process, and a liquid crystal injection process.
  • a molybdenum film (thickness of about 150 nm) or the like is formed on the entire substrate of the insulating substrate 20 such as a glass substrate, a silicon substrate, or a heat-resistant plastic substrate by a sputtering method. Then, by performing photolithography, wet etching, and resist removal cleaning, the gate wiring 11 is formed on the insulating substrate 20 as shown in FIGS. 3 and 5A.
  • the molybdenum film having a single layer structure is exemplified as the metal film constituting the gate wiring 11.
  • a metal such as an aluminum film, a tungsten film, a tantalum film, a chromium film, a titanium film, or a copper film is used.
  • the gate wiring 11 may be formed with a thickness of 50 nm to 300 nm using a film or a film made of such an alloy film or metal nitride.
  • polyethylene terephthalate resin polyethylene naphthalate resin
  • polyether sulfone resin acrylic resin
  • polyimide resin polyimide resin
  • a silicon nitride film (thickness of about 200 nm to 500 nm) is formed on the entire substrate on which the gate wiring 11 is formed by a CVD method, and as shown in FIG. A gate insulating film 12 is formed so as to cover.
  • the gate insulating film 12 may have a two-layer structure.
  • a silicon oxide film (SiOx), a silicon oxynitride film (SiOxNy, x> y), a silicon nitride oxide film (SiNxOy, x> y), or the like is used in addition to the above-described silicon nitride film (SiNx). be able to.
  • a silicon nitride film or a silicon nitride oxide film is used as a lower gate insulating film, and a silicon oxide film as an upper gate insulating film, Alternatively, a structure using a silicon oxynitride film is preferable.
  • a silicon nitride film having a thickness of 100 nm to 200 nm is formed as a lower gate insulating film using SiH 4 and NH 3 as reaction gases, and N 2 O and SiH 4 are reacted as an upper gate insulating film.
  • a silicon oxide film with a thickness of 50 nm to 100 nm can be formed as a gas.
  • a rare gas such as argon gas in the reaction gas and mix it in the insulating film.
  • a titanium film (thickness: 30 nm to 150 nm) and a copper film (thickness: about 50 nm to 400 nm) are sequentially formed on the entire substrate on which the semiconductor layer 13 has been formed by sputtering.
  • photolithography and wet etching are performed on the copper film, and dry etching and resist peeling cleaning are performed on the titanium film, so that the source wiring 17 (see FIG. 5D) is obtained. 3), the source electrode 6 and the drain electrode 8 are formed, and the channel region C of the semiconductor layer 13 is exposed.
  • the source electrode 6 and the drain electrode 8 are formed by dry etching on the semiconductor layer 13 formed in the semiconductor layer forming step, and the channel region C of the semiconductor layer 13 is exposed.
  • the metal film constituting the source electrode 6 and the drain electrode 8 a titanium film and a copper film having a laminated structure are exemplified.
  • a metal such as an aluminum film, a tungsten film, a tantalum film, or a chromium film is used.
  • the source electrode 6 and the drain electrode 8 may be formed by a film or a film made of an alloy film or a metal nitride thereof.
  • etching process either dry etching or wet etching described above may be used. However, when processing a large area substrate, it is preferable to use dry etching.
  • a fluorine-based gas such as CF 4 , NF 3 , SF 6 , or CHF 3
  • a chlorine-based gas such as Cl 2 , BCl 3 , SiCl 4 , or CCl 4
  • an oxygen gas or the like
  • an inert gas such as argon may be added.
  • the TFT 5 including the semiconductor layer 13 having the channel region C is formed.
  • a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or the like is formed on the entire substrate on which the source electrode 6 and the drain electrode 8 are formed (that is, the TFT 5 is formed) by plasma CVD. Then, as shown in FIG. 5E, a protective film 21 covering the TFT 5 (that is, covering the semiconductor layer 13, the source electrode 6 and the drain electrode 8) is formed to a thickness of about 400 nm.
  • the protective film 21 is not limited to a single layer structure, and may have a two-layer structure or a three-layer structure.
  • a photosensitive organic insulating film made of a photosensitive acrylic resin or the like is formed on the entire substrate on which the protective film 21 is formed by spin coating or slit coating to a thickness of about 1.0 ⁇ m to 3.0 ⁇ m.
  • a planarizing film 35 covering the semiconductor layer 13 is formed on the surface of the protective film 21 as shown in FIG.
  • auxiliary capacitance wiring formation process Next, a metal film having a light shielding property and low resistance, such as aluminum or titanium, is formed on the entire substrate on which the protective film 21 and the planarizing film 35 are formed by a sputtering method. By performing photolithography, wet etching, and resist peeling and cleaning, as shown in FIG. 3 and FIG. 6B, the auxiliary capacitance wiring 27 is formed on the planarizing film 35. 27 is arranged so as to overlap and face the gate wiring 11.
  • a metal film having a light shielding property and low resistance such as aluminum or titanium
  • the auxiliary capacitance wiring 27 is formed so as to cover the channel region C in plan view.
  • a transparent conductive film such as, for example, an ITO film (thickness of about 50 nm to 200 nm) made of indium tin oxide is formed on the entire planarization film 35 on which the auxiliary capacitance wiring 27 is formed by sputtering. Thereafter, the transparent conductive film is subjected to photolithography, wet etching, and resist stripping cleaning, thereby forming the transparent conductive film on the planarizing film 35 and the same as the auxiliary capacitance wiring 27 as shown in FIG.
  • the auxiliary capacitance electrode 22 is formed in the layer.
  • auxiliary capacitance line 27 and the auxiliary capacitance electrode 22 in order to form the auxiliary capacitance line 27 and the auxiliary capacitance electrode 22 in the same layer, it is unnecessary to form an opening for connecting the auxiliary capacitance line 27 and the auxiliary capacitance electrode 22. The process becomes unnecessary.
  • a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or the like is formed on the entire substrate on which the auxiliary capacitance wiring 27 and the auxiliary capacitance electrode 22 are formed by plasma CVD, and etching is performed.
  • an insulating film 23 covering the auxiliary capacitance line 27 and the auxiliary capacitance electrode 22 is formed on the planarizing film 35 to a thickness of about 200 to 300 nm, and the protective film 21 and the planarizing film are formed.
  • a contact hole Ca is formed in the laminated film of the film 35 and the insulating film 23.
  • a transparent conductive film such as, for example, an ITO film (thickness of about 50 nm to 200 nm) made of indium tin oxide is formed on the entire substrate on which the insulating film 23 has been formed by sputtering. Thereafter, the transparent conductive film is subjected to photolithography, wet etching, and resist peeling cleaning, thereby forming the pixel electrode 14 on the insulating film 23 as shown in FIG.
  • the pixel electrode 14 is formed on the surface of the protective film 21, the planarizing film 35, and the insulating film 23 so as to cover the surface of the contact hole Ca.
  • an auxiliary capacitance can be configured by the auxiliary capacitance electrode 22, the insulating film 23, and the pixel electrode 14 described above.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ITSO indium tin oxide containing silicon oxide
  • a light-transmitting material such as indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), or titanium nitride (TiN) may be used.
  • the TFT substrate 2 shown in FIG. 4 can be manufactured as described above.
  • ⁇ Opposite substrate manufacturing process First, by applying, for example, a photosensitive resin colored in black to the entire substrate of the insulating substrate 31 such as a glass substrate by a spin coating method or a slit coating method, the coating film is exposed and developed. As shown in FIG. 7A, the black matrix 32 is formed to a thickness of about 1.0 ⁇ m.
  • a photosensitive resin colored in red, green, or blue is applied to the entire substrate on which the black matrix 32 is formed by spin coating or slit coating. Thereafter, the coating film is exposed and developed to form a colored layer 33 (for example, a red layer) of a selected color with a thickness of about 2.0 ⁇ m as shown in FIG. The same process is repeated for the other two colors to form the other two colored layers 33 (for example, a green layer and a blue layer) with a thickness of about 2.0 ⁇ m.
  • the common electrode 34 has a thickness as shown in FIG. It is formed to have a thickness of about 50 nm to 200 nm.
  • the coating film is exposed and developed, as shown in FIG. 7C. Then, the photo spacer 36 is formed to a thickness of about 4 ⁇ m.
  • the counter substrate 3 can be manufactured as described above.
  • a polyimide resin film is applied to each surface of the TFT substrate 2 manufactured in the TFT substrate manufacturing process and the counter substrate 3 manufactured in the counter substrate manufacturing process by a printing method, and then applied to the coating film. Then, an alignment film is formed by performing baking and rubbing treatment.
  • a sealing material 40 made of UV (ultraviolet) curing and thermosetting resin is printed on the surface of the counter substrate 3 on which the alignment film is formed in a frame shape, and then a liquid crystal is formed inside the sealing material 40. Drip the material.
  • the bonded body is released to atmospheric pressure, The front and back surfaces of the bonded body are pressurized.
  • the sealing material 40 is hardened by heating the bonding body.
  • the unnecessary part is removed by dividing the bonded body in which the sealing material 40 is cured by, for example, dicing.
  • the liquid crystal display device 1 of the present embodiment can be manufactured.
  • the auxiliary capacitance wiring 27 is arranged to face the gate wiring 11 in a plan view. Accordingly, since the auxiliary capacitance line 27 can be disposed so as to overlap the light shielding region (that is, the portion of the TFT 5 provided with the gate line 11) A, the auxiliary capacitance line 27 is provided in the transmission region B where light is transmitted. There is no need. As a result, it is possible to prevent the aperture ratio from being lowered due to the provision of the auxiliary capacitance wiring 27 in the transmission region B.
  • the auxiliary capacitance wiring 27 formed of a metal having a volume resistivity of 20 ⁇ 10 ⁇ 8 [ ⁇ m] or less is provided on the planarizing film 35. Accordingly, since the resistance value of the auxiliary capacitance wiring 27 can be reduced as compared with the conventional technique in which the auxiliary capacitance wiring is formed of a transparent conductive film such as ITO, the CR product is reduced and the voltage to the auxiliary capacitance wiring 27 is reduced. Can be sufficiently applied in a short time.
  • the metal forming the auxiliary capacitance wiring 27 has a light shielding property, and the auxiliary capacitance wiring is arranged so as to cover the channel region C in plan view. Accordingly, it is possible to effectively suppress the incidence of light on the channel region C of the semiconductor layer 13. As a result, it is possible to effectively suppress an increase in off-current due to the incidence of light on the semiconductor layer 13.
  • auxiliary capacitance wiring 27 aluminum, titanium, tungsten, nickel, gold, platinum, silver, magnesium, calcium, lithium, molybdenum, tantalum, niobium, copper, chromium, neodymium , Yttrium and their alloys are used. Therefore, it is possible to form the auxiliary capacitance wiring 27 with an inexpensive and versatile metal.
  • the auxiliary capacitance electrode 22 is provided on the planarizing film 35, and the auxiliary capacitance wiring 27 and the auxiliary capacitance electrode 22 are provided in the same layer. Therefore, an extra process such as formation of an opening for connecting the auxiliary capacitance line 27 and the auxiliary capacitance electrode 22 becomes unnecessary.
  • the auxiliary capacitance line 27 and the auxiliary capacitance electrode 22 are provided in the same layer.
  • the auxiliary capacitance electrode 22 is provided on the planarizing film 35 and the auxiliary capacitance electrode 22 is provided.
  • the auxiliary capacitance wiring 27 may be provided on the top. Also in this case, the same effects as the above (1) to (4) can be obtained.
  • the method of the liquid crystal display device 1 of the above embodiment includes TN (Twisted Nematic), VA (Vertical Alignment), MVA (Multi-domain Vertical Alignment), ASV (Advanced Super View), IPS (In-Plane-Switching), etc. Any method may be used.
  • Examples of utilization of the present invention include a thin film transistor substrate on which an auxiliary capacitor is formed, a manufacturing method thereof, and a display device.
  • Liquid crystal display device TFT substrate (thin film transistor substrate) 3 Counter substrate 4 Liquid crystal layer (display medium layer) 5 TFT (Thin Film Transistor) 6 Source electrode 8 Drain electrode 11 Gate wiring 12 Gate insulation film 13 Semiconductor layer 14 Pixel electrode 17 Source wiring 20 Insulating substrate 21 Protective film 22 Auxiliary capacitance electrode 23 Insulating film 27 Auxiliary capacitance wiring 30 pixels 31 Insulating substrate 32 Black Matrix 33 Colored layer 34 Common electrode 35 Planarization film 36 Photospacer 40 Sealing material

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

 TFT基板(2)は、絶縁基板(20)と、絶縁基板(20)上に設けられたゲート配線(11)と、ゲート配線(11)上に設けられ、チャネル領域(C)を有する半導体層(13)とを備えるTFT(5)と、半導体層(13)を覆う平坦化膜(35)とを備えている。また、TFT基板(2)は、平坦化膜(35)上に設けられ、体積抵抗率が20×10-8〔Ωm〕以下である金属により形成された補助容量配線(27)を備え、補助容量配線(27)は、平面視において、ゲート配線(11)に対向して配置されている。

Description

薄膜トランジスタ基板及びその製造方法、表示装置
 本発明は、補助容量が形成された薄膜トランジスタ基板及びその製造方法、表示装置に関する。
 近年、携帯電話、携帯ゲーム機等のモバイル型端末機器やノート型パソコン等の各種電子機器の表示パネルとして、薄くて軽量であるとともに、低電圧で駆動でき、かつ消費電力が少ないという長所を有するアクティブマトリクス型の液晶表示装置が広く使用されている。
 このようなアクティブマトリクス型の液晶表示装置は、スイッチング素子としての薄膜トランジスタ(以下、「TFT:Thin Film Transistor」と略記する。)を有する薄膜トランジスタ基板(以下、「TFT基板」という。)と、着色層を有し、TFT基板に貼り合わされた対向基板とを備えている。そして、これらTFT基板と対向基板との間には、液晶層が配置されている。
 また、一般に、液晶表示装置の場合、TFT基板に設けられた画素電極と対向基板に設けられた共通電極との間に、上述の液晶層を挟持することにより液晶容量を構成しているが、リーク電流等に起因する、液晶容量に充電した電荷の減衰時間を長くするため、液晶容量と並列に補助容量を設けている。
 より具体的には、例えば、半導体層を有するTFT、及び画素電極を有し、画素電極の電位を保持するための補助容量を備えたTFT基板において、TFTの半導体層よりも上層に形成された補助容量配線と、補助容量配線よりも上層であり、かつ画素電極よりも下層に形成された補助容量電極と、補助容量配線と補助容量電極との間に設けられた絶縁膜とにより、補助容量を構成したTFT基板が開示されている(例えば、特許文献1参照)。
特開2000-91585号公報
 しかし、上記特許文献1に記載のTFT基板においては、補助容量を構成する補助容量配線が、チタン等の遮光性を有する金属により形成されており、また、補助容量配線が、画素における光の透過領域に配置されているため、TFT基板の画素の開口率が低下するという問題があった。
 また、上記補助容量配線を、インジウム錫酸化物(ITO)等の透光性を有する金属膜により形成することも考えられるが、補助容量配線を透光性を有する金属膜により形成すると、補助容量配線の抵抗値が大きくなる(例えば、ITOの体積抵抗率は、2.5μΩmである)。従って、CR積(10μ秒間の接合静電容量Cとオン抵抗Rとの積。「時定数」ともいう。)が大きくなってしまい、結果として、補助容量配線への電圧の印加に要する時間が長時間になってしまうという問題があった。
 そこで、本発明は、上述の問題に鑑みてなされたものであり、開口率の低下を防止するとともに、補助容量配線への電圧の印加を短時間で行うことができる薄膜トランジスタ基板及びその製造方法、表示装置を提供することを目的とする。
 上記目的を達成するために、本発明の薄膜トランジスタ基板は、絶縁基板と、絶縁基板上に設けられたゲート配線、及びゲート配線上に設けられ、チャネル領域を有する半導体層を備える薄膜トランジスタと、半導体層を覆う平坦化膜とを備えた薄膜トランジスタ基板であって、平坦化膜上に、体積抵抗率が20×10-8〔Ωm〕以下である金属により形成された補助容量配線が設けられ、補助容量配線は、平面視において、ゲート配線に対向して配置されていることを特徴とする。
 同構成によれば、平面視において、補助容量配線がゲート配線に対向して配置されているため、遮光領域(即ち、ゲート配線が設けられた薄膜トランジスタの部分)と重なるように補助容量配線を配置することができる。従って、光が透過する透過領域において、補助容量配線を設ける必要がなくなるため、透過領域に補助容量配線を設けることに起因する開口率の低下を防止することができる。
 また、補助容量配線を、ITO等の透光性を有する金属膜ではなく、体積抵抗率が20×10-8〔Ωm〕以下である低抵抗を有する金属により形成する構成としている。従って、ITO等により補助容量配線を形成する従来技術に比し、補助容量配線の抵抗値を小さくすることができるため、CR積を小さくして、補助容量配線への電圧の印加を短時間で十分に行うことが可能になる。
 本発明の薄膜トランジスタ基板においては、金属が遮光性を有し、補助容量配線が、平面視において、チャネル領域を覆うように配置されていることが好ましい。
 同構成によれば、半導体層のチャネル領域への光の入射を効果的に抑制することが可能になる。その結果、半導体層への光の入射に起因するオフ電流の増加を効果的に抑制することが可能になる。
 本発明の薄膜トランジスタ基板においては、金属が、アルミニウム、チタン、タングステン、ニッケル、金、白金、銀、マグネシウム、カルシウム、リチウム、モリブデン、タンタル、ニオブ、銅、クロム、ネオジム、イットリウム及びこれらの合金からなる群より選択される少なくとも1種であることが好ましい。
 同構成によれば、安価かつ汎用性のある金属により、補助容量配線を形成することが可能になる。
 本発明の薄膜トランジスタ基板においては、平坦化膜上に補助容量電極が設けられ、補助容量配線と補助容量電極とが同層に設けられていてもよい。
 同構成によれば、補助容量配線と補助容量電極とを接続するための開口の形成等の余計なプロセスが不要になる。
 本発明の薄膜トランジスタ基板においては、平坦化膜上に、補助容量電極を覆うように設けられた絶縁膜と、絶縁膜上に設けられた画素電極とを更に備え、補助容量電極と絶縁膜と画素電極とにより補助容量を構成してもよい。
 また、本発明の薄膜トランジスタ基板は、透過領域に補助容量配線を設けることに起因する開口率の低下を防止して、補助容量配線への電圧の印加を短時間で十分に行うことができるという優れた特性を備えている。従って、本発明は、薄膜トランジスタ基板と、薄膜トランジスタ基板に対向して配置された対向基板と、薄膜トランジスタ基板及び対向基板の間に設けられた表示媒体層とを備えることを特徴とする表示装置に好適に使用される。また、本発明は、表示媒体層が液晶層である場合に好適に使用される。
 本発明の薄膜トランジスタ基板の製造方法は、絶縁基板上にゲート配線を形成するとともに、ゲート配線上にチャネル領域を有する半導体層を形成して、ゲート配線と半導体層とを備える薄膜トランジスタを形成する工程と、半導体層を覆う平坦化膜を形成する工程と、平坦化膜上に、平面視において、ゲート配線と対向するように配置され、体積抵抗率が20×10-8〔Ωm〕以下である金属からなる補助容量配線を形成する工程とを少なくとも備えることを特徴とする。
 同構成によれば、平面視において、補助容量配線をゲート配線に対向して配置するため、遮光領域(即ち、ゲート配線が設けられた薄膜トランジスタの部分)と重なるように補助容量配線を配置することができる。従って、光が透過する透過領域において、補助容量配線を設ける必要がなくなるため、透過領域に補助容量配線を設けることに起因する開口率の低下を防止することができる薄膜トランジスタ基板を製造することができる。
 また、補助容量配線を、ITO等の透光性を有する金属膜ではなく、体積抵抗率が20×10-8〔Ωm〕以下である低抵抗を有する金属により形成する構成としている。従って、ITO等により補助容量配線を形成する従来技術に比し、補助容量配線の抵抗値を小さくすることができるため、CR積を小さくして、補助容量配線への電圧の印加を短時間で十分に行うことが可能になる薄膜トランジスタ基板を製造することができる。
 本発明の薄膜トランジスタ基板の製造方法においては、補助容量配線を形成する工程において、金属が遮光性を有し、平面視において、チャネル領域を覆うように補助容量配線を形成することを特徴とする。
 同構成によれば、半導体層のチャネル領域への光の入射を効果的に抑制することが可能になる。その結果、半導体層への光の入射に起因するオフ電流の増加を効果的に抑制することが可能になる薄膜トランジスタ基板を製造することができる。
 本発明によれば、透過領域に補助容量配線を設けることに起因する開口率の低下を防止して、補助容量配線への電圧の印加を短時間で十分に行うことができる。
本発明の実施形態に係る液晶表示装置の全体構成を示す平面図である。 本発明の実施形態に係る液晶表示装置の断面図である。 本発明の実施形態に係る液晶表示装置における画素を示す平面図である。 図3のA-A断面図である。 TFT及びTFT基板の製造工程を断面で示す説明図である。 TFT及びTFT基板の製造工程を断面で示す説明図である。 対向基板の製造工程を断面で示す説明図である。 本発明の実施形態に係る液晶表示装置のTFT基板の変形例を示す断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。
 図1は、本発明の実施形態に係る液晶表示装置の全体構成を示す平面図であり、図2は、本発明の実施形態に係る液晶表示装置の断面図である。また、図3は、本発明の実施形態に係る液晶表示装置における画素を示す平面図であり、図4は、図3のA-A断面図である。
 図1、図2に示すように、液晶表示装置1は、TFT基板2と、TFT基板2に対向して配置された対向基板3と、TFT基板2及び対向基板3の間に挟持して設けられた表示媒体層である液晶層4とを備えている。また、液晶表示装置1は、TFT基板2と対向基板3との間に狭持され、TFT基板2及び対向基板3を互いに接着するとともに液晶層4を封入するために枠状に設けられたシール材40とを備えている。
 液晶層4は、例えば、電気光学特性を有するネマチックの液晶材料等により構成されている。
 また、シール材40は、液晶層4を周回するように形成されており、TFT基板2と対向基板3は、このシール材40を介して相互に貼り合わされている。なお、液晶表示装置1は、液晶層4の厚み(即ち、セルギャップ)を規制するための複数のフォトスペーサ(不図示)を備えている。
 また、図1に示すように、液晶表示装置1は、矩形状に形成されており、液晶表示装置1の辺方向において、TFT基板2が対向基板3よりも突出し、その突出した領域には、後述するゲート配線やソース配線等の複数の表示用配線が引き出され、端子領域Tが構成されている。
 また、液晶表示装置1では、TFT基板2及び対向基板3が重なる領域に画像表示を行う表示領域Dが規定されている。ここで、表示領域Dは、画像の最小単位である画素30がマトリクス状に複数配列されることにより構成されている。
 また、シール材40は、図1に示すように、表示領域Dの周囲全体を囲む矩形枠状に設けられている。
 また、図3に示すように、液晶表示装置1が備える画素30には、ソース配線17とゲート配線11とが互いに交差して設けられている。また、図3に示すように、ソース配線17およびゲート配線11は、各々複数本が設けられており、複数のソース配線17と複数のゲート配線11との交差点の各々に対応して、複数の画素30がマトリクス状に配置されている。即ち、複数のソース配線17とゲート配線11との交差点のそれぞれには1つの画素30が対応しており、ゲート配線11とソース配線17で囲まれた領域毎に各画素30が各々設けられている。
 そして、各画素30においては、両信号線の交差部近傍のゲート配線11がゲート電極を兼用するとともに、両信号線の交差部近傍のソース配線17にソース電極6が接続され、更に、ドレイン電極8が画素電極14に接続されたスイッチング素子としての薄膜トランジスタ(TFT)5が設けられている。
 このTFT5は、ゲート配線11が選択状態であるときにオン状態となり、ゲート配線11が非選択状態であるときにオフ状態となる。また、TFT5は、図3に示すように、各ゲート配線11及び各ソース配線17の交差部分毎に設けられている。
 また、画素電極14は、例えば、インジウム錫酸化物(ITO)等の透明導電体により形成されている。
 TFT基板2は、図3、図4に示すように、絶縁基板20と、表示領域Dにおいて、絶縁基板20上に互いに平行に延びるように設けられた上述のゲート配線11と、各ゲート配線11と直交する方向に互いに平行に延びるように設けられた上述のソース配線17とを備えている。また、TFT基板2は、各ゲート配線11及び各ソース配線17の交差部分毎、即ち、各画素毎にそれぞれ設けられた上述のTFT5とを備えている。また、TFT基板2は、各TFT5を覆うように設けられた保護膜21と、当該保護膜21を覆うように設けられた絶縁性を有する平坦化膜35と、平坦化膜35上に設けられた補助容量電極22とを備えている。更に、TFT基板2は、補助容量電極22を覆うように平坦化膜35上に設けられた絶縁膜23と、絶縁膜23上にマトリクス状に設けられ、各TFT5にそれぞれ接続された複数の画素電極14と、各画素電極14を覆うように設けられた配向膜(不図示)とを備えている。
 なお、補助容量電極22は、上述の画素電極14と同様に、例えば、インジウム錫酸化物(ITO)等の透明導電体により形成されている。
 TFT5は、ボトムゲート構造を有しており、図3及び図4に示すように、絶縁基板20上に設けられたゲート電極を兼用するゲート配線11と、ゲート配線11を覆うように設けられたゲート絶縁膜12とを備えている。また、TFT5は、ゲート絶縁膜12上でゲート配線11に重なるように島状に設けられたチャネル領域Cを有する半導体層13と、半導体層13上にゲート配線11に重なるとともにチャネル領域Cを挟んで互いに対峙するように設けられたソース電極6及びドレイン電極8とを備えている。
 半導体層13は、シリコン層により形成されており、例えば、下層の真性アモルファスシリコン層と、その上層のリンがドープされたnアモルファスシリコン層により構成されている。
 半導体層13のチャネル領域C上には、ソース電極6及びドレイン電極8(即ち、TFT5)を覆う上述の保護膜21が設けられている。
 なお、ソース電極6は、図3に示すように、ソース配線17が側方へ突出した部分であり、図4に示すように、第1導電層6a及び第2導電層6bの積層膜により構成されている。
 さらに、ドレイン電極8は、図3及び図4に示すように、第1導電層8a及び第2導電層8bの積層膜により構成され、保護膜21、平坦化膜35、及び絶縁膜23の積層膜に形成されたコンタクトホールCaを介して画素電極14に接続されている。
 対向基板3は、後述する図7(c)に示すように、絶縁基板31と、絶縁基板31上に格子状に設けられたブラックマトリクス32並びにブラックマトリクス32の各格子間にそれぞれ設けられた赤色層、緑色層及び青色層などの着色層33を有するカラーフィルター層と、そのカラーフィルター層を覆うように設けられた共通電極34と、共通電極34上に設けられたフォトスペーサ36と、共通電極34を覆うように設けられた配向膜(不図示)とを備えている。
 上記構成の液晶表示装置1では、各画素30において、ゲートドライバ(不図示)からゲート信号がゲート配線11に送られて、TFT5がオン状態になったときに、ソースドライバ(不図示)からソース信号がソース配線17を介してソース電極6に送られて、半導体層13及びドレイン電極8を介して、画素電極14に所定の電荷が書き込まれる。
 この際、TFT基板2の各画素電極14と対向基板3の共通電極34との間において電位差が生じ、液晶層4、即ち、各画素30の液晶容量、及びその液晶容量に並列に接続された補助容量に所定の電圧が印加される。
 そして、液晶表示装置1では、各画素において、液晶層4に印加する電圧の大きさによって液晶層4の配向状態を変えることにより、液晶層4の光透過率を調整して画像が表示される。
 なお、本実施形態においては、画素電極14と共通電極34とによって液晶容量が形成されている。また、補助容量電極22と絶縁膜23と画素電極14とにより、補助容量が形成されている。即ち、補助容量電極22は、絶縁膜23を介して画素電極14と重なることによって補助容量を構成している。
 ここで、本実施形態においては、図3、図4に示すように、平面視において、補助容量配線27が、ゲート配線11に対向して配置されている点に特徴がある。
 この補助容量配線27は、図4に示すように、補助容量電極22と同様に、平坦化膜35上に設けられ、補助容量配線27を覆うように、平坦化膜35上に絶縁膜23が設けられている。
 そして、このような構成により、上記従来技術とは異なり、TFT基板2の画素30の開口率を向上させることが可能になる。換言すると、図4に示すように、遮光領域(即ち、ゲート配線11が設けられたTFT5の部分)Aと重なるように補助容量配線27を配置することにより、各画素30の光が透過する透過領域Bにおいて、補助容量配線27を設ける必要がなくなる。その結果、透過部Bに補助容量配線27を設けることに起因する開口率の低下を防止することができる。
 また、本実施形態においては、補助容量配線27を、ITO等の透明導電膜ではなく、アルミニウム、チタン、タングステン、ニッケル、金、白金、銀、マグネシウム、カルシウム、リチウム、モリブデン、タンタル、ニオブ、銅、クロム、ネオジム、イットリウム及びこれらの合金等の低抵抗を有する金属により形成する構成としている。従って、ITO等の透明導電膜により補助容量配線を形成する従来技術に比し、補助容量配線27の抵抗値を小さくすることができるため、CR積を小さくして、補助容量配線27への電圧の印加を短時間で十分に行うことが可能になる。
 なお、ここでいう「低抵抗を有する金属」とは、体積抵抗率が20×10-8〔Ωm〕以下の金属のことを言う。
 また、上述のアルミニウム、チタン等の金属は、遮光性を有するため、当該金属により形成された補助容量配線27を、図3、図4に示すように、平面視において、半導体層13のチャネル領域Cを覆うように配置することにより、半導体層13のチャネル領域Cへの光の入射を効果的に抑制することが可能になる。その結果、半導体層13への光の入射に起因するオフ電流の増加を効果的に抑制することが可能になる。
 また、本実施形態においては、図4に示すように、補助容量配線27と補助容量電極22とを同層に形成するため 、補助容量配線27と補助容量電極22とを接続するための開口の形成等の余計プロセスが不要になる。
 次に、本実施形態の液晶表示装置1の製造方法の一例について図5~図7を用いて説明する。図5、図6は、TFT及びTFT基板の製造工程を断面で示す説明図であり、図7は、対向基板の製造工程を断面で示す説明図である。なお、本実施形態の製造方法は、TFT基板作製工程、対向基板作製工程及び液晶注入工程を備える。
 まず、TFT及びTFT基板作製工程について説明する。
 <ゲート電極形成工程>
 まず、ガラス基板、シリコン基板、耐熱性を有するプラスチック基板などの絶縁基板20の基板全体に、スパッタリング法により、例えば、モリブテン膜(厚さ150nm程度)などを成膜した後に、そのモリブテン膜に対して、フォトリソグラフィ、ウエットエッチング及びレジストの剥離洗浄を行うことにより、図3、図5(a)に示すように、絶縁基板20上にゲート配線11を形成する。
 なお、本実施形態では、ゲート配線11を構成する金属膜として、単層構造のモリブテン膜を例示したが、例えば、アルミニウム膜、タングステン膜、タンタル膜、クロム膜、チタン膜、銅膜等の金属膜、または、これらの合金膜や金属窒化物による膜によりゲート配線11を、50nm~300nmの厚さで形成する構成としても良い。
 また、上記プラスチック基板を形成する材料としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエーテルサルフォン樹脂、アクリル樹脂、及びポリイミド樹脂を使用することができる。
 <ゲート絶縁膜形成工程>
 続いて、ゲート配線11が形成された基板全体に、CVD法により、例えば、窒化シリコン膜(厚さ200nm~500nm程度)を成膜して、図5(b)に示すように、ゲート配線11を覆うようにゲート絶縁膜12を形成する。
 なお、ゲート絶縁膜12を2層の積層構造で形成する構成としても良い。この場合、上述の窒化シリコン膜(SiNx)以外に、例えば、酸化シリコン膜(SiOx)、酸化窒化シリコン膜(SiOxNy、x>y)、窒化酸化シリコン膜(SiNxOy、x>y)等を使用することができる。
 また、絶縁基板20からの不純物等の拡散防止の観点から、下層側のゲート絶縁膜として、窒化シリコン膜、または窒化酸化シリコン膜を使用するとともに、上層側のゲート絶縁膜として、酸化シリコン膜、または酸化窒化シリコン膜を使用する構成とすることが好ましい。例えば、下層側のゲート絶縁膜として、SiHとNHとを反応ガスとして膜厚100nmから200nmの窒化シリコン膜を形成するとともに、上層側のゲート絶縁膜として、NO、SiHを反応ガスとして膜厚50nmから100nmの酸化シリコン膜を形成することができる。
 また、低い成膜温度により、ゲートリーク電流の少ない緻密なゲート絶縁膜12を形成するとの観点から、アルゴンガス等の希ガスを反応ガス中に含有させて絶縁膜中に混入させることが好ましい。
 <半導体層形成工程>
 さらに、ゲート絶縁膜12が形成された基板全体に、まず、プラズマCVD法により、例えば、真性アモルファスシリコン膜、及びリンがドープされたnアモルファスシリコン膜を連続して成膜する。その後、フォトリソグラフィによりゲート配線11上に島状にパターニングして、真性アモルファスシリコン層及びnアモルファスシリコン層が積層された半導体形成層を形成する。続いて、上記半導体形成層のnアモルファスシリコン層をエッチングすることにより、チャネル領域をパターニングして、図5(c)に示すように、ゲート配線11及びゲート絶縁膜12上に、半導体層13を厚さ100nm程度に形成する。
 <ソースドレイン形成工程>
 次いで、半導体層13が形成された基板全体に、スパッタリング法により、例えば、チタン膜(厚さ30nm~150nm)及び銅膜(厚さ50nm~400nm程度)などを順に成膜する。次いで、その銅膜に対してフォトリソグラフィ及びウエットエッチングを行うとともに、そのチタン膜に対してドライエッチング、並びにレジストの剥離洗浄を行うことにより、図5(d)に示すように、ソース配線17(図3参照)、ソース電極6、ドレイン電極8を形成するとともに、半導体層13のチャネル領域Cを露出させる。
 即ち、本工程では、半導体層形成工程で形成された半導体層13上に、ドライエッチングによりソース電極6及びドレイン電極8を形成し、半導体層13のチャネル領域Cを露出させる。
 なお、本実施形態では、ソース電極6及びドレイン電極8を構成する金属膜として、積層構造のチタン膜及び銅膜を例示したが、例えば、アルミニウム膜、タングステン膜、タンタル膜、クロム膜等の金属膜、または、これらの合金膜や金属窒化物による膜によりソース電極6及びドレイン電極8を形成する構成としても良い。
 また、エッチング加工としては、上述のドライエッチングまたはウェットエッチングのどちらを使用しても良いが、大面積基板を処理する場合は、ドライエッチングを使用する方が好ましい。エッチングガスとしては、CF、NF、SF、CHF等のフッ素系ガス、Cl、BCl、SiCl、CCl等の塩素系ガス、酸素ガス等を使用することができ、ヘリウムやアルゴン等の不活性ガスを添加する構成としても良い。
 以上のようにして、チャネル領域Cを有する半導体層13を備えたTFT5を形成する。
 <保護膜形成工程>
 次いで、ソース電極6及びドレイン電極8が形成された(即ち、TFT5が形成された)基板の全体に、プラズマCVD法により、例えば、窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜などを成膜し、図5(e)に示すように、TFT5を覆う(即ち、半導体層13、ソース電極6及びドレイン電極8を覆う)保護膜21を厚さ400nm程度に形成する。
 次いで、保護膜21上にフォトリソグラフィ工程でレジストマスクを形成し、図5(e)に示すように、コンタクトホールCa用のエッチングを行い、基板全面に対して熱処理を行う。なお、保護膜21は、単層構造に限定されず、2層構造や3層構造であっても良い。
 <平坦化膜形成工程>
 次いで、保護膜21が形成された基板の全体に、スピンコート法又はスリットコート法により、感光性のアクリル樹脂等からなる感光性の有機絶縁膜を、厚さ1.0μm~3.0μm程度に塗布することにより、図5(e)に示すように、保護膜21の表面上に半導体層13を覆う平坦化膜35を形成する。
 <コンタクトホール形成工程>
 次いで、平坦化膜35に対して、露光及び現像を行うことにより、図6(a)に示すように、保護膜21及び平坦化膜35に、ドレイン電極8に達するコンタクトホールCaが形成される。
 <補助容量配線形成工程>
 次いで、保護膜21及び平坦化膜35が形成された基板全体に、スパッタリング法により、例えば、アルミニウム、チタン等の遮光性及び低抵抗を有する金属膜を成膜した後に、その金属膜に対して、フォトリソグラフィ、ウエットエッチング及びレジストの剥離洗浄を行うことにより、図3、図6(b)に示すように、平坦化膜35上に補助容量配線27が形成され、平面視において、補助容量配線27が、ゲート配線11と重なり合って対向するように配置される。
 また、この際、図3、図6(b)に示すように、補助容量配線27は、平面視において、チャネル領域Cを覆うように形成される。
 <補助容量電極形成工程>
 次いで、補助容量配線27が形成された平坦化膜35の全体に、スパッタリング法により、例えば、インジウム錫酸化物からなるITO膜(厚さ50nm~200nm程度)などの透明導電膜を成膜する。その後、その透明導電膜に対して、フォトリソグラフィ、ウエットエッチング及びレジストの剥離洗浄を行うことにより、図6(c)に示すように、平坦化膜35上であって、補助容量配線27と同層に、補助容量電極22を形成する。
 このように、本実施形態においては、補助容量配線27と補助容量電極22とを同一層に形成するため 、補助容量配線27と補助容量電極22とを接続するための開口の形成等の余計なプロセスが不要になる。
 <絶縁膜形成工程>
 次いで、補助容量配線27及び補助容量電極22が形成された基板の全体に、プラズマCVD法により、例えば、窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜などを成膜し、エッチングを行うことにより、図6(d)に示すように、平坦化膜35上に、補助容量配線27及び補助容量電極22を覆う絶縁膜23を厚さ200~300nm程度に形成するとともに、保護膜21、平坦化膜35、及び絶縁膜23の積層膜にコンタクトホールCaが形成される。
 <画素電極形成工程>
 次いで、絶縁膜23が形成された基板全体に、スパッタリング法により、例えば、インジウム錫酸化物からなるITO膜(厚さ50nm~200nm程度)などの透明導電膜を成膜する。その後、その透明導電膜に対して、フォトリソグラフィ、ウエットエッチング及びレジストの剥離洗浄を行うことにより、図4に示すように、絶縁膜23上に、画素電極14を形成する。
 この際、図4に示すように、画素電極14は、コンタクトホールCaの表面を覆うように、保護膜21、平坦化膜35及び絶縁膜23の表面上に形成される。また、画素電極14を形成することにより、TFT5において、上述の補助容量電極22と絶縁膜23と画素電極14とにより補助容量を構成することができる。
 なお、補助容量電極22及び画素電極14を形成する導電性材料として、インジウム錫酸化物(ITO)の他に、インジウム亜鉛酸化物(IZO)、酸化ケイ素を含有するインジウム錫酸化物(ITSO)、酸化インジウム(In)、酸化錫(SnO)、酸化亜鉛(ZnO)、窒化チタン(TiN)等の透光性を有する材料を使用してもよい。
 以上のようにして、図4に示すTFT基板2を作製することができる。
 <対向基板作製工程>
 まず、ガラス基板などの絶縁基板31の基板全体に、スピンコート法又はスリットコート法により、例えば、黒色に着色された感光性樹脂を塗布した後に、その塗布膜を露光及び現像することにより、図7(a)に示すように、ブラックマトリクス32を厚さ1.0μm程度に形成する。
 次いで、ブラックマトリクス32が形成された基板全体に、スピンコート法又はスリットコート法により、例えば、赤色、緑色又は青色に着色された感光性樹脂を塗布する。その後、その塗布膜を露光及び現像することにより、図7(a)に示すように、選択した色の着色層33(例えば、赤色層)を厚さ2.0μm程度に形成する。そして、他の2色についても同様な工程を繰り返して、他の2色の着色層33(例えば、緑色層及び青色層)を厚さ2.0μm程度に形成する。
 さらに、各色の着色層33が形成された基板上に、スパッタリング法により、例えば、ITO膜などの透明導電膜を堆積することにより、図7(b)に示すように、共通電極34を厚さ50nm~200nm程度に形成する。
 最後に、共通電極34が形成された基板全体に、スピンコート法又はスリットコート法により、感光性樹脂を塗布した後に、その塗布膜を露光及び現像することにより、図7(c)に示すように、フォトスペーサ36を厚さ4μm程度に形成する。
 以上のようにして、対向基板3を作製することができる。
 <液晶注入工程>
 まず、上記TFT基板作製工程で作製されたTFT基板2、及び上記対向基板作製工程で作製された対向基板3の各表面に、印刷法によりポリイミドの樹脂膜を塗布した後に、その塗布膜に対して、焼成及びラビング処理を行うことにより、配向膜を形成する。
 次いで、例えば、上記配向膜が形成された対向基板3の表面に、UV(ultraviolet)硬化及び熱硬化併用型樹脂などからなるシール材40を枠状に印刷した後に、シール材40の内側に液晶材料を滴下する。
 さらに、上記液晶材料が滴下された対向基板3と、上記配向膜が形成されたTFT基板2とを、減圧下で貼り合わせた後に、その貼り合わせた貼合体を大気圧に開放することにより、その貼合体の表面及び裏面を加圧する。
 そして、上記貼合体に挟持されたシール材40にUV光を照射した後に、その貼合体を加熱することによりシール材40を硬化させる。
 最後に、上記シール材40を硬化させた貼合体を、例えば、ダイシングにより分断することにより、その不要な部分を除去する。
 以上のようにして、本実施形態の液晶表示装置1を製造することができる。
 以上に説明した本実施形態によれば、以下の効果を得ることができる。
 (1)本実施形態においては、補助容量配線27を、平面視において、ゲート配線11に対向して配置する構成としている。従って、遮光領域(即ち、ゲート配線11が設けられたTFT5の部分)Aと重なるように補助容量配線27を配置することができるため、光が透過する透過領域Bにおいて、補助容量配線27を設ける必要がなくなる。その結果、透過領域Bに補助容量配線27を設けることに起因する開口率の低下を防止することができる。
 (2)本実施形態においては、平坦化膜35上に、体積抵抗率が20×10-8〔Ωm〕以下である金属により形成された補助容量配線27を設ける構成としている。従って、ITO等の透明導電膜により補助容量配線を形成する従来技術に比し、補助容量配線27の抵抗値を小さくすることができるため、CR積を小さくして、補助容量配線27への電圧の印加を短時間で十分に行うことが可能になる。
 (3)本実施形態においては、補助容量配線27を形成する金属が遮光性を有し、補助容量配線を、平面視において、チャネル領域Cを覆うように配置する構成としている。従って、半導体層13のチャネル領域Cへの光の入射を効果的に抑制することが可能になる。その結果、半導体層13への光の入射に起因するオフ電流の増加を効果的に抑制することが可能になる。
 (4)本実施形態においては、補助容量配線27を形成する金属として、アルミニウム、チタン、タングステン、ニッケル、金、白金、銀、マグネシウム、カルシウム、リチウム、モリブデン、タンタル、ニオブ、銅、クロム、ネオジム、イットリウム及びこれらの合金を使用する構成としている。従って、安価かつ汎用性のある金属により、補助容量配線27を形成することが可能になる。
 (5)本実施形態においては、平坦化膜35上に補助容量電極22を設け、補助容量配線27と補助容量電極22とを同層に設ける構成としている。従って、補助容量配線27と補助容量電極22とを接続するための開口の形成等の余計なプロセスが不要になる。
 なお、上記実施形態は以下のように変更しても良い。
 上記実施形態においては、補助容量配線27と補助容量電極22とを同層に設ける構成としたが、図8に示すように、平坦化膜35上に補助容量電極22を設け、補助容量電極22上に補助容量配線27を設ける構成としてもよい。この場合も、上述の(1)~(4)と同様の効果を得ることができる。
 上記実施形態の液晶表示装置1の方式は、TN(Twisted Nematic)、VA(Vertical Alignment)、MVA(Multi-domain Vertical Alignment)、ASV(Advanced Super View)、IPS(In-Plane-Switching)等、どのような方式であってもよい。
 本発明の活用例としては、補助容量が形成された薄膜トランジスタ基板及びその製造方法、表示装置が挙げられる。
 1  液晶表示装置 
 2  TFT基板(薄膜トランジスタ基板) 
 3  対向基板 
 4  液晶層(表示媒体層) 
 5  TFT(薄膜トランジスタ) 
 6  ソース電極 
 8  ドレイン電極 
 11  ゲート配線 
 12  ゲート絶縁膜 
 13  半導体層 
 14  画素電極 
 17  ソース配線 
 20  絶縁基板 
 21  保護膜 
 22  補助容量電極 
 23  絶縁膜 
 27  補助容量配線 
 30  画素 
 31  絶縁基板 
 32  ブラックマトリクス 
 33  着色層 
 34  共通電極 
 35  平坦化膜 
 36  フォトスペーサ 
 40  シール材 

Claims (9)

  1.  絶縁基板と、
     前記絶縁基板上に設けられたゲート配線と、該ゲート配線上に設けられ、チャネル領域を有する半導体層とを備える薄膜トランジスタと、
     前記半導体層を覆う平坦化膜と
     を備えた薄膜トランジスタ基板であって、
     前記平坦化膜上に、体積抵抗率が20×10-8〔Ωm〕以下である金属により形成された補助容量配線が設けられ、
     前記補助容量配線は、平面視において、前記ゲート配線に対向して配置されていることを特徴とする薄膜トランジスタ基板。
  2.  前記金属が遮光性を有し、前記補助容量配線が、平面視において、前記チャネル領域を覆うように配置されていることを特徴とする請求項1に記載の薄膜トランジスタ基板。
  3.  前記金属が、アルミニウム、チタン、タングステン、ニッケル、金、白金、銀、マグネシウム、カルシウム、リチウム、モリブデン、タンタル、ニオブ、銅、クロム、ネオジム、イットリウム及びこれらの合金からなる群より選択される少なくとも1種であることを特徴とする請求項1または請求項2に記載の薄膜トランジスタ基板。
  4.  前記平坦化膜上に補助容量電極が設けられ、前記補助容量配線と前記補助容量電極とが同層に設けられていることを特徴とする請求項1~請求項3のいずれか1項に記載の薄膜トランジスタ基板。
  5.  前記平坦化膜上に、前記補助容量電極を覆うように設けられた絶縁膜と、前記絶縁膜上に設けられた画素電極とを更に備え、
     前記補助容量電極と前記絶縁膜と前記画素電極とにより補助容量が構成されていることを特徴とする請求項1~請求項4のいずれか1項に記載の薄膜トランジスタ基板。
  6.  請求項1~請求項5のいずれか1項に記載の薄膜トランジスタ基板と、
     前記薄膜トランジスタ基板に対向して配置された対向基板と、
     前記薄膜トランジスタ基板及び前記対向基板の間に設けられた表示媒体層と
     を備えることを特徴とする表示装置。
  7.  前記表示媒体層が液晶層であることを特徴とする請求項6に記載の表示装置。
  8.  絶縁基板上にゲート配線を形成するとともに、前記ゲート配線上にチャネル領域を有する半導体層を形成して、前記ゲート配線と前記半導体層とを備える薄膜トランジスタを形成する工程と、
     前記半導体層を覆う平坦化膜を形成する工程と、
     前記平坦化膜上に、平面視において、前記ゲート配線と対向するように配置され、体積抵抗率が20×10-8〔Ωm〕以下である金属からなる補助容量配線を形成する工程と
     を少なくとも備えることを特徴とする薄膜トランジスタ基板の製造方法。
  9.  前記補助容量配線を形成する工程において、前記金属が遮光性を有し、平面視において、前記チャネル領域を覆うように前記補助容量配線を形成することを特徴とする請求項8に記載の薄膜トランジスタ基板の製造方法。
PCT/JP2011/005392 2010-09-30 2011-09-26 薄膜トランジスタ基板及びその製造方法、表示装置 WO2012042824A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-220903 2010-09-30
JP2010220903 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012042824A1 true WO2012042824A1 (ja) 2012-04-05

Family

ID=45892316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005392 WO2012042824A1 (ja) 2010-09-30 2011-09-26 薄膜トランジスタ基板及びその製造方法、表示装置

Country Status (1)

Country Link
WO (1) WO2012042824A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038482A1 (ja) * 2012-09-05 2014-03-13 シャープ株式会社 半導体装置およびその製造方法
JP5956600B2 (ja) * 2012-10-30 2016-07-27 シャープ株式会社 アクティブマトリクス基板、表示パネル及びそれを備えた表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010581A (ja) * 1996-06-25 1998-01-16 Semiconductor Energy Lab Co Ltd 表示装置
JP2010026269A (ja) * 2008-07-19 2010-02-04 Casio Comput Co Ltd 液晶表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010581A (ja) * 1996-06-25 1998-01-16 Semiconductor Energy Lab Co Ltd 表示装置
JP2010026269A (ja) * 2008-07-19 2010-02-04 Casio Comput Co Ltd 液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038482A1 (ja) * 2012-09-05 2014-03-13 シャープ株式会社 半導体装置およびその製造方法
JP5956600B2 (ja) * 2012-10-30 2016-07-27 シャープ株式会社 アクティブマトリクス基板、表示パネル及びそれを備えた表示装置
US9760102B2 (en) 2012-10-30 2017-09-12 Sharp Kabushiki Kaisha Active-matrix substrate, display panel and display device including the same
US9798339B2 (en) 2012-10-30 2017-10-24 Sharp Kabushiki Kaisha Active-matrix substrate, display panel and display device including the same

Similar Documents

Publication Publication Date Title
US10303021B2 (en) BOA liquid crystal display panel and manufacturing method thereof
US9443886B2 (en) Thin film transistor substrate and method of fabricating the same
KR102248645B1 (ko) 금속 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
KR100598737B1 (ko) 박막 트랜지스터 어레이 기판 및 그 제조 방법
JP2015525000A (ja) 薄膜トランジスタ、アレイ基板及びその製作方法、ディスプレイ
WO2012090432A1 (ja) アクティブマトリクス基板及びその製造方法、並びに表示パネル
KR20060115464A (ko) 액정표시장치 및 그의 제조방법
JP2012248865A (ja) アクティブマトリクス基板及びそれを備えた表示パネル
EP2991121B1 (en) Array substrate, method for manufacturing array substrate and display device
KR20150001177A (ko) 금속 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
KR101973753B1 (ko) 금속 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
KR101318436B1 (ko) 박막 트랜지스터 기판 및 그 제조방법
CN107112367B (zh) 薄膜晶体管基板、薄膜晶体管基板的制造方法、液晶显示装置
WO2013171989A1 (ja) アレイ基板及びそれを備えた液晶表示パネル
US9224824B2 (en) Display device substrate and display device equipped with same
CN113467145B (zh) 阵列基板及制作方法、显示面板
WO2011161875A1 (ja) 表示装置用基板及びその製造方法、表示装置
KR101960533B1 (ko) 금속 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법
WO2012042824A1 (ja) 薄膜トランジスタ基板及びその製造方法、表示装置
WO2023108608A1 (zh) 阵列基板及制作方法、显示面板
KR101848496B1 (ko) 고투과 수평 전계형 액정표시장치 및 그 제조 방법
KR100919197B1 (ko) 횡전계모드 액정표시소자 및 그 제조방법
KR20070120234A (ko) 컬러필터 기판, 이를 갖는 표시패널, 및 이의 제조방법
CN113589612B (zh) 阵列基板及制作方法、显示面板
KR101969567B1 (ko) 금속 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP